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muchas gracias.

También quiero agradecer de manera muy especial al profesor Pedro Isaza, de quien
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acompañado desde la sede mi transito en las multiples instancias administrativas de

mi comisión de estudios, a él una fuerte voz de agradecimiento.



No puedo olvidar dar las gracias a mis amigos en el IMPA y Ŕıo. A Aı́da y Damián
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Notations

Ck(Ω) denotes the class of functions defined on Ω with k continuous derivatives,

Ck
∞(Ω) denotes the class of functions in Ck(Ω) vanishing at infinity,

C∞c (Ω) denotes the space of C∞-functions with compact support in Ω,

S is the Schwartz class of C∞-functions decaying at infinity,

Lp(Ω) denotes the Lebesgue space with norm denoted by ‖ · ‖Lp , 1 ≤ p ≤ +∞,

Lploc(Ω) := {u ∈ Lp(K) for eachK ⊂ K̄ ⊂ Ω : K̄ is compact},

X ′ denotes the dual space of the normed space X,

S ′ denotes the tempered dsitribution space of linear continuous functionals on S,

Lp(Ω, X) denotes the Lp-space of functions which take values in X,

W k,p, Hs are the classical Sobolev spaces,

Hs+ := Hs+δ, δ > 0 small enough,

û is the Fourier transform of the distribution u,

∂α := ∂xα1
x1
· · · ∂xαnxn , if α = (α1, . . . , αn),

∆ :=
∑n

i=1 ∂
2
xi

is the Laplacian operator,

∇ = (∂x1 , . . . , ∂xn) is the gradient vector,

� := ∂2
t −∆ is the wave operator,

δJ

δu
is the variational derivative of the functional J [u],



vg, cs are the group and sound velocities respectively, M =
vg
cs

is the Mach number,

a . b means a ≤ Cb for some constant C that may change from line to line,

⇀ (⇀
∗

) denotes (star) weak convergence,

↪→ (↪→
c

) denotes (compact) continuos embedding,

Tm denotes the multiplier transformation with multiplier m.



Abstract

We study the asymptotic behavior of solutions of Zakharov-Rubenchik system when

appropriate parameters tend to zero. Namely, we establish weak and strong conver-

gence results of these solutions to solutions of Zakharov system (supersonic limit) or

Davey-Stewartson system (subsonic limit).
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Introduction

In 1972, V. Zakharov and A. Rubenchik [41] derived a system of equations which

describes the interaction of a spectrally narrow high-frequency wave packet with a

low-frequency oscillations of acoustic type, in a conservative medium on Rn (n = 2, 3)

characterized by a Hamiltonian H. The universal system obtained by them is modeled

by the coupled equations
i(∂tψ + vg∂zψ) +

w′′

2
∂2
zψ +

vg
2k0

∆⊥ψ = (q|ψ|2 + βρ+ α∂zϕ)ψ,

∂tρ+ ρ00∆ϕ+ α∂z|ψ|2 = 0,

∂tϕ+
c2
s

ρ00

ρ+ β|ψ|2 = 0,

(ZR0)

where ψ = ψ(x, t) denotes the complex amplitude of the (high frequency (HF)) carrying

wave whose wave number k and frequency w are related by the dispersion relation

w = w(k), vg = w′(k) is the group velocity of the carrying wave, which according to

[41] and [26] is in the direction of the z-axis, that is, vg = (0, 0, vg). The functions ρ

and ϕ denote the density fluctuation and the hydrodynamic potential respectively, the

parameters q, α, measure the self-interaction of the carrying wave and the Doppler shift

respectively, cs =
√
p′(ρ00) is the sound velocity (p is the pressure), β = ∂w(k0)

∂ρ
∼ w/ρ00,

the center of the HF packet is at k0 (k ∼ k0) and the energy of the HF packet narrow

is ε0 ≈
∫
w(k0)|ψ|2dx.

The term δw(k0) := βρ+α∂zϕ in the first equation in (ZR0) represents the variation

of w(k0) because of the presence of an acoustic wave, where a good approximation of

α is given by

α =


w

vp
= k0, or

w

vg
=

cs
λ0vg

.

We use the notation x = (x, y, z) if n = 3 and x = (x, z) if n = 2, ∆⊥ = ∂2
x + ∂2

y if

n = 3 and ∆⊥ = ∂2
x if n = 2.
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The Hamiltonian for the system is

H =

∫ [
w0|ψ|2 +

i

2
(ψ̄∂zψ − ψ∂zψ̄)vg +

w′′

2
|∂zψ|2 +

vg
2k0

|∇⊥ψ|2 +
q

2
|ψ|4

+
ρ00

2
|∇ϕ|2 +

c2
s

2ρ00

ρ2 + |ψ|2(βρ+ α∂zϕ)
]
dx,

which is the conserved energy of (ZR0). In fact, this is (see [26]) a combination of the

energy for the first equation and the energy

H =

∫ [ρ
2
|∇ϕ|2 + ε(ρ)

]
dx

of the equations ∂tρ+∇ · (ρ∇ϕ) = 0,

∂tϕ+
1

2
|∇ϕ|2 + ω(ρ) = 0,

(Euler’s equations)

where ρ now is the mass density, ω(ρ) = ∂ε/∂ρ is the enthalpy and ε(ρ) is the internal

energy density.

The variables ρ and ϕ form a pair of canonically conjugate variables, they verify

the Hamilton equations
δH
δϕ

=
∂ρ

∂t
,

δH
δρ

= −∂ϕ
∂t
.

An equivalent system to (ZR0) was first deduced by Benney and Roskes [4] (see

also [39]) in the context of gravity waves (waves generated in a fluid medium or at the

interface between two media, which has the restoring force of gravity or buoyancy).

They obtained the system for the evolution of a train of waves propagation in the

z-direction expressed in a frame of reference moving with group velocity vg.

A modified ZR0 system was proposed by Zakharov and Kuznetsov [26] for certain

special regimes, depending on the level of nonlinearity q|ψ|2 in the subsonic regime

vg < cs. They proposed the system
i(∂tψ + vg∂zψ) +

w′′

2
∂2
zψ +

vg
2k0

∆⊥ψ = (q|ψ|2 + βρ+ α∂zϕ)ψ,

−vg∂zρ+ ρ00∆ϕ+ α∂z|ψ|2 = 0,

−vg∂zϕ+
c2
s

ρ00

ρ+ β|ψ|2 = 0

(ZRK0)

in that case.
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The importance of the systems (ZR0) and (ZRK0) can not be overlooked. For

instance, they do contain as specific limits the well known Zakharov and Davey-

Stewartson systems. They are thus richer than those simpler models and should capture

more of the original dynamics.

The systems (ZR0) and (ZRK0) can be transformed in a non-dimensional form (see

[39] to know the rescaling in the variables and Sections 1.1 to see the new parameters)

as 
i∂tψ + ε∂2

zψ + σ1∆⊥ψ = (q|ψ|2 + W(ρ+ αD∂zϕ))ψ,

∂tρ+ σ2∂zρ = −∆ϕ− αD∂z|ψ|2,

∂tϕ+ σ2∂zϕ = − 1

M2
ρ− |ψ|2,

(ZR1)

and 
i∂tψ + ε∂2

zψ + σ1∆⊥ψ = (q|ψ|2 + W(ρ+ αD∂zϕ))ψ,

−σ2∂zρ = ∆ϕ+ αD∂z|ψ|2,

−σ2∂zϕ =
1

M2
ρ+ |ψ|2,

(ZRK1)

respectively.

We can decouple the last two equations in (ZR1) and (ZRK1) to obtain
i∂tψ + ε∂2

zψ + σ1∆⊥ψ = (q|ψ|2 + W(ρ+ αD∂zϕ))ψ,

∂2
t ρ−

1

M2
∆ρ = ∆|ψ|2 − αD∂t∂z|ψ|2,

∂2
t ϕ−

1

M2
∆ϕ =

αD

M2
∂z|ψ|2 − ∂t|ψ|2,

(ZR)

if σ2 = 0 for (ZR1), and
i∂tψ + ε∂2

zψ + σ1∆⊥ψ =
(
q +

αβ

vg

)
|ψ|2ψ +

(β2ρ00

v2
g

+
αγ

v3
g

)
ρψ

∆(ρ+M2|ψ|2) = M2∂2
zρ+

αv3
g

ρ00γ
∂2
z |ψ|2,

(ZRK)

for (ZRK1), where we have used that M = |vg|/cs, W = β2ρ00/v
2
g , D = |vg|/βρ00 and

chosen σ2 = sgn(vg) and γ = βc2
s = βv2

g/M
2 constant.

Formally, when q, α→ 0 in (ZR) we obtaini∂tψ + ε∂2
zψ + σ1∆⊥ψ = Wρψ,

∂2
t ρ−

1

M2
∆ρ = ∆|ψ|2,

(Z)
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and when M,β → 0 in (ZRK) we obtain
i∂tψ + ε∂2

zψ + σ1∆⊥ψ = q|ψ|2ψ +
αγ

v3
g

ρψ

∆ρ =
αv3

g

ρ00γ
∂2
z |ψ|2.

(DS)

One is also interested in introducing explicitly the ion sound velocity in the system

(Z) by replacing �M = ∂2
t − 1

M
∆ by �Mc = c−2∂2

t − 1
M

∆ and considering the limit

c → ∞. In that limit the system (Z) reduces formally to the well know nonlinear

Schrödinger equation

i∂tψ + ε∂2
zψ + σ1∆⊥ψ = −M2W|ψ|2ψ, (S)

which gives a description of a system (or a quantum state of a physical system) evolv-

ing with time. Approximate solutions to the time-independent Schrödinger equation

are commonly used to calculate the energy levels and other properties of atoms and

molecules.

The system (DS) is the Davey-Stewartson system, it models the evolution of weakly

nonlinear water waves that travel predominantly in one direction, but in which the wave

amplitude is modulated slowly in two horizontal directions (see [11]). It is a model for

an inviscid, incompressible homogeneous fluid whose motion is irrotational (potential

flow). In the case ε > 0, σ1 = 1 and n = 2, Ghidaglia and Saut [17] classified the

(DS) system as elliptic-elliptic type. In this case they reduced the DS system to a

Schrödinger equation with a nonlocal nonlinear term by solving the second Poisson-

like equation via a Hörmander-Mikhlin multiplier type (see Section 3.1) and established

local existence and uniqueness for initial data in L2, H1 and H2 (and global for small

data in L2) as well as blow-up results. In [36] Ozawa found exact blow-up solutions

(see Chapter 9 in [28] for more results concerning this model).

The system (Z) is called the Zakharov system and it was introduced in [50] to

describe the long wave Langmuir turbulence in a plasma. In the case σ1 = ε = 1,

Schochet and Weinstein [46] obtained a local existence result and uniqueness result

with time interval [0, T ] independent of the ionic speed of sound c. This allowed them

to prove that solutions of (Z) converge to solutions of (S) as c → ∞. For small

amplitude solutions were obtained rates of this convergence by Added and Added in

[1]. Ozawa and Tsutsumi [38] found optimal rates of convergence of solutions of (Z) to

solutions of (S). Kenig, Ponce and Vega [25] proved that the IVP for (Z) is locally well

posed uniformly on the parameters in appropriate Sobolev spaces. The best local well

posedness results in this case are due to Ginibre, Tsutsumi and Velo [19]. By using a

18



method developed by Bourgain [5] they showed local well posedness for the Z system

for initial data in Hk(Rn)×H l(Rn)×H l−1(Rn) provided{
l ≤ k ≤ l + 1 if n ≥ 2, or

l ≥ 0, 2k − (l + 1) ≥ 0 if n = 2, 3.

In the case ε = σ1 = M = W = 1, they split ρ into its positive and negative frequency

parts according to

ρ± = ρ± iθ−1∂tρ,

where θ = (−∆)1/2. Then Z system was rewritten asi∂tψ + ∆ψ =
1

2
(ρ+ + ρ−)ψ,

(i∂t ∓ θ)ρ± = ∓θ−1�ρ = ±θ|ψ|2,

and they considered the case of a single equation

i∂tV = φ(−i∇)V + f(V ),

where φ is a real function (or real symmetric matrix valued function) defined in Rn

and f some nonlinear function. Eventually V was replaced by (ψ, ρ+, ρ−) and φ was

the diagonal matrix with entries (ξ2, |ξ|,−|ξ|). So, they studied the integral equation

V (t) = S(t)V0 − i
∫ t

0

S(t− t′)f(V (t′))dt′

where V (0) = V0 is the initial data and S(t) = e−itφ(−i∇) is the unitary group that

solves the underlying linear equation.

In order to eliminate spurious infrared divergences, at the expense of breaking the

dilation invariance for low momenta, a trivial modification of the system (Z) can be

perform (see [19]) rewriting the wave equation as a Klein-Gordon equation

(�+ 1)ρ = ∆|ψ|2 + ρ

and defining the positive and negative parts of ρ as

ρ± = ρ± i(θ1)−1∂tρ,

where θ1 =
√

1−∆.

Another results about existence of solution of the Z system can be found in [44],

[37] and [3]. Concerning blow-up results for solutions of the Z system, Glangetas and

Merle [16], [32], proved the existence of blow-up solutions in dimension two.
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The general Klein-Gordon equation is

~2

2mc2
∂2
t ρ−

~2

2m
∆ρ+

mc2

2
ρ+ f(ρ) = 0 (KG)

where ρ = ρ(t, x) : R1+n → C, f(ρ) = λ|ρ|γρ with γ > 0 and λ ∈ R, c is the speed of

light, ~ is the Planck constant, and m > 0 is the mass of particle.

Rescaling t, x, ρ, λ and c, we can normalize the other constants as ~ = m = 2.

Substituting Ψ = e−ic
2tρ, we obtain from (KG) the equation

c−2∂2
t Ψ + 2i∂tΨ−∆Ψ + f(Ψ) = 0. (1)

Then if c→∞ we have (formally) the Schrödinger equation

2i∂tΨ−∆Ψ + f(Ψ) = 0. (2)

With regard to the convergence of solutions of (1) to solutions of (2), Tsutsumi [47]

proved L2 convergence assuming H2 convergence of the initial data in the case where

n ≤ 2 and γ ≤ 2. Lq convergence was shown for 2 ≤ q < 2n/(n − 2) by Najman [33]

and Machihara [29] assuming H1 boundedness and L2 convergence of the initial data

under the assumption n ≤ 3 and some restrictive assumption on γ. In [30] Machihara,

Nakanishi and Ozawa proved that any finite energy solution of Klein-Gordon equation

converges to the corresponding solution of the nonlinear Schrödinger equation in the

energy space, i.e., H1 convergence was proved assuming H1 convergence of the initial

data, for any n and any 0 < γ < 4/(n− 2).

The first step to study the limit (ZR) to (Z) is to establish local (global) well-

posedness for the IVP. This will give us an idea what spaces the solutions exist and

where we can expect to prove the before mentioned convergence. In this regards Ponce

and Saut [39] reduced the ZR system to the Schrödinger equation{
i∂tψ + Lψ = H(ρ0, ϕ0, ψ),

ψ(x, 0) = ψ0,
(3)

or its integral equation version

ψ(t) = eitLψ0 − i
∫ t

0

ei(t−t
′)LH(ρ0, ϕ0, ψ)(t′)dt′, (4)

with

L = ε∂2
z + σ1∆⊥, H(ρ0, ϕ0, ψ) = (q|ψ|2 + W(ρ+D∂zϕ))ψ (5)
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and ρ, ϕ given from

ρ(t) = U ′(t)ρ0 + U(t)ρ1 +

∫ t

0

U(t− t′)F1(ψ)(t′)dt′, (6)

ϕ(t) = U ′(t)ϕ0 + U(t)ϕ1 +

∫ t

0

U(t− t′)F2(ψ)(t′)dt′, (7)

where F1(ψ) = ∆|ψ|2 − αD∂t∂z|ψ|2,

F2(ψ) =
αD

M2
∂z|ψ|2 − ∂t|ψ|2,

and U(t)f = M(−∆)−1/2 sin(M−1(−∆)1/2t)f,

U ′(t)f = cos(M−1(−∆)1/2t)f,

define the group of the wave equation.

Then they provide the following result

Theorem 0.1 Let s > n/2, n = 2, 3. Then given (ψ0, ρ0, ϕ0) ∈ Hs × Hs−1/2 ×
Hs+1/2(Rn), there exist T = T (‖ψ0‖Hs , ‖ρ0‖Hs−1/2 , ‖ϕ0‖Hs+1/2) > 0 and a unique solu-

tion ψ(·) of the integral equation (3)-(4) such that

ψ ∈ C([0, T ];Hs(Rn)) (8)

with

‖(1−∆)s/2+1/4‖`∞µ L2
TL

2
x
<∞. (9)

Moreover, the map (ψ0, ρ0, ϕ0) 7→ ψ(t) from Hs×Hs−1/2×Hs+1/2 into the class (1.30)-

(1.31) is locally Lipschitz, and one has that

(ρ, ϕ) ∈ C([0, T ];Hs−1/2(Rn)×Hs+1/2(Rn)). (10)

The main ingredient to prove Theorem 0.1 is the smoothing effect of Kato’s type,

that is, solutions of the linear problem{
i∂tψ + Lψ = 0,

ψ(x, 0) = ψ0,
(11)

satisfy

‖D1/2
x eitLf‖`∞µ L2

TL
2
x
≤ c‖f‖L2 . (12)
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where ‖ · ‖`∞µ LpTLqx is defined by

‖F‖`∞µ L2
TL

2
x

= sup
µ∈Zn

(∫ T

0

∫
Qµ

|F (x, t)|2dxdt
)1/2

,

and {Qµ}µ∈Zn is a family of unit cubes parallel to the coordinates axis with disjoint

interiors covering Rn.

Estimates of this type combined with the linear properties of the linear wave equa-

tion (see Theorem 1.4 below) and the contraction mapping principle yield the local

result.

They also obtained existence of a global weak solution for initial data in H1(Rn)×
H1(Rn)× L2(Rn). For that it was first proved that the energy functional

H =W−1

∫ [
|ψ|2 + ε|∂zψ|2 + σ1|∇⊥ψ|2 +

q

2
|ψ|4 + Wρ|ψ|2 + σ2Wρ∂zϕ

+
W

2
|∇ϕ|2 +

W

2M2
ρ2 + αDW|ψ|2∂zϕ

]
dx,

is constant in time. Then under the hypothesis of positive energy they used a classical

compactness method to obtain the result.

To study the limit (ZRK) to (DS) we need to know about the existence of solutions

of the ZRK system. In fact this system belongs to a wider class of equations (see

Chapter 4 for more details), the Zakharov-Schulman equations or ZS system
i∂tu+ L1u = uv,

L2v = L3(|u|2),

u(x, 0) = u0,

(ZS)

where u : Rn × [0,∞)→ C, v : Rn × [0,∞)→ R and

Lk =
n∑

i,j=1

aki,j∂
2
xixj

, k = 1, 2, 3,

with aki,j = akj,i real constants.

This system model the interaction of small amplitude high frequency waves with

acoustic types waves [42].

The system above can be rewrited asi∂tu+ L1u = uL−1
2 L3(|u|2),

u(x, 0) = u0.
(13)
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In the case where the quadratic forms associated to the operators L1,L2 are non-

degenerate with an appropriate radiation condition on the behavior of v at infinity

when L2 is non-elliptic, Kenig-Ponce-Vega [25] proved the following result

Theorem 0.2 Let n > 1. There exist s > 0, m ∈ Z+, and δ > 0 such that for any

u0 ∈ Hs ∩Hs0(|x|mdx) := Ys,m, s0 = [(s+ 3)/2],

with ‖u0‖Ys,m ≤ δ, there exist T = T (‖u0‖Ys,m) > 0 (with T (θ) → ∞ as θ → 0) and a

unique solution u(·, t) of the IVP (13) satisfying

u ∈ C([0, T ];Hs) ∩ C([0, T ];Hs0(|x|mdx)), (14)

Ds+1/2
x u ∈ `∞µ (L2(Qµ × [0, T ])), (15)

and

∂βxu ∈ `1
µ(L∞(Qµ × [0, T ]) ∩ `2

µ(Qµ × [0, T ])), |β| ≤ s0. (16)

For any T ′ < T there exist a neighborhood O of u0 in Ys,m such that the map ũ0 → ũ

from O into the class defined in (14)-(16) with T ′ instead of T is Lipschitz.

Moreover, if u0 ∈ Ys′,m′ with s′ ≥ s and [s′0] ≥ m′ ≥ m, then the above results hold with

s′,m′ instead of s,m in the same time interval [0, T ].

In the case where L2 is elliptic, recently Oliveira-Panthee-Silva in [35] proved that

the IVP (ZS) (or (13)) is locally well-posed for given initial data in Hs, s ≥ n/4, for

n = 2, 3 (see Theorem 3.1 below).

In this work we study the asymptotic behavior of the solutions of Zakharov-Rubenchik

system in the forms (ZR) and (ZRK) when appropriate parameters tend to zero.

Namely, we establish weak and strong convergence results of these solutions to so-

lutions of Zakharov system and Davey-Stewartson system, respectively.

In the case of the weak convergence of solutions of ZR system, we follow the same

argument as that in [1]. For the strong convergence we use some ideas from [33] and

[29].

Let us now describe the content of this work.

In the first chapter we present the non-dimensional form of ZR0 system and obtain

the system (ZR). Some preliminary results for the (ZR) are presented. We deal with

this system next and the integral equation versions are presented joint to Strichartz

estimates for the group associated.
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In the second chapter we present the main results related to limit for the Zakharov-

Rubenchik system, Eq. (ZR). The weak and strong convergence of the solutions are

established when vg → +∞, (M → +∞), and when both, vg and cs → ∞. In fact, if

(ψα, ρα, ϕα) is the solution of ZR system and (ψ, ρ) is the solution of Z system, then

(ψα, ρα) ⇀ (ψ, ρ) (weakly star) in L∞((0,+∞);H1(Rn)× L2(Rn)), n = 2, 3,

(ψα, ρα)→ (ψ, ρ) (strongly) in L∞((0, T );L2(Rn)× L2(Rn)), n = 2, 3

and

(ψα, ρα)→ (ψ, ρ) (strongly) in L∞((0, T );H5/2(R3)× L2(R3))

for some T > 0, as α→ 0 (because of α ∼ 1/vg and vg → +∞).

The proof of the weak limit is a classical argument in the theory of compact-

ness, whose main ingredient is the Aubin-Lions Theorem and the Ascoli Theorem.

Strong limits are conveniently treated by decomposing the nonlinearities and using the

Strichartz estimates associated with the group of the Schrödinger equation and the

wave group.

In the third chapter we deal with a modified Zakharov-Rubenchik system, the

(ZRK0) system. We reduce this to the non-dimensional form (ZRK1) and the more

simple form (ZRK). We regard this system as a Zakharov-Schulman system and reduce

it to a Schrödinger equation type with a nonlocal nonlinear term, next we establish the

local theory according Ghidaglia-Saut’s work in [17] and Oliveira-Panthee-Silva’s work

in [35]. In the final section we derive some conservation laws of the modified system.

In fact, we establish that the amounts

M(ψ) =

∫
R2

|ψ|2dxdz,

and

E(ψ) =

∫
R2

(
|ψx|2 + |ψz|2 +

c1

2
|ψ|4 + c2S(ψ)

)
dxdz,

are constants of motion, where

S(ψ) =

∫ t

0

[ρ(|ψ|2)t′ ](t
′)dt′.

In the fourth chapter we present the main result related to limit for the modified

Zakharov-Rubenchik system, Eq. (ZRK). Although we have conserved quantities,

which contain terms that would like to control as was done with solutions of (ZR), the

presence of the term S(ψ) in E creates a difficulty. However, the strong convergence of
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the solutions is established when cs → +∞, (M → 0), and when both, vg and cs →∞
in two dimensions. In fact, if (ψβ, ρβ) is the solution of ZRK system and (ψ, ρ) is the

solution of DS system, then

(ψβ, ρβ)→ (ψ, ρ) (strongly) in L∞((0, T );L2(R2)× L2(R2)),

for some T > 0, as β → 0 (because of β ∼ 1/c2
s and cs → +∞).

The main tools in the proof of this result are the Strichartz estimates and the

following result about the behavior of the multipliers defined by the equations of Poisson

type in (ZRK) and (DS).

Proposition 0.1 Let us consider the multipliers

T̂
QM
f = QM f̂ , QM(ξ) =

M2|ξ|2 −
αv3

g

ρ00γ
ξ2

2

M2ξ2
2 − |ξ|2

. (17)

and

T̂
Q0
f = Q0f̂ , Q0(ξ) =

αv3
gξ

2
2

ρ00γ|ξ|2
. (18)

Then

1. QM is uniformly bounded for any 0 < M2 ≤ 1/2 and ξ 6= 0, that is,

∃C > 0 : ‖QM‖L∞ ≤ C, C is independent of M,

2. lim
M→0
‖T(QM−Q0)(f)‖L2 = 0 if f ∈ L2.

Proof. See below Section 3.

Finally, the appendix deals with some function spaces and the Lions-Aubin and

Ascoli theorems are stated because of their usefulness in the demonstration of weak

convergence results. We introduce also the multiplier definition and the important the-

orem of Hörmander-Mikhlin. Next the functional derivative is introduced. It permits

to verify the Hamilton equations for the models.
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Chapter 1

The Zakharov Rubenchik System

1.1 Preliminary Results

The Zakharov-Rubenchik system for the interaction of a spectrally narrow high-frequency

wave packet with a low-frequency oscillations of acoustic type is
i(∂tψ + vg∂zψ) +

w′′

2
∂2
zψ +

vg
2k0

∆⊥ψ = (q|ψ|2 + βρ+ α∂zϕ)ψ,

∂tρ+ ρ00∆ϕ+ α∂z|ψ|2 = 0,

∂tϕ+
c2
s

ρ00

ρ+ β|ψ|2 = 0,

(ZR0)

where ψ = ψ(x, t) denotes the complex amplitude of the (high frequency (HF)) carrying

wave whose wave number k and frequency w are related by the dispersion relation

w = w(k), vg = w′(k) is the group velocity of the carrying wave, which according to

[41] and [26] is in the direction of the z-axis, that is, vg = (0, 0, vg). The functions ρ

and ϕ denote the density fluctuation and the hydrodynamic potential respectively, the

parameters q, α, measure the self-interaction of the carrying wave and the Doppler shift

respectively, cs =
√
p′(ρ00) is the sound velocity (p is the pressure), β = ∂w(k0)

∂ρ
∼ w/ρ00,

the center of the HF packet is at k0 (k ∼ k0) and the energy of the HF packet narrow

is ε0 ≈
∫
w(k0)|ψ|2dx.

We use the notation x = (x, y, z) if n = 3 and x = (x, z) if n = 2, ∆⊥ = ∂2
x + ∂2

y if

n = 3 and ∆⊥ = ∂2
x if n = 2.

After some transformations (see [40], [39]) we can rewrite the ZR0 system in a
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non-dimensional form as

i∂tψ + ε∂2
zψ + σ1∆⊥ψ = (σ|ψ|2 +W (ρ+ αD∂zϕ))ψ, (1.1)

∂tρ+ σ2∂zρ = −∆ϕ− αD∂z|ψ|2, (1.2)

∂tϕ+ σ2∂zϕ = − 1

M2
ρ− |ψ|2, (1.3)

where M = |vg|/cs (Mach number), ε = w′′|k|/|vg|, W = β2ρ00/|q|v2
g , D = |vg|/βρ00,

σ1 = sgn(k0vg) = k0vg/|k0vg|, σ = sgn(q) = q/|q|, and σ2 = −sgn(vg) = −vg/|vg|.

Concerning well-posedness results for the Cauchy problem associated to (1.1)-

(1.3), Ponce and Saut [39] proved that this problem is locally well-posed in Hs(Rn)×
Hs−1/2(Rn)×Hs+1/2(Rn) if s > n/2 and n = 2, 3. About the energy, we have the

Proposition 1.1 The equations (1.1)-(1.3) conserve the energy

H =W−1

∫ [
|ψ|2 + ε|∂zψ|2 + σ1|∇⊥ψ|2 +

σ

2
|ψ|4 +Wρ|ψ|2 + σ2Wρ∂zϕ

+
W

2
|∇ϕ|2 +

W

2M2
ρ2 + αDW |ψ|2∂zϕ

]
dx,

that is
dH
dt

= 0. (1.4)

Moreover
δH
δϕ

=
∂ρ

∂t
,

δH
δρ

= −∂ϕ
∂t
. (1.5)

Proof. See [39] for the proof of (1.4). Equality (1.5) are functional derivatives of H.

These can be obtained from a direct calculation (see Appendix below for the variational

derivative).

The conservation law (1.4) allowed Ponce and Saut to prove in [39] the existence

of global weak solutions for the equations (1.1)-(1.3) with initial data in H1(Rn) ×
H1(Rn)× L2(Rn) and for some range of the parameters involved. More precisely they

proved the
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Theorem 1.1 Assume that ε > 0, σ1 = σ = 1 and that the quadratic form

Q(x, y, z) =
W

2M2
x2 +

W

2
y2 +

1

2
z2 + σ2Wxy + αDWyz +Wxz, (1.6)

is positive definite. Then for initial data (ψ0, ϕ0, ρ0) ∈ H1(Rn) × H1(Rn) × L2(Rn),

there exists a global weak solution of (1.1)-(1.3) such that

ψ, ϕ ∈ L∞(R+;H1(Rn)), ρ ∈ L∞(R+;L2(Rn)) (1.7)

∂tψ, ∂tρ ∈ L∞(R+;H−1(Rn)), ∂tϕ ∈ L∞(R+;L2(Rn)). (1.8)

Moreover, if (1.10) is not positive definite, the same conclusion above still holds if

(ψ0, ϕ0, ρ0) are small enough in H1(Rn)×H1(Rn)× L2(Rn).

Because of the discontinuity of the nonlinear term σ2|ψ|2 when q → 0, we introduce

the following changes of variables that will permit us go over to the limit:

ψ =
√
|q|ψ̃, ρ = |q|ρ̃, ϕ = |q|ϕ̃. (1.9)

Then the equations (1.1)-(1.3) are transformed, after dropping the tilde symbols, in
i∂tψ + ε∂2

zψ + σ1∆⊥ψ = (q|ψ|2 + W(ρ+ αD∂zϕ))ψ,

∂tρ+ σ2∂zρ = −∆ϕ− αD∂z|ψ|2,

∂tϕ+ σ2∂zϕ = − 1

M2
ρ− |ψ|2,

(ZR1)

where W = |q|W = β2ρ00/v
2
g .

Remark 1.1 The well-posedness results of [39] and Proposition 1.1 are true for any

parameters σ, σ1, σ2 (not necessarily ±1) and any W > 0. Theorem 1.1 still holds if

σ1, σ are any positive numbers. The latter is just to guarantee (with the respective pos-

itive defined form Q) the uniform bound of the solutions in the energy space. There-

fore, the initial value problem associated to (ZR1) is locally well-posed in Hs(Rn) ×
Hs−1/2(Rn)×Hs+1/2(Rn) for any σ1, q, σ2 and s > n/2. Theorem 1.1 is also true with

q > 0 instead of σ and W > 0 instead of W . More precisely,
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Theorem 1.2 Assume that ε > 0, σ1 = 1, q > 0 and that the quadratic form

Q(x, y, z) =
W

2M2
x2 +

W

2
y2 +

q

2
z2 + σ2Wxy + αDWyz + Wxz, (1.10)

is positive definite. Then for initial data (ψ0, ϕ0, ρ0) ∈ H1(Rn) × H1(Rn) × L2(Rn),

there exists a global weak solution of (ZR1) such that

ψ, ϕ ∈ L∞(R+;H1(Rn)), ρ ∈ L∞(R+;L2(Rn)) (1.11)

∂tψ, ∂tρ ∈ L∞(R+;H−1(Rn)), ∂tϕ ∈ L∞(R+;L2(Rn)). (1.12)

Moreover, if (1.10) is not positive definite, the same conclusion above still holds if

(ψ0, ϕ0, ρ0) are small enough in H1(Rn)×H1(Rn)× L2(Rn).

1.2 The Integral Equation Version

Recall that σ1, q, σ2 can be any parameters in (ZR1) (see Remark 1.1 above). So we

consider σ2 = 0.

We are going to rewrite the system (ZR1) in a convenient form by decoupling the

last two equations. Then we apply the operator ∂t to them. One gets
i∂tψ + ε∂2

zψ + σ1∆⊥ψ = (q|ψ|2 + W(ρ+ αD∂zϕ))ψ,

∂2
t ρ−

1

M2
∆ρ = ∆|ψ|2 − αD∂t∂z|ψ|2,

∂2
t ϕ−

1

M2
∆ϕ =

αD

M2
∂z|ψ|2 − ∂t|ψ|2.

(ZR)

We are interested in the behavior of the solutions of the system (ZR) when q, α→ 0.

We expect the solutions of initial value problems associated to converge toward the

solutions of systems i∂tψ + ε∂2
zψ + σ1∆⊥ψ = Wρψ,

∂2
t ρ−

1

M2
∆ρ = ∆|ψ|2.

(Z)

We will deal with integral equation versions of the systems (ZR) and (Z).
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Introducing the following notations

L = ε∂2
z + σ1∆⊥

�M = ∂2
t −

1

M2
∆,

F1(ψ) = ∆|ψ|2 − αD∂t∂z|ψ|2,

F2(ψ) =
αD

M2
∂z|ψ|2 − ∂t|ψ|2,

the IVP associated to the system (ZR) can be expressed as

i∂tψ + Lψ = (q|ψ|2 + W(ρ+ αD∂zϕ))ψ,

�Mρ = F1(ψ),

�Mϕ = F2(ψ),

ψ(x, 0) = ψ0(x),

ρ(x, 0) = ρ0(x), ∂tρ(x, 0) = ρ1(x) = −(∆ϕ0 + αD∂z|ψ0|2)(x),

ϕ(x, 0) = ϕ0(x), ∂tϕ(x, 0) = ϕ1(x) = −(
1

M2
ρ0 + |ψ0|2)(x).

(NS0)

The second and third equations are acoustic wave equations with nonlinear terms

F1 and F2 depending only on ψ. They satisfy the integral equations (see [39])

ρ(t) = U ′(t)ρ0 + U(t)ρ1 +

∫ t

0

U(t− t′)F1(ψ)(t′)dt′, (1.13)

ϕ(t) = U ′(t)ϕ0 + U(t)ϕ1 +

∫ t

0

U(t− t′)F2(ψ)(t′)dt′, (1.14)

where U(t)f = M(−∆)−1/2 sin(M−1(−∆)1/2t)f,

U ′(t)f = cos(M−1(−∆)1/2t)f,

define the group of the wave equation with the following estimates

‖U(t)f‖L2 ≤ |t| ‖f‖L2 , ‖∇xU(t)f‖L2 ≤M‖f‖L2 , (1.15)

‖U ′(t)f‖L2 ≤ ‖f‖L2 . (1.16)

These are consequence of the properties of the functions sin(·) and cos(·), and the

Plancherel identity.
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The terms F1, F2 involve derivatives in the t-variable of ψ, but we can remove them

by using the following formulas (which follows by integration by parts)∫ t

0

U(t− t′)∂tG(t′)dt′ = −U(t)G(0) +

∫ t

0

U ′(t− t′)G(t′)dt′, (1.17)∫ t

0

U ′(t− t′)∂tG(t′)dt′ = −U ′(t)G(0) +
1

M2

∫ t

0

U(t− t′)∆G(t′)dt′. (1.18)

The system (NS0) is a nonlinear Schrödinger equation type formally equivalent to

the IVP associated to the system (ZR) and we rewrite it as{
i∂tψ + Lψ = H(ρ0, ϕ0, ψ),

ψ(x, 0) = ψ0,
(1.19)

with α ∼ cs/vg, or its integral equation version

ψ(t) = eitLψ0 − i
∫ t

0

ei(t−t
′)LH(ρ0, ϕ0, ψ)(t′)dt′, (1.20)

with

H(ρ0, ϕ0, ψ) = (q|ψ|2 + W(ρ+D∂zϕ))ψ (1.21)

and ρ, ϕ given from (1.13), (1.14).

Remark 1.2 The integral formulation (1.20) joint to (1.13) and (1.14) are the general

versions of the solutions obtained by Ponce-Saut in [39] for the ZR system. They

obtained the well-posedness result applying a fixed point argument on a space convenient

by using more refined estimates involving the smoothing effects of the group associated

to both, Schrödinger and Wave equations. More precisely, they used that

Theorem 1.3 The group {eitL}∞t=−∞ satisfies:

‖D1/2
x eitLf‖`∞µ L2

TL
2
x
≤ c‖f‖L2 , (1.22)

sup
0≤t≤T

‖D1/2
x

∫ t

0

ei(t−t
′)LG(t′)dt′‖L2 ≤ c‖G‖`1µL2

TL
2
x
, (1.23)

‖∇x

∫ t

0

ei(t−t
′)LG(t′)dt′‖`∞µ L2

TL
2
x
≤ c‖G‖`1µL2

TL
2
x

(1.24)

where

D̂
1/2
x f = (|ξ|1/2f̂), L = ε∂2

z + ∆⊥ and

c is a constant independent of T .
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Theorem 1.4 In the 3-dimensional case one has that

‖U ′(t)f‖`2µL∞T L2
x
≤ c(1 + TM)3‖f‖L2 , (1.25)

‖U(t)∇xf‖`2µL∞T L2
x
≤ cM(1 + TM)3‖f‖L2 , (1.26)

‖U(t)f‖`2µL∞T L2
x
≤ cT (1 + TM)3‖f‖L2 , (1.27)

‖∇x

∫ t

0

U(t− t′)h(t′)dt′‖`2µL∞T L2
x
≤ cM(1 + TM)3‖h‖`2µL1

TL
2
x
, (1.28)

‖
∫ t

0

U ′(t− t′)h(t′)dt′‖`2µL∞T L2
x
≤ c(1 + TM)3‖h‖`2µL1

TL
2
x
. (1.29)

Here ‖ · ‖`rµLpTLqx is defined by

‖F‖`rµLpTLqx = (
∑
µ∈Zn

(

∫ T

0

(

∫
Qµ

|F (x, t)|qdx)p/qdt)r/p)1/r,

where {Qµ}µ∈Zn is a family of unit cubes parallel to the coordinates axis with disjoint

interiors covering Rn.

In the case n = 3, s = 2 + 1/2 and for (ψ0, ρ0, ϕ0) ∈ Hs × Hs−1/2 × Hs+1/2 fixed,

they defined the operator

Φ(ω)(t) = eitLψ0 − i
∫ t

0

H(ρ0, ϕ0, ω)(t′)dt′,

with ω in the function space Xa
T , where ω ∈ Xa

T if

ω : Rn × [0, T ]→ C, ω ∈ C([0, T ] : Hs(Rn))

and

|||ω|||T = sup
0≤t≤T

‖ω(t)‖Hs +
∑
|λ|=3

‖∂λxω‖`∞µ L2
TL

2
x
≤ a.

So for appropriate values of the parameters a, T > 0, Φ(·) defines a contraction in Xa
T .

The general case s > n/2 follows by combining the argument above with the calculus

of inequalities involving fractional derivatives deduced in [24].

Then they obtained that
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Theorem 1.5 Let s > n/2, n = 2, 3. Then given (ψ0, ρ0, ϕ0) ∈ Hs × Hs−1/2 ×
Hs+1/2(Rn), there exist T = T (‖ψ0‖Hs , ‖ρ0‖Hs−1/2 , ‖ϕ0‖Hs+1/2) > 0 and a unique solu-

tion ψ(·) of the integral equation (3)-(4) such that

ψ ∈ C([0, T ];Hs(Rn)) (1.30)

with

‖(1−∆)s/2+1/4‖`∞µ L2
TL

2
x
<∞. (1.31)

Moreover, the map (ψ0, ρ0, ϕ0) 7→ ψ(t) from Hs×Hs−1/2×Hs+1/2 into the class (1.30)-

(1.31) is locally Lipschitz, and one has that

(ρ, ϕ) ∈ C([0, T ];Hs−1/2(Rn)×Hs+1/2(Rn)). (1.32)

The estimates involving the smoothing effect of Kato’s type, in its homogeneous and

inhomogeneous versions, associated to the unitary group {eitL : t ∈ R} were established

by Constantin-Saut [8], Ponce-Saut [39], Kenig-Ponce-Vega [25] and other authors.

The estimates associated to group of the wave equation (Theorem 1.4) were estab-

lished by Ponce and Saut in [39] by combining the standard energy estimates and the

finite propagation speed of the solution.

From the proof of Theorem 1.5 in [39], the life-time

T = T (α, q, β,M, ||ψ0||Hs , ||ρ0||Hs−1/2 , ||ϕ0||Hs+1/2) > 0,

for solutions of ZR system, is a continuous decreasing function, indeed,

T <
1

6[1 + |q|a2 + 4(1 + |W|+ |αD|)(1 +M)4a2]
and (1.33)

T 1/2 <
1

6[1 + 2(|W|+ |αD|)(1 +M)4(‖ρ0‖+ ‖ρ1‖+ ‖ϕ0‖+ ‖ϕ1‖+ ‖ψ0‖2)]
, (1.34)

with

a = 2‖ψ0‖Hs , ‖ψ0‖2 = ‖ψ0‖2
Hs−1/2 (1.35)

and

‖ρ0‖ = ‖ρ0‖Hs−1/2 , ‖ρ1‖ = ‖ρ1‖Hs−3/2 , ‖ϕ0‖ = ‖ϕ0‖Hs+1/2 , ‖ϕ1‖ = ‖ϕ1‖Hs−1/2 . (1.36)

Furthermore, T does not vanish when M → +∞ (or αD → +∞) if we choose

conveniently the data. For instance, with ‖ψ0‖ ≤ 1/M2 we have

(1 +M)4a2 ≤ 4(1 + 1/M)4,
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so

1

6[1 + |q|a2 + 4(1 + |W|+ |αD|)4(1 + 1/M)4]
<

1

6[1 + |q|a2 + 4(1 + |W|+ |αD|)(1 +M)4a2]
.

These properties of T will be essential in Chapter 2, for example to control the

growth of terms of the form TM4 when M → +∞.

Now let us consider the system (ZR) with q = α = 0, that is,{
i∂tψ + Lψ = Wρψ,

�Mρ = ∆|ψ|2,
(Z⊥)

or {
i∂tψ + ∆ψ = Wρψ,

�Mρ = ∆|ψ|2,
(Z)

if ε = σ1 = 1.

In this case we have

ρ(t) = U ′(t)ρ0 + U(t)ρ1 +

∫ t

0

U(t− t′)F (ψ)(t′)dt′, (1.37)

with F (ψ) = ∆|ψ|2. Therefore the IVP associated to (Z⊥) is formally equivalent to{
i∂tψ + Lψ = I(ρ0, ρ1, ψ),

ψ(x, 0) = ψ0,
(NS

Z
)

or

ψ(t) = eitLψ0 − i
∫ t

0

ei(t−t
′)LI(ρ0, ρ1, ψ)(t′)dt′, (1.38)

where

I(ρ0, ρ1, ψ) = Wρψ (1.39)

and ρ given from (1.37).

By compatibility with the known results for the limit systems (Z) and (DS), we are

going to consider the elliptic case, this is, we assume L = ∆ and present the Strichartz

estimates of the group {eit∆}∞t=−∞.

Let I any time interval. Then we have
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Theorem 1.6 The group {eit∆}∞t=−∞ satisfies:

‖ei(·)∆‖Lq(I,Lp(Rn)) ≤ c‖f‖L2(Rn), (1.40)

‖
∫ ∞
−∞

ei(·−t
′)∆g(·, t′)dt′‖Lq(I,Lp(Rn)) ≤ c‖g‖Lq′ (I,Lp′ (Rn)), (1.41)

‖
∫ ∞
−∞

eit∆g(·, t)dt‖L2
x
≤ c‖g‖Lq′ (I,Lp′ (Rn)), (1.42)

with

2 ≤ p < θ(n),
2

q
=
n

2
− n

p
, θ(n) =∞ if n = 1, 2, θ(n) =

2n

n− 2
if n ≥ 3

(A)

and c = c(p, n) a constant that depends only on p and n.

Proof. See for example [45] or [28] and references therein.

Corollary 1.1 Let (p0, q0), (p1, q1) ∈ R2 satisfying the condition (A). Then for all

T > 0 we have

‖
∫ t

0

ei(·−t
′)∆g(·, t′)dt′‖Lq1 (0,T ;Lp1 (Rn)) ≤ c‖g‖

Lq
′
0 (0,T ;Lp

′
0 (Rn))

(1.43)

with c = c(n, p0, p1).

Proof. See [28].
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Chapter 2

Supersonic Regime Results

2.1 Weak Convergence Result

Our first result concerning the asymptotic behavior of the solutions of the system
i∂tψ + ε∂2

zψ + σ1∆⊥ψ = (q|ψ|2 + W(ρ+ αD∂zϕ))ψ,

∂tρ = −∆ϕ− αD∂z|ψ|2,

∂tϕ = − 1

M2
ρ− |ψ|2,

(ZR1 with σ2 = 0)

or decoupling the las two equations, of the system
i∂tψ + ε∂2

zψ + σ1∆⊥ψ = (q|ψ|2 + W(ρ+ αD∂zϕ))ψ,

∂2
t ρ−

1

M2
∆ρ = ∆|ψ|2 − αD∂t∂z|ψ|2,

∂2
t ϕ−

1

M2
∆ϕ =

αD

M2
∂z|ψ|2 − ∂t|ψ|2,

(ZR)

when q, α tend to zero, can be stated as follows.
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Theorem 2.1 Under the hypotheses of Theorem 1.2, let (ψqα, ρqα, ϕqα) be any solution

of (ZR). Then as q, α→ 0+, (ψqα, ρqα, ϕqα) converge to (ψ, ρ, ϕ) in L∞(R+;H1(Rn))×
L∞(R+;L2(Rn)) × L∞(R+;H1(Rn)) weak star, where (ψ, ρ) is the unique solution of

the Zakharov system i∂tψ + ε∂2
zψ + σ1∆⊥ψ − Wρψ = 0,

∂2
t ρ−

1

M2
∆ρ = ∆|ψ|2,

(Z⊥)

with initial data in H1(Rn)× L2(Rn)×H−1(Rn).

Moreover, (∂tψqα, ∂tρqα, ∂tϕqα) converge to (∂tψ, ∂tρ, ∂tϕ) in L∞(R+;H−1(Rn)) ×
L∞(R+;H−1(Rn))× L∞(R+;L2(Rn)) weak star, and additionally, ∂tρ = −∆ϕ.

Proof.

We shall use a classical compactness method and we will follow the same ideas of

H. Added and S. Added in [1] for the weak limit of Zakharov system.

Present the proof of the theorem in three steps, but before it is worth recalling the

conserved energy functional (in the case σ2 = 0)

H(t) =W−1

∫ [
|ψ|2 + ε|∂zψ|2 + σ1|∇⊥ψ|2 +

W

2M2
ρ2 +

W

2
|∇ϕ|2 +

q

2
|ψ|4

+ αDW|ψ|2∂zϕ+ Wρ|ψ|2
]
dx.

We have the positive definite quadratic form

Q(x, y, z) =
W

2M2
x2 +

W

2
y2 +

q

2
z2 + αDWyz + Wxz. (2.1)

Hence

Q(0, ∂zϕ, |ψ|2) =
W

2
|∂zϕ|2 +

q

2
|ψ|4 + αDW|ψ|2∂zϕ > 0 (2.2)

Recall that W, D > 0 and by Theorem 1.2 ε > 0 and σ1 = 1. In addition, ρ > 0

because it is the mass density.

As we are considering q, α→ 0+, then we assume q, α > 0.

In these condition we have

Step 1. By the conservation of energy H, the norms ‖ψqα‖L∞((0,∞);H1(Rn)) and

‖ρqα‖L∞((0,∞);L2(Rn)) are bounded uniformly in q and α. So ‖|ψqα|2‖L∞((0,∞);L2(Rn)) is

bounded uniformly by the Sobolev embedding.
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We can obtain a uniform bound for ‖∇ϕqα‖L∞((0,∞);L2(Rn)) by combining the Cauchy-

Schwarz inequality in the energyH with the norms above, and choosing α small enough.

Note also that if we multiply the third equation in (ZR1) by ϕ we get that

1

2
∂t‖ϕ‖2

L2
x
≤ 1

M2

∫
|ρϕ|+

∫
|ψ|2|ϕ|+ C

≤ ‖ϕ‖L2
x

( 1

M2
‖ρ‖L2

x
+ ‖ψ‖2

L4
x

)
+ C

≤ 1

2
‖ϕ‖2

L2
x

+
1

2

( 1

M2
‖ρ‖L2

x
+ ‖ψ‖2

L4
x

)2

+ C. (2.3)

Hence

∂t‖ϕ‖2
L2
x
≤ ‖ϕ‖2

L2
x

+ C, (2.4)

thereupon the Gronwall inequality implies that ‖ϕqα‖L∞((0,∞);L2(Rn)) is uniformly bounded,

so ‖ϕqα‖L∞((0,∞);H1(Rn)) is uniformly bounded.

For simplicity we set q = α, and the associated solutions (ψα, ρα, ϕα). So, some

subsequence of (ψα, ρα, ϕα), also labeled by α, and |ψα|2 have a weak limit (ψ, ρ, ϕ)

and Γ respectively. More precisely

ψα ⇀∗
ψ in L∞((0,∞);H1(Rn)), (2.5)

ρα ⇀∗
ρ in L∞((0,∞);L2(Rn)), (2.6)

ϕα ⇀∗
ϕ in L∞((0,∞);H1(Rn)), (2.7)

|ψα|2 ⇀∗ Γ in L∞((0,∞);L2(Rn)), (2.8)

thereby (see Proposition A.1 below),

(ε∂2
zψα + σ1∆⊥ψα) ⇀

∗
(ε∂2

zψ + σ1∆⊥ψ) in L∞((0,∞);H−1(Rn)), (2.9)

∆ρα ⇀∗
∆ρ in L∞((0,∞);H−2(Rn)), (2.10)

∆ϕα ⇀∗
∆ϕ in L∞((0,∞);H−1(Rn)), (2.11)

∆|ψα|2 ⇀∗ ∆Γ in L∞((0,∞);H−2(Rn)), (2.12)

∂z|ψα|2 ⇀∗ ∂zΓ in L∞((0,∞);H−1(Rn)). (2.13)

Let us note that the map

H1(Rn)× L2(Rn)→ H−1(Rn) (2.14)

(u, v) 7→ uv
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is continuous. So it can be assumed that ραψα, ψα∂zϕα, |ψα|2ψα have a ∗-weak limit

in L∞((0,∞);H−1(Rn)).

Let

ραψα ⇀∗
Λ in L∞((0,∞);H−1(Rn)). (2.15)

Therefore, taking into account (2.5)-(2.15), the equations in (ZR) imply that

∂tψα ⇀∗
∂tψ in L∞((0,∞);H−1(Rn)), (2.16)

∂tρα ⇀∗
∂tρ in L∞((0,∞);H−1(Rn)), (2.17)

∂2
t ρα ⇀∗

∂2
t ρ in L∞((0,∞);H−2(Rn)), (2.18)

∂tϕα ⇀∗
∂tϕ in L∞((0,∞);L2(Rn)), (2.19)

with ∂tρ = −∆ϕ and i∂tψ + ε∂2
zψ + σ1∆⊥ψ = WΛ,

∂2
t ρ−

1

M2
∆ρ = ∆Γ,

in the distribution sense (actually in L∞((0,∞);H−1(Rn))× L∞((0,∞);H−2(Rn))).

The proof of the theorem will be complete if we establish that

Λ = ρψ and Γ = |ψ|2. (2.20)

Let us consider, for the remainder of the proof, any finite time interval [0, T ].

Step 2. Let us show that Γ = |ψ|2.

Let Ω ⊂ Rn be any bounded sub-domain, B0 = H1(Ω), B = L4(Ω), B1 = H−1(Ω)

and consider ψα|Ω.

By Rellich-Kondrachov’s theorem we know that B0 ↪→
c
B, and we have

ψα ∈ L∞((0,∞);H−1(Rn)) ↪→ L2((0, T );H1(Rn)) (2.21)

and

∂tψα ∈ L∞((0,∞);H−1(Rn)) ↪→ L2((0, T );H−1(Rn)), (2.22)

so,

ψα ∈
{
V ∈ L2((0, T );B0), ∂tV ∈ L2((0, T ), B1)

}
↪→
c
L2((0, T );B), (2.23)

with compact embedding due to Lions-Aubin’s Theorem.

40



Therefore, some subsequence of ψα|Ω (also labeled by α) converges strongly to ψ|Ω
in L2([0, T ];L4(Ω)). So we can assume that

ψα −→
α→0

ψ strongly in L2([0, T ];L4
loc(Rn)), (2.24)

hence

ψα −→
α→0

ψ strongly in L2([0, T ];L2
loc(Rn)), (2.25)

and thus,

ψα −→
α→0

ψ a.e in (t, x) ∈ [0, T ]× Rn, (2.26)

thereupon

|ψα|2 −→
α→0
|ψ|2 a.e. in (t, x) ∈ [0, T ]× Rn. (2.27)

Since |ψα|2 ∈ L∞((0,∞);L2(Rn)) ↪→ L2([0, T ];L2(Rn)) is bounded uniformly in α,

then by Lemma A.1

|ψα|2 ⇀ |ψ|2 in L2([0, T ];L2(Rn)), (2.28)

that is,

|ψα|2 ⇀∗ |ψ|
2 in L2([0, T ];L2(Rn)) (2.29)

by reflexivity. Then Γ = |ψ|2.

Step 3. Let us show that Λ = ρψ.

We shall prove that ραψα ⇀∗
ρψ in L2([0, T ];H−1(Rn)), so the embedding

L∞((0,∞);H−1(Rn)) ↪→ L2([0, T ];H−1(Rn))

and the convergence (2.15) will ensure that Λ = ρψ.

Let φ be some test function in L2([0, T ];H1(Rn)) vanishing out of a compact set

Ω ⊂ Rn. Then

〈ραψα − ρψ, φ〉 =

∫ T

0

∫
−Ω

(ραψα − ρψ)φ dx dt

=

∫ T

0

∫
Ω

ρα(ψα − ψ)φ dx dt+

∫ T

0

∫
Ω

(ρα − ρ)ψφ dx dt

=: I1α(φ) + I2α(φ). (2.30)

We have

|I1α(φ)| 5 ‖ρα‖L∞((0,∞);L2(Rn))‖φ‖L2([0,T ];L4(Ω))‖ψα − ψ‖L2([0,T ];L4(Ω)) → 0 (2.31)
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because of (2.24).

Let us note that ψφ ∈ L1([0, T ];L2(Rn)). In fact,

‖ψφ‖L1([0,T ];L2(Rn)) 5 ‖ψ‖L2([0,T ];L4(Rn))‖φ‖L2([0,T ];L4(Rn)) <∞. (2.32)

Therefore, using that ρα ⇀∗
ρ in L∞((0, T );L2(Rn)), it follows that |I2α(φ)| → 0.

Thus

〈ραψα − ρψ, φ〉 −→
α→0

0 for all φ test. (2.33)

But, {ραψα− ρψ}α>0 ⊂ (L2([0, T ];H1))′ ⊂ C(L2([0, T ];H1);C) is a sequence (fam-

ily) pointwise bounded and equicontinuous, because of

|〈ραψα − ρψ, φ〉| 5 ‖ραψα − ρψ‖L2([0,T ];H−1)‖φ‖L2([0,T ];H1) < C (2.34)

and

|〈ραψα − ρψ, φ1 − φ2〉| 5 ‖ραψα − ρψ‖L2([0,T ];H−1)‖φ1 − φ2‖L2([0,T ];H1), (2.35)

so Ascoli’s theorem implies that some subsequence of ραψα − ρψ converges pointwise

to a continuous function, and the convergence is uniform on each compact subset of

L2([0, T ];H1). Therefore

ραψα − ρψ ⇀∗ 0 in L2([0, T ];H−1(Rn)). (2.36)

2.2 Strong Convergence Result

We will deal with the integral form of systems
i∂tψ + ∆ψ = (q|ψ|2 + W(ρ+ αD∂zϕ))ψ,

∂2
t ρ−

1

M2
∆ρ = ∆|ψ|2 − αD∂t∂z|ψ|2,

∂2
t ϕ−

1

M2
∆ϕ =

αD

M2
∂z|ψ|2 − ∂t|ψ|2,

(ZR)

and i∂tψ + ∆ψ = Wρψ,

∂2
t ρ−

1

M2
∆ρ = ∆|ψ|2.

(Z)
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But let us recall that the IVP is associated to the system of Zakharov-Rubenchik
i∂tψ + ∆ψ = (q|ψ|2 + W(ρ+ αD∂zϕ))ψ,

∂tρ = −∆ϕ− αD∂z|ψ|2,

∂tϕ = − 1

M2
ρ− |ψ|2,

(ZR1)

andψ(x, 0) = ψ0(x), ρ(x, 0) = ρ0(x), ϕ(x, 0) = ϕ0(x)

∂tρ(x, 0) = ρ1(x) = −(∆ϕ0 + αD∂z|ψ0|2)(x), ∂tϕ(x, 0) = ϕ1(x) = −(
1

M2
ρ0 + |ψ0|2)(x).

We will denote by (ψα, ρα, ϕα) the solution of the IVP associated to (ZR) (in fact

to (ZR1)) with initial data (ψα0, ρα0, ϕα0). Since vg � cs should imply a Doppler shift

negligible α ≈ 0, then we are going to consider q = α = cs(λ0vg)
−1, β = wρ−1

00 =

cs(λ0ρ00)−1 and make vg → +∞.

Let us denote T ∗ = T ∗α,q,β,M = T ∗α,β the life-time of the solution of (ZR) such that

it does not vanish when vg → +∞, and T0 the life-time of the solution of (Z), which

can be chosen independent of vg, cs for small data.

The arguments we use to obtain our strong convergence results are inspired in the

ideas of the works of Najman [33] and Machihara [29] regarding the non-relativistic

limit of the nonlinear Klein-Gordon equation.

Next we have one of our main results.

Theorem 2.2 We assume that q = α, n = 2, 3,

ψα0 ∈ H4, ρα0 ∈ H7/2, ϕα0 ∈ H9/2, (2.37)

ψ0 ∈ H4, ρ0 ∈ H7/2, ϕ0 ∈ H9/2, (2.38)

sup
α>0
‖ψα0‖H4 <∞, (2.39)

‖ψ0‖H5/2 ≤ inf
α>0
‖ψα0‖H5/2 , ‖ρ0‖H2 ≤ inf

α>0
‖ρα0‖H2 , ‖ϕ0‖H3 ≤ inf

α>0
‖ϕα0‖H3 , (2.40)

lim
α→0
‖ψα0 − ψ0‖H3 = lim

α→0
‖ρα0 − ρ0‖H2 = lim

α→0
‖ϕα0 − ϕ0‖H4 = 0. (2.41)

Then we have

i)lim
α→0

T ∗α,β(‖ψα0‖H5/2 , ‖ρα0‖H2 , ‖ϕα0‖H3) = T ∗0,β(‖ψ0‖H5/2 , ‖ρ0‖H2 , ‖ϕ0‖H3), (2.42)

ii)lim
α→0
‖ρα1 + ∆ϕ0‖H2 = 0, (2.43)

iii)lim
α→0
‖ψα − ψ‖L∞(0,T ;L2) = lim

α→0
‖ρα − ρ‖L∞(0,T ;L2) = 0 if T ≤ Tm, (2.44)
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where Tm = min{T0, T
∗
0,β} and (ψ, ρ) is the solution of (Z) with initial data (ψ0, ρ0, ρ1),

ρ1 := −∆ϕ0.

Proof.

The equality (2.42) and (2.43) are consequences of the hypotheses (2.41) because

of T ∗ = T ∗α,β is a continuous decreasing function of the initial data and the parameters,

and

ρα1 = −(∆ϕα0 + αD∂z|ψα0|2).

The hypotheses (2.40) ensures that T ∗α,β is increasing when α→ 0.

For the convergence (2.44) we use the integral versions of (ZR) and (Z), thus

ψα(t) = eit∆ψα0 − i
∫ t

0

ei(t−t
′)∆H(ρα0, ϕα0, ψα)(t′)dt′, (2.45)

with

H(ρα0, ϕα0, ψα) = (q|ψα|2 + W(ρα + αD∂zϕα))ψα, (2.46)

ρα(t) = U ′(t)ρα0 + U(t)ρα1 +

∫ t

0

U(t− t′)F1(ψα)(t′)dt′, (2.47)

ϕα(t) = U ′(t)ϕα0 + U(t)ϕα1 +

∫ t

0

U(t− t′)F2(ψα)(t′)dt′ (2.48)

and

ψ(t) = eit∆ψ0 − i
∫ t

0

ei(t−t
′)∆I(ρ0, ρ1, ψ)(t′)dt′, (2.49)

with

I(ρ0, ρ1, ψ) = Wρψ, (2.50)

ρ(t) = U ′(t)ρ0 + U(t)ρ1 +

∫ t

0

U(t− t′)F (ψ)(t′)dt′, (2.51)

for 0 < t < T ≤ Tm.

Let us recall that

F (ψ) = ∆|ψ|2 (2.52)

F1(ψ) = ∆|ψ|2 − αD∂t∂z|ψ|2, (2.53)

F2(ψ) =
αD

M2
∂z|ψ|2 − ∂t|ψ|2. (2.54)
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Then

(ψα − ψ)(t) = eit∆(ψα0 − ψ0)− i
∫ t

0

ei(t−t
′)∆(H − I)(t′)dt′, (2.55)

(ρα − ρ)(t) = U ′(t)(ρα0 − ρ0) + U(t)(ρα1 − ρ1) +

∫ t

0

U(t− t′)(F1 − F )(t′)dt′. (2.56)

By using Theorem 1.6 and Corollary 1.1 we have

‖ψα − ψ‖L∞(0,T ;L2) ≤ c‖ψα0 − ψ0‖L2

+ ‖
∫ t

0

ei(t−t
′)∆(H − I)(t′)dt′‖L∞(0,T ;L2)

. ‖ψα0 − ψ0‖L2 + ‖H − I‖L1(0,T ;L2), (2.57)

and from the energy estimates (1.15)-(1.16) we have

‖ρα − ρ‖L2
x
≤‖ρα0 − ρ0‖L2

x
+ |t| ‖ρα1 − ρ1‖L2

x

+ ‖
∫ t

0

U(t− t′)(F1 − F )(t′)dt′‖L2
x
. (2.58)

The nonlinear terms H − I and
∫ t

0
U(t− t′)(F1 − F )(t′)dt′ can be written as

H − I = N1 +N2 +N3 +N4 +N5 +N6 +N7 (2.59)∫ t

0

U(t− t′)(F1 − F )(t′)dt′ = N11 +N22 (2.60)

where

N1 = q|ψα|2ψα, (2.61)

N2 = WαDψα∂zϕα, (2.62)

N3 = Wψα(U ′(t)(ρα0 − ρ0) + U(t)(ρα1 − ρ1)), (2.63)

N4 = W(ψα − ψ)(U ′(t)ρ0 + U(t)ρ1), (2.64)

N5 = −WαDψα
∫ t

0

U(t− t′)∂t∂z|ψα|2dt′, (2.65)

N6 = Wψα

∫ t

0

U(t− t′)∆(|ψα|2 − |ψ|2)dt′, (2.66)

N7 = W(ψα − ψ)

∫ t

0

U(t− t′)∆|ψ|2dt′ (2.67)

N11 = −αD
∫ t

0

U(t− t′)∂t∂z|ψα|2dt′, (2.68)

N22 =

∫ t

0

U(t− t′)∆(|ψα|2 − |ψ|2)dt′. (2.69)
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The embedding theorems of Section A.1, the standard energy estimates (1.15) and

(1.16), and integration by parts (formulas (1.17) and (1.18)) are useful for estimate

||H − I||L2
x
. For instance, we use the inequality

‖ψα‖L∞x ≤ ‖ψα‖H1+

in two dimensions. In three dimensions we can put ‖ψα‖H3/2+ instead of ‖ψα‖H1+

without any change in the demonstration.

Thus,

‖N1‖L2
x

= |q| ‖ψα‖3
L6
x
. |q| ‖ψα‖3

H1 , (2.70)

‖N2‖L2
x
≤ |WαD| ‖ψα‖L∞x ‖∂zϕα‖L2

x
≤ |WαD| ‖ψα‖H1+‖ϕα‖H1 . (2.71)

Next, we estimate ‖ϕα‖H1 .

‖ϕα‖H1 ≤ ‖U ′(t)ϕα0‖H1 + ‖U(t)ϕα1‖H1 + ‖
∫ t

0

U(t− t′)F2(ψα)(t′)dt′‖H1

≤ ‖ϕα0‖H1 + |t| ‖ϕα1‖H1 + ‖
∫ t

0

U(t− t′)F2(ψα)(t′)dt′‖H1 , (2.72)

with

‖
∫ t

0

U(t− t′)F2(ψα)(t′)dt′‖H1 = ‖
∫ t

0

U(t− t′)(αD
M2

∂z|ψα|2 − ∂t|ψα|2)(t′)dt′‖H1

≤ |αD|
M2

∫ t

0

|t− t′| ‖∂z|ψα|2‖H1dt′ + ‖
∫ t

0

U(t− t′)∂t|ψα|2dt′‖H1

≤ |αD|
M2

∫ t

0

|t− t′| ‖|ψα|2‖H2dt′ + ‖ − U(t)|ψα0|2 +

∫ t

0

U ′(t− t′)|ψα|2dt′‖H1

≤ |αD|
M2

∫ t

0

|t− t′| ‖ψα‖2
H2dt′ + |t| ‖ψα0‖2

H2 +

∫ t

0

‖ψα‖2
H2dt′ (2.73)

and

‖ϕα1‖H1 = ‖ 1

M2
ρα0 + |ψα0|2‖H1 ≤ 1

M2
‖ρα0‖H1 + ‖ψα0‖2

H2 . (2.74)

Let us estimate N3 and N4. Thus

‖N3‖L2
x
≤ |W|‖ψα‖L∞x ‖U

′(t)(ρα0 − ρ0) + U(t)(ρα1 − ρ1)‖L2
x

≤ |W|‖ψα‖H1+(‖ρα0 − ρ0‖L2
x

+ |t| ‖ρα1 − ρ1‖L2
x
) (2.75)

and

‖N4‖L2
x
≤ |W|‖ψα − ψ‖L∞x ‖U

′(t)(ρ0) + U(t)(ρ1)‖L2
x

≤ |W|‖ψα − ψ‖H1+(‖ρ0‖L2
x

+ |t| ‖ρ1‖L2
x
). (2.76)
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For N5 we have

‖N5‖L2
x
≤ |WαD| ‖ψα‖L∞x ‖

∫ t

0

U(t− t′)∂t∂z|ψα|2dt′‖L2
x

≤ |WαD| ‖ψα‖H1+‖ − U(t)∂z|ψα0|2 +

∫ t

0

U ′(t− t′)∂z|ψα|2dt′‖L2
x

≤ |WαD| ‖ψα‖H1+

(
|t| ‖∂z|ψα0|2‖L2

x
+

∫ t

0

‖∂z|ψα|2‖L2
x
dt′
)

≤ |WαD| ‖ψα‖H1+

(
|t| ‖ψα0‖2

H2 +

∫ t

0

‖ψα‖2
H2dt′

)
(2.77)

and for N6 we have

‖N6‖L2
x
≤ |W| ‖ψα‖L∞x ‖

∫ t

0

U(t− t′)∆(|ψα|2 − |ψ|2)dt′‖L2
x

≤ |W| ‖ψα‖H1+

∫ t

0

|t− t′| ‖∆(|ψα|2 − |ψ|2)‖L2
x
dt′

≤ |W| ‖ψα‖H1+

∫ t

0

|t− t′|
(
‖|ψα|2‖H2 + ‖|ψ|2‖H2

)
dt′

≤ |W| ‖ψα‖H1+

∫ t

0

|t− t′|
(
‖ψα‖2

H2 + ‖ψ‖2
H2

)
dt′. (2.78)

Finally we estimates N7.

‖N7‖L2
x
≤ |W| ‖ψα − ψ‖L∞x ‖

∫ t

0

U(t− t′)∆|ψ|2dt′‖L2
x

≤ |W| ‖ψα − ψ‖H1+

∫ t

0

|t− t′| ‖∆|ψ|2‖L2
x
dt′

≤ |W| ‖ψα − ψ‖H1+

∫ t

0

|t− t′| ‖ψ‖2
H2dt′. (2.79)

Since

W = β2ρ00/v
2
g , D = |vg|/βρ00, M = |vg|/cs with vg →∞, (2.80)

and

‖ψα‖Hs . ‖ψα0‖Hs for all s > n/2, (2.81)

because of fixed point argument in [39], then by combining both of them with the

hypotheses (2.41) and the result (2.43) we obtain that

‖Ni‖L2
x
→ 0 as α→ 0, for any 0 < t < T ≤ Tm, i = 1, ..., 7. (2.82)
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Note that

WD = β/vg and D/M2 = c2
s/βρ00vg.

Then

‖H − I‖L1(0,T ;L2) ≤ T‖H − I‖L∞(0,T ;L2) → 0 as α→ 0 (2.83)

and therefore

‖ψα − ψ‖L∞(0,T ;L2) . ‖ψα0 − ψ0‖L2 + ‖H − I‖L1(0,T ;L2) → 0 as α→ 0. (2.84)

This finished the first part of (iii) ( equality (2.44)).

Next, we estimate N11 and N22. As N11 is similar to N5, we have

‖N11‖L2
x
≤ |αD|

(
|t| ‖ψα0‖2

H2 +

∫ t

0

‖ψα‖2
H2dt′

)
. (2.85)

For N22 we use that (see (NS0) and (Z))

∆
(
|ψα|2 − |ψ|2

)
= ∂2

t ρα −
1

M2
∆ρα + αD∂t∂z|ψα|2 − ∂2

t ρ+
1

M2
∆ρ, (2.86)

hence

‖N22‖L2
x
≤ A11 + A22 + A33, (2.87)

with A22 = ‖N11‖L2
x
,

A11 =
1

M2
‖
∫ t

0

U(t− t′)∆(ρα − ρ)dt′‖L2
x

≤ 1

M2

∫ t

0

|t− t′| ‖∆(ρα − ρ)‖L2
x
dt′ (2.88)

and

A33 = ‖
∫ t

0

U(t− t′)∂2
t (ρα − ρ)dt′‖L2

x

≤
(
|t| ‖ρα1 − ρ1‖L2

x
+ ‖ρα0 − ρ0‖L2

x
+

1

M2
‖
∫ t

0

U(t− t′)∆(ρα − ρ)dt′‖L2
x

)
≤
(
|t| ‖ρα1 − ρ1‖L2

x
+ ‖ρα0 − ρ0‖L2

x
+

1

M2

∫ t

0

|t− t′|‖∆(ρα − ρ)‖L2
x
dt′
)

(2.89)

because of the integration by parts formulas (1.17), (1.18).
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Now we need estimate the last term in (2.88) and (2.89). Thus,

‖∆(ρα − ρ)‖L2
x

= ‖U ′(t)∆(ρα0 − ρ0) + U(t)∆(ρα1 − ρ1)

+

∫ t

0

U(t− t′)∆
(
F1(ψα)−∆|ψ|2

)
dt′‖L2

x

≤ ‖ρα0 − ρ0‖H2 + |t| ‖ρα1 − ρ1‖H2

+ ‖
∫ t

0

U(t− t′)∆
(
∆|ψα|2 −∆|ψ|2

)
dt′‖L2

x

+ |αD|‖
∫ t

0

U(t− t′)∆
(
∂t∂z|ψ|2

)
dt′‖L2

x

≤ ‖ρα0 − ρ0‖H2 + |t| ‖ρα1 − ρ1‖H2

+ ‖
∫ t

0

|t− t′|
(
‖ψα‖2

H4 + ‖ψ‖2
H4

)
dt′‖L2

x

+ |αD||t|‖ψα0‖2
H3 + |αD|

∫ t

0

‖ψα‖2
H3dt′. (2.90)

It is here that the hypotheses (2.37)-(2.39) play their important role to guarantee

bounds for ||ψα||H4 and ||ψ||H4 .

The same arguments used to assure the convergence in (2.82) imply that

‖
∫ t

0

U(t− t′)(F1 − F )(t′)dt′‖L2
x
≤ ‖N11‖L2

x
+ ‖N22‖L2

x
→ 0 as α→ 0, (2.91)

for any 0 < t < T ≤ Tm.

Therefore

‖ρα − ρ‖L∞(0,T ;L2) ≤‖ρα0 − ρ0‖L2
x

+ |T | ‖ρα1 − ρ1‖L2
x
+

‖
∫ t

0

U(t− t′)(F1 − F )(t′)dt′‖L∞(0,T ;L2) → 0. (2.92)

This completes the proof.

The most natural question about the supersonic limit of (ZR) is whether any so-

lution (with finite energy) converges strongly to a solution of (Z) in the energy space

H1 × L2. In this sense, our best result is a combination of the above theorem of

L2-convergence and the following result of H5/2-convergence in three dimensions.

The advantage of working in three spatial dimensions is that we can make use

of estimates obtained by Ponce and Saut in [39] (Theorem 1.4 here) for the group

associated with the wave equation.
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Theorem 2.3 Under the hypotheses of Theorem 2.2 with n = 3, we also have that

lim
α→0
‖ψα − ψ‖L∞(0,T ;H2+1/2) = 0 (2.93)

for all T ≤ Tm, Tm as was defined before.

Proof.

Similarly to what was done in the proof of previous theorem, we begin with esti-

mating

‖ψα − ψ‖L∞(0,T ;H2+1/2) ≤ ‖ψα0 − ψ0‖H2+1/2 + ‖
∫ t

0

ei(t−t
′)∆(H − I)(t′)dt′‖L∞(0,T ;H2+1/2),

(2.94)

where H − I = N1 + · · ·+N7 is like in that argument. Then

‖
∫ t

0

ei(t−t
′)∆(H − I)(t′)dt′‖L∞(0,T ;H2+1/2) ≤

∫ T

0

(‖N1‖H2+1/2 + ‖N2‖H2+1/2)dt

+
7∑
j=3

‖
∫ t

0

ei(t−t
′)∆Nj(t

′)dt′‖L∞(0,T ;H2+1/2).

(2.95)

But, ∫ T

0

‖N1‖H2+1/2dt ≤ T |q| sup
0≤t≤T

‖ψα‖3
H2+1/2 , (2.96)∫ T

0

‖N2‖H2+1/2dt ≤ T |WαD| sup
0≤t≤T

‖ψα‖H2+1/2‖∂zϕα‖H2+1/2 (2.97)

and

‖∂zϕα‖H2+1/2 ≤ ‖ϕα‖H3+1/2

≤ ‖ϕα0‖H3+1/2 + |t|‖ϕα1‖H3+1/2 + ‖
∫ t

0

U(t− t′)F2(ψα)(t′)dt′‖H3+1/2

(2.98)

with

‖ϕα1‖H3+1/2 ≤
1

M2
‖ρα0‖H3+1/2 + ‖ψα0‖2

H3+1/2 (2.99)

and

‖
∫ t

0

U(t− t′)F2(ψα)(t′)dt′‖H3+1/2 ≤
|αD|
M2

∫ t

0

|t− t′|‖ψα‖2
H3+1/2dt

′ + |t|‖ψα0‖2
H3+1/2

+

∫ t

0

‖ψα‖2
H3+1/2dt

′ (2.100)
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as was done for ϕα in (2.72).

By using that (1 + |ξ|)2+1/2 ∼ (1 + |ξ|2|ξ|1/2) and the estimate (1.23) of Theorem

1.3 we have

7∑
j=3

‖
∫ t

0

ei(t−t
′)∆Nj(t

′)dt′‖L∞(0,T ;H2+1/2) .
7∑
j=3

∫ T

0

‖Nj‖L2dt

+
7∑
j=3

∑
|λ|=2

sup
0<t<T

‖∂λxD1/2
x

∫ t

0

ei(t−t
′)∆Nj(t

′)dt′‖L2

.
7∑
j=3

∫ T

0

‖Nj‖L2dt

+
7∑
j=3

∑
|λ|=2

‖∂λxNj‖`1µL2
TL

2
x
. (2.101)

The terms ‖Nj‖L2 , j = 3, . . . , 7, have been already estimated in the proof of Theo-

rem 2.2 and we saw that ‖Nj‖L2 → 0 as α → 0. Then we just need to deal with the

terms
∑7

j=3

∑
|λ|=2 ‖∂λxNj‖`1µL2

TL
2
x
. To do that we use the Leibniz rule for derivatives,

the Hölder inequality and the estimates in Theorem 1.4.

(i) For j = 3 we have∑
|λ|=2

‖∂λxN3‖`1µL2
TL

2
x

= |W|
∑
|λ|=2

‖∂λx [ψα(U ′(t)(ρα0 − ρ0) + U(t)(ρα1 − ρ1))]‖`1µL2
TL

2
x

. |W|
∑

|γ|+|β|=2

‖∂γxψα∂βx [U ′(t)(ρα0 − ρ0) + U(t)(ρα1 − ρ1)]‖`1µL2
TL

2
x

. |W|
∑
|γ|=2

‖∂γxψα‖`2µL2
TL
∞
x
‖U ′(t)(ρα0 − ρ0) + U(t)(ρα1 − ρ1)‖`2µL∞T L2

x

+ |W|
( ∑
|γ|=1

‖∂γxψα‖`2µL2
TL
∞
x

)( ∑
|β|=1

‖∂βx [U ′(t)(ρα0 − ρ0) + U(t)(ρα1 − ρ1)]‖`2µL∞T L2
x

)
+ |W|‖ψα‖`2µL2

TL
∞
x

( ∑
|β|=2

‖∂βx [U ′(t)(ρα0 − ρ0) + U(t)(ρα1 − ρ1)]‖`2µL∞T L2
x

)
. (2.102)

Now we use that ‖ · ‖`2µL2
TL
∞
x
. T 1/2 sup0≤t≤T ‖ · ‖L2

x
, so

‖∂γxψα‖`2µL2
TL
∞
x
. T 1/2 sup

0≤t≤T
‖∂γxψα‖L2

x

. T 1/2 sup
0≤t≤T

‖ψα‖H2

. T 1/2‖ψα0‖H4 (2.103)

51



for all |γ| ≤ 2.

For the other pieces in (2.102) we have

‖∂βx [U ′(t)(ρα0 − ρ0) + U(t)(ρα1 − ρ1)]‖`2µL∞T L2
x
. (1 + TM)3‖∂βx (ρα0 − ρ0)‖L2

+ T (1 + TM)3‖∂βx (ρα1 − ρ1)‖L2

. (1 + TM)3‖ρα0 − ρ0‖H2

+ T (1 + TM)3‖ρα1 − ρ1‖H2 (2.104)

for all |β| ≤ 2.

(ii) For j = 4 the argument is the same because

N4 = W(ψα − ψ)[(U ′(t)ρ0 + U(t)ρ1]. (2.105)

(iii) Let us consider j = 5.

In this case we have

N5 = −WαDψα
∫ t

0

U(t− t′)∂t∂z|ψα|2dt′

= −WαDψα
(
− U(t)∂z|ψα0|2 +

∫ t

0

U ′(t− t′)∂z|ψα|2
)
. (2.106)

We need to estimate
∑
|λ|=2 ‖∂λxN5‖`1µL2

TL
2
x
.

Again, combining the Holder inequality and the Leibniz rule we see that we should

be concerned only with estimating

‖∂βxU(t)∂z|ψα0|2‖`2µL∞T L2
x

(2.107)

and

‖∂βx
∫ t

0

U ′(t− t′)∂z|ψα|2dt′‖`2µL∞T L2
x

(2.108)

for all |β| ≤ 2.

So

‖∂βxU(t)∂z|ψα0|2‖`2µL∞T L2
x
. T (1 + TM)3‖∂βx∂z|ψα0|2‖L2

. T (1 + TM)3‖ψα0‖H3 (2.109)
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and

‖∂βx
∫ t

0

U ′(t− t′)∂z|ψα|2dt′‖`2µL∞T L2
x
. (1 + TM)3‖∂βx∂z|ψα|2‖`2µL1

TL
2
x

. (1 + TM)3T‖∂βx∂z|ψα|2‖`2µL2
TL

2
x

. (1 + TM)3T
(∫ T

0

∫
R3

|∂βx∂z|ψα|2|2dxdt
)1/2

. (1 + TM)3T
(∫ T

0

‖ψα‖2
H3dt

)1/2

. (1 + TM)3T 3/2‖ψα0‖H4 . (2.110)

(iv) For j = 6 we have

N6 = Wψα

∫ t

0

U(t− t′)∆(|ψα|2 − |ψ|2)dt′. (2.111)

Similarly as was done before, we only need to estimate

‖∂βx
∫ t

0

U(t− t′)∆(|ψα|2 − |ψ|2)dt′‖`2µL∞T L2
x
, |β| ≤ 2. (2.112)

We obtain

‖∂βx
∫ t

0

U(t− t′)∆(|ψα|2 − |ψ|2)dt′‖`2µL∞T L2
x

.M(1 + TM)3‖∂β+1
x (|ψα|2 − |ψ|2)‖`2µL1

TL
2
x

.M(1 + TM)3T‖∂β+1
x (|ψα|2 − |ψ|2)‖`2µL2

TL
2
x

(2.113)

where β + 1 is a multi index such that |β + 1| = |β|+ 1.

Then

‖∂βx
∫ t

0

U(t− t′)∆(|ψα|2 − |ψ|2)dt′‖`2µL∞T L2
x

.M(1 + TM)3T
(∫ T

0

‖ψα‖2
H3 + ‖ψ‖2

H3dt
)1/2

. (2.114)

(v) For j = 7 we have

N7 = W(ψα − ψ)

∫ t

0

U(t− t′)∆|ψ|2dt′, (2.115)
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then the estimates are similar to those above, so we omit them.

Recall that ‖ψα‖Hs . ‖ψα0‖Hs for all s ≥ n/2, and

W, q, α ∼ 1/v2
g , D ∼ vg and vg →∞. (2.116)

This completes the proof.

We have consider the supersonic regime for the (ZR) model, i.e., when M > 1, where

M := |vg |
cs

is the Mach number defined in the Section 1.1, and we have established the

limit behavior of the solutions of (ZR) when vg →∞ while cs remains constant (M →
∞). It is also interesting to think on the case |vg| = Mcs considering simultaneously

the limits vg, cs →∞.

According to Doppler effect negligible (α→ 0 when vg > cs) we can assume M > 1.

Let us recall the initial system and the system limit:
i∂tψ + ε∂2

zψ + σ1∆⊥ψ = (q|ψ|2 + W(ρ+ αD∂zϕ))ψ,

∂2
t ρ−

1

M2
∆ρ = ∆|ψ|2 − αD∂t∂z|ψ|2,

∂2
t ϕ−

1

M2
∆ϕ =

αD

M2
∂z|ψ|2 − ∂t|ψ|2,

(ZR)

and i∂tψ + ε∂2
zψ + σ1∆⊥ψ = Wρψ,

∂2
t ρ−

1

M2
∆ρ = ∆|ψ|2,

(Z)

where W = β2ρ00/v
2
g , D = |vg|/βρ00 and γ = βc2

s.

Note that the solutions of these systems depend on vg in consideration.

Now, we are going to consider β =
√
vg, and α = cs/vg = M−1, thereupon W =

ρ00/vg and D =
√
vg/ρ00, so WD = 1/

√
vg.

In the case M = c2
s we have αD =

1

ρ00
√
cs

.

T ∗ = T ∗cs will be the minimum life-time of the solution of (ZR) and T0 the life-time

of the solution of (Z).

We have the following result
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Theorem 2.4 Assume q = α,M = c2
s, n = 2, 3 and

ψcs0 ∈ H4+, ρcs0 ∈ H7/2+, ϕcs0 ∈ H9/2+, (2.117)

ψ0 ∈ H4+, ρ0 ∈ H7/2+, ϕ0 ∈ H9/2+, (2.118)

sup
cs>0
‖ψcs0‖H4+ <∞, (2.119)

‖ψ0‖H5/2 ≤ inf
cs>0
‖ψcs0‖H3/2 , ‖ρ0‖H2 ≤ inf

cs>0
‖ρcs0‖H1 , ‖ϕ0‖H3 ≤ inf

cs>0
‖ϕcs0‖H2 , (2.120)

lim
cs→∞

‖ψcs0 − ψ0‖H3 = lim
cs→∞

‖ρcs0 − ρ0‖H2 = lim
cs→∞

‖ϕcs0 − ϕ0‖H4 = 0. (2.121)

Then we have

i) lim
cs→∞

T ∗cs(‖ψcs0‖H3/2 , ‖ρcs0‖H1 , ‖ϕcs0‖H2) = T ∗∞(‖ψ0‖H3/2 , ‖ρ0‖H1 , ‖ϕ0‖H2), (2.122)

ii) lim
cs→∞

‖ρcs1 + ∆ϕ0‖H2 = 0, (2.123)

iii) lim
cs→∞

‖ψ̃cs − ψcs‖L∞(0,T ;L2) = lim
cs→∞

‖ρ̃cs − ρcs‖L∞(0,T ;L2) = 0 if T ≤ Tm, (2.124)

where Tm = min{T0, T
∗
∞}, (ψcs , ρcs , ϕcs) is the solution of (ZR) with initial data

(ψcs0, ρcs0, ϕcs0) and (ψ̃cs , ρ̃cs) is the solution of (Z) with initial data (ψ0, ρ0, ρ1), ρ1 :=

−∆ϕ0.

Proof.

First note that if (2.117)-(2.121) are true then the hypotheses of the Theorem 2.2

are also true. Therefore (2.122) and (2.123) result of that theorem.

The term ‖ψ̃cs − ψcs‖L∞(0,T ;L2) was estimated in the proof of Theorem 2.2, in the

estimate (2.57) and the nonlinear estimates in (2.70)-(2.79). Again, the assertion (2.82)

is true because of (2.81) and our choice of parameters α, β, W, D. Therefore ‖ψ̃cs −
ψcs‖L∞(0,T ;L2) → 0 when cs →∞.

The term ‖ρ̃cs − ρcs‖L∞(0,T ;L2) can be estimated as in (2.58) with nonlinearities

N11, N22 as in (2.60). A convenient estimate for N11 was obtained in (2.85), indeed

‖N11‖L2
x
≤ |αD|

(
|t|‖ψcs0‖2

H2 +

∫ t

0

‖ψcs‖2
H2dt′

)
=

1

ρ00
√
cs

(
|t|‖ψcs0‖2

H2 +

∫ t

0

‖ψcs‖2
H2dt′

)
. (2.125)
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And for N22 we can use the inequality (2.87). Here the terms A11 and A33 are

A11 =
1

M2
‖
∫ t

0

U(t− t′)∆(ρcs − ρ̃cs)dt′‖L2
x

≤ 1

M2

∫ t

0

|t− t′| ‖∆(ρcs − ρ̃cs)‖L2
x
dt′ (2.126)

and

A33 = ‖
∫ t

0

U(t− t′)∂2
t (ρcs − ρ̃cs)dt′‖L2

x

≤
(
|t| ‖ρcs1 − ρ1‖L2

x
+ ‖ρcs0 − ρ0‖L2

x

+
1

M2
‖
∫ t

0

U(t− t′)∆(ρcs − ρ̃cs)dt′‖L2
x

)
≤
(
|t| ‖ρcs1 − ρ1‖L2

x
+ ‖ρcs0 − ρ0‖L2

x

+
1

M2

∫ t

0

|t− t′|‖∆(ρcs − ρ̃cs)‖L2
x
dt′
)
. (2.127)

The term ‖∆(ρcs − ρ̃cs)‖L2
x

is estimated as that in (2.90), thus

‖∆(ρcs − ρ̃cs)‖L2
x

= ‖U ′(t)∆(ρcs0 − ρ0) + U(t)∆(ρcs1 − ρ1)

+

∫ t

0

U(t− t′)∆
(
F1(ψcs)−∆|ψ̃cs |2

)
dt′‖L2

x

≤ ‖ρcs0 − ρ0‖H2 + |t| ‖ρcs1 − ρ1‖H2

+ ‖
∫ t

0

U(t− t′)∆
(
∆|ψcs|2 −∆|ψ̃cs|2

)
dt′‖L2

x

+ |αD|‖
∫ t

0

U(t− t′)∆
(
∂t∂z|ψ̃cs|2

)
dt′‖L2

x
. (2.128)

By using the integration by parts formula, we have

‖∆(ρcs − %cs)‖L2
x
≤ ‖ρcs0 − ρ0‖H2 + |t| ‖ρcs1 − ρ1‖H2

+

∫ t

0

|t− t′| ‖(|ψcs| − |ψ̃cs|)(|ψcs|+ |ψ̃cs|)‖H4dt′

+ |αD||t|‖ψ0‖2
H3 + |αD|

∫ t

0

‖ψ̃cs‖2
H3dt′

≤ ‖ρcs0 − ρ0‖H2 + |t| ‖ρcs1 − ρ1‖H2

+

∫ t

0

|t− t′| ‖ψcs − ψ̃cs‖H4(‖ψcs‖H4 + ‖ψ̃cs‖H4)dt′

+ |αD||t|‖ψ0‖2
H3 + |αD|

∫ t

0

‖ψ̃cs‖2
H3dt′. (2.129)
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But

‖ψcs − ψ̃cs‖H4 ≤ ‖ψcs − ψ̃cs‖θL2
x
‖ψcs − ψ̃cs‖1−θ

H4+ for some 0 ≤ θ ≤ 1 (2.130)

because of interpolation, thereupon

‖∆(ρcs − ρ̃cs)‖L2
x
≤‖ρcs0 − ρ0‖H2 + |t| ‖ρcs1 − ρ1‖H2

+ Cθ
1

∫ t

0

|t− t′| ‖ψcs − ψ̃cs‖1−θ
H4+(‖ψcs‖H4 + ‖ψ̃cs‖H4)dt′

+ |αD||t|‖ψ0‖2
H3 + |αD|

∫ t

0

‖ψ̃cs‖2
H3dt′. (2.131)

Since the norms ‖ψcs‖H4+ and ‖ψ̃cs‖H4+ are uniformly bounded, and ‖ψ̃cs−ψcs‖L∞(0,T ;L2) →
0, then A11, A33 → 0, so ‖Nii‖L2

x
→ 0 for i = 1, 2, 3, thereupon ‖ρ̃cs−ρcs‖L∞(0,T ;L2) → 0.

This completes the proof.
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Chapter 3

A Modified Zakharov-Rubenchik

System

According to Zakharov and Kuznetsov [26], depending on the relations between the

group velocity vg and the sound velocity cs, the system (ZR0) permits various simpli-

fications. In the case vg < cs and q|ψ|2 � vg∆k, where ∆k is the width around k of

the HF packet, they proposed the system
i(∂tψ + vg∂zψ) +

w′′

2
∂2
zψ +

vg
2k0

∆⊥ψ = (q|ψ|2 + βρ+ α∂zϕ)ψ,

−vg∂zρ+ ρ00∆ϕ+ α∂z|ψ|2 = 0,

−vg∂zϕ+
c2
s

ρ00

ρ+ β|ψ|2 = 0.

(ZRK0)

Using a reference frame moving at the group velocity of the carrying waves (the

change z = z̃ + vgt) and rescaling the variables as was done for (ZR) in [39] to obtain

the non-dimensional form, we have
i∂tψ + ε∂2

zψ + σ1∆⊥ψ = (q|ψ|2 + W(ρ+ αD∂zϕ))ψ,

−σ2∂zρ = ∆ϕ+ αD∂z|ψ|2,

−σ2∂zϕ =
1

M2
ρ+ |ψ|2,

(ZRK1)

where

σ1 = −sgn(k0vg), σ2 = −sgn(vg), W = β2ρ00/v
2
g , D = |vg|/βρ00, andM = |vg|/cs.

(3.1)
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We are going to rewrite the system (ZRK1) in a convenient form by decoupling the

last two equations. We apply the operator ∂z to them. One gets
i∂tψ + ε∂2

zψ + σ1∆⊥ψ =
(
q +

αβ

vg

)
|ψ|2ψ +

(β2ρ00

v2
g

+
αγ

v3
g

)
ρψ

∆(ρ+M2|ψ|2) = M2∂2
zρ+

αv3
g

ρ00γ
∂2
z |ψ|2,

(ZRK)

where γ = βc2
s = βv2

g/M
2 > 0 is constant.

Note that the nonlinearity in the first equation was rewrited by using that

∂zϕ =
1

−σ2

( 1

M2
ρ+ |ψ|2

)
.

We are interested in the behavior of the solutions of the modified Zakharov-Rubenchik

system (ZRK) when M,β → 0.

We expect the solution of initial value problem associated to converge toward the

solution of the Davey-Stewartson system
i∂tψ + ε∂2

zψ + σ1∆⊥ψ = q|ψ|2ψ +
αγ

v3
g

ρψ

∆ρ =
αv3

g

ρ00γ
∂2
z |ψ|2.

(DS)

3.1 On the Initial Value Problem for the Modified

ZR System

We assume L = ∆. In this case we have
i∂tψ + ∆ψ =

(
q +

αβ

vg

)
|ψ|2ψ +

(β2ρ00

v2
g

+
αγ

v3
g

)
ρψ

∆(ρ+M2|ψ|2) = M2∂2
zρ+

αv3
g

ρ00γ
∂2
z |ψ|2,

(ZRK)

where βc2
s = γ is assumed constant and α ∼ k0. Let us consider n = 2.

The system above can be writed asi∂tψ + ∆ψ = c1|ψ|2ψ + c2ρψ,

∂2
xρ+ c3∂

2
zρ = c4∂

2
z |ψ|2 −M2∂2

x|ψ|2,
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where c1 = q +
αβ

vg
, c2 =

β2ρ00

v2
g

+
αγ

v3
g

, c3 = 1−M2 and c4 =
αv3

g

ρ00γ
−M2.

Then it can be regarded as a Zakharov-Schulman systemi∂tψ + Lψ = ψφ

L1φ = L2(|ψ|2),
(ZS)

where φ = c1|ψ|2 +c2ρ, L = ∆, L1 = ∂2
x+c3∂

2
z and L2 = (c1−c2M

2)∂2
x+(c1c3 +c2c4)∂2

z .

Note that L1 is elliptic in the subsonic case M < 1.

By setting φ = L−1
1 L2(|ψ|2) := T(|ψ|2) the IVP for system (ZS) becomes

i∂tψ + Lψ = ψT(|ψ|2), ψ(x, 0) = ψ0(x) (3.2)

which has a structure similar to the cubic nonlinear Schrödinger equation but with a

nonlocal nonlinearity.

The presence of the nonlocal term in the nonlinearity prevents the use of some

of the techniques applied to the Schrödinger equation. Note, however, that T is a

zeroth-order operator and therefore some tools developed by Kato [20] in the context

of the semilinear Schrödinger equation can be applied. In fact, following these ideas,

Ghidaglia and Saut [17] obtained a local well-posedness result in H1(R2) for the Davey-

Stewartson system.

Recently, by using the contraction mapping principle in an appropriate space,

Oliveira, Panthee and Silva [35] proved that

Theorem 3.1 Let n = 2, 3 and s ≥ n/4. Then for all ψ0 ∈ Hs(Rn), there exists a

unique solution

ψ ∈ C([0, T ];Hs(Rn))

to (3.2) where the life-span T > 0 depends exclusively on ‖ψ0‖Hs, T = T (‖ψ0‖Hs), and

is a continuous decreasing function.
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In order to write the ZRK system as a single equation for ψ, we begin by expressing

ρ in terms of ψ by solving the second Poisson-like equation. Thus

ρ̂(ξ) =

M2|ξ|2 −
αv3

g

ρ00γ
ξ2

2

M2ξ2
2 − |ξ|2

|̂ψ|2, (3.3)

where ∆ = ∂2
x + ∂2

z and ξ = (ξ1, ξ2).

Then we have

ρ = T
QM

(|ψ|2) (Nonlocal term), (3.4)

where T
QM

is the singular integral operator defined by

T̂
QM
f = QM f̂ , QM(ξ) =

M2|ξ|2 −
αv3

g

ρ00γ
ξ2

2

M2ξ2
2 − |ξ|2

. (3.5)

Note that if |ξ| = 1 then M2ξ2
2−|ξ|2 = M2ξ2

2−1 6= 0 for M small enough, so QM is

of class C2 on the unit sphere for M → 0. Since QM is homogeneous of degree 0, the

Hörmander-Mikhlin theorem implies that QM is a multiplier for Lp(R2), that is, T
QM

is a bounded operator in Lp(R2), 1 < p <∞.

Therefore there exists a constant C = Cp > 0 such that

‖ρ‖Lp(R2) ≤ C‖ψ‖2
L2p(R2), 1 < p <∞. (3.6)

We have therefore reduced (ZRK) to a nonlinear Schrödinger equation and its IVP

associated is {
i∂tψ + ∆ψ = H(ψ),

ψ(x, z, 0) = ψ0(x, z),
(NSβ)

with

H(ψ) =
(
q +

αβ

vg

)
|ψ|2ψ +

(β2ρ00

v2
g

+
αγ

v3
g

)
ψT

QM
(|ψ|2) (3.7)

and integral equation version

ψ(t) = eit∆ψ0 − i
∫ t

0

ei(t−t
′)∆H(ψ)(t′)dt′. (3.8)

Returning to the system (ZRK) with M = β = 0 we have
i∂tψ + ∆ψ = q|ψ|2ψ +

αγ

v3
g

ρψ,

∆ρ =
αv3

g

ρ00γ
∂2
z |ψ|2.

(DS)
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In this case we obtain

ρ = T
Q0

(|ψ|2) (Nonlocal term), (3.9)

with

T̂
Q0
f = Q0f̂ , Q0(ξ) =

αv3
gξ

2
2

ρ00γ|ξ|2
. (3.10)

Also Q0 is homogeneous of degree 0 and C2 on the unit sphere, thereupon T
Q0

is a

bounded operator in Lp(R2), 1 < p <∞.

Then we transform the system (DS) to IVP{
i∂tψ + ∆ψ = I(ψ),

ψ(x, z, 0) = ψ0(x, z),
(NS

DS
)

with

I(ψ) = q|ψ|2ψ +
αγ

v3
g

ψT
Q0

(|ψ|2) (3.11)

and integral equation version

ψ(t) = eit∆ψ0 − i
∫ t

0

ei(t−t
′)∆I(ψ)(t′)dt′. (3.12)

This integral formulation for the solution of DS system was the one presented by

Ghidaglia-Saut in [17].

Proposition 3.1 Let us consider the multiplier QM . Then

1. QM is uniformly bounded for any 0 < M2 ≤ 1/2 and ξ 6= 0, that is,

∃C > 0 : ‖QM‖L∞ ≤ C, C is independent of M,

2. lim
M→0
‖T(QM−Q0)(f)‖L2 = 0 if f ∈ L2.

Proof. Note that

|QM(ξ)−Q0(ξ)| = |M
2(Cξ4

2 − |ξ|4)|
|ξ|2(|ξ|2 −M2ξ2

2)
, with C =

αv3
g

ρ00γ

for M small enough.

Then

|QM(ξ)−Q0(ξ)| ≤ |M
2(Cξ4

2 − |ξ|4)|
(1−M2)|ξ|2|ξ|2
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and therefore

|QM(ξ)−Q0(ξ)| . M2

1−M2
≤ 1 if M2 ≤ 1/2.

This implies (1). By using (1) and the dominated convergence theorem we obtain

(2).

3.2 Conserved Quantities

We are going to consider the ZRK systemi∂tψ + ∆ψ = c1|ψ|2ψ + c2ρψ,

∂2
xρ+ c3∂

2
zρ = c4∂

2
z |ψ|2 −M2∂2

x|ψ|2,
(ZRK)

where c1 = q +
αβ

vg
, c2 =

β2ρ00

v2
g

+
αγ

v3
g

, c3 = 1−M2 and c4 =
αv3

g

ρ00γ
−M2.

We assume that the solution (ψ, ρ) is such that these functions are smooth and

behave properly at infinity.

We multiply the first equation in (ZRK) by 2ψ̄:

2iψ̄∂tψ + 2ψ̄∆ψ = 2c1|ψ|4 + 2c2|ψ|2ρ. (3.13)

Taking the complex conjugate in the equation above we have

−2iψ∂tψ̄ + 2ψ∆ψ̄ = 2c1|ψ|4 + 2c2|ψ|2ρ. (3.14)

Recall that ρ is a real function.

Then the imaginary part gives us

(ψtψ̄ + ψ̄tψ)− i(ψxxψ̄ − ψ̄xxψ)− i(ψzzψ̄ − ψ̄zzψ) = 0, (3.15)

that is

(|ψ|2)t + 2Im(ψxψ̄)x + 2Im(ψzψ̄)z = 0. (3.16)

Next, multiplying the first equation in (ZRK) by 2ψ̄t, we obtain

2i|ψt|2 + 2ψ̄t∆ψ = 2c1|ψ|2ψψ̄t + 2c2ψψ̄tρ (3.17)
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whose real part is

2(ψxxψ̄t + ψ̄xxψt) + 2(ψzzψ̄t + ψ̄zzψt) = 2c1|ψ|2(|ψ|2)t + 2c2ρ(|ψ|2)t. (3.18)

Adding and subtracting the terms ψxψ̄tx, ψ̄xψtx, ψzψ̄tz, and ψ̄zψtz we have

c1|ψ|2(|ψ|2)t + c2ρ(|ψ|2)t = [(ψxψ̄t)x + (ψ̄xψt)x] + [(ψzψ̄t)z + (ψ̄zψt)z]

− (ψxψ̄tx + ψ̄xψtx)− (ψzψ̄tz + ψ̄zψtz), (3.19)

that is

(|ψx|2)t + (|ψz|2)t +
c1

2
(|ψ|4)t + c2ρ(|ψ|2)t = 2Re[(ψxψ̄t)x + (ψzψ̄t)z]. (3.20)

Let

S(ψ) =

∫ t

0

[ρ(|ψ|2)t′ ](t
′)dt′. (3.21)

Thereupon, the quantities

M(ψ) =

∫
R2

|ψ|2dxdz, (3.22)

and

E(ψ) =

∫
R2

(
|ψx|2 + |ψz|2 +

c1

2
|ψ|4 + c2S(ψ)

)
dxdz, (3.23)

are constants of motion because of (3.16) and (3.20).

65



66



Chapter 4

Subsonic Regime Results

4.1 Strong Convergence Results

We will deal with the integral form of systems
i∂tψ + ∆ψ =

(
q +

αβ

vg

)
|ψ|2ψ +

(β2ρ00

v2
g

+
αγ

v3
g

)
ρψ

∆(ρ+M2|ψ|2) = M2∂2
zρ+

αv3
g

ρ00γ
∂2
z |ψ|2,

(ZRK)

and 
i∂tψ + ∆ψ = q|ψ|2ψ +

αγ

v3
g

ρψ

∆ρ =
αv3

g

ρ00γ
∂2
z |ψ|2.

(DS)

We denote by (ψβ, ρβ) the solution of the IVP associated to (ZRK) with initial data

ψβ0. Here we have α = k0 and M = |vg|/cs � 1, so we are going to consider cs → +∞
and β = γc−2

s with γ > 0 constant, thereupon M = |vg|
√
γ−1β.

Let us denote T ∗ = T ∗α,q,β,M = T ∗α,β the life-time of the solution of (ZRK) such that

it does not vanish when cs → +∞. Recall that the solution of (DS) is global for small

data in L2.

So we have the following result
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Theorem 4.1 Assume that n = 2,

ψβ0, ψ0 ∈ H2, (4.1)

sup
β>0
‖ψβ0‖H2 � 1 (4.2)

‖ψ0‖H1 ≤ inf
β>0
‖ψβ0‖H1 (4.3)

and

lim
β→0
‖ψβ0 − ψ0‖H1 = 0. (4.4)

Then we have

i)lim
β→0

T ∗α,β(‖ψβ0‖H1) = T ∗α,0(‖ψ0‖H1), (4.5)

ii)lim
β→0
‖ψβ − ψ‖L∞(0,T ;L2) = lim

β→0
‖ρβ − ρ‖L∞(0,T ;L2) = 0 if T ≤ T ∗α,0, (4.6)

where (ψ, ρ) is the solution of (DS) with initial data ψ0.

Proof.

The equality (4.5) is consequences of the hypotheses (4.4). The hypotheses (4.3)

ensures that T ∗α,β is increasing when β → 0.

Hypothesis (4.2) and (4.4) ensure that the solution of the system (DS) is global.

Following the ideas of Najman [33] and Machihara [29], we will use the integral

versions of (ZR) and (DS) given in Section 3.1 to prove (4.6).

We have

ψβ(t) = eit∆ψβ0 − i
∫ t

0

ei(t−t
′)∆H(ψβ)(t′)dt′, (4.7)

ρβ = T
QM

(|ψβ|2), (4.8)

with

H(ψβ) =
(
q +

αβ

2vg

)
|ψβ|2ψβ +

(β2ρ00

v2
g

+
αγ

2v3
g

)
ψβTQM

(|ψβ|2), (4.9)

and

ψ(t) = eit∆ψ0 − i
∫ t

0

ei(t−t
′)∆I(ψ)(t′)dt′, (4.10)

ρ = T
Q0

(|ψ|2), (4.11)

with

I(ψ) = q|ψ|2ψ +
αγ

2v3
g

ψT
Q0

(|ψ|2), (4.12)
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for 0 < t < T ≤ T ∗α0, γ = 1. T
QM

, and T
Q0

are the multipliers given by (3.5) and

(3.10).

Then

(ψβ − ψ)(t) = eit∆(ψβ0 − ψ0)− i
∫ t

0

ei(t−t
′)∆(H(ψβ)− I(ψ))dt′ (4.13)

and

ρβ − ρ = T
QM

(|ψβ|2)− T
Q0

(|ψ|2). (4.14)

Let 0 < T < T ∗α0.

Theorem 1.6 and Corollary 1.1 imply that

‖ψβ − ψ‖Lq1 (0,T ;Lp1 ) . ‖ψβ0 − ψ0‖L2
x

+ ‖H(ψβ)− I(ψ)‖
Lq
′
0 (0,T ;Lp

′
0 )

(4.15)

where 
2 ≤ p0 <∞,

2

q0

= 1− 2

p0

2 ≤ p1 <∞,
2

q1

= 1− 2

p1

.
(A2D)

We choose p1 = p0 = 2, then q1 = q0 =∞, p′0 = 2, q′0 = 1.

We have

H(ψβ)− I(ψ) = q(|ψβ|2ψβ − |ψ|2ψ) +
α

2v3
g

(ρβψβ − ρψ)

+
αβ

2vg
|ψβ|2ψβ +

β2ρ00

v2
g

ρβψβ

=: I1 + I2 + I3 + I4. (4.16)

The terms I3 and I4 can be limited as it was done with the term N1 and N2 in

(2.70), (2.71). Indeed,

‖I3‖L2
x
≤ |α|β

2|vg|
‖ψβ‖3

L6
x
. β‖ψβ‖3

H1+ . β‖ψβ0‖3
H1+ (4.17)

and

‖I4‖L2
x
≤ β2|ρ00|

v2
g

‖ρβ‖L2
x
‖ψβ‖L∞x

. β2‖ψβ‖L4
x
‖ψβ‖L∞x

. β2‖ψβ‖H1‖ψβ‖H1+

. β2‖ψβ0‖2
H1+ . (4.18)
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Therefore

‖I3‖L1(0,T ;L2) . βT and ‖I4‖L1(0,T ;L2) . β2T (4.19)

because of (2.81) and the hypothesis (4.40).

Let us estimate I1 and I2.

‖I2‖L2
x

=
|α|

2|v3
g |
‖ρβ(ψβ − ψ) + ψ(ρβ − ρ)‖L2

x

. ‖ψβ − ψ‖L2
x
‖ρβ‖L∞x + ‖ψ‖L∞x ‖ρβ − ρ‖L2

x

. ‖ψβ − ψ‖L2
x
‖ρβ‖H1+ + ‖ψ‖H1+‖ρβ − ρ‖L2

x

=: B1 +B2. (4.20)

But,

ρ̂β − ρ = QM |̂ψβ|2 −Q0 |̂ψ|2

= QM(|̂ψβ|2 − |̂ψ|2) + (QM −Q0)|̂ψ|2, (4.21)

hence

‖ρβ − ρ‖L2
x
≤ ‖TQM (|ψβ|2 − |ψ|2)‖L2

x
+ ‖T(QM−Q0)(|ψ|2)‖L2

x

≤ C‖|ψβ|2 − |ψ|2‖L2
x

+ ‖T(QM−Q0)(|ψ|2)‖L2
x

. ‖(|ψβ| − |ψ|)(|ψβ|+ |ψ|)‖L2
x

+ ‖T(QM−Q0)(|ψ|2)‖L2
x

. ‖ψβ − ψ‖L2
x
(‖ψβ‖L∞x + ‖ψ‖L∞x ) + ‖T(QM−Q0)(|ψ|2)‖L2

x

. ‖ψβ − ψ‖L2
x
(‖ψβ‖H1+ + ‖ψ‖H1+) + ‖T(QM−Q0)(|ψ|2)‖L2

x
. (4.22)

Then

‖B2‖L1(0,T ) ≤ ‖ψ‖L∞(0,T ;H1+)‖ψβ − ψ‖L∞(0,T ;L2)‖(‖ψβ‖H1+ + ‖ψ‖H1+)‖L1(0,T )

+ ‖ψ‖L∞(0,T ;H1+)‖T(QM−Q0)(|ψ|2)‖L1(0,T ;L2)

. T‖ψβ − ψ‖L∞(0,T ;L2) + ‖T(QM−Q0)(|ψ|2)‖L1(0,T ;L2). (4.23)

In the other hand, since QM is a multiplier then

‖ρβ‖H1+ =
[ ∫

R2

(1 + |ξ|2)1+|QM(ξ)|̂ψβ|2(ξ)|2dξ
]1/2

. ‖|ψβ|2‖H1+

. ‖ψβ0‖2
H1+ ≤ C. (4.24)

bounded by the hypotheses. Thereupon

‖B1‖L1(0,T ) ≤ ‖ψβ − ψ‖L∞(0,T ;L2)‖ρβ‖L1(0,T ;H1+) . T‖ψβ − ψ‖L∞(0,T ;L2), (4.25)
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hence

‖I2‖L1(0,T :L2) ≤ ‖B1‖L1(0,T ) + ‖B2‖L1(0,T )

. T‖ψβ − ψ‖L∞(0,T ;L2) + ‖T(QM−Q0)(|ψ|2)‖L1(0,T ;L2). (4.26)

Next, we estimate I1. We have

‖I1‖L2
x

= |q| ‖ |ψβ|2(ψβ − ψ) + ψ(|ψβ|2 − |ψ|2)‖L2
x

. ‖ |ψβ|2(ψβ − ψ)‖L2
x

+ ‖ψ(|ψβ| − |ψ|)(|ψβ|+ |ψ|)‖L2
x

. ‖ |ψβ|2‖L∞x ‖ψβ − ψ‖L2
x

+ ‖ψβ − ψ‖L2
x
‖ψ(|ψβ|+ |ψ|)‖L∞

. ‖ψβ‖2
L∞x
‖ψβ − ψ‖L2

x
+ ‖ψβ − ψ‖L2

x
‖ |ψ|2 + |ψβ|2‖L∞

. (‖ψβ‖2
L∞x

+ ‖ψ‖2
L∞x

)‖ψβ − ψ‖L2
x

. (‖ψβ‖2
H1+ + ‖ψ‖2

H1+)‖ψβ − ψ‖L2
x
, (4.27)

then

‖I1‖L1(0,T :L2) . T
(
‖ψβ‖2

L∞(0,T ;H1+) + ‖ψ‖2
L∞(0,T ;H1+)

)
‖ψβ − ψ‖L∞(0,T ;L2)

. T‖ψβ − ψ‖L∞(0,T ;L2). (4.28)

Collecting the information (4.19), (4.26) and (4.28) we obtain that

‖H(ψβ)− I(ψ)‖L1(0,T ;L2) .T‖ψβ − ψ‖L∞(0,T ;L2) + βT + β2T

+ ‖T(QM−Q0)(|ψ|2)‖L1(0,T ;L2). (4.29)

Returning to (4.15) we have

‖ψβ − ψ‖L∞(0,T ;L2) . ‖ψβ0 − ψ0‖L2
x

+ ‖H(ψβ)− I(ψ)‖L1(0,T ;L2)

. ‖ψβ0 − ψ0‖L2
x

+ T‖ψβ − ψ‖L∞(0,T ;L2)

+ ‖T(QM−Q0)(|ψ|2)‖L1(0,T ;L2) + (β + β2)T. (4.30)

If we take T = T0 sufficiently small, then

‖ψβ − ψ‖L∞(0,T0;L2) .‖ψβ0 − ψ0‖L2
x

+ ‖T(QM−Q0)(|ψ|2)‖L1(0,T0;L2)

+ (β + β2)T0. (4.31)

As ψ0 ∈ H2 then ψ ∈ L4, thereupon lim
β→0
‖T(QM−Q0)(|ψ|2)‖L1(0,T0;L2) = 0 due to

Proposition 3.1.
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Therefore

‖ψβ − ψ‖L∞(0,T0;L2) → 0 as β → 0. (4.32)

Previous estimates can be repeated on the time interval [T0, 2T0]. So we have

‖ψβ − ψ‖L∞(T0,2T0;L2) → 0 as β → 0. (4.33)

Repeating this procedure, we obtain eventually

‖ψβ − ψ‖L∞(0,T ;L2) → 0 as β → 0 for any 0 < T ≤ T ∗α0. (4.34)

In (4.22) we proved that

‖ρβ − ρ‖L2
x
. ‖ψβ − ψ‖L2

x
(‖ψβ‖H1+ + ‖ψ‖H1+) + ‖T(QM−Q0)(|ψ|2)‖L2

x

. ‖ψβ − ψ‖L2
x

+ ‖T(QM−Q0)(|ψ|2)‖L2
x
, (4.35)

then by using (4.34) and again the Proposition 3.1, we have

‖ρβ − ρ‖L∞(0,T ;L2) → 0 as β → 0 for any 0 < T ≤ T ∗α0. (4.36)

This completes the proof.

We have consider the model (ZRK) when M < 1 (subsonic regime) where M :=
|vg |
cs

is the Mach number defined in the Section 1.1 and we have established the limit

behavior of the solutions of (ZRK) when cs →∞ while vg remains constant (M → 0).

It is also interesting to think on the case |vg| = Mcs considering simultaneously the

limits vg, cs →∞.

Let us recall the initial system and the systems limits:
i∂tψ + ε∂2

zψ + σ1∆⊥ψ =
(
q +

αβ

vg

)
|ψ|2ψ +

(β2ρ00

v2
g

+
αγ

v3
g

)
ρψ

∆(ρ+M2|ψ|2) = M2∂2
zρ+

αv3
g

ρ00γ
∂2
z |ψ|2,

(ZRK)

and 
i∂tψ + ε∂2

zψ + σ1∆⊥ψ = q|ψ|2ψ +
αγ

v3
g

ρψ

∆ρ =
αv3

g

ρ00γ
∂2
z |ψ|2,

(DS)

where W = β2ρ00/v
2
g , D = |vg|/βρ00, γ = βc2

s is a constant and α = k0.

Note that the solutions of these systems depend on vg in consideration.
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We have the operators

T̂
QM
f = QM f̂ , QM(ξ) =

M2|ξ|2 −
αv3

g

ρ00γ
ξ2

2

M2ξ2
2 − |ξ|2

(4.37)

and

Q0(ξ) =
αv3

gξ
2
2

ρ00γ|ξ|2
. (4.38)

The main difficulty with QM is because of the singularity on two straight lines go

through the origin if M is not too small, and not having the possibility to use the

Hormander-Mikhlin Theorem. But we are going to assume that cs = v2
g , so M = 1/vg

and therefore we have good multipliers.

T ∗ = T ∗cs will be the life-time of the solution of (ZRK).

We have the following result

Theorem 4.2 Assume that n = 2, cs = v2
g ,

ψcs0, ψ̃0 ∈ H2, (4.39)

sup
cs>0
‖ψcs0‖H2 � 1 (4.40)

‖ψ̃0‖H1 ≤ inf
cs>0
‖ψcs0‖H1 (4.41)

and

lim
cs→∞

‖ψcs0 − ψ̃0‖H1 = 0. (4.42)

Then we have

i) lim
cs→∞

T ∗cs(‖ψcs0‖H1) = T ∗∞(‖ψ0‖H1), (4.43)

ii) lim
cs→∞

‖ψcs − ψ̃cs‖L∞(0,T ;L2) = lim
cs→∞

‖ρcs − ρ̃cs‖L∞(0,T ;L2) = 0 if T ≤ T ∗∞, (4.44)

where (ψcs , ρcs) is the solution of (ZRK) with initial data ψcs0 and (ψ̃cs , ρ̃cs) is the

solution of (DS) with initial data ψ̃0.

Proof. The proof is similar of that in the Theorem 4.1. The only difference is that

the terms I3, I4 tend to zero more quickly because of

‖I3‖L2
x
≤ |α|β

2|vg|
‖ψβ‖3

L6
x
.

β

vg
‖ψβ‖3

H1+ .
β

vg
‖ψβ0‖3

H1+ (4.45)
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and

‖I4‖L2
x
≤ β2|ρ00|

v2
g

‖ρβ‖L2
x
‖ψβ‖L∞x

.
β2

v2
g

‖ψβ‖L4
x
‖ψβ‖L∞x

.
β2

v2
g

‖ψβ‖H1‖ψβ‖H1+

.
β2

v2
g

‖ψβ0‖2
H1+ , (4.46)

with β = γ/c2
s → 0 and vg →∞.
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Remarks

1. We only know the existence of weak global solutions for ZR in the energy space

H1(Rn)×L2(Rn)×H1(Rn) and local well posedness results in the space Hs(Rn)×
Hs−1/2(Rn)×Hs+1(Rn) for s > n/2 (n = 2, 3). Uniqueness of weak solutions and

well posedness in the energy space is still an open problem.

2. We have obtained several results regarding the weak and strong convergence of

solutions of ZR system to solutions of the Z and DS system. In the case of the ZR

system, we provide weak convergence (global in time) of solutions in the space of

energy H1 × L2, and strong convergence (local in time) of solutions in L2 × L2

and H5/2 ×L2. We expect to be able to prove strong convergence of solutions in

H1 × L2.

3. Since solutions of the IVP associated to Z and DS may blow-up in finite time

(see [17], [16], [31]) one expects that solutions of the ZR and ZRK have the same

behavior. At the present, we are working to prove this conjecture.

4. Existence of solitary wave solution of ZR of the form (eiwtψ(x), ρ(x), ϕ(x)) turns

out to be an interesting problem since (ψ(x), ρ(x), ϕ(x)) satisfies the system (See

[39])−wψ + ε∂2
zψ + σ1∆⊥ψ − (q − WM2)|ψ|2ψ − W(D −M2σ3)ψ∂zϕ = 0,

−M2∂2
zϕ+ ∆ϕ+ (D − σ3M

2)∂z|ψ|2 = 0.

which is similar to the 3-D system for solitary waves of the Davey-Stewartson

system (note that this system ceases to be elliptic in the supersonic case, |M | > 1)

for which existence [7] and non existence [18] results are known.
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Appendix A

Basic Theory

A.1 Function Spaces

Consider an open subset Ω of Rn. Let D(Ω) = C∞c (Ω) the space of C∞ functions

with compact support in Ω and D′(Ω) the space of distributions on Ω. A distribution

T ∈ D′(Ω) is said to belong to Lp(Ω) (1 6 p 6∞) if there exists a function f ∈ Lp(Ω)

such that

〈T, ϕ〉 =

∫
Ω

f(x)ϕ(x)dx ∀ϕ ∈ D(Ω).

In that case, is well known that f is unique. Let k ∈ N and 1 6 p 6∞. Define

W k,p(Ω) =
{
f ∈ Lp(Ω), Dαf ∈ Lp(Ω) ∀α ∈ Nk such that |α| 6 k

}
.

W k,p(Ω) is a Banach space when equipped with the norm defined by

‖f‖Wk,p =
∑
|α|6k

‖Dαf‖Lp ,

for all f ∈ W k,p(Ω).

For all k, p as above, we denote by W k,p
0 (Ω) the closure of D(Ω) in W k,p(Ω). If

p = 2, one sets W k,2(Ω) = Hk(Ω), W k,2
0 (Ω) = Hk

0 (Ω) and one equips Hk(Ω) with the

following equivalent norm

‖f‖Hk =
( ∑
|α|6k

‖Dαf‖2
L2

)1/2

.

Then Hk(Ω) is a Hilbert space with the scalar product

〈u, v〉 =
∑
|α|6k

∫
Ω

DαuDαvdx.
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The following theorem is a characterization of the spaces Hk(Rn) by Fourier trans-

form.

Theorem A.1 Let k be a nonnegative integer.

1. A function u ∈ L2(Rn) belongs to Hk(Rn) if and only if

(1 + |ξ|k)û ∈ L2(Rn).

2. In addition, there exist a positive constant C such that

1

C
‖u‖Hk ≤ ‖(1 + |ξ|k)û‖L2 ≤ C‖u‖Hk

for each u ∈ Hk(Rn).

The fractional Sobolev spaces are defined by

Hs(Rn) = {u ∈ S ′(Rn) : ‖u‖Hs(Rn) := ‖(1 + |ξ|2)s/2û(ξ)‖L2(Rn) <∞},

for any s ∈ R, where S(Rn) is the Schwartz space of C∞-functions decaying at infinity.

It is not difficult to show that if s1 ≤ s ≤ s2 then

‖u‖Hs ≤ ‖u‖θHs1‖u‖1−θ
Hs2 , with s = θs1 + (1− θ)s2, 0 ≤ θ ≤ 1.

The following results are essential in the theory of partial differential equations.

Theorem A.2 (Sobolev, Gagliardo, Nirenberg, Morrey) If Ω is open and has a

Lipschitz continuous boundary, then

1. if 1 6 p < n, then W 1,p(Ω) ↪→ Lq(Ω), for every q ∈ [p, np/(n− p)];

2. if p = n, then W 1,p(Ω) ↪→ Lq(Ω), for every q ∈ [p,∞);

3. if p > n then W 1,p(Ω) ↪→ L∞(Ω) ∩ C0,α(Ω), where α = (p− n)/p.

Theorem A.3 (Rellich-Kondrachov) In addition, if Ω is bounded, the embeddings

(2) and (3) in Theorem above are compact. The embedding (1) is compact for q ∈
[p, np/(n− p)).
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Theorem A.4 (Sobolev) If s > n/2 + k, then Hs(Rn) ↪→ Ck
∞(Rn), where Ck

∞(Rn)

is the space of functions with k continuous derivatives vanishing at infinity.

Theorem A.5 (Sobolev embedding) Let p ∈ [2,+∞].

1. If s > (n/2− n/p) then Hs(Rn) ↪→ Lp(Rn).

2. If s = n/2− n/p for p 6= +∞, then Hs(Rn) ↪→ Lp(Rn).

Theorem A.6 If s > n/2, then Hs(Rn) is an algebra with respect to the product of

functions. That is, if f, g ∈ Hs(Rn), then

‖fg‖H2 ≤ C(s)‖f‖Hs‖g‖Hs .

The proof of the results above can be found for example in [2], [14] and [28].

Let X denote a real Banach space, with norm ‖ · ‖. The space Lp(0, T ;X) consists

of all measurable functions u : [0, T ]→ X with

‖u‖Lp(0,T ;X) :=
( ∫ T

0

‖u(t)‖dt
)1/p

<∞

for 1 6 p <∞, and

‖u‖L∞(0,T ;X) := ess sup
06t6T

‖u(t)‖ <∞.

Remark A.1 Let I ⊂ R be an open interval, f ∈ Lp(I,X) and g ∈ Lp′(I,X ′). Then

t 7→ 〈g(t), f(t)〉X′,X

is integrable and ∫
I

|〈g(t), f(t)〉X′,X | ≤ ‖f‖Lp‖g‖Lp′ .

The following result is related to the preceding remark.

Theorem A.7 If 1 ≤ p <∞ and if X is reflexive or if X ′ is separable, then (Lp(I,X))′ =

Lp
′
(I,X ′). In addition, if 1 < p <∞ and X is reflexive, then Lp(I,X) is reflexive.

The following two results are very easy to prove.
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Proposition A.1 Let fm ⇀
∗
f in L∞((0,∞);Hs(Rn)). Then

1. ∂xfm ⇀
∗
∂xf in L∞((0,∞);Hs−1(Rn)),

2. fm ⇀
∗
f in L∞((0,∞);H−s(Rn)),

3. If ∂tfm ⇀
∗
g in L∞((0,∞);H−s(Rn)) then g = ∂tf .

Proposition A.2 If fm ⇀
∗
f in Lp(I;X ′) with X ′ = Lqx or Hs

x, then fm → f in

D′(I × Rn).

We finish this section by recalling three useful results in the compacity theory.

Lemma A.1 (J. Lions) Let O be an open and bounded set of Rn
x × Rt and gm, g ∈

Lq(O), 1 < q <∞, such that ‖gm‖Lq(O) 6 C and gm → g a.e O. Then gm → g weakly

in Lq(O).

Theorem A.8 (Lions-Aubin) Let B0, B,B1 be Banach spaces such that B0 ⊂ B ⊂
B1 with B0, B1 reflexives and B0 ↪→

c
B (compact embedding). Let

W =
{
V |V ∈ Lp0(0, T, B0), ∂tV ∈ Lp1(0, T, B1)

}
, T <∞, 1 < p0, p1 <∞.

Then W is a Banach space with norm

‖V ‖W = ‖V ‖Lp0 (0,T,B0) + ‖∂tV ‖Lp1 (0,T,B1)

and we have W ↪→
c
Lp0(0, T, B).

Definition A.1 A family F of functions from a topological space X to a metric space

(Y, d) is called equicontinuous at the point x ∈ X if given ε > 0 there is an open set

O containing x such that d(f(x), f(y)) < ε for all y ∈ O and for all f ∈ F . The family

is said to be equicontinuous on X if it is equicontinuous at each point x in X.

Theorem A.9 (Ascoli) Let F be an equicontinuous family of functions from a sep-

arable metric space X to a metric space Y . Let {fm} be a sequence in F such that

for each x in X the closure of the set {fm(x) : 0 5 m 5 ∞} is compact. Then there

is a subsequence {fmk} which converges pointwise to a continuous function f , and the

convergence is uniform on each compact subset of X.
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A.2 Multipliers

Let m be a bounded measurable function on Rn. One can then define a linear trans-

formation Tm, whose domain is L2(Rn) ∩ Lp(Rn), by the following relation between

Fourier transforms

T̂mf(ξ) = m(ξ)f̂(ξ), f ∈ L2(Rn) ∩ Lp(Rn).

Definition A.2 We shall say that m is a multiplier for Lp (1 ≤ p ≤ ∞) if whenever

f ∈ L2 ∩ Lp then Tmf is also in Lp, and Tm is bounded, that is,

‖Tm(f)‖Lp ≤ A‖f‖Lp , f ∈ L2 ∩ Lp, (with A independent of f).

Note that if m is a multiplier for Lp and p < ∞, then Tm has a unique bounded

extension to Lp, which again satisfies the same inequality above. We also write Tm for

this extension.

We shall present below an important sufficient condition which contains a large

class of multipliers.

Theorem A.10 (Hörmander-Mikhlin) Suppose that m(ξ) is of class Ck in the

complement of the origin of Rn, where k ∈ N and k > n/2. Assume also that

|∂αm(ξ)| ≤ B|ξ|−|α| if |α| = α1 + ...+ αn ≤ k.

Then m(ξ) is a multiplier for Lp with 1 < p <∞.

Proof. See [43].

For example, if m(ξ) is homogeneous of degree 0, i.e. m(λξ) = m(ξ), λ > 0, and is

of class Ck on the unit sphere, then m is a multiplier for Lp, 1 < p <∞.

We will use this result to deal with the system (ZRK) as was done by Ghidaglia

and Saut [17] in the study of the Davey-Stewartson system.
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A.3 Functionals and the Variational Derivative

Let J [y] be a functional defined on some normed linear space, and let

∆J [h] = J [y + h]− J [y]

be its increment, corresponding to the increment h = h(x) of the “independent vari-

able” y = y(x). If y is fixed, ∆J [h] is a functional of h, in general a nonlinear functional.

Definition A.3 Suppose that

∆J [h] = δJ [h] + ε‖h‖,

where δJ [h] is a linear functional and ε → 0 as ‖h‖ → 0. Then the functional J [y]

is said to be differentiable, and the principal linear part of the increment ∆J [h],

i.e., the linear functional δJ [h] which differs from ∆J [h] by an infinitesimal of order

higher than 1 relative to ‖h‖, is called the variation (or differential) of J [y].

Remark A.2 The increment and the variation of J [y], are functionals of two argu-

ments y and h, and to emphasize this fact, we can write ∆J [y;h] = δJ [y;h] + ε‖h‖.

In particular, we will consider a functional

J [y] =

∫ b

a

F (x, y(x), y′(x))dx,

where F is continuous and y(x) is in the set of all continuously differentiable functions

defined on the interval [a, b].

If we give y(x) an increment h(x), with h(a) = h(b) = 0, and by using Taylor’s

theorem, we obtain

δJ =

∫ b

a

(Fyh+ Fy′h
′)dx

and integration by parts give

δJ =

∫ b

a

(Fy −
d

dx
Fy′)hdx.

The expression
δJ

δy
:= Fy(x, y, y

′)− d

dx
Fy′(x, y, y

′)
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is called the variational (or functional) derivative of the functional J [y].

In a more general case, if

J [u] =

∫
R

F (x1, . . . , xn, u, ux1 , . . . , uxn)dx1 . . . dxn,

depending on n independent variables x1, ..., xn in the region R, an unknown function

u of these variables, and the partial derivatives ux1 , ..., uxn of u, then

δJ =

∫
R

(Fu −
n∑
i=1

∂

∂xi
Fuxi )Ψ(x)dx

for all admissible Ψ(x) which vanish on the boundary of R, and we have

δJ

δu
= Fu −

n∑
i=1

∂

∂xi
Fuxi .

We refer the reader to [15] for more details about this issue.
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