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Rio de Janeiro, Brazil

March 2011



Mut ohne Klugheit ist Unfug,
und Klugheit ohne Mut ist Quatsch!

Erich Kästner
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Isso eu ainda não sei, e pelo visto Bob Dylan também não respondeu a essa pergunta
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Aritmética”. Foi uma honra fazer parte desse instituto de excelência por esses quatro
anos, bem como ser orientado pelo Professor Alfredo Noel Iusem e co-orientado em
Dresden pelo Professor Andreas Fischer. Uma tia avó de Nina esteve na cidade de
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Abstract

In this thesis we study both the method and the trajectory of Levenberg-Marquardt,
which stem from the forties and sixties. Recently, the method turned out to be a
valuable tool for solving systems of nonlinear equations subject to convex constraints,
even in the presence of non-isolated solutions. We consider basically a projected and
an inexact constrained version of a Levenberg-Marquardt type method in order to solve
such systems of equations. Our results unify and extend several recent ones on the local
convergence of Levenberg-Marquardt and Gauss-Newton methods. They were carried
out under a regularity condition called calmness, which is also called upper-Lipschitz
continuity and is described by an error bound. This hypothesis became quite popular
in the last decade, since it generalizes the classical regularity condition that implies
that solutions are isolated. In this direction, one of the most interesting results in this
work states that the solution set of a calm problem must be locally a differentiable
manifold.

We have also obtained primal-dual relations between the central path and the
Levenberg-Marquardt trajectory. These results are directly applicable in convex pro-
gramming and path following methods.

Keywords. Calmness, upper-Lipschitz continuity, nonlinear equations, error bound,
Levenberg-Marquardt, Gauss-Newton, central path, interiors points, constrained equa-
tion, convergence rate, inexactness, non-isolated solution.
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Resumo

Nesta tese estudamos o método e a trajetória de Levenberg-Marquardt, que foram
desenvolvidos na década de quarenta e sessenta. Recentemente, provou-se que o método
é uma ferramenta eficiente para resolver sistemas de equações não lineares sujeitos a
restrições convexas, mesmo na presença de soluções não isoladas. Nós consideremos
basicamente métodos de Levenberg-Marquardt projetados e inexatos restritos para
resolver tais sistemas de equações. Nossos resultados estendem e unificam diversas
análises recentes relacionadas à convergência local de métodos de Levenberg-Marquardt
e Gauss-Newton. Tomamos como hipótese uma condição de regularidade chamada
calmaria, ou continuidade Lipschitz superior, que é caracterizada por uma cota de
erro local. Essa hipótese se tornou bastante popular recentemente já que generaliza
a condição clássica de regularidade que implica que as soluções são isoladas. Nesse
sentido, um dos resultados mais interessantes do nosso trabalho diz que o conjunto
solução de um problema calmo deve ser localmente uma variedade diferenciável.

Obtivemos também propriedades relacionadas à trajetória de Levenberg-Marquardt.
Provamos que ela possui relações primais e duais com a trajetória central. Esses re-
sultados são diretamente aplicáveis a problemas de programação convexa e métodos
interiores baseados em trajetória central.

Palavras chave. Levenberg-Marquardt, continuidade Lipschitz superior, equações
não lineares, Gauss-Newton, trajetória central, pontos interiores, taxa de convergência,
solução não isolada.

x



Contents

1 Introduction 1

2 Background material and preliminaries 8
2.1 Some technical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Some results on Levenberg-Marquardt methods . . . . . . . . . . . . . 12

2.3.1 The trajectory of Levenberg-Marquardt . . . . . . . . . . . . . . 12
2.3.2 Recent results for Levenberg-Marquardt methods . . . . . . . . 13

2.4 The central path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Neighborhoods of the central path . . . . . . . . . . . . . . . . . 17
2.4.2 Rewriting a quadratic program . . . . . . . . . . . . . . . . . . 17

3 The effect of calmness on the solution set of nonlinear equations 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Our main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Some related results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Our theorem and iterative algorithms for solving systems of nonlinear

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Projected Levenberg-Marquardt and Gauss-Newton methods under
the calmness condition 28
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Sufficient conditions for quadratic convergence of the Gauss-Newton

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 An assumption on the magnitude of the singular values . . . . . 31
4.3.3 Convergence analysis of the Gauss-Newton method . . . . . . . 32

4.4 A correction on the projected Gauss-Newton method . . . . . . . . . . 34
4.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.2 Convergence analysis of the corrected GN method . . . . . . . . 35

4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xi



4.6 The relation between quadratic convergence and the order of the singular
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 A unified local convergence analysis of inexact constrained Levenberg-
Marquardt methods 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 An upper Lipschitz-continuity result . . . . . . . . . . . . . . . . . . . 49
5.3 Subproblems and method . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Local convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Sharpness of the level of inexactness . . . . . . . . . . . . . . . . . . . . 56
5.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Primal-dual relations between the central path and the Levenberg-
Marquardt trajectory, with an application to quadratic programming 60
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.1 An auxiliary result . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Primal dual relations between the Levenberg-Marquardt and the central

path trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 An application to convex quadratic programming . . . . . . . . . . . . 66
6.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

References 68

xii



Chapter 1

Introduction

Some of our mathematical contributions are related to the nonlinear system of equa-
tions

H(x) = 0, (1.1)

with H : Rn → Rm.
The classical concept of regularity for Problem 1.1 at a solution x∗ in the smooth

and square case, i.e. with m = n, is the nonsingularity of the Jacobian matrix ∇H(x∗).
For regular problems, a large array of iterative methods have been developed, studied
and implemented. One of them, is the well known Newton method, whose subproblems
are given by linear systems of equations such as

∇H(s)>(x− s) = −H(s), (1.2)

where s ∈ Rn denotes a current iterate. The Newton method is well defined in a
neighborhood of a solution x∗ if H is differentiable and x∗ is a regular point. If ∇H
is continuous, the method possesses local superlinear convergence. The convergence
is quadratic when the Jacobian is in addition locally Lipschitz continuous. When a
solution x∗ is a regular point in the classical sense, it is necessarily an isolated solution.
For details we refer the reader to the books [8, 66]. A condition that extends the
classical concept of a regular problem in this direction is a notion named calmness in
the book by Rockafellar and Wets [69].

We say that Problem 1.1 is calm at x∗ ∈ X∗, where X∗ := {x ∈ Rn|H(x) = 0}, if
there exist ω > 0 and δ > 0 so that

ω dist[x,X∗] ≤ ‖H(x)‖,

for all x ∈ B(x∗, δ), where dist[a,A] denotes the Euclidean distance from a point a to
a set A ⊂ Rn and ‖ · ‖ is the Euclidean norm.

It is easy to see that when n = m and x∗ is an isolated solution, the classic regular-
ity and the calmness conditions coincide. Besides its applicability to nonsmooth and
rectangular systems, the notion of calmness encompasses situations with non-isolated
solutions. In the particular case of smooth systems with m = 1, calmness implies that
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directional derivatives in directions normal to the solution set are nonnull. At the same
time, the notion of calmness is powerful enough as to allow the extension of a large
array of results which were previously known to hold only for regular systems in the
classical sense, and hence it became quite popular. This condition, that is also called
upper-Lipschitz continuity (e.g. [68]), is described, as we have seen, by a local error
bound. Roughly speaking, this error bound says that in a neighborhood of a solution
the distance of a point x ∈ Rn to the solution set is proportional to ‖H(x)‖. For under-
standing this better, consider for instance H : R2 → R1, with H(x1, x2) := x2

1 +x2
2− 1.

Then, one can easily verify that Problem 1.1 is calm around any solution. This is
in some sense expected, due to the geometric structure of the graphic of H, which is
illustrated next.

Figure 1.1: Illustration of a calm problem

IfH is affine, Hoffmmann’s Lemma (see [39]) guarantees that the error bound always
holds and is global. Calmness also has implications in connection with constraint
qualifications, Karush-Kuhn-Tucker systems and second order optimality conditions
(see [41]).

We have studied the influence of calmness on the solution set of systems of equations
(1.1) when H is continuously differentiable. Under these hypotheses the main result
in Chapter 3, maybe the most important of the whole thesis, states that the rank of
the Jacobian of H must be constant on the solution set of (1.1). We also conclude
that X∗ must be locally a differentiable manifold. Further properties, examples, and
algorithmic implications are presented too.

One area where the notion of calmness turned out to be quite useful is the study
of the convergence properties of iterative methods for solving systems of nonlinear
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equations, e.g. Levenberg-Marquardt type methods. The algorithm of Levenberg-
Marquardt is one of the main subjects in this thesis. It was first published by Kenneth
Levenberg in 1944 (see [52]) and rediscovered in 1963 by the statistician Donald Mar-
quardt, who developed his algorithm in [56] to solve fitting nonlinear chemical models
to laboratory data. The method is still popular and being used for solving real world
problems. This is the case in [10], where it is implement for image processing.

Among the papers which use the notion of calmness for solving nonlinear equations
applying Levenberg-Marquardt type methods we mention [14, 22, 23, 24, 28, 29, 46, 76,
77, 78]. For the first result in this direction see the paper [76], published by Yamashita
and Fukushima in 2001. In [20, 28, 46] applications of Levenberg-Marquardt techniques
to other problems are dealt with. Related globalization technics were suggested in
[7, 30, 46, 55, 78]. For semismooth problems Levenberg-Marquardt type algorithms
have been developed in [21, 44, 45]. However, the conditions used for proving their
local superlinear convergence imply the local uniqueness of the solution.

Levenberg-Marquardt type methods were recently also adapted for problems like
(1.1) where in addition, feasibility with respect to a closed convex set Ω is required.
Projected methods were suggested in [46] and constrained ones in [46] and [77] (the
latter for nonnegative constraints only). In two chapters of the present thesis we
consider the following system of nonlinear equations subject to constraints

H(x) = 0, x ∈ Ω, (1.3)

where H : Rn → Rm is a sufficiently smooth mapping and Ω ⊆ Rn is a given closed
convex set.

Let us now define iterations of Levenberg-Marquardt type methods in order to
explain what has happened in the field in the last decade. We firstly address Problem
1.1, which is the same as Problem 1.3 without constraints, i.e., when Ω = Rn. Then,
the Levenberg-Marquardt subproblem reads as follows

min
x∈Rn

1

2
‖H(s) +∇H(s)>(x− s)‖2 +

1

2
α(s)‖x− s‖2 + π(s)>(x− s) (1.4)

where s ∈ Rn is the current iterate, α(s) is a positive number called Levenberg-
Marquardt regularization parameter and π(s) ∈ Rn formally denotes inexactness within
the subproblems. When α(s) and π(s) are set equal to zero the method reduces to the
classical Gauss-Newton method.

The unconstrained Levenberg-Marquardt method generates a sequence {xk} ⊂ Rn

where xk+1 is precisely the unique solution of the quadratic program (1.4) with s := xk.
The resulting algorithm is well defined, since (1.4) consists of a minimization of a
strongly convex function. Now if we set π ≡ 0 we recover the pure method; otherwise,
we get a so called inexact Levenberg-Marquardt method. Such inexact versions were
investigated in [14, 23, 29]. Under the local error bound condition implied by calmness,
a well known theory for the level of inexactness in Newton’s method exists [17].

3
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The first order necessary optimality conditions correspondent to (1.4), which are
also sufficient due to convexity, are given by

(∇H(s)∇H(s)> + α(s)I)(x− s) +∇H(s)H(s) = −π(s). (1.5)

This linear system of equations clarifies why π(s) describes an inexactness within sub-
problems. Note that −π(s) is a residual in (1.5). This residual might be the result of
approximate data, truncated solution algorithms, or numerical errors.

Convergence properties of Levenberg-Marquardt methods strongly depend on the
choice of the parameter α(s). If α(s) is chosen as ‖H(s)‖β with β ∈ [1, 2] and H
is continuously differentiable with a locally Lipschitz continuous Jacobian, the exact
unconstrained Levenberg-Marquardt method is known to achieve local quadratic con-
vergence [76]. These results were extended to projected Levenberg-Marquardt method
for solving (1.3) when Ω is a proper set of Rn (see [29] and [46]). An iteration of the
projected method is divided in two phases. Firstly, one solves the unconstrained sub-
problem (1.4). The second phase consists then of projecting the solution of (1.4) onto
Ω. It is known that the projected methods can be regarded as inexact unconstrained
ones. These similarities follow from the fact that the same calmness assumption, which
does not take constraints into account, is taken for both the projected and the uncon-
strained Levenberg-Marquardt methods. See the details in [29].

The subproblems of constrained Levenberg-Marquardt methods consist of minimiz-
ing the objective function from (1.4) subject to Ω. A property of the constrained
method is that, for its local fast convergence, one needs the error bound described by
calmness to hold just in the intersection of a neighborhood of a solution with Ω. Be-
fore our work, its local quadratic convergence was only known for the particular choice
β = 2 [46]. Part of this thesis is destined to extend this result for β in the interval [1, 2].
This is done in Chapter 5 for an inexact constrained version of a Levenberg-Marquardt
method with a sharp level of inexactness. The relevance of our generalizations lie
mainly on the fact that with particular choices of the exponent β one is able to get
simultaneously robustness of subproblems and a large level of inexactness that pre-
serves the rate of convergence of the exact method. In the table next, the letters U, P,
C stand for unconstrained, projected and constrained, respectively. In it, we describe
the level of inexactness, that maintains the rate of convergence of the exact method,
obtained in the literature and in our work.

Reference LM type method α(s) ‖π(s)‖

[14] U ‖H(s)‖2 ‖H(s)‖4

[23] U ‖H(s)‖1 ‖H(s)‖3

[29] U,P ‖H(s)‖1 ‖H(s)‖2

Our work U,P,C ‖H(s)‖β ‖H(s)‖β+1

Table 1.1: Results from the literature
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Our theorem in Chapter 5 says that when β ∈ (0, 2], the local rate of convergence
of the unconstrained, projected and constrained Levenberg-Marquardt method is τ :=
1 + min{β, 1}, and that our level of inexactness, as in the previous table, does not
destroy this rate and is sharp. It seemed that nothing was known on the behavior of
inexact versions of the constrained Levenberg-Marquardt method. The reason for this
may lay in the fact that it was not even clear whether a quadratic rate was possible
if the value ‖H(s)‖ were used for the regularization parameter α(s). In this sense the
result in [29] served as a benchmark for us when considering constraints. Our study
on constrained Levenberg-Marquardt methods improve or extend previous results, in
particular those in [14, 23, 29, 46, 77].

In this thesis we are particularly interested in the relation between the Levenberg-
Marquardt regularization parameter and quadratic convergence of the method. We
will see in Chapter 4 that when the positive singular values of the Jacobian matrix
∇H(s) remain larger than a constant times ‖H(s)‖, the regularization parameter is
not needed in unconstrained and projected Levenberg-Marquardt methods in order to
get local quadratic convergence. Still in Chapter 4, we present examples that show that
in general one does not have quadratic convergence if α(s) := ‖H(s)‖β with β ∈ (3,∞).

In the last part of the thesis, namely in Chapter 6, we derive some results with
respect to the trajectory of Levenberg-Marquardt. This trajectory is based on a penal-
ization of type 1

2
‖ · ‖2, as in the subproblems of Levenberg-Marquardt type methods,

therefore its name. We compare the Levenberg-Marquardt trajectory with the primal-
dual central path correspondent to a convex problem in a region close to the analytic
center of the feasible set.

Logarithmic type penalizations stem from the work by Frish [31], who in the fifties,
used for the first time the logarithmic barrier function in optimization. But it was in
the last twenty years, due to the success of interior point methods, that the barrier
methods, which apply internal penalty technics, had a massive development, even in
nonlinear programming, see [12, 16, 50, 60, 65, 70, 74]. A motivation for the devel-
opment of interior point methods were the polynomial time algorithms by Khachiyan
[49], Karmarkar [48], De Ghellinck and Vial [15] and Renegar [67]. For a general pe-
nalization approach we refer the book by Fiacco and McCormick [26] and the work by
Auslender et al. [2].

In the eighties, the penalty approaches [59, 58, 10] led to a precise definition of the
so called central path, a path described by optimizers of logarithmic type penalization
problems, that depend on a positive parameter. Ever since, several papers studied the
limiting behavior of the central path such as its good definition for different kinds of
convex programs [1, 4, 19, 38, 40, 64]. Nevertheless, the central path is not necessarily
well defined for general convex problems, as shown in [32]. In our work, we deal with
a convex problem, where the feasible set is given by linear equalities and nonnegative
constraints. Moreover, we assume the existence of an analytic center [71]. Then, due
to [38], these conditions are sufficient for the good definition of the central path. Our
theorem provides primal-dual interior feasible points based on a Levenberg-Marquardt
trajectory. Algorithmically, this can be useful for path following methods.
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CHAPTER 1. Introduction R. Behling

Now, let us outline the thesis. In Chapter 2 we collect results from the literature
which will be used in sequel. This preliminary material is presented for the sake of
self containment and to separate known mathematical facts from our contributions.
Chapters 3 is based on our paper [6], where we study the influence of calmness on the
solution set of nonlinear equations. Chapter 4 consists of a convergence analysis of
projected Gauss-Newton and Levenberg-Marquardt methods. In Chapter 5 we present
the results on constrained inexact Levenberg-Marquardt methods that we developed
in [5]. In Chapter 6, the just mentioned primal dual relations between the Levenberg-
Marquardt trajectory and the central path with applications are given. As far as we
know, the content of Chapters 3-6 consists basically of original contributions.

6



CHAPTER 1. Introduction R. Behling

Notation

• Rn, the n-dimensional Euclidian space.

• ‖ · ‖, the Euclidean norm or the associated matrix norm.

• dist[a,A], the Euclidean distance from a point a to a set A ⊂ Rn.

• B(x, δ), the closed ball centered at x ∈ Rn with radius δ > 0.

• B denotes the unit ball B(0, 1).

• ∇H(x) ∈ Rn×m denotes the Jacobian matrix associated to H : Rn → Rm, evalu-
ated at the point x ∈ Rn.

• e, the n-vector of ones.

• log, the natural logarithmic function.

• exp, the exponential function.

• x>s, the scalar product between x ∈ Rn and s ∈ Rn.

• A>, the transposed of the matrix A.

• x · s := (x1s1, ..., xnsn) ∈ Rn, the Hadamard product.

• R+ := [0,∞), R++ := (0,∞), Rn
+ := {x ∈ Rn|xi ∈ R+ for all i = 1, ..., n} and

Rn
++ := {x ∈ Rn|xi ∈ R++ for all i = 1, ..., n}.

• For a given matrix A ∈ Rn×m we define Kernel(A) := {x ∈ Rn|Ax = 0}.

• ∂f
∂xi

(x), the partial derivative of f : Rn → R with respect to the variable xi.

• ∇2f(x), the Hessian matrix associated to f : Rn → R evaluated at the point
x ∈ Rn.

7



Chapter 2

Background material and
preliminaries

In this chapter we collect some mathematical definitions, theorems and present results
from the literature, for the sake of self containment of the thesis or in view of their
later use.

2.1 Some technical results

Lemma 2.1. Let H : Rn → Rm be a continuously differentiable function with a locally
Lipschitz Jacobian ∇H : Rn → Rn×m and x∗ ∈ Rn an arbitrary, but fixed point. Then,
there exist L > 0 and δ > 0 such that for all x, s ∈ B(x∗, δ) the following inequalities
are satisfied:

‖H(x)‖ ≤ L; (2.1)

‖∇H(x)‖ ≤ L; (2.2)

‖H(x)−H(s)‖ ≤ L‖x− s‖; (2.3)

‖∇H(x)−∇H(s)‖ ≤ L‖x− s‖; (2.4)

‖H(x)−H(s)−∇H(s)>(x− s)‖ ≤ L‖x− s‖2. (2.5)

Proof. The existence of some L0 > 0 so that (2.1)-(2.4) hold, follows from the definition
of H and the fact that B(x∗, δ) is compact. Therefore, we only need to prove (2.5).
The Mean Value Theorem (see [53]) implies that

H(x)−H(s) =

∫ 1

0

∇H(x+ t(x− s))>(x− s)dt.

8



CHAPTER 2. Background material and preliminaries R. Behling

Then, using (2.4) with a Lipschitz constant L0 > 0, we get

‖H(x)−H(s)−∇H(s)>(x− s)‖ =

∥∥∥∥∫ 1

0

(∇H(x+ t(x− s)−∇H(s)))> (x− s)dt
∥∥∥∥

≤ max
t∈[0,1]

‖∇H(x+ t(x− s)−∇H(s))‖‖x− s‖

≤ max
t∈[0,1]

L0‖x+ t(x− s)− s‖‖x− s‖

= 2L0‖x− s‖2.

Thefore, the statements hold with L := 2L0.

Assuming H : Rn → Rm to be a continuously differentiable function we are able to
express its Jacobian ∇H(·), evaluated at the point x ∈ Rn, in terms of the following
singular value decomposition (SVD)

∇H(x)> = UxΣxV
>
x ,

where Ux ∈ Rm×m and Vx ∈ Rn×n are orthogonal and Σx is the m by n diagonal matrix
diag(σ1(x), σ2(x), ..., σrx(x), 0, ..., 0) with positive singular values σ1(x) ≥ σ2(x) ≥ ... ≥
σrx(x) > 0. We recall that these singular values are the nonzero eigenvalues of the
matrix ∇H(x)∇H(x)>. Note that rx ≥ 0 indicates the rank of ∇H(x) (the rank
is 0 when all singular values are null). Such decomposition can be obtained for any
matrix with real entries (see [18], p. 109, or [37]). By the well known results of the
perturbations theory for linear operators ([51], [73], [48], for instance), we get the
following lemma.

Lemma 2.2. If H : Rn → Rm is a continuously differentiable function it holds that

‖Σy − Σx‖ ≤ ‖∇H(y)−∇H(x)‖.

In the following, we recall the terminology used for the rate of convergence of
sequences.

We say that a sequence {wk} ⊂ Rn converges to ŵ ∈ Rn with Q-order of at least
τ , when wk → ŵ and there exists C ≥ 0 so that

lim sup
wk→ŵ

‖wk+1 − ŵ‖
‖wk − ŵ‖τ

≤ C.

Quadratic convergence correspondents to Q-order convergence with τ := 2. The con-
vergence is called linear when the limit above with τ := 1 is smaller than 1 and
superlinear if it is 0.

Next, we present Lemma 2.9 from [29] and reproduce its proof.

Lemma 2.3. Let {wk} ⊂ Rn, rk ⊂ [0,∞) be sequences, and r ∈ [0, 1), R > 0 numbers
so that, for k = 0, 1, 2, . . .,

‖wk − w0‖ ≤ r0
R

1− r
(2.6)

9
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implies
rk+1 ≤ r rk and ‖wk+1 − wk‖ ≤ Rrk. (2.7)

Then, the following assertions hold

(a) {rk} converges to 0 and {wk} converges to some ŵ ∈ Rn.

(b) If, for some t > 1 and c > 0,

rk+1 ≤ crtk and ‖ŵ − wk‖ ≥ rk (2.8)

is satisfied for k = 0, 1, 2, . . . then {wk} converges to ŵ with the Q-order of t. In
particular,

‖wk+1 − ŵ‖ ≤ cR

1− r
‖wk − ŵ‖τ

is valid for all k = 0, 1, 2, ....

Proof. (a) We first show by induction that Equations (5.22) and (5.23) hold for all
k ≥ 0. Obviously, (5.22) is valid for k = 0. Let us now assume that for some k,
inequality (5.22) is satisfied for ν = 1, ..., k . Then, by assumption, the inequalities in
(5.23) are valid for ν = 0, ..., k and we have that for ν, ` with k + 1 ≥ ν > ` ≥ 0

rν ≤ rrν−1 ≤ r`r
ν−` (2.9)

and

‖wν − w`‖ ≤
ν−`−1∑
i=0

‖w`+i+1 − w` + i‖ ≤ R
ν−`−1∑
i=0

r`+i ≤ Rr`

ν−`−1∑
i=0

ri. (2.10)

By 0 ≤ r < 1, (2.9) implies

‖wν − w`‖ < r`
R

1− r
(2.11)

for ν, ` with k + 1 ≥ ν ≥ l ≥ 0. Taking ν = k + 1 and l = 0 in (2.11) is valid for
ν = 0, ..., k + 1. By induction it follows that (5.22) and (5.23) hold for all k ≥ 0, and
that (2.9), (2.10) and (2.11) hold for arbitrary integers ν, ` with ν ≥ ` ≥ 0. Hence,
by 0 ≤ r < 1 and by (2.9), the sequence {rk} must converge to 0. Furthermore, with
(2.11) we then conclude that wk is a Cauchy sequence and, thus, converges to some
ŵ ∈ Rn.

(b) For ν > ` := k + 1 we obtain from (2.11) and the first inequality in (2.9) that

‖wν − wk+1‖rk+1
R

1− r
≤ rτk

R

1− r
.

Passing to the limit for ν →∞ and using the second inequality in (2.9) yields

‖w̄ − wk+1‖
‖w̄ − wk+1‖

≤ cR

1− r
<∞

for k = 0, 1, 2, .... Hence, the sequence {wk} converges to w̄ with the Q-order of τ .

10
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2.2 Optimality conditions

Lemma 2.4. Let Ω ∈ Rn be a closed convex set and f : Rn → R a differentiable
function at the point x̄ ∈ Ω. If x̄ is a local minimizer of f in Ω, then −∇f(x̄) belongs
to the normal cone

NΩ(x̄) := {y ∈ Rn | y>(z − x̄) ≤ 0 for all z ∈ Ω}.

Or equivalently,
0 ∈ ∇f(x) + NΩ(x̄).

Proof. If x̄ is a local minimizer of f in Ω, Theorem 3.2.5 in [42] says that

PΩ(x̄− α∇f(x̄)) = x̄,

for all α ≥ 0. On the other hand, using the Projection Theorem from [42] and taking
α := 1, we get

(x̄−∇f(x̄)− x̄)>(z − x̄) ≤ 0,

for all z ∈ Ω. This proves the lemma.

Consider the optimization problem

min f(x)
s.t. h(x) = 0

g(x) ≤ 0,
(2.12)

with f : Rn → R, h : Rn → Rm and g : Rn → R`. We say that x is a Karush-Kuhn-
Tucker point associated to (2.12) if there exist multipliers λ ∈ Rm and s ∈ R`

+ so
that

∇f(x) +∇h(x)λ+∇g(x)s = 0; (2.13)

h(x) = 0, g(x) ≤ 0; (2.14)

s · g(x) = 0. (2.15)

where s · g(x) := (s1g1(x), ..., s`g`(x)) ∈ R`.
Remember that the optimization problem (2.12) is called convex if f is convex, h

is affine and all the component functions of g are convex.

Theorem 2.1. Suppose that (2.12) is a convex problem and that the Slater condition
holds, i.e., there exists x̄ ∈ Rn so that h(x̄) = 0 and g(x̄) < 0. Then, a point x is a
minimizer (global) of (2.12) if, and only if, x is a Karush-Kuhn-Tucker point associated
to (2.12).

Proof. Theorem 4.2.1 in [42].
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2.3 Some results on Levenberg-Marquardt meth-

ods

2.3.1 The trajectory of Levenberg-Marquardt

Assume q : Rn → R to be a convex quadratic function bounded bellow and Ω ⊂ Rn a
nonempty closed convex set. In order to define a Levenberg-Marquardt type trajectory
let us consider the optimization problem

min q(x) +
1

2
α‖x‖2

s.t. x ∈ Ω
(2.16)

The objective function in this problem is strongly convex for each α > 0, and thus,
2.16 has a unique minimizer in which we will denote by xLM(α). Then, the Levenberg-
Marquardt trajectory corresponding to q and Ω is given by

{xLM(α)|α > 0}.

Denote by S the solution set of Problem 2.16 with α := 0. Note that S is nonempty,
closed and convex. Therefore, the problem

min
1

2
α‖x‖2

s.t. x ∈ S

has the unique solution that we denote by xLM(0) or simply by xGN , where GN stands
for Gauss-Newton.

Hence, it seems that one has to solve two minimization problems to obtain the
Gauss-Newton point, but this is not entirely true. Indeed, there are iterative methods
that naturally, tend to find solutions of minimum norm. It is the case of the conjugate
gradient method (CG), quite popular for solving unconstrained quadratics programs
and linear least squares problems in general. For more details, see [43], for instance.

Levenberg-Marquardt type methods generate sequences of quadratic subproblems
where in each iteration a point on a Levenberg-Marquardt trajectory is chosen and set
as the next iterate or some intermediate step.

The next result states well known properties of the Levenberg-Marquardt trajectory.

Lemma 2.5. For all α ≥ 0 it holds that:

(a) xLM(α) minimizes f in the convex trust region {x ∈ Ω|‖x‖ ≤ ‖xLM(α))‖} and
α ≥ 0 7→ ‖xLM(α)‖ is a nonincreasing function;

(b) the trajectory {xLM(α) ∈ Rn|α ≥ 0} is well defined and limα→0 xLM(α) = xGN .

Proof. Item (a) can be obtained by means of Lemma 6.3, given in Chapter 6. Therefore,
we omit its proof. Item (b) follows elementarily using (a) and the definition of xGN .
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2.3.2 Recent results for Levenberg-Marquardt methods

As we have already mentioned, Levenberg-Marquardt methods turned out to be a
valuable tool for solving nonlinear systems of equations under the condition of calmness
in the last decade. In this subsection we present some assumptions and recent results on
the local convergence of Levenberg-Marquardt type methods for solving the following
system of nonlinear equations subject to convex constraints

H(x) = 0, x ∈ Ω, (2.17)

where H : Rn → Rm is a continuously differentiable mapping and Ω ⊆ Rn a closed
convex set. We assume that the solution set X∗ := {x ∈ Ω|H(x) = 0} is nonempty
and consider from now on, the arbitrary, but fixed solution x∗ ∈ X∗.

Projected Levenberg-Marquardt methods for solving Problem 2.17 use the following
calmness condition around x∗.

Assumption 2.1. There exist ω1 > 0 and δ1 ∈ (0, 1] so that

ω1dist[x,X∗] ≤ ‖H(x)‖,

for all x ∈ B(x∗, δ1).

We will deal with this condition in Chapters 3 and 4.
In constrained Levenberg-Marquardt type methods this condition is assumed to

hold in the intersection with Ω, i.e., they require the following regularity condition.

Assumption 2.2. There exist ω2 > 0 and δ2 ∈ (0, 1] so that

ω2dist[x,X∗] ≤ ‖H(x)‖,

for all x ∈ B(x∗, δ2) ∩ Ω.

In the unconstrained case, i.e., when Ω := Rn, the assumptions above are equiv-
alent. When Ω is a proper set of Rn Assumption 2.2 is clearly more general than
Assumption 2.1. Nevertheless, it is a sufficient condition for local fast convergence of
the constrained, but not for the projected Levenberg-Marquardt method as we will see
in Chapter 5. In fact, it was proved that projected methods can be regarded as inexact
unconstrained ones under Assumption 2.1. This is shown in [29].

Let us now define the first order model of H at a point s ∈ Ω used in Levenberg-
Marquardt subproblems.

Consider the function ψ : Rn × Rn → R given by

ψ(x, s) :=
1

2
‖H(s) +∇H(s)>(x− s)‖2 +

1

2
α(s)‖x− s‖2 + π(s)>(x− s), (2.18)

where α(s) is the Levenberg-Marquardt parameter and π(s) ∈ Rn denotes a perturba-
tion that enables inexactness within subproblems.

In the sequel, we present the projected and the constrained Levenberg-Marquardt
methods.
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Algorithm 2.1. Projected Levenberg-Marquardt method
Step 0. Choose x0 ∈ Ω and β > 0.
Step 1. If H(xk) = 0, stop. Otherwise, set s := xk and compute the solution x̃k+1 of

min ψ(x, s)

with π(s) ≡ 0 and α(s) := ‖H(s)‖β.
Step 2. Compute the projection xk+1 := PΩ(x̃k+1).
Step 3. Set k := k + 1 and go to Step 1.
End

The projected Levenberg-Marquardt method was introduced in [46]. There, its local
quadratic convergence is proved, for the choice α(s) := ‖H(s)‖2. In the unconstrained
case, inexact versions of the Levenberg-Marquardt method were considered for the first
time in [14], where the level of inexactness was required to satisfy

‖π(s)‖
α(s)

∼ ‖H(s)‖2.

It is mentioned in [14] that this result could probably not be improved. What we are
going to do in Chapter 5, is to show that a level of inexactness satisfying

‖π(s)‖
α(s)

∼ ‖H(s)‖, (2.19)

does not worsen the convergence rate of the pure method. Furthermore, we extend
this result to constrained Levenberg-Marquardt methods and show that this level of
inexactness is sharp. The relation between π(s) and α(s), given by 2.19, was already
used in [29] for the unconstrained method with the choice α := ‖H(s)‖.

Next, we present the constrained Levenberg-Marquardt method.

Algorithm 2.2. Constrained Levenberg-Marquardt method
Step 0. Choose x0 ∈ Ω and β > 0.
Step 1. If H(xk) = 0, stop. Otherwise, set s := xk and compute the solution xk+1 of

min ψ(x, s)
s.t. x ∈ Ω,

with π(s) ≡ 0 and α := ‖H(s)‖β.
Step 2. Set k := k + 1 and go to Step 1.
End

Our article [5] is the first work that considers inexact constrained Levenberg-
Marquardt methods.

The Gauss-Newton method (projected or constrained) we are going to deal with, is
based on the definition of the Gauss-Newton point presented in the previous subsection.
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One sets α(s) := 0 and considers the closest solution of the quadratic subproblem to
the current iterate s.

The next result plays a crucial role in Chapter 3 and is also a particular case of
Lemma 5.1, which we present in Chapter 5.

Lemma 2.6. Let Assumption 2.1 be satisfied. Then, there exist δ̄ > 0 and ω̄ > 0 so
that

ω̄ dist[x,X∗] ≤ ‖∇H(x)H(x)‖,
for all x ∈ B(x∗, δ̄).

Proof. Corollary 2 in [27].

The proof of the following lemma can be found in [46].

Lemma 2.7. Let Assumption 2.1 be satisfied and xPLM(s) denote the unique minimizer
of ψ(·, s), with ψ as in (2.18) so that π(s) ≡ 0 and

α(s) :=

{
‖H(s)‖2, if H(s) 6= 0;
1, otherwise.

Then, there exist δPLM > 0 and CPLM > 0 so that

‖xPLM(s)− s‖ ≤ CCLMdist[s,X∗]

for all s ∈ B(x∗, δPLM).

2.4 The central path

Consider the optimization problem

min f(x)
s.t. Ax = b

x ≥ 0,
(2.20)

with f : Rn → R convex and differentiable, A ∈ Rm×n and b ∈ Rm. The central path
associated to (2.20) is defined in terms of the following problem

min f(x)− µ
n∑
i=1

log(xi)

s.t. Ax = b
x > 0,

where µ > 0 is the barrier penalty parameter. The unique solution of this penalized
problem (if it exists) is characterized by the Karush-Kuhn-Tucker conditions

PK(A) (∇f(x)− s) = 0;
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Ax = b, x > 0;

x · s = µe;

s > 0,

and will be denoted by (x(µ), s(µ)) ∈ Rn × Rn and called primal-dual central point
correspondent to µ > 0. The primal-dual central path is then given by

{(x(µ), s(µ))|µ > 0}.

We define now the set of primal-dual feasible points associated to Problem 2.20.

Γ := {(x, s) ∈ Rn
+ × Rn

+|Ax = b, PK(A) (∇f(x)− s) = 0}.

The points from Γ that lie in the strictly positive octant describe the set of interior
feasible primal-dual points associated to Problem 2.20, which is denoted by

Γ◦ := {(x, s) ∈ Rn
++ × Rn

++|Ax = b, PK(A) (∇f(x)− s) = 0}.

Note that central points belong to Γ◦.
The following result is related to the good definition of central points and the central

path.

Theorem 2.2. Assume that there exists an interior feasible point x̃ ∈ Rn, i.e., Ax̃ = b
and x̃ > 0. Then, the following conditions are equivalent:

(a) The solution set of Problem 2.20 is nonempty and bounded;

(b) the central path {(x(µ), s(µ))|µ > 0} is well defined;

(c) for some µ0 > 0, the central point (x(µ0), s(µ0)) is well defined;

(d) there exists an interior feasible primal-dual point (x̄, s̄) ∈ Γ◦.

Proof. See Theorem 2.1 in [38].

We present now the definition of analytic center and make some comments on the
behavior of the central path when µ→ 0+.

Let us consider the convex problem

min −
n∑
i=1

log(xi)

s.t. Ax = b
x > 0.

(2.21)

The strictly convexity of the objective function guarantees the uniqueness of solution
of Problem 2.21. If the solution exists, it is called the analytic center of Ω := {x ∈
Rn|x ≥ 0 and Ax = b}. Observe that when Ω is bounded and has a nonempty relative
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interior (i.e., there exists an interior feasible point x̃ ∈ Rn), its analytic center is well
defined.

We end up this subsection giving some references on the convergence of the central
path. From Theorem 4.1 in [38] it is known that under the existence of an interior
feasible point, the primal central path {x(µ)|µ > 0} converges to the analytic center
of the solution set of Problem 2.20 as µ → 0+, if in addition f is twice continuously
differentiable. For convex problems in which the central path does not have such nice
properties see [32]. For primal-dual convergence properties of central paths we refer the
reader to [64]. This will not be a subject in this thesis, since we will be more interested
in the features of the central path close to the analytic center. Roughly speaking, the
analytic center is the point where the central path starts. Indeed, it is the limit of the
primal central path {x(µ)} as µ → ∞, see [71]. For features of the central path in
linear programming such as their role in the complexity of algorithms see Gonzaga [33]
and the book by Wright [75].

2.4.1 Neighborhoods of the central path

Sequences generated by path following algorithms ([33, 34, 35, 62, 63, 61]) remain
close enough to the central path along the iterates in the sense described by proximity
measures. The proximity measure we are going to use in this work is characterized by
the function σ : Rn × Rn × R++ → R+, given by

σ(x, s, µ) :=

∥∥∥∥x · sµ − e
∥∥∥∥ . (2.22)

Note that if for some pair (x̃, s̃) ∈ Γ◦ and a parameter µ̃ > 0 we have δ(x̃, s̃, µ̃) = 0,
then (x̃, s̃) = (x(µ̃), s(µ̃)) (the central point correspondent to µ̃ > 0). Path following
algorithms do not necessarily calculate points on the central path, since this task may
be as difficult as solving the main problem itself. Nevertheless, one might be able to
compute steps so that the iterates remain in a certain neighborhood of the central
path. Commonly, this is done by computing points in a region like

N (ρ) := {(x, s) ∈ Γ◦|σ(x, s, µ) ≤ ρ, with ρ > 0}.

Proximity measures that might encompass larger regions of feasible points are presented
in [36].

2.4.2 Rewriting a quadratic program

In this subsection we show how one can rewrite a certain quadratic program, that may
arise from trust region methods, into the standard format we are going to deal with in
Chapter 6.
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Consider the convex quadratic program

min
1

2
(z̄ + d)>Q0(z̄ + d) + c>0 (z̄ + d)

s.t. A0d = 0
−u ≤ d ≤ u,

(2.23)

where Q0 ∈ Rn×n is symmetric and positive semidefinite, c0 ∈ Rn, u ∈ Rn
++ and

A0 ∈ Rm×n. This problem might be interpreted as a subproblem of a trust region
method. The objective function could be a second order model of a Lagrange function
centered in z̄ ∈ Rn, A0d = 0 a tangent space related to equality constraints and the
box [−u, u] := {d ∈ Rn| − u ≤ d ≤ u} could represent the trust region itself.

The following reformulation of Problem (2.23) is based on the change and addition
of variables z := u+ d and w := u− d.

min 1/2z>Q0z + (c0 +Q0(z̄ − u))>z

s.t.

[
A0 0
I I

] [
z
w

]
=

[
A0u
2u

]
z, w ≥ 0.

(2.24)

Defining U := diag(u) and x := (U−1z, U−1w) ∈ R2n we rewrite Problem (2.24) as

min
1

2
x>Qx+ c>x

s.t. Ax = b
x ≥ 0,

(2.25)

where Q :=

[
U−2Q0 0

0 0

]
, c :=

[
U−1(c+Q0(z̄ − u))

0

]
, A :=

[
U−1A0 0
U−1 U−1

]
and

b :=

[
Au
2u

]
.

One can easily check that (2.25) inherits the convexity of (2.23) and that these
problems are in an obvious correspondence with respect to optimality, due to our
change of variables. Moreover, we have that e ∈ R2n is the analytic center of the
compact polyhedron Ω := {x ∈ R2n|Ax = b and x ≥ 0}.
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Chapter 3

The effect of calmness on the
solution set of nonlinear equations

We address the problem of solving a continuously differentiable nonlinear system of
equations under the condition of calmness. This property, also called upper Lipschitz-
continuity in the literature, can be described by a local error bound and is being widely
used as a regularity condition in optimization. Indeed, it is known to be significantly
weaker than classical regularity assumptions that imply that solutions are isolated.
We prove in this chapter that under this condition, the rank of the Jacobian of the
function that defines the system of equations must be locally constant on the solution
set. As a consequence, As a consequence, we prove that locally, the solution set must
be a differentiable manifold. The results in this chapter are illustrated by examples
and discussed in terms of their theoretical relevance and algorithmic implications.

3.1 Introduction

Let us consider the following system of nonlinear equations

H(x) = 0, (3.1)

where H : Rn → Rm is a continuously differentiable function. We denote by X∗ the
set of solutions of (3.1) and suppose it is nonempty.

We will deal with the notion of calmness of the system (3.1), introduced in Chapter
2. Let us formally recall the definition of a calm problem.

Definition 3.1. We say that Problem (3.1) is calm at x∗ ∈ X∗ if there exist ω > 0
and δ > 0 so that

ω dist[x,X∗] ≤ ‖H(x)‖,
for all x ∈ B(x∗, δ).

For equivalent definitions of calm problems see [69]. Thanks to the Implicit Function
Theorem we know that full rank systems are calm. We will see in this chapter that in
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some sense, calm problems do not go that much beyond systems of equations with full
rank Jacobians. We will establish that the local error bound described by calmness,
together with the continuous differentiability of H, imply that the rank of the Jacobian
is locally constant on the solution set of system (3.1).

The chapter is organized as follows. In Section 3.2 we prove our main result. In
Section 3.3 we present some related results and examples. We end up with some
remarks on the algorithmical relevance of our theorem in Section 3.4.

3.2 Our main result

We assume from now on that H is continuously differentiable. Before proving our main
theorem, we recall a result by Fischer, presented in Chapter 2, that will play a crucial
role in our proof.

Lemma 2.6. Assume that Problem (3.1) is calm at x∗. Then, there exist δ̄ > 0
and w̄ > 0 so that

ω̄ dist[x,X∗] ≤ ‖∇H(x)H(x)‖,
for all x ∈ B(x∗, δ̄).

This lemma says that the problem∇H(x)H(x) = 0 inherits the calmness of H(x) =
0, and also that these systems must be equivalent in a neighborhood of x∗.

We now arrive at the main result of this chapter.

Theorem 3.1. Assume that Problem (3.1) is calm at x∗. Then, there exists δ� > 0 so
that rank(∇H(x)) = rank(∇H(x∗)) for all x ∈ B(x∗, δ�) ∩X∗.

Proof. Suppose that there exists a sequence {xk} ⊂ X∗ with xk → x∗ so that

rank
(
∇H(xk)

)
6= rank (∇H(x∗)) ,

for all k. From the continuity of the Jacobian we can assume, without loss of generality,
that

rank
(
∇H(xk)

)
> rank (∇H(x∗)) .

Let us consider now the singular value decomposition of ∇H(x) (see Chapter 2, p.8),

∇H(x)> = UxΣxV
>
x ,

where Ux ∈ Rm×m and Vx ∈ Rn×n are orthogonal and Σx is the m by n diagonal matrix
diag(σ1(x), σ2(x), ..., σrx(x), 0, ..., 0) with positive singular values σ1(x) ≥ σ2(x) ≥ ... ≥
σrx(x) > 0. Note that rx ≥ 0 indicates the rank of ∇H(x). According to these
definitions we have that rx∗ < rxk . In order to facilitate the notation we omit x in
some manipulations and set r := rx∗ and rk := rxk . Now define vk := Vker+1, where

er+1 := (0, ..., 0, 1︸︷︷︸
r+1

, 0, ..., 0) ∈ Rn.
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Then, for all k we have that ‖vk‖ = 1 and

vk ⊥ Kernel
(
∇H(xk)>

)
= Span{Vkerk+1, ..., Vken}. (3.2)

We introduce now an auxiliary operator. Let Σ∗ := Σx∗ and define T : Rn → Rn×m as

T (x) := VxΣ
>
∗ U
>
x .

Using the notation Uk := Uxk , Vk := Vxk and Σk := Σxk , we get, for all k,

T (xk)∇H(xk)>vk = VkΣ
>
∗ U
>
k UkΣkV

>
k v

k = VkΣ
>
∗ Σker+1 = VkΣ

>
k Σ∗er+1 = 0. (3.3)

Using Lemma 2.6 we conclude that

dist[x,X∗] ≤ ω̄‖∇H(x)H(x)‖
≤ ω̄‖

(
∇H(x)− T (xk)

)
H(x)‖+ ω̄‖T (xk)H(x)‖

≤ ω̄‖∇H(x)− T (xk)‖‖H(x)‖+ ω̄‖T (xk)H(x)‖. (3.4)

From the differentiability of H we know that there exist δ̌ > 0 and a Lipschitz constant
L > 0 so that

‖H(x)−H(y)‖ ≤ L‖x− y‖,
for all x, y ∈ B(x∗, δ̌). Let x̄ ∈ X∗ denote a solution that satisfies ‖x− x̄‖ = dist[x,X∗]
for an arbitrary point x. Then, there exists a positive constant δ̄ ≤ δ̌ so that for all
x ∈ B(x∗, δ̄) we have x̄ ∈ B(x∗, δ̄) and

‖H(x)‖ = ‖H(x)−H(x̄)‖ ≤ L‖x− x̄‖ = Ldist[x,X∗]. (3.5)

The continuity of ∇H implies that for some positive δ̃ < δ̄ we have that

‖∇H(x)− T (xk)‖ ≤ 1

2ω̄L
, (3.6)

whenever x, xk ∈ B(x∗, δ̃). Thus, in this ball, (3.4), (3.5) and (3.6) lead to

dist[x,X∗] ≤ 2ω̄‖T (xk)H(x)‖. (3.7)

Using Taylor’s formula,

‖H(xk + tvk)−H(xk)− t∇H(xk)>vk‖ = o(t),

with limt→0 o(t)/t = 0. Then, in view of (3.3) and (3.7), there exist k̄ > 0 and t̄ > 0,
so that for all k > k̄ and 0 < t < t̄ we have that

1

2ω̄
dist[xk + tvk, X∗] ≤ ‖T (xk)H(xk + tvk)‖

= ‖T (xk)H(xk + tvk)− T (xk)H(xk)− tT (xk)∇H(xk)>vk‖
≤ ‖T (xk)‖‖H(xk + tvk)−H(xk)− t∇H(xk)>vk‖
= σ1(x∗)o(t).
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On the other hand, taking (3.5) into account, we conclude that

‖∇H(xk)>vk‖ ≤ o(t)

t
+
‖H(xk + tvk)−H(xk)‖

t

≤ o(t)

t
+
L

t
dist[xk + tvk, X∗]

≤ (1 + 2ω̄σ1(x∗)L)
o(t)

t
.

Taking the limit when t→ 0+ we get

∇H(xk)>vk = 0,

which contradicts (3.2).

3.3 Some related results

In this section we present some results related to Theorem 3.1 and discuss examples
that illustrate the relevance of each hypothesis we assumed. Our first example shows
that under calmness, the rank of the Jacobian must be locally constant only on the
solution set, but not at other points.

Example 3.1. Consider the function H : R2 → R2 defined by

H(x1, x2) =

[
x2

x2
2 exp(x2

1)

]
.

Thus, the Jacobian is given by

∇H(x1, x2)> =

[
0 1

2x1x
2
2 exp(x2

1) 2x2 exp(x2
1)

]
.

Define the sequence {xk} 6⊂ X∗ so that xk := (1, 1/k) with k > 0 and consider the
solution x∗ := (1, 0). Obviously, xk → x∗ as k → ∞ and rank

(
∇H(xk)

)
= 2 6= 1 =

rank (∇H(x∗)) for all k > 0. Nevertheless, one can easily check that H(x) = 0 is calm
at x∗.

One may also ask if the converse of Theorem 3.1 is true, i.e., if constant rank on
the solution set implies calmness. The simple example next shows that the answer to
this question is negative.

Example 3.2. Let H : R3 → R2 be defined by

H(x1, x2, x3) =

[
x1 + x2

x2
3

]
.

The rank of the Jacobian on the solution set is always 1, but it is clear that the second
component violates the error bound in Definition 3.1 around any solution.
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In the convergence analysis of the Levenberg-Marquardt methods in [24] and [77]
it was assumed, without loss of generality, that the Jacobian of H at x∗ had at least
one positive singular value. This assumption is rigorously supported by the following
result.

Proposition 3.1. Assume that Problem (3.1) is calm at x∗ ∈ X∗ and that ∇H(x∗) = 0.
Then, there exists δ1 > 0 so that H(x) = 0 for all x ∈ B(x∗, δ1).

Proof. Lemma 2.6 together with the assumption on JH(x∗) imply that there exists δ̄
such that

ω̄ dist[x,X∗] ≤ ‖∇H(x)H(x)‖
= ‖(∇H(x)−∇H(x∗))H(x)‖
≤ ‖∇H(x)−∇H(x∗)‖‖H(x)‖ (3.8)

for all x ∈ B(x∗, δ̄). For a given x in this ball, take now x′ ∈ X∗ such that ‖x− x′‖ =
dist[x,X∗], and let L be the Lipschitz constant of H. It follows from (3.8) and the fact
that x′ belongs to X∗ that

ω̄ dist[x,X∗] ≤ ‖∇H(x)−∇H(x∗)‖‖H(x)‖ = ‖∇H(x)−∇H(x∗)‖‖H(x)−H(x′)‖ ≤

L‖∇H(x)−∇H(x∗)‖‖x− x′‖ = L‖∇H(x)−∇H(x∗)‖dist[x,X∗] (3.9)

for all x ∈ B(x∗, δ�), where δ� ≤ δ̄ is sufficiently small. By continuity of ∇H, there
exists δ1 ≤ δ� such that

‖∇H(x)−∇H(x∗)‖ ≤ ω̄

2L
, (3.10)

for all x ∈ B(x∗, δ1). Combining (3.9) and (3.10) we get (ω̄/2)dist[x,X∗] ≤ 0 for all
x ∈ B(x∗, δ1), and hence the whole ball is contained in X∗.

The next example suggests that complementarity type equations tend not to be
calm at points that do not satisfy strict complementarity.

Example 3.3. Consider H : R2 → R so that

H(x1, x2) := x1x2.

The solution set correspondent to Problem (3.1) is X∗ = {x ∈ R2|x1 = 0 or x2 = 0}
and the Jacobian is given by

∇H(x1, x2)> =
[
x2 x1

]
.

Note that the rank of the Jacobian is 0 at x∗ := (0, 0) but it is equal to 1 at any other
solution. Since the function is not identically zero in any neighborhood of x∗, Corollary
3.1 implies that Problem (3.1) cannot be calm at x∗. Nevertheless, note that in this
example the systems ∇H(x)H(x) = 0 and H(x) = 0 are equivalent around x∗. This
means that the equivalence between these two systems of equations does not imply
calmness.
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We now show that calm problems are not that far away from full rank problems.
This is formally described by the next Theorem, where we will rewrite Problem (3.1)
as an equivalent full rank system of equations, also calm.

Theorem 3.2. Assume that Problem (3.1) is calm at x∗. Then, there exists a con-
tinuously differentiable mapping H̄ : Rn → Rr, with r := rank (∇H(x∗)), so that the
problem

H̄(x) = 0

is calm at x∗ and locally equivalent to H(x) = 0. Moreover, there exists δ2 > 0 so that
rank

(
∇H̄(x)

)
= r, for all x ∈ B(x∗, δ2).

Proof. Lemma 2.6 implies that for all x ∈ B(x∗, δ̄) we have that

dist[x,X∗] ≤ ω̄‖∇H(x)H(x)‖
≤ ω̄‖ (∇H(x)−∇H(x∗))H(x)‖+ ω̄‖∇H(x∗)H(x)‖
≤ ω̄‖∇H(x)−∇H(x∗)‖‖H(x)‖+ ω̄‖∇H(x∗)H(x)‖. (3.11)

Then, using the local Lipschitz continuity of H and the continuity of ∇H, we have

‖∇H(x)−∇H(x∗)‖‖H(x)‖ ≤ 2

ω̄
dist[x,X∗],

in B(x∗, δ̂), for δ̂ > 0 sufficiently small, with the same argument used for obtaining the
inequalities (3.9) and (3.10) in the proof of Proposition 3.1. This inequality combined
with (3.11) implies that

dist[x,X∗] ≤ 2ω̄‖∇H(x∗)H(x)‖,

for all x ∈ B(x∗, δ̂). On the other hand, defining

H̄(x) :=
(
σ1(x∗)

(
U>∗ H(x)

)
1
, ..., σr(x

∗)
(
U>∗ H(x)

)
r

)
,

with σ1(x∗), ..., σr(x
∗) and U∗ as in Theorem 3.1, we get

‖∇H(x∗)H(x)‖ = ‖V∗Σ>∗ U>∗ H(x)‖ = ‖H̄(x)‖.

Obviously, H̄ : Rn → Rr is continuously differentiable and rank
(
∇H̄(x)

)
≤ r for all

x. Furthermore, H̄(x) = 0 is calm at x∗ and equivalent to H(x) = 0 in a neighborhood
of x∗.

In order to complete the proof we just need to show that rank(∇H̄(x∗)) = r, since
the rank cannot diminish locally. It can be easily checked that it suffices to prove that

Kernel
(
∇H̄(x∗)>

)
⊂ Kernel

(
∇H(x∗)>

)
. (3.12)

So, let us prove this inclusion. We know that there exist δ3 > 0 and ω̂ so that

dist[x,X∗] ≤ ω̂‖H̄(x)‖,
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for all x ∈ B(x∗, δ3). Take u ∈ Kernel
(
∇H̄(x∗)

)
with ‖u‖ = 1. Then, for every t > 0

sufficiently small we have that

o(t) = ‖H̄(x∗ + tu)− H̄(x∗)− t∇H̄>u‖
= ‖H̄(x∗ + tu)‖

≥ 1

ω̂
dist[x∗ + tu,X∗]

≥ 1

Lω̂
‖H(x∗ + tu)‖, (3.13)

where the last inequality follows from the local Lipschitz continuity of H, with L > 0
as in Theorem 3.1. On the other hand, from Taylor’s formula we know that

lim
t→0

1

t
‖H(x∗ + tu)−H(x∗)− t∇H(x∗)>u‖ = 0.

This, together with (3.13), leads to

∇H(x∗)>u = 0,

which implies the inclusion (3.12). Therefore, there exists δ2 > 0 so that the rank of
∇H̄(x) is r, for all x ∈ B(x∗, δ2).

The next corollary characterizes the geometry of the solution set of a calm problem.

Corollary 3.1. Assume that Problem (3.1) is calm at x∗. Then, X∗ is locally, a
differentiable manifold of codimension r := rank (∇H(x∗)).

Proof. Given a continuously differentiable system H(x) = 0, such that the rank of
∇H(x) is constant on a neighborhood of a zero x̃ of H, it is well known that the set of
solutions {x ∈ Rn|H(x) = 0} is locally a differentiable manifold (see, e.g., Proposition
12 in [72], p. 65). In view of Theorem 3.2 we conclude that this result applies to the
set of zeroes of H̄. The statement follows then from the local equivalence of H(x) = 0
and H̄(x) = 0 at x∗, also proved in Theorem 3.2.

Due to this corollary one can easily see that sets like X∗ := {x ∈ R3|x2 = 0 or x2
1 +

(x2−1)2+x2
3 = 1} (the union of a sphere and a hyperplane with nonempty intersection)

cannot represent the solution set of a calm problem, though it is the solution set of the
differentiable system H(x) = 0 with

H(x1, x2, x3) := x2

(
x2

1 + (x2 − 1)2 + x2
3 − 1

)
.

Another direct but interesting consequence of Corollary 3.1 is given next.

Corollary 3.2. Assume that Problem (3.1) is calm at x∗. Then, there cannot exist a
sequence of isolated solutions converging to x∗.
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Proof. Such a solution set cannot be a differentiable manifold.

The example we will present now was given by Professor Alexey Izmailov and we
use it to show how delicate Corollary 3.2 is.

Example 3.4. Let H : R2 → R2 be given by

H(x1, x2) :=

{ (
x2, x2 − x2

1 sin( 1
x1

)
)
, if x1 6= 0;

(x2, x2) , if x1 = 0.

In this example we have exactly one non-isolated solution, namely x∗ := (0, 0), and x∗

is the limit of the isolated solutions

xk :=

(
1

2kπ
, 0

)
,

with k integer and |k| → ∞. One can also observe that Problem (3.1) is calm at x∗

and that

∇H(xk) =

[
0 1
1 1

]
,

for all k > 0. Nevertheless, the Jacobian of H at x∗ is given by

∇H(x∗) =

[
0 0
1 1

]
.

This change of rank does not contradict Corollary 3.2, since the Jacobian of H is
not continuous at x∗. In this case, modifying a little bit the example in order to
have continuity of the Jacobian and calmness is an impossible task. In fact, these
two properties conflict with each other in the following sense. If one replaces x2

1 by
something smoother, like xβ1 , with β > 2, one gets continuity of the Jacobian but loses
calmness.

Before closing the section we discuss one last example.

Example 3.5. Consider H : R3 → R2 so that

H(x1, x2, x3) :=

[
x2

1 + x2
2 − 1

x2
1 + x2

3 − 1

]
,

The solution set X∗ associated to (3.1) is the intersection of two perpendicular cylin-
ders. The Jacobian of H is given by

∇H(x1, x2, x3)> =

[
2x1 2x2 0
2x1 0 2x3

]
.

The rank of the Jacobian is 2 at any solution except at x := (1, 0, 0) and x := (−1, 0, 0),
where it is 1. Therefore, Problem (3.1) is not calm at these two solutions. But what
makes this example illustrative is the fact that the equivalence of ∇H(x)H(x) = 0
and H(x) = 0 is destroyed at (1, 0, 0) and (−1, 0, 0). Indeed, the solution set of
∇H(x)H(x) = 0 is a surface while the solution set of H(x) = 0 is the union of two
perpendicular ellipses that intersect each other at (1, 0, 0) and (−1, 0, 0).
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3.4 Our theorem and iterative algorithms for solv-

ing systems of nonlinear equations

Although Theorem 3.1 seems to be just a result of Analysis, and refers specifically to the
geometry of solution sets of calm problems, it echoes in practical algorithms for solving
Problem (3.1). Apparently, our results suggest that one should not be that preoccupied
with the magnitude of the regularization parameter in exact unconstrained Levenberg-
Marquardt methods. In order to explain this better let us recall the description of a
Levenberg-Marquardt iteration.

Interpret s ∈ Rn as the current iterate. Then, the Levenberg-Marquardt method
demands solution of the following subproblem:

min
d∈Rn
‖H(s) +∇H(s)>d‖2 + α(s)‖d‖2, (3.14)

where α(s) > 0 is a regularization parameter. If we set this parameter equal to 0
and consider the minimum norm solution of (3.14), we recover the classical Gauss-
Newton method. We will see in the next chapter that for calm problems, the local
convergence rate of Gauss-Newton methods is superlinear (or quadratic) if the rank
of the Jacobian is constant in a whole neighborhood of a solution. In other words,
under constant rank, the Levenberg-Marquardt regularization is not needed. Of course
one can easily construct functions where the Levenberg-Marquardt parameter has to
be precisely chosen in order to maintain fast local convergence. In Example 3.1, for
instance, quadratic convergence of the Levenberg-Marquardt method is only achieved if
α(s) is chosen so that it remains proportional to ‖H(s)‖β, with β ∈ [1, 3] (see Chapter
4). Nevertheless, in view of Lemma 3.2, such problems are kind of artificial. In fact,
the numerical results in [29] have shown that the Levenberg-Marquardt parameter
could be chosen with significant freedom without changing the accuracy of the method.
The constant rank on the solution set of calm problems might also be the reason for
the efficiency of the conjugate gradient method in solving the Levenberg-Marquardt
subproblems, stated in the same reference.
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Chapter 4

Projected Levenberg-Marquardt
and Gauss-Newton methods under
the calmness condition

In this chapter we address the problem of solving nonlinear equations subject to con-
vex constraints under the local error bound condition. For solving the system of equa-
tions, we consider basically local versions of projected Gauss-Newton and Levenberg-
Marquardt type methods. The Levenberg-Marquardt method is a regularized Gauss-
Newton method that under the local error bound that characterizes the calmness condi-
tion achieves a quadratic rate of convergence, if its regularization parameter is suitably
chosen. We will present sufficient conditions so that the regularization is not needed
in order to achieve quadratic convergence. Roughly speaking, if the singular values of
the Jacobian of the function that defines the system of equations remain of the order
of the norm of the function along the iterates, the Levenberg-Marquardt regularization
parameter can be set equal to zero, i.e., the Gauss-Newton converges quadratically.
Additionally, we propose a theoretical algorithm that removes small singular values
that may destroy quadratic convergence. The relation between the order of the sin-
gular values and quadratic convergence of projected Levenberg-Marquardt methods is
given and illustrated by examples.

4.1 Introduction

Let us consider the following system of nonlinear equations subject to constraints

H(x) = 0, x ∈ Ω, (4.1)

where H : Rn → Rm is differentiable with a locally Lipschitz Jacobian and Ω ⊆ Rn

is closed, convex and nonempty. We denote by X∗ the set of solutions of (4.1) and
suppose it is nonempty.
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Projected Levenberg-Marquardt methods for solving systems of nonlinear equations
were introduced in [46] (see Chapter 2). The subproblems of these methods consist of
calculating an unconstrained Levenberg-Marquardt step and projecting the resulting
point onto the feasible set Ω. The local error bound considered in such methods
is precisely the local error bound used in [76], for the unconstrained case. In [29]
it was proved that the projected Levenberg-Marquardt method can be seen as an
inexact unconstrained one. In this chapter we focus on the influence of the Levenberg-
Marquardt regularization parameter on the rate of convergence of the method. We
show how the parameter should be chosen in order to get quadratic convergence.

The chapter is organized as follows. In the first section we have some preliminary
results and assumptions taken from the background material. We then formally recall
the Gauss-Newton method, and in Section 4.3.3 we prove its quadratic convergence
assuming that no positive singular value of the Jacobian of ∇H(x) converge to zero
faster than ‖H(x)‖ along the iterates. In Section 4.4 we simply reformulate the Gauss-
Newton method considering a rule that removes singular values that may destroy local
quadratic convergence. In Section 4.6 we present a theorem that relates the order
of singular values and the value of the Levenberg-Marquardt parameter required for
getting quadratic convergence.

4.2 Preliminaries

Next, we formally introduce the basic assumptions needed in the convergence analysis
of the algorithms we are going to present.

Assumption 4.1. H : Rn → Rm is differentiable with a locally Lipschitz continuous
Jacobian.

Assumption 4.2. Ω ⊆ Rn is closed, convex and nonempty and X∗ := {x ∈ Ω|H(x) =
0} is nonempty.

Notice that Assumption 4.1 implies that X∗ is closed. From now on let x∗ ∈ X∗ be
a fixed solution of Problem 4.1.

Assumption 4.3. There exist ω > 0 and δ1 ∈ (0, 1] so that

ωdist[x,X∗] ≤ ‖H(x)‖,

for all x ∈ B(x∗, δ1).

Despite the fact that Problem 4.1 has convex constraints, we consider an error
bound that does not involve the feasible set Ω. In the next chapter, the error bound
we will deal with is significantly weaker than Assumption 4.3, in the sense that it will
be asked to hold in a neighborhood of x∗ intersected with Ω. Next, we recall Lemma
2.1 in Chapter 2.
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Lemma 2.1. There exist L > 0 and δ2 > 0 such that for all x, y ∈ B(x∗, δ2) the
following inequalities hold:

‖H(y)−H(x)−∇H(x)>(y − x)‖ ≤ L‖y − x‖2, (4.2)

‖H(y)−H(x)‖ ≤ L‖y − x‖, (4.3)

‖∇H(y)−∇H(x)‖ ≤ L‖y − x‖, (4.4)

‖∇H(x)‖ ≤ L. (4.5)

4.3 Sufficient conditions for quadratic convergence

of the Gauss-Newton method

Algorithm 2.1, presented in Chapter 2, reduces to the projected Gauss-Newton algo-
rithm we are going to present next, when setting α(s) := 0. Consider the function
ϕGN(x, s) : Rn × Rn → R+ defined by

ϕGN(x, s) :=
1

2
‖H(s) +∇H(s)>(x− s)‖2. (4.6)

4.3.1 Algorithm

Algorithm 4.1. Projected Gauss-Newton method
Step 0. Choose x0 ∈ Ω
Step 1. If H(xk) = 0 stop, else set s := xk.
Step 2. Compute the solution xGN(s) of the optimization problem

min
x∈Rn

ϕGN(x, s), (4.7)

which lies closest to s with ϕGN defined as in (4.6).
Step 3. Set xk+1 := PΩ(xGN(s)).
Step 4. Set k := k + 1 and go to Step 1.

We know that for each s ∈ Rn the quadratic function ϕGN(·, s) is convex and has
at least one minimizer. Let XGN(s) denote the solution set of the subproblem (4.7).
We also know that XGN(s) is nonempty, closed and convex. Thus, the problem

min
x∈XGN (s)

‖x− s‖2 (4.8)

has a unique solution which is precisely xGN(s). This, together with the fact that Ω is
nonempty, implies the following proposition.
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Proposition 4.1. Algorithm 4.1 is well defined.

Let us now consider ϕα(x, s) : Rn × Rn → R+ defined as

ϕα(x, s) :=
1

2
‖H(s) +∇H(s)>(x− s)‖2 + α‖x− s‖2, (4.9)

with α > 0. It is easy to see that ϕ(·, s) is strongly convex and thus has exactly one
minimizer, which we will denote by xα(s). If one replaces (4.7) by

min
x∈Rn

ϕα(x, s) (4.10)

in Algorithm 4.1, the resulting method is a projected Levenberg-Marquardt method.
Along the next sections we will use the following notation:

dGN(s) := xGN(s)− s, (4.11)

dα(s) := xα(s)− s. (4.12)

Lemma 4.1. For all s ∈ Rn it holds that

(a) if α1 > α2 > 0 then ‖dα1(s)‖ ≤ ‖dα2(s)‖. In particular, ‖dα(s)‖ ≤ ‖dGN(s)‖ for
all α > 0;

(b) limα→0+ xα(s) = xGN(s).

Proof. See Lemma 2.5 in Chapter 2.

4.3.2 An assumption on the magnitude of the singular values

From now on we will suppose that ∇H(x∗) 6= 0, because otherwise we know from
Proposition 3.1 that H is identically zero in a neighborhood of x∗. Obviously this
case is not interesting since any reasonable algorithm should then converge locally
in one only step. So, we are assuming in particular that ∇H(x∗) has at least one
positive singular value. Due to the continuity of the Jacobian, this remains true in a
neighborhood of x∗. Therefore, there exists δ3 > 0 so that for all s ∈ B(x∗, δ3) we can
write

∇H(s)> = UsΣsV
>
s , (4.13)

where Us ∈ Rm×m and Vs ∈ Rn×n are orthogonal and Σs is the m by n diagonal matrix
diag(σ1(s), σ2(s), ..., σrs(s), 0, ..., 0) with singular values σ1(s) ≥ σ2(s) ≥ ... ≥ σrs(s) >
0. Let σ(s) denote the smallest positive singular value σrs(s), where rs ≥ 1 indicates
the rank of ∇H(s)>.

Assumption 4.4. There exist L̄ > 0 and δ3 > 0 so that

σ(s) ≥ L̄‖H(s)‖

for all s ∈ B(x∗, δ3).
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Lemma 4.2. If the rank of the Jacobian of H is constant in a neighborhood of x∗, then
Assumption 4.4 is satisfied.

Proof. The proof is elementary, since all positive singular values remain bounded away
from zero.

4.3.3 Convergence analysis of the Gauss-Newton method

Define now
δ := min{δi|i = 1, 2, 3}, (4.14)

with δ1, δ2, δ3 as in Assumptions 4.3, 4.4 and Lemma 2.1. The next lemma characterizes
the Gauss-Newton and the Levenberg-Marquardt steps in terms of the singular value
decomposition of the Jacobian of H.

Lemma 4.3. For any s ∈ Rn it holds that ‖dα(s)‖ = ‖vα(s)‖, where vα(s) ∈ Rrs is
defined by

vα(s)i := −
(
U>s H(s)

)
i

σ(s)i + α
σ(s)i

,

for i = 1, ..., rs and α ≥ 0, with Us, σ(s)i as in (4.13) and dα(s) as in (4.12).

Proof. Taking into account the notation d := x− s, u := V >s d and the fact that Vs and
Us are orthogonal matrices, we get

2ϕα(x, s) = ‖H(s)‖2 + 2H(s)>UsΣsV
>
s d+ d>VsΣ

>
s U
>
s UsΣsV

>
s d+ α‖d‖2

= ‖H(s)‖2 + 2
(
U>s H(s)

)>
Σsu+ u>Σ>s Σsu+ αu>u

= ‖H(s)‖2 + 2
rs∑
i=1

(
U>s H(s)

)
i
uiσ(s)i +

rs∑
i=1

u2
i ((σ(s)i)

2 + α) +
n∑

i=rs+1

αu2
i .

Let us now consider the unconstrained optimization problem

min
u∈Rn
‖H(s)‖2 + 2

rs∑
i=1

(
U>s H(s)

)
i
uiσ(s)i +

rs∑
i=1

u2
i ((σ(s)i)

2 + α) +
n∑

i=rs+1

αu2
i , (4.15)

with u ∈ Rn. We claim that for α ≥ 0, the vector

uα(s) := (vα(s)︸ ︷︷ ︸
rs

, 0, ..., 0︸ ︷︷ ︸
n−rs

) ∈ Rn

is the solution of (4.15). In order to establish the claim, note that, due to the convexity
of problem (4.15) and the definition of vα(s), one just needs to observe that

∂
(
2
(
U>s H(s)

)
i
u(s)iσ(s)i + (u(s)i)

2((σ(s)i)
2 + α)

)
∂ui

= 0, for i = 1, ..., rs,
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and if α > 0,
∂ (α(uα(s)i)

2)

∂ui
= 0, for i = rs + 1, ..., n.

It is obvious that when α = 0 the components associated to the indices i = rs+1, ..., n of
the solution of minimal norm must be zero. Hence, for α ≥ 0 we have dα(s) = Vsuα(s)
and ‖dα(s)‖ = ‖uα(s)‖ = ‖vα(s)‖.

Lemma 4.4. Suppose that Assumptions 4.1 - 4.4 hold. Then, there exist C1 > 0 and
C2 > 0 such that the following inequalities hold for all s ∈ B(x∗, δ/2):

(a) ‖dGN(s)‖ ≤ C1dist [s,X∗];

(b) ‖H(s) +∇H(s)>dGN(s)‖ ≤ C2dist[s,X∗]2.

Proof. For proving (a), we will compare the size of dGN(s) to the size of dα(s) with
α := ‖H(s)‖2. If s ∈ X∗ we have dGN(s) = 0 and then (a) holds trivially. If s /∈ X∗
we have that, in view of Lemma 2.7, there exists a constant C̄1 > 0 so that

‖dα(s)‖ ≤ C̄1dist[xk, X∗] (4.16)

for all s ∈ B(x∗, δ/2). We will now use the characterization given in Lemma 4.3, which
gives the vectors vGN(s), vα(s) ∈ Rrs associated to dGN(s) and dα(s), respectively. We
consider two cases.

(i) Suppose
(
U>s H(s)

)
i

= 0 for some i = 1, ..., rk. In this case vGN(s)i = vα(s)i = 0.

(ii) Now assume that
(
U>s H(s)

)
i
6= 0 for some i = 1, ..., rk. According to our

definition, this implies that vGN(s)i 6= 0 and vα(s)i 6= 0. Then

vGN(s)i
vα(s)i

=

(
U>s H(s)

)
i

σ(s)i

σ(s)i + ‖H(s)‖2
σ(s)i

(U>s H(s))i

 = 1 +

(
‖H(s)‖
σ(s)i

)2

.

These conclusions, together with Assumption 4.4, imply that for all i = 1, ..., rs we
have

|vGN(s)i| = |vα(s)i|

(
1 +

(
‖H(s)‖
σ(s)i

)2
)

≤ |vα(s)i|

(
1 +

(
‖H(s)‖
L̄‖H(s)‖

)2
)

= |vα(s)i|
(

1 +
1

L̄2

)
.

Thus,

‖dGN(s)‖ = ‖vGN(s)‖ ≤
(

1 +
1

L̄2

)
‖vα(s)‖ =

(
1 +

1

L̄2

)
‖dα(s)‖.
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Using (4.16) we get
‖dGN(s)‖ ≤ C1dist[s,X∗],

for all s ∈ B(x∗, δ/2), with C1 := C̄1

(
1 + 1

L̄2

)
. This proves (a).

We now prove (b). Let s̄ ∈ X∗ be so that dist[s,X∗] = ‖s − s̄‖. Then, from the
definition of dGN(s) and (4.2), we have

‖H(s) +∇H(s)>dGN(s)‖ ≤ ‖H(s)−H(s̄)︸ ︷︷ ︸
=0

+∇H(s)>(s− s̄)‖

≤ L‖s− s̄‖2 = Ldist[s,X∗]2.

Hence, statement (b) holds with C2 := L.

This was the key lemma for deriving the convergence result given by the following
theorem. We omit its proof since a more general analysis will be given in the next
section.

Theorem 4.1. If Assumptions 4.1 - 4.4 hold and x0 ∈ Ω is chosen sufficiently close
to x∗, Algorithm 4.1 generates a sequence {xk} that converges quadratically to some
solution x̄ ∈ X∗.

This theorem is more general than the results on Gauss-Newton methods given in
[54], where full rank of the Jacobian was required. Note also that our theorem implies
that if the singular values remain proportional to ‖H(s)‖ along the iterates, then the
Levenberg-Marquardt parameter can be chosen with a certain freedom in order to get
local quadratic convergence. In fact, if one chooses the regularization parameter so
that its order is less or equal to ‖H(s)‖, the quadratic rate is achieved. Nevertheless,
Assumption 4.4 is not satisfied in general. We will give examples in this chapter where
small singular values destroy quadratic convergence of Levenberg-Marquardt methods
for certain choices of their parameters.

4.4 A correction on the projected Gauss-Newton

method

In this subsection we again study a Gauss-Newton type method for solving (4.1).
Roughly speaking, given the iterate s ∈ Rn we consider a correction of∇H(s) removing
its singular values that are smaller than some constant times ‖H(s)‖. To this end we
choose an arbitrary but fixed constant L̃ > 0 and define the regularized matrix

A(s)> = UsΣ̃sV
>
s , (4.17)

where Σ̃s is the m×n diagonal matrix diag(σ1(s), σ2(s), ..., σr̃s(s), 0, ..., 0) and r̃s is the
largest index such that σi(s) ≥ L̃‖H(s)‖. The error between the original matrix and
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the perturbed one will be denoted by E(s)> = ∇H(s)− A(s). For s ∈ Rn let x̃GN(s)
denote the solution of the problem

min
x∈Rn
‖H(s)− A(s)>(x− s)‖2,

which lies closest to s. We set d̃GN(s) := x̃GN(s) − s in order to shorten the notation
in some manipulations.

4.4.1 Algorithm

Algorithm 4.2. A corrected projected Gauss-Newton method
Step 0. Choose x0 ∈ Ω and set k := 0.
Step 1. Define xk+1 := PΩ(x̃GN(xk)).
Step 2. Set k := k + 1 and go to Step 1.

The fact that this algorithm is well defined can be proved with the argument used
in the proof of Proposition 4.1.

Proposition 4.2. Algorithm 4.2 is well defined.

4.4.2 Convergence analysis of the corrected GN method

Proposition 4.3. ‖E(s)‖ < L̃‖H(s)‖.

Proof. Note that E(s) = Us(Σs − Σ̃s)V
>
s and

Σs − Σ̃s = diag(0, ..., 0, σsr̃s+1, ..., σ
s
rs , 0, ..., 0).

Hence, ‖E(s)‖ = σsrs+1. The statement then follows from this fact combined with the
definition of A(s).

Lemma 4.5. Assume that Assumption 4.1-4.3 hold. Then, there exist constants C3 >
0, C4 > 0 such that the following inequalities hold for all s ∈ B(x∗, δ/2):

(a) ‖d̃GN(s)‖ ≤ C3dist [s,X∗];

(b) ‖H(s) + A(s)>d̃GN(s)‖ ≤ C4dist[s,X∗]2.

Proof. The proof of (a) is similar to the proof of Lemma 4.4 (a). One just needs to
observe that Assumption 2 is automatically satisfied with L̄ = L̃ due to the definition
of A(xk). We now prove (b). Let s̄ be a point in the solution set X∗ so that ‖s− s̄‖ =
dist[s,X∗]. From the definitions of d̃GN(s) and A(s), Lemma 2.1 and Proposition 4.3
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we conclude that

‖H(s) + A(s)>d̃GN(s)‖ ≤ ‖H(s)−H(s̄)︸ ︷︷ ︸
=0

+A(s)>(s− s̄)‖

≤ ‖H(s)−H(s̄) +∇H(s)>(s− s̄)‖+ ‖E(s)(s− s̄)‖
≤ L‖s− s̄‖2 + L̃‖H(s)‖‖s− s̄‖
= L‖s− s̄‖2 + L̃‖H(s)−H(s̄)‖‖s− s̄‖
≤ (L+ L̃L)‖s− s̄‖2

= (L+ L̃L)dist[s,X∗]2.

Thus (b) holds with C4 := (L+ L̃L).

Proposition 4.4. Suppose that Assumptions 4.1-4.3 are satisfied. Let {xk} be the
sequence generated by Algorithm 4.2. If xk, xk+1 ∈ B(x∗, δ/2), then there exists C5 > 0
so that

dist[xk+1, X∗] ≤ C5dist[xk, X∗]2.

Proof. From the definition of x̃GN(xk), the nonexpansiveness of the projection operator
and the assumption that xk, x̃GN(xk) ∈ B(x∗, δ/2), we obtain

wdist[xk+1, X∗] = w dist[PΩ(x̃GN(xk)), X∗]

= w inf
x∈X∗

‖PΩ(x̃GN(xk))− x‖

= w inf
x∈X∗

‖PΩ(x̃GN(xk))− PΩ(x)‖ (4.18)

≤ w inf
x∈X∗

‖x̃GN(xk)− x‖

= w dist[x̃GN(xk), X∗] ≤ ‖H(x̃GN(xk))‖.

The definition of A(xk), Lemma 2.1 and Proposition 4.3 imply that

‖H(xk)−H(x̃GN(xk)) + A(xk)>d̃GN(xk)‖ ≤ L‖d̃GN(xk)‖2 + ‖E(xk)‖‖d̃GN(xk)‖
≤ L‖d̃GN(xk)‖2 + L̃‖H(xk)‖‖d̃GN(xk)‖.

(4.19)

Inequalities (4.18) and (4.19) together with Lemma 4.5 lead to

wdist[xk+1, X∗] ≤ ‖H(x̃GN(xk)‖
≤ ‖H(xk) + A(xk)>d̃GN(xk)‖+ ‖H(xk)−H(x̃GN(xk)) + A(xk)>d̃GN(xk)‖
≤ C4dist[xk, X∗]2 + L‖d̃GN(xk)‖2 + L̃‖H(xk)‖‖d̃GN(xk)‖
≤ (C4 + LC2

3 + L̃LC3)dist[xk, X∗]2.

Hence, the statement holds with C5 := w−1(C4 + LC2
3 + L̃LC3).
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Lemma 4.5 is the key result of our analysis and plays a decisive role in deriving the
convergence theorems of this subsection. The technical tools used in the proofs of the
following lemmas and theorems are based on the approach in [46] and are presented
here for the sake of completeness.

Lemma 4.6. Let Assumptions 4.1-4.3 be satisfied and xk be a sequence generated by
Algorithm 4.2 with starting point x0 ∈ B(x∗, ε), where

ε := min

{
δ

2(1 + 2C3)
,

1

2C5

}
. (4.20)

Then, the sequence {dist[xk, X∗]} converges to zero quadratically.

Proof. Due to Proposition 4.4 we just need to prove that xk, x̃GN(xk) ∈ B(x∗, δ/2)
for all k. Our proof will be by induction on k. Let us start with k = 0. Of course
x0 ∈ B(x∗, δ/2), since ε ≤ δ/2. Hence, from Lemma 4.5 it follows that

‖x̃GN(x0)− x∗‖ ≤ ‖x0 − x∗‖+ ‖x̃GN(x0)− x0‖
≤ ε+ C3dist[x0, X∗]

≤ (1 + C3)ε.

Since (1 + C3)ε ≤ δ/2, we have x̃GN(x0) ∈ B(x∗, δ/2).
Suppose now that k > 0 and that x`, x̃GN(x`) ∈ B(x∗, δ/2) for all ` = 0, 1, ..., k.

The nonexpansiveness of the projection operator implies that

‖xk+1 − x∗‖ = ‖PΩ(x̃GN(xk))− PΩ(x∗)‖ ≤ ‖x̃GN(xk)− x∗‖. (4.21)

Hence, xk+1 ∈ B(x∗, δ/2). Next, we show that x̃GN(xk+1) ∈ B(x∗, δ/2). Using (4.21),
the induction hypothesis and Lemma 4.5 successively we obtain

‖x̃GN(xk+1)− x∗‖ = ‖xk+1 + d̃GN(xk+1)− x∗‖
≤ ‖xk+1 − x∗‖+ ‖d̃GN(xk+1)‖
≤ ‖x̃GN(xk)− x∗‖+ ‖d̃GN(xk+1)‖
≤ ‖xk − x∗‖+ ‖d̃GN(xk)‖+ ‖d̃GN(xk+1)‖
...

...

≤ ‖x0 − x∗‖+
k+1∑
`=0

‖d̃GN(x`)‖

≤ ε+ C3

k+1∑
`=0

dist[x`, X∗]. (4.22)
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From Proposition 4.4 we have that for all ` = 1, ..., k

dist[x`, X∗] ≤ C5dist[x`−1, X∗]2

≤ C5C
2
5dist[x`−2, X∗]2

2

...
...

≤ C5C
2
5 ...C

2`

5 dist[x0, X∗]2
`

= C2`−1
5 dist[x0, X∗]2

`

≤ C2`−1
5 ‖x0 − x∗‖2` ≤ C2`−1

5 ε2` (4.23)

Taking into account the definition of ε, (4.22) and (4.23) we get

‖xk+1 − x∗‖ ≤ ε+ C3

k∑
`=0

C2`−1
5 ε2` = ε+ C3ε

k∑
`=0

C2`−1
5 ε2`−1

≤ ε+ C3ε
k∑
`=0

(
1

2

)2`−1

≤ ε+ C3ε
∞∑
`=0

(
1

2

)2`

= (1 + 2C3)ε ≤ δ

2
.

This completes the induction step.

Now we deal with the behavior of the sequence {xk} itself. The next result states
that the sequence generated by Algorithm 4.2 is convergent if we start sufficiently close
to the solution set.

Theorem 4.2. Let Assumptions 4.1-4.3 be satisfied and xk be a sequence generated by
Algorithm 4.2 with starting point x0 ∈ B(x∗, ε), where ε is defined as in (4.20)). Then
the sequence {xk} converges to a solution x̄ of (4.1) belonging to the ball B(x∗, δ/2).

Proof. We will verify that {xk} is a Cauchy sequence. Indeed, for any integers k and
m such that k > m, we obtain

‖xk − xm‖ = ‖PΩ(xk−1 + d̃GN(xk−1)− PΩ(xm)‖
≤ ‖xk−1 + d̃GN(xk−1)− xm‖
≤ ‖xk−1 − xm‖+ ‖d̃GN(xk−1)‖
= ‖PΩ(xk−2 + d̃GN(xk−2))− PΩ(xm)‖+ ‖d̃GN(xk−1)‖
≤ ‖xk−2 + d̃GN(xk−2)− xm‖+ ‖d̃GN(xk−1)‖
≤ ‖xk−2 − xm‖+ ‖d̃GN(xk−2)‖+ ‖d̃GN(xk−1)‖
...

...

≤
k−∑̀
`=m

‖d̃GN(x`)‖ ≤
∞∑
`=m

‖d̃GN(x`)‖.
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Now, as in the proof of Lemma 4.6, due to (4.20) and (4.23), we have

‖d̃GN(x`)‖ ≤ C3dist[x`, X∗] ≤ C3C
2`−1
5 ε2` ≤ C3ε

(
1

2

)2`−1

≤ C3ε

(
1

2

)`
.

Consequently, we get ‖xk − xm‖ ≤ C3ε
∑∞

`=m

(
1
2

)` → 0 as m → ∞. This means that
{xk} is a Cauchy sequence and hence convergent to a point in X∗.

Lemma 4.7. Let x0 ∈ B(x∗, ε) and {xk} be a sequence generated by Algorithm 4.2 and
x̄ ∈ X∗ its limit when k →∞. Then, there exist positive constants C6, C7, C8, C9 such
that

(a) dist[xk, X∗] ≤ C6‖d̃GN(xk)‖

(b) ‖d̃GN(xk+1)‖ ≤ C7‖d̃GN(xk)‖2

(c) C8‖xk − x̄‖ ≤ ‖d̃GN(xk)‖ ≤ C9‖xk − x̄‖

hold for all k ∈ N sufficiently large.

Proof. First note that Lemma 4.6 implies that dist[xk+1, X∗] ≤ 1
2
dist[xk, X∗] for k ∈ N

sufficiently large. Let x̄k+1 ∈ X∗ be a solution that satisfies dist[xk+1, X∗] = ‖x̄k+1 −
xk+1‖. From the nonexpansiveness of the projection operator we obtain

‖d̃GN(xk)‖ = ‖xk + d̃GN(xk)− xk‖ ≥ ‖PΩ(xk + d̃GN(xk))− PΩ(xk)‖
= ‖xk+1 − xk‖ ≥ ‖x̄k+1 − xk‖ − ‖xk+1 − x̄k+1‖
≥ dist[xk, X∗]− dist[xk+1, X∗]

≥ dist[xk, X∗]− 1

2
dist[xk, X∗] =

1

2
dist[xk, X∗]

for all k ∈ N large enough. Hence, (a) holds with C6 := 1/2.
Lemma 4.5, Proposition 4.4 and item (a) imply that

‖d̃GN(xk+1)‖ ≤ C3dist[xk+1, X∗] ≤ C3C5dist[xk+1, X∗]2 ≤ 1

4
C3C5‖d̃GN(xk)‖2

for all k ∈ N sufficiently large. Therefore, (b) follows by setting C7 := 1
4
C3C5.

We now prove (c). Item (a) from Lemma 4.5 yields the right inequality with C9 :=
C3. Consider then the left inequality. One can show that for some sufficiently large
(but fixed) index k ∈ N we have

‖d̃GN(xk+j)‖ ≤
(

1

2

)j
‖d̃GN(xk)‖ for all j = 0, 1, 2, ... .
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Furthermore, the nonexpansiveness of the projection operator yields

‖xk − xk+`‖ = ‖PΩ(xk)− PΩ(xx+`−1 + d̃GN(xk+`−1)‖
≤ ‖xk − xk+`−1 − d̃GN(xk+`−1)‖
≤ ‖xk − xk+`−1‖+ ‖d̃GN(xk+`−1)‖
...

...

≤
`−1∑
j=0

‖d̃GN(xk+j)‖.

Since x̄ = lim`→∞ x
k+`, we therefore obtain from the continuity of the norm

‖xk − x̄‖ = lim
`→∞
‖xk − xk+`‖ ≤ lim

`→∞

`−1∑
j=0

‖d̃GN(xk+j)‖

≤ ‖d̃GN(xk)‖ lim
`→∞

`−1∑
j=0

(
1

2

)j
= 2‖d̃GN(xk)‖.

Since this holds for an arbitrary (sufficiently large) k ∈ N, we obtain (c) by setting
C9 := 1/2.

We are now able to state the main result of this subsection.

Theorem 4.3. Let Assumptions 4.1-4.3 be satisfied and {xk} be a sequence generated
by Algorithm 4.2 with starting point x0 ∈ B(x∗, ε), where ε is defined as in (4.20).
Then, the sequence {xk} converges quadratically to a solution x̄ of (4.1) belonging to
the ball B(x∗, δ/2).

Proof. Theorem 4.2 says that the sequence {xk} converges to a solution x̄ ∈ X∗. From
Lemmas 4.5, 4.7 and Proposition 4.4 we obtain

‖xk+1 − x̄‖
‖xk − x̄‖2

≤ ‖d̃GN(xk+1)‖
C8C2

9‖d̃GN(xk)‖2

≤ C3C
2
6dist[xk+1, X∗]

C8C2
9dist[xk, X∗]2

≤ C3C
2
6C5

C8C2
9

.

Thus, the convergence to x̄ is quadratic.
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4.5 Examples

Consider the function H : R2 → R2 defined by

H(x1, x2) =

[
xρ2

x2 exp(x2
1)

]
, (4.24)

where ρ > 0 and let Ω := R2. Then, the solution set of (4.1) is clearly given by
X∗ = {(x1, x2) ∈ R2|x2 = 0}, and obviously every solution is nonisolated. We have
introduced the term exp(x2

1) in the second component in order to generate positive
singular values converging to zero without violating the local error bound condition.
In fact, it is easy to see that Assumptions 4.1-4.3 are satisfied locally at any solution
x∗. Next, we calculate the Jacobian of H.

∇H(x1, x2)> =

[
0 ρxρ−1

2

2x1x2 exp(x2
1) exp(x2

1)

]
.

Observe that the Jacobian is locally Lipschitz continuous if, and only if, ρ /∈ (0, 2)\{1}.
The singular values of ∇H(x) are given by

σ1(x) =
1

2

(
1 +

√
1 + 8ρ|x1||x2|ρ exp(−x2)

)
,

σ2(x) =
2ρ|x1||x2|ρ

σ1(x)
.

This implies that

rank (∇H(x)) =

{
2, if x1 6= 0 and x2 6= 0;
1, otherwise.

We will discuss examples based on (4.24) considering different choices of ρ.

Example 4.1. ρ = 1: For this choice of ρ, for any starting point, the Gauss-Newton
method converges exactly in one only step, while Levenberg-Marquardt type methods
(with its regularization parameter larger than zero) generate an infinite sequence. This
behavior of the Gauss-Newton method is easy to understand, since the problem has a
quite linear structure. Note that in this case, Assumption 4.4 holds around any solution
different from (0, 0), and thus, according to Theorem 4.3, at least locally quadratic
convergence was already expected. Close to (0, 0), there are points so that σ2(s) is
quite smaller than ‖H(s)‖, but the Gauss-Newton method step is incisive enough in
the direction of the solution set, so that the method does not follow a trajectory where
such singular values appear.

Example 4.2. ρ = 2: In this case the quadratic convergence of the Gauss-Newton
method is lost. Moreover, this rate is destroyed for Levenberg-Marquardt methods if
we take α(s) = ‖H(s)‖β, with β > 3. We deduced this by seeing that the limit

lim
s2→0

dist [s+ dα(s), X∗]

(dist [s,X∗])2 = lim
s2→0

|s2 + dα(s)|
s2

2

,
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explodes if β > 3 and is finite if β ∈ [1, 3]. In this example a Levenberg-Marquardt
method follows a trajectory with σ2(s) proportional to ‖H(s)‖2 and this affects the
Gauss-Newton method, which in this case, converges just linearly, no matter what
starting point outside the solution set one chooses.

Example 4.3. ρ = 4
3
: Whit this ρ the Jacobian is not Lipschitz continuous (just Holder

continuous). Using the same approach as above we can check that the Levenberg-
Marquardt method converges quadratically if β ∈ [1, 2] and diverges if β > 2.

Example 4.4. ρ = 11
13

: This example shows that the local Lipschitz continuity of the
Jacobian is decisive if one expects quadratic convergence for the Levenberg-Marquardt
method (as it is in the classical Newton method). The Jacobian again is just Holder
continuous around a solution and the Levenberg-Marquardt method loses its quadratic
convergence if β ∈ [1, 2].

The following example shows that the structure of the problem may not cause only
a deceleration on the convergence of a Gauss-Newton method. We conclude that even
when the local error bound condition holds, a point that is arbitrary close to the solu-
tion set can be thrown away by the Gauss-Newton method. This undesirable behavior
emphasizes the relevance of the regularizing technics, as in Levenberg-Marquardt meth-
ods, once again.

Example 4.5. Let H : R2 → R2 be given by

H(x1, x2) =

[
x2

1 + x2
2 − 1

(x2
1 + x2

2 − 1)η exp(−x2
1)

]
,

and consider Ω := R2. Assumptions 4.1-4.3 are satisfied locally at any solution x∗ in
X∗, which is the unit sphere center in (0, 0). In this example we will be particularly
interested in Gauss-Newton steps calculated at points s ∈ R2 so that s1 = s2 = γ,
where γ >

√
2

2
. For such points we have that

dGN(s) = − 1

2γ

[
η − 1

2γ2 − η

]
, s+ dGN(s) =

1

2γ

[
2γ2 + 1− η

η

]
.

Hence,

lim
γ→
√
2

2

+
s+ dGN(s) =

√
2

2

[
2− η
η

]
.

Thus, one has that if η := 1 the structure of the problem is quite simple and guarantees
the convergence of the Gauss-Newton method in one only step. Nevertheless, for η = 2
the limit above is x̄ = (0,

√
2) ∈ R2. This indicates that a point arbitrary close to the

solution set, can be strongly repelled by a Gauss-Newton method.
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4.6 The relation between quadratic convergence and

the order of the singular values

In this section we study the relation between quadratic convergence of Levenberg-
Marquardt type methods and the order of singular values that converge to zero. Our
analysis will clarify the conclusions in the examples we have seen in the previous section.
Before giving the main theorem we present a result related to Lemma 2.3 of [24], but
significantly stronger than it.

Lemma 4.8. Let Assumptions 4.1-4.3 be satisfied and assume that for all s ∈ B(x∗, δ/2)
it holds that σis(s) ≤ L1‖H(s)‖, for some index is with 1 ≤ is ≤ rs. Then, there exists
C10 > 0 so that for all s ∈ B(x∗, δ/2) we have

|(U>s H(s))is| ≤ C10dist[s,X∗]2,

for all s ∈ B(x∗, δ/2)

Proof. Set α := ‖H(s)‖2. We know that for this choice of α there exists a constant
C̄ > 0 so that

‖H(s) +∇H(s)>dα(s)‖ ≤ C̄dist[s,X∗]2, (4.25)

for all s ∈ B(x∗, δ/2). Consider vα(s) as in Lemma 4.3. Then, from the orthogonality
of Us we conclude that

‖H(s) +∇H(s)>dα(s)‖ = ‖U>s H(s) + ΣsV
>
s dα(s)‖

= ‖U>s H(s) + Σ>s vα(s)‖.

Hence, ∣∣∣(U>s H(s) + Σ>s vα(s)
)
is

∣∣∣ =
∣∣∣(U>s H(s)

)
is

∣∣∣ ∣∣∣∣∣1− σis(s)

σis(s) + ‖H(s)‖2
σis (s)

∣∣∣∣∣ .
Thanks to σis(s) ≤ L1‖H(s)‖ we obtain that∣∣∣∣∣1− σis(s)

σis(s) + ‖H(s)‖2
σis (s)

∣∣∣∣∣ ≥ 1

L2
1 + 1

.

Thus, using (4.25) we get ∣∣∣(U>s H(s)
)
is

∣∣∣ ≤ C10dist[s,X∗]2,

for all s ∈ B(x∗, δ/2), with C10 := C̄(L2
1 + 1).

The next theorem shows how one can choose the Levenberg-Marquardt parame-
ter α taking into account the order of singular values without destroying quadratic
convergence.
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Theorem 4.4. Let Assumptions 4.1-4.3 be satisfied and suppose there exist L2, L3 > 0
so that for every i = 1, ...,min{n,m}, one of the following properties holds

(a) σi(s) ≥ L2‖H(s)‖;

(b) σi(s) ≤ L3‖H(s)‖β−1,

for all s ∈ B(x∗, δ/2) with β ≥ 2 fixed. Then, the Levenberg-Marquardt method is
locally quadratically convergent for α := ‖H(s)‖β.

Proof. If i is an index so that (a) is satisfied one can conclude, using similar arguments
as in Lemma 4.4, that there exists C11 > 0 (that does not depend on i) such that

|vα(s)i| ≤ C11dist[s,X∗],

for all s ∈ B(x∗, δ/2). For any index i satisfying (b) we obtain

|vα(s)i| =
σi(s)|

(
U>s H(s)

)
i
|

σi(s)2 + ‖H(s)‖β
≤ σi(s)C10dist[s,X∗]2

σi(s)2 + ‖H(s)‖β

≤ σi(s)C10dist[s,X∗]2

‖H(s)‖β
≤ C10L3‖H(s)‖β−1dist[s,X∗]2

‖H(s)‖β

=
C10L3dist[s,X∗]2

‖H(s)‖
≤ C10L3wdist[s,X∗].

Hence,
‖dα(s)‖ ≤ C12dist[s,X∗] (4.26)

for all s ∈ B(x∗, δ/2) with C12 := min{C11, C10L3w}. Thus, under conditions (a) and
(b) we

‖H(s) +∇H(s)>dα(s)‖2 ≤ ‖H(s) +∇H(s)>dα(s)‖2 + ‖H(s)‖β‖dα(s)‖2

≤ ‖H(s)−H(s̄)︸ ︷︷ ︸
=0

+∇H(s)>(s− s̄)‖2 + ‖H(s)‖β‖s− s̄‖2

≤ L‖s− s̄‖4 + Lβ‖s− s̄‖β+2

≤
(
L+ Lβδβ−2

)
dist[s,X∗]4.

Hence,

‖H(s) +∇H(s)>dα(s)‖ ≤
√
L+ Lβδβ−2dist[s,X∗]2. (4.27)

Using (4.26) and (4.27) one can carry out the remaining convergence analysis as in
Section 4.4.
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Let us explain what this theorem says. Consider the choice α := ‖H(s)‖β with
β := 4. Then, if in our problem the singular values that converge to zero remain of
the order of ‖H(s)‖, or smaller than the order of ‖H(s)‖3, Theorem 4.4 guarantees
quadratic convergence of the Levenberg-Marquardt method. If some singular values lie
strictly between these orders of magnitude, then the theorem does not guarantee this
rate. To clarify this more, consider Example 4.2 using β := 4. We have seen that in this
case, singular values proportional to ‖H(s)‖2 appear along the Levenberg-Marquardt
iterates, i.e., the hypothesis of Theorem 4.4 are not fulfilled. This might be the reason
why the Levenberg-Marquardt method does not converge quadratically for the choice
α := ‖H(s)‖4.

Notice that, due to Theorem 4.4, if one intended to destroy the local quadratic
convergence of a Levenberg-Marquardt method for β := 3, one should be able to
follow iterates so that correspondent singular values were strictly between the orders of
‖H(s)‖ and ‖H(s)‖2. Of course there exist trajectories of points that do this job (take
t ≥ 0 and consider Example 4.1 with x1 :=

√
t and x2 := t in order to produce singular

values proportional to ‖H(s)‖ 3
2 for instance). But it seems that Levenberg-Marquardt

iterates tend not to follow such trajectories. At least this was true in the examples
we have constructed. Thus, the question whether, in general, one has local quadratic
convergence for Levenberg-Marquardt methods with a fixed β ∈ (2, 3], remains an open
issue.

4.7 Concluding remarks

It was already known that unconstrained Levenberg-Marquardt do not converge quadrat-
ically in general if α := ‖H(s)‖β with β ∈ (0, 1). In [46] it was proved that defining
α := ‖H(s)‖2 this rate is achieved by a projected Levenberg-Marquardt type method.
In [28] it was proved that these projected methods can be interpreted as inexact uncon-
strained ones, and that β ∈ [1, 2] implies quadratic convergence of them. The reader
has probably realized that the set Ω was not mentioned that much in this chapter,
unless when the nonexpansiveness of the projection operator was needed. The tie be-
tween the unconstrained and the projected methods is related to the fact that the error
bound assumed is precisely the same. We will see in the next chapter that projected
methods may have problems when dealing with boundary points of Ω.

In this chapter we have dealt with projected Gauss-Newton and Levenberg-Marquardt
methods. Sometimes a singular value decomposition was explicitly required. Of course
this decomposition is computationally very expensive in actual implementations of the
method. Nevertheless, our analysis clarified a couple of questions on the relation be-
tween the exponent β and quadratic convergence. We have concluded that quadratic
convergence is lost in general if β > 3, but we still do not know what happens if
β ∈ (2, 3]. What may weaken some of our conclusions is our strong result in Chapter
3, that states that singular values converging to zero are related to duplications on the
system (4.1). Nevertheless, we have seen examples with duplications that may affect
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the efficiency of Levenberg-Marquardt algorithms, if the regularization parameter α is
not chosen with β ∈ [1, 2].
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Chapter 5

A unified local convergence analysis
of inexact constrained
Levenberg-Marquardt methods

In this chapter we present the local convergence analysis given in our article [5] for an
inexact version of a constrained Levenberg-Marquardt method. It is shown that the
best results known for the unconstrained case also hold for the constrained Levenberg-
Marquardt method. Moreover, the influence of the regularization parameter on the
level of inexactness and the convergence rate is described. Our results improve and
unify several existing ones on the local convergence of Levenberg-Marquardt methods.

5.1 Introduction

Let a sufficiently smooth mapping H : Rn → Rm and a closed convex nonempty set
Ω ⊆ Rn be given. As in the previous chapter, we consider the following system of
nonlinear equations subject to constraints

H(x) = 0, x ∈ Ω. (5.1)

In the present chapter we are interested in extending and unifying results on the
local convergence of inexact Levenberg-Marquardt methods for smooth problems (5.1)
that can have non-isolated solutions. We are now going to discuss this in more detail.

It is known that Levenberg-Marquardt methods guarantee a local quadratic (or
superlinear) convergence under the error bound that characterizes the calmness con-
dition. The level of inexactness in the subproblems of Levenberg-Marquardt methods
that is possible without losing a given superlinear convergence rate was investigated
in [14, 23, 29] for the unconstrained case, i.e., if Ω := Rn. Recall that the inexact
Levenberg-Marquardt subproblems read as follows

min
x

1

2
‖H(s) +∇H(s)>(x− s)‖2 +

1

2
α(s)‖x− s‖2 + π(s)>(x− s),
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where s ∈ Rn can be understood as the current iterate, α(s) > 0 denotes the regu-
larization parameter, and π(s) ∈ Rn is used to formally describe the inexactness that
may result from approximate data, truncated solution algorithms, or numerical errors.
In order to obtain a large level for the inexactness under a given convergence rate, the
regularization parameter α(s) plays a crucial role.

In order to recall the results for inexact unconstrained Levenberg-Marquardt meth-
ods, let us assume that a quadratic convergence rate should be guaranteed. We have
seen in Chapter 1 and 2 that α(s) ∼ ‖H(s)‖2 was used in [14] and that this choice
enables an inexactness level of (at least) ‖π(s)‖ ∼ ‖H(s)‖4. The inexactness level of
‖π(s)‖ ∼ ‖H(s)‖3 was obtained in [23] if a significantly larger regularization parameter
is used, namely if

α(s) ∼ ‖H(s)‖. (5.2)

Remember also that for this choice of α(s) the inexactness level was further improved
to ‖π(s)‖ ∼ ‖H(s)‖2 in [29]. This result motivated us when considering the constrained
case. The subproblems of the constrained Levenberg-Marquardt method in [46] (see
Chapter 2) read as follows

min
x

1

2
‖H(s) +∇H(s)>(x− s)‖2 +

1

2
α(s)‖x− s‖2 s.t. x ∈ Ω.

The constrained Levenberg-Marquardt method is known to converge locally with a
quadratic rate if α(s) ∼ ‖H(s)‖2 is assumed, see [46] (and [77] under slightly different
conditions). Nothing was known on the behavior of inexact versions of the constrained
Levenberg-Marquardt method and it was not even clear whether a quadratic rate was
possible if the larger value (5.2) were used for the regularization parameter α(s).

In this chapter, answers to these issues are given. It will turn out that the regu-
larization parameter α(s) in terms of ‖H(s)‖β with β ∈ (0, 2] is responsible for the
rate of convergence of the exact constrained Levenberg-Marquardt method. Moreover,
inexactness does not worsen this rate if it is at most proportional to ‖H(s)‖β+1. It will
also be shown in Section 5.5 that this level of inexactness is sharp. The results in this
chapter improve or extend previous results, in particular those in [14, 23, 29, 46, 77].

In Section 5.2 problem (5.1) is reformulated as an optimization problem and its
necessary optimality conditions are represented as a generalized equation. Based on
this an auxiliary lemma on the upper Lipschitz-continuity for a perturbation of the
generalized equation is proved. In Section 5.3 the subproblems of the inexact con-
strained Levenberg-Marquardt method and the resulting method are formally defined.
The main local convergence analysis is presented in Section 5.4. By an example the
sharpness of the inexactness level is demonstrated in Section 5.5. Some concluding
remarks are presented at the end of the chapter.
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5.2 An upper Lipschitz-continuity result

Throughout this chapter we adopt basically the same notation as in the previous one,
and also assume that the solution set of problem (5.1) is nonempty, i.e.,

X∗ := {x ∈ Ω |H(x) = 0} 6= ∅.

Then, any solution of (5.1) solves the minimization problem

min
1

2
‖H(x)‖2 s.t. x ∈ Ω, (5.3)

and vice versa. If H is differentiable then every solution of the minimization problem
satisfies the necessary optimality condition

0 ∈ ∇H(x)H(x) + NΩ(x), (5.4)

where

NΩ(x) :=

{
{y ∈ Rn | y>(z − x) ≤ 0 for all z ∈ Ω} if x ∈ Ω,
∅ if x /∈ Ω

denotes the normal cone to the set Ω at x (see Chapter 2). In addition to the generalized
equation (5.4) we also consider the perturbed generalized equation

p ∈ ∇H(x)H(x) + NΩ(x) (5.5)

for perturbation parameters p ∈ Rn. Let X(p) denote the solution set of (5.5). Obvi-
ously, X∗ ⊆ X(0) holds.

Assumption 5.1. The function H : Rn → Rm is differentiable and ∇H : Rn → Rn×m

is locally Lipschitz continuous.

In order to formulate the calmness condition (Assumption 5.2 below) let x∗ ∈
X∗ be an arbitrary but fixed solution. Assumption 5.2 could be restricted to some
neighborhood of x∗ which, however, is avoided for simplicity.

Assumption 5.2. There exist w > 0 and δ ∈ (0, 1] so that

w dist[x,X∗] ≤ ‖H(x)‖,

for all x ∈ B(x∗, δ) ∩ Ω.

For enabling subproblems simpler than those we use in this paper (see Section 5.3),
projected Levenberg-Marquardt steps can be employed, see [46] and [55] (within a local
phase). Then, however, the corresponding local convergence analysis requires that the
inequality in Assumption 5.2 holds for all x ∈ B(x∗, δ) (see Chapter 4) although the
set Ω in problem (5.1) is a proper subset of Rn. This implies that, in a neighborhood
of x∗, problem (5.1) is equivalent to H(x) = 0. Therefore, depending on the problem,
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Assumption 5.2 can be significantly weaker than assuming that the inequality holds for
all x ∈ B(x∗, δ). It is shown in [29, Section 3] that such projected Levenberg-Marquardt
steps can be regarded as solutions of unconstrained Levenberg-Marquardt subproblems
(5.1) with an appropriate definition of the perturbation π. Due to this, the advantage
from enlarging the regularization parameter, i.e., that the level of inexactness increases
without destroying quadratic convergence (see the discussion in Section 5.1), applies
to the projected steps in [46, 55].

The following lemma shows that the mapping p 7→ X(p) is upper Lipschitz contin-
uous at x∗ under the previous assumptions.

Lemma 5.1. Let Assumptions 5.1 and 5.2 be satisfied. Then, there exist µ > 0 and
δ∗ > 0 so that

X(p) ∩ B(x∗, δ∗) ⊆ X∗ + µ‖p‖B

for all p ∈ Rn.

Proof. Let us first fix some δ∗ ∈ (0, δ] and let p ∈ Rn be arbitrarily chosen. If X(p) ∩
B(x∗, δ∗) is empty, then nothing has to be shown. Otherwise, let xp denote any element
of X(p) ∩ B(x∗, δ∗). Then, there exists yp ∈ NΩ(xp) so that

p = ∇H(xp)H(xp) + yp. (5.6)

SinceX∗ is nonempty and closed there exists x̂p ∈ X∗ such that ‖xp−x̂p‖ = dist[xp, X
∗].

This implies
x̂p ∈ B(x∗, 2δ∗). (5.7)

Assumption 5.1 ensures (due to Taylor’s formula) that there exists C1 > 0 so that, for
any z ∈ X∗ ∩ B(x∗, 2δ∗) and any x ∈ B(x∗, 2δ∗),

‖H(x) +∇H(x)>(z − x)‖2 ≤ C1‖z − x‖4.

Therefore, by (5.7), x̂p ∈ X∗, and xp ∈ B(x∗, δ), we have

r(xp) := ‖H(xp) +∇H(xp)
>(x̂p − xp)‖2

≤ C1‖x̂p − xp‖4

= C1 dist[xp, X
∗]4. (5.8)

For the left hand side of (5.7) we obtain

r(xp) = 2(x̂p − xp)>∇H(xp)H(xp) + (x̂p − xp)>∇H(xp)∇H(xp)
>(x̂p − xp)

+‖H(xp)‖2

and
2(x̂p − xp)>∇H(xp)H(xp) + ‖H(xp)‖2 ≤ r(xp).
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Since x̂p, xp ∈ Ω and yp ∈ NΩ(xp) we have (x̂p − xp)>yp ≤ 0 and, with (5.6), get

p>(x̂p − xp) = (x̂p − xp)>∇H(xp)H(xp) + (x̂p − xp)>yp

≤ 1

2
(r(xp)− ‖H(xp)‖2).

By (5.8) and Assumption 5.2, this implies

p>(x̂p − xp) ≤
1

2
(C1 dist[xp, X

∗]4 − w2 dist[xp, X
∗]2).

Due to xp ∈ B(x∗, δ∗), choosing δ∗ ∈ (0, δ] sufficiently small leads to C1 dist[xp, X
∗]2 ≤

1
2
w2 and

p>(x̂p − xp) ≤ −
1

4
w2 dist[xp, X

∗]2

follows. Thus, dividing this inequality by ‖x̂p− xp‖ (which is the same as dist[xp, X
∗])

yields
1

4
w2 dist[xp, X

∗] ≤ ‖p‖.

Setting µ := 4w−2 completes the proof.

Lemma 5.1 implies that X(0) ∩ B(x∗, δ∗) ⊆ X∗. This means that, although the
generalized equation (5.4) is only a necessary optimality condition for the minimization
problem (5.3), all vectors that satisfy this necessary condition and are not too far away
from x∗ also solve the minimization problem.

5.3 Subproblems and method

Given some s ∈ Ω the algorithm we are going to analyze the following subproblem

0 ∈ ∇xψ(x, s) + NΩ(x), (5.9)

where ψ : Rn × Rn → R is defined by

ψ(x, s) :=
1

2
‖H(s) +∇H(s)>(x− s)‖2 +

1

2
α(s)‖x− s‖2 + π(s)>(x− s)

and π(s) ∈ Rn denotes a perturbation that enables inexactness within the subproblem.
The level of inexactness is described by Assumption 5.3 below. It depends on the
exponent β ∈ (0, 2] in the following definition of the regularization parameter.

α(s) :=

{
‖H(s)‖β if s /∈ X∗,
1 if s ∈ X∗. (5.10)

Note that the convergence theorem does not change if an appropriate less restrictive
rule is used to define α(s) for s /∈ X∗. For example,

α0‖H(s)‖β ≤ α(s) ≤ α1‖H(s)‖β
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for some constants α1 ≥ α0 > 0 can be employed.
By the convexity of Ω and ψ(·, s), the generalized equation (5.9) is equivalent to

the quadratic minimization problem

min
x
ψ(x, s) s.t. x ∈ Ω. (5.11)

Due to the fact that α(s) > 0, the function ψ(·, s) is strongly convex. Since the convex
set Ω is also nonempty and closed, problem (5.11) has the unique solution denoted by
x(s).

Assumption 5.3. There exists cπ > 0 so that

‖π(s)‖ ≤ cπ‖H(s)‖β+1,

for all s ∈ B(x∗, δ).

The constrained Levenberg-Marquardt method we are going to deal with is given
next.

Algorithm 5.1. Constrained Levenberg-Marquardt method
Step 0. Choose x0 ∈ Ω and β ∈ (0, 2].
Step 1. Set s := xk and compute the solution x(s) of Problem (5.11) with α(s) as in
(5.10) and set

xk+1 := x(s) (5.12)

Step 2. Set k := k + 1 and go to Step 1.
End

Roughly speaking, the following lemma shows that locally the length of a Levenberg-
Marquardt step is bounded by a constant times the distance of the current iterate to
X∗. The lemma is related to similar results in literature, see, for example, [14, 46].
However, since these results are either proved for the unconstrained case or do not deal
with inexactness, a proof will be given.

Lemma 5.2. Let Assumptions (5.1) – (5.3) be satisfied. Then, there exists κ > 0 so
that

‖x(s)− s‖ ≤ κ dist[s,X∗] for all s ∈ B(x∗, δ).

Proof. Recall that X∗ is nonempty and bounded. Thus, for any s ∈ Rn, there is ŝ ∈ X∗
with

‖s− ŝ‖ = dist[s,X∗]. (5.13)

As x(s) solves the minimization problem (5.11), we have

1

2
α(s)‖x(s)− s‖2 + π(s)>(x(s)− s) ≤ ψ(x(s), s) ≤ ψ(ŝ, s). (5.14)
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From Assumption 5.1 and Taylor’s formula, it follows that there exists L0 > 0 so that

‖H(s)‖ = ‖H(s)−H(ŝ)‖ ≤ L0‖ŝ− s‖ (5.15)

and
‖H(s) +∇H(s)>(ŝ− s)‖2 ≤ L0‖ŝ− s‖4

hold for all s ∈ B(x∗, δ). With the latter inequality, (5.14) implies

‖x(s)− s‖2 ≤ α(s)−1
(
L0‖ŝ− s‖4 + 2‖ŝ− s‖‖π(s)‖+ 2‖x(s)− s‖‖π(s)‖

)
+ ‖ŝ− s‖2

for all s ∈ B(x∗, δ). Because α(s)−1‖π(s)‖ ≤ cπ‖H(s)‖ holds by (5.10) and Assumption
5.3, we obtain from (5.10), Assumption 5.2, (5.15), and (5.13) that

‖x(s)− s‖2 ≤ dist[s,X∗]2(dist[s,X∗]2−βL0w
−β + 2cπL0 + 1)

+2cπL0‖x(s)− s‖ dist[s,X∗].

Since dist[s,X∗] ≤ δ is valid for all s ∈ B(x∗, δ) there is L1 > 0 so that

‖x(s)− s‖2 − 2cπL0 dist[s,X∗]‖x(s)− s‖ − L1 dist[s,X∗]2 ≤ 0

holds for all s ∈ B(x∗, δ). Now, it can easily be seen that the inequalities

h2 − 2cπL0 dist[s,X∗]h− L1 dist[s,X∗]2 ≤ 0, h ≥ 0

are satisfied both if and only if

0 ≤ h ≤
(
cπL0 +

√
c2
πL

2
0 + L1

)
dist[s,X∗].

Hence, the assertion of the lemma follows for κ := cπL0 +
√
c2
πL

2
0 + L1.

5.4 Local convergence

The local convergence results obtained below could also be derived by means of the
general iterative framework for generalized equations in [27]. For simplicity, we decided
however to provide proofs that are more instructive for Levenberg-Marquardt methods.
To proceed, let us first define

∆(x, s) := ∇H(x)H(x)−∇xψ(x, s)

for all s, x ∈ Rn. By the definition of ψ this can be rewritten as

∆(x, s) = (∇H(x)−∇H(s))H(x) +∇H(s)(H(x)−H(s)−∇H(s)>(x− s))
−α(s)(x− s)− π(s).

(5.16)
Moreover, in the remainder of the chapter

τ := min{β + 1, 2}

will be used to describe a convergence rate.
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Lemma 5.3. Let Assumptions 5.1 – 5.3 be satisfied. Then, there exists C > 0 so that

‖∆(x(s), s)‖ ≤ C dist[s,X∗]τ for all s ∈ B(x∗, δ0),

where δ0 := (κ+ 1)−1δ.

Proof. Recall that, for any s ∈ Rn, ŝ ∈ X∗ is defined by (5.13). From Assumptions
5.1 and 5.3, Lemma 5.2, and (5.16) we obtain that, for all s, x ∈ B(x∗, δ) with s /∈ X∗,
there exists L ≥ L0 > so that

‖H(s)‖ = ‖H(s)−H(ŝ)‖ ≤ L dist[s,X∗], (5.17)

‖H(x(s))‖ = ‖H(x(s))−H(ŝ)‖
≤ L‖x(s)− ŝ‖
≤ L(‖x(s)− s‖+ ‖s− ŝ‖)
≤ L(κ+ 1) dist[s,X∗],

(5.18)

and

‖∆(x, s)‖ ≤ L‖H(x)‖‖x− s‖+ L‖x− s‖2 + ‖H(s)‖β‖x− s‖+ cπ‖H(s)‖β+1. (5.19)

By Lemma 5.2, we have, for all s ∈ B(x∗, δ0),

‖x(s)− x∗‖ ≤ ‖x(s)− s‖+ ‖s− x∗‖ ≤ κ dist[s,X∗] + δ0 ≤ (κ+ 1)δ0 = δ. (5.20)

Therefore, the variable x within (5.19) can be replaced by x(s). This together with
(5.17), (5.18), and Lemma 5.2 leads to

‖∆(x(s), s)‖ ≤ C dist[s,X∗]τ (5.21)

for all s ∈ B(x∗, δ0) \X∗, where C := L2κ(κ+ 1) +Lκ2 +Lβκ+ cπL
β+1. Since x(s) = s

for s ∈ X∗, it follows by (5.16) and Assumption 5.3 that (5.21) also holds for s ∈ X∗.
�

Lemma 5.4. Let Assumptions 5.1 – 5.3 be satisfied. Then, there exist Ĉ > 0 and
δ� > 0 so that

dist[x(s), X∗] ≤ Ĉ dist[s,X∗]τ ≤ 1

2
dist[s,X∗] for all s ∈ B(x∗, δ�).

Proof. Let s ∈ Rn be arbitrary but fixed. Then, subproblem (5.9) is equivalent to
the generalized equation

∆(x, s) ∈ ∇H(x)H(x) + NΩ(x).

Hence, x(s) is the unique solution of this equation. Therefore, x(s) is also a solution
of the perturbed generalized equation (5.5) with p := ∆(x(s), s), i.e., x := x(s) solves

∆(x(s), s) ∈ ∇H(x)H(x) + NΩ(x).
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This means
x(s) ∈ X(∆(x(s), s)).

In order to apply Lemma 5.1, we also need that x(s) ∈ B(x∗, δ∗). To this end and for
later use, let us define

δ� := min

{
δ0,

δ∗
κ+ 1

, (2µC)
−1
τ−1

}
.

Now, for s ∈ B(x∗, δ�), similar to (5.20) we obtain from Lemma 5.2 that ‖x(s)−x∗‖ ≤
δ∗. Thus, x(s) ∈ X(∆(x(s), s)) ∩ B(x∗, δ∗) is valid for all s ∈ B(x∗, δ�). Lemma 5.1,
Lemma 5.3, and the definition of δ� imply

dist[x(s), X∗] ≤ µ‖∆(x(s), s)‖ ≤ µC dist[s,X∗]τ ≤ 1

2
dist[s,X∗]

for all s ∈ B(x∗, δ�). With Ĉ := µC the proof is complete. �

Lemma 5.5 (Lemma 2.9 in [29]). Let {wk} ⊂ Rn, rk ⊂ [0,∞) be sequences, and
r ∈ [0, 1), R > 0 numbers so that, for k = 0, 1, 2, . . .,

‖wk − w0‖ ≤ r0
R

1− r
(5.22)

implies
rk+1 ≤ r rk and ‖wk+1 − wk‖ ≤ Rrk. (5.23)

Then, {rk} converges to 0 and {wk} converges to some ŵ ∈ Rn. If, for some t > 1 and
c > 0,

rk+1 ≤ cr tk and ‖ŵ − wk‖ ≥ rk (5.24)

is satisfied for k = 0, 1, 2, . . . then {wk} converges to ŵ with the Q-order of t.

Theorem 5.1. Let Assumptions 5.1 – 5.3 be satisfied and let {xk} be a sequence
generated by the Levenberg-Marquardt method defined in Algorithm 5.1. Then, there
exists ε > 0 so that x0 ∈ B(x∗, ε) implies that the sequence {xk} converges to some
x̂ ∈ X∗ with the Q-order τ .

Proof. To apply Lemma 5.5 we set wk := xk and rk := dist[xk, X∗] for k = 0, 1, 2, . . .
and

r :=
1

2
, R := κ, c := Ĉ, t := τ = min{β + 1, 2}.

Then, assuming (5.22) provides

‖xk − x∗‖ ≤ ‖xk − x0‖+ ‖x0 − x∗‖ ≤ 2κ dist[x0, X∗] + ‖x0 − x∗‖.

Setting ε := (2κ+ 1)−1δ� we have

‖xk − x∗‖ ≤ (2κ+ 1)‖x0 − x∗‖ ≤ (2κ+ 1)ε ≤ δ� ≤ δ.
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Thus, Lemmas 5.4 and 5.2 can be applied for s := xk. This leads to

dist[xk+1, X∗] ≤ 1

2
dist[xk, X∗] and ‖xk+1 − xk‖ ≤ κ dist[xk, X∗],

i.e., (5.23) is valid. Therefore, by Lemma 5.5, the sequence {dist[xk, X∗]} converges to
0 and {xk} converges to some x̂ ∈ X∗.

Thanks to Lemma 5.4 and since ‖x̂ − xk‖ ≥ dist[xk, X∗] is obviously valid for
k = 0, 1, 2, . . ., we see that (5.24) is satisfied. Thus, Lemma 5.5 guarantees that {xk}
converges to x̂ with the Q-order τ . �

5.5 Sharpness of the level of inexactness

In this section we show that, in general, the level of inexactness given by Assumption
5.3 cannot be increased without reducing the convergence rate τ = min{β+1, 2} of the
Levenberg-Marquardt method (5.12). To this end let us consider the simple example,
where Ω := R2 and H : R2 → R is given by

H(x) := ‖x‖2 − 1. (5.25)

Obviously, the solution set X∗ of H(x) = 0 is the unit sphere and Assumptions 5.1 is
valid. Moreover, since

dist[x,X∗] ≤ (‖x‖+ 1) dist[x,X∗] = (‖x‖+ 1)|‖x‖ − 1| = |‖x‖2 − 1| = |H(x)|,

Assumption 5.2 is satisfied for w = 1 and any δ > 0 regardless which solution x∗ ∈ X∗
is taken. For later use let, for some ρ ∈ (0, 1

4
],

S(ρ) := {x ∈ R2 \X∗ | dist[x,X∗] ≤ ρ}

denote a set surrounding the solution set X∗. Then, according to (5.10), the regular-
ization parameter is

α(s) = |H(s)|β (5.26)

for any s ∈ S(ρ) with some β ∈ (0, 2]. Let us assume that, for some η ∈ (0, 1), the
perturbation vector is given by

π(s) := −σ(s)s+ π(s)⊥ ∈ R2 (5.27)

with

σ(s) := |H(s)|β+η, ‖π(s)⊥‖ = |H(s)|β+η, and s>π(s)⊥ = 0. (5.28)

Then, ‖π(s)‖ ≤
√

5|H(s)|β+η is valid for all s ∈ B(0, 2). Note that for η ≥ 1 Assump-
tion 5.3 would be satisfied for any x∗ ∈ X∗ and the level of inexactness is not increased
in comparison with Theorem 5.1. Therefore, only η ∈ (0, 1) need to be considered.
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Now, in order to estimate the influence of the inexactness on the convergence rate
of the Levenberg-Marquardt method, we analyze the ratio

dist[x(s), X∗]

dist[s,X∗]ν
(5.29)

for ‖s‖ → 1 and ν > 1. By the definition of H in (5.25) we know that

dist[x(s), X∗] = |‖x(s)‖ − 1| = |‖x(s)‖2 − 1|
‖x(s)‖+ 1

. (5.30)

Recall that, due to Ω = R2, the solution x(s) of the subproblem (5.11) is the unique
solution of the linear system

(∇H(s)∇H(s)T + α(s)I)(x− s) = −∇H(s)H(s)− π(s).

For our example (5.25), we obtain

(4ss> + α(s)I)(x(s)− s) = −2(‖s‖2 − 1)s− π(s). (5.31)

Then, with (5.31), (5.27), and (5.28), a simple calculation shows that, for any s ∈ S(ρ),

x(s) =
2‖s‖2 + 2 + α(s) + σ(s)

4‖s‖2 + α(s)
s− 1

α(s)
π(s)⊥

and, by (5.26) and (5.28),

‖x(s)‖2 =

(
2‖s‖2 + 2 + α(s) + σ(s)

4‖s‖2 + α(s)

)2

‖s‖2 + |H(s)|2η

are valid. This implies that ‖x(s)‖ + 1 is bounded above on S(1
4
). Moreover, taking

into account (5.30), Assumption 5.2, and (5.28) as well as β ∈ (0, 2] and η ∈ (0, 1), we
obtain after a longer calculation that there exist c1, c2 > 0 and ρ̂ ∈ (0, 1

4
] so that

dist[x(s), X∗] ≥ c1 dist[s,X∗]β+η + c2 dist[s,X∗]2η

holds for all s ∈ S(ρ̂). Hence, if

ν > ν(β, η) := min{β + η, 2η},

the ratio (5.29) tends to ∞ for ‖s‖ → 1, i.e., in the above example the Levenberg-
Marquardt method cannot converge to a solution with an order of ν. Since

ν(β, η) = min{η + β, 2η} < min{1 + β, 2} = τ,

the convergence rate τ in Theorem 5.1 cannot be guaranteed if the level of inexactness
is larger than required in Assumption 5.3.
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5.6 Final remarks

Before we derived this unified convergence approach we got motivated by a result for
β = 1. We had shown, using a certain induction technique, that this choice of β leaded
to a Q-order convergence of 2 − ε of the Levenberg-Marquardt method, with ε > 0
arbitrary small. Nevertheless, we were not able to substitute 2 − ε by 2 using our
approach. Fortunately, we found the key for our analysis, namely, the upper Lipschitz
continuity property of the map p → X(p). Indeed, let the regularization parameter
α(s) be given by (5.10), i.e., α(s) = ‖H(s)‖β. For β = 1, Theorem 5.1 tells us that the
local convergence rate of the constrained Levenberg-Marquardt method (5.12) is τ = 2,
where an inexactness level of ‖H(s)‖2 is enabled. For the unconstrained case (Ω = Rn)
a corresponding result has been shown recently in [29]. However, for the constrained
Levenberg-Marquardt methods in [46, 77], β = 2 is required to achieve a quadratic rate.
With our results, the local behavior of an inexact constrained Levenberg-Marquardt
method is analyzed for the first time. A sharp maximal level of inexactness depending
on β ∈ (0, 2] is derived. In particular, this shows that β = 1 should be used to allow
a maximal inexactness without reducing the quadratic rate. Numerical results in [29]
underline this in the unconstrained case. If β = 2 is considered the level of inexactness
given in [14] for the unconstrained case could be improved from ‖H(s)‖4 to ‖H(s)‖3

and also holds if constraints are present. According to Theorem 5.1, β ∈ (0, 1) implies
a convergence rate less than 2. Nevertheless, this choice of β may be useful to allow
larger perturbations.

We now show by a very simple example that the constrained method may have
a significant advantage over the projected Levenberg-Marquardt method. Consider
H : R2 → R defined by

H(x1, x2) = x2,

and Ω = {(x1, x2) ∈ R2|x2 ≥ −x1}. Let a starting point x0 ∈ Ω so that x0
1 < 0 be

given. Then, any projected Levenberg-Marquardt (for any choice of α(s)) generates
a sequence that converges at most linearly to the the solution x∗ := (0, 0) ∈ Ω. Now
the pure constrained Levenberg-Marquardt method (with π ≡ 0) achieves quadratic
convergence if α(s) is taken so that the exponent β lies in the interval [1, 2] (the Gauss-
Newton converges in one only step). The reason why the constrained method performs
much better in terms of the rate of convergence, lies on the fact that the local error
bound required for the projected method (see Chapter 4) is not satisfied at x∗ := (0, 0),
while Assumption 5.2 holds trivially. Note that in our example H is linear. This means
that projected methods might have deficiencies when dealing with solutions that are
boundary points of Ω.

We would like to explain more in detail the notion of the inexactness used in the
subproblems. It will be proved next that points sufficiently close to the solution of the
exact Levenberg-Marquardt subproblem are solutions of inexact subproblems.

Lemma 5.6. Let s ∈ Ω and x(s) be the unique minimizer of ψ0(·, s) subject to Ω,
where ψ0 is the function ψ with π(s) ≡ 0. Then, for each y ∈ Ω so that ‖y − x(s)‖ ≤
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‖s− x(s)‖β+1 we have that y is the unique minimizer of ψπy(·, s) in Ω, where

ψπy(x, s) := ψ0(x, s) + πy(s)
>(x− s),

with
πy(s) := (∇H(s)∇H(s)> + α(s)I)(x(s)− y).

Moreover, πy satisfies Assumption 5.3.

Proof. Elementary.

It may be interesting, from the theoretical point of view, to see what happens with
a constrained Gauss-Newton method under the hypothesis that the positive singular
values of the Jacobian do not converge faster to zero than the norm of H along the
iterates. We think that the extension of the results from Chapter 4 to the constrained
case might be natural. Nevertheless, we do not have the proofs yet. This can be a
subject for future work.

Another topic we could explore in the future, is the impact of the error bound
condition given in Assumption 5.2 on the the solution set of (5.1). One can easily see
that Theorem 3.1, that implies constant rank of the Jacobian matrix on the solution set,
no longer holds under the assumptions in this chapter. Take for instance H : R2 → R
with H(x1, x2) = x1x2, and Ω := {x ∈ R2|x1 ≥ 0 and x2 = 0}. Clearly, Assumption
5.2 is satisfied and the rank of the Jacobian matrix changes on the solution set X∗.
Nevertheless, this might happen because Ω ⊂ X∗. Maybe without this inclusion, one
can expect certain extensions of the results given in Chapter 3.

59



Chapter 6

Primal-dual relations between the
central path and the
Levenberg-Marquardt trajectory,
with an application to quadratic
programming

In this chapter we consider the problem of minimizing a convex function subject to a
compact polyhedron defined by linear equality constraints and nonnegative variables.
We scale the problem around the analytic center of the polyhedron and define asso-
ciated Levenberg-Marquardt and a central path trajectories and show that they have
relations that go beyond primal properties. In fact, these relations provide primal-dual
feasible points for initializations in path following methods. From a practical point of
view, this is particularly relevant in convex quadratic programming, where calculating
such primal-dual points based on the Levenberg-Marquardt trajectory requires just the
resolution of linear systems of equations. Our results therefore overcome the common
deficiency of infeasibility in the initialization of some trust region subproblems. Similar
results were previously known only for linear programming.

6.1 Introduction

Consider the convex problem

minimize f0(w)
subject to A0w = b

w ≥ 0
(6.1)

where f0 : Rn → R is a convex continuously differentiable function, A0 ∈ Rm×n and
b ∈ Rm. We will assume the polyhedron Ω0 := {w ∈ Rn|Aw = b, w ≥ 0} to have an
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analytic center which we will denote by wAN .
Problem (6.1) appears in many contexts in optimization, specially if f0 is in addition

quadratic. In this case, several kinds of trust region subproblems can be rewritten in
the format of (6.1) as we have already seen in Chapter 2. Methods with quadratic
subproblems belong to the family of sequential quadratic programming algorithms
(SQP), a powerful tool in optimization. Among the numerous articles and also books
that address the subject, we cite [3, 7, 9, 11, 13, 55]. In the last decade, a subfamily of
SQP methods known as inexact restoration methods were developed. The first work
in this direction is due to Mart́ınez and Pilotta [57]. Their methods treat optimality
and feasibility separately. Inexact restoration subproblems, the work by Ferris et al.
[25] and the paper by Gonzaga [33], were the main motivation of our study, which
aimed to provide primal-dual feasible points in quadratic programming that could be
easily computed. Nevertheless, the results we will present encompass general convex
problems with the form (6.1).

For the sake of simplicity we will consider a scaled version of (6.1).

minimize f(x)
subject to Ax = b

x ≥ 0
(6.2)

where A := A0WAN , with WAN := diag(wAN), where wAN is the analytic center
of the polyhedron Ω0 defined above, f : Rn → R, with f(x) := f0(WANx), and
Ω := {x ∈ Rn|Ax = b, x ≥ 0}.

Note that, since WAN is a positive definite matrix, Problem (6.2) inherits the con-
vexity of Problem (6.1). Moreover, they are in an obvious correspondence due to the
change of variables w = WANx.

The applicability of (6.2), when f is quadratic, is not restricted to sequential
quadratic programming or trust region methods in general. In the symmetric case,
monotone linear complementarity problems can be regarded as quadratic programs. In
order to conclude this, one only needs to rewrite conveniently the Karush-Kuhn-Tucker
conditions associated to (6.2), which are given by

PK(A) (∇f(x)− s) = 0 (6.3)

Ax = b (6.4)

x ≥ 0 (6.5)

s ≥ 0 (6.6)

x · s = 0. (6.7)

where P is the Euclidean projection operator, x · s := (x1s1, ..., xnsn) ∈ Rn is the
Hadamard product and K(A) is a short notation for Kernel(A). Due to convexity,
these conditions are necessary and sufficient for optimality of (6.2) for any convex
function f . Recall that (6.3) is called Lagrange condition, (6.4) and (6.5) indicate
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primal feasibility, (6.6) dual feasibility and (6.7) is the complementarity condition. We
say that (x, s) ∈ Rn × Rn is a feasible pair, or a feasible primal dual point associated
to (6.2), if it satisfies (6.3)-(6.6). We recall from Chapter 2 that interior feasible points
are feasible points so that x, s > 0 and its set is denoted by Γ◦. Remember also that
the central path associated to (6.2) is based on the logarithmic barrier and consists of
the interior feasible points (x, s) ∈ Γ◦ with the property

x · s = µe,

for some µ > 0, where e := (1, ...1) ∈ Rn.
In this chapter we will define a primal-dual Levenberg-Marquardt trajectory associ-

ated to (6.2), starting from the analytic center of Ω. We will prove that its primal part
is tangent to the central path, while its dual part provide primal dual interior feasible
points. This is done in Sections 6.2 and 6.3. An application in quadratic programming
is given in Section 6.4 followed by some concluding remarks.

6.2 Preliminaries

Remember that the logarithmic barrier plog : Rn
++ → R is given by

plog(x) := −
n∑
i=1

log(xi),

and that, by definition, xAN is precisely the unique solution of the optimization problem

minimize plog(x)
subject to Ax = b

x > 0
. (6.8)

Lemma 6.1. We have that xAN := e ∈ Rn is the analytic center of Ω, ∇plog(e) = e
and ∇2plog(e) = I.

Proof. The fact that xAN = e follows directly from our change of variables together
with the fact that the logarithm of a product is the sum of the logarithms. The
remaining claims are also elementary.

Let us now consider the Levenberg-Marquardt regularization function pLM : Rn →
R with

pLM(x) :=
1

2
‖x‖2.

Then, as we have seen in Chapter 2, the Levenberg-Marquardt trajectory is based on
the following optimization problem

minimize f(x) + αpLM(x)
subject to Ax = b

, (6.9)
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where α > 0. For each α > 0, the system above has the unique solution that we will
denote by xLM(α). The parametrization α 7→ xLM(α), with α > 0, will also be called
as the primal Levenberg-Marquardt trajectory.

Lemma 6.2. The unique minimizer of pLM subject to Ax = b is e. Moreover,
∇pLM(e) = e and ∇2pLM(e) = I.

Proof. From the definition of pLM it follows directly that∇pLM(e) = e and∇2pLM(e) =
I. From Lemma 6.1 we know that the projection of e onto K(A) is zero. Therefore,
taking∇pLM(e) = e into account, we have that e minimizes pLM subject to Ax = b.

Hence, e is not only the minimizer of the two penalization functions introduced
above. Indeed, the first and the second derivatives of the logarithmic barrier and the
Levenberg-Marquardt regularization coincide at e.

Now, we get into a subsection where we prove an auxiliary lemma that will be impor-
tant to state primal relations between the central path and the Levenberg-Marquardt
trajectory.

6.2.1 An auxiliary result

For each α > 0 consider the problem

minimize f(x) + αp(x)
subject to Ax = b,

(6.10)

where p : Rn → R ∪ {∞} is a strongly convex function.

Lemma 6.3. Let x̄ be the minimizer of p subject to Ax = b and suppose that p is two
times continuously differentiable with a locally Lipschitz Hessian ∇2p(·) in a neighbor-
hood of x̄. Assume also that ∇2p(x̄) = I. Then, considering that x(α) denotes the
solution of the optimization problem (6.10), with α > 0, it follows that:

(a) The trajectory {x(α) ∈ Rn|α > 0} is well defined and limα→∞ x(α) = x̄;

(b) x(α) minimizes f in the convex trust region {x ∈ Rn|p(x) ≤ p(x(α)), Ax = b} and
α > 0 7→ p(x(α)) is a nonincreasing function;

(c) limα→∞ α (x(α)− x̄) = −PK(A)(∇f(x̄)).

Proof. For any α > 0, the function f + αp is strongly convex. Hence, (6.10) has the
unique solution x(α). In particular, {x(α) ∈ Rn|α > 0} is well defined. From the
definition of x(α) and x̄ we have, for all α ≥ 1, that

f(x(α)) + p(x(α))− p(x̄) ≤ f(x(α)) + α (p(x(α))− p(x̄))

≤ f(x̄) + α (p(x̄)− p(x̄)) = f(x̄).
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This inequality, together with the compactness of the level sets of f + p, implies that
{x(α) ∈ Rn|α ≥ 1} is bounded. Consequently, {f(x(α))}α≥1 must be bounded. There-
fore, the second inequality leads to

lim
α→∞

α(p(x(α))− p(x̄)) <∞.

Hence,
lim
α→∞

p(x(α))− p(x̄) = 0.

Then, the strong convexity of p guaranties that

lim
α→∞

x(α) = x̄,

proving (a).
The Karush-Kuhn-Tucker conditions of (6.10), necessary and sufficient due to con-

vexity, read as follows

PK(A) (∇f(x(α)) + α∇p(x(α))) = 0; (6.11)

A (x(α)) = b. (6.12)

From (6.11) and (6.12) we conclude that x(α) minimizes f in the convex set {x ∈
Rn|p(x) ≤ p(x(α)), Ax = b}. Moreover, the Lagrange multiplier correspondent to the
inequality constraint is α. Now take 0 < α2 < α1. Then,

f (x(α2)) + α2p (x(α2)) ≤ f (x(α1)) + α2p (x(α1))

f (x(α1)) + α1p (x(α1)) ≤ f (x(α2)) + α1p (x(α2)) .

Adding these inequalities we get p (x(α1)) ≤ p (x(α2)), proving (b).
Note that if for some ᾱ > 0 we have x(ᾱ) = x̄, the strong convexity of p and (b)

guarantee that x(α) = x̄ for every α > ᾱ. In this case, (6.11) implies (c). Therefore,
let us assume from now on that x(α) 6= x̄ for all α sufficiently large. From Taylor’s
formula we have that

p(x)− p(x̄)−∇p(x̄)>(x− x̄)− 1

2
(x− x̄)>∇2p(x̄)(x− x̄) = o(‖x− x̄‖2), (6.13)

with

lim
x→x̄

o(‖x− x̄‖2)

‖x− x̄‖2
= 0.

Moreover, from the local Lipschitz continuity of ∇2p around x̄, we know that there
exist L > 0 and δ > 0, so that for all x ∈ B(x̄, δ) it holds that

‖v(x)‖ ≤ L ‖x− x̄‖2 , (6.14)
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where
v(x) := ∇p(x)−∇p(x̄)−∇2p(x̄)︸ ︷︷ ︸

I

(x− x̄).

Since x̄ is the minimizer of p subject to Ax = b, we conclude that ∇p(x̄) is orthogonal
to K(A). Then, taking also (6.13) and ∇2p(x̄) = I into account, we get

p(x(α))− p(x̄) = ‖x(α)− x̄‖2

(
1

2
+
o(‖x(α)− x̄‖2)

‖x(α)− x̄‖2

)
, (6.15)

for all α sufficiently large. Due to (6.12) and the feasibility of x̄, it follows that x(α)−
x̄ ∈ K(A), for all α > 0. Then, using the linearity of PK(A) and (6.11) we obtain

0 = PK(A) (∇f(x(α)) + α∇p(x(α)))

= PK(A) (∇f(x(α)) + α∇p(x̄) + α(x(α)− x̄) + αv(x(α)))

= PK(A)(∇f(x(α))) + αPK(A)(∇p(x̄)) + αPK(A)(xα − x̄) + PN (A)(αv(x(α)))

= PK(A)(∇f(x(α))) + α(x(α)− x̄) + PK(A)(αv(x(α))). (6.16)

In order to finish the proof we will show that limα→∞ αv(x(α)) = 0. Note that the
definition of x(α) implies that

0 ≤ α(p(x(α))− p(x̄)) ≤ f(x(α))− f(x̄).

Using (a) we get
lim
α→∞

α(p(x(α))− p(x̄)) = 0. (6.17)

Now, multiplying (6.15) by α and taking limits we obtain

lim
α→∞

α‖x(α)− x̄‖2 = 0. (6.18)

On the other hand, for all α > 0 sufficiently large, (6.14) leads to

α‖v(x(α))‖ =
‖v(x(α))‖
‖x(α)− x̄‖2

α‖x(α)− x̄‖2 ≤ Lα‖x(α)− x̄‖2.

Therefore, limα→∞ αv(x(α)) = 0. This fact, combined with (6.16), implies (c).

6.3 Primal dual relations between the Levenberg-

Marquardt and the central path trajectories

Before arriving to the main result of this chapter let us define our dual Levenberg-
Marquardt trajectory.

For each α > 0 set sLM(α) := α(2xAN − xLM(α)).

Theorem 6.1. It holds that:
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(a) PK(A) (∇f(xLM(α))− sLM(α)) = 0 for all α > 0;

(b) σ(xLM(α)), sLM(α), α) ≤ ‖xLM(α)− xAN‖2, with σ as in (2.22);

(c) the Levenberg-Marquardt trajectory and the central path associated to (6.2) are
tangent at xAN ;

(d) for all α > 0 sufficiently large, (xLM(α), sLM(α)) ∈ Rn×Rn is an interior feasible
primal-dual point associated to (6.2);

(e) limα→0+ sLM(α) = 0 and limα→∞
sLM (α)

α
= xAN .

Proof. From the linearity of PK(A) and the definition of xLM(α) and sLM(α), we con-
clude that

PK(A) (∇f(xLM(α))− sLM(α)) = PK(A) (∇f(xLM(α)) + αxLM(α)− 2αxAN)

= PK(A) (∇f(xLM(α)) + αxLM(α))− 2αPK(A) (xAN)

= 0− 2αPK(A)(e) = 0.

This proves (a). Let us now prove (b).
Invoking the definition of the measure σ given in (2.22) and remembering that

xAN = e, we conclude that

σ(xLM(α), sLM(α), α) :=

∥∥∥∥xLM(α) · sLM(α)

α
− e
∥∥∥∥

= ‖xLM(α) · (2xAN − xLM(α))− e‖
= ‖(xAN + (xLM(α)− xAN)) · (xAN−

(xLM − xAN)(α))− e‖
= ‖(xLM(α)− xAN(α)) · (xLM(α)− xAN(α))‖
≤ ‖xLM(α)− xAN‖2.

Item (c) is a direct consequence of item (c) in Lemma 6.3 together with Lemmas
6.1 and 6.2.

Due to item (a), and the fact that AxLM(α) = 0, we only need to check the
positivity of xLM(α) and sLM(α) in order to prove (d). But this follows for sufficiently
large α > 0, since xAN > 0 and limα→∞ xLM(α) = xAN . This limit also makes item (e)
elementary.

6.4 An application to convex quadratic program-

ming

Our theorem is specially interesting when f is quadratic, because in this case one can
calculate points on the Levenberg-Marquardt trajectory by solving linear systems of
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equations. So, assume in this section that f : Rn → R is a convex quadratic function
defined as in the following

f(x) := x>Qx+ c>x,

where c ∈ Rn and Q ∈ Rn×n is positive semidefinite. Then, the Karush-Kuhn-Tucker
conditions of Problem 6.9, that defines the Levenberg-Marquardt trajectory, read as
follows [

Q+ αI A>

A 0

] [
x
λ

]
=

[
−c
0

]
. (6.19)

For each α > 0 this system is always solvable and has a unique solution in x, which
is precisely xLM(α). One gets uniqueness in λ if, and only if, A is full rank. We now
arrive at a practical algorithm for calculating feasible interior primal-dual points in
quadratic programming.

Algorithm 6.1. Primal-Dual feasible points
Step 0. Choose α0 > 0 and ρ > 1.
Step 1. Calculate the solution xLM(α) of the system (6.19) with α := αk.
Step 2. If xLM(αk) > 0 and sLM(α) > stop, else set α := ραk.
Step 4. Set k := k + 1 and go to Step 1.

Due to Theorem 6.1 this algorithm is well defined and produces interior primal-dual
feasible points (xLM(α), sLM(α)) in quadratic programming for sufficiently large values
of α.

6.5 Concluding remarks

Theorem 6.1 says that the pairs (xLM(α), sLM(α)) are close to the primal-dual central
path associated to Problem 6.2. This is a nice property since getting points on the
central path is almost as difficult as solving the main problem. This result is established
for convex problems with constraints described by linear equalities and nonnegative
variables in a way that the feasible set has an analytic center. We have seen in Chapter
2 how one can rewrite certain quadratic programs in order to get the constraints in
the format of Ω having e as its analytic center. This means that Algorithm 6.1 can be
useful in path following algorithms for a large class of quadratic programs.
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