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Abstract

In this work we prove that for a homeomorphism f̃ : T2 → T2 with a lift

f : R2 → R2 whose rotation set ρ(f) is an interval, either every rational point in

ρ(f) is realized by a periodic orbit, or there exists a periodic essential annular set

for f̃ , satisfying a dissipative-type property. We also give a qualitative description

of the dynamics for the case that ρ(f) is a vertical interval containing the origin

in its interior.

3



Contents

0 Notations. 5

1 Introduction. 7

2 Preliminaries. 16

2.1 The rotation set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 The rotation set and periodic orbits. . . . . . . . . . . . . 17

2.1.2 The rotation set and invariant measures. . . . . . . . . . . 18

2.2 Brouwer Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Atkinson’s Lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Proof of Theorem A from Theorem B. 25

4 Proof of Theorem B. 26

4.1 Outline of the proof. . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Properties PR and PL. . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Construction of the curves l̃i and proof of item (2). . . . . . . . . 28

4.4 Proof of item (3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Main ideas. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2 The properties PL and PR, and the curves `i. . . . . . . . 39

4.4.3 The sets Li∞, R
i
∞, and Xi. . . . . . . . . . . . . . . . . . . 40

4.4.4 Proof of item (3) from Theorem B. . . . . . . . . . . . . . 44

4.4.5 Proof of Lemmas 4.20 and 4.22. . . . . . . . . . . . . . . . 48

4.5 Proof of items (1) and (4). . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Conclusion of the proof of Theorem B. . . . . . . . . . . . . . . . 62

4



0 Notations.

By pr1, pr2 : R2 → R, we will denote the projections to the first and second

coordinate, respectively. Also, if x ∈ R2, x1 and x2 will denote pr1(x) and pr2(x),

respectively.

For a set A ⊂ R, the diameter of A is diam(A) = supx,y∈A |x−y|. For A ⊂ R2,

the horizontal diameter of A is diam1(A) = diam(pr1(A)), and the vertical

diameter of A is diam2(A) = diam(pr2(A)).

For a set A ⊂ R2 and x ∈ R2, denote d(x,A) = infy∈A |y − x|. For x ∈ R2

and r > 0, denote Br(x) = {y ∈ R2 : |y − x| < r}, and for A ⊂ R2, denote

Br(A) = {x ∈ R2 : d(x,A) < r}.
For the circle S1 = R/Z, and the two-torus T2 = R2/Z2, denote by π, π′ and

π′′ the canonical projections

R2 π→ R× S1 π′′→ T2, and π′ = π′′ ◦ π.

We will denote also by d(·, ·) the metric in T2 or in R × S1 induced by the

euclidean metric in R2.

Define T1, T2 : R2 → R2 to be the translations T1 : (x1, x2) 7→ (x1 + 1, x2),

T2 : (x1, x2) 7→ (x1, x2 +1). Also, T1 and T2 will denote the translations in R×S1,

T1 : (x1, x2) 7→ (x1 + 1, x2), and T2 : (x1, x2) 7→ (x1, x2 + 1 mod 1).

By a curve γ : I → R2, depending on the context, we mean either γ or

Im(γ) ⊂ R2. By an arc, we mean a compact curve, and if α is an arc, α̇ denotes

the curve α without its endpoints.

A line ` is a proper embedding of ` : R → R2. By Shoenflies’ Theorem

([Cai51]), given a line ` there exists an orientation preserving homeomorphism

h of R2 such that h ◦ `(t) = (0, t), for all t ∈ R. Then, the open half-plane

h−1((0,∞)×R) is independent of h, and we call it the right of `, and denote it

by R(`). Analogously, we define L(`) = h−1((−∞, 0)×R) the open half-plane to

the left of `. The sets R(`) and L(`) denote the closures of R(`) and L(`), resp.

By ` ≺ `′ we will mean ` ⊂ L(`′).

A closed curve γ in T2 or in R × S1 is essential if it is not homotopic to a

point, and we say that γ is vertical if γ is freely homotopic to a curve of the form

cβ, where c ∈ {1,−1} and β(t) = (0, t).

A curve γ in T2 (or in R×S1) is free for f : T2 → T2 (f : R×S1 → R×S1)

if it is simple and closed, and f(γ) ∩ γ = ∅, and we say it is free forever for f if

γ is disjoint from all its iterates by f .
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If `, `′ are two lines in R2, we define (`, `′) = R(`) ∩ L(`′), and [`, `′] = R(`) ∩
L(`). Similarly we define (`, `′] = R(`) ∩ L(`′) and [`, `′) = R(`) ∩ L(`′). If γ

and γ′ are two disjoint, simple, closed and vertical curves in T2, we define the

topological annuli (γ, γ′) ⊂ T2 and [γ, γ′] ⊂ T2 in the following way. Let γ̃ ⊂ R2

be any lift of γ, and let γ̃′ be the first lift of γ′ to the right of γ̃, that is, γ̃′ is

the lift of γ′ with γ̃ ≺ γ̃′ ≺ T1(γ̃). Orient γ̃ and γ̃′ as going upwards. Define

then (γ, γ′) = π′((γ̃, γ̃′)) and [γ, γ′] = π′([γ̃, γ̃′]). In a similar way, if γ and γ′ are

disjoint, simple, closed and vertical curves in R× S1, we define (γ, γ′) ⊂ R× S1

and [γ, γ′] ⊂ R× S1.

We say that a set A contained in T2 or in R× S1 is annular if it is a nested

intersection of topological compact annuli.

For a map f : X → X, where X is any metric space, we define an ε-chain for

f as a set {xi}i1i=i0 ⊂ X such that d(xi+1, f(xi)) < ε for all i0 ≤ i < i1. An ε-chain

{xi}i1i=i0 is periodic if xi0 = xi1 . A point x ∈ X is chain recurrent for f if for

all ε > 0 there exists a periodic ε-chain {xi}ni=0 for f with x0 = xn = x. The

chain recurrent set, denoted by CR(f), is the set of chain recurrent points for

f .
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1 Introduction.

Given a homeomorphism f̃ : Tn → Tn homotopic to the identity, the rotation

set of some lift f : Rn → Rn of f̃ was introduced by Misiurewicz and Ziemian

in [MZ89], and it is defined as the set of accumulation points of sequences of the

form {
fmi(xi)− xi

mi

}
i∈N

where mi →∞ and xi ∈ R2.

This set carries dynamical information, and moreover, when n = 2 this set

has nice geometric properties, like convexity. Also, in the case n = 2 much more

information can be obtained in base of the theory of planar homeomorphisms (for

example, Brouwer theory, Thurston’s classification theory, etc.). For this reason

we restrict ourselves to the case n = 2.

One example of the relation between the rotation set of f , denoted ρ(f), and

the dynamics of f̃ is the realization of rational points in ρ(f) by periodic orbits.

By a rational point we mean a point of rational coordinates (p1/q, p2/q) ∈ ρ(f)

(with gcd(p1, p2, q) = 1), and we say that (p1/q, p2/q) is realized by a periodic

orbit of f̃ if there exists x ∈ R2 such that

f q(x) = x+ (p1, p2).

The problem of finding sufficient conditions for the realization of rational points

by periodic orbits has been extensively studied. For example, in [Fra88] Franks

proved that rational extremal points in ρ(f) are always realized by periodic orbits.

In [Fra89] he also proved that every rational point in the interior of the rotation

set is realized by a periodic orbit.

Recall that a curve is essential if it is homotopically non-trivial, and a free

curve for f̃ is a curve that is disjoint from its image by f̃ . In [KK08] Kocsard and

Koropecki proved that in the case that ρ(f) has empty interior, if f̃ has no free

curves then every rational point if ρ(f) is realized by a periodic orbit. Moreover,

it is proved that if there is a rational point in ρ(f) not realized by a periodic orbit,

then for every n ∈ N there is an essential curve disjoint from its first n iterates

by f̃ .

Here we will improve this result showing that there is an essential curve that

is free forever for f̃ , that is, an essential curve that is disjoint of all its iterates

by f̃ . For more results on realization of rational points by periodic orbits, see for
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example [Fra95] and [JZ98].

The simplest example of a homeomorphism with rational points in its rotation

set not realized by periodic orbits is the following. Let g̃ : S1 → S1 be a homeo-

morphism such that Fix(g̃) = {1/4, 3/4}, and such that if g : R→ R is a lift of g̃,

x < g(x) for any x /∈ Fix(g̃). Define f̃ : T2 → T2 by f̃(x, y) = (g̃(x), sin(2πx)/2)

mod Z2 (see Fig. 1).

Figure 1:

This homeomorphism f̃ has two invariant circles: C1 = {x ∈ T2 : x1 = 1/4}
and C2 = {x ∈ T2 : x1 = 3/4}. In C1 the dynamics is a rotation by sin(π/2)/2 =

1/2 and in C2 it is a rotation by sin(3π/2)/2 = −1/2. Every point which is not

in C1∪C2 has its full-orbit contained in an annulus bounded by these two circles,

and has its omega-limit contained either in C1 or in C2. By this, one easily sees

that f̃ has a lift f : R2 → R2 such that ρ(f) = {0} × [−1/2, 1/2]. Any rational

point in ρ(f) which is not extremal is not realized by periodic orbits, as the only

periodic points of f̃ are the points x ∈ C1 ∪ C2, which have period 2 and either

f 2(x) = x+(0, 1) or f 2(x) = x+(0,−1). Moreover, f̃ has the following properties:

• The circles C1 and C2 are ‘semi-attractors’.

• The presence of an invariant circle means that the dynamics of f̃ is ‘annular’.

Let us explain what we mean by the terms ‘semi-attractor’ and ‘annular dy-

namics’. Recall that an essential set in T2 is a set that is not contained in a

topological open disc, and an annular set in T2 is a set which is a nested inter-

section of compact topological annuli.
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Definition 1.1. Let h : T2 → T2 be a homeomorphism. An invariant essential

annular set A ⊂ T2 is a semi-attractor for h if A is contained in a topological

closed annulus whose boundary consists of two essential curves γ1 and γ2 that are

free for h and such that:

• either ω(x, h) ⊂ A for all x ∈ γ1, or α(x, h) ⊂ A for all x ∈ γ1, and

• either ω(y, h) ⊂ A for all y ∈ γ2, or α(y, h) ⊂ A for all y ∈ γ2.

If A is a periodic essential annular set with period q ∈ N, we say that A is a

semi-attractor for h if A is a semi-attractor for f q.

When we say that the dynamics of a torus homeomorphism f̃ is annular, we

mean that there is a periodic essential annular set A for f̃ , and then T2 is decom-

posed in the two periodic sets A and Ac. The fact that A is annular implies that

Ac is a topological open annulus, and therefore, to understand the dynamics of f̃

it suffices to understand the dynamics of homeomorphisms of the annulus.

The purpose of this work will be to show that in some sense, the dynamics

of the example above is a ‘model’ for the general case of a homeomorphism with

rational points in its rotation set which are not realized by periodic orbits. We

will show that if a rational point in the rotation set is not realized by a periodic

orbit, then the dynamics is annular, and moreover, there is a periodic essential

annular set which is a semi-attractor.

Before stating our results we mention a theorem for annulus homeomorphisms

by Le Calvez, in which this work has been inspired. For a homeomorphism F :

S1 × [0, 1] → S1 × [0, 1] isotopic to the identity, the rotation set of some lift

f : R × [0, 1] → R × [0, 1] is defined as the set of all accumulation points of

sequences of the form {
fmi(xi)1 − (xi)1

mi

}
i∈N

where mi →∞ and xi ∈ R× [0, 1]. In this case the rotation set ρ(f) is a compact

interval I ⊂ R (possibly degenerate). Also, if Λ ⊂ S1 × [0, 1] is a compact

invariant set, we can define the rotation set of Λ, denoted ρ(Λ, f), as the set of

all accumulation points of sequences of the form{
fmi(xi)1 − (xi)1

mi

}
i∈N
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with mi →∞ and x ∈ Π−1(Λ), where Π : R× [0, 1]→ S1 × [0, 1] is the canonical

projection. The following theorem by Le Calvez was proven for C1 diffeomor-

phisms in [Cal91], but by the results of [Cal05] it is also valid for homeomorphisms

(see Theorem 9.1 in that article).

Theorem 1.2. Let F : S1 × [0, 1] → S1 × [0, 1] be a homeomorphism isotopic to

the identity with a lift f : R × [0, 1] → R × [0, 1] that has no fixed points and

whose rotation set is an interval containing 0 in its interior.

Then, there exists a finite non-empty family of free curves for F such that, the

maximal invariant set contained between two consecutive curves has rotation set

contained either strictly to the right or strictly to the left of 0 (see Fig. 2).

Figure 2: Illustration for Theorem 1.2. The free curves γ1 and γ2 are free for F .

One can easily deduce the following corollary. A semi-attractor for a homeo-

morphism F : S1 × [0, 1] → S1 × [0, 1] is defined in an analogous way as in the

definition the torus case; the only modification in Definition 1.1 is to allow one

of the curves γ1 and γ2 to be a boundary component of S1 × [0, 1] (and therefore

not free for F ).

Corollary 1.3. For a homeomorphism F within the hypotheses of Theorem 1.2,

there exists an essential annular F -invariant set A which is a semi-attractor.

For a homeomorphism F : S1 × [0, 1]→ S1 × [0, 1] with a rational point in its

rotation set that is not realized by a periodic orbit, one also obtains a dynamical

filtration as in Theorem 1.2, and the dissipative-like property of having an essen-

tial semi-attractor.
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Here we see that the dynamical description given in Theorem 1.2 and its corol-

lary for annulus homeomorphisms is, to some extent, still valid for torus homeo-

morphisms whose rotation set is an interval with rational points not realized by

periodic orbits. Our first result is the following.

Theorem A. Let f̃ : T2 → T2 be a homeomorphism homotopic to the identity

with a lift f : R2 → R2 whose rotation set is an interval.

Then, either every rational point in the rotation set is realized by a periodic

orbit, or there exists a periodic essential annular set for f̃ which is also a semi-

attractor.

A motivational example for Theorem A is given at the end of this section (see

Example 2). A key step in the proof of Theorem A will be to prove that there

is an essential curve that is free forever for f̃ , which, as we mentioned before,

improves a result in [KK08].

To prove that there is an essential curve that is free forever for f̃ we will use the

following theorem. It tells us that for torus homeomorphisms having a lift without

fixed points and whose rotation set is an interval containing 0, the dynamics is

annular, and moreover, qualitatively the same as it is shown to be for annulus

homeomorphisms in Theorem 1.2. If Λ ⊂ T2 is a compact f̃ -invariant set, we

define ρ(Λ, f) in a similar way as defined above for the case of S1 × [0, 1].

Theorem B. Let f̃ be a homeomorphism of T2 homotopic to the identity with a

lift f : R2 → R2 such that:

• ρ(f) = {0} × I, where I is a non-degenerate interval containing 0 in its

interior,

• f has no fixed points.

There exists a non-empty finite family {l̃i}r−1i=0 of curves in T2 which are simple,

closed, vertical, pairwise dijoint and essential, and with the following properties.

If

Θi :=
⋂
n∈Z

f̃n
(

[l̃i, l̃i+1]
)

for i ∈ Z/rZ,

then, for all i,

1. ∅ 6= Ω(f̃) ∩ [l̃i, l̃i+1] ⊂ Θi,

2. there is ε > 0 such that ρ(Θi, f) is contained either in {0} × (ε,∞), or in

{0} × (−∞,−ε),
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3. the curves l̃0, l̃1, . . . , l̃r−1 are free forever for f̃ , and

4. at least one of the sets Θi is an annular, essential, f̃ -invariant set which is

a semi-attractor (see Fig. 3).

Figure 3: The sets Θi and the curves l̃i. At least one of the Θi must be annular and essential.

We do not know if the property of the dynamics being annular is also present

in the case that all the rational points in the rotation set are realized by periodic

orbits:

Question 1.4. If f̃ : T2 → T2 is a homeomorphism with a lift f : R2 → R2 such

that ρ(f) is an interval of the form {0}× I, and such that every rational point in

ρ(f) is realized by a periodic orbit, does there exist an invariant, essential, annular

set for f̃?

It has been recently announced by Bortollato and Tal that the answer to this

question is affirmative in the case that Lebesgue measure λ is ergodic with re-

spect to f̃ and the rotation vector of λ (see section 2.1.2) is of the form (0, a),

with a ∈ R irrational.

More examples.

We now describe more examples of homeomorphisms f̃ : T2 → T2 with ratio-

nal points in its rotation set not realized by periodic orbits.

Example 1. Consider an isotopy (Ht)t∈[0,1] on S1 such that H0 = R1/2, where

R1/2 is the rotation in S1 by 1/2 and H1 is a Denjoy homeomorphism g̃. Suppose

also that g̃ is such that the isotopy (Ht) lifts to an isotopy (H̃t)t∈[0,1] on R between

the translation by 1/2, and a lift g of g̃ with rotation number ρ(g) < 0. Define

12



then f̃0 : T2 → T2 by

f̃0(x, y) =

(x,H2x(y)), if 0 ≤ x ≤ 1/2

(x,H−2x+2(y)), if 1/2 ≤ x ≤ 1

So, the restriction of f̃0 to the circle {x ∈ T2 : x1 = 1/2} is the Denjoy

map g̃, which has a minimal cantor set K ⊂ {x ∈ T2 : x1 = 1/2}, and the

restriction of f̃0 to the circle C1 = {x ∈ T2 : x1 = 0} is a rotation by (0, 1/2).

Let ϕ : T2 → R be a continuous function such that ϕ ≥ 0 and ϕ(x, y) = 0 if and

only if (x, y) ∈ K ∪ C1. Let f̃1 : T2 → T2 be given by f̃1(x, y) = (x+ ϕ(x, y), y),

and then define f̃ : T2 → T2 by f̃ = f̃0 ◦ f̃1 (see Fig. 4).

Figure 4: Example 1.

If ϕ is chosen carefully, f̃ can be made a homeomorphism (e. g., if ϕ is C1 and

sufficiently close to the constant function ϕ0 ≡ 0). Note that f̃ has an invariant

circle C1 = {(x, y) : x = 0}, and every point x ∈ T2 \ (C1 ∪ K) has its omega

limit contained either in C1 or in K. Therefore f̃ has a lift f : R2 → R2 with

ρ(f) = [ρ(g), 1/2]. As the only periodic points of f̃ are the points in C1, we have

that any non-extremal rational point in ρ(f) is not realized by a periodic orbit.

The fact that f̃ has an invariant circle implies that the dynamics of f̃ is annular,

and also f̃ presents the dissipative property of having a semi-attractor, which is

the circle C1.

Example 2. A natural idea is to try to modify last example and replace the

rotation in the circle {(x, y) : x = 0} by another Denjoy example, in a way

that the points not contained in the minimal sets of the Denjoy maps can ‘pass

through’, in hopes of obtaining an example with unbounded orbits in the horizon-
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tal direction (see Fig. 5).

More explicitly, one can construct a homeomorphism f̃ : T2 → T2 with a lift

f : R2 → R2 with the following properties:

• There are two minimal sets K1 ⊂ {x ∈ T2 : x1 = 1/4} and K2 ⊂ {x ∈
T2 : x1 = 3/4}, such that the dynamics of f̃ restricted to K1 and K2 is the

dynamics of a homeomorphism of S1 restricted to a minimal set.

• For any x ∈ π′−1(K1) and y ∈ π′−1(K2) we have a := limn→∞(fn(x)2 −
x2)/n > 0 and b := limn→∞(fn(y)2− y2)/n < 0. Therefore ρ(f) contains the

inteval {0} × [b, a].

• f(x)1 > x1 for all x ∈ R2 \ π′−1(K1 ∪K2).

Figure 5: Example 2.

The point (0, 0) ∈ ρ(f) is not realized by a fixed point, as by definition of f̃ the

lift f has no fixed points. One could wonder if this example can be constructed

in a way that ρ(f) is an interval of the form {0} × I, and such that

lim sup
{
|fn(x)1 − x1| : x ∈ R2, n ∈ N

}
=∞. (1)

However Theorem B tells us that this is not possible: if in this example ρ(f) is of

the form {0}× I, then there is an essential annular set A which is f̃ -invariant and

vertical (that is, A it is contained in a topological annulus of the form (l, l′) ⊂ T2,

where l and l are vertical curves). It is easy to see that the presence of such a set

A implies that there is M > 0 such that, for any x ∈ R2, |fn(x)1 − x1| < M for

all n.

So, if this example is constructed in a way that it holds (1), then by Theorem B

we have that max pr1(ρ(f)) > 0. As f̃ was defined in a way that ρ(f) contains the

14



inteval {0}× [b, a], we then have that ρ(f) has non-empty interior. The fact that

ρ(f) has non-empty interior implies that f̃ has infinitely many periodic points,

positive entropy, etc. (see [Fra89] and [LM91]).

This work is organized as follows. In section 2 we introduce the preliminary

theory used in the proof of Theorem B, which is mainly the following: the rota-

tion set for homeomorphisms of T2 and some results related to it, the Brouwer

theory for planar homeomorphisms developed by Patrice Le Calvez, and Atkin-

son’s Lemma about ergodic cocycles. In section 3 we prove Theorem A assuming

Theorem B. Finally, in section 4, which is the longest section of this work, we

prove Theorem B.
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2 Preliminaries.

2.1 The rotation set.

Denote by Homeo(T2) the set of homeomorphisms of T2, and by Homeo∗(T
2) the

elements of Homeo(T2) which are homotopic to the identity. Let f̃ ∈ Homeo∗(T
2)

and let f : R2 → R2 be a lift of f̃ .

Definition 2.1 ([MZ89]). The rotation set of f is defined as

ρ(f) =
∞⋂
m=1

cl

(
∞⋃
n=m

{
fn(x)− x

n
: x ∈ R2

})
⊂ R2.

The rotation set of a point x ∈ R2 is defined by

ρ(x, f) =
∞⋂
m=1

cl

{
fn(x)− x

n
: n > m

}
.

If the above set consists of a single point v ∈ R2, we call v the rotation vector of

x. If Λ ⊂ T2 is a compact f̃ -invariant set, we define the rotation set of Λ as

ρ(Λ, f) =
∞⋂
m=1

cl

(
∞⋃
n=m

{
fn(x)− x

n
: x ∈ π′−1(Λ)

})
⊂ R2.

Remark 2.2. It is easy to see that for integers n,m1,m2,

ρ(Tm1
1 Tm2

2 fn) = nρ(f) + (m1,m2).

Then, the rotation set of any other lift of f̃ is an integer translate of ρ(f), and we

can talk of the ‘rotation set of f̃ ’ if we keep in mind that it is defined modulo Z2.

Theorem 2.3 ([MZ89]). Let f̃ : T2 → T2 be a homeomorphism, let Λ ⊂ T2 be a

compact f̃ -invariant set, and let f : R2 → R2 be a lift of f̃ . Then:

• The set ρ(Λ, f) is compact.

• The set ρ(f) is compact and convex, and every extremal point of ρ(f) is the

rotation vector of some point.

Given A ∈ GL(2,Z), we denote by Ã the homeomorphism of T2 lifted by A.

If h̃ ∈ Homeo(T2), there is a unique A ∈ GL(2,Z) such that for every lift h of h̃,

the map h− A is bounded (in fact, Z2-periodic). Then h̃ is isotopic to Ã.
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Lemma 2.4. Let f̃ ∈ Homeo∗(T2), A ∈ GL(2,Z) and h̃ ∈ Homeo(T2) isotopic

to A. Let f and h be lifts of f̃ and h̃ to R2. Then

ρ(hfh−1) = Aρ(f).

In particular, ρ(AfA−1) = Aρ(f).

For a proof of this lemma, see for example [KK08].

Remark 2.5. If ρ(f) is segment of rational slope, there exists A ∈ GL(2,Z) such

that Aρ(f) is a vertical segment. Indeed, if ρ(f) is a segment of slope p/q (with

p and q coprime integers), we can find x, y ∈ Z such that px+ qy = 1, and letting

A =

(
p −q
y x

)
we have that det(A) = 1, and since A(q, p) = (0, 1), Aρ(f) is vertical.

2.1.1 The rotation set and periodic orbits.

Recall that we say that a rational point (p1/q, p2/q) ∈ ρ(f) is realized by a periodic

orbit if there exists x ∈ R2 such that

f q(x) = x+ (p1, p2).

We mention the following realization results.

Theorem 2.6 ([Fra88]). If a rational point of ρ(f) is extremal, then it is realized

by a periodic orbit.

Theorem 2.7 ([Fra89]). Any rational point in the interior of ρ(f) is realized by

a periodic orbit.

The following theorem is stated for diffemorphisms in [Cal91], p. 106, but its

proof remains valid for homeomorphisms using the results in [Cal05] (see p. 9 of

that article).

Theorem 2.8. If a rational point belongs to a line of irrational slope which bounds

a closed half-plane that contains ρ(f), then this point is realized by a periodic orbit.
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2.1.2 The rotation set and invariant measures.

For a compact f̃ -invariant set Λ ⊂ T2, we denote by Mf̃ (Λ) the family of f̃ -

invariant probability measures with support in Λ, and Mf̃ = Mf̃ (T
2). Define

the displacement function φ : T2 → R2 by

φ(x̃) = f(x)− x, for x ∈ π′−1(x̃).

This is well defined, as any two preimages of x̃ by the projection π′ : T2 → R2

differ by an element of Z2, and f is Z2-periodic. Now, for µ ∈Mf̃ , we define the

rotation vector of µ as

ρ(µ, f) =

∫
φ dµ.

Then, we define the sets

ρmes(Λ, f) =
{
ρ(µ, f) : µ ∈Mf̃ (Λ)

}
,

and

ρerg(Λ, f) =
{
ρ(µ) : µ is ergodic for f̃ and supp(µ) ⊂ Λ

}
.

When Λ = T2 we simply write ρmes(f) and ρerg(f).

Proposition 2.9 ([MZ89]). It holds the following:

ρ(f) = ρmes(f) = conv(ρerg(f)).

When Λ is a proper (compact, invariant) subset of T2, the set ρ(Λ, f) is not

necessarily convex. However, we have the following.

Proposition 2.10. It holds

convρ(Λ, f) = ρmes(Λ, f),

and therefore, if v ∈ R2 is an extremal point of conv ρ(Λ, f), there exists an

ergodic measure µ for f̃ with ρ(µ, f) = v.

Proof. We first observe that ρmes(Λ, f) is convex. To see this, let r1, r2 ∈ ρmes(Λ, f),

and let µ1, µ2 ∈ Mf̃ (Λ) be such that ρ(µ1, f) = r1 and ρ(µ2, f) = r2. The set

Mf̃ (Λ) is convex, and then for all t ∈ [0, 1], tµ1 + (1 − t)µ2 belongs to Mf̃ (Λ).

Also, for t ∈ [0, 1],

t · r1 + (1− t)r2 = t

∫
φ dµ1 + (1− t)

∫
φ dµ2 =
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=

∫
φ d(tµ1 + (1− t)µ2) = ρ(tµ1 + (1− t)µ2, f),

and then tr1 + (1− t)r2 ∈ ρmes(Λ, f). Therefore ρmes(Λ, f) is convex.

Thus, to prove the inclusion conv(ρ(Λ, f)) ⊂ ρmes(Λ, f) it suffices to prove

that ρ(Λ, f) ⊂ ρmes(Λ, f). Let v ∈ ρ(Λ, f). There exists then a sequence {xn}n
in π′−1(Λ) and a sequence of natural numbers {mn}n such that

lim
n

(fmn(xn)− xn)

mn

= v.

Define a sequence of probability measures {δn}n by

δn =
δxn + δf(xn) + · · ·+ δfmn−1(xn)

mn

,

and let µ be an accumulation point of {δn}n in the space Mf̃ (Λ) of Borel proba-

bility measures in Λ, equipped with the weak-* topology. Then, µ is f̃ -invariant.

Choosing a subsequence, we can assume that δn → µ. Then

ρ(µ, f) = lim
n

∫
φ d(δn) = lim

n

fmn(xn)− xn
mn

= v,

and therefore ρ(Λ, f) ⊂ ρmes(Λ, f).

Now we prove the inclusion ρmes(Λ, f) ⊂ conv(ρ(Λ, f)). As ρmes(Λ, f) is con-

vex, it suffices to show that the extremal points of ρmes(Λ, f) are contained in

conv(ρ(Λ, f)). Actually, we will show that the extremal points of ρmes(Λ, f) are

contained in ρ(Λ, f).

Consider the vector space C(T2) of continuous maps from T2 to R, and con-

sider the dual vector space C ′(T2) of C(T2), that is, the space of linear function-

als from C(T2) to R. We know that C ′(T2) is isomorphic to the vector space

Ms(T
2) of signed measures in T2 (see for example [Fol84]). Consider the linear

map Lf̃ :Ms(T
2)→ R2 given by

Lf̃ (µ) =

∫
φ dµ.

The map Lf̃ is linear, and

Lf̃ (Mf̃ (Λ)) = ρmes(Λ, f).

Let w be an extremal point of ρmes(Λ, f). We show now that there is x ∈ Λ such

that ρ(x, f) = w. Recall the following fact from convex analysis: if T : E1 → E2 is
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a linear map between vector spaces, and C ⊂ E1 is convex, then T (C) is a convex

subset of E2 and for any extremal point v ∈ T (C), the set T−1(v) ⊂ C contains

an extremal point of C (see for ex. [Roc97]). As Lf̃ is linear and the setsMf̃ (Λ)

and ρmes(Λ, f) are convex, we have that the preimage by Lf̃ of the extremal point

w contains an extremal point ofMf̃ (Λ), that is, an ergodic measure µ for f̃ with

support in Λ. By Birkhoff’s Theorem, there exists x ∈ supp(µ) ⊂ Λ such that∫
φ dµ = lim

n

1

n

n−1∑
i=0

φ(f̃n(x)) = lim
n

fn(x)− x
n

= ρ(x, f).

As w = Lf̃ (µ) =
∫
φdµ, we have that ρ(x, f) = w, as desired. With this we

have that the set of extremal points of ρmes(Λ, f) is contained in ρ(Λ, f), and as

mentioned above, this gives us the inclusion

ρmes(Λ, f) ⊂ conv(ρ(Λ, f)).

Then ρmes(Λ, f) = conv(ρ(Λ, f)), and this finishes the proof of the first claim of

the proposition.

For the second claim, let w be an extremal point of conv ρ(Λ, f) = ρmes(Λ, f).

Then, just notice that we proved that the set L−1
f̃

(w) contains an ergodic measure

µ, such that ρ(µ, f) = Lf̃ (µ) = w, as desired. This finishes the proof of the

lemma.

2.2 Brouwer Theory.

In [Bro12], Brouwer proved the following theorem for homeomorphisms of the

plane, known as the Brouwer Translation Theorem:

Theorem 2.11. Let h be a homeomorphism of R2 without fixed points. Then:

1. For all point x ∈ R2 there exists a line ` passing through x such that

` ≺ h(`) and h−1(`) ≺ `.

2. There exists a cover of R2 by open invariant disks where h is conjugate to a

translation.

A line satisfying item (1) is called a Brouwer line for h. By item (2) we have

that h has no periodic points, and moreover, every point is wandering for h. The

proofs of this theorem use the Brouwer Translation Lemma, which states that if a

homeomorphism of the plane has no fixed points, then it has no periodic points.

In [Fra88] Franks proved the following stronger property of non-recurrence:
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Theorem 2.12 (Franks’ Lemma). If h is a plane homeomorphism without fixed

points, then there does not exist a sequence (Ui)i∈Z/nZ of pairwise disjoint open

disks and a sequence of integers (mi)i∈Z/nZ such that

fmi(Ui) ∩ Ui+1 6= ∅ for all i ∈ Z/nZ.

As a corollary one obtains the following.

Theorem 2.13 ([Fra89]). Let h be an orientation preserving homeomorphism of

the plane, without fixed points and which is the lift of a homeomorphism of T2.

Then, there exists ε > 0 such that there are no periodic ε-chains for h.

In [Cal04], Le Calvez showed the following remarkable and much stronger ver-

sion of the Brouwer Translation Theorem.

Theorem 2.14. Let h be a plane homeomorphism without fixed points. There

exists a topological oriented foliation F of the plane such that each leaf of F is a

Brouwer line for h.

In [Cal05] it is proved the following equivariant version of Theorem 2.14.

Theorem 2.15. Let G be a discrete group of orientation preserving homeomor-

phisms of the plane, whose action is free and proper. Let h be a plane homeo-

morphism without fixed points that commutes with the elements of G. Then, there

exists a topological oriented foliation F of the plane, invariant under the action

of G, and such that each leaf of F is a Brouwer line for h.

Then, for example, if h is the lift of a torus homeomorphism, then h commutes

with the elements of the group G generated by the horizontal and vertical trans-

lations T1 : (x, y) 7→ (x + 1, y) and T2 : (x, y) 7→ (x, y + 1), and we obtain a

topological oriented foliation of the plane by Brouwer curves which projects to a

topological oriented foliation of T2.

Passing to the universal cover, one can prove that the following theorem is

equivalent to Theorem 2.15 (see [Cal05]).

Theorem 2.16. Let M be a surface and (Ht)t∈[0,1] an isotopy in M joining the

identity to a homeomorphism f . For all z ∈ M we define the arc γz : t 7→ Ht(z).

We suppose that f does not have any contractible fixed point z, that is, a fixed

point z such that γz is a closed curve homotopic to a point. Then there exists

an oriented topological foliation F in M and for all z ∈ M an arc positively

transverse to F joining z to f(z) that is homotopic with fixed extremes to the arc

γz.
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In [Cal05], as an application of Theorem 2.16, it is proved the following Theo-

rem. The statement in [Cal05] (Theorem 9.1) is for orbits, instead of ε-chains as

it is stated here. However, the result is easily adaptable for the case of ε-chains

(see Proposition 8.2 in that article). We include a sketch of the proof.

Theorem 2.17. Let f̃ : T2 → T2 be a homeomorphism isotopic to the identity

without contractible fixed points. Fix an isotopy (H̃t)t∈[0,1] in T2 between f̃ and

the identity, and let F be the foliation of T2 transverse to (H̃t)t∈[0,1] given by

Theorem 2.16. Let (Ht)t∈[0,1] be the isotopy in R2 which is the lift of (H̃t) and

satisfies H0 = Id, and let f : R2 → R2 be the lift of f̃ given by f = H1. Let F̂ be

the lift of F to R× S1.

There exists ε > 0 such that, if x̂, ŷ ∈ R × S1, are points with lifts x, y ∈ R2

and:

• there is an ε-chain for f from x to x+ (0,m) for some m ∈ N, and

• there is an ε-chain for f from y to y + (0,−n) for some n ∈ N,

then there exists a compact leaf l ∈ F̂ which is an essential curve that separates x̂

from ŷ (that is, x̂ and ŷ belong to different connected components of R× S1 \ l).

In particular x̂ 6= ŷ.

Sketch of the Proof. Let F : R×S1 → R×S1 be the lift of f̃ such that F◦π = π◦f .

Let (Ĥt)t∈[0,1] be the isotopy in R × S1 between F and the identity which is the

lift of the isotopy (H̃t)t∈[0,1]. By Theorem 2.16, for every x̂ ∈ R× S1 there exists

an arc which is positively transverse to F̂ , joins x̂ to F (x̂) and is homotopic with

fixed extremes to the arc γx̂ :7→ Ĥt(x̂). By this, one can easily see that, for any

x̂ ∈ R×S1 there exists ε > 0 such that any point ẑ in Bε(x̂) can be joined to any

point ẑ′ in Bε(F (x̂)) by an arc which is positively transverse to F̂ and homotopic

to an arc of the form γẑx̂γx̂γF (x̂)ẑ′ , where γẑx̂ joins ẑ to x̂ in Bε(x̂) and γF (x̂)ẑ′

joins F (x̂) to ẑ′ in Bε(F (x̂)), and where the product of two arcs stands for their

concatenation.

As F is the lift of the homeomorphism f : T2 → T2, and as T2 is compact,

there exists η > 0 such that for any point x̂ ∈ R × S1, any point in Bη(x̂) can

be joined to any point in Bη(F (x̂)) by an arc positively transverse to F̂ as above.

Also, by the continuity of F , there is 0 < ε < η such that for any x̂ ∈ R× S1, if

{x̂i}ni=0 is a periodic ε-chain for F with x̂0 = x̂n = x̂, then x̂n−1 ∈ Bη(F
−1(x̂)).

Suppose then that there are x̂, ŷ ∈ R× S1 with lifts x, y ∈ R2 such that there

is an ε-chain {xi}n1
i=0 for f with x0 = x and xn1 = x+ (0,m) for some m ∈ N, and
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an ε-chain {yi}n2
i=0 for f with y0 = y and yn2 = y+ (0,−n) for some n ∈ N. Then,

we can construct a sequence of arcs (γn)n1
n=1 positively transverse to F , and such

that:

• γ1 joins x0 to f(x0),

• γi joins f(xi−2) to f(xi−1) for 2 ≤ i ≤ n1 − 2,

• γn1−1 joins f(xn1−3) to f−1(x+ (0,m)), and

• γn1 joins f−1(x+ (0,m)) to x+ (0,m).

Then, letting γ = Πn1
i=1γi, we have that γ is an arc positively transverse to F

joining x to x+ (0,m).

Analogously, we construct an arc β positively transverse to F and joining y

to y + (0,−n). In [Cal05] it is proved that γ and β project to disjoint (not

necessarily simple) loops γ̃, and β̃ in R×S1, and there is a connected component

U of R × S1 \ (γ̃ ∪ β̃) which is a topological essential annulus. As γ̃ and β̃ are

positively transverse to F̂ , then F̂ is transverse to the border of U , either inwards

or outwards. By the Poincaré Bendixon theorem, there exists a closed essential

leaf l contained in U . As the points x̂ and ŷ belong to the border of U , l separates

x from y.

2.3 Atkinson’s Lemma.

Let T : X → X be a measurable map of the metric space X, and suppose that T

is ergodic with respect to a probability measure µ. Let ϕ ∈ L1(µ).

Then, Birkhoff’s theorem tells us that for µ-almost every point x ∈ X, we have

lim
n→∞

1

n

n∑
i=0

ϕ(T i(x)) =

∫
ϕdµ,

that is, the temporal averages for x and ϕ converge to the spacial average of ϕ.

In particular, if
∫
ϕdµ = 0, for µ-a. e. x

lim
n→∞

1

n

n∑
i=0

ϕ(T i(x)) = 0.

In this case, however, one may have that the Birkhoff sums diverge: there can be

a measurable set A ⊂ X of positive µ-measure such that for any x ∈ A,

lim sup
n→∞

∣∣∣∣∣
n∑
i=0

ϕ(T i(x))

∣∣∣∣∣ =∞.
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On the other hand, by the Poincaré Recurrence Theorem, µ-almost every point

x ∈ X is recurrent: for any open set U containing x, there is n ∈ N such that

fn(x) ∈ U .

The following Theorem, known as Atkinson’s Lemma, tells us that there is

a total measure subset of X such that for any point x in this set we can find

infinitely many iterates T n(x) with both recurrence and small Birkhoff sums.

Theorem 2.18 ([Atk76]). Let (X,µ) be a probability space, and suppose that µ is

ergodic with respect to a measurable transformation T : X → X. Let φ : X → R

be a measurable function with
∫
φdµ = 0. Then, there exists a full measure set

X̃ ⊂ X such that for any x ∈ X̃, any ε > 0, and any set of positive measure

A ⊂ X containing x, it holds that

T n(x) ∈ A and

∣∣∣∣∣
n−1∑
i=0

φ(T i(x))

∣∣∣∣∣ < ε

for infinitely many values of n ∈ N.
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3 Proof of Theorem A from Theorem B.

If ρ(f) has irrational slope and contains a rational point, then by Theorem 2.8

this point is realized by a periodic orbit. Then we are left then with the case that

ρ(f) has rational slope and contains rational points.

We suppose there is a rational point v = (p1/q, p2/q) contained in ρ(f) that

is not realized by a periodic orbit, an we will prove there is a periodic essential

annular set for f which is a semi-attractor. By Remark 2.5, there is A ∈ GL(2,Z)

such that ρ(AfA−1) = Aρ(f) is a vertical segment, containing the rational point

v′ = (p′1/q, p
′
2/q) given by v′ = Av. By Remark 2.2, if g0 = (AfA−1)q

′
, then

ρ(g0) = q′ρ(AfA−1), and then ρ(g0) is a vertical interval containing the point

w = q′v′ = (p′1, p
′
2) ∈ Z2. We know that ρ(T

−p′1
1 T

−p′2
2 g0) = T

−p′1
1 T

−p′2
2 ρ(g0), and

therefore, if g = T
−p′1
1 T

−p′2
2 g0, ρ(g) is a vertical interval containing the point

T
p′1
1 T

p′2
2 (w) = (0, 0). Let Ã, g̃ and g̃0 be the homeomorphisms of T2 lifted by

A, g and g0, respectively. Then g̃ = g̃0, and as g0 = (AfA−1)q
′

= Af q
′
A−1 we

have that g̃ and f̃ q
′

are conjugate by Ã.

We now show that g has no fixed points. As v = (p1/q, p2/q) ∈ ρ(f) is not

realized by a periodic point for f̃ , then v′ = (p′1/q
′, p′2/q

′) ∈ ρ(AfA−1) is not

realized by a periodic point for Ãf̃ Ã−1, and then w = q′v′ = (p′1, p
′
2) ∈ ρ(g0) is

not realized by a fixed point for g̃0. Therefore (0, 0) = T
p′1
1 T

p′2
2 (w) ∈ ρ(g) is not

realized by a fixed point for g̃, and therefore g has no fixed points.

Then, by Theorem B, there exists an annular, essential, g̃-invariant set B ⊂ T2,

which is a semi-attractor. As f̃ q
′

and g̃ are conjugate by Ã, Ã(B) ⊂ T2 is an

annular set such that f̃ q
′
(Ã(B)) = Ã(B). The property of having a periodic

annular set which is a semi-attractor is clearly invariant by topological conjugacy,

and this finishes the proof of Theorem A.
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4 Proof of Theorem B.

4.1 Outline of the proof.

In section 4.2 we will define a simple but useful property satisfied by compact

connected sets in R2. Informally, that property is defined as follows. A compact

connected set C ⊂ R2 is said to satisfy property PL with respect to p ∈ R2

if pr2(C) is ‘large’ and p ∈ R2 is ‘to the left’ of C. Then, it is proved that if

h : R2 → R2 is a homeomorphism and C satisfies property PL with respect to p,

then h(C) intersects R(v(h(p))), where v(h(p)) is the straight vertical line passing

through h(p) oriented upwards (see Fig. 6). That is, if pr2(C) is ‘large enough’,

and p is ‘to the left’ of C, then C is pushed to the right by p under iteration by

h. The term ‘large enough’ will depend on the homeomorphism h. This property

will be an important tool in the proof of the theorem.

In section 4.3 we prove a preliminar version of Theorem B. Namely, it is proved

the existence of a finite family of simple, closed, vertical, pairwise disjoint curves

l̃i ⊂ T2, such that for each i, the maximal invariant set Θi of [l̃i, l̃i+1] is non-empty,

and ρ(Θ̃i, f) is contained either in {0} × (ε,∞) or in ρ(Λ̃i, f) ⊂ {0} × (−∞, ε),
for some ε > 0. This will give us that the family {l̃i} is such that it holds item

(2) from Theorem B (see Fig. 3).

The essence of the proof of this preliminary version comes from the results

of [Cal05] (see Theorem 1.2). However, this still does not allow us to con-

clude Theorem B; a priori the curves l̃i could be not free forever for f̃ , or they

could even be not free for f̃ . As explained in the introduction, there could be

points in T2 spinning sidewards at a sublinear speed; that is, x̃ ∈ T2 such that

limn→∞ |pr1(f
n(x))| =∞, and lim supn→∞ |pr1(f

n(x)−x)|/n = 0, for x ∈ π′−1(x̃).

In section 4.4 we will prove that the curves l̃i are free forever for f̃ . Finally, in

section 4.5 we will prove it holds items (1) and (4) from the theorem; that is, for

each i the set Ω(f̃) ∩ [l̃i, l̃i+1] is non-empty and contained in Θi, and at least one

of the sets Θi is an annular and essential semi-attractor.

4.2 Properties PR and PL.

Definition 4.1. Let h : R2 → R2 be a lift of a homeomorphism h̃ : T2 → T2,

with h̃ isotopic to the identity. Let C ⊂ R2 compact and connected, k ∈ R+ and

p ∈ R2. We say that C satisfies the property PL(k, p) if the following hold (see

Fig. 6):
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1. There exist horizontal (disjoint) straight lines r1 ≺ r2, (oriented as going

to the right) such that r1 ∩ C 6= ∅, r2 ∩ C 6= ∅, and such that the strip

(r1, r2) ⊂ R2 contains a ball of radius k centered in p.

2. The point p belongs to the (unique) connected component of (r1, r2)\C which

is unbounded to the left.

Analogously, we say that C satisfies the property PR(k, p) if it holds item (1)

from property PL(k, p) and p belongs to the (unique) connected component of

(r1, r2) \ C which is unbounded to the right.

The following lemma will be a crucial tool in the proof of Theorem B.

Lemma 4.2. Let h : R2 → R2 be a lift of a homeomorphism h̃ : T2 → T2 isotopic

to the identity, and for x ∈ R2, denote by v(x) ⊂ R2 the vertical straight line that

passes through x. There exists k > 0 such that if a compact connected set C ⊂ R2

satisfies PL(k, p) (resp. PR(k, p)) for some p ∈ R2, then h(C) ∩R(v(h(p))) 6= ∅
(resp. h(C) ∩ L(v(h(p))) 6= ∅, see Fig. 6).

Proof. First observe that as h is the lift of a homeomorphism of T2, ‖h− Id‖0 <
∞. Define k = 2 ‖h− Id‖0 + 1. Suppose that C satisfies the property PL(k, p)

for some p ∈ R2 (the case of PR(k, p) is similar). Then there are two horizontal

straight lines r1 ≺ r2 intersecting C and such that (r1, r2) contains a ball of radius

k centered in p. Observe that by the definition of k, min pr2(h(r1)) > h(p)2 >

max pr2(h(r2)), and then if w is the horizontal straight line passing through h(p),

we have

w ⊂ (h(r1), h(r2)). (2)

Define UL (resp. UR) to be the connected component of (r1, r2) \ C unbounded

to the left (resp. right). As ‖h− Id‖0 < ∞, h(UL) is unbounded to the left and

bounded to the right, and also h(UR) is unbounded to the right and bounded to

the left.

We claim that for this choice of k, we have h(C) ∩R(v(h(p))) 6= ∅. If this was

not the case, then we would have that C ∩ w+ = ∅, where w+ = w ∩ R(v(h(p)).

By (2), w+ ⊂ (h(r1), h(r2)), and therefore w+ is contained in h(UR). Then h(p)

belongs to h(UR), which is unbounded to the right, which contradicts the fact

that p belongs to a connected component of (r1, r2) \C bounded to the right. We

must have then that h(C) ∩R(v(h(p))) 6= ∅, and this proves the lemma.
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Figure 6: Left: a set C satisfying property PL(k, p). Right: h(C) ∩R(v(h(p))) 6= ∅.

4.3 Construction of the curves l̃i and proof of item (2).

The following proposition gives us a finite family of curves for which it holds item

(2) of Theorem B. It is an analogous of Proposition 2.35 in [Cal91] for the torus

case.

Proposition 4.3. Within the hypotheses of Theorem B, there exists a finite family

of pairwise disjoint, simple, closed, essential curves l̃i ⊂ T2 such that if Θi is the

maximal invariant set of [l̃i, l̃i+1], then Θi is non-empty, and ρ(Θi, f) is contained

either in {0} × (0,∞) or in {0} × (−∞, 0).

Also, the family {l̃i} can be chosen such that, for any i ∈ Z/rZ, if ρ(Θi, f) ⊂
{0} × (0,∞) then ρ(Θi+1, f) ⊂ {0} × (−∞, 0), and if ρ(Θi, f) ⊂ {0} × (−∞, 0)

then ρ(Θi+1, f) ⊂ {0} × (0,∞).

Remark 4.4. As the sets Θi are compact, the sets ρ(Θi, f) are also compact (see

Theorem 2.3). Therefore, the fact that ρ(Θi, f) is contained either in {0}× (0,∞)

or in {0} × (−∞, 0) means actually that there is ε > 0 such that ρ(Θi, f) is

contained either in {0} × (ε,∞) or in {0} × (−∞,−ε), and therefore for any

i, every point in Θi rotates with linear speed either ‘upwards’ or ‘downwards’;

that is, for a fixed i, either lim infn→∞(fn(x) − x)2/n > 0 for every x ∈ Θi, or

lim supn→∞(fn(x)− x)2/n < 0 for every x ∈ Θi.

To prove Proposition 4.3 it will be convenient to work on the lift R×S1 of T2.

We will first prove the following.

Lemma 4.5. For f̃ and f as in Theorem B, let F : R× S1 → R× S1 be the lift

of f̃ such that F ◦ π = π ◦ f . Then:

1. CR(F ) 6= ∅, and CR(F ) = Λ+ ∪ Λ−, where Λ+ and Λ− are closed disjoint
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F -invariant sets such that, denoting Λ̃± = π′′(Λ±) ⊂ T2, we have ρ(Λ̃+, f) ⊂
{0} × (ε,∞) and ρ(Λ̃−, f) ⊂ {0} × (−∞,−ε), for some ε > 0.

2. There exist simple, closed, essential curves l0 ≺ l1 ≺ · · · lr = T1(l0) on R×S1

which are free for F , and such that they ‘separate’ Λ+ from Λ−, that is:

(a) CR(F )
⋂
∪ri=0li = ∅,

(b) for 0 ≤ i < r, the set Λi := CR(F )∩ (li, li+1) is compact, non-empty and

F -invariant,

(c) for 0 ≤ i < r, either Λi ⊂ Λ+ or Λi ⊂ Λ−, and

(d) if Λi ⊂ Λ+, then Λi+1 ⊂ Λ−, and if Λi ⊂ Λ− then Λi+1 ⊂ Λ+, for any

0 ≤ i < r − 1 (see Fig. 7).

Figure 7: The sets Λi and the curves li.

Proof. First we observe the following elementary fact. There exists an isotopy

(H̃t)t∈[0,1] between the identity and f̃ with the property that if (Ht) is the lift of

(H̃t) with H0 = Id, then H1 = f . To see this just observe that if (H̃ ′t)t∈[0,1] is any

isotopy between the identity and f̃ , and if (H ′t) is the lift of (H̃ ′t) with H ′0 = Id,

then H ′1 = f+(a, b), for some a, b ∈ Z. Defining Ht = H ′t+t(−a,−b), for t ∈ [0, 1],

we have that (Ht) is an isotopy between the identity and f wich projects to an

isotopy (H̃t) on T2 between the identity and f̃ with the desired properties.

Now, let F be the Brouwer foliation of T2 transversal to H̃ given by Theorem

2.16. Let F̂ be the lift of F to R× S1.

Part 1.

CR(F ) is non-empty. Let φ : T2 → R be given by

φ(x̃) = f(x)1 − x1,
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where x ∈ R2 is any lift of x̃, and let φ1 = pr1 ◦ φ. Then

n−1∑
i=0

φ1(f̃
i(x̃)) = fn(x)1 − x1.

Let µ be any ergodic measure for f . By hypothesis,
∫
φ1dµ = ρ(µ, f)1 = 0, and

by Atkinson’s Theorem 2.18 there exists a full µ-measure set X ⊂ T2 such that

for any x̃ ∈ X, x ∈ π′−1(x̃) and ε > 0 we have that

d(f̃n(x̃), x̃) < ε, and

∣∣∣∣∣
n−1∑
i=0

φ1(f̃
i(x̃))

∣∣∣∣∣ = |fn(x)1 − x1| < ε

for infinitely many values of n ∈ N. This means that π(x) is recurrent for F , and

in particular CR(F ) 6= ∅.
Definition of Λ+ and Λ−. As f has no fixed points by hypothesis, by Franks’

Lemma 2.13 there is ε1 > 0 such that f has no periodic ε1-chains, and by Theorem

2.17 there is ε2 > 0 such that, if there are x̂, ŷ ∈ R× S1 with lifts x, y ∈ R2 such

that:

• there is an ε2-chain for f from x to x+ (0,m) for some m ∈ N, and

• there is an ε2-chain for f from y to y + (0,−n) for some n ∈ N,

then there exists a compact leaf of F̂ that separates x̂ from ŷ. Let ε0 = min{ε1, ε2}.
We define Λ+ ⊂ R×S1 as the set of points x̂ ∈ CR(F ) such that, if x ∈ π−1(x̂),

there exists an ε0-chain {xi}ni=0 for f , with x0 = x and xn = x + (0,m) for some

m ∈ N. Analogously, we define Λ− ⊂ R × S1 as the set of points x̂ ∈ CR(F )

such that, if x ∈ π−1(x̂), there exists an ε0-chain {xi}ni=0 for f , with x0 = x and

xn = x+ (0,−m), for some m ∈ N.

Λ+ and Λ− are non-empty. We prove that Λ+ is non-empty; the case of

Λ− is similar. By our hypotheses and by Proposition 2.10, there exists an ergodic

measure µ with respect to f̃ with ρ(µ)2 > 0. By Birkhoff’s Theorem, there exists

a set X ⊂ T2 of full µ-measure such that for x̃ ∈ X and x ∈ π′−1(x̃), we have

ρ(x̃, f) = lim
n

n∑
i=0

φ(f̃ i(x̃)) =

∫
φdµ = ρ(µ, f).

By Atkinson’s Lemma 2.18, there exists a full measure set X ′ ⊂ T2 such that if

x̃ ∈ X ′ and x ∈ π′−1(x̃), then for all ε > 0 there are infinitely many values of
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n > 0 such that

d(f̃n(x̃), x̃) < ε and

∣∣∣∣∣
n−1∑
i=0

φ1(f̃
i(x̃))

∣∣∣∣∣ = |fn(x)1 − x1| < ε

for and for infinitely many values of n ∈ N.

Let ỹ ∈ X ∩ X ′ and y ∈ π′−1(ỹ). Then, given ε > 0 there are increasing

sequences {rn}n and {sn}n of integers such that

|f rn(y)− y − (0, sn)| < ε,

and also ρ(ỹ, f)2 = ρ(µ, f)2 > 0. Therefore limn sn = ∞, and in particular

sn > 0 for n sufficiently large. As d(ŷ, F rn(ŷ)) < ε, and as the choice of ε > 0

was arbitrary, we have that ŷ is recurrent for F , and in particular ŷ ∈ CR(F ).

Therefore ŷ ∈ Λ+, and Λ+ is non-empty.

It holds CR(F ) = Λ+ ∪ Λ−. Observe that by the definition of the sets Λ+

and Λ−, we have that Λ+ ∪ Λ− ⊂ CR(F ), and then we only need to prove that

CR(F ) ⊂ Λ+∪Λ−. Suppose by contradiction that there is x̂ ∈ CR(F )\(Λ+∪Λ−).

By definition of Λ+ and Λ−, there exists an ε0-chain for f starting and ending

in x, that is, a periodic ε0-chain for f . By definition of ε0, we have ε0 ≤ ε1,

where ε1 is the constant given by Franks’ Lemma 2.13, and therefore that lemma

implies that there is a fixed point for f , a contradiction. Therefore we must have

CR(F ) ⊂ Λ+ ∪ Λ− as we wanted.

The sets Λ+ and Λ− are disjoint and closed. We will prove that Λ+∩Λ− =

∅. As CR(F ) = Λ+ ∪ Λ− and CR(F ) is closed, this will imply that Λ+ and Λ−

are closed and disjoint. Suppose by contradiction that there is x̂ ∈ Λ+ ∩ Λ−. Let

ŷ ∈ Λ+ and ẑ ∈ Λ−, be such that d(ŷ, x̂) < ε0/3 and d(ẑ, x̂) < ε0/3, and let

{yi}n1
i=0, and {zi}n2

i=0 be ε0/3-chains for f such that y0 ∈ π−1(ŷ), yn1 = y0 +(0,m1),

z0 ∈ π−1(ẑ), |z0− y0| < 2ε0/3 and zn2 = y0 + (0,−m2), for some m1,m2 ∈ N. We

now show that we can concatenate integer translates of these chains {yi} and {zi}
to get a periodic chain for f . For each 0 ≤ i < m2 define the ε0/3-chain {yil}

n1
l=0

for f as the translate of {yl}n1
l=0 by T im1

2 , that is,

yil = T im1
2 yl, for 0 ≤ l < n1,

and for each 0 ≤ j < m1, define the ε0/3-chain {zjk}
n2
k=0 for f as the translate of

{zk}n2
k=0 by Tm1m2−jm2

2 , that is,

zjk = Tm1m2−jm2

2 zk, for 0 ≤ k < n2.
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Define then the ε0-chain {wi}n1m2+n2m1
i=0 for f as the concatenation of the chains

defined above, given by

win1+l = yil , for 0 ≤ i < m2 and 0 ≤ l < n1,

wm2n1+jn2+k = zjk for 0 ≤ j < m1 and 0 ≤ k < n2, and

wn1m2+n2m1 = w0.

Then, {wi}n1m2+n2m1
i=0 is a periodic ε0-chain for f . By Franks’ Lemma 2.13 this is

a contradiction, and therefore there cannot be x̂ ∈ Λ+ ∩ Λ−. As we mentioned,

this implies that Λ+ and Λ− are closed and disjoint.

Before proving that the sets Λ+ and Λ− are F -invariant and the last claim of

Part 1, we will prove Part 2.

Part 2.

Construction of the family {li}ri=0. By Theorem 2.17 and by the definition

of the sets Λ+ and Λ−, for each x ∈ Λ+, y ∈ Λ−, there exists a compact leaf

l ∈ F̂ that separates x from y. So, the set Fc of compact leaves of F̂ is not

empty. The union of the compact leaves of a foliation of T2 is compact (see for

ex. [Hae62]), and as F̂ is a lift of a foliation of T2, the set ∪Fc is closed as a

subset of R × S1 (∪Fc denotes the union of the elements of Fc). Observe that,

as the leaves of F are Brouwer lines for f , the elements of Fc are free curves for F .

Claim: CR(F ) ∩ Fc = ∅.
Let l ∈ Fc, and without loss of generality, assume that l ≺ F (l). Let δ :=

d(l, F (l)) > 0, and let x ∈ l. Observe that F (R(l)) = R(F (l)), and then if {xi}ri=0

is any δ/2-chain with x0 = x, it holds that d(xi, l) > δ/2 for all 0 < i ≤ r, and

therefore x is not chain recurrent for F . As the choice of l ∈ Fc and x ∈ l was

arbitrary, we have that CR(F ) ∩ Fc = ∅, which proves our claim.

This claim gives us that CR(F ) has an open cover U ′ whose elements are the

connected components of R × S1 \ ∪Fc, which are sets of the form (l, l′), with

l, l′ ∈ Fc. By definition of the sets Λ+ and Λ−, and by Theorem 2.17 we have that

for any element (l, l′) of U ′,

either CR(F ) ∩ (l, l′) ⊂ Λ+, or CR(F ) ∩ (l, l′) ⊂ Λ−.

Now, fix l∗ ∈ Fc. The compact set CR(F ) ∩ [l∗, T1(l∗)] has a finite subcover

U ′′ ⊂ U ′, of the form U ′′ = {(l′2i, l′2i+1)}r
′−1
i=0 . We reindex the curves l′i in a way
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that l′i ≺ l′i+1 for 0 ≤ i < 2r′ − 1, and we extract from the family of compact

leaves {l′i}2r
′−1

i=0 a subfamily {li}r−1i=0 which is minimal with respect to the following

property: if lr = T1(l0), then for each 0 ≤ i < r

either ∅ 6= CR(F ) ∩ (li, li+1) ⊂ Λ+, or ∅ 6= CR(F ) ∩ (li, li+1) ⊂ Λ−.

As a consequence we have that, if for 0 ≤ i < r we define

Λi = CR(F ) ∩ (li, li+1),

then,

• Λi 6= ∅ for all 0 ≤ i < r, and

• if Λi ⊂ Λ+ then Λi+1 ⊂ Λ−, and if Λi ⊂ Λ− then Λi+1 ⊂ Λ+, for any

i ∈ Z/rZ.

This concludes the construction of the family {li}r−1i=0 satisfying items (a), (c) and

(d) from Part 2 of the lemma. We also have that Λi 6= ∅ for all 0 ≤ i < r, so to

prove that {li}r−1i=0 satisfies item (b) it remains to prove that Λi is F -invariant, for

each 0 ≤ i < r.

For any 0 ≤ i < r, Λi is F -invariant. Fix i ∈ {0, . . . , r − 1}. First we prove

that F (Λi) ⊂ Λi. As CR(F ) is F -invariant and Λi = CR(F ) ∩ (li, li+1), to show

that F (Λi) ⊂ Λi it suffices to show that if x ∈ Λi then F (x) ∈ (li, li+1).

Suppose this is not true. Then there exists x0 ∈ Λi such that F (x0) /∈ (li, li+1).

Without loss of generality suppose that F (x0) ∈ R(li+1). Then, as li+1 is free

for F we must have that li+1 ≺ F (li+1). Let δ1 := d(li, F (li)) > 0. By the

continuity of F there is δ2 > 0 such that if d(x, li) < δ2, then F (x) ∈ R(li) and

d(F (x), li) > δ1/2. Let δ = min{δ2, δ1/2}, and let {yi}si=0 be any δ-chain for F

with y0 = x0. Then d(y1, li) < δ2 and then F (y1) ∈ R(li) and d(F (y1), li) > δ1/2.

Therefore, y2 ∈ R(li), and F (y2) ∈ R(F (li)). Then y3 ∈ R(li). By induction,

we get that yn ∈ R(li) for all n ≥ 2. As {yi}si=0 was an arbitrary δ-chain with

y0 = x0, we then have that x0 is not δ-chain recurrent, which contradicts that

x0 ∈ Λi ⊂ CR(F ). This contradiction gives us that F (x0) must be contained in

(li, li+1), and therefore F (Λi) ⊂ Λi.

Now we prove that F−1(Λi) ⊂ Λi. Applying the arguments in last paragraph to

F−1 we get that F−1(CR(F−1)∩(li, li+1)) ⊂ CR(F−1)∩(li, li+1), and as CR(F ) =

CR(F−1) we get that F−1(Λi) ⊂ Λi.
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As the choice of i was arbitrary, we conclude that for any i, Λi is F -invariant,

as we wanted. This finishes the proof of Part 2.

Now we proceed to the remaining part of the proof of Part 1.

The sets Λ+ and Λ− are F -invariant. We proved that for each i the set

Λi is F -invariant, and contained either in Λ+ or in Λ−. As both Λ+ and Λ− are

contained in ∪Λi, we conclude that Λ+ and Λ− are F -invariant.

There is ε > 0 such that ρ(Λ̃+, f) ⊂ {0} × (ε,∞), and ρ(Λ̃−, f) ⊂ {0} ×
(−∞,−ε). We will deal only with the case of ρ(Λ̃+, f); the case of ρ(Λ̃−, f) is

analogous. As Λ+ is closed and F -invariant, Λ̃± is a compact f̃ -invariant set.

Let v− the lower endpoint of conv ρ(Λ̃+, f). It suffices to prove that (v−)2 > 0.

Suppose by contradiction that (v−)2 ≤ 0.

By Proposition 2.10, as v− is an extremal point of conv ρ(Λ̃, f), there exists

an ergodic measure µ for f̃ with ρ(µ, f) = v− and therefore supp(µ) ⊂ π′′(Λ+).

As (v−)2 ≤ 0, then, as in the proof that Λ+ and Λ− are non-empty, with the aid

of Birkhoff’s Theorem and Atkinson’s Lemma 2.18, we find a point x̃ ∈ supp(µ)

such that

fn(x)− x− (0,−m) < ε0

for x ∈ π′−1(x̃) and for some n ∈ N and m ∈ N0. If m > 0 this means that

π(x) ∈ Λ−, and as x ∈ π′−1(supp(µ)) and supp(µ) ⊂ π′′(Λ+), we have that

π(x) ∈ π(π′−1(π′′(Λ+))) = π′′−1(π′′(Λ+)) = Λ+. Therefore Λ+ ∩ Λ− 6= ∅, which is

a contradiction, and then we cannot have that m > 0. If m = 0 we have that x is

ε0-chain recurrent for f , which by the definition of ε0 and by Franks’ Lemma 2.13

is a contradiction. Therefore we cannot have that (v−)2 ≤ 0, as we wanted. This

finishes the proof of Part 1, and of the lemma.

Remark 4.6. The fact that the sets Λi ⊂ (li, li+1) are non-empty and F -invariant

implies the following. If ` ⊂ R2 is a lift of li and if `′ ⊂ R2 is the lift of li+1 such

that ` ≺ `′ ≺ T1(`), then

⋂
n∈Z

fn ((`, `′)) = π−1

(⋂
n∈Z

F n ((li, li+1))

)
⊃ π−1(Λi) 6= ∅.

Proof of Proposition 4.3. By construction, the curves li are lifts of leaves from a

foliation of T2; that is, the curves l̃i = π′′(li) ⊂ T2 are also compact leaves from

a foliation of T2 (and therefore pairwise disjoint). As π′′ : R × S1 → T2 is a

covering map, the curves l̃i are also essential, and by the definition of π′′ it is easy
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to see that they are vertical. For any 0 ≤ i < r, if Θi ⊂ T2 is as in Theorem B

and Λi ⊂ R × S1 is as in Lemma 4.5, we observe that Θi is non-empty: by item

2-(b) of Lemma 4.5, ∅ 6= π′′(Λi) ⊂ (l̃i, l̃i+1) is f̃ -invariant, and then π′′(Λi) ⊂ Θi.

We now prove that it holds (2) from Theorem B; that is, ρ(Θi, f) is contained

either in {0} × (0,∞) or in {0} × (−∞, 0) for each i.

Let i ∈ {0, 1, . . . , r − 1}, and suppose first that Λi ⊂ Λ+, where Λ+ is as in

Lemma 4.5. Then we will prove that ρ(Θi, f) ⊂ {0}× (0,∞). Let v− be the lower

endpoint of the interval conv(ρ(Θi, f)). To prove that ρ(Θi, f) ⊂ {0} × (0,∞), it

suffices then to prove that (v−)2 > 0. By contradiction, suppose that (v−)2 ≤ 0.

By Proposition 2.10, we can find an ergodic measure µ with support contained

in Θi and with ρ(µ, f) = v−. As in the proof in Lemma 4.5 that the sets Λ+

and Λ− are non-empty, with the use of Atkinson’s Lemma we can find a point

x̃ ∈ supp(µ) such that, for any ε > 0 and x ∈ π′−1(x̃), it holds

|fn(x)− x− (0,m)| < ε for some m ≤ 0 and n > 0. (3)

Therefore if x̂ ∈ π′′−1(x̃) ⊂ R × S1, x̂ is recurrent for F , and in particular

x̂ ∈ CR(F ). As x̃ ∈ supp(µ) ⊂ [l̃i, l̃i+1], x̂ ∈ [li, li+1]. Therefore x̂ ∈ CR(F ) ∩
[li, li+1] = Λi. As in (3) ε > 0 is arbitrary and m ≤ 0, we have that x̂ ∈ Λ−, and

then Λi ∩ Λ− 6= ∅, which contradicts our assumption that Λi ⊂ Λ+. Therefore we

must have (v−)2 > 0, and this proves that ρ(Θi, f) ⊂ {0}× (0,∞), as we wanted.

Similarily, if Λi ⊂ Λ− we prove that ρ(Θi, f) is contained in {0} × (−∞, 0).

The choice of i ∈ {0, . . . , r − 1} was arbitrary, and then we have that for the

family {l̃i}r−1i=0 it holds item (2) from Theorem B

4.4 Proof of item (3).

4.4.1 Main ideas.

In this section we prove item (3) from Theorem B; that is, we prove that the

curves l̃i ⊂ T2 are free forever for f̃ . We start by specifying the following.

Notation. From now on, r will denote the cardinality of the family {l̃i}r−1i=0

obtained in Proposition 4.3.

We claim that we may assume that each of the closed curves l̃i is a straight

vertical circle. To see this, note that it is easy to define a homeomorphism h̃ :

T2 → T2 in the isopoty class of the identity such that h̃(l̃i) is a straight vertical
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circle, for all 0 ≤ i < r. For a simple closed curve, the property of being free forever

for f̃ is invariant by topological conjugacy, so to prove that the curves l̃i are free

forever for f̃ , it suffices to prove that the curves h̃(l̃i) are free forever for h̃f̃ h̃−1.

As h̃ is isotopic to the identity, there is a lift h of h̃ such that ρ(hfh−1) = ρ(f),

and then in the proof of Theorem A we can work with h̃f̃ h̃−1 instead of f̃ . This

proves our claim.

So from now on we make the following assumption:

Assumption 4.7. For each 0 ≤ i < r, the curve l̃i is a straight vertical circle.

By construction of the family {l̃i}, if ` ⊂ R2 is a lift of some l̃i then ` is a

Brouwer curve for f , so either ` ≺ f(`) or f(`) ≺ `. However, under the hypothesis

that ρ(f) is an interval of the form {0} × I, we cannot have T1(`) ≺ fn(`), nor

fn(`) ≺ T−11 (`) for any n ∈ Z. Let us show this. Suppose for example that

T1(`) ≺ fn0(`) for some n0 ∈ N. (4)

As f commutes with T1, T
2
1 (`) ≺ fn0(T1(`)), and then T2(`) ≺ f 2n0(`). By

induction, we get that

T k1 (`) ≺ fkn0(`) for all k ∈ N. (5)

As we are under Assumption 4.7, the curves `i are straight and vertical, and then

(5) gives us that for any point x ∈ `, it holds fkn0(x)1 − (x)1 > k for each k ∈ N.

This means that max pr1(ρ(f)) > 1/n0 > 0, a contradiction, and therefore (4)

is not possible. One discards analogously the case n0 < 0 and the case that

fn(`) ≺ T−11 (`) for some n ∈ Z.

By this, we conclude the following:

Remark 4.8. In order to prove that the curves l̃i are free forever for f̃ , it suffices

to show that for any i, if ` ⊂ R2 is a lift of l̃i, then

fn(`) ∩ T−11 (`) = ∅ = fn(`) ∩ T1(`) for all n ∈ Z.

As we will be working basically in R2 with lifts of the curves l̃i, we start by

fixing a family of such lifts.

Definition 4.9 (The curves `i). For i ∈ Z we define a lift `i ⊂ R2 of the curve

l̃i mod r in the following way. First define `0 ⊂ R2 as any lift of l̃0. Then, for each

1 ≤ i < r define `i as the lift of l̃i such that `0 ≺ `i ≺ T1(`0) (reindexing the

curves l̃i we may assume that `i ≺ `i+1 for all 0 ≤ i ≤ r − 2). Then, for every

0 ≤ i < r and j ∈ N we define `jr+i = T j1 `i (see Fig. 8).
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Figure 8: The curves `i. By Assumption 4.7 they are straight lines.

Strategy of the proof. To prove that the curves l̃i are free forever for f̃ it will

be enough to prove the following:

Claim 4.10. There exists i0 ∈ N0 such that fn(`i0) ⊂ L(`i0+1) for all n ∈ Z.

Let us see how Claim 4.10 implies that the curves l̃i are free forever for f̃ .

Suppose on the contrary that it holds (4.10) and there is i1 ∈ {0, . . . , r − 1} such

that the curve l̃i1 is not free forever for f̃ . By Remark 4.8, there is n0 ∈ Z such

that, either fn0(`i1)∩T1(`i1) 6= ∅, or fn0(`i1)∩T−11 (`i1) 6= ∅. Suppose that it holds

the former (the latter case is similar). Let `∗ ⊂ R2 be the integer translate of `i1
such that `∗ ⊂ (T−11 (`i0), `i0 ], and `i0 ≺ T1(`∗). Then, by the periodicity of f we

have that fn0(`∗)∩T1(`∗) 6= ∅, and this implies that fn0(`i0)∩R(`i0+1) 6= ∅, which

contradicts (4.10). Therefore (4.10) implies that the curves l̃i are free forever for

f̃ .

To prove Claim 4.10 we will proceed by contradiction. First note the following.

Claim 4.11. If Claim 4.10 does not hold, there is n0 > 0 such that, either

fn0(`i) ∩ `i+1 6= ∅ for all i, or fn0(`i) ∩ `i−1 6= ∅ for all i.

Proof. Observe that for any i and n, we cannot have `i+1 ≺ fn(`i) nor fn(`i) ≺
`i−1. This is because f preserves orientation and, for any i, the maximal invariant

set of (`i, `i+1) is non-empty (see Remark 4.6). From this we obtain that if Claim

4.10 does not hold, then for each i there is Ni > 0 such that either fNi(`i) ∩
`i+1 6= ∅, or fNi(`i) ∩ `i−1 6= ∅. By the fact that f is a orientation preserving

homeomorphism it is easy to see that we must actually have either fNi(`i)∩`i+1 6=
∅ for all i, or fNi(`i) ∩ `i−1 6= ∅ for all i. By the periodicity of f , defining

n0 = min0≤i<rNi the claim follows.
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By Claim 4.11 and by our hypothesis that ρ(f) is of the form {0}× I, to prove

Claim 4.10 it suffices to prove the following.

Claim 4.12. If Claim 4.10 does not hold, we have the following possibilities:

1. There is n0 > 0 such that fn0(`i)∩ `i+1 6= ∅ for all i, and max pr1(ρ(f)) > 0.

2. There is n0 > 0 such that fn0(`i) ∩ `i−1 6= ∅ for all i, and min pr1(ρ(f)) < 0.

Therefore, to prove that the curves l̃i are free forever for f̃ , the rest of Section

4.4 will be dedicated to the proof of Claim 4.12. For future reference we make the

following explicit statement:

Remark 4.13. The fact that ρ(f) is of the form {0} × I, together with Claim

4.12 imply that the curves l̃i are free forever for f̃ .

To end section 4.4.1 we explain the ideas of how we will prove Claim 4.12. By

Claim 4.11, there is n0 > 0 such that either

fn0(`i) ∩ `i+1 6= ∅ for all i, (6)

or

fn0(`i) ∩ `i−1 6= ∅ for all i. (7)

We suppose it holds (6) and we will outline the proof that max pr1(ρ(f)) > 0

(the proof that min pr1(ρ(f)) < 0 for the case it holds (7) is similar). We want

to show that there is a sequence of points xk ∈ R2 and a natural number N such

that pr1(f
Nk(xk)− xk) ≥ k for all k ∈ N. Observe that (6) implies in particular

that `i ≺ f(`i) for all i. By Proposition 4.3, the sets Θ0,Θ1 ⊂ T2 which are the

maximal invariant sets of [l̃0, l̃1] and [l̃1, l̃2], resp., are non-empty, and we have

either ρ(Θ0, f) ⊂ {0}× (0,∞) and ρ(Θ1, f) ⊂ {0}× (−∞, 0), or viceversa. To fix

ideas, suppose that ρ(Θ0, f) ⊂ {0} × (0,∞) and ρ(Θ1, f) ⊂ {0} × (−∞, 0).

Using the fact that the points of π′−1(Θ0)∩(`0, `1) go upwards under iteration by

f , and the points of π′−1(Θ1)∩ (`1, `2) go downwards, we will prove the following:

fn0(`0) ∩ `1 6= ∅ implies that fn0+m(`0) ∩R(`1) gets

vertically stretched as m→∞,

where by ‘vertically stretched’ we mean that the vertical diameter of some con-

nected components of fn0+m(`0) ∩ R(`1) grows to infinity as m→∞. Using this

we will get that, for some m large enough, there is a connected component C1 of
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fn0+m(`0)∩R(`2) that satisfies property PL (cf. sec. 4.2) with respect to a point

p1 ∈ `1 such that fn0(p1) ∈ `2 (such a point exists; just take p1 ∈ `1 ∩ f−n0(`2)).

Then, Lemma 4.2 will give us that fn0(C1) ∩R(`2) 6= ∅ (see Fig. 9).

Proceeding inductively, we will prove that for any n, there is an iterate of `0
that intersects `n. Moreover, and this is a crucial fact, we will prove that this is

done at a uniform speed: there exists an integer N > 0 such that for any n ∈ N,

fNn(`0) intersects `n. In particular there exists a sequence of points xk in `0

such that pr1(f
Nk(xk)− xk) ≥ k for all k ∈ N, and therefore max pr1(ρ(f)) > 0.

This will conclude the proof that in the case it holds (6) then max pr1(ρ(f)) > 0.

The arguments for proving that min pr1(ρ(f)) < 0 in the case it holds (7) are

analogous. Therefore, this concludes the outline of the proof of Claim 4.12.

Figure 9: fNi(`0) intersects `i. Then, fNi+m(`0) gets vertically stretched in R(`ir) for large m,

and after that, pi ‘pushes rightwards’ fNi+m(`0) under iteration by fn0 .

This section is organized as follows. In section 4.4.2 we prove a lemma relating

properties PL and PR to the iterates of the curves `i, which formalizes some

ideas explained above. In section 4.4.3 we define and study the sets Ri
∞ and Li∞,

which will be our references for the horizontal displacement of the iterates fn(`0).

In section 4.4.4 we prove that the curves l̃i are free forever for f̃ assuming some

lemmas that will be proved in section 4.4.5.

4.4.2 The properties PL and PR, and the curves `i.

The following lemma is a convenient application of Lemma 4.2.

Lemma 4.14. Let i, j ∈ N and suppose that n ∈ Z is such that fn(`i) ∩ `j 6= ∅.
Then, there exists a constant K > 0 such that, if C ⊂ R2 is a continuum contained

in the open strip bounded by `i and `j and such that diam2(C) ≥ K, then:
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• If i < j, then fn(C) ∩R(`j) 6= ∅.

• If j < i, then fn(C) ∩ L(`j) 6= ∅.

Proof. Without loss of generality suppose that n > 0. By Lemma 4.2 applied

to fn there is a constant k > 0 such that, if C is a continuum that satisfies the

property PL(k, p) (or PR(k, p)) for some p ∈ R2, then fn(C) ∩ R(v(fn(p))) 6= ∅
(resp., fn(C) ∩ L(v(fn(p))) 6= ∅).

We treat the case i < j, the case i > j being similar. By hypothesis fn(`i)∩`j 6=
∅. Take x ∈ f−n(`j) ∩ `i and define K = k + 1. Suppose that C is a continuum

contained in (`i, `j) and such that diam2(C) ≥ K. Then there is s ∈ Z such that

((T s2 (x))2 − k, (T s2 (x))2 + k) ⊂ pr2(C).

As we are under Assumption 4.7, the line `i is straight, and as C ⊂ R(`i), it

is easy to see that C satisfies property PL(k, x). Therefore as fn(T s2 (x)) ∈ `j,

Lemma 4.2 gives us that fn(C) ∩ R(`j) = fn(C) ∩ R(v(fn(T s2 (x)))) 6= ∅, as we

wanted.

4.4.3 The sets Li∞, R
i
∞, and Xi.

In this section we study an important tool in this work. For each i ∈ N, define

the sets

Ri
∞ =

⋂
n∈Z

R (fn(`i)) , Li∞ =
⋂
n∈Z

L(f−n(`i+1)), and Xi = Li∞ ∪Ri
∞

(see Fig. 10.)

As we are under Assumption 4.19, `i ≺ f(`i) for all i, and therefore we have

that

Ri
∞ = {x ∈ R2 : f−n(x) ∈ R(`i) ∀n ≥ 0},

and

Li∞ = {x ∈ R2 : fn(x) ∈ L(`i+1) ∀n ≥ 0}.

The following lemmas study some properties of these sets.

Lemma 4.15. For every i ≥ 0:

1. if C is a connected component of Ri
∞, then sup pr1(C) = +∞,

2. if C ′ is a connected component of Li∞, then inf pr1(C
′) = −∞, and
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Figure 10: Some examples of the sets Li
∞, Ri

∞ and Xi.

3. the connected components of R2 \Xi are simply connected.

Proof. Let S = R × S1 ∪ {∞} ∪ {−∞} be the two-point compactification of

R× S1, which is homeomorphic to S2, and let j : R× S1 ↪→ S be the inclusion.

By assumption 4.7, the curves π(`i) ⊂ R×S1 are vertical circles, and then the sets

Dn := j(π(R(fn(`i))))∪{∞}, and D′n := j(π(L(f−n(`i))))∪{−∞} are topological

closed discs in S, for any n and i. Observe that

L̂i := j(π(Li∞)) ∪ {−∞} =
⋂
n∈N

D′n,

and

R̂i := j(π(Ri
∞)) ∪ {∞} =

⋂
n∈N

Dn.

As we are under Assumption 4.19, `i ≺ f(`i) for any i, and then Dn+1 ⊂ Dn for

all n. Therefore the sets L̂i and R̂i are nested intersections of topological closed

discs, and thus they are compact and connected.
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Observe that, for every i, Li∞ ∩ Ri
∞ = ∩n∈Zfn((`i, `i+1)). By Remark 4.6,

Li∞ ∩ Ri
∞ 6= ∅, and then L̂i ∩ R̂i 6= ∅. Therefore, X̂i := j(Xi) ∪ {∞} ∪ {−∞} is

compact and connected, as it is the union of L̂i and R̂i, which are connected sets

with nonempty intersection.

(1). It suffices to show that, for x ∈ R̂i \ {∞}, if Cx is the connected component

of R̂i \ {∞} containing x, then∞ ∈ Cx. For each n, let αn be an arc contained in

Dn, such that αn(0) = ∞ and αn(1) = x. Let B ⊂ S be a ball that contains ∞,

and does not contain x. For each n, let βn ⊂ αn be an arc contained in Bc with

extremes βn(0) ∈ ∂B and βn(1) = x. Then, take an accumulation point C ⊂ S of

the sequence (βn) in the Hausdorff topology. As βn ⊂ αn ⊂ Dn, and as Dn ⊂ Dn−1

for all n, we have that βn ⊂ Dk for all k ≤ n. Therefore C is contained in Dn for

all n; that is, C ⊂ R̂i = ∩n≥0Dn. Also, C is compact, connected, contains x, and

intersects ∂B. Therefore, the connected component Cx must contain C, and then

Cx intersects ∂B. As B was an arbitrarily small ball containing ∞, this means

that ∞ ∈ Cx, as we wanted.

(2). The proof is analogous to (1).

(3). First we will prove that the connected components of S \ X̂i are simply

connected. To see this just note that if there was a connected component U0 of

S \ X̂i not simply connected, then there would exist a simple closed curve γ ⊂ U0

separating two connected components of ∂U0, but as ∂U0 ⊂ X̂i, we would have

that X̂i is not connected, a contradiction. Then each connected component of

S \ X̂i must be simply connected.

Now, let V be any connected component of Xc
i . Then j(V ) ⊂ S is a connected

component of S \ X̂i, and therefore simply connected. As j : R2 → S \ {∞} is a

homeomorphism, V must be also simply connected.

Corollary 4.16. For each i ≥ 0, the connected components of Xc
i ∩ (`i, `i+1) are

simply connected.

Proof. If A,B ⊂ R2 are simply connected sets, it is easy to see that each connected

component of A∩B is simply connected. Then, if U is any connected component

of Xc
i , each connected component of U ∩R(`i) is simply connected, and then each

connected component of U ∩ (`i, `i+1) = U ∩R(`i) ∩ L(`i+1) is simply connected.

As any connected component of Xc
i ∩(`i, `i+1) is of the form U0∩(`i, `i+1), for some

connected component U0 of Xc
i , we then have that any connected component of

Xc
i ∩ (`i, `i+1) is simply connected.
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The following lemma is an application of Lemma 4.14.

Lemma 4.17. There exists a constant M0 such that, for any i ≥ 0, any connected

component of Ri
∞ ∩ L(`i+1) has vertical diameter less than M0, and also any

connected component of Li∞ ∩R(`i) has vertical diameter less than M0.

Proof. First we treat the case of Ri
∞∩L(`i+1). As we are under Assumption 4.19,

we have that f−n0(`i+1) ∩ `i 6= ∅ for all i ≥ 0. By Lemma 4.14, there exists a

constant K0 > 0 such that if C ⊂ R2 is a continuum contained in (`i, `i+1) with

diam2(C) > K0, then f−n0(C)∩L(`i) 6= ∅. Therefore, for any i ≥ 0, any connected

component C0 of Ri
∞ ∩L(`i+1) must have vertical diameter less than K0, because

otherwise f−n0(C0) would intersect L(`i), which contradicts the definition of Ri
∞.

Analogously, by Assumption 4.19, we have that fn0(`i) ∩ `i+1 6= ∅ for all i ≥
0, and by Lemma 4.14, if C ⊂ R2 is a continuum contained in (`i, `i+1), with

diam2(C) > K0 then fn0(C) ∩ R(`i+1) 6= ∅. Therefore, for any i ≥ 0, any

component C0 of Li∞ ∩ R(`i) must have vertical diameter less than K0, because

otherwise fn0(C0) would intersect R(`i+1), which contradicts the definition of Li∞.

Setting M0 = K0, the lemma follows.

Lemma 4.18. There exists M1 > 0 such that for any i ≥ 0, any connected

component of Xc
i ∩ (`i, `i+1) has vertical diameter less than M1.

Proof. Let i ≥ 0, and let x ∈ Li∞ ∩ Ri
∞. Let C1 and C2 be the connected

components of Ri
∞ ∩ L(`i+1) and Li∞ ∩ R(`i), respectively, that contain x. By

Lemma 4.15 C1 is unbounded to the right and C2 is unbounded to the left, so

C1 intersects `i+1 and C2 intersects `i. The set C = C1 ∪ C2 is connected and

as it intersects both `i and `i+1, it separates (`i, `i+1), that is, (`i, `i+1) \ C is not

connected. Also, by Lemma 4.17, there is a constant M0 such that diam2(Ci) ≤
M0 for i = 1, 2, and then diam2(C) ≤ 2M0. Thus, C∩T 3M0

2 (C) = C∩T−3M0
2 (C) =

∅.
Now, consider the set

A =
⋃
n∈Z

T 3M0n
2 (C).

The connected components of (`i, `i+1) \ A have then vertical diameter less than

diam2(C) + 3M0 ≤ 4M0. As A ⊂ Xi, any connected component of Xc
i ∩ (`i, `i+1)

is contained in a connected component of (`i, `i+1) \ A, and therefore is bounded

by 4M0. Therefore, making M1 := 4M0, the lemma follows.
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4.4.4 Proof of item (3) from Theorem B.

We start by recalling the statements of Claims 4.10 and 4.12:

Claim (4.10). There exists i0 ∈ N0 such that fn(`i0) ⊂ L(`i0+1) for all n ∈ Z.

Claim (4.12). If Claim 4.10 does not hold, we have the following possibilities:

1. There is n0 > 0 such that fn0(`i)∩ `i+1 6= ∅ for all i, and max pr1(ρ(f)) > 0.

2. There is n0 > 0 such that fn0(`i)∩ `i−1 6= ∅ for all i, and min pr1(ρ(f)) < 0.

Also, we recall that Claim 4.12 implies that the curves l̃i are free forever for f

(see Remark 4.13 in section 4.4.1), and therefore, to prove item (3) from Theorem

B it suffices to prove Claim 4.12.

For the sake of simplicity in subsequent statements, we will subdivide Claim

4.12 in the following two claims.

Claim (4.12a). If there is n0 > 0 such that fn0(`i) ∩ `i+1 6= ∅ for all i, then

max pr1(ρ(f)) > 0.

Claim (4.12b). If there is n0 > 0 such that fn0(`i) ∩ `i−1 6= ∅ for all i, then

min pr1(ρ(f)) < 0.

The proof of both Claim 4.12a and Claim 4.12b implies Claim 4.12. To see

this just recall that if Claim 4.10 does not hold, by Claim 4.11 there is n0 > 0

such that either fn0(`i) ∩ `i+1 6= ∅ for all i, or fn0(`i) ∩ `i−1 6= ∅ for all i.

Now we will state two central lemmas (Lemmas 4.20 and 4.22), and using

these lemmas, we will prove Claim 4.12a. The proof of Claim 4.12b will be totally

analogous. In section 4.4.5 we will proceed to the proof of Lemmas 4.20 and 4.22.

As we want to prove Claim 4.12a, we will work under the assumption that

there is n0 > 0 such that fn0(`i) ∩ `i+1 6= ∅ for all i. Unless stated the contrary,

this assumption will be implicit from now on:

Assumption 4.19. There is n0 > 0 such that fn0(`i) ∩ `i+1 6= ∅ for all i.

Recall that if α is an arc, α̇ denotes the open arc which is α without its

endpoints. The first of our two central lemmas gives us, for each i ≥ 0, a connected

component Ui of Xc
i ∩ (`i, `i+1) and an arc αi such that α̇i is contained in Ui, αi

intersects both `i and ∂Ui \ `i, and αi exits the strip (`i, `i+1) under an amount of

iterates by f which is uniform on i.
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Definition and Lemma 4.20 (The sets Ui and the curves αi). For each i ≥ 0

there exists a connected component Ui of Xc
i ∩ (`i, `i+1) and an arc αi such that:

• αi(0) ∈ `i \ Li∞,

• αi(1) ∈ Ri
∞ \ Li∞, and

• αi(t) ∈ Ui for 0 < t < 1 (see Fig. 11).

Also, there is N1 ∈ N such that fN1(αi) ⊂ R(`i+1) for any i ≥ 0.

Figure 11: The sets Ui and the curves αi. In this example U i intersects `i+1. In general we may

have U i ∩ `i+1 = ∅.

Before stating the second lemma, we make a definition which we now loosely

explain. For i ≥ 0 let Ui and αi be as in Definition 4.20. We will say that a curve

γ̃ has good intersection with Ui if γ̃ contains an arc γ such that γ̇ is contained in

Ui, γ is ‘to the right’ of `i, one endpoint of γ has its forward orbit contained in

(`i, `i+1), and the other endpoint of γ is in αi.

Definition 4.21 (good intersection). Let {Ui}i≥0 and {αi}i≥0 be as in Lemma

4.20. Let j ∈ N0 and s ∈ Z. We say that a curve γ̃ has good intersection with

T s2 (Uj) if γ̃ contains an arc γ such that:

• one endpoint of γ lies in T s2 (∂Uj) ∩ Lj∞,

• the other endpoint of γ lies in T s2 (αj), and

• γ̇ ⊂ T s2 (U j) \Xj (see Fig. 12).

The second of our two central lemmas gives us a constant N2 ∈ N such that,

for any i and any curve βi contained in [`i, `i+1] satisfying some specific conditions,
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Figure 12: Left: γ has good intersection with Ui0 . Right: γ does not have good intersection

with Ui0 .

we have that fN2(βi) has good intersection with some vertical integer translate

of Ui+1. These conditions are the following: β̇i is contained in Xc
i ∩ (`i, `i+1), one

extreme of βi is in `i+1, and the other extreme remains in (`i, `i+1) under forward

iteration by f .

Lemma 4.22. There exists N2 > 0 such that for any i ≥ 0, and any arc βi such

that:

• βi(0) ∈ Li∞,

• βi(1) ∈ `i+1, and

• βi(t) ∈ Xc
i ∩ (`i, `i+1) for 0 < t < 1,

then fN2(βi) has good intersection with T s2 (Ui+1), for some s ∈ Z (see Fig. 13).

We emphasize that the constant N2 is independent of i and of βi. Our two

main lemmas 4.20 and 4.22 give us the following.

Lemma 4.23. There exists N3 > 0 such that, for each n ≥ 0, fnN3(`0) has good

intersection with T sn2 (Un), for some sn ∈ Z.

Proof. Let N1 and N2 be the constants given by Lemmas 4.20, and 4.22, respec-

tively, and set N3 := N1 +N2. We proceed by induction.

Step n = 0. It follows by the definitions that `0 has good intersection with

U0.

Step n. We suppose that fN3(n−1)(`0) has good intersection with T
sn−1

2 (Un−1)
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Figure 13: Illustration for Lemma 4.22.

for some sn−1 ∈ Z and we will prove that fN3n(`0) has good intersection with

T sn2 (Un) for some sn ∈ Z.

By the definition of good intersection, there exists an arc γn−1 contained in

fN3(n−1)(`0) such that:

• γn−1(0) ∈ Ln−1∞ (and therefore f j(γn−1(0)) ∈ (`n−1, `n) for all j ≥ 0),

• γ̇n−1 ⊂ T
sn−1

2 (Un−1) \Xi−1, and

• γn−1(1) ∈ T sn−1

2 (αn−1) (see Fig. 14).

By Lemma 4.20, we have that fN1(γn−1(1)) ∈ R(`n), and as fN1(γn−1(0)) ∈
(`n−1, `n), we have that

fN1(γn−1) ∩ `n 6= ∅.

Let η be the arc contained in fN1(γn−1) with endpoints

• η(0) = fN1(γn−1(0)) ∈ Ln−1∞ , and

• η(1) = fN1(γn−1(t
∗)) ∈ `n, where t∗ = min{t ∈ [0, 1] : fN1 ◦ γn−1(t) ∈ `n}.

Then η̇ ⊂ Xc
n−1 ∩ (`n−1, `n). Therefore η is an arc satisfying the hypotheses of

Lemma 4.22, and then by that lemma fN2(η) has good intersection with T sn2 (Un),

for some sn ∈ Z. As η ⊂ fN3(n−1)+N1(`0), we have that fN3(n−1)+N1+N2(`0) =

fN3n(`0) has good intersection with T s12 (Un), which finishes the n-th induction

step, and therefore the proof of the lemma.
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Figure 14: Illustration for Lemma 4.23. The curve fN1+N2(γn−1) has good intersection with

T sn
2 (Un)

.

From this lemma, the proof of Claim 4.12a is immediate:

Proof of Claim 4.12a Note that setting N ′ = rN3, by Lemma 4.23 we have that

fN
′n(`0) has good intersection with T srn2 (Urn), and in particular, there exists a

sequence {xn}n ⊂ `0 such that

fN
′n(xn)1 − (xn)1 > n for all n ≥ 0.

Then max pr1(ρ(fN
′
)) > 1, and therefore max pr1(ρ(f)) > 1/N ′ > 0.

The proof of Claim 4.12b is totally analogous to that of Claim 4.12a. Therefore,

to conclude the proof of Claim 4.12 it suffices to prove Lemmas 4.20 and 4.22.

This will also conclude the proof of item (3) from Theorem B (recall that Claim

4.12 implies item (3) from Theorem B; see Remark 4.13 in section 4.4.1).

4.4.5 Proof of Lemmas 4.20 and 4.22.

We recall that in Lemmas 4.20 and 4.22 Assumption 4.19 is implicit; that is, we

assume that there is n0 > 0 such that fn0(`i)∩ `i+1 6= ∅ for all i. We proceed now

to the proof of Lemma 4.20. We recall the statement:

Lemma (4.20). For each 0 ≤ i < r there exists a connected component Ui of

Xc
i ∩ (`i, `i+1) and an arc αi such that:
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1. αi(0) ∈ `i \ Li∞,

2. αi(1) ∈ Ri
∞ \ Li∞, and

3. αi(t) ∈ Ui for 0 < t < 1 (see Fig. 11).

Also, there is N1 ∈ N such that fN1(αi) ⊂ R(`i+1) for any 0 ≤ i < r.

Proof. By Assumption 4.19, for each 0 ≤ i < r we have that fn0(`i)∩R(`i+1) 6= ∅.
Then there exists an arc I ⊂ `i+1 such that I ⊂ L(fn0(`i)), and then I ∩Ri

∞ = ∅.
Also, as f−1(`i+1) ⊂ L(`i+1), then I ∩ Li∞ = ∅, and therefore I ⊂ Xc

i .

Let Ũi be the connected component ofXc
i that contains I. Let Ĵ be the maximal

open arc contained in `i+1 ∩ Ũi that contains I, and let J be the closure of Ĵ . By

Lemma 4.18 J is compact, and we can give J a parametrization J : [0, 1]→ `i+1,

with orientation coinciding with the upwards orientation of `i+1. We observe that

J(1) /∈ Li∞, because Li∞ ∩ `i+1 = ∅, and then

J(1) ∈ Ri
∞ \ Li∞. (8)

Now, as I ⊂ L(fn0(`i)) and I ⊂ J , then f−n0(J) ∩ L(`i) 6= ∅, and as J(1) ∈ Ri
∞,

f−n0(J(1)) ∈ R(`i),

and we can define t∗i = max{t ∈ [0, 1] : f−n0 ◦ J(t) ∈ `i}. Now, for 0 ≤ i < r,

define αi : [0, 1] → R2 as (any reparametrization of) f−n0 ◦ J |[t∗i ,1], and define Ui
as the connected component of Xc

i ∩ (`i, `i+1) whose closure contains αi. By the

invariance of the sets Li∞ and Ri
∞ and by (8) we have that

αi(1) = f−n0 ◦ J(1) ∈ ∂Ui ∩ (Ri
∞ \ Li∞),

so item (2) of the lemma holds for αi. Also, as Ĵ ⊂ Xc
i and by the invariance of

Xc
i , f

−n0 Ĵ ⊂ Xc
i , and in particular f−n0 ◦ J(t∗i ) ∈ Xc

i . Then

αi(0) = f−n0 ◦ J(t∗i ) ∈ `i \ Li∞,

and by definition of Ui and αi, α(t) ∈ Ui for 0 < t < 1, so items (1) and (3) hold

for Ui and αi, and we have found, for 0 ≤ i < r, αi and Ui as required. Then, for

0 ≤ i < r and j ∈ N, define Ui+jr = T j1Ui and αi = T j1αi. By the periodicity of

f , items (1) to (3) hold for αi and Ui, for any i ≥ 0.

Finally, we define N1. By the definition of the curves αi, we have that, for any

i,

αi ⊂ Xc
i ∪Ri

∞.
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For any point x ∈ Xc
i ∪Ri

∞ there exists n ∈ N such that fn(x) ∈ R(`i+1) (by the

definition of the sets Xi and Ri
∞). Then by the compacity of each curve αi ⊂ R2,

for each 0 ≤ i < r there exists ni ∈ N such that fni(αi) ⊂ R(`i+1). By definition

of αi for i ≥ r and by the periodicity of f , fni(αi+rn) ⊂ R(`i+rn) for any n ≥ 0

and 0 ≤ i < r. So taking N1 = max0≤i<r{ni}, we have that fN1(αi) ⊂ R(`i+1) for

any i ≥ 0, as we wanted.

The proof of Lemma 4.22 is quite long and technical. We will first prove some

previous results (lemmas 4.24, 4.26, and 4.27), and then we will proceed to the

proof of Lemma 4.22.

We start with the next lemma, which tells us that the points that remain under

iteration by f in a strip (`i, `i+1), must go either upwards or downwards uniformly.

Lemma 4.24. Given m > 0 there exists N ∈ N such that, if:

• i ≥ 0,

• n ∈ Z, |n| ≥ N ,

• x ∈ (`i, `i+1) and fn(x) ∈ (`i, `i+1),

then:

• If ρ(Θi, f) ⊂ {0}×R+, then fn(x)2− x2 > m if n > 0 and x2− fn(x)2 > m

if n < 0.

• If ρ(Θi, f) ⊂ {0}×R−, then x2− fn(x)2 > m if n > 0 and fn(x)2− x2 > m

if n < 0.

Proof. We deal with the case that n > 0, the case n < 0 being similar. By

contradiction, suppose the lemma does not hold. That means that there exist

m0 > 0, i0 ≥ 0, and sequences {xn}n ⊂ (`i0 , `i0+1), {sn} ⊂ Z, such that:

• sn →∞ as n→∞,

• f sn(xn) ∈ (`i0 , `i0+1) for all n ∈ N,

• f sn(xn)2 − (xn)2 < m0 for all n ∈ N, if ρ(Θi0 , f) ⊂ {0} ×R+, and

• (xn)2 − f sn(xn)2 < m0 for all n ∈ N, if ρ(Θi0 , f) ⊂ {0} ×R−.

Therefore

lim
n
|f sn(xn)2 − (xn)2|/sn = 0.

50



Define the sequence of probability measures {δn}n in T2 by

δn =
δπ′(xn) + δπ′(f(xn)) + · · ·+ δπ′(fsn−1(xn))

sn
,

and let δ be an accumulation point of {δn}n in Mf̃ (T
2). Then δ is f̃ -invariant,

and

ρ(δ, f) =

∫
φ dδ = lim

n

∫
φ d(δn) = lim

n

1

sn
(f sn(xn)− xn) = 0,

where φ : T2 → R2 is the displacement function defined in section 2.1.2. Also, as

supp(δ) is f̃ -invariant and is contained in [l̃i0 , l̃i0+1], supp(δ) must be contained

in Θi0 , where Θi0 is the maximal invariant set of [l̃i0 , l̃i0+1]. This means that

(0, 0) ∈ ρ(Θi0 , f), and this is a contradiction by Proposition 4.3. This concludes

the proof of the lemma.

As a corollary, we get that there is a maximum amount of displacement down-

wards, if ρ(Θi, f) ⊂ {0} ×R+, for points that remain in (`i, `i+1) under iteration

by f . An analogous statement is obtained for the case ρ(Θi, f) ⊂ {0} ×R−.

Corollary 4.25. There exists c > 0 such that for any i ≥ 0, and any connected

component V of Xc
i ∩ (`i, `i+1), we have that:

• If ρ(Θi, f) ⊂ {0} ×R+, fn(V ) ∩ L(`i+1) ∩ A−c = ∅ for all n ≥ 0, where A−c
is the half-plane A−c = {x ∈ R2 : y2 − x2 > c for all y ∈ V }.

• If ρ(Θi, f) ⊂ {0} ×R−, fn(V ) ∩ L(`i+1) ∩ A+
c = ∅ for all n ≥ 0, where A+

c

is the half-plane A+
c = {x ∈ R2 : x2 − y2 > c for all y ∈ V } (see Fig. 15).

Figure 15: Illustration of Corollary 4.25 for the case ρ(Θi, f) ⊂ {0} × R+ and ρ(Θi+1, f) ⊂
{0} ×R−. Left: The sets V and A−c . Right: fn(V ) ∩ L(`i+1) ∩A−c = ∅ for all n ≥ 0.
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Proof. By Lemma 4.24 there exists N0 > 0 such that if:

• i ≥ 0,

• n > N0, and

• x ∈ (`i, `i+1) and fn(x) ∈ (`i, `i+1),

then fn(x)2 − x2 > 0 if ρ(Θi, f) ⊂ {0} ×R+, and x2 − fn(x)2 > 0 if ρ(Θi, f) ⊂
{0} ×R−. Let i ≥ 0 be such that ρ(Θi, f) ⊂ {0} ×R+. Let V be any connected

component of Xc
i ∩ (`i, `i+1). Then we have that for any x ∈ V , either fN0(x) ∈

R(`i+1) or fN0(x)2 > x2. Similarly, if j ≥ 0 is such that ρ(Θj, f) ⊂ {0}×R− and

V ′ is any connected component of Xc
j ∩ (`j, `j+1), we have that for any x′ ∈ V ′

either fN0(x′) ∈ R(`j+1) or fN0(x′)2 < x2. Making c = N0‖f − Id‖0, the lemma

follows.

Lemma 4.26. There exists N4 ∈ N such that for all i ≥ 0, fN4(`i) ∩ `i+2 6= ∅.

Proof. Fix i ∈ {0, . . . , r − 1}. By Assumption 4.19, fn0(`i) ∩ `i+1 6= ∅.
Claim. There exists an arc β contained in fn0(`i) such that β(0) ∈ Li∞, β(1) ∈ `i+1

and β̇ ⊂ Xc
i ∩ (`i, `i+1) (see Fig. 16).

To see this, first note that as `i ∩ Li∞ 6= ∅, and as Li∞ is f -invariant,

fn0(`i) ∩ Li∞ 6= ∅.

On the other hand, observe that as the points in Ri
∞ have backward orbits con-

tained in R(`i), then fn0(`i)∩Ri
∞ = ∅. By this and by the fact that Li∞∩`i+1 = ∅

(by definition of Li∞), we have that

fn0(`i) ∩ `i+1 ⊂ Xc
i .

Therefore there exist a ∈ fn0(`i) ∩ Li∞, b ∈ fn0(`i) ∩ (`i+1 \Xi), and we define

β̃ to be the arc contained in fn0(`i) with endpoints a and b. As β̃ is compact, the

sets β̃ ∩ Li∞ and β̃ ∩ `i+1 are compact and disjoint. Also, as fn0(`i) ∩ Ri
∞ = ∅,

β̃ ⊂ Li∞ ∪Xc
i . Therefore there exists an arc β ⊂ β̃ with one endpoint in β̃ ∩ Li∞,

with the other endpoint in β̃ ∩ `i+1, and with β̇ ⊂ Xc
i ∩ (`i, `i+1). As β ⊂ fn0(`i),

this proves our claim.

Let V be the connected component of Xc
i such that β̇ ⊂ V . Without loss

of generality suppose that ρ(Θi+1, f) ⊂ {0} × R−. By Lemma 4.18 there is a
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Figure 16:

constant M1 such that diam2(V ) ≤M1. By Lemma 4.25 there is a constant c > 0

such that for all n > 0,

fn(V ) ∩ {x ∈ R2 : y2 − x2 > c for all y ∈ V } ⊂ R(`i+1). (9)

As fn0(`i)∩`i+1 6= ∅, by Lemma 4.14 there is a constant K0 > 0 such that if C is a

continuum contained in (`i, `i+1) with diam2(C) ≥ K0 then fn0(C)∩R(`i+1) 6= ∅.
By Lemma 4.24 there is a constant N0 > 0 such that:

• if x ∈ [`i+1, `i+2], then for any iterate fn(x) with n ≥ N0 such that fn(x) ∈
[`i+1, `i+2] we have that x2 − fn(x)2 > M1 + c+K0, and

• if y ∈ [`i, `i+1], then for any iterate fn(y) with n ≥ N0 such that fn(y) ∈
[`i, `i+1] we have that fn(y)2 − y2 > 0

(recall that ρ(Θi, f) ⊂ {0} ×R+ and ρ(Θi+1, f) ⊂ {0} ×R−).

We have two possibilities: either fN0(β(1)) ∈ R(`i+2), or fN0(β(1)) ∈ (`i+1, `i+2).

If fN0(β(1)) ∈ R(`i+2) we conclude that, as fN0(β) ⊂ fn0+N0(`0),

fn0+N0(`0) ∩ `i+2 6= ∅.

Otherwise, if fN0(β(1)) ∈ (`i+1, `i+2), by the choice of N0 and as diam2(V ) ≤M1

we have

x2 − fN0(β(1))2 > c+K0

for all x ∈ V , and in particular

β(0)2 − fN0(β(1))2 > c+K0. (10)
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As β(0) ∈ Li∞, all the forward iterates of β(0) stay in (`i, `i+1) and therefore,

by the choice of N0,

fN0(β(0))2 > β(0)2, (11)

and by (9), as β ⊂ V ,

fN0(β) ∩ {x ∈ R2 : y2 − x2 > c for all y ∈ V } ⊂ R(`i+1). (12)

Thus if fN0(β(1)) ∈ (`i+1, `i+2), by (10), (11) and (12) we conclude that fN0(β)

contains an arc γ such that γ ⊂ R(`i+1) and diam2(γ) > K0. Then, by the choice

of the constant K0 and by the fact that fn0(`i+1) ∩ `i+2 6= ∅, we have

fn0(γ) ∩ `i+2 6= ∅.

As γ ⊂ fn0+N0(β) ⊂ f 2n0+N0(`i), setting N ′4 = 2n0 +N0 we obtain that fN
′
4(`i) ∩

`i+2 6= ∅.
Therefore, in both cases fN0(β(1)) ∈ R(`i+2), and fN0(β(1)) ∈ (`i+1, `i+2) we

have that fN
′
4(`i)∩`i+2 6= ∅. This constant N ′4 was obtained for a fixed i, so in this

way for each 0 ≤ i < r we obtain constants N i
4 ∈ N such that fN

i
4(`i) ∩ `i+2 6= ∅.

Letting N4 = max0≤i<rN
i
4, by the periodicity of f we obtain that fN4(`i)∩`i+2 6= ∅

for all i ≥ 0, and this proves the lemma.

Now we give our last lemma before the proof of Lemma 4.22. It tells us that,

for a curve β contained in [`i, `i+1] satisfying the hypotheses of Lemma 4.22, there

is an iterate of β intersecting `i+2, and moreover, this iterate is independent of β

and i.

Lemma 4.27. There exists N5 > 0 such that for any i ≥ 0, and any arc βi such

that:

• βi(0) ∈ Li∞,

• βi(1) ∈ `i+1, and

• βi(t) ∈ Xc
i ∩ (`i, `i+1) for 0 < t < 1,

then fN5(βi) ∩ `i+2 6= ∅ (see Fig. 17).

Proof. Let i ∈ {0, . . . , r − 1}, and suppose first that ρ(Θi+1, f) ⊂ {0} ×R−. By

Lemma 4.26, there is N4 ∈ N such that

fN4(`i) ∩ `i+2 6= ∅. (13)
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Figure 17: Illustration for Lemma 4.27.

Then, by Lemma 4.14 there is a constant K0 > 0 such that if C is a continuum

contained in (`i, `i+2) with diam2 ≥ K0 then fN4(C) ∩R(`i+2) 6= ∅.
By Lemma 4.24, there exists N0 > 0 such that:

• if x ∈ [`i+1, `i+2] then for all n ≥ N0 such that fn(x) ∈ [`i+1, `i+2] we have

x2 − fn(x)2 > 2K0 + 1/2.

• if y ∈ [`i, `i+1] then for all n ≥ N0 such that fn(y) ∈ [`i, `i+1] we have

fn(y)2 − y2 > 0

(recall that ρ(Θi, f) ⊂ {0} ×R+ and ρ(Θi+1, f) ⊂ {0} ×R−).

Let δ > 0 be such that

|fN4(x)− fN4(y)| < 1/2 for all x, y ∈ R2 such that |y − x| < δ.

Let n1 > 0 be such that

fn1(`i+1) ⊂ Bδ(R
i+1
∞ ) ∪R(`i+2). (14)

Let n2 > 0 be such that

fn2(x) ∈ R(`i+2) for all x ∈ Bδ(R
i+1
∞ ) \Bδ(L

i+1
∞ ). (15)

Let βi be as in the statement of the lemma. As βi(1) ∈ `i+1, by (14) we have

fn1(βi(1)) ∈ Bδ(R
i+1
∞ ) ∪R(`i+2).

We have four possibilities:

1.

fn1(βi(1)) ∈ R(`i+2).
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2. fn1(βi(1)) ∈ Bδ(R
i+1
∞ ) \Bδ(L

i+1
∞ ), and therefore by (15),

fn1+n2(βi) ∩R(`i+2) 6= ∅.

3. fn1(βi(1)) ∈ Bδ(L
i+1
∞ ) and diam2(f

n1(βi)) ≥ K0. In this case, as fn1(βi) ⊂
R(`i), by Lemma 4.14 and by (13) we have that

fn1+N4(βi) ∩ `i+2 6= ∅.

4. fn1(βi(1)) ∈ Bδ(L
i+1
∞ ) and diam2(f

n1(βi)) < K0. To treat this case, first note

that as βi(0) ∈ Li∞, we have fn1+N0(βi(0)) ∈ (`i, `i+1), and by the choice of N0,

fn1+N0(βi(0))2 > fn1(βi(0))2. (16)

Now, either

fn1+N0(βi(1)) ∈ R(`i+2),

or fn1+N0(βi(1)) ∈ (`i+1, `i+2). In this case, by the choice of N0, δ, and by the fact

that fn1(βi(1)) ∈ Bδ(L
i+1
∞ ) ∩ (`i, `i+1),

fn1(βi(1))2 − fn1+N0(βi(1))2 > 2K0. (17)

Also, by (16), (17), and as diam2(f
n1(βi)) < K0, we have

fn1+N0(βi(0))2 − fn1+N0(βi(1))2 > K0.

and therefore, diam2(f
n1+N0(βi)) > K0. As fn1+N0(βi) ⊂ R(`i), by (13) and by

the choice of the constant K0 we conclude that

fn1+N0+N4(βi) ∩ `i+2 6= ∅.

Therefore, letting N i
5 = max{n1 + n2, n1 + N0 + N4} we have that, in any of

these four cases fN
i
5(βi)∩ `i+1 6= ∅. In a similar way we prove that if ρ(Θi+1, f) ⊂

{0}×R+, it also holds that fN
i
5(βi)∩ `i+1 6= ∅. As the choice of i ∈ {0, . . . , r− 1}

was arbitrary, if we let N5 = max0≤i<rN
i
5, by the periodicity of f we have that

fN5(βi) ∩ `i+1 6= ∅ for all i ≥ 0, and the lemma follows.

Now we are ready to prove Lemma 4.22. We recall the statement of the lemma,

and the definition of good intersection of an arc with a translate of some Ui.

Definition (good intersection). Let {Ui}i≥0 and {αi}i≥0 be as in Lemma 4.20.

Let j ∈ N0 and s ∈ Z. We say that a curve γ̃ has good intersection with T s2 (Uj)

if γ̃ contains an arc γ such that:
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• one endpoint of γ lies in T s2 (∂Uj) ∩ Lj∞,

• the other endpoint of γ lies in T s2 (αj), and

• γ̇ ⊂ T s2 (U j) \Xj (see Fig. 12).

Lemma (4.22). There exists N2 > 0 such that, if i ≥ 0, and if βi is an arc such

that:

• βi(0) ∈ Li∞,

• βi(1) ∈ `i+1, and

• βi(t) ∈ Xc
i ∩ (`i, `i+1) for 0 < t < 1,

then fN2(βi) has good intersection with T s2 (Ui+1), for some s ∈ Z.

Proof. Fix i ∈ {0, . . . , r − 1}. First we treat the case ρ(Θi+1, f) ⊂ {0} ×R−.

By Lemma 4.18 there exists a constant M1 such that every connected compo-

nent of Xc
i ∩ (`i, `i+1) has diameter less or equal than M1. Let V be the connected

component of Xc
i ∩ (`i, `i+1) that contains β̇i. By Lemma 4.25 there is a constant

c such that, if S ⊂ R2 be the half-plane given by

S = {x ∈ R2 : y2 − x2 > c for any y ∈ V },

then fn(βi) ∩ S ⊂ R(`i+1) for all n ≥ 0.

Let s ∈ Z be such that

T s2 (Ui+1) ⊂ S and T s+1
2 (Ui+1) ∩ Sc 6= ∅.

By Lemma 4.27 there is N5 > 0 such that fN5(βi) ∩ `i+2 6= ∅. Let

c1 = 2M1 + c+N5‖f − Id‖0 + 1.

By Lemma 4.24, there exists N0 > 0 such that if x and f−N0(x) are contained

in (`i+1, `i+2) then f−N0(x)2 − x2 > c1 (recall that ρ(Θi+1, f) ⊂ {0} × R−). In

particular,

f−N0(z)2 − z2 > c1 for any z ∈ Ri+1
∞ ∩ L(`i+2). (18)

As diam2(Ui+1) < M1 and by the definition of s, if z ∈ ∂T s2 (Ui+1),

z + (0,M1 + 1) ∈ Sc. (19)

If y ∈ V and z ∈ fN5(βi), we have

z2 − y2 ≤M1 +N5 ‖f − Id‖0 . (20)
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Then, by the definition of c1, by (18), (19) and (20), we have that for any point

z in ∂T s2 (Ui+1) ∩Ri+1
∞ ,

f−N0(z)2 > y2 for any y ∈ fN5(βi) ∩ (`i+1, `i+1) (21)

(see Fig. 18).

Figure 18: If z ∈ ∂T s
2 (Ui+1) ∩Ri+1

∞ , then f−N0(z) is above fN5(βi) ∩ (`i+1, `i+2)

Now, let β1
i : [0,∞)→ R2 be a proper embedding such that

• β1
i (0) = fN5(βi(0)),

• β1
i (t) ∈ L(f−N0(`i+1)) for all t > 0, and

• −∞ < inf{β1
i (t)2 : t ≥ 0}.

Let β2
i be the arc contained in fN5(βi) with endpoints fN5(βi(0)) and fN5(βi)(t∗),

where t∗ = min{t : fN5(βi(t)) ∈ `i+2}. Let β3
i : [0,∞)→ R2 be a curve contained

in `i+2, starting in fN5(β(t∗)) and going upwards to infinity. Consider then the

open unbounded disc D ⊂ R2 whose boundary is β1
i ∪ β2

i ∪ β3
i (see Fig. 19).

Observe that D is bounded from below (that is, inf pr2(D) > −∞). By (21),

f−N0(z) ∈ D for any z ∈ ∂T s2 (Ui+1)∩Ri+1
∞ . In particular, if αi+1 is as in Definition

19, then αi+1(1) ∈ Ri+1
∞ and f−N0(T s2 (αi+1(1))) ∈ D, or equivalently

T s2 (αi+1(1)) ∈ fN0(D). (22)

Note that by the definition of D,

fN0(∂D) ∩ (`i+1, `i+2) = fN0(β2
i ) ∩ (`i+1, `i+2), (23)

and then, by the definition of S ⊂ R2 and by the choice of the constant c,

fN0(∂D) ∩ S = fN0(β2
i ) ∩ S ⊂ R(`i+1). (24)
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Figure 19: Illustration of the disk D.

So, we see that fN0(β2
i ) must intersect T s2 (αi+1): otherwise, by (22), (23) and

(24), fN0(D) would contain the connected set S ∩ L(`i+1) ∪ T s2 (αi+1), but this is

not possible, because both D and fN0(D), are bounded from below.

Observe that, as βi ⊂ L(`i+1), f
n(βi) ∩Ri+1

∞ = ∅, for all n ≥ 0. Then,

fN0(β2
i ) ∩Ri+1

∞ ⊂ fN5+N0(βi) ∩Ri+1
∞ = ∅, (25)

and therefore αi+1(1) /∈ fN0(β2
i ), which implies

fN0(β2
i ) ∩ T s2 (αi+1) ⊂ int(E), (26)

where E ⊂ R2 is the set E = (S ∩ L(`i+1)) ∪ T s2 (Ui+1) (see Fig. 20).

Figure 20: The set E (colored in gray).

Observe that by the definition of the integer s, E ⊂ S. Also, as β2
i (0) ∈ Li∞,

fN0(β2
i (0)) ∈ L(`i+1), and then by (24)

fN0(β2
i (0)) ∈ Sc ⊂ Ec. (27)
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So, by (26) and (27), fN0(β2
i ) ∩ ∂E 6= ∅. By (24) and (25), we have

fN0(β2
i ) ∩ ∂E ⊂ T s2 (∂Ui+1) \Ri+1

∞ .

By this, by (24), and as fN0(β2
i ) ∩ T s2 (αi+1) 6= ∅, there exist 0 ≤ t1 < t2 ≤ 1 such

that:

• fN0(β2
i (t1)) ∈ T s2 (∂Ui+1 \Ri+1

∞ ),

• fN0(β2
i (t2)) ∈ T s2 (αi+1), and

• fN0(β2
i (t)) ∈ T s2 (Ui+1) for all t1 < t < t2.

This means that fN0(β2
i ) ⊂ fN5+N0(βi) has good intersection with T s2 (Ui+1).

Now suppose that ρ(Θi+1, f) ⊂ {0} ×R+. In this case we have that

z2 − f−N0(z)2 > c1 for any z ∈ Ri+1
∞ .

If we define

S ′ = {x ∈ R2 : x2 − y2 > c for any y ∈ V },

and let s′ ∈ Z be such that

T s
′

2 (Ui+1) ⊂ S and T s
′−1

2 (Ui+1) ∩ Sc 6= ∅,

then all the arguments above work to show that fN5+N0(βi) has good intersection

with T s
′

2 (Ui+1).

The choice of this integer N0 was made for a fixed i. So, for any 0 ≤ i < r we

obtain in this way an integer N i
0, such that fN5+N i

0(βi) has good intersection with

T si2 (Ui+1) for some si ∈ Z. Setting N2 = N5 +max0≤i<r{N i
0}, by the periodicity of

f we have that, for all n ∈ N, fN2(βi+nr) has good intersection with T si2 (Ui+nr+1).

This concludes the proof of the lemma.

4.5 Proof of items (1) and (4).

First we prove item (4) from Theorem B; that is, at least one of the sets Θi is an

annular, essential, f̃ -invariant set, which is also a semi-attractor. Observe that

for each i, Θi is non-empty: by item 2-(b) of Lemma 4.5, ∅ 6= π′′(Λi) ⊂ (l̃i, l̃i+1) is

f̃ -invariant, and then π′′(Λi) ⊂ Θi. By definition Θi is f̃ -invariant.

Let {`i} be the family of lifts of the curves l̃i from Definition 4.9. By Claim

4.10:

there is i0 such that fn(`i0) ⊂ L(`i0+1) for all n ∈ Z. (28)
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With this, we now prove that Θi0 is an essential annular set. Recall that by

definition,

Θi0 =
⋂
n∈Z

fn
(

[l̃i0 , l̃i0+1]
)

=
⋂
n∈Z

[f̃n(l̃i0), f
n(l̃i0+1)].

Recall also that the curves `i0 and `i0+1 are Brouwer curves for f . Suppose first

that `i0 ≺ f(`i0) and `i0+1 ≺ f(`i0+1). For n ∈ N let An = [f̃n(l̃i0), f
−n(l̃i0+1)].

Then An+1 ⊂ An, and Θi0 = ∩n∈NAn. By (28), for each n, f̃n(l̃i0)∩f−n(l̃i0+1) = ∅.
Then, for each n the set An is a topological closed essential annulus, and therefore

Θi0 is an essential annular set. One deals analogously with the cases f(`i0) ≺ `i0
and f(`i0+1) ≺ `i0+1.

Now, either Θi0 is a semi-attractor, or it is a repellor, that is, f−1([l̃i0 , l̃i0+1]) ⊂
[l̃i0 , l̃i0+1] and α(x, f̃) ⊂ Θi0 for any x ∈ [l̃i0 , l̃i0+1]. In the case that Θi0 it is a

repellor, using the fact that the curves l̃i are free for f̃ it is easy to verify that

there is i1 6= i0 such that Θi1 is an annular set that is an attractor, that is,

f([l̃i1 , l̃i1+1]) ⊂ [l̃i1 , l̃i1+1] and ω(x, f̃) ⊂ Θi1 for any x ∈ [l̃i1 , l̃i1+1]. In particular,

Θi1 is a semi-attractor. Therefore at least one of the sets Θi is a semi-attractor,

and this concludes the proof of item (4) from Theorem B.

Now we prove item (1) from Theorem B; that is, ∅ 6= Ω(f̃) ∩ [l̃i, l̃i+1] ⊂ Θi, for

all i. By definition of the sets Θi and as the curves l̃i are free for f̃ , each Θi is

disjoint from the curves l̃i. Also, the curves l̃i are free forever for f̃ , and we proved

that some of the sets Θi is an annular f̃ -invariant set. With this and using that

f̃ preserves orientation we have that for any i, if Si ⊂ T2 is the topological open

annulus bounded by l̃i and f̃(l̃i), then

f̃n(Si) ∩ Si = ∅ for all n ∈ Z.

Also, using that the curves l̃i are free for f̃ and the existence of an invariant annular

set, it is not difficult to see that the curves l̃i are contained in the wandering set

for f̃ . Therefore, the closed topological annulus Si is contained in the wandering

set for f̃ .

Now, let i ∈ {0, . . . , r − 1} and let x̃ ∈ [l̃i, l̃i+1] \ Θi. We want to show that

x̃ is wandering for f̃ . By definition of Θi there exists n ∈ Z such that f̃n(x̃) ∈
T2 \ [l̃i, l̃i+1]. Let x ∈ π′−1(x̃) ∩ (`i, `i+1) and without loss of generality, suppose

that fn(x) ∈ R(`i+1) and n ∈ N. This means that x ∈ [f−n(`i+1), f
−n+1(`i+1)],

that is, x̃ ∈ [f̃−n(l̃i+1), f̃
−n+1(l̃i+1)]. Then, by last paragraph x̃ is wandering for

f̃ , as we wanted. This concludes the proof of item (1) of Theorem B.
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4.6 Conclusion of the proof of Theorem B.

In section 4.3 we have constructed the non-empty family {l̃i}r−1i=0 of curves in

T2 which are simple, closed, pairwise disjoint and essential, and such that the

maximal invariant set Θi of [l̃i, l̃i+1] is non-empty for all i ∈ Z/rZ. It was also

proved in that section that the curves l̃i satisfy item (2) from Theorem B (cf.

Proposition 4.3 and Remark 4.4). In section 4.4 we proved that the curves l̃i
satisfy item (3) from Theorem B; that is, they are free forever for f̃ . Finally, in

section 4.5 we showed that these curves satisfy items (1) and (4) from Theorem B:

at least one of the sets Θi is an annular, essential, f̃ -invariant set, which also has

the dissipative-type property of being a semi-attractor, the non-wandering set of

f̃ intersects Θi for each i, and moreover, the non-wandering set of f̃ is contained

in ∪Θi. This concludes the proof of Theorem B.
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Comment. Math. Helv. 21 (2004), 229–259.
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