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Resumo

Esta tese de doutorado ¢ composta por trés partes, todas elas rela-
cionadas com o processo de exclusao simétrico com elos lentos.
Tais elos sao os que tém a menor taxa de passagem de particu-
las, chamada de condutancia. O objetivo desta tese é entender o
comportamento coletivo de sistemas microscopicos, através de pro-
cedimentos limites, obtendo leis macroscopicas determiniticas. A
primeira parte ¢ um principio grandes desvios para o limite de es-
cala da medida empirica, contendo também o limite hidrodinamico
do processo de exclusao simétrico com elo lento e o limite hidro-
dindmico do processo de exclusao fracamente assimétrico com elo
lento. A segunda parte trata do limite hidrodinamico da medida
empirica, na presenca de elos lentos com condutancia N7, onde
N é o parametro de escala. Trés comportamentos diferentes sao
exibidos, correspondendo aos casos § € [0,1), f=1e > 1. A
terceira parte é um problema d-dimensional. Neste trabalho os elos
lentos tém sua posicao espacial associada a uma superficie suave
e fechada, modelando uma membrana que diminui a passagem de
particulas. E apresentado o limite hidrodinamico para esse modelo.

Palavras-Chaves: Elo lento; Limite Hidrodinamico; Grandes
Desvios



Abstract

This PhD thesis consists of three parts, all of them related to the
symmetric exclusion process in the presence of slow bonds, which
are particular bonds with smaller rate of passage of particles, called
conductance. The first part is a large deviation principle for the
scaling limit of empirical measure, containing also the hydrodynam-
ical limit of the symmetric exclusion process with slow bonds and
the hydrodynamical limit of weakly asymmetric exclusion process
with slows bonds. The second part deals with the hydrodynamical
limit of the empirical measure in the presence of slow bonds with
conductance N=%, where N is the scaling parameter. Three differ-
ent behaviors are exhibited, corresponding to the cases § € [0,1),
B =1or 8> 1. The third part is a d-dimensional problem. There,
the slow bonds have a spatial position associated to a smooth closed
surface, modeling a membrane slowing down the passage of parti-
cles. It is presented the hydrodynamical limit of such model.

Key words: Slow bond; Hydrodynamical limit; Large deviations
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Introduction

The exclusion process is a continuous time interacting particle system that has been the
subject of intense studies during the last decades due to the fact that, in one hand, it
provides insights on the dynamical aspects of some models from statistical physics, and, in
the other hand it is, up to some extent, mathematically tractable.

The exclusion process on the discrete d-dimensional torus with N sites, T4, = (Z/NZ)4,
is described by particles that move as independent random walks on a graph except for the
exclusion rule that prevents two particles from occupying the same site, or vertex. The
state space is therefore the set of configurations with at most one particle per site in the
discrete torus, namely {0, 1}T7V. In the symmetric case, the process evolves as follows: at
each bond we associate a exponential clock, which is independent of the exponential clock for
any other bond. When this clock rings, the occupancies of the sites connected by the bond
are exchanged. The exchange rate for a bond is simply the parameter of the exponential
clock associated to it. Sometimes it will be called the conductance of this bond. We allow
the conductance to vary from bond to bond, and if z, y € T4, are the nearest-neighbors, then
we denote the conductance of the bond (z,y) by fﬁy = szvm > (. The specification of the
exchange rates determines the environment for the exclusion process.

We would like understand the collective behavior of the microscopic system above (the
exclusion process). For this, we will need derive, through a limit procedure, deterministic
macroscopic laws. Such laws will characterize the collective behavior of our system. The
limit procedure mentioned earlier provides a bridge between the macroscopic and microscopic
systems, which is a central problem in the clasical statistical mechanics. More specifically,
when we say limit procedure, one wishes to prove at least the convergence of the time-
evolution of the spatial density of particles to the solution of a macroscopic equation. The
density of particles is also called by the empirical measure associated to the process. For
symmetric exclusion process, it has been shown that the time evolution of the density of
particles satisfies a parabolic evolution equation. This is the so called hydrodynamic limit,
and it corresponds to a law of large numbers for the empirical measure.

The hydrodynamic limit says little or nothing about the rate of convergence. As a very
natural consequence, it is almost unavoidable to ask oneself about deviations from the behav-
ior hydrodynamic. The large deviations rate function, associated to the dynamical, measures
the exponential decay of the asymptotic probability of deviations from the hydrodynamical
evolution, when the scaling parameter diverges. Thus, we are naturally led to the inves-
tigation and identification of the large deviations rate function in the set of the empirical
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measures of the interacting particle systems.

This thesis studies the hydrodynamical behavior and large deviations principle of sym-
metric exclusion processes in non-homogeneous environments, where the non-homogeneity is
due to the presence of slow bond. While an usual bond has exchange rate one, a slow bond
has a lower exchange rate. With respect to the scaling parameter, we assume that a slow
bond has exchange rate of order N~! in the first and third part this work and of order N7,
for all 5 > 0, in the second part.

When the environment is homogeneous, the exclusion process has a well-known hydro-
dynamical behavior under diffusive scaling. Recently, attention has been raised by the hy-
drodynamic behavior of interacting particle systems with random or inhomogeneous media.
One relevant and puzzling problem is to consider particle systems with slow bonds and to
analyze the macroscopic effect on the hydrodynamic profiles, depending on the strength at
these bonds.

We present a brief review about some results on hydrodynamic behavior of the exclusion
process in random or inhomogeneous media. In |6] the author considered the one-dimensional
exclusion process with suitable random conductances {cy, : k > 1}. Assuming that {c;' : k >
1} satisfy a Law of Large Numbers, he proved that the randomness of the media is not present
in the macroscopic time evolution of the density of particles. In |7], the authors assumed that
the conductance over the bond [£, Zt] is equal to [N (W (z+1/N) — W (z/N))]~!, where W
is an a-stable subordinator of a Lévy Process. In this case, the randomness survives in the
continuum, by replacing in the hydrodynamical equation the usual Laplacian by a generalized
operator %ﬁ, which results in the weak heat equation. In the same line of such quenched
result, [9] shows the analogous behavior for a general, but non-random, strictly increasing
function W. All the cited so far works are restricted to the one-dimensional setting, and
strongly based on convergence results for diffusions or random walks in one-dimensional
inhomogeneous media. Even the d-dimensional case treated in [21| has considered a class
of non-homogeneous environments that could be decomposed, in a proper sense, into d one-
dimensional cases. General sufficient conditions for the hydrodynamical limit of exclusion
process in inhomogeneous media were established in [14]. All the works above have in
common the association of exponential clocks to the bonds, the Bernoulli product measure as
invariant measure, and, in some sense, the similarity with to the symmetric simple exclusion
process.

In [19], it is studied the totally asymmetric simple exclusion process with a single bond
having its clock parameter smaller than the other bonds. Such “slow bond", not only slows
down the passage of particles across it, but also has a macroscopical impact since it disturbs
the hydrodynamic profile. Somewhat intermediate between the symmetric and asymmetric
case, in [2| it is considered a single asymmetric bond in the exclusion process, when the
model is considered on the torus. This unique asymmetric bond gives rise to a flux in the
torus and also influences the macroscopic evolution of the density of particles.

In the asymmetric case, e.g. [19] and [2], the slow bond parameter does not need to be
rescaled, in order to have a macroscopic influence. Nevertheless, in the symmetric case, from
[7] and [9], we see that the parameter at the slow bond must be of order N~! in order to
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have macroscopical impact. As a consequence, one can observe a distinct behavior of slow
bonds in symmetric and asymmetric settings.

About large deviations for the symmetric exclusion process in non-homogeneous environ-
ment, there is no previous references. However, the model with a slow bond has a strong
similarity with models involving boundaries, as it was shown in the part II of this thesis.
As we can see there, when the slow bond has conductance N~?, the hydrodynamical be-
havior is driven by three different PDE’s with distinct boundary conditions, corresponding
to the respective values of 5. So, this similarity with models involving boundaries allows
us to apply techniques of two previous works, namely [1] and [8]. The main difficulty for
establishing large deviations of symmetric exclusion process with a slow bond of parameter
N~! was due to the behavior near the slow bond. In the previous works [1| and [8] the au-
thors have considered exclusion process with fixed rate of incoming and outcoming particles
at the boundaries, leading to Dirichlet boundary conditions, therefore with time-independent
values at the boundaries. On the other hand, the hydrodynamical behavior for the model
with a slow bond, when seen as a boundary, is driven by Neumann boundary conditions,
whose solutions are time-dependent at the boundaries. There is still plenty to do on this
subject, with a large number of natural open questions. For instance, the large deviations
for the model in the Part III of this thesis; the large deviations for cases 5 € (0,1) and 8 > 1
in Part II. In what follows we describe the content of each part of this thesis.

In Part I, Hydrodynamics and large deviations of exclusion processes with slow
bond, we analyze the one-dimensional symmetric exclusion with slow bond on the torus T.
This is a joint work with Tertuliano Franco. Let us introduce more precisely this model. For
a point a € T fixed, the bond associated to the point a is taken as the bond that contains the
point a in the natural embedding of the discrete torus in the continuous torus, %TN C T,
see the Figure 1. If a is a common vertex of two bonds, we consider the bond lying in the
left side of point a. Note it is assumed an orientation in the continuous torus.

All the bonds have conductance equal to one, except the bond that is associate to the

point a € T, which is called the slow bond. The conductance of this slow bond is chosen as
N1

Figure 1: The slow bond is the bond associated with a.
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This model is a particular case of the model considered in [9]. We propose a simpler proof
of a hydrodynamic limit of this process. Besides, the proof and statement have a suitable
form to be applied in the proof of large deviations. The time evolution of the density
of particles p(t,-), in the diffusive scaling limit, it is described by the partial differential
equation with Neumann’s boundary conditions

dp = Ap
p(0,) = (") (1)
Oupr(a™) = Oupi(a™) = pila™) = pi(a”), Vt €0, T,

where a™ and a~ stand for the right and left side of a macroscopic point a related to a slow
bond. More precisely, p(t,-) is a solution of the corresponding integral equation

(oo H) — (7. Hy) — / (0o, (0, + ALY ds
- [ {p@0ut (@) = pfa)out ()} ds @)
4 / [pa(a™) = pala™) H{Ho(a®) — Ho(a™)} ds = 0,

for all test functions H € C*2([0,7] x T\{a} ) and for all ¢ € [0, T]. This space C**([0,T] x
T\{a}) of test functions is defined in the following way: a function H : [0,7] x T —
R is said to belong to C2([0,7] x T\{a} ), if H restricted to [0,7] x T\{a} belongs to
CY2([0,T) x T\{a}) and H has a C"? extension to [0,T] X [a, 1+ a], where we are identifying
(a,1 + a) with T\{a}. This space of test functions should not be misunderstood with
CH2([0,T] x T), since a typical function of C*2([0,T] x T\{a} ) can have a discontinuity at
the point a € T.

The proof for the large deviations upper bound can be outlined in the following scheme.
For each measure py on {0,1}T~, denote by P,y the probability measure on the space of
the trajectories D([0,77],{0,1}™) induced by the initial state iy and the Markov process
described above. Besides, let { exp {NJ(;(WN)}}%A be a family of mean-one positive mar-
tingales that can be expressed as function of the empirical measure 7. Let K be a compact
set in the space of trajectories. Then,

Py [ﬂ'N € IC] = uN[eXp{ N Jp(m }exp {NJ@ }l{ﬂzve,c}]

<osp{ = N if S [y [exp (N 1iven] 9
Sexp{ — N )}

Therefore, minimizing over 6 in A, we get

lim +logP,, [V € K] < —sup inf Jy(),

NSoo NV e A TEK
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and it just remains to justify the exchange between the supremum and the infimum. This
is done through the Minimax Lemma, see [16, Lemma A2.3.3]. The extension to closed sets
(not only compact sets) is made in Section 4.3, following the standard way of proving that
the family of probabilities {P,, } v is exponentially tight. The natural way to find a family of
mean-one positive martingales is to consider the Radon-Nikodym derivative of a (sufficiently
large) family of small perturbation of the original process with respect to the original process
itself. In our case, the small perturbation is given by the weakly asymmetric exclusion process
with a slow bond, indexed on the class of functions H € C*2([0,T] x T\{a}).

Unfortunately, this Radon-Nikodym derivative is not a function of the empirical measure,
so the argument in (3) can not be applied. This is the main difficulty in the proof of a
upper bound: we have to show that the Radon-Nikodym derivative is superexponentially
close to a function of the empirical measure. Here, superexponentially means that the
difference between the Radon-Nikodym derivative and a function of the empirical measure
has expectation of order smaller than exp {—CN}, for any chosen C' > 0. This is done using
the results of Chapter 3.

Closely related to this question, it is the energy of trajectories. Following steps of [1] and
[8], we define an energy (see Definition (1.4.1)) and in Section 3.1 we prove that, in the limit,
the trajectories with infinity energy are not relevant. The idea is that, in order to obtain the
large deviations, one looks to the probability of observing events far from the expected limit
trajectory. However, it not necessary to consider all kind of trajectories. In the limit, some
kinds of trajectories are hardly seen, in the sense that they are of probability of order even
smaller than exponential. The advantages of such restriction to the class of trajectories of
finite energy are clear.

Next, we describe the strategy of the proof of the lower bound. We start proving a law
of large numbers for a empirical measure evolving according to the perturbations such as
those considered in the proof of the upper bound. This was made in Chapter 5 for the
class of pertubations H € C'2([0,T] x T). The second step consists in proving that the
entropy of the perturbation of the process with respect to process itself, when divided by N,
converges, as IV tends to infinity, to the rate function /*. This rate function is evaluated in
the solution of the hydrodynamical equation associated to the perturbation of the original
process. At this point is possible to conclude the proof of the lower bound for the set of
all paths 7(t,du) = p(t,u)du such that p is a unique weak solution of the hydrodynamical
equation associated to the perturbation of the original process.

The part dedicated to this work is divided as follows. In Chapter 1, we introduce notation
and state the main results, namely Theorem 1.2.2, Theorem 1.3.2 and Theorem 1.4.1. In
Chapter 2 we prove the Theorem 1.2.2. In Chapter 3, we establish the energy estimates. In
Chapter 4, we prove the upper bound that is the part (i) of the Theorem 1.4.1. In Chapter
5 we prove the Theorem 1.3.2. Finally, the lower bound that is the part (ii) of the Theorem
1.4.1 is proved in the Chapter 6.

The Part II of this thesis, Hydrodynamical behavior of symmetric exclusion with
slow bonds of parameter N—?, gives a complete characterization of the hydrodynamic

17



limit scenario for the one-dimensional exclusion process with slow bonds above. It is a joint
work with Tertuliano Franco and Patricia Gongalves, see [10].

Here, all the bonds have an exponential clock with parameter equal to 1, except for £ of
bonds. As in the first work, in order to select those k bonds, we start with k& macroscopic
points by, ..., b € T, and consider the respective associated bonds in %TN C T, see Figure
1. Those bonds will be also called slow bonds and their conductances are equal to N~?, with
B € [0,+00). The scale here will be taken to be diffusive in all bonds.

We prove that the time evolution of the empirical density of particles, in the diffusive
scaling, has a distinct behavior according to the range of the parameter 5. Note that the
hydrodynamical limit for the § = 1 was already treated in the first work. However, in
this work we present a simple proof for this hydrodynamical behavior. The reason why the

proof here is simpler is that we consider the test functions as being the subset of functions
H e C([0,T] x T\{b1,..., by} ) satisfying

OuH,(b}) = 0, H,(b7,) = Hy(b7) — H,(b;,,), ¥s€[0,T] and Vi=1 .. k. (4)

This simplify the proof of characterization of the limit points, because we avoid the use of
the Replacement Lemma. And the condition (4) prevents us to work with the integrals over
the boundary of T\{by, ..., b}, which appear in the integral equation (2). In the first work
we have considered the set C*2([0, 7] x T\{a} ), because the choice of C**([0,T] x T\{a})
seems to be the best adapted to large deviations.

If 5 € [0,1), the conductances in these slow bonds do not converge to zero fast enough in
order to appear in the hydrodynamical limit. As a consequence, there is no macroscopical
influence of the slow bonds in the continuum and we obtain the hydrodynamical equation as
the usual heat equation. The proof of the last result is based on the Replacement Lemma,
and the range parameter of 3 for which it holds in the sense that, it only works for g € [0, 1).

As [ increases, the conductance at the slow bonds decreases and the passage of particles
through these bonds becomes more difficult. In fact, for 5 € (1,400), the clock parameters
tends to zero faster than at the critical value § = 1 and each slow bond gives rise to a
barrier in the continuum limit. Macroscopically this phenomena gives leads to the usual heat
equation with Neumann’s boundary conditions at each macroscopic point {b; : i = 1,....k}.
This means that the spatial derivative of p at each {b; : i = 1,...,k} equals to zero and,
physically, this represents an isolated boundary. Moreover, the uniqueness of weak solutions
of such equation says explicitly that the macroscopic evolution of the density of particles
is independent for each interval [b;,b;11], however the passage of particles in the discrete
torus through the slow bonds is still possible. The proof of this result is also based on the
Replacement Lemma and requires sharp energy estimates.

Since the regime § = 1 was already known from previous works, the main contribution
of this article is the complete characterization of the three distinct behaviors for the time
evolution of the empirical density of particles, exhibiting a phase transition depending on the
parameter of the conductance at the slow bonds. As far as we know, no similar phenomena
were exploited before for the hydrodynamic limit of interacting particle systems. Moreover,
for the regime § € (1,00) the density evolves according to the heat equation with Neu-
mann’s boundary conditions, which has a meaningful physical interpretation. This the other
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great novelty developed in this paper. So far, partial differential equations with Dirichlet’s
boundary conditions could be approached by e.g. studying interacting particle systems in
contact with reservoirs. Here, by considering partial differential equations with Neumann’s
boundary conditions, we give a step towards extending the set of treatable partial differential
equations by the hydrodynamic limit theory.

In order to achieve our goal, the main difficulties appear in the characterization of limit
points for each regime of 5. We overcome this difficulty by developing a suitable Replacement
Lemma, which allows us to replace the product of site occupancies by functions of the
empirical measure in the continuum limit. Furthermore, that lemma is also crucial for
characterizing the behavior near the slow bonds.

Our result can also be extended to non-degenerate exclusion type models as introduced
in [13]. In such models, particles interact with hard core exclusion and the rate of exchange
between two consecutive sites is influenced by the number of particles in the vicinity of the
exchanging sites. The jump rate is strictly positive, so that all the configurations are erdogic,
in the sense that a move to an unoccupied site can always occur. It was shown in |13] that the
hydrodynamical equation for such models is given by a non-linear partial equation. Having
established the Replacement Lemma, the extension of our results to these models is almost
standard [9]. We also believe that our method is robust enough fitting other models such as
independent random walks, the zero-range process, the generalized exclusion process, when
a finite number of slow bonds is present.

The chapter dedicated to this work is divided as follows. In Section 7.1, we introduce
notation and state the main result, namely Theorem 7.1.1. In Section 7.2 we make precise
the scaling limit and sketch the proof of Theorem 7.1.1. In Section 7.3, we prove tightness
for any range of the parameter 8. In Section 7.4, we prove the Replacement Lemma and
we establish the energy estimates, which are fundamental for characterizing the limit points
and the uniqueness of weak solutions of the partial differential equations considered here. In
Section 7.5 we characterize the limit points as weak solutions of the corresponding partial
differential equations. Finally, uniqueness of weak solutions is refereed to Section 7.6.

The Part III of this thesis is the work Hydrodynamic limit for a type of exclusion
processes with slow bonds in dimension > 2, [12|. It is a joint work with Tertuliano
Franco and Glauco Valle, accepted for publication in Journal of Applied Probability (June
2011).

We now describe the exclusion processes which we are concerned. Let {e; : j = 1,...,d} be
the canonical basis of R? and A C T? be a simple connected region with smooth boundary
OA. If the bond [, xJ]rVej] € N7'T% has one vertex in each of the regions A and AP, its
exchange rate is defined as N~' times the absolute value of the inner product between e,
and the normal exterior vector to OA. For others edges, the exchange rate is defined as one.
This means that the slow bonds are among those crossing the boundary of A. We call this
process the exclusion process with slow bonds over JA.

We can interpret A as a permeable membrane, which slows down the passage of particles

between the regions A and AC. For this type of exclusion process, the membrane does
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not completely prevent the passage of particles, and still survives in the continuum limit,
appearing explicitly in the hydrodynamic equation. The exchange rate of particles for a bond
crossing JA is smaller if the bond is close to a tangent line of JA. Note that this assumption
has physical meaning, take for example cases of reflections in several physical models: Partial
reflection of light crossing a medium with different refraction indexes, mechanical systems
where particles try to cross some interface, etc. However the direction of the speed of particles
is not changed as usually occur in physical reflection. Our definition of the exchange rates
also allows a strong convergence result for the empirical measures associated to the exclusion
process making simpler the proof of the hydrodynamic limit.

The hydrodynamical equation of the exclusion process with slow bonds over JA is a
parabolic partial differential equation 0;p = Lxp, where the operator L, is a sort of d-
dimensional Krein-Feller operator. Without the presence of slow bonds, the operator £
would be replaced by the laplacian operator acting on C? functions and the hydrodynamical
equation would therefore be the heat equation. Here, the existence of the membrane modifies
the domain, and thus the operator itself. In fact, we observe that the proper domain for £,
contains functions that are discontinuous over 0A. Geometrically, £, glues the discontinuity
of a function around JA and then behaves like the laplacian.

One possible approach to prove the hydrodynamic limit for the exclusion process with
slow bonds over OA is through Gamma convergence. In [14], this approach and the conditions
for it to hold are discussed, see also [6]. There, the coersiveness condition would require some
kind of Rellich-Kondrachov’s Theorem (namely, the compact embedding in L? of some sort
of Sobolev space supporting an extension of Ly, see [4]). In the method presented here, we go
in this direction, but instead of reach the hypotheses in [14], we have used similar analytical
tools in order to obtain a short and simple proof of uniqueness of the hydrodynamic equation.
We also show that the extension of £, satisfies the Hille-Yoshida Theorem. On the other
hand, the convergence from discrete to continuous that we present here is made in a very
direct way, and it was inspired by the convergence of the discrete laplacian to the continuous
laplacian.

The chapter dedicated to this work is divided as follows: In Section 8.1, we define the
model and state all results contained in the paper; Section 8.2 is devoted to prove the results
concerning the continuous operator L£; In Section 8.3, the hydrodynamic limit is proved.
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Part 1

Hydrodynamics and large deviations for
the exclusion processes with slow bond
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Chapter 1

Notation and Results

1.1 The model

Let Ty = Z/NZ be the one-dimensional discrete torus with N points. The points of Ty,
called sites, are represented by the last characters of the alphabet (z, y and z). Denote by
n the configurations of the state space {0,1}™ so that n(z) = 0, if site z is vacant and
n(z) = 1, if site = is occupied.

We define now the exclusion process with state space {0,1}™ and with conductance
{&¢).11;@ € Ty} at the bond of vertices 2,z + 1. The dynamics of this Markov process can
be described as follows. At each bond of vertices x, x+ 1, we associate an exponential clock of
parameter 5‘% 41, which are independent of the exponential clock for any other bonds. When
this clock rings, the values of 1 at the vertices of this bond are exchanged. This process can

also be characterized in terms of its infinitesimal generator Ly, which acts on local functions
f:{0,1}™ - R as

LNf Z g:p x+1 wﬂ?—i-l) - f(n)} ) (11)
IGTN
where n™*! is the configuration obtained from 7 by exchanging the variables n(z), n(x+1):

™ ) =9 @), ify=z+1 (1.2)
n(y), otherwise.

Denote by T = [0,1) the one-dimensional continuous torus, where we are identifying the
values 0 and 1. Fix a point @ € T. In the model, it is assumed that the jump rates are given
by

1 z x41

Lo ifae
gi\,fx%»l - ngzv+1,:v - { ]{ b ( N ] (13)

, otherwise.

To simplify notation, sometimes we denote &Y, ,, by &Y. In some parts of this work, we
will consider @ = 0, but in other parts we will write the results for a general a € T. Such
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double choice was taken aiming to simplify notation in some parts and, when necessary,
to make clear that all results apply to a finite number of slow bonds associated to points

a',...,a* € T. We write ay for the site of the left side of the slow bond in the discrete torus
Ty, a € (“WN, aN—]\?“l] For instance, when a = 0, then ay = —1.

A simple computation shows that the Bernoulli product measures {v;0 < a < 1} are
invariant, in fact reversible, for the dynamics. The measure /Y is obtained by placing a
particle at each site, independently from other sites, with probability a. Thus, vV is a
product measure over {0, 1} with marginals given by

v nin(r) =1} = «, forz € Ty.

Denote by {n/;t € [0,T]} the Markov process on {0,1}T~ associated to the generator
Ly, defined in (1.1), speeded up by N?. When the dependency of N is evident, sometimes, we
omit the index N of 5¥. Let D([0,77],{0,1}™) be the path space of cadlag trajectories with
values in {0, 1}™. For a measure py on {0,1}"~, denote by P, the probability measure on
D([0,77],{0,1}™) induced by the initial state py and the Markov process {n}";¢ € [0, T]}.
Expectation with respect to PP, is denoted by E,, .

A sequence of probability measures {uy; N > 1} is said to be associated to a profile
po: T —[0,1] if

N—oo

lim uN[ ¥ H(E)m(z) - /H(u)po(u)du‘ > 5} =0, (1.4)

for every 6 > 0 and every continuous functions H : T — R.

The quantity just introduced in the definition above can be reformulated in terms of
empirical measures. Let M be the space of positive measures on T with total mass bounded
by one endowed with the weak topology. Consider the measure 7 € M, which is obtained
by rescaling space by N and by assigning mass N~ ! to each particle:

N, du) = % Y n(x)dz(du),

J}ETN

where §, is the Dirac measure concentrated on u. The measure 7V (n,du) is called the
empirical measure associated to the configuration . The dependence in 1 will frequently be
omitted to keep notation as simple as possible. With this notation + > eery H(F)n(z) is
the integral of H with respect to the empirical measure 7, denoted by (7, H).

We consider the time evolution of the empirical measure 7} associated to the Markov

process {n;t > 0} by:

ml (du) = 7 (np du) = % Y m(x) 0z (du). (1.5)

z€T N
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Fix T > 0. Let D([0,7], M) be the space of M-valued cadlag trajectories 7 : [0,7] — M
endowed with the Skorohod topology. Notice that {m;0 <t < T} belongs to D([O, T], /\/l)
and inherits the Markov property from {n;";t > 0} € D([0,77,{0,1}"™~).

For each probability measure py on {0,1}"~, denote by Q,, the measure on the path

space D([O, T], ./\/l) induced by the measure py and the empirical process 7' introduced in
(1.5).

The exclusion process with slow bond has a related random walk on %']TN that describes
the evolution of the system with a single particle. Thus particles in the exclusion process
evolve independently as such random walk except for the hard core interaction. To simplify
notation later, we introduce here the generator of this random walk with conductances fﬁx 1
which is given by

(LyH)(§) = &on{HE) — H(H)} + &L {HEF) - H(F)} (1.6)

for z in Ty and a function H : %']I‘N — R. We will not distinguish the notation for functions
H defined on T and on Ty.

The indicator function of a set A will be written by 14(u), which is one when u € A and
zero otherwise. Given a function f: T — R, we will denote f(a~) and f(a™), respectively,
for the left and right side limits of f at the point @ € T. In the case that a = 0, we can also
use the notation f(1) and f(0) for denote, respectively, the left and right side limits of f
at the point 0 € T. We are going to use the notation g;(u) to denote g(t,u), for a function
g : [0,T] x T. It must cause no confusion with the notation for time derivative, namely

atg(ta U)

1.2 Hydrodynamic limit of exclusion process with slow
bond

1.2.1 The hydrodynamic equation

For a non-negative integer k& denote by C*(T) the set of continuous functions from T to R
with continuous derivatives of order up to k. The set C°(T) will be written just as C(T).
For non-negative integers j and k denote by C?%*([0,T] x T) the set of continuous functions
from [0, 7] x T to R with continuous derivatives of order up to j in the temporal coordinate,
t € [0,7], and k in the spatial coordinate, u € T.

The study of exclusion process dynamics in presence of a slow bond requires the use of
functions defined in the continuous torus, which must be smooth except possibly at the point
a € T. In such a way, consider the following

Definition 1.2.1. Denote by C*2([0,T] x T\{a}) the space of functions H : [0,T] x T — R
such that
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1. H restricted to [0,T] x T\{a} belongs to C**([0,T] x T\{a});
2. H has a C'* extension to [0,T] X [a,1 + a], where we are identifying (a,1 + a) with
T\{a}.

It is of worth pointing out the meaning of such definition. Note this space of test
functions should not be misunderstood with C*?([0, 7] x T), since a typical function of
C12([0,T) x T\{a} ) can have a discontinuity at the point a € T.

Denote by (-, -) the inner product in L*(T) and by p; the function p(t,-).

Definition 1.2.2. Consider a bounded density profile v : T — R. A bounded function
p:[0,T] x T — R is said to be a weak solution of the parabolic differential equation

dp = Ap
p(0,) = (") (1.7)
aupt<a+) = aupt(a_) = pt(a+> - pt(a_) ’ AS [OvT] )

iof the following two conditions are fulfilled:
(1) p € L*(0, 71 (T\{a})) ;

(2) For all functions H € CH*([0,T] x T\{a}) and for all t € [0,T], p satisfies the
integral equation

<pt7Ht> - <77H0> - /{:(pm (as + A)I—Is> dS
+ / (a0 HL(") — pula )0, H(a) } ds (18)

= [ Apia®) = pula)}H{Hu(a") = Hi(a7)} ds.

Remark 1.2.1. For a heuristics about why we denote the integral equation (1.8) in the way
(1.7), one should multiply both sides of (1.7) by a test function H € C**([0,T] x T\{a}),
integrate in space and time and then perform twice a formal integration by parts, obtaining
the equation

(oo H) — (7. Hy) = / (9o (0, + A)HL) ds
+/0 {ps(a+)3uHS(a+) - ps(a_)ﬁuHs(a_)} ds

- / (Dupa(a™VH(a™) — Bupyla”)Hy(a™) )} ds

Applying the formal boundary conditions about p, one gets (1.8). Besides, it shows that any
solution in the strong sense of (1.7) is a weak solution of (1.7).
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In Section 2.6, we show uniqueness of integral solutions. FExistence follows from the
tightness of the sequence of probability measures Q,, introduced in Section 2.2 and the
characterization of limit points given in Section 2.5.

We are now in position to state the main result of this section:

Theorem 1.2.2. Fir a continuous initial profile v : T — [0,1] and consider a sequence
of probability measures py on {0,1}" associated to v in the sense (1.4). Then, for any

t e 0,71,
%Z (%) (x /H tudu’>5]=0,

$ETN

|

for every § > 0 and every function H € C(T) . Here, p is the unique weak solution of the
linear equation (1.7) with py = 7.

1.3 Hydrodynamic limit of weakly asymmetric exclusion
process with a slow bond

For each function H € C**([0,T] x T), consider the time inhomogeneous Markov process
whose generator at time ¢ is given by

(L) =D e MR () (1 = p(a+1)) [f0r) = F(n)]

z€T N

+ 37 g e G (1) (1 — (@) [f0"=) = £(n)]

z€T N

for all f: {0,1}™ — R, where n®®*! is defined in (1.2) and the conductance £~ was defined
n (1.3). Notice that, if the function H € C*?([0,T] x T) is constant, the infinitesimal
generator L, is equal to the infinitesimal generator Ly, which is defined in (1.1).

For each probability measure z1x on {0, 1}~ denote by JP’fLIN ( EN, respectively) the prob-
ability measure on the space of trajectories D([0,77,{0,1}"™) (D([0,T], M), respectively)
corresponding to the inhomogeneous Markov process 7; (77, respectively) with generator
LI defined in (1.9) accelerated by N? and starting from py.

(1.9)

1.3.1 The hydrodynamic equation

Definition 1.3.1. Consider a bounded density profile v : T — R and H € CY*([0,T] x T).
A function p : [0,T] x T — [0,1] is said to be a weak solution of the partial differential
equation

Op = Ap —20,(x(p)0uH)

p(0,) = () (1.10)
Oupr(a®) = 2x(pe(a™)) OuHi(a®) + pr(a®) = pr(a”), '
Oupe(a™) = 2x(pi(a™)) Oui(a™) + pr(a®) — pi(a”),
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if the following two conditions are fulfilled:
(1) p € L*(0, T; H'(T\{a})) ;

(2) For all functions G in C**([0,T] x T\{a} ), and all t € [0,T], p satisfies the integral
equation

e = o :/0 (P (0 + A)G) ds +2 /0 (X(p)0uH, , 0,G) ds
- /0 {ps(a™) = pu(a™) }{Gs(a™) — Gi(a™) } ds,

where ps is the notation for p(s,-), x(a) = a(l — a).

Remark 1.3.1. Notice that the boundary integral is well defined by assumption (1). Choosing
H as the constant function identically equals one, we get the hydrodynamical equation (1.7),
as expected. Besides, the expressions Oupi(at) and Oupi(a™) appearing in (1.10) differ only
on its first parcel.

At least, the reason we call the integral equation (1.11) in the way (1.10) is the same
reason that we denote the integral equation (1.8) in the way (1.7). Suppose p is a smooth
solution of (1.11). Multiplying both sides by a test function G smooth in T\{a}, integrating
in space and time, and then performing the respective integrations by parts, some boundary
integrals will appear. These boundary conditions imposed in (1.10) are the exact conditions
needed to obtain the integral equation (1.11). Or else, any solution in the strong sense of
(1.10) is a weak solution of (1.10).

In Section 5.4, we shall prove uniqueness of such weak solutions. Existence of solutions
follows from the tightness of the sequence of probability measures @EN introduced in Section
5.1 and the characterization of limit points given in Section 5.3.

We are now in position to state the main result of this section:

Theorem 1.3.2. Let H € CY%([0,T] x T). Fiz a continuous initial profile v : T — [0,1]
and consider a sequence of probability measures uy on {0,1}T associated to v in the sense
(1.4). Then, for any t € [0,T],

]lvz (%) /G tudu‘>5]:0,

z€Tn

N—ooo HN

lim PY [

for every § > 0 and every function G € C(T) . Here, p is the unique weak solution of the
diferential equation (1.10) with py = 7.
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1.4 Large deviations

Denote by M, the subset of M of all absolutely continuous measures with density bounded
by 1:

Mo:{we./\/l w(du) = p(u)du and 0<p<1 almostsurely}
The set My is a closed subset of M endowed with the weak topology (see A.2.1). This
property is inherited by D([0,T], Mo), which is a closed subset of D([0,T], M) for the
Skorohod topology.

Denote by 0, the partial derivative of a function with respect to the space variable. Let
L3([0,T] x T) be the Hilbert space of measurable functions H : [0, 7] x T — R such that

[ [ s anas < o,

endowed with the scalar product (H,G)) defined by

//Hsu (s,u)duds.

Definition 1.4.1. For H € C%'([0,T] ']T) with compact support contained in [0,T] X

(T\{a}), define Ey : D([0,T], M) — ]R
sutr) = { (O 2L, 5 € D(0.T) M)

~+00, otherwise.
Futhermore, define the energy functional € : D([0,T], M) — R by
E(r) =sup&y(n), (1.12)
H
where the supremum is taken over all H € C%'([0,T] x T) with compact support contained
in [0,7] x (T\{a}).

In Section 2.4, we prove that 7 € D([0,T], M) with £(7) < oo, there exists p €
L2(0,T; HY(T\{a})), such that 7(¢,du) = p;(u)du.

Definition 1.4.2. Let H € CY2([0, T]xT\{a}), define for = € D([0,T], M) with £(7) < oo
7T(t, du) = pt(u)dU’7

Y

Car(m) = {pr, Hr) — (o, Ho) — /<pt,<at+A>Ht>dt
(1.13)

/{pt VO H, (") — pu(a”)0uH,(a™)} dt
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and
Jia(m) = by () — / (u(pe), (BuHL)?) dt
- / " @) (1 = pula)) () 1) gy (1.14)
- / pula)(1 = pya™)) (e B I+ 1) gt

Definition 1.4.3. For all function H € C"*([0,T] x T\{a}), we define the functional
Ju : D([0,T], M) — R, by

Tu(r) = { Ju(m), if E(m) < o0,

400, otherwise.
Define I : D([0,T], M) — [0, 00] by

I(n) = sup Ju(T)
HeC2([0,T]xT\{a} )

and I* : D([0,T], M) — [0, 0] by

I"(m) = sup Ju ().
HeC12([0,T]xT)

Denote by D°([0,T], Mo) the subset of D([0,T], M) consisting of all paths 7(t,du) =
p(t,u)du such that there exists H € C%2([0,T] x T) that p = p" is a unique weak solution
of (1.10).

We are now in position to state the main result of this section:
Theorem 1.4.1. The sequence of measures {Q,n; N > 1} satisfies:

(1) Upper bound: Let C be a closed subset of D([0,T],M). Then

J@O +1log Q,x[C] < — inf I().

el

(it) Lower bound: Let O be an open subset of D([0,T], M). Then

lim +logQ,~[0] > — inf I"(n).

N—oo WGOQDO([O,TLM())

The item (i) of the theorem above is proved in Chapter 4. The other item of the last
theorem is proved in Chapter 6.
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Chapter 2

Hydrodynamic limit for the exclusion
process with slow bond

2.1 Scaling Limit

We begin by recalling that for a function H : T — R, (7Y, H) stands for the integral of H

with respect to

(M H) = % Y H(E)m(x).

z€T N

This notation should not be mistaken with the inner product in L*(T). Also, when 7; has a
density p, m(t,du) = p(t,u)du, we sometimes write (p;, H) for (m;, H).

We also recall that Q,, is the measure on the path space D([0,7], M) induced by the
probability measure jy on {0, 1} and the empirical process 7 introduced in the Chapter
1.

Proposition 2.1.1. Fiz a continuous profile py : T — [0, 1] and consider a sequence {jn :
N > 1} of measures on {0,1}™ associated to po in the sense (1.4). Let Q be the probability
measure on D([0,T], M) concentrated on the deterministic path 7(t,du) = p(t,u)du, where
p is the unique weak solution of (1.7). Then, the sequence of probability measures Q,,
converges weakly to Q, as N — oo.

It is straightforward to obtain the Theorem 1.2.2 as a corollary of the previous proposition.

The proof of the Proposition 2.1.1 is divided in three parts. In Section 2.2, we show that
the sequence {Q,,, : N > 1} is tight and in Section 2.5 we characterize the limit points of this
sequence. For that we have proved that all limit points of this sequence are concentrated on
weak solutions of the hydrodynamic equation (1.7). As a consequence, we have the existence
of weak solutions of (1.7) with initial condition . The uniqueness of weak solutions of (1.7)
is presented in Section (2.6) and this implies the uniqueness of limit points of the sequence

{QMN :N > 1}

31



2.2 Tightness

Proposition 2.2.1. The sequence of measures {Q,,,, N > 1} is tight in the Skorohod space
D([0,T], M).

Proof. 1t is well known (see Proposition 4.1.7 in [16]) that, in order to prove such tightness,
it is enough to show tightness of the real-valued processes {(r, H);0 < t < T} for a set
of smooth functions H : T — R dense in C(T) for the uniform topology. Furthermore, if a
sequence of distributions in D([O, T},]R) endowed with the uniform topology is tight, then it
is also tight in D([0,7],R) endowed with the Skorohod topology.

Here, we prove that the sequence {(7, H;);0 <t < T'} is tight in D([O, T], R), endowed
with the uniform topology, for H € C**([0,T] x T\{a}). Notice that C?*(T) is a subset
of the C*2([0,7] x T\{a} ), then the set C2([0,7] x T\{a}) is dense in in C(T) for the
uniform topology.

Fix H € C*?([0,T] x T\{a} ). By definition {(m}¥, H;); 0 <t < T} is tight in D([0,T],R)
endowed with the uniform topology if, for the boundedness,

lim sup ]P’MN[ sup [(m, H,)| > m] =0, (2.1)
m—r0o0 0<t<T

and, for the equicontinuity,

lim lim P,, [ sup (7, Hy) — (N, H,)| > 5} =0, foralle >0. (2.2)
60—0 N—oo t—s|<6

The limit in (2.1) is trivial since (7, H)| < ||H||. So we only need to prove (2.2).
By Dynkyn’s formula (see appendix in [16]), for any function H € C*2([0, 7] x T\{a} ),

MYN(H) = (xN, H,) — (7}, Hy) /{ (7, 0,H,) + N*Ly(7Y, Hy) } ds (2.3)

is a martingale. By the previous expression, (2.2) follows from

. ET—. N N _
(lsli% ]\}1_{%0 P,y [ltiljzé |M;" — M| > 5} 0, foralle >0, (2.4)
and
lim lim P,,| sup / N2Ly{n? )dr‘ ] =0, foralle >0. (2.5)
6—0 N—oo 0<t <4

To prove (2.4) it is enough to prove that the quadratic variation of the martingale M}N (H),
(M™(H));, converges uniformly to zero in L'(P,,), as N — oo. The quadratic variation
(MY (H)); is equal to

/tNQ[LN<7réV,HS>2—2( CH)Ly (N, H,)| ds .
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Just applying the definition of the generator Ly, the quadratic variation, (M~ (H));, can be
rewritten as

[ 3 e[t - o) (15 - 1)) s, (2.6

z€T N

Since any function H € C**([0,T] x T\{a} ) has bounded first derivative in T\{a}, there
is a constant C' > 0 such that |H, ”1) H, (ﬁ)’ < CN~! for any = # ay. Applying this
inequality in (2.6) and recalling that & N = N~! we get the bound

an,any+1 = Sapn

T(C*+ 2| H|Z)

(N (), < O

The next step is to analyze the limit (2.5). Recall the definition of the operator Ly

given in (1.6). By a simple changing of variables, it is easy to see that N2Ly(r) 6 H,) =
(N N*LLy H,), which on his hand is
(rN N2LyH) =5 S n(a) [N2(H (Z21) 4+ B (2=1) — 2HS(%))}
wjéf;f]\j»l
(2.7)

) | (HL(552) = Hy(%) + N (H(25) = H(%) ]

Fulan + 1) [N (H(252) - Ho(252) + (H.(%) - H(25)]

Since H € C*2([0,T]xT\{a} ), H’[o TxT\(a} € CY2([0, T] x T\{a}) with bounded derivatives
of first and second order. By Taylor expansion, we obtain that

IN?Lg(xY, H)| < 2(|AH||oo + |0uH oo + | Hloo]
We have concluded that there is a constant C' > 0 depending only H such that

/ N2LN >d5

<Clt—r|,

which implies the limit (2.5).

2.3 Replacement Lemma
We obtain fundamental results that allow us to replace the mean occupation of a site by the

mean density of particles in a small macroscopic box around this site. This result implies
that the limit trajectories must belong to some Sobolev space, what will be clarified later.
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Denote by Hy(un|vY) the entropy of a probability measure py with respect to the
invariant state Y. For a precise definition and properties of the entropy, we refer the reader
to [16]. In Proposition A.1.8 in the Appendix we review a classical result saying that there
exists a finite constant Ky := Ky(«), such that

Hy(unlvy) < KN, (2.8)

for any probability measure uy € {0, 1},
Denote by (-,-),~ the scalar product of L?(v)) and denote by D the Dirichlet form of
f, which is the convex and lower semicontinuous functional (see Corollary A1.10.3 of [16])

defined by
CDN(]E) = <_LN\/?> \/?>V§7

where f is a probability density with respect to v (ie. f > 0 and [fdv) = 1). An
elementary computation shows that

N

on(r) = 3 25 [ (VI = V) ).

z€T N

By Theorem A1.9.2 of [16], if {SY : ¢ > 0} stands for the semi-group associated to the
generator N2Ly, then

t
Hy(uxSY ) + N? / On(fN)ds < Hy(unlY),
0

provided f stands for the Radon-Nikodym derivative of uySY (the distribution of 7, start-
ing from uy) with respect to 1.

From this point, we denote the integer part of e N, namely [N |, simply by eN. Next,
we define the local density of particles, which corresponds to the mean occupation in a box
around a given site. We represent this empirical density in the box of size £ around a given
site x by n‘(x). The idea is to define a box around the site z in such way it avoids the slow
bond.

Definition 2.3.1. Ifx € Ty is such that § € (a—¢,a), then the empirical density is defined
by

anN

) =% D> ).

y=an—eN+1

Otherwise, if, let us say, + ¢ (a — €, a), then the empirical density is defined by

Tz+eN

@) =& D n).

y=z+1
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According to the previous definition of local density of particles, we define an approxi-
mation of identity in the continuous torus given by

11gcq)(u), if ve(a—e,a)

ti(u,v) = 29)
2104 (u), otherwise.

We also define the convolution

(¥ * ) (v) = (¢, (- 0))

for all function ¢ : T — R or measure v in T.

To simplify notation, we define the functions

g1:{0,1}* = R by gi(n) = n(0)(1 —n(1)) (2.10)
and
g1 :[0,1] x [0,1] = R by gi(e, 8) = a(l - 5).
Also,
92:{0,1}” = R by ga(n) = n(1)(1 —n(0)) (2.11)
and

G2 :[0,1] x [0,1] = R by go(a,8) = B(1 —a).

Lemma 2.3.1. Fiz a function F : T — R. Let be f density with respect to v\. Then, for
any A > 0,

aFaN (2.12)

(2.13)

Ly / F(&){n@) — ™ @) ) v () < 44e 3 (F(2)° + 10n(f)  (214)

z€Tn z€T N

and

[ = @) s ) < 4NA= + 5Dx(), Vo€ Ty, (215)
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Proof. We handle with the inequalities (2.12) and (2.13) for ¢ = 1. The proof for the others
inequalities are analogous. First of all, rewrite n(x)(1 — n(x+1)) — 9N (z)(1 — 9N (z+1)) as
n(@) — 0™ (2) = n(@)((z+1) — ™ (2 +1)) = " @+ 1) (n(x) — 17 () .

We will consider only the function n(z)(n(x+1) — n°V(z+1)), for the others functions the
proof is analogous. Then we claim that for f density with respect to Y and for any A > 0,
it is true that

230 [P {ne ) - @) b ¥ o
TN ) (2.16)
<44e > (F(£) + 3Dn(f)
TH#an

and
/ P yp(an) (n(an+1) — 17 (ay+1)) £ () do¥ (n)

< 24eN(F(%))” + 1Du(f).

Recall Definition 2.3.1. First we will analyse a site = such that % ¢ (a — £,a). In this
case,

(2.17)

/ P& (@) (n(a+1) — 7 (@4 1) F ) v ()
r+1+eN

:/F(%)n(m){j > (n(Hl)—n(y))}f(n)dv(iv(n)-

y=z+2
In the expression above, writing n(x+1) — n(y) as a telescopic sum, we get

z+14+eN y—1

[rema{E > X @) -+ 1) o ).

y=x+2 z=z+1
Now, rewriting the last expression as twice the half and making the change of variables
n + n>*T! (using that the probability v/Y is invariant) it becomes as

z+1+eN y—1

= > > F(%)/n(fﬁ)(n(@ —n(z+1)(f(n) = fFr*™) dv(n) .

y=z+2 z=z+1
Since a — b = (v/a— vb)(v/a + V/b), applying the Cauchy-Schwarz inequality, for any A > 0,
we bound the previous expression from above by

z+14+eN y—1

2 Y X (PG [ (VI + V) )

gé\{z-‘—l
y=z+2 z=z+1

z+14+eN y—1

=IO INDY §iv’%“/(x/f(n)—\/f(n'z’Z“))QdViV(n)-

y=x+2 z=x+1
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The second sum above is bounded by

rz+1+eN

dv Y 2 S [ (VEW - V) o) < ko).

y=z+2 z€Tyn

Since fi\;H =1forallz€ {z+1,...,2+eN} and f is density with respect to /Y, it yields
the boundedness of the first sum by

z+1+eN y—1
L3 Y 24(F2) )’ < 24N (F(£))*.

y=z+2 z=z+1

Thus, for any site x such that %t ¢ (a — ¢, a, we have that

[ PG 1)~ D)) vl () < 24N (F(3))° + 59 h).

Taking = ay in the last inequality, we obtain the inequality (2.17).
In order to achieve (2.16), we need to analyse the other sites. Let x be a site such that
”CT“ € (a — g,al. In this case,

/ F(2 (@) (n(a+1) — 7 @+ 1) £ () v ()

anN

~ [Fena{E Y o) - o) prm o).
y=an—eN+1
Now, we split the last summation into two blocs: {ay —eN+1,--- ,x} and {x+1,--- ,;an}.

Then we proceed by writing n(x+1) — n(y) as a telescopic sum, getting

CES) T ENND DI S CRE eI P )

y=an—eN+1 z=y

P [o0{d 3 5 0 -at 0} )

y=z+2 z=x+1

Then, by the same arguments used above and since 52[2“ =1 for all z in the range {ay —
eN+1,...,ay — 1}, we bound the previous expression by

4AeN(F(%))" + 50N (/).

This conclude the claim (2.16).
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Proposition 2.3.2 (Replacement Lemma). Given a bounded function F : T — R, then
i L[| [ % X PG @) as]] <o

T i E,, | ]/ S P meatn) — ¥ @), n @ 1) bas || =0, wi=12

and

limy lim EWH/;F%N){T&N%@) 5.7 (ax) N an+1) fds || = 0, vi=1.2,

e—0 N—oo0
where g; and G;, 1 = 1,2 were defined in (2.10) and (2.11).

Proof. We will prove the first limit, the other ones are similar.
Using the definition of the entropy and Jensen’s Inequality, the expectation is bounded

from above by

for all ¥ > 0. In view of (2.8), to prove this proposition, it is enough to show that the
second term vanishes as N — oo and then € | 0 for every v > 0. Since e*l < e® + ¢ and
by Proposition A.2.7, we may remove the absolute value inside the exponential. Thus, to
complete the prove of this proposition, we need to show that

logEl,N exp / Z F(§5){ns(z EN(:c)}alsH =0,

zeTn

Hy #le/ logEVN exp ‘/ Z % {ns(x N(;p)}dé‘

€T N

for every v > 0.
By Feynman-Kac formula (c.f. Proposition A.1.7 and [16], Lemma 7.2, p. 336), for each
fixed N the previous expression is bounded from above by

tw{ [ 4 3 Fi{at) @} an - ¥ox(n}

where the supremum is carried over all density functions f with respect to Y. From inequal-
ity (2.14) of the Lemma 2.3.1, and assumption over the function F', the previous expression
is less than or equal to

tsu {445 37 (F(2))* + $0n() - 2On(1)}

Here, if we were proving the others limits of the statement of this proposition, we would
have that use the others inequalities of the Lemma 2.3.1.
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Letting A = ., the last expression becomes

(PR

z€T N

2
N

For all v > 0, this expression vanishes as N — oo and then ¢ | 0, which concludes the proof
of first limit in statement of the lemma. For the second limit, one needs just multiply and
divide the expectation there by N and proceed as before. O]

Proposition 2.3.3 (Replacement Lemma for a Single Site). For each bounded function
F:[0,T] x T, sitex € Ty and e > 0, let

Va2 (tn) = F(t, 5){n(@) — 17 ()}
Then,
L T
lim lim ]E,,NH/ V]@gN(t,nt) dtH =0.
0

el0 Nooo ¢

Proof. This proof follows by same method as in Proposition 2.3.2. The unique difference is
that to apply the inequality (2.15) of the Lemma 2.3.1.
O

2.4 Sobolev spaces

We prove in this section that any limit point Q* of the sequence nyN is concentrated on
trajectories p(t,u)du which belongs to the Sobolev space, which will be defined ahead. Let
Q* be a limit point of the sequence @ny and assume without loss of generality that the
sequence Qf)fN converges to Q*.

We repeat here the definition of the Sobolev Space from [4].

Definition 2.4.1 (Sobolev space). The Sobolev space H*(T\{a}) consists of all locally
summable functions ¢ : T\{a} — R such that there exists 9 € L*(T\{a}) satisfying

<auG7 C> = _<G7 a<> )
for all G € C°°(T\{a}) with compact support. For ( € H'(T\{a}), we define the norm

¢l (v oy = 1OC]| L2 -

Definition 2.4.2. The space L*(0,T;H(T\{a})) consists of all measurable functions & :
0, 7] = HYT\{a}) with

T ) 1/2
€]l 220,731 (1\{a})) = ( /0 el rvgan dt) = oo

We refer to [4] for more informations about Sobolev spaces.
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Proposition 2.4.1. The measure Q* is concentrated on paths p(t,u)du such that p belongs
to L*(0,T; HY(T\{a})).

The proof is based on the Riez Representation Theorem and follows from the next lem-
mata.

Lemma 2.4.2. Fiz any function H : T — R and let f be a density with respect to vY. Then,

/ENZ () [t — ) — nfa) ) o)

Z‘ETN

SNON(H)+2 Y (HE) {1+ M ea(£)}

:EETN
Moreover, this inequality is remains valid replacing {n(z—eN)—n(x)} by {n(z)—n(x+eN)}.

Proof. This proof follows the same steps as in the Lemma 2.3.1. One begins by writing as a
telescopic sum,

/EN > HE) {n(wo) = n(e) } ) vl (n)
= D H(%)mzl/ {n(y) =y + 1)}f(?7) dvg (n)

where o =x —eN and 1y =z or xp = z and 1 = x + .
Now, following the same arguments as in Lemma 2.3.1, we bound the previous expression
by

r1—1

30 RN X gl [ (VI VTG )
e (2.18)
Y e [T T ).

The second sum above is less than or equal to %@N(f). Since f is density with respect to
v} and also the definition of €)', ,,, the first sum in (2.18) is less than or equal to

1’1—1

a2 (HE) DD <2 D (HG)) (N + Ve ()}

x€T N Yy=x0 z€T N

This inequality is true for zo = x —eN and x; = x or xg = z and z; = x + eN. Choosing
A= ]lv, it yields the inequality in the statement of the lemma. O]
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For a function H : T — R, ¢ > 0 and a positive integer N, define Uy(e, H,n) by

Un(e,H,n) ENZH%{ x—eN)—n(x)}
ety (2.19)
_% Z ( (%)) {1+11a 5a]<%)}‘

ze€Tn
Recall the definition of the constant K, given in (2.8).

Lemma 2.4.3. For every k > 1, consider the functions Hy,..., Hy from [0,T] x T to R.
Then, for every e > 0,

510 N—oo 1<i<k

lm Tim EMN[max {/T Un (e, Hi(s, ), m?N) dsH < K.
0

Proof. 1t follows from the Replacement Lemma that in order to prove the lemma we just
need to show that

T
5o s [ e 00000 < 1

By the entropy and Jensen’s Inequalities, for each fixed N, the previous expectation is
bounded from above by

H<M+|Vév) + L 1ogE, v [exp{ max {N/OT Unle, Hils, ')’ns)dS}H '

1<i<k
By (2.8), the first term is bounded by Kj. Since exp{max;<;j<x a;} is bounded from above
by Z1§jgk exp{a;} and since limy N~'log{ax + by} is less than or equal to the maximum
of limy N~'log ay and limy N~'logby, the limit, as N — oo, of the previous expression is
less than or equal to

Ko + max lim +1logE, N[exp / Un(e, Hi(s,"),ns) ds}] :

1<i<k N—oo

We now prove that, for each fixed ¢ the limit above is nonpositive.

Fix 1 <7 < k. By Feynman-Kac’s formula and the variational formula for the largest
eigenvalue of a symmetric operator, for each fixed IV, the second term in the previous ex-
pression is bounded from above by

/OT sup { /UN(5, Hi(s,),ms) f(n)dvl (n) — NQN(f)} ds |

!
In last formula the supremum is taken over all probability densities f with respect to v/,
Applying the Lemma 2.4.2, the result is straightforward. [
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Lemma 2.4.4.

E@*[sgp{/oT/T@uH(s,u)ps(u) duds — 2/0T/TH(s,u)2dudsH < K.

where the supremum is carried over all functions H in C%([0,T] x T) with compact support

in [0,7] % (T\{a}).

Proof. Consider a sequence {Hy, ¢ > 1} dense (with respect to the norm || H||oo + || 0uH ||0o)

in the subset C%!([0,7] x T) of the functions with support contained in [0,7] x (T\{a}).
Recall that we suppose that QLVN converges to Q*. By Lemma 2.4.3, for every k > 1

5
lgﬁ)lE 1n<1la<>§C / /H s,u) [p2(u — ) — p°(u)] duds
_ 2/ / ) {1+ M ()} duds ] < Ko,

where p°(u) := (p * 12)(u). Letting § | 0, we obtain

max //Hsupsu—s) ps(u)] du ds

1<7,<k:

- 2/ / ) {1+ 2o (u )}dudsH < K.

Changing variables in the first integral,

max //l (50t 2) — Hi(s, u)lps(u) duds

1<z<k

. 2/ / Y {1+ g (u )}dudsH < K.

Since H; in C*([0,T] x T) with compact support in [0,7] x (T\{a}). Making ¢ | 0 in the
last inequality, we obtain

E@*[max //aHsu) (s,u) duds

1<i<k
. 2/ / duds}] < K,.

To conclude the proof it remains to apply the Monotone Convergence Theorem and recall
that {Hy, ¢ > 1} is a dense sequence (with respect to the norm ||H||o + ||0uH]||~) in the
subset of functions of C%([0,T] x T) with support contained in [0, 7] x (T\{a}).

m
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Proof of Proposition 2.4.1. Denote by £ : C%!([0,T] x T) — R the linear functional defined
by

U(H) = /0 ' /T 0, H (5, 1) py(u) duds.

Since C%([0,T] x T) with support contained in [0, 7] x (T\{a}) is dense in L?([0, T] x T), by
Lemma 2.4.4 and Proposition A.1.1, £ is Q*-almost surely bounded functional in C*!([0, T| x
T), we can extend it to a Q*-almost surely bounded functional in L*([0, T x T). In particular,
by Riesz representation theorem, there exists a function G in L*([0,T] x T) such that

((H) = —/OT/TH(S,U) G(s,u) duds.

One can use the Lemma A.1.9 to conclude the proof of the proposition. O

2.5 Characterization of limit points

We prove in this section that all limit points Q* of the sequence Q,, are concentrated
on absolutely continuous trajectories 7(t,du) = p(t,u)du, whose density p(t,u) is a weak
solution of the hydrodynamic equation (1.7) with v = po.

Let Q" be a limit point of the sequence Q,, and assume, without loss of generality, that
Q. converges to Q*.

Since there is at most one particle per site, Q* is concentrated on trajectories m(du)
which are absolutely continuous with respect to the Lebesgue measure, m(du) = p(t,u)du,
and whose density p is non-negative and bounded by 1. For more explications we refer the
reader to [16].

In Proposition 2.4.1, we proved that p(t,-) belongs to L?(0,T; H*(T\{a})). It is well
known that the Sobolev space H'(T\{a}) has special properties: all its elements are ab-
solutely continuous functions with bounded variation, c.f. [4], therefore with well defined
lateral limits. Such property is inherited by L? (O,T; Hl(T\{a})) in the sense that we can
integrate in time the lateral limits.

Let H € C**([0,T] x T\{a} ). We begin by claiming that

Q* [71 {ps, Hy) — {7, Hy) — /Ot (ps, (0s + A)Hy) ds
- /0 (a0 H(a") — pa(a)0uHy(a")) ds (2.20)

+/0 {ps(a™) — ps(a™) }{H,(a") — Hy(a")}ds = 0, Vte[0,T]| = 1.
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In order to prove the last equality, its enough to show that, for every § > 0

Q* [71 :sup | {py, Hy) — (7, Hy) — /Ot (ps, (0s + A)Hy) ds

0<t<T

‘/o 1ps(a")0uHy(a") = ps(a”)0uHo(a™) } ds
+ / {po@®) = pola™) H{Ho(a") = H(a7)} ds

>5] =0.

Since the boundary integrals are not well-defined in the whole Skorohod space D([O, T1, MO),
we cannot use directly Portmanteau’s Theorem. To avoid this technical obstacle, fix ¢ > 0,
which will be taken small later. Adding and subtracting the convolution of p;(u) with ¢, := (2,
recall definition (2.9). Then, we can see the probability above is less than or equal to the
sum of

(o i) — (v, Hy) — / (9o, (0, + ALY ds

0<t<T

Q* [7?. : sup

/{mw DO, Hu(a") — (ps * 1) (a)0uHo(a )} ds (2.21)
—|—/0 {(ps %) (a®) = (ps * ) (a”) }{Hs(a¥) — Hy(a™) } ds

> 5/3],

[.:OiltlfT /{ps*ba M0 Hy(a™) — (ps * te)(a™ )0, Hy(a™) } ds
_/0 {ps(a+)auHs(a+) ( )8 H }dS > 5/3]

and
Q" [7‘(‘. ; oililfT i (ps * te)(a®) = (ps * 1) (a”) }{Hs(a¥) — Hy(a™) } ds

= [ o) = ol () — Hy(a)} ds

> 5/3].

The convolutions above are suitable averages of p around the boundary point 0. Therefore,
as € | 0, the set inside the three previous probabilities decreases to a set of null probability.
[t remains to deal with (2.21). We want use the Portmanteau’s Theorem and Proposition
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A.2.7, and conclude that the probability (2.21) is bounded from above by

<,0t7 Ht> - <’V; H0> - /Ot <psv (as + A>Hs> dS

lim Q. [W : sup

N—o0 0<t<T

/{pS*LE NOLH.(a") — (ps *12)(a”)0uHo(a )} ds
+/0 {(ps %) (a*) = (ps * 1) (a”) }{Hs(a®) — Hy(a™)} ds

> 5/3].
(2.22)

Although the functions Hy, Hy, (0s + A)Hy, t(-,a”) and (-, a’) may not belong to C(T),
we can proceed as in Subsections 7.5.2 and 8.3.2 (see (7.23) and (8.32)) in order to justify
why (2.21) is bounded from above by (2.22). Next we outline the main arguments involved in
that procedure. Before applying the Portmanteau’s Theorem, we replace these functions by
continuous functions such that the new functions coincide with the original functions in the
torus except on small neighborhood of the points of the discontinuity the functions H;, Hy,
(0s + A)Hg, te(,a”) and to(-,at) and their L>°-norm are bounded from above by L*-norm
of the respective original function. Using the rule that has only one particle per site, the set
where we compare this change has small probability. Thus, we have continuous functions
and we are able to apply the Portmanteau’s Theorem and Proposition A.2.7. After using
the Portmanteau’s Theorem, let us return to the original functions, by the same arguments
as above. Then, we obtain the expression (2.22).

If we consider the discrete torus as embedded in the continuous torus, ay is the closest
site to the left of @ and ay +1 is the closest site to the right of a. Since (WN*LE)( ) =nN(2),
for all € Ty. Using the definition of Q,,, we can rewrite the previous expression as

(¥ H — (¥ Hy) / (¥ (8 + A)H,) ds

N—o00 0<t<T

lim P, [ sup

_ /Ot {nZN(aN + 1)8uHs(a+) o ”:N@N)auﬂs(a*)} s

- ; {n:"(an +1) =N (an) }{Hs(a®) — Hy(a™) } ds

> 6/3].

The next step is to add and subtract N? Ly (7Y
now bounded from above by the sum of

H) and the previous probability becomes

S Y

t
(¥ HY — (xl Ho) / (¥, O,H,) + N2 Ly (x, H,) ds
0

N—oo 0<t<T

lim P, [ sup

> 6/6]
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and

¢ t
/ N2Ly(zY, H,)ds — / (7N, AH,) ds
0 0

N—oo 0<t<T

lim P, [ sup

) / {1 (an + DOuH, (@) = 2 (aw)0uHo(a7) b ds (22

+ ; {ni¥(an +1) =" (an) }{Hs(a™) — Hy(a™)} ds

> 5/6].

The expression inside the first probability is the martigale MY (H) defined in (2.3). Using the
fact that the martingale M;¥ (H) converges to zero in L*(IP,, ), which is proved in Proposition
2.2.1, and Doob’s inequality, the first probability is equal to

lim ]Pw[ sup
N—o0 0<t<T

MtN(H)’ >6/6] =0,

for every 6 > 0,
We going to show now that the second probability above is null. By expression (2.7) for
N2Ln(mN, H,) the probability (2.23) is less than or equal to the sum of

t
/ (rN, AH,) ds
0

/ ST (@) NP H, (EEY) + H,(251) — 2H,(2)] ds

lim Py

su
N—oo D

0<t<T

> 5/18],

TF#apn
zFapn+1
t
T Py | sup | [ {0 (ax + DOH.(0") = ¥ () Hola ) ds
N—o0 OStST 0

t
_/ {775<aN+1)NVNHaN+1 - ns(aN)NVNHaN—l}dS
0

> 6/18]

and

/ {nN(an +1) — " (an) }{Hs(a™) — Hy(a™)} ds

N—oo 0<t<T

lim P, [sup

_/0 {775(‘1N+ 1) —ns(aN)}VNHaN ds

> 5/18].

Since H € C2([0,T] x T\{a}), the discrete Laplacian, which applied to H, converges
uniformly to the continuous Laplacian of H,. Then the first probability is null. To prove
that the others probabilities are null, we observe that NVyF, converges uniformly to 0, F,
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as N — oo and VyF,, converges uniformly to Fy(a®™) — Fy(a™), as N — oo, since F €
CH2([0,T] x T\{a} ). By the rule of maximum of one particle per site and approximation
of integral by Riemann sums, for the previous probabilities be null, we need prove that the
probabilities

0<t<T

/ {ni¥(an + 1) — ns(an+1) } 0. H (a™)

S

—{17 —ns(an }8[—] “)ds

and

[ o ay + 1= i)

N—o0 0<t<T

lim P, [ sup

~ {mslay + 1) = nylaw)} H{H(a*) = H(a™)} ds

>5].

Proposition 2.5.1. Fiz a Borel measurable profile v : T — [0,1] and consider a sequence
{un : N > 1} of probability measures on {0, 1}~ associated to ~y in the sense of (1.4). Then
any limit point of Q,,, is concentrated on absolutely continuous paths m(du) = p(t,w)du, with
positive density p; bounded by 1, such that p is a weak solutions of (1.7) with initial condition
7.

Proof. Let {H; : i > 1} be a countable dense set of functions on C**([0,7] x T\{a} ),
with respect to the norm [|H || + ||0uH||oo + [|02H||oo. Provided by (2.20) and intercepting
a countable number of sets of probability one, is straightforward to extend (2.20) for all
functions H € C+*([0,T] x T\{a} ) simultaneously. O

converge to zero, as € | 0, Vo > 0. It follows by Replacement Lemma 2.3.3.

2.6 Uniqueness of weak solutions

This section is devoted to the uniqueness of weak solutions of (1.7). To simplify notation,
along this section, we will consider @ = 0 and sometimes we will denote 0t =0 and 0~ = 1.
Denote L2(T)*! the subspace of functions g € L*(T) with zero mean, or else, satisfying

Ag@ﬂuzo.

Definition 2.6.1. Denote by H2.(T) the set of functions H : T — R such that H is twice
differentiable with H € C(T), 0, H is absolutely continuous and AH € L*(T)*'. Moreover,
H satisfies the boundary conditions:

0,H(0") = 0, H(07) = H(0) — H(0™).
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Proposition 2.6.1. Let p : [0,7] x T — R be a weak solution of the parabolic differential
equation (1.7) with initial condition v : T — R. Then, for all t € [0,T] and for all H €
H3.(T), holds

) = o H) = [ g Sityas, (221)
for all t € [0,T].
Proof. Let H € HZ.(T). Here, we will denote 0T = 0 and 0~ = 1. Hence H satisfies

0, H(0) = 0,H(1) = H(0) — H(1).

Consider h, € C(T) such that [ h,(z)dz = 0 and h, converges to AH and (3, converging

to 0, H(0), and define
H,(z)= +/3nx+// z)dzdy .

Notice that H, € C**([0,T] x T\{0} ), 0.H,(0) = 0,H,(1) and AH,, = h,,. Then,

<m&%@ﬂmaﬂ%mw

t

+ 0 {pS(O) _ps<1>}aan(0) ds (2.25)

= | AP0 = (D} HA(0) = Ha(1)} ds.

Since H, converges to H and h, converges to AH, we just need to analyse the boundary
terms. By definition of H,, 0,H,(0) = 0,H,(1) = 3, converges to d,H(0). Using that h,
converges to AH in L? and f3,, converges to 9, H(0), we get H,(1) converges to

H(0) + 0,H (0 //AH )dzdy . (2.26)

By definition of the set H2.(T), we have that

/Oy AH(z) = 0,H(y) — 0,H(0).

The expression (2.26) is equal to H(1). Thus, H,(0) — H,(1) converges to H(0) — H(1) =
0, H(0). One can obtain the equation (2.24).
0

The next step is to construct the inverse of the operator A : H2.(T) — L*(T). For
g € L*(T)*!, define

w&mmzla@m@w (2.27)



where the function G : [0,1] x [0, 1] — R is given by

(1l —2)
2

G(z,z) =

—(z - Z)l{ogzga;g} -

Proposition 2.6.2. The operator (—A)™t enjoys the following properties:

(a) Vg € LA(T)H, (=A)"tg € CYT\{0}) and 9,(—A)"tg is absolutely continuous in
T\{0}, both having finite side limits around the point 0;

(b) Vg e LX), [(=A)g)(0)—[(=A)"1g)(07) = Du[(—=A)1g](0") = du[(—A)"g](07);
(c) Vg€ LX(T)H, (—A)'g € Hj(T);
(d) Vg€ LX(T)H, —A(=A)g=y;
(e) The operators —A : Hi (T) — L*(T)*! and (—A)~' : L2(T)*! — HZ(T) are symmet-
ric and nonnegative;
(1) Vg € Hi.(T), Jz Ag(u) du = 0.
Proof. Let g be a function in L*(T)*!. By the definition of (—A)™!,

(-a) gle) == [ LT / “g(z)dz+ / Cg()dz. (@)

which easily implies (a). Item (b) follows by the assumption g has zero mean. Items (a) and
(b) imply (c). Deriving (2.28) twice and recalling item (c), we obtain (d).
Let g,h € H2.(T). Integrating by parts,

(—=Ag, h) = (Oug, Oult) + 0ug(0")1(0T) — Dug(07)R(07).

Since g,h € Hi.(T), these functions satisfy the boundary conditions g(0%) — g(07) =
0u9(07) = 9,9(07) and A(0") — A(07) = 9,h(0T) = 0,h(07). Putting them together we
observe that

(=Ag,h) = (Dug, dul) + 0ug(07)0uh(07), (2.29)

which implies symmetry and non-negativity. The same holds for (—A)~!, using the item
(d). Ttem (f) follows from expression (2.29) with h = —1.
O

Proposition 2.6.3. Let p be a weak solution of the hydrodynamic equation (1.7) with zero
initial condition. For all t € [0,T], holds the equality

(o (—A) L py) = 2 / (9o, pe) ds (2.30)

In particular, since the hydrodynamical equation (1.7) is linear, there is at most one weak
solution with initial condition pg.
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Proof. Notice that the mean of a weak solution of (1.7) is constant in time, therefore p, €
L*(T)*! for any time t € [0, 7.
Take a partition 0 =ty <t; < --- < t, =T of the interval [0, 7], so that

(pe, (=) ) = (po, (—A) o)

- <pt’€+1’ (_A)_lptk+1> o <ptk+17 <_A)_1ptk:>
k=

n—

+ <ptk+17 (_A)_lptk> - <ptk7 (_A)_lptk> .

3
—

= o

ol

We handle the second term, the first one being similar because (—A)™! is a symmetric
operator. Since p is a weak solution of (1.7), p;, belongs to L*(T)*! and recalling Proposition
2.6.1 and Proposition 2.6.2 item (c),

<ptk+17 (_A)_lptk> - <ptk> (_A)_lptk>
Pt s (2.31)
= —/ (ps, ps) ds +/ (ps, s — pr,) ds .

123 tg

The sum over k of the first term in the right side of (2.31) is exactly the expression that
we announced in (2.30). We shall treat the remainder. Let ¢5 : T — R be an smooth
approximation of identity and ®5 : T — R a smooth function bounded by one, equals to zero
in the interval (—¢,0), and equals to one in T\ (—24,2J). Define

P(u) = (ps * t5)(u)Ps(u) .

It is of easy verification that p? € HE (T), for any s € [0,7], and also that p’(-) converges
to ps(-) in L%(T), when § | 0. Adding and subtracting p°, the second term on the r.h.s of
(2.31) can be written as

tr41 s tot1 5
/ (ps = Pss Ps — pr,) ds + / (0, ps = pry,) ds . (2.32)

t ty

Fix ¢ > 0. Since p3(-) converges to ps(-) in L?*(T), applying the Dominated Convergence
Theorem, the sum in & of the first term in (2.32) is bounded in modulus by ¢ for some §(¢)
small.

Fix now such § = §(¢). Since p? € HE.(T) and since p is a weak solution of (1.7), the

second term in (2.32) is equal to
tk+1 S
/ / (pr, Ap2) dr ds,
tr tr

whose modulus is bounded by C(p, §)(tx1 — t1)?, concluding the proof of (2.30).
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To see that this implies the uniqueness of solutions with a initial solution py, note that
the hydrodynamical equation (1.7) is linear, being enough to prove there is a unique weak
solution with zero initial condition. Besides, if p is a weak solution of (1.7) with zero initial
condition, then p; € L?(T)* for any time ¢ € [0, T]. Then, by the item (e) of the Proposition
2.6.2, (p, (—A)"1p;) >0, for all t € [0,T]. Using (2.30), we have (p;, (—A)"1p;) = 0, for all
t € [0,7]. From item (d), fixed t € [0,T], there exists f; € H2.(T) such that p, = (—A)f;,
and thus

(e, (=) pi) = (=Afi, fr) = (Oufr, Oufe) + (0ufe(07))?.

Then, 0, fi(u) = 0, u - almost surely and for all ¢ € [0,7]. Since p; = (—A)f;, we have
pt(u) = 0, u - almost surely and for all ¢t € [0,7]. This concludes the proof.
[
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Chapter 3

Superexponential Estimates

In this chapter, we present some results needed in order to show a Large Deviations Principle
for our model. Given a € T, recall that ay denotes the site of the left side of the slow bond
in the discrete torus Tx. In the others chapters, we can choose a = 0, but here a is any.
Such choice has been taken since, with this notation, becomes more clear that all results
are immediately generalized for finite slow bonds associated to finite points a',...,a* € T.
Before proceeding we introduce some tools that we use in the sequel.

For the Large Deviations, the Replacement Lemma presented in Section 2.3.2 is not
enough, because we need to prove that the difference between cylinder functions and functions
of the density field are superexponentially small, that is, of order smaller that exp{—CN},
for all C' > 0.

Proposition 3.0.4 (Superexponential Estimate). Let F;: [0,T]x T — R, i = 1,2, such that

T

lim {(FQ (Fi(t,£) }dt<oo.
N—oo g N x%\[ N
For each € > 0, consider
V) = £ 37 Rt 2){neun) - a0 @), (0+1)}

T#aN

+ Bt %) { 7an 1 0n) = 20" ()™ (ay+1) }

where g1 and ¢, were defined in (2.10). Then, for any 6 > 0,
lim lim + logP,» ’/ Va2 (¢ n, dt‘ > 5] —00. (3.1)

el0 Nooo NV

Finally, it is true the same result with go and g replacing by g1 and g, .
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Proof. Using the Proposition A.2.7, it is enough to prove (3.1) without the absolute value
Fy,Fo — I, — Iy
for Viy " and V. .
Let C' > 0, by Chebyshev exponential inequality, we get

Py | / VI (5 ) ds > ]
0
< exp {~CSN)E, N[exp CN/ Vi (g ns)dsH .

To conclude the proof of the theorem it is therefore enough to show that

lim lim
el0 N—oo

% logE, v

T
exp{ / ON v]@g@(t,m)dt}] <0, (3.2)
0

for every C' > 0, because in this case we would have proved that left hand side of (3.1) is
bounded from above by —C'9 for every C' > 0 and it would remain to let C' increase to oo.

From Feynman-Kac formula (see [16|, Lemma 7.2, p. 336 and Proposition A.1.7), for
each fixed N the previous expectation is bounded from above by

exp / sup / CN VP )f(n)dug(n)—N%N(f)] dt},

where the supremum is carried over all density functions f with respect to vY. Replacing
the expression of VN1 F2 (t,n) and using the Lemma 2.3.1, the expression in (3.2) becomes
bounded from above by

/OT sup [GCAs(Q S (Bt £))° + N(B(r, %N))g> + 5D (f) - N@N(f)] dt .

f TH#an
Choosing A = =%, the expression above becomes
T 2
30C% [ (3 30 (Flt.5))° + (Rt 50 dt.
0 T#aN

For all C' > 0, this expression vanishes as N — oo and then ¢ | 0, which concludes this
proof. O

Proposition 3.0.5 (Superexponential Estimate for a single site). For each bounded function
F:[0,T] x T, sitex € Ty and each € > 0, let

VoZ(t,m) = F(t, %) {n() — N (x)}
Then, for any 6 > 0,

/ (e dt‘ > 5] —00.
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Proof. This proof follows by same method as in Proposition 3.0.4. The unique difference is
that to apply the inequality (2.15) of the Lemma 2.3.1, we need to see that

Py / Vst | > 5] < By ] / o) ey | > ]

3.1 Energy estimates

We prove in this section an energy estimate. It permits to exclude paths with infinite energy
in the large deviations regime. The energy is presented in Section 1.4, more specifically, in
Definifion 1.4.1. By Lemma 2.4.4 and Proposition A.1.1, if 7 has finite energy, its density p
belongs to L? (O,T;HI(T\{a})). The next proposition is the fundamental result needed to
obtain the energy estimates.

Proposition 3.1.1.

limi Tim 4 log B,y [eH(wN*Lg) > z} <1+ K.

Proof. We begin by claiming that, for enough small € > 0, holds the equality
T
/ /T A, H (t,v)(mN % .12)(v)dvdt = / > H(t ) Im(x) —m(z+eN)dt.  (3.3)
0 z€T N

Since H has support contained in [0,7] x (T\{a}), there exists some gy > 0 such that
H(t,v) vanishes if v € (a — &,,a + &), for all t € [0, T]. Applying Fubini’s Theorem,

/T/auH(t,v)(wgv x12)(v) dv dt

/ > m(x) /aHtu ,v)dv)dt.

z€T N
From the definition of «2 given in (2.9) and taking 0 < € < ¢y, the last expression is equal to

JJETN

/ Z (2 (11T\(a—a,a+a)(%)[Ht(%) — Hy(% — 6)]) dt .

z€T N

Using again that H(t,v) vanishes if v € (a —e,a+¢), for all ¢t € [0, T], the expression above

is equal to
[ % 3w - H - el

z€T N
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concluding the claim.

Applying the definition of energy and (3.3), for enough small € > 0, we have that

(e 1) = [ A 30 HF) o) = mle -+ Nl

—2// tu dudt

Let us introduce the notation

Vn(e Hon) = & 37 H(E) n(x) —nle+eN)}— 2 5 (H(Z)®.

z€T N €T N

To prove the statement of proposition, just left to show that

T
lim lim —logIP’uN [/ Vi (e, Hy,my) dt > l} <-l+K,.
0

el0 N—oo

By Tchebychev exponential inequality,
T
v logP,, [/ Vi (e, Hy, me)dt > l}
0

< % logE, [exp {N/OT Vi (e, Ht,nt)dtH -1,

and the proof reduces to the statement

T
lim lim —logE”N [exp {N/VN(s, Ht,nt)dt}] < K.
0

el0 N—oo

From definition of the entropy and Jensen’s Inequality, the expectation is bounded from
above by

T
Ko+ % log B, | exp {N/VN(‘E’ Him)it} ]
0

By the Feynman-Kac formula and the variational formula for the largest eigenvalue of a
symmetric operator, for each fixed N,

LlogE, [exp {N/()?/N(s, Ht,ﬁt)dt}]

< "o [vateHomsona o) - Now(n }ar

f

The supremum is taken over all probability densities f with respect to /Y. Using the Lemma
2.4.2, the last expression is bounded from above by

[% 2 ey

+ Ela—e,a]

Since H has compact support, for € > 0 enough small the expression above vanishes. O
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Corollary 3.1.2. Let {H;} dense in the subset C*'([0,T] x T) of the functions with support
contained in [0,T] x (T\{a}). Then,

I 7. L ' N a > :| < o ] ]
lslﬁ)lj\}linoo v log Py, lréljag}ig]{](ﬂ x12) > 1| < =1+ KT (3.4)

Proof. Follows from the fact exp{max;<;<j a;} is bounded from above by Zle exp{a;} and

by Proposition A.2.7
m
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Chapter 4

Large Deviations Upper Bound

Recall that P,y and P, are probabilities measures on the space D([0,77,{0,1}"~). The
probability IP,x corresponds to the homogeneous Markov process 7, with generator Ly de-

fined in (1.1) accelerated by N? and starting from vY. For H € C2([0,T] x T\{a}), the

probability ]P’fN corresponds to the inhomogeneous Markov process 7; with generator L&

defined in (1.9) accelerated by N? and starting from the invariant measure v2.

Handwaving, the prove of the large deviations upper bound is constructed by an op-
timization over a class of mean-one positive martingales, which must be functions of the
process, or, as in our case, close to functions of the process. In Section 4.1, we will ob-
tain one good candidate to mean-one positive martingale, the Radon-Nikodym derivative
of the measure Pfév with respect to P,~. Unfortunately, dIP’l{iV /dP,~ is not a function of
the empirical measure, see your expression in (4.3). The first step in the proof of a large
deviations principle is therefore to show that d]P’l;gv /dP,~ is superexponentially close to a
function of the empirical measure. Here superexponentially means that the L'-norm of the
difference between the Radon-Nikodym derivative and a function of the empirical measure
has expectation of order smaller than exp {—CN} for all C' > 0. In Chapter 3, we prove the
superexponential estimates.

4.1 Radon-Nikodym derivative

By (dP?, /dP,~)(t) let us denote the Radon-Nikodym derivative of P/l with respect to P,x
restricted to the o-algebra generated by {ns, 0 < s < t}. It is a general fact of stochastic
process that (AP, /dP,x~)(t) is a mean-one positive martingale. The explicit formula of the

Radon-Nikodym derivative of a Markov process with respect to another one (see Appendix
of [16]) shows that (dP, /dP,~)(T) is equal to

T
exp {N[(ﬁ ,Hr) — (n)', Ho) — % / e~ NI (9, 4 N2 Ly )eNim ’Ht>dt]} : (4.1)
0
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In what follows of this section, we present some simple and long calculations in order to
arrive at a suitable form of (dPZ /dP,~)(T), which we will denote by dP?, /dP,~. In a first
reading, the reader can assume (4.3), and go ahead with no future difficulties.

Denote VyH, = Ht(%l) — Hy()- By simple calculations, dIP’fN /dP,~ can be rewritten
as

T
exp {N(W]TV, Hr) — N{(m), Hy) — N/ (N, 0,H,) dt
0

-3 [ 8 @) (1= e D) (1)

z€T N

- N2/0 Z £gx+1nt(:p+1)(1 — () (e Ve — 1) dt} :

z€T N
Using the definition of ¢V and performing some more calculations, the last expression be-
comes

T
exp {N(m}v, Hrp) — N{(m) Hy) — N/ (N, 0,H,) dt
0

T
—~ NZ/ > (@) (VyHy — VnH,_y)dt
0

rFapn
rFapn+1

— N2/0 > () (1= m(z+1)) (V¥ — VyH, — 1) dt

T#an

— N2/0 Z m(z+1) (1 —m(z)) (e V¥ + VyH, — 1) dt

rF#an

T
_ N2/ {nt(a]\/ + 1)VNHy i1 — 77t<aN)VNHaN71} dt
0
T
— N/ n(an) (1 —n(an+1)) (eVNHaN —1)dt
0

— N/o ne(an + 1) (1 — nelay)) (e V¥ Hev — 1) dt} :

Since H € C**([0,T] x T\{a}) and by Taylor’s expansion up to the second order, we
get

‘% N @ N VNH, — VHe) = 5 3 n@)AH ()] = Ou(L).
TH#an €T N
z#aN-‘—l
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Using again the Taylor’s expansion up to the second order and the elementary inequality
le¥ — 1 —u — (1/2)u?| < (1/6)]ul?ell, the expression

’N2 (V%M — VyH, —1) — %(&Jh)%%)‘
is OH(%), for each x # ay. By the same reason, the expression
[N? (7Y 1 VN H, — 1) = 3(0.H0)(3)]

is also Op (%), for each x # ay. It is also easy to see that [NV Hay — OuH(57)] =
On(%) and [NV Hoy -y — 0, Hi(%)] = On (%),
drH,

Putting together the facts above, we can rewrite the Radon-Nikodym derivative, F

as
T
exp { N{(m¥, Hp) — N(m), Hy) — N/ (N, (0, + A H,) dt
0

— N/ Z ne(x 1 — Ny SL‘—i—l))%(ath)Q(%) dt

T#an

_N/ > (1) (1= ny(2)) 2(0.H) (%) dt

T#aN

— N/ {ni(an + 1)0, Hy (45t
0

L) — nelan) 0y Hy (%) } dt
— N/o n(an) (1 = ne(an+1)) (eV¥ar — 1) dt
— N/o m(an + 1) (1 = nelay)) (e7 Ve — 1) dt — NOH,T(%)] } .

To write this in a simple form, we introduce some notation. For each function H €
C+2([0,7] x T\{a} ), we consider the linear functional ¢3; : D([0,T], M) — R given by

(%) = (e, Hy) — (o, Ho) — /O (70, (B + AVH,) dt (4.2)

Recall the notation g1, 1, g2 and gs defined in (2.10) and (2.11). With this notation we may
write the Radon-Nikodym derivative dPZ, / dP,~ as

exp{ G~ [ Y o) + )} 0 G ]

r#an (43)
_N / [nnan + 1)0LH,(B55L) — ny(an)0,Hy (%)} dt
0
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T
— N/ {TaNgl(nt)(evNH“N — 1) + TaNgg(ﬁt)(e_vNH“N — 1)}dt
0

— NOpyr(+) } .

We begin by defining a set where the Radon-Nikodym derivative dP”, / dP,~ is close to
a function of the empirical measure. Consider

, G1,G
Vie(t.n) = Ve (tm) . ViL(tm) = Vit ® ().
O0H,a O0H,a
V]é/,s(tﬂ 77) = VN,Ig N(tv n) ) V]é/',s<t7 77) = VN,Ig v (t7 77) )

where VJ@E’FQ, V]\?’;’GQ, Vﬁg"m and Vﬁg’wﬂ have been defined in Propositions 3.0.4 and
3.0.5 with Fi(t,u) = 3(0.H,)*(u), Fo(t, %) = eV — 1, Gy(t,u) = 5(9,H,;)*(u) and
Go(t, %) = e VN Hlay — 1,

Define st as the set of trajectories {m; }o<t<r such that

T
Bga = {77 c D([0,T],{0,1}"™); ‘/O v]@ﬁ(t,nt)dt‘ <§,i=1,2,3,4 } . (4.4)

From Propositions 3.0.4 and 3.0.5, the set st has probability superexponentially close
to 1: for each § > 0 and H € C12([0,T] x (0,1)),

T T 1 _
151151]\}1_{110 ~ log P~ [(B(;a) ] 0. (4.5)
Since N (z) = (7 % 12)(%£). In view of this identity and the expression (4.3) for

deN /dP,~, on Bgs the Radon-Nikodym derivative can be written as a function of the

empirical measure modulo some small errors, i.e., deN/dIF’l,év restricted to BLL is equal to

exp{ [ / A0 G () (), (5 522 ) Qa3 d

r#an

[ 3 T a0, () o)

r#an

T
-/ [mN ) (425E0), H (51
0

(4.6)
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The Radon-Nikodym derivative already is one function of the empirical measure more
small errors, but to conclude the upper bound large deviations we will need take some limits.
For these operations will be true to ensure that the boundary terms in (4.6) are well defined.
For this reason we will make 7 %2 more smooth. In this way, we will replace 7V by 7 x ¢,
where ¢, is a continuous approximation of identity. Thus, we will work with (7% * ¢,) * .2
Since 7 %1, belongs to D([0, 7], My), by Lemma A.3.8, E((7" % ¢,) *12) is finite. This will
ensure that the boundary terms are well defined.

For this fact, we will need of the next technical lemmata, which proofs are in the end of
section.

Let f : T — R,, any continuous function such that the support of f is contained in
(=1, 31 1 flle <4, F(0) >0, || fllzr =1 and f(u) = f(1 — u) for all u € T. Define now the
continuous approximation of identity ¢, by ¢, (u) = % f2).

Lemma 4.1.1.
(Y %12 (v) = (7 * 1) % 12) ()] <

uniformly in v € T, N and in t € [0,T].

™ |2

Y

Lemma 4.1.2. Recalling that (3, is the linear functional defined in (4.2).
O () = 0 (7Y 1y) %2) + On(e) + O (1),

uniformly in N.

Lemma 4.1.3. Fori= 1,2, the function
Gi((m D)), (7 ) (51) = 5 (7 1)+ 2)(F), (71 5 0) +2)(55)

is equal to O(2).

The Lemmata 4.1.1, 4.1.2 and 4.1.3 allow to replace 7 by ;" * ¢, in the expression
of Radon-Nikodym derivative (4.6). Then, restricted to the set Bfa, the Radon-Nikodym
derivative dIP’fN /dP,~ becomes

exp {N [5? ((WN * Ly ) * L?)

/ 2 S0 () ) (2), (5 ) ) () @ H(Z) e (47)

TH#aN

/ o S (Y ) ) (), () 1) % 1) (55 ) (0 H) ()

T#aN
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Lemma 4.1.4. Let x be the function defined by x(a) = a(1 — «), for all o € [0,1]. Then,
fori=1,2,

5 0 (0 x ) B 5 0) )2

TH#an

_ /TX(«?T,fV * L) % L?)(@) (8. H,)?(v) dv‘ = One(%),

N—

(0uH)* (%)

uniformly in t € [0, T).
Lemma 4.1.5. The function
[CARYSEYRICTS

— () % 4y) % 12)(@")0uHy(aF) — () % 1) % 12)(a7)0uHy(a

JOH (H5) = (1 # 1) #12) ()0 Ht(WN)

is OH,T,E,'}/(%), uniformly in t € [0,T].
Lemma 4.1.6.
‘gl (((Wiv 1) % 12 (@), ((m]) % 1y) * Lg)(oﬁ)) (th(aJr)—Ht(a*) _ 1)
= (R )+ D)5, (7 ) 2) (25 (5o — 1)
is OH,T,s,W(%), uniformly in t € [0,T]. The result analogous is valid for g.

Using the Lemmata 4.1.4, 4.1.5 and 4.1.6, we can rewrite the expression (4.7) of the
Radon-Nikodyn derivative dP”/ / dP,y, on the set B{, as

exp {N[Egt((w * Ly) % L2 / / (T 1) %1% (v )) (0. H,)*(v) dv dt
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Yokn) %19 (a0 Hy(at) — (7)Y # 1y) % 12)(a™ )0 Hy(a™)| dt

(4.8)
Nox) x19) (@), (T 1) * Lg)((l+)> (e~ HelaD)HHe(a™) _ 1) g

- [l
/ V) )@, () wa2)(a)) (DO 1) gy
[
+ Og

Ts»y(%) + O(6) + Ogle) + OH(%)] }

Now, we need write the Radon-Nikodym derivative in a short expression. This will be
useful for future manipulations in the upper bound of large deviations. One can see a simi-
larity between the expression above and the expression of the funcional J 1, defined in (1.14).
Before we continue with this replacement, we must clarify some details.

We begin observing that the functional {5, defined in (1.13), can be written in another
form. Indeed, recalling the Definition (4.2) of the functional ¢;; : D([0,T7], M) — R

int

EH (7T) = <7TT,HT> — <7T0,H0> —/0 <7Tt, (875 + A)Ht> dt,

we obtain the follows expression for

Cu(m) = G (x) — [ {pula™)duHi(a") = pila )0, Hyla )} dt.

An important observation is that (7 % ¢,) * (2 has energy finite, it follows by Lemma

A.3.8. Now, we just need to remember the expression of Jy and the Definition 1.4.3 of
the functional Jgy, to be able to rewrite the expression (4.8). Thus, the Radon-Nikodym
derivative dIP’fN / dIP’,,év restricted to the set ng is equal to

exp {N |:<]H(<7TN * L) % L?) + Onreqn(z) +O(0) + Op(e) + OH(g)] } : (4.9)

Unfortunately, the set {m; £(7) < oo} not is closed. In sense of Proposition A.1.2, it
must to be finite the functional in a closed set. In this way, we introduce the next definitions.
Definition 4.1.1. Let Ay, Ay} and Af,; be the subsets of trajectories given by

Ak,l = {7'(' < D([O,T],M) ) lngaSngHJ (7T) < l},

A= {reD([0,T],M); mxile Api},
A;,’ZYZ{WGD( OaTLM); (W*[/'y)*LEEAk,Z} .
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Proposition 4.1.7. For fized ¢,~,k,l, the set Ai? is closed.

Proof. 1t is sufficient to show that the function ¢ : D([0,7], M) — R given by ¢(7) =
En, (7N % 1y) % 12) is continuous. Let {n};t € [0,T]}, converging to {m;t € [0,T]} on

w* . . .
D([0,T], M). Therefore, m* = m;, almost surely in time. For such ¢, m % ¢, = lim,,_,oo 7} % L,
since ¢, is a continuous function. By Dominated Convergence Theorem,

(e ) )0) = [ T (w7 ,) ) 20,0 = Jim (77 0,) #02)(0). (410)

Again by the Dominated Convergence Theorem,

(OuHj, (T % 1) 5 02 / /8 H;(t,v)((m * ty) * 02)(v) dv dt

= lim / /Taqu(t,U)((ﬂ'f*Lv)*L?)(U)dvdt lim (O, Hj, (7" % 1y) % 12)) .

n—oo 0 n—oo

Proposition 4.1.8. For k,l fized,

T T T N £,7\C
lglgllﬁglj\}l_f}{l}oﬁlogpyév [{W € (A7) }] < =+ KoT'.

Proof. For all r > 0,

P,y [ max Ep, (7" * 1)) x 1) > l] <P,w [ max Ep, (7" *12) > 1 — 'r’]
o | 1<j<k o | 1<j<k

P [maXS < Ny *La—’/TN*La>>’I”:|.
+ vl 1<5<k Hj ( ’Y) € o

By Proposition 4.1.1,
max Ep, (( Ny) w 1o — ol *Lg) = max <<(9qu, (TN x0y) 0% — 7 % >> < %,

1<j<k 1<j<k

where C' = C({H }1<;j<k). Therefore,

N N C
Pug | ey €, (Y w0y =) 5 8) 20| < By [ S 2],

which can be only one or zero, independently of N, assuming the value zero if 7 is enoughly
small. Then,

I 7. N a
lim lim  logP,y [gg]ag; Em, (T # 1) % 02) 2 l]

< lim +logP [ma Er (TN %12 >l—r}.
S Gy glyn 1@5)2 H](7r ¢ >

By corollary 3.1.2, we get

1 N ay > ] < _
lgiggigjégnleogPVg[lrilaégﬂ (7 *ey) % 02) > 1 < =1+ KT +r.

Because r is arbitrary, it finishes the proof. O
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Fix a sequence {F;};>; of smooth non-negative functions dense in the subset of non-
negative functions C'(T) for the uniform topology. For i > 1 and j > 1, define the set

)

D) = {7r e D([0,T], M); 0 < (m, F}) < /E(u) du + %HFZ’HOO, 0<t< T} : (4.11)
T
and for m > 1 and 5 > 1, let
E), =D
i=1
Proposition 4.1.9. It hold:
(i) Fori>1 and j > 1, the set D! is a closed subset of D([0,T], M);
(it) D([0,T], Mo) = Njz=1 Nmz1 B3, ;
(iii) Form >1 and j > 1, limy_,o0 = log P, [{7" € (EI)Y) = —00.

Proof. (1) This statement follows from the fact for F; continuous, then the function that
associate for each m € D([0,7], M) the number supy,<(m, F;) is continuous.

(ii) The inclusion D([0,T], M) C Nj>1 Nm>1 EY, is trivial. The other hand follows
approximating indicators functions of open intervals by an suitable sequence in {F;};>; and
in j.

(iii) The probability P,~ [{7" € (£7,)}] is

,,N[U{ Z Fi(£)n, /TE(U) du + || F||o, for some ¢ € [O,T]H :

z€T N

From the inequality
~ F.(Z)— z F!|loo
]{f E : Z(N) /E(U) du‘ < g / " |P,~(ﬁ) — Fi(u)|du < [EHIES A',' ,

the probability P, [{7" € (E7)Y] becomes zero for N sufficiently large. O

From Lemma A.3.8, £((7 * ¢,) * ¢?) < oo, for all 7 € D([0,T], M). Then, we define

k. j jH((w * L) * L?), if me ASTNES,
Jhjee(m) = o
+00, otherwise.

Finally, the Radon-Nikodym derivative dP% v/dP,y restricted to the set {=N € Ai? N
qu‘n} n B(Ss

exp {N [J;;lj;g( N) 4 Opren(L) + O(8) + Onle) + oH@)] } . (4.12)
Here toward the end of the section we present the proofs of lemmata above.
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Proof of Lemma 4.1.1. Writing the expression |(7} *12)(v) — (7} * ¢y) * 12)(v)| as
F meo) - [ &Y mlent— $)dw o) da]
z€Ty T zery
Using the rule of maximum of one particle per site, the last expression is bounded by

¥ 2

zeTn

ti(§,v) — /TLV(u — ¥ )e(u,v) du‘ :

Fix N, v and ¢, then (2(-,v) is the indicator function of an open interval (z,z +¢), for z =v
or z = a—e&. The summand above is possibly not zero only if & belongs to the open intervals
(z—%,z+73) or (z4¢e—7,24¢e+7). The summands are bounded by %, and the number
of non zero summands is of order vV, which concludes the proof. O

Proof of Lemma 4.1.2. First we compare {5 (7Y % 1,) % %)) with €7 (7N % 12)). Using the
Lemma 4.1.1, we obtain the difference between this functions is

i<<<w¥ 1) x2) = () w12), Hr ) = () 5 0) wa2) = () %), Ho )

_/0T<((7va*w)*LZ)—(ﬂ,fV*Lg),((?t+A)Ht>dt < C(H)2.

Then, we need only analyze the expression below
G (e 512)) = 5 ()| = (el 2) = mlf ) = (ob) o 42) = ', Ho)

_/OT<(7T§V*Lg)—wgv,(at+A)Ht>dt’.

We handle only the first term, because the others terms are similar. Thus,
() ) = [ D))o = [ &3 mlo)id (o) Ho)de
T

=4 Z m(y) | Hi(v)2(4,v)dv = (x}, H) + Onle).

This approximation holds uniformly in time and N, since H € C*%([0,T] x (0,1) ) and there
is at most one particle per site. Therefore,

O (7 512) — £ (7)) = Om(e) -
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Proof of Lemma 4.1.3. This proof follows by the definition of §; and §» (see (2.10) and
(2.11)), the triangular inequality and the Lemma 4.1.1. O

Proof of Lemma 4.1.4. Consider ¢ = 1. To simplify notation, denote

and

g () = 3 (5 1) 02 ©), (7 5 0) 1)) = x (71 5 0) +12) ()

From the definition of (2, if x # an,

a x a Q o0 T T
(o= )(2) — (or )] < 1 gy ¢ [z o)

where p is any bounded function defined on the torus. The same inequality is still valid with
z + 1 replacing  in left side of inequality. Since |7 * t,]|o < 4, if @ # ay,

Then,

ctan T
<% 20 PO ) = N | 15 sy (0)(OH) (0) o]
ctan T
P> / e o) (0) [ Y (3) = 0" ()] (@ H)*(0) dv
z#an’ T
+) /T oy axn) (0)g" (0) (0 H)2(0) o
<4 2 |@H ) _N/Tl{ﬁﬁﬂ”#)(v)(aulitf(v) dv

T#aN
+0(%) / |(9uHe) (v)] dv + | (9uHe) [ -
T

The first sum is Op (), since H belongs to C2([0,7] % (0,1) ), which finishes the proof. [

Proof of Lemma 4.1.5. This proof follows by fact that ¢2(-, %¥), (2(-, 28H), 9, H, (%) and

Oy Hy () converges to t2(-,a™), 12(-,a"), 9,Hy(a™) and 9,H,(a"), respectively, as N in-
creases to infinity. O
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Figure 4.2: (2(-, GNTH) and (2(-,a™)

Proof of Lemma 4.1.6. We only analyze the first statement, the second one is just the same
argument. By definition of g;, the expression in the left side of the first equality is bounded
above by

‘((WtN * Ly) * L?)(QWN)@VNH“N —-1) - ((WtN * L) * Lg)(a_)(th(“ﬂ_Ht(“j - 1)

+‘((7Tt % 0) % 12) (F) () % 0y) # 02) (S5 (VM How — 1)

)
— (@ #5) %) (@) () 5 1) % a8) (@) (MO 1))

The conclusion follows by fact that ¢2(-, %¢), 2(-, ) and eV~¥Hax —1 converges to 12(-,a ™),
12(-,at) and eHt@)—Hi@™) _ 1 respectively, as N increases to infinity.

]

4.2 Upper bound for compact sets

Proposition 4.2.1 (Upper bound for compact sets). For every K compact subset of the
space D([0,T], M).
hm < logQ,~[K] < — inf I(r).

Tekl

For proof this proposition we need analyze that happens with open sets.
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Let O be an open set of D([0,T], M) and fix H € C*?([0,T] x (0,1)). Then,
Jim $1ogQ,y[0] = lim g logP,y[r" € O]
= max { N@m LlogPy[{nV e ON Ai? NEL}YN B,
RL(C), Rl Bi(e) ).
where we have denoted
Ri(¢,7) = Jim {logPy[{n™ € (AL])%],
Rl = T L logPy[{r" € (B},
Ry (e) = lim 5 logP,y[(BfL)"].
Using Propositions 4.1.8 and 4.1.9 and the limit (4.5), the expressions above satisfy

lgiglg%Rk(C,v)_ [+ KT, R}, oo, and lalﬁ)lRH(E) 00

Just applying the Radon-Nikodym derivative, and using the expression (4.12),

P,x [{WN € ONASNE,}NBL

dpué\’

H dPlly\ —1 N ¢y j H
—El4, ( ) 1{{7r eOﬂAkﬁlﬂEm}ﬂB&a} .

=E4

N
vy

exp { N[ = JEmEY) + Omrer () + 0(0) + Ou(e) + Ou(2)] }

1{{7rN cONANELN ng}

Therefore,
LlogP,x[{m" € ONAy) NE)} N B
< ilelg{—Jii,l&th(W)} +O0n1eq(x) + 0(0) + On(e) + On(2).
For all 7,e,¢,6 >0, k,I,m,j € Nand H € C2([0,T] x T\{a} ),
Nh_>_nio +1og Qv [O]

< max {sup{ ~ T2 (m)} + O(0) + On(e) + On(2), FY(C.7), By Ry(e) |

= max { sgg{—Jﬁlﬁé(w)} +O(6) + On(e) + Ou(2), RL(C,7), R?{(é)} .
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Optimizing over 7, ¢, (, 0, k,l,m, j, H, the right side of the above inequality is bounded by

inf max { sup{—J;-"L(m)} + O(6) + On(e) + On(2), RL(C,7), R%(e)}
Py €0 o

— inf supmax {~J5"(x) + O(0) + On(e) + Ou(2), RL(C,7), Ry ()}

7,668, 1e®

(4.13)

Proposition 4.2.2. For fized v,¢,(,0,k,l,m, j, H, the functional
max { = JEE(r) + O(6) + Op(e) + On(2), RL(C, ), Riy()}.

is upper semi-continuous in D([0,T], M).

Proof. The unique term that depends on 7 in the functional of the statement of this Propo-

sition is Jfllﬁé(ﬂ) By the definition of the functional and the Propositions A.1.2, 4.1.7,

4.1.9, we only need to prove the continuity of J((7 * t,) % 12) in D([0, T], M).

Let 7" be a sequence in D([0,T], M) converging to some 7. In particular, 7] converges
to m in M, for almost all ¢ € [0,7]. Recall that M is endowed with the weak topology.
According to (4.10) and iterated aplications of Dominated Convergence Theorem yields the
continuity of J((7 % t,) * %), O

Provided by the proposition above, we may apply the Minimax Lemma [16, Lemma
A2.3.3|, interchanging supremum with infimum in (4.13), and passing to compacts sets.
Then, for all X C D([0,T], M) compact,

— 1
lim Nlog(@yév K]

N—oo

<sup inf max{ — JEE™I (1) 4 O(8) + O () + O (2), Ry(¢, ), Rz(g)} L (4.14)

v,€,¢,9,
TEK U

Proposition 4.2.3. For all # € D([0,T], M),

T T Ton T Tom T T 7547 () > ().
el0 l—o00 k—oo ¢(J0 7|0 j—00 m—ro0 18

Proof. Let m € D([0,T], M). Be begin by taking limits in m and j:

o . 7 a : ¢y
im [im Jk,l,m,a(ﬂ) _ { Ja((mx0y) x02), if me AN D([0,T], M,) .

00 m—oo e +00, otherwise,

The last equality follows from the fact: if 7 does not belong to D([0,T], M), there exist
some m and j such that 7 ¢ EJ . To check this, one needs only to apply the definition of a
measure be absolutely continuous with respect to Lebesgue, and the density of the functions
{F;}i>1, whose appear in (4.11). We step to the next limit. We claim that

—{ Ju (% 1)) % 12), if WGA%’]HD([O,T],MO)

lim .
740 ~+00, otherwise
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>

{ Ju(m+12), if 7€ A, ND([0,T], M), (4.15)

400, otherwise.

Ifre Ai? ND([0,T7], M),

gjaé&{j(ﬂ *1f) <1+ max (0uHj, [mx1E — (mx1y) % 1f])) .

Since
(e % 18 (V) = (e % 1) % 18)(v) = /Tpt(z) [Lg(z, v) — /ELW(—(Z —u))ig(u,v) du} dz, (4.16)

for ¢ fixed, we can choose enough small v such that 7 belongs to Ai,l+1 ND([0,T], Mp). At

this point, we must to analyse the semicontinuity of the terms which sum compounds jH,
see definition 1.14. By the Proposition A.2.6

-/ ' [ @2t X dut

is lower semicontinuous and by A.2.5, ¢} is continuous. It remains to check the terms
associated to the point a, namely

- / (o@D Hy(a™) — prla™)0uHy(a)} dt

B / prla)(1 = pu(a™)) (@) 1) dr and
0

- /0 pr(a®) (1= pr(a))(e” DO 1) dp.

From simple calculations, one can verify that, for fixed € > 0, (7%¢,) %12 converges uniformly
to m* (2 in a left (and right) neighborhood of a, see (4.16). Notice that, from the definition
of 12, the left and right limits around a of 7 x ¢ are well defined.

The ensuing step is to take the limit in ¢ | 0. We claim that

lim

{ Ju(m2), if 7€ A, ND([0,T], My),
¢J0

00, otherwise.

>

{ Ju(mx12), if 7€ Agia ND([0,T], M), (4.17)

+00, otherwise.

Indeed, if 7 € A} ., ND([0,T], M), then

_ a ) o a
max Ey,(r) = max Ey, (7 * 1¢) + max (OuH, m — 74 1)

<I+1 + max /0 A@qu(t,U)(/}t(u) — (7 * 0¢)(u)) dudt .

1<j<k
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It is possible choose the ( such that the integral is less than or equal to 1, because the
Lebesgue Differentiation Theorem.
Passing the limit in k& — oo, we will have

k—00 400, otherwise,

m { jH(ﬂ'* Lg), if me Ak,l+2 ﬂD([O,T],MQ),

:{ Ju(m+12), if E(n) <1+ 2and 7w € D([0,T], M), (4.18)

400, otherwise.
Now, we take limit in [ — oo,

lim
l—o0

Ju(m*12), if () <1+2and w € D([0,T], My),
00, otherwise.

N { Ju(m*12), if £(n) < oo

+00, otherwise.

Finally we can make ¢ | 0

m{ Ju(m12), if E(m) <oo, _ Tu(m).

0 ~+00, otherwise.

The last equality is true, because for 7 in the set {m; £(7) < oo} we have m,(du) = p;(u)du
and it is well defined the left and right limits around a of p¢, Vt € [0, 7.
[

Applying the proposition above in (4.14), we have that

lim +log Q,~[K] < supmf{ Ju(m)} = mf sup Jy(m) = — inf I(7).
N—o00 ek H rek

This concludes the proof of the upper bound for compact sets.

4.3 Upper bound for closed sets

Proposition 4.3.1 (Upper bound for closed sets). For every C closed subset of D([0,T], M).

Jim +logQ,~[C] < —inf I(m).

el

As we shall see in the next proposition, the upper bound for closed sets is an immediate
consequence of upper bound for compact sets and exponential tightness. By exponential
tightness, we mean that for all n € N there exist compact sets K,, C D([0,T], M) such that

T C
Jim 5 log Qu[K] < -
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Proposition 4.3.2. If the sequence of probability {Qn}n is exponentially tight and holds
the inequality

T 1 < _

Jim g log QK] < — inf I(7),

for any compact set K, then {Qn}n satisfies

I l s

Jim 5 log Qn[C] < — inf I(7),
for any closed set C.

Proof. Let C be a closed set. Since Qn[C] < Qn[C N K,]+ Qn[KL] and C N K, is compact,

T v C
Jim v log Qn[C] < max {J&I_I}I;O ¥ log Qn[C N K],  log QN[Kn]}

< max{ — inf  I(m), —n} < max{ — inf I(m), —n}.

TeCNKy e

lim
N—oo

Since n is arbitrary, the inequality follows. O]

The rest of this section is concerned about exponential tightness, whose proof is essentially
the same as found in [16]. For sake of completeness, we include here all the steps involved,
emphasizing the slight differences. First of all, we claim that the exponential tightness is
just a consequence of

Lemma 4.3.3. For every € > 0 and every continuous function H : T — R,

lim lim %log@y(&v[ sup [(m, H) — (s, H)| > | = 0.

60 N—oo [t—s|<6

Indeed, suppose the lemma above. Let H; € C?(T) be a dense set of functions in C(T)
for the uniform topology. For each § > 0 and ¢ > 0, denote by Cjs. the following set of
paths:

Cuoe = {7 € DO, T, M); sup [(m, Hy) — {m, H)| < €}

jt—s/<6

Therefore, from the Lemma 4.3.3,

lim T log Quy |7 & Cuse| = o0,

for each [ > 1 and & > 0. Thus, for each positive integers [, m and n, there exists 6 = §(I,m,n)
such that

Qux [7? ¢ q%] < ¢ Nomi

for all N large enough. Modifying ¢, if necessary, we may extend this inequality for all
positive integers N. Consider K. defined by

}(Z — (W C%ﬁaﬂmnhi.

1>1,m>1
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From Arzelé-Ascoli, K,, = K2 N'D([0,T], M,) is a compact set for each n > 1. On the other
hand, since there is at most one particle per site, Q,~[K,] = Q,~[K?]. Furthermore, by

construction,
Qylrgrg] < 3 Mo,
1>1,m>1

where C' is a constant not depending in the parameters. In particular,
T 1
T logQuy |7 & K2| < —n,

which is the exponential tightness. Therefore, it just remains to prove Lemma 4.3.3.

Proof of Lemma 4.53.3. Fix ¢ > 0 and H : T — R continuous. Firstly, notice that

{ sup |(my, HY — (75, H)| > 8}

jt—s]<6
1 751]

c U { sw \(wt,H>—<wk5,H>\>§}.

k=0 ko<t<(k+1)6

We have here £ instead of £ due to the presence of jumps. Since we are concerned only about

dynamical large deviations, the initial measure can be taken as the equilibrium measure.
Using the useful fact

im + log(ay +by) = max{ lim < log(ay), ]@O %~ log(bN)} : (4.19)

1
N—oo N—oo

and the invariance of the measure, in order to prove the Lemma 4.3.3, it is enough to show
that
1;{51 lim + logQ,~ [ sup |(m, H) — (mo, H)| > 5} = 00, (4.20)

N—o0 0<t<§

for every € > 0 and every H € C?*(T). Recall that
MM = exp {N[(W,{V,CH) — (7Y, cH)
t
. %/ efN(ﬂ'év,cH>(as + N2LN)6N<7T£V,CH) dS] }
0

is a positive martingale equal to 1 at time 0. The constant c above will be chosen a posterior:
as enoughly large. Rewriting the expression above, using the fact that H not depends of
time, we get

M = exp {Nc(ﬂtN,]ﬂ — Ne(rl', H)

30 N e 1)1~ ) s}

lz—y|=1
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Now, to obtain (4.20), are sufficient the limits

im Tim L 1 e.H _
lgglj\}gl;o]vlog@yév[oiligé + log M, ’>ca} 00 (4.21)
and .
lim Tfm L1 [ H,s,1,)d ] S 4.22
im lim A OY oSthllg)& /OUN( ,8,1s) ds| > ce 0, (4.22)
where

Un(H,s,ms) = Y N&&, [e&HET 1], (2)(1 = ny(y)) -
lz—y|=1

We claim now that the expression \fot Un(H,s,ns)ds| is bounded by C(c, H)t. For sites x
such that a ¢ [%1, wTH], one just needs to expand the exponential with the Taylor’s formula
and use H € C?*(T). The other sites are in number of two, and H € C'(T) guarantees the
limitation.

Provided by the previous boundedness, we conclude that for o enoughly small the prob-
ability in (4.22) vanishes.

On the other hand, to prove (4.21), observe we can neglect the absolute value, since

Q,,N[ sup %lothc’H‘ > ce}

“ Lo<i<s

< @,,N[ sup %long’H > c&] —l—@yw[ sup %long’H < —06}
“ Lo<i<s “ Lo<i<s

and again (4.19). Because MfH is a mean one positive martingale, we can apply Doob’s
Inequality, which yields

1
Q,,év[ sup %long’H > ca} = Qyév[ sup MO > e“N] < —-
0<t<s 0<t<s €

Passing the log function and dividing by N, we get

lim lim %log(@yév[ sup ~ log Mo > ca} < —ce.

1
60 N—oo 0<t<6 N

Since c is arbitrary large, it finishes the proof. O]
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Chapter 5

Hydrodynamic limit for the weakly
asymmetric exclusion process with a
slow bond

Recall that P,y and P, are probabilities measures on the space D([0,77],{0,1}"~). The
probability P~ corresponds to the homogeneous Markov process 7; with generator Ly de-
fined in (1.1) accelerated by N? and starting from vY. For H € C'2([0,T] x T), the

probability PfN corresponds to the inhomogeneous Markov process 7; with generator L

defined in (1.9) accelerated by N? and starting from the invariant measure v/%.

We call QV the probability measure on the space of trajectories D( 0,77, ) correspond-

ing to the inhomogeneous Markov process 7}¥ with generator LE defined in (1.9) accelerated
N

by N? and starting from v/ .
Proposition 5.0.4. Consider a bounded density profile po : T — R and H € C2([0,T] x
T). The sequence of probabilities {QfN; N > 1} converges in distribution to the probability
measure concentrated on the absolutely continuous path m(du) = p(t,u)du whose density
p(t,u) is the unique weak solution of the partial differential equation (1.10).

It is straightforward to obtain Theorem 1.3.2 as a corollary of the previous proposition.
The proof of this result is divided in two parts. In Section 5.1, we show that the sequence
{@uw’ N > 1} is tight, in Section 5.3 we characterize the limit points of this sequence. We
prove the uniqueness of a weak solutions of the partial differential equation (1.10) in Section
5.4.

5.1 Tightness

Proposition 5.1.1. For H € C*?([0,T] x T) fized, the sequence of measures {Q
is tight in the Skorohod topology of D([0,T], M).

N>1)

ﬂN’
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Proof. In order to prove tightness of the sequence of measures {QEN : N > 1} induced in
the Skorohod space D([0,T], M) by the random elements {r}¥ : 0 <t < T'}. We will use
same arguments presented in Section 2.2. We begin by considering the martingale

t
MG = (G — () Go) — [ (0.6 + N'L (Y. Gy ds,  (6.)
0

with H € C*2([0,T] x T) and G € C*2([0,T] x T\{a} ). The generator LY , was defined in
(1.9). Firstly, we show that the L*(P{ )-norm of this martingale vanishes as N — co.
The quadratic variation of Mf (G) is given by

t
MG = [ NP [LH Y, G — 2 G L (2, G ds

0

Applying the definition of the generator Lﬁs, the quadratic variation can be rewritten as

M@ = [ ™ (a1 = o+ 1) (VG ds

.TETN

b [ 3 e )= ) (V)
z€Tn
where VyF, denotes the diference F,(%t) — Fy(%). Using the definition of ¢V and that
H e C**([0,T) x T) and G € C**([0,T] x
above by TCyoN™*
To conclude the proof of tightness, we need to proof that the term inside the integral in

N
T\{a} ), the expression above is bounded from

(5.1) is bounded uniformly in s € [0, 7. For this, it is enough to prove that N*L}y (7}, G,)
is equal to
¥ (@) N[G(57) + Gu(*FH) — 2G(§)]
N Ns sUN sUN s\N
TH#an
zF#apn+1
+ 5 Y @)1 = na+1) + (@ 1)(1 = (@) | NV H, NVNG, )
TH#an .

+ ns(an+1)NVyGayi1 — ns(an) NVnGay 1
+ ns<aN)(1 - ns(aN+1)) QVNHQN VNGaN
— ns(an+1)(1 = ns(an)) eV ev VnGay + Ome(s) -

Indeed, for obtain the last equality, we use the expression (1.9) of the generator L N.s and
write NZL%S( V. G,) as

N Y | @) (1 = na(e41) — e (1) (1 - (@) | TG

rH#an
+ n8<aN)<1 - ns(aN+1>) evNHaN VNGaN
— ns(an+1)(1 = ns(ay)) eV UG,

7



Using Taylor’s expansion in the functions eV¥#= and e~V¥H=  the first term above becomes

NVEZ US I+1»V®(ﬁ;+'OHg(%)
T#aN
D [ns(x)(l — ns(x+1)) + ns(x+1)(1 = ny(2)) |NVyHy NVNG, .
TH#an

Making change of variables in the first term above, we get

N D m@NG(5) + G5 — 2G(

TFan
zF#apn+1

+ ns(an+1)NVyGayi1 — ns(an) NVNGay 1 -

)l

S

This establishes the formula (5.2). O

5.2 Sobolev space

In this section, we prove that any limit point Qf of the sequence QEN is concentrated on
trajectories p;(u)du such that p;(u) belongs to the sobolev space L2 (0, T; H*(T\{a})) defined
in 2.4.2.

Proposition 5.2.1. The measure QI is concentrated on paths p,(u)du such that p belongs
to L2(0,T; HY(T\{a})).

This proof follows the same steps in the proof of Proposition 2.4.1. The main difference
here is we are going to use the estimate about the Radon-Nikodym d]P’ v/dP,~ derivative

presented in (4.3) and then profit the results already reached for the probablhty P,~ (sym-
metric case). After that, we proceed in the same way as in Proposition 2.4.1.

The Radon-Nikodym derivative of the probabilities P, and IP’fN has the expression (4.3).
Using the rule of maximum of one particle per site, we get
dPZ,
dP,~

< CHDN (5.3)

e}

Lemma 5.2.2 (Replacement Lemma). Given a bounded function G : T — R, then

i i L[| [ 4 5 an i@y as| ] = o,

z€T N

lim lim IEH )/ Z G(%) {Txgz (n) — g ("™ (), naN(:H—l))}dsH =0, Vi=1,2

e—0 N—oo0
T#an
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and

lim lim IEH ‘/ WN TaNgZ(n) g:(n° ( N), nN(aN+1))}ds‘] =0, Vi=12,

e—0 N—oo
where g; and G;, 1 = 1,2 were defined in (2.10) and (2.11).

Proof. The proof follows by the same arguments of the Lemma 2.3.2. But, it has one
difference: we need use the Radon-Nikodym derivative.

We only prove the first limit, as in Lemma 2.3.2. From definition of the entropy and
Jensen’s Inequality, the expectation is bounded from above by

eXp{v‘/ > a1 <>}ds)}],

for all ¥ > 0. In view of (2.8), to prove the lemma, it is enough to show that the second
term vanishes as N — oo and then ¢ | 0 for every v > 0. Here is the difference: we use (5.3)
in the second term above, getting the boundedness of it by

eXp{v‘ / Y e {nw —n§N<w>}ds\}] .

The same way that in Proposition 2.3.2 gives the result.

HN(,U,N|I/N) 1
NN/ 1 E
NN st

C(H,T 1
M + _logEVN
g YN “

Recall the definition of Uy in (2.19),

Un(e,H,n) eNZ %{ x—sN)—n(x)}

xz€T N

_% Z( (%)) {1+ lla aa](%)}‘

€T N
Lemma 5.2.3. For every k > 1, consider the functions Gy, ..., Gy defined on [0, T]x (T\{a})
taking values in R. Then, for every e > 0,

lim lim IE max / Un(e,Gi(s ),nij)ds}] < Ko+ C(H,T).

510 N—oo 1<z<k

Proof. 1t follows from the Replacement Lemma that in order to prove the lemma we just
need to show that

T
T B max{/o Un(e, Gi(s,-),715) ds}] < Ko+ C(H,T).

N—o0 |: 1<i<k
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By the entropy and Jensen’s Inequalities, for each fixed N, the previous expectation is
bounded from above by

w + + logElly [exp{ max {N/OT Unl(e, Gi(s?')’m)d‘s}H '

1<i<k

By (2.8), the first term is bounded by Kj. Using the Radon-Nikodym derivative and (5.3),
the second term is bounded from above by

C(H,T) + +logE,x [exp{ max {N/OT Un(g,Gi(s,"),ms) ds}}] .

1<i<k

Now, this proof follows for the same arguments of the Lemma 2.4.3.

Lemma 5.2.4.
T T
Egn [sup {/ /8UG(S,U) ps(u)duds — 2/ /G(s,u)2 du dsH < Ky+C(H,T),
G o JT 0 JT

where the supremum is carried over all functions G in C%1([0,T] x T) with compact support

in [0,T] x (T\{a}).

The proof of this lemma is the same of 2.4.4, replacing Lemma 2.4.3 by Lemma 5.2.3,
and will be omitted.

Proof of Proposition 5.2.1. Analogously as in the Proposition 2.4.1, denote by ¢ : C%1([0, T]x
T) — R the linear functional defined by

NG = /0 ' /T 0,Go(1) po(u) du ds .

Using the Lemma 5.2.4 and Proposition A.1.1 and proceeding as in proof of 2.4.1, we obtain
that £ is Q-almost surely bounded functional in L([0, 7] x T). To conclude we apply the
Riesz representation theorem:. O

5.3 Characterization of limit points

This section is devoted to prove that all limit points of the sequence {QZIN : N > 1} are
concentrated on trajectories of measures absolutely continuous with respect to the Lebesgue
measure: 7(t,du) = p;(u)du, whose density p;(u) is a weak solution of the hydrodynamic
equation (1.10).

Let Qf be a limit point of the sequence {QfN : N > 1} and assume, without lost of
generality, that {QEN : N > 1} converges to Q. The existence of Qf is guaranteed by
Proposition 5.1.1.
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Since there is at most one particle per site, it is easy to show that Q¥ is concentrated on
trajectories m;(du) which are absolutely continuous with respect to the Lebesgue measure,
mi(du) = py(u)du and whose density p;(-) is non-negative and bounded by 1 (for more details
see [16]).

In Proposition 5.2.1, we proved that p(t,-) belongs to L*(0,T;H'(T\{a})). It is well
known that the Sobolev space H!'(T\{a}) has special properties: all its elements are ab-
solutely continuous functions with bounded variation, c.f. [4], therefore with lateral limits
well-defined. Such property is inherited by L*(0,7;H'(T\{a})) in the sense that we can
integrate in time the lateral limits.

Let G € C*([0,T] x T\{a}). We begin by claiming that

QY [ﬂ.r (pt, Gt) — (po, Go) — /0 (ps, (0s + A)Gy) ds

— 2 [ {x(ps), 0uH:0,G5) ds
/ (5.4)

0
t
= [ {pda")0.6.a) = pa )0,Gula )} ds
0
t
+ / {ps((ﬁ) —ps(a’)}{Gs(cﬁ) — Gs(a’)}ds =0, vtel0,T]| =1.
0
In order to prove the equality above, its enough to show that, for every § > 0

Qf [ﬂ-: sup | (pr, Gt) — (po, Go) — /0 (ps, (05 + A)G,) ds

0<t<T

t
- 2/ <X<ps)7 auHsauGs> ds
0
t

- {ps(a")0,Gs(a™) — ps(a™)0,Gs(a™) } ds

[ Apula®) = pula) HGua") — GulaT) }ds

>5] =0.

Since the boundary integrals and the integral with y are not well-defined in the whole
Skorohod space D([O,T},Mo), we cannot use directly Portmanteau’s Theorem. To avoid
this technical obstacle, fix € > 0, which will be taken small later. Adding and subtracting
the convolution of py(u) with ¢. := 2, it is defined in (2.9). Then probability above is less
than or equal to the sum of

Qr [ﬂ.: sup | (pr, Gi) — (po, Go) — /O (ps, (05 + A)Gy) ds

0<t<T

t
- 2/ (X(ps * L), O, Hs0,G) ds
0
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/{pm 0,Gu(a®) — (po % 12)(a)0Gula™) } ds
—|—/0 {(ps x 1) (@®) = (ps * 1) (a”) }{Gs(a™) — Gs(a™) } ds

(5.5)

> 6/4],

¢ ¢
2/ (x(ps * te), O, Hs0,Gs)ds — 2/ (x(ps), OuHs0,Gs) ds
0 0

0<t<T

Qf [ﬂ'. : sup

> 5/4],

/{ps*eg 9,Gu(a") — (p. #12)(a)0,Gula) y ds

.1 sup
0<t<T

—/0 {ps(a™)0,Gs(a™) — ps(a™)0u,Gs(a™)} ds

> 5/4]

and

(ps % te)(a®) = (ps * 1) (a”) }{Gs(a™) — Gy(a™) } ds

= | Ap@) = (@) H{Gula") — GulaT) } ds

> 5/4] :

The set inside the three previous probabilities decreases to a set of null probability, ase | 0. It
remains to deal with (5.5). By Portmanteau’s Theorem, Proposition A.2.7 and the exclusion
rule, (5.5) is bounded from above by

lim QH [7'('.3 sup

N—oo 0<t<T

(0, Gi) — (0, Go) — /0 (e, (0, + A)G,) ds

t
— 2/ (x(7s * tc), 0,Hs0,Gs) ds

/{TFS*LE M0,Gs(a®) — (ms % 1) (a”)0,Gs(a™) } ds
—i—/o {(ps %) (a®) = (ps * 1) (a”) }{Gs(a™) — Gs(a™) } ds

> 6/4].

In the step above, we need to be carefully. Because the functions inside the probability above
may not continuous. For mores details, we recommend to see the Section 2.5 or Subsections
7.5.2 and 8.3.2.

If we consider the discrete torus as embedded in the continuous torus, ay = —1 is the
closest site to the left of 0 and ay + 1 = 0 is the closest site to the right of a = 0. Since
(1) (%) = niN(x), for all z € Ty. Using the definition of Q] , we can rewrite the
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previous expression as

. H

N—o00 0<t<T

(¥, Gy — (n,Go) — / (7, (9, + D)) ds

_2/Ot<X(7T * o), 0,H,0,G,) ds
_ /Ot {T]EN(CLN + 1)3uGs(a+) o UEN(aN)auGs(a*)} s
b [ o+ 1) = i e G - Gula ) s

The next step is to add and subtract N 2Lﬁ78<7rév , G5) and the previous probability becomes
now bounded from above by the sum of

> 5/4].

t
m PH [ sSup <7TtN7Gt> - <7T(J)V7G0> - / <7T£V785G5> —f-NQL%S(ﬂ'éV, GS> ds| > 5/8]
N—oo 0<t<T 0 ’
and
t
lim ]P’H [ sup / N2LY (x| Gy)ds — / (N, AG,) ds
N—o0 0<t<T 0

—2 [ (x(xN %), 9,H,0,G) ds
/0 (5.6)

/t {T]SN(CLN +1)0,Gs(a™) — UZN(GN)auGS(a_)} s

/ {nsN ay +1) — nZN(aN)}{GS(aﬂ — Gy(a™)} ds

The expression inside the first probability is the martigale M ,(G) defined in (5.1). Using
the fact that the martingale My, (G) converges to zero in L*(P ), which is proved in
Proposition 5.1.1, and Doob’s inequality, the first probability above is equal to

>5/8] — 0,

> 6/8].

lim P# [ sup ’Mﬁt(G)
<t<T

Nooo HN 0

for every 6 > 0,

We will show that the probability (5.6) is null. By expression (5.2) for N°L§ (7Y, G)
the expression (5.6) is less than or equal to
t
N@O IP’fN oiltlgT /0 (N, AG,) ds
t (5.7)
—/ x Z Ns(2)N?[Go(EL) + Go(51) — 2G5(£)] ds | > 5/32]
T
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Nooo HN 0<t<T

t
lim P [sup 2/(X(7r % L), Oy Hs0,Gy) ds
0

/ > [”s (1 = ng(z+1)) + ns(z+1)(1 = ny(2)) | NVyH, NVNG, ds

> 5/32] :

T#aN
(5.8)
t
: H eN eN -
i Pl s | [+ 00,60 07) 5 (an)0.Gufa) | s

t
_/ {775<GN+1)NVNGaN+1 - ns(GN)NVNGaN_l}dS
0

> 6/32]

and

/{ns (ax + 1) — 2N (an) HGu(a®) — Gu(a™) ) ds

lim IP’ sup
N—oo 0<t<T

+ /Ot {ﬁs(aN)(l — 775<GN+1))6VNHaN

— ns(an+1)(1 — ns(ay))e V¥ Hen }VNGQN ds

> 6/32].

Since G € C2([0,T] x T\{a}), the discrete laplacian of G converges uniformly to the
continuous laplacian of G, and therefore the expression (5.7) is null. To prove that the others
probabilities are null, we observe that NVyH, and NVyG, converge uniformly to 9, Hs and
9uGs, as N — oo, respectively. Since H € C**([0,T] x T) and G € C**([0,T] x T\{a} ),
VnH,, and VNG, converge uniformly to 0 and Gs(at) — Gs(a™), as N — oo, respectively.
By the rule of maximum of one particle per site and approximation of integral by Riemann
sums, in order to be null (5.7) and (5.8), it is suficient to show that go to zero the expressions

lim IP’ +1

B | [+ X b —atenn
(@)1 = maa1)] DHL(E)0Gu(E) ds | > 5] ,

lim P/ (z+1)( N

B2, | [ 4 30 e -

= @+ 1) (1 = 0y(@)) | O H(5)0.G, (%) ds

>5],
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lim IP’H sup
N—roo 0<t<T

/{7} (ay +1) —nSaN+1}aG )

— N (an) — ns(an) Y0uGi(a™) ds | > &
and
B [P [ a4 1) = o+ DG ~ Gl
— {nS(an) + ns(an) }H{Gs(a) — Gy(a™) } ds >5],

converge to zero, as € | 0, Vo > 0. It follows by Replacement Lemma 5.2.2.

Proposition 5.3.1. Fiz a Borel measurable profile po : T — [0,1] and consider a sequence
{un : N > 1} of probability measures on {0, 1} associated to py in the sense of (1.4). Then
any limit point of QI is concentrated on absolutely continuous paths m,(du) = p(t,u)du,
with positive density p, bounded by 1, such that p is a weak solutions of (1.10) with initial
condition py.

Proof. Let {G; : i > 1} be a countable dense set of functions on C2([0,T] x T\{a}),
with respect to the norm ||G|loo + [|0uGlloe + [|02G]|se- Provided by (5.4) and intercepting
a countable number of sets of probability one, is straightforward to extend (5.4) for all
functions G € C**([0,T] x T\{a} ) simultaneously. O

5.4 Uniqueness of weak solutions

This section is devoted to the uniqueness of weak solutions of (1.10). To simplify notation,
along this section, we will consider @ = 0 and sometimes we will denote 0t =0 and 0~ = 1.

Proposition 5.4.1. Let p : [0,7] x T — R be a weak solution of the parabolic differential
equation (1.10) with initial condition v : T — R. Then, for all t € [0,T] and for all
G € H;.(T), holds

(G) = (.6 = [ (o AG)ds +2 / (x(p)0uH, .G ds, (5.9

for all t € [0,T].

Proof. This proof is like to proof 2.6.1, we will denote 0T =0 and 0~ = 1. Let G € H2 (T).
Consider g,, € C(T) such that fgn dx = 0 and g, converges to AG and 3, converging to
0,G(0), and define

Gn(z) = G(0) + Bux + /Ow /Oy gn(2)dzdy .



Notice that G, € C**([0,T] x T\{0} ), 8,G»(0) = 8,G,(1) and AG,, = g,. Then,

t t
<pt7 Gn> - <’77 Gn> - / <psa gn> ds + 2/ <X(ps)8uHs ) aan> ds
0 0
t

+ [ {ps(0) = ps(1)}0uG(0) ds (5.10)

= | AP0 = (D) }{G(0) ~ Gu(1)} ds.

Since G,, converges to G, g, converges to AG and 0,G,, = S, + fox gn(2) dz converges to
9.G(0) + [y AG(z) dz = 9,G, one can conclude this proof like as in Proposition 2.6.1.
]

Recall the definition of the inverse operator (—A)~!: L*(T) — Hi (T) in (2.27).

Proposition 5.4.2. Let p and )\ be two weak solutions of the asymmetric equation with
pertubation H € C*2([0,T] x T) given in Definition 1.3.1, with respective initial conditions
po and No. For allt € [0, T], holds the equality

(prs (=8)7A) = (o, (=8 0) = =2 [ (pui Ao} ds
0 (5.11)

+2 /Ot (X(ps)0uHs, O, (—A) "' A) ds + 2/; (X(\)OuHs, 9u(—A) " ps) ds .

Proof. This proof is very similar to proof of the Proposition 2.6.3. The mean of a weak
solution of (1.10) is also constant in time, thus p;, Ay € L?(T)*! for any time ¢ € [0, T).

Take a partition 0 = tp < t; < -+ < t, = T of the interval [0,7] and, as like in
Proposition 2.6.3, we write

= kZ:O<ptk+1> ( A)i )\tk+1> <10tk+17 ( A)i )\tk> (5‘12)
S s (SO A — (o (“A) )

Since p is a weak solution of (1.7), A;, belongs to L*(T)*! and recalling the Proposition 5.4.1
and the Proposition 2.6.2 item (c), the second term above can be written as

<ptk+17 (_A)_l)‘tk> - <ptk7 (_A)_l)‘tk>
trt1 let1
- / <p5’ /\tk> dS + 2/ <X(ps)auHS7 au(_A>_1/\tk> dS

t t
ktk+1 tljc-q—l

—_ / (ps, As) ds + 2/ (X(ps)OuHs, Ou(—A) "Ny ds + R (p, \) + R (p, A)
175 tr

(5.13)
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where

tht1
Rf’zyl(p> /\) = / <psa As — >\tk> ds
ti

and -
RE2(p,\) = 2 / (x(pe)DuHo, Du(—A)"(h, — A)) ds.
7%

The first term in (5.12) is similar to the second one, because (—A)™! is a symmetric operator,
<pt’€+1’ (_A)_l)‘tk+1> - <ptk+17 (_A)_U\t;)

41 tr4+1
= - / (ps As) ds + 2/ (X(N)BuHy, u(=A) " ps) ds + Ry* (N, p) + Ryt (X, p)
tr ty
(5.14)

where
k.3 s
Rn’ <)\7 P) - / <)‘57 Ps — ptk+1> ds
12
and
kd le+1 .
an ()‘7p> = 2/ <X()‘S)8UH87 au(_A> (ptk+1 - p8)> ds.
tr
The sum over k of the firsts two terms in the right side of (5.13) and of (5.14) is exactly the
expression that we announced in (5.11). We shall treat the remainder.
We claim that

n—1

> {REY (0, A) + RE*(p, A) + REP (X, p) + REA(\ p) }

k=0

converges to zero, as n — oo.

If we prove this claim, the proof of this proposition is completed. To prove this claim we
will proceed as in Proposition 2.6.3. Let t5s : T — R be an smooth approximation of identity
and &5 : T — R a smooth function bounded by one, equals to zero in the interval (=4, d),
and equals to one in T\ (—24,26). Define

pa(u) = (ps* 1) (u)Ps(u) .

It is of easy verification that p?, A2 € HZ (T), for any s € [0,T], and also that p(-) converges
to ps(-) in L3(T), as § | 0.
Adding and subtracting p°, R®!(p, \) can be written as

tei1 th+1
[ e s [T = ) ds. (5.15)
tk ti

Fix ¢ > 0. Since pS(-) converges to ps(-) in L?*(T), applying the Dominated Convergence
Theorem, the sum in & of the first term in (5.15) is bounded in modulus by et for some §(¢)
small.
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Fix now such 6 = d(¢). Since p° € HE.(T) and since A is a weak solution of (1.10), the
second term in (5.15) is equal to

tea1 s s
[ [ o [ oo o) ds,
(23 i ty

whose modulus is bounded by C(p, H,§(¢))(tps1 — tx)?. Thus,

n—1
Y RiMNp,A) < et + Clp,H,0(e)) ¢ max tger — |-
£ ke{0,-- ,n—1}

Taking the limit on expression above, as n — 0o, and recalling that € > 0 is any, we get

n—1

lim Y RY'(p,A) =0.
n—oo
k=0

Now, we use the Young’s inequality, then R%2(p, \) is bounded from above by

tet+1

[ (M p)DHe x(p )0, HY s+ |08 = 0. 2=8) = A s,

tg ty

for all € > 0. Integration by parts, the second term above is equal to

M =

/tk“ Oy = hes () (N — M) ds

ty

+

M =

[ H{IED 00 A=A 0 AW Gas)
[ 1A 0 - A -8 0~ A0 s

ty

Using the Proposition 2.6.2 item (b), the two last terms in the expression above can be
written as

2

- f A 0w = A0 - (A1 0 - A ds.

We will use that A is a weak solution of (1.10), (—=A)~'(\;, — As) belongs to HE.(T) and the
Proposition 5.4.1, then the first term in (5.16) is equal to

%/tk“ { - /SMT, (At = As) dr + 2[ (XA O Hy, Du(—A) " (A — As)) dr} ds .

tr ty

Thus, there exists the constants C'(H) > 0 and C(\, H) > 0 such that

ke{0,-- n—

n—1
STRENp,A) < eC(H)t + LC(\H)t  max oy Ve — Bl
k=0

88



One can conclude that the limit of ZZ;& RE2(p, \) is zero, as n — oo. For finish the proof
of claim, we proceed with RF3(), p) and with R®4(\, p) in the same way that with R®!(p, \)
and RE2(p, \).

O

Corollary 5.4.3. Let p and \ be two weak solutions of the asymmetric equation with per-
tubation H € CY*([0,T) x T) given in Definition 1.5.1, with respective initial conditions pg
and \g. Then,

(pr = Ay (=8)7 (o = M) < {po = Ao, (=A)7 (o = Ao)) e, (5.17)

for all t € [0,T] and some constant ¢ € R. In particular, there exists at most one weak
solution of the asymmetric equation with perturbation H.

Proof. From Proposition 5.4.2, the expression

(ot = Ay (=D)H(pe = M) (5.18)
is equal to

—2 /Ot<ps — Xs, ps — As) ds + 4/; (Ix(ps) = X(A)]OuHys , 0u(—A) " ps — As)) ds.

Let us estimate the second integral in the expression above. By Young’s inequality, for any
e >0,

[ (o) = X)L 0up = 0.
<2 C(H) /0 (x(ps) = x(As), x(ps) — x(Xs)) ds

2 / (0~ 8) (o = M) 0u(~A) (. — A)) ds.

By hypothesis, p and X take values in the interval [0, 1]. Therefore, because x(+) is a Lipschitz
function,

2¢ C(H)/0 (x(ps) = x(Xs), x(ps) — x(As)) ds < sCH/O (ps = As, ps — As)ds .

By integration by parts and Proposition 2.6.2 item (b), the term

5/0 (0u(=A) M (ps = As)s Du(—D) " ps — As)) ds

is equal to

g/t<ps - /\87 (_A)_l(ps - /\s>> ds

€
2
€

/O {(=2) (ps = A)(0) = (=A) " (ps — A (1)} ds.

89



We conclude that, for enough small ¢, the expression (5.18) is bounded from above by

2| (e = A (=) (pu — M) ds.

£

Thus, it just remains to apply Gronwall’s inequality to obtain (5.17).

To see that this implies the uniqueness of solutions with the same initial condition 7.
Use item (d) of the Proposition 2.6.2, for fixed ¢ € [0,T], to obtain f; € HZ (T) such that
pr — A = (—A) fi, and thus

0= <pt - )\t, (—A)_l(pt - )\t>> = < - Aft, ft> = <8uftaauft> + (auft(0+>)2'

Then, 0, f;(u) = 0, u - almost surely and for all ¢t € [0,7]. Since p; — Ay = (—A) f;, we have
pi(u) = A(u), u - almost surely and for all ¢ € [0, 7). This concludes the proof. O
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Chapter 6

Large Deviations Lower Bound

In this chapter we will present in Proposition 6.0.6 the lower bound of the Large Deviation
Principle. For this, we will need the next lemmata.

Lemma 6.0.4. For each function H € C%2([0,T] x T). Let p be a unique weak solution of
(1.10). Then,

I (p) = Ju(p") = / (X(olh). (0.H,)?) dt (6.1)

Proof. Using that p¥ is weak solution of (1.10), for all G € C**([0,T] x T), we get

A

Jelp") = / (o), (9uHL)?) dt / (o), (OuH, — 0,G1)?) dt.

Then,
R T
r'(p") = sup  Ja(p") = Jul(p") = / (x(p("), (0u,H,)?) dt .
GeC2([0,T]xT) 0
O

Lemma 6.0.5. For each H € C**([0,T] x T). Denote by H (P |P,~) the entropy of a
probability measure ]P’fN with respect to a probability measure P,n. We refer to [16, Section
A1.8] for a precise definition. Then,

lim +H (Pyx|P,y) = I(p"),

N—o0
where p" is a unique weak solution of (1.10).

Proof. By the explicit formula for entropy

1 H 1 H deN
ﬁH(Pyé\f|Pug) = N]El/é\/ log d]P (jv (62)
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Recall the definition of the set Bgs given in (4.4). We claim the probability (st)ﬂ with
respect to IP“;IN is superexponentially small. Indeed, using (5.3)

H H\C dpgév C(H,T)N H\C
Py [(Bé,s) ] =K,y aP,v Lipye| < e Py [(Bé,€> ] :
By (4.5), we get
T T H H\C] _
lgg)lj\}gréo%loglpyg [(B&E) ] = —00. (6.3)
L, APy : :
From (6.3) and the fact that + log aF 1 bounded by C'(H,T), the right hand side of (6.2)
is equal to
HN
%Efg log dIP’VZv i | +on(1), (6.4)

for all 0 > 0 and each € enoughly small (¢ < €(J)). Applying the expression (4.9) for the
dPH,

v,

dP
v,

& H
°- on the set By is equal to

e

Radon-Nikodym derivative, % log

T (7Y % 1,) % 12) + Oreq (§) + O(8) + On(e) + On (1),

for all & > 0 and all € and ~ small enough. Since this expression is bounded and the
probability of (Bfg)c with respect to IP’,{{N vanishes as /V increases to infinity, the expression

(6.4) becomes
Efg |:jH((7TN * [”Y) * LZ)] + OH,T,E,"/(%) + O((S) + OH(€) + OH(%) + ON(l) ,

for all § > 0 and all € and 7 small enough. The functional p — jH((p* Ly) * Lg) is continuous
with respect to the Skorohod topology with € and v fixed, see the Proposition A.2.4. By
Proposition 5.0.4 the sequence QfN converges weakly to the probability concentrated on the
weak solution of (1.10). In particular, as N increases to infinity the previous expectation
converges to

T ((p™ % 1)) %12) + O(8) + Op(e) + Ou(2).

It remains to let v | 0 and ¢ | 0, then § | 0 and recall identity (6.1).
O

T]|, My) that consists of all paths

Recall that D°([0,7], M,) is the subset of D(]0,
2([0,T] x T) that p = p" is a unique

7(t,du) = p(t,u)du such that there exists H € Cb
weak solution of (1.10).

Proposition 6.0.6. Let O be an open set of D([O,T],M). Then

lim L1 Ol > — inf I*(7) .
dm 5 0g Q,x[O] > reoroit 1 ae) (m)
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Proof. This proof is essentially the same as found in [16]. Let 7 € O ND°([0,T], M), there
exists H € CY2([0,T] x T) such that n(¢,du) = p” (u)du, where p” is a weak solution of
(1.10). Denote by P, , the probability on space D([0,77,{0,1}~) given by

PH A, 7N € O]

PVN O[A] = szv [ﬂ_N c (9] ’

for all measurable set A of D([O,T ],{0,1}T~ ) Using this probability, we may rewrite
+ log Q.n[0] as

dP,~
1 logEl,N 0 [dIP’; ] + % log@fg [O].
By Proposition 5.0.4, since O is a neighborhood that contains p*’, the second expression
above converges to 0 as IV increases to infinity. Applying Jensen’s inequality, the first one is
bounded below by

dP,~ }

]EVN 0 [ L 10g d]P)H
vl

Using the definition of probability IP’Z{{N o and expression (6.2), the last expression becomes

II;IN [O] { B %H(Pyévlpyév) - EI/(‘;V [% log M 1{7rN6(’)C}:| .

Once again, by Proposition 5.0.4, QH [O] converges to 1 as N — oco. Since by (5.3) the

is bounded, the second term inside braces vanishes as N — co. There-

expression Llog 5 H

Va

fore,

Nl_m +1og Qv [0] > lim —lH(IP’ P,y) =—I"(p").
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Chapter 7

Hydrodynamical behavior of symmetric
exclusion with slow bonds of parameter

N—B

Joint work with Tertuliano Franco and Patricia Gongalves.
To be appear in the Annales de I’Institut Henri Poincaré: Probability and Statistics (B).

7.1 Notation and Results

Let Ty = {1,..., N} be the one-dimensional discrete torus with N points. At each site, we
allow at most one particle. Therefore, we will be concerned about the state space {0, 1},
Configurations will be denoted by the Greek letter 7, so that n(x) = 1, if the site = is occu-
pied, otherwise n(z) = 0.

We define now the exclusion process with state space {0,1}"™ and with conductance
{{fc\fmﬂ}x at the bond of vertices xz,z + 1. The dynamics of this Markov process can be
described as follows. At each bond of vertices =,z + 1, we associate an exponential clock
of parameter {i\”xﬂ. When this clock rings, the value of 7 at the vertices of this bond are
exchanged. This process can also be characterized in terms of its infinitesimal generator Ly,
which acts on local functions f : {0,1}™ — R as

Lafn) =3 o [F0) = fm)].
z€T N
where n®**1 is the configuration obtained from 7 by exchanging the variables n(z) and
n(z +1):
nx+1), if y==x,
) =9 @), ify=z+1,
n(y),  otherwise.

(n
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The Bernoulli product measures {vY : 0 < a < 1} are invariant and in fact, reversible,
for the dynamics introduced above. Namely, v is a product measure on {0,1}*™ with
marginal at site z in Ty given by

va{n:n(z) =1} = .

Denote by T the one-dimensional continuous torus [0,1). The exclusion process with a
slow bond at each point by ...,b; € T is defined with the following conductances:

N_Ba if {bb?bk}m(%?%ﬂ]#@a

N
gx,;r—&-l -

1, otherwise.

The conductances are chosen in such a way that particles cross bonds at rate one, except

k particular bonds in which the dynamics is slowed down by a factor N=#, with 3 € [0, 00).

Each one of these particular bonds contains the macroscopic point b; € T; or b; coincides
X

with some vertex % and the slow bond is chosen as the bond to the left of 5. To simplify

notation, we denote by Nb; the left vertex of the slow bond containing b;.

Denote by {1, := nn2 : t > 0} the Markov process on {0, 1}*~ associated to the generator
Ly speeded up by N2. Although 7, depends on N and 3, we are not indexing it on that in
order not to overload notation. Let D(R,, {0,1}™) be the path space of cadlag trajectories
with values in {0,1}"~. For a measure sy on {0,1}"~, denote by P5  the probability mea-
sure on D(R,, {0,1}"™) induced by the initial state jy and the Markov process {n; : t > 0}
and denote by ]EﬁN the expectation with respect to PﬁN.

Definition 7.1.1. A sequence of probability measures {iy : N > 1} on {0, 1}~ is said to
be associated to a profile po : T — [0,1] if for every § > 0 and every continuous functions
H:T—-R

Ji s & 30 HGww) — [ Hw p(wide] > 5} = o (r.)

Now we introduce an operator which corresponds to the generator of the random walk in
Ty with conductance £, ., at the bond of vertices x, z+1. This operator acts on H : T — R

as
LvH(E) =& [H(50) - H(%)] + e [H(5) - H(3)]. (2
We will not differentiate the notation for functions H defined on T and on Tp. The

indicator function of a set A will be written by 14(u), which is one when v € A and zero
otherwise.
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d d
7.1.1 The Operator -
Given the points by, ..., by € T, define the measure W (du) in the torus T by
W(du) = du+ &, (du) + --- + 0, (du),

so that W is the Lebesgue measure on the torus T plus the sum of the Dirac measure in
each of the {b; : i =1,..., k}.
Let Hi; be the set of functions F' in L*(T) such that for z € T

F(z) = a + /(M] <b+/0yf(z)dz>W(dy),

for some function f in L*(T) and a,b € R such that

/Olf(x) dr =0, /(071] <b+/0yf(z) dz)W(dy) = 0. (7.3)

Define the operator

For more details we refer the reader to [9].

7.1.2 The hydrodynamical equations

Consider a continuous density profile v : T — [0,1]. Denote by (-,-) the inner product in
L3(T), by p; a function p(t,-) and for an integer n denote by C"(T) the set of continuous
functions from T to R and with continuous derivatives of order up to n. For Z an interval
of T, here and in the sequel, for n and m integers, we use the notation C™™([0,T] x Z) to
denote the set of functions defined on the domain [0, 7] x Z, that are of class C" in time and
C™ in space.

Definition 7.1.2. A bounded function p : [0,T] x T — R is said to be a weak solution of
the parabolic differential equation with initial condition y(-):

Op = 82/)
v 7.4
Loy 20, 7
if, for t € [0, T and H € C*(T), p(t,-) satisfies the integral equation

win—<%ﬂw—A%@%HmS=o
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Definition 7.1.3. A bounded function p : [0,T] x T — R is said to be a weak solution of
the parabolic differential equation with initial condition ~(-):

5, _ 4 d
{ = g aw” (7.5)
p0,:) = ()

if, for t € [0,T) and H € H}y,, p(t,-) satisfies the integral equation

(pr, H) — <%H>—/t<ps,didcviVH>ds =0.

Following the notation of [4], denote by L2(0,T;H!'(a,b)) the space of functions o €
L2([0,T] x [a,b]) for which there exists a function in L?([0,7T] x [a,b]), denoted by 0,0,

satisfying
//(3H s,u) o(s,u) duds = — //Hsu Ou0)(s,u) du ds,

for any H € C%([0,T] x [a,b]) with compact support in [0,7] x (a,b).

Definition 7.1.4. Let [b;,b;11] C T. A bounded function p: [0, T] x [b;,bis1] — R is said to
be a weak solution of the parabolic differential equation with Neumann’s boundary conditions
in the cylinder [0,T] X [b;, biv1] and with initial condition ~(-):

Op = 83P
p(0,)) = (") (7.6)
8up(t, bz) = 8up(t, bi-i-l) = 0, Vt € [O,T]

if, for t € [0,T] and H € CY2([0,T] x [b;, bis1]), p(t,-) satisfies the integral equation

/ ) H () du — /b :’M () H (O, w) du

b;

t pbita
_/0 /b p(s,u) {02H (s,u) + 0. H(s,u)} duds (7.7)

t
-I—/auH(s,biH N /3Hsb (5,07 )ds = 0
0

and p(t,-) belongs to L*(0,T; H'(b;, bi1)).

Since in Definition 7.1.4 we impose p € L*(0,T; H*(b;, bi1 1)), the integrals are well-defined
at the boundary. This is a consequence of the following two facts. On one hand, it follows
from the assumption that p(t, ) € H!(b;, biy1), almost surely in ¢ € [0, T]. On the other hand,
it is well-known that functions belonging to H!(b;, b;11) and with sided limits at b; and b; 4
are absolutely continuous with respect to the Lebesgue measure, see [18] for instance. We
refer the reader to [4] for classical results about Sobolev spaces.
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Heuristically, in order to establish an integral equation for the weak solution of the heat
equation with Neumann’s boundary conditions as above, one should multiply (7.6) by a test
function H and perform twice a formal integration by parts to arrive at (7.7).

We are now in position to state the main result of this paper:

Theorem 7.1.1. Fiz € [0,00). Consider the exclusion process with k slow bonds cor-
responding to macroscopic points by, ..., by € T and with conductance N=" at each one of
these slow bonds.

Fiz a continuous initial profile v : T — [0,1]. Let {un : N > 1} be a sequence of
probability measures on {0,1}™~ associated to . Then, for any t € [0,T)], for every § > 0
and every H € C(T), it holds that

%Z (%) me(z /H tudu‘>5} ,

zeT N

. B .
Jm Bl

where :

e if 5 €10,1), p(t,-) is the unique weak solution of (7.4);
o if B=1, p(t,-) is the unique weak solution of (7.5);

e if B € (1,00), in each cylinder [0,T] X [b;, bir1], p(t,-) is the unique weak solution of
(7.6).

Remark 7.1.2. The assumption that all slow bonds have exactly the same conductance is not
necessary at all. In fact, last result is true when considering each slow bond containing the
macroscopic point b; with conductance N~%. In that case, we would obtain a parabolic dif-
ferential equation with the behavior at each [b;, bi11] given by the regime of the corresponding
Bi as above. Another straightforward generalization is to consider conductances not exactly
equal to N=P, but of order N=P, in the sense that the quotient with N=P converges to one.
For sake of clarity, we present the proof under the conditions of Theorem 7.1.1.

7.2 Scaling Limit

Let M be the space of positive measures on T with total mass bounded by one, endowed
with the weak topology. Let ¥ € M be the empirical measure at time ¢ associated to 7,
namely, it is the measure on T obtained by rescaling space by N and by assigning mass N ~*
to each particle:
$€TN
where 9, is the Dirac measure concentrated on u. For an integrable function H : T — R,
(N H) stands for the integral of H with respect to 7'
N T
(m' H) = & Y H(%)m().

z€T N
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This notation is not to be mistaken with the inner product in L?(R). Also, when 7; has a
density p, namely when 7 (t,du) = p(t, u)du, we sometimes write {(p;, H) for (m;, H).

Fix T' > 0. Let D([0,T], M) be the space of M-valued cadlag trajectories 7 : [0, 7] — M
endowed with the Skorohod topology. For each probability measure py on {0, 1}~ denote
by Qﬁzév the measure on the path space D([0,7], M) induced by the measure py and the
empirical process 7' introduced in (7.8).

Fix a continuous profile v : T — [0, 1] and consider a sequence {py : N > 1} of measures
on {0, 1}~ associated to 7. Let Q” be the probability measure on D([0,T], M) concentrated
on the deterministic path (¢, du) = p(t, u)du, where:

o if 5€(0,1), p(t,-) is the unique weak solution of (7.4);
o if 3 =1, p(t,-) is the unique weak solution of (7.5);

e if € (1,00), in each cylinder [0,7] X [b;, bi11], p(t,+) is the unique weak solution of
(7.6).

Proposition 7.2.1. As N T oo, the sequence of probability measures {ngév N > 1}
converges weakly to QP.

The proof of this result is divided into three parts. In the next section, we show that
the sequence {Q2Y : N > 1} is tight, for any § € [0,00). In Section 7.5 we characterize
the limit points of this sequence for each regime of the parameter 5. Uniqueness of weak
solutions is presented in Section 7.6 and this implies the uniqueness of limit points of the
sequence {Qﬁliv : N > 1}. In the fifth section, we prove a suitable Replacement Lemma for
each regime of 3, which is crucial in the task of characterizing limit points and uniqueness.

7.3 Tightness

Proposition 7.3.1. For any fized B € [0,00), the sequence of measures {le\zfv N > 1} is
tight in the Skorohod topology of D([0,T], M).

Proof. In order to prove tightness of {7 : 0 <t < T} it is enough to show tightness of the
real-valued processes {(7¥, H) : 0 <t < T} for H € C(T). In fact, c.f. [16] it is enough to
show tightness of {(m}¥, H) : 0 <t < T} for a dense set of functions in C(T) with respect to
the uniform topology. For that purpose, fix H € C?(T). By Dynkin’s formula,

MN(H) = (zN, H) — (z)Y, H) — /0 N2Ly(nN H)ds, (7.9)

is a martingale with respect to the natural filtration F; := o(ns : s < t). In order to prove
tightness of {(r, H) : N > 1}, we prove tightness of the sequence of the martingales and
the integral terms in the decomposition above. We start by the former.
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We begin by showing that the LQ(IP’ﬁN)—norm of the martingale above vanishes as N —
+00. The quadratic variation of M}N(H) is given by

Dds. (710

2|8

(M / S & [ne) — e + D) (L) — HY

x€T N

It is easy to show that (MY (H)), < L||0,H|%. Here and in the sequel we use the notation
[Hloo := supyer [H (u)].

Thus, M} (H) converges to zero as N — +oc in L*(P%, ). Notice that above we used the
trivial bound fﬁxﬂ < 1. By Doob’s inequality, for every o > 0,

lim IP’/B sup |[MN(H)| >6| =0, (7.11)

N—oo HN 0<t<T

which implies tightness of the sequence of martingales {M(H); N > 1}. Now, we need to
examine tightness of the integral term in (7.9).

Denote by I'y the subset of sites x € Ty such that x has some adjacent slow bond,
namely, &, = NP or €, = N7 The term N>Ly(xY, H) appearing inside the time
integral in (7.9) is explicitly given by

5 Y

N Y (@) [H(5) + B - 20 (%))
¢y
N Y ) | {H (5 — HE)Y+ & AH (5 - HE)Y

By Taylor expansion on H, the absolute value of the first sum above is bounded by ||0?H || .
Since there are at most 2k elements in I'y, & ,+1 < 1 and since there is only one particle
per site, the absolute value of the second sum above is bounded by 2 k||0, H|| . Therefore,
there exists a constant C':= C(H, k) > 0, such that [N2Ly (7, H)| < C, which yields

/ N2Ly(nlN Hyds| < C|t —7|.

By Proposition 4.1.6 of [16], last inequality implies tightness of the integral term. This
concludes the proof. O

7.4 Replacement Lemma and Sobolev Spaces

In this section, we obtain fundamental results that allow us to replace the mean occupation
of a site by the mean density of particles in a small macroscopic box around this site. This
result implies that the limit trajectories must belong to some Sobolev space, this will be
clear later. Before proceeding we introduce some tools that we use in the sequel.

103



Denote by Hy(un|v.) the entropy of a probability measure puy with respect to the in-
variant state v,. For a precise definition and properties of the entropy, we refer the reader
to [16]. In Proposition A.1.8 in the Appendix we review a classical result saying that there
exists a finite constant Ky := Ky(«), such that

HN(/LN|VQ) S KON, (712)

for any probability measure uy € {0, 1},
Denote by (-, ), the scalar product of L?(v,) and denote by D y the Dirichlet form, which
is the convex and lower semicontinuous functional (see Corollary A1.10.3 of [16]) defined as:

©N<f) = <_LN\/?> ﬂ)uaa

where f is a probability density with respect to v, (i.e. f > 0 and [ fdv, = 1). An
elementary computation shows that

ou(f) = X S8 [ (VFGE) - V) dv

z€T N

By Theorem A1.9.2 of [16], if {S} : ¢ > 0} stands for the semi-group associated to the
generator N2Ly, then

t
Hy(unSy |va) + N? / On(f)ds < Hy(unlva)
0

provided fV stands for the Radon-Nikodym derivative of uySY (the distribution of 7, start-
ing from py) with respect to v,.

7.4.1 Replacement Lemma

Now, we define the local density of particles, which corresponds to the mean occupation in
a box around a given site. We represent this empirical density in the box of size ¢ around
a given site x by n‘(x). For B € [0,1), this box can be chosen in the usual way, but for
B € [1,00), this box must avoid the slow bond. From this point on, we denote the integer
part of e N, namely |eN |, simply by eN.

Definition 7.4.1. For B € [0,1), define the empirical density by

r4+eN

) = & D n).

y=z+1
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Definition 7.4.2. For § € [1,00), if x is such that {Nby,...,Nby} N{x,...,x+eN} =g,
then the empirical density is defined by

z+eN

N = & D ).

y=z+1

Otherwise, if, let us say, Nb; € {x,...,x +eN} for some i = 1,...k, then the empirical

density is defined by
Nb;

)= &% ) ).

y=Nb;—eN+1

Since we are considering a finite number of slow bonds, the distance between two consec-
utive macroscopic points related to two consecutive slow bonds is at least €, for € sufficiently
small. As a consequence, we can suppose, without lost of generality that in the previous
definition, b; is unique.

Lemma 7.4.1. Fiz $ € [0,1). Let f be a density with respect to the invariant measure V,.
Then,

/ (1) — PN @)} fvaldn) < 2EN 4 2) + NDy(f) Vo € Ty

Proof. From Definition 7.4.1 we have that

z+eN

[t = @ snatan = [{& Y @)= no) }sm valan).

y=z+1
Writing n(z) — n(y) as a telescopic sum, the last expression becomes equal to

z+eN y—1

/{AN SN iz —n(z+1))}f(77) Vo(dn) .

y=z+1 z=x
Rewriting the expression above as twice the half and making the transformation 7 — n***1

(for which the probability v, is invariant) it becomes as:

z+eN y—1

YD / (1(z) — 0z + DY) — F07) valdn).

y=z+1 z=x
Since (a—b) = (v/a—vb)(v/a+Vb) and by the Cauchy-Schwarz’s inequality, for any A > 0,
we bound the previous expression from above by

z+eN y—1
A

dr Y > [0 — e+ 0P (VE + V) vatdn)

y=z+1 z=x 2,241

z+eN y—1 N

ot >0 3= [ (VI - V) ).

y=z+1 z=x
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The second sum above is bounded by

z+eN

e Y 3 S [ (VTG - VTG walan) = 50n ()

y=x+1 2eTyn

On the other hand, since f is a density, the first sum is bounded from above by

z4+eN y—1 z+eN
= > Z <& > 24(kNP +eN) =2A4(kN® +eN).
y=z+1 z2=x 5'3 2+l y=z+1

Notice that the term kN” comes from the existence of & slow bonds. Choosing A = %, the
proof ends. O

Lemma 7.4.2 (Replacement Lemma). Fiz 5 € [0,1). Let b € T and let x be the right (or
left) vertex of the bond containing the macroscopic point b. Then,

lim lim Eﬂ /{775 )}dsH = 0.

e—0 N—oo

Proof. From Jensen’s inequality together with the entropy inequality (see for example Ap-
pendix 1 of [16]), for any v € R (which will be chosen large), the expectation appearing on
the statement of the Lemma is bounded from above by

Hy(pnlva) 1 ' N
—+—logEya[exp {vN‘ {ns(x) —nt (a:)}ds‘H : 7.13
TN N 0 (713
By Proposition A.1.8, Hy(un|va) < Ko N, so that it remains to focus on the second sum-
mand above. Since e/l < e* 4+ 7% and
hm + log(ay + by) = max { lim + % logan, hm % log bN} (7.14)

we can remove the modulus inside the exponential. By Feynman-Kac’s formula, see Lemma
A1.7.2 of [16] and Proposition A.1.7, the second term on the right hand side of (7.13) is less
than or equal to

t sup /m (@)} fnvaldn) — NON (D)}

f density

Applying Lemma 7.4.1 and recalling that v is arbitrarily large, the proof finishes. [

The next two results are concerned with both cases 5 =1 and § € (1, 0).

Lemma 7.4.3. Fiz § € [1,00). Let f be a density with respect to the invariant measure V.
Then,

/En N (@) (m)valdn) < NDx(f) + 42, Vo € Ty

Moreover, given a function H : T — R:

2 [HE W @ o) < Koy + 5 Y (1)

ze€Tn z€TN
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Proof. Recall the Definition 7.4.2. Let first = be a site such that there is no slow bond
connecting two sites in {x,...,z +eN}. In this case,

/ H(2) () — 7 (@)} f()va(dn)

=[G {% X @)~ nw) prwwaldn),

y=z+1

and following the same arguments as in Lemma 7.4.1, we bound the previous expression
from above by

x+5N y—1

25N Z Z/ 5 Z + 1 (\/f + \/f(nz,z+1))2ya(dn)
y=z+1 z=x Z Z+1
m—l—EN y 1 é +1 9
+25_N P ac+1 2 —n(z+1)} (\/f \/f(??”“)) Va(dn) .

Since Sé\fzﬂ = 1forall z € {z,...,x + &N — 1}, it yields the boundedness of the previous
expression by
2 D
2:N A (H(%)) + # .

Let now x be a site such that Nb; € {z,..., 2 +eN} for some i = 1,..., k. In this case,
[ HG ) ta) 7 @) Fnrala)
sz (7.15)
/ H

{nx) = nw) } 1 )va(dn)
y Nb —eN+1

Now we split the last summation into two cases, ¥y > x and y < x and then we proceed by

writing 7(z) — n(y) as a telescopic sum as in Lemma 7.4.1. Then, by the same arguments

of Lemma 7.4.1 and since £, = 1 for all z in the range {Nb; —eN +1,..., Nb; — 1}, we

bound the previous expression by

ZIN

2 D
1=NA(H(E)) + # .
Now the first claim of the lemma follows by taking the particular case H () = 1 and choosing
A=+
N
Finally, if in (7.15) we sum over x € Ty and then divide by N, one concludes the second
claim of the lemma. [

Lemma 7.4.4 (Replacement Lemma). Fiz § € [1,00). Then, for every x € Ty

lim lim E’B ‘/{17S )}dsH = 0.

e—0 N—oo
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Moreover, given a function H : T — R satisfying
Tim 1 T 2
B X (1) <o
z€T N

also holds
lim lim Eﬁ ’/ Z (£){ns(z) — N (z)} ds

e—0 N—oo
IGTN

| =0

Proof. The proof follows exactly the same arguments in Lemma 7.4.2. Therefore, is sufficient
to show that the expressions

¢ swp { [{nta) = @) v, - NOx()

f density
and
¢ s {2 FHG @)~ @) fnyiv, = VO ()}
ensity =
vanish as N — 400, which is an immediate consequence of Lemma 7.4.3. [

In the next subsection, we will need the following variation of Lemma 7.4.3:

Lemma 7.4.5. Let H : T — R and let f be a density with respect to v,. Then, for every

zeTy
IE: > ) {nte) —ato+ M )l
<NDXN() + > (#1(5)) {e+ 5+ f; T2}

The proof of the last lemma follows the same steps as above and for that reason will be
omitted. Nevertheless, we sketch the idea of the proof. One begins by writing n(z)—n(z+eN)
as a telescopic sum and proceeding as in Lemma 7.4.3. The only relevant difference in this
case is that is not possible to avoid the slow bonds inside the telescopic sum, and therefore
the upper bound depends on f.

7.4.2 Sobolev Spaces

We prove in this subsection that any limit point Q7 of the sequence {ley : N > 1} is con-
centrated on trajectories p(¢,u)du with finite energy, meaning that p(t,u) belongs to some
Sobolev space. For 8 € [0, 1), this result is an immediate consequence of the uniqueness of
weak solutions of the heat equation. The case § = 1 is a particular case of the one considered
in [9]. Therefore, we will treat here the remaining case € (1,00). Such result will play an
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important role in the uniqueness of weak solutions of (7.6).
Let Q7 be a limit point of {Q7Y : N > 1} and assume without lost of generality that
the whole sequence converges Weakly to QF.

Proposition 7.4.6. The measure Q7 is concentrated on paths w(t,u) = p(t,u)du. Moreover,
there exists a function in L*([0,T] x T), denoted by O,p, such that

//8[—] s,u) p(s,u) duds = — //Hsu Oup)(s,u) du ds,

for all H in C%1([0,T] x T) whose support is contained in [0,T] x (T\{by,...,b}).

The previous result follows from the next lemma. Recall the definition of the constant
Ky given in (7.12).

Lemma 7.4.7.

EQg[Slép{ /0 ' /T (OuH) (5,u) p(s,u) du ds
—2// (5, ) duds}]gKo,

where the supremum is carried over all functions H in C%'([0,T] x T) with support contained
in [0.T) % (T\{by, ..., i}).

We start by showing Proposition 7.4.6 assuming the last result. Later and independently
we will prove the previous lemma.

Proof of Proposition 7.4.6. Denote by £ : C%'([0,T] x T) — R the linear functional defined

by
/ /0H s,u) p(s,u) duds.

Since the set of functions H € C%!(]0, T|xT) with support contained in [0, T]x (T\{by, . .., b })
is dense in L?([0,T] x T) and since by Lemma 7.4.7, £ is a Q%-a.s. bounded functional in
C%L([0,T] x T), we can extend it to a Q%-a.s. bounded functional in L3([0,T] x T). In
particular, by the Riesz Representation Theorem, there exists a function G in L*([0,T] x T)

such that .
—/ / H(s,u) G(s,u) duds .
o Jr

This finishes the proof. O]
For a smooth function H: T — R, € > 0 and a positive integer N, define Vy(e, H,n) by

Vale. Hoy) = & S HE) )~ +eN) - 2 3 ()

ze€Tn z€TN

In order to prove the Lemma 7.4.7, we need the following technical result:
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Lemma 7.4.8. Consider Hy, ..., Hy functions in C%([0,T] x T) with support contained in
[0,T] x (T\{b1,...,bx}). Hence, for every e > 0:

T
lim Iim E°, [ max {/ Vi (e, Hi(s,),n°™) ds}] < Kp . (7.16)
0

50 N—oco M L1<i<k

Proof. 1t follows from Lemma 7.4.4 that in order to prove (7.16), we just need to show that

T
T [ { [ vvte A al] < Ko
By the entropy and the Jensen’s inequality, for each fixed N, the previous expectation is less
than or equal to

H(pMve) | 1 ’
T + N logEl/a |:eXp { glagéN o VN<57 Hi(87 ')7 ﬁs)dSH :
By (7.12), the first term above is bounded by Kj. Since exp{max;<;<i a;} is bounded from
above by >, ;.. exp{a;} and by (7.14), the limit as N 1 oo, of the second term of the
previous expression is less than or equal to

— 1 g
max lim - logR,, [eXp {N/0 Vi (e, His, -),ns)dSH :
We now prove that, for each fixed ¢ the limit above is nonpositive.

Fix 1 <14 < k. By the Feynman-Kac’s formula and the variational formula for the largest
eigenvalue of a symmetric operator, for each fixed NV, the previous expectation is bounded
from above by

/OT sup { /VN(e,Hi(s, Y,n) f(n)valdn) — N@N(f)} s,

f

In last formula the supremum is taken over all probability densities f with respect to v,.

By assumption, each of the functions {H; : i = 1,..., k} vanishes in a neighborhood of each
b; € T. This together with Lemma 7.4.5, imply that the previous expression has nonpositive
limsup. This is enough to conclude. O]

We define now an approximation of the identity in the continuous torus given by

(

Lowro(u), if ve T\UL, (b —e,b;),

™ [

[y

1
€

cs(u, 1)) = (bl—é‘,bl)(u) ) if ve (bl —&, bl) ) (717)

% l(bk_&bk)(u) , if ve (bk — &, bk> .

\
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The convolution of a measure m with ¢. is defined by

(% 1) (v) = / (1, 0) ()

For a function p, the convolution p * ¢, is understood as the convolution of the measure
p(u) du with t.. Recall Definition 7.4.2. At this point, an important remark is the equality

" (z) = () * 0)(§), (7.18)
which is of straightforward verification.

Proof of Lemma 7.4.7. Consider a sequence {H; : i > 1} dense (with respect to the norm
|H |l + [[0uH ||o) in the subset of C%'([0,T] x T) of functions with support contained in
0, 7] x (T\{b1,...,bx}).

Recall that we suppose that {Q5Y : N > 1} converges to Q2. By (7.16) and (7.18), for
every k > 1,

hmE max / /H S, u) ps u) — pi(u%—s)}duds

6—0 1<1<k

where p(u) = (ps * 15)(u) as defined above. Letting § | 0, performing a change of variables
and then letting € | 0, we obtain that

max //8H s,u)p(s,u) duds
1<z<k:

. 2/0 /T(Hi(s,u))Q du dsH < K.

To conclude the proof it remains to apply the Monotone Convergence Theorem and recall
that {H; : ¢ > 1} is a dense sequence (with respect to the norm ||H || + ||0uH||) in the
subset of functions of C%([0, 7] x T) with support contained in [0, 7] x (T\{by...,b;}). O

Remark 7.4.9. In terms of Sobolev spaces, we have just proved that, for B € (1,00), QF-
almost surely, the limit trajectory p(t,u)du is such that p(t,u) belongs to L*(0,T; H'(b;, bi11)),
in each cylinder [0,T] x (b;,b;x1). Notice that in view of the presence of slow bonds and
of Lemma 7.4.5 is it not possible to obtain the same result considering the whole space

L2(0, T; H\(T)).
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7.5 Characterization of Limit Points

We prove in this section that all limit points Q7 of the sequence {Q%V : N > 1} are
concentrated on trajectories of measures absolutely continuous with respect to the Lebesgue
measure: m(t,du) = p(t,u)du, whose density p(t,u) is a weak solution of the hydrodynamic
equation (7.4), (7.5) or (7.6), for each corresponding value of £3.

Let Qf be a limit point of the sequence {@%V : N > 1} and assume, without lost of
generality, that {Qﬁj\zfv : N > 1} converges to Q. The existence of QF is guaranteed by
Proposition 7.3.1.

Since there is at most one particle per site, it is easy to show that Q? is concentrated on
trajectories m;(du) which are absolutely continuous with respect to the Lebesgue measure,
mi(du) = p(t,u)du and whose density p(-)t,- is non-negative and bounded by 1 (for more
details see [16]). We distinguish the regime of 3 in different subsections below. In all the
cases, we will make use of the martingale M (H) defined in (7.9). By a simple change of
variables, the integral term in (7.9) can be rewritten as a function of the empirical measure,
such that:

t
MN(H) = () H) — (), H) - / (x, N2 Ly H) ds, (7.19)
0
where Ly was defined in (7.2).
We notice here that, for any choice of H, MY (H) is a martingale. In due course we

impose extra conditions on H in order to identify the density p(t,-) as a weak solution of
the corresponding weak equation depending on the regime of the parameter (.

7.5.1 Characterization of Limit Points for g € [0, 1)

Here, we want to show that p(t,-) is a weak solution of (7.4). Let H € C*(T). We begin by
claiming that

t
@f[ﬂ'.l (mp, HY — (mo, H) — / (m,02H)ds = 0, Vt € [O,T]] = 1 (7.20)
0
In order to prove the last claim, it is enough to show that, for every ¢ > 0:
t
Qf[ﬂ.: sup ’<7Tt,H> — (mo, H) — / <7Ts,8ZH>dS‘ > 5} =0.
0<t<T 0

By Portmanteau’s Theorem and Proposition A.2.7, last probability is bounded from above
by

t
tiw QY [+ sup |(m H) = (mo. ) — [ (m02H) ds| > 5]
0

N—o00 0<t<T

since the supremum above is a continuous function in the Skorohod metric. Adding and
subtracting (7Y, N2 Ly H) in the integral term above and recalling the definition of Q%Y

UN
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the previous expression is bounded from above by

t
lim ]P’ﬁN[ sup ’(W?,H) — (r H) — /0 (7N N?LyH)ds

N—o0 0<t<T

> 6/2]

+ lim ]P’ﬂ sup ‘/ N, 0°H — N*LyH)ds | > 5/2}.

N—o0 0<t<T

By (7.19) and (7.11), the first term in last expression is null. By the definition of Iy given
in Section 7.3 and since there is only one particle per site, the second term in last expression
becomes bounded by

8 T
TRAEDD

$¢FN

Out (N) NQLNH(N)‘ ~ 6/4}

+ T Pﬁ sup‘/ Z a2 H(Z) NQLNH(%)}ns(x)ds

0<t<T zel

> 6/4}.

Outside 'y, the operator N2 Ly coincides with the discrete Laplacian and since H € C?%(T),
the first term in last expression is zero. Recall that there are 2k elements in I'yy. Applying
the triangular inequality, the second expression in the previous sum becomes bounded by

Ji B[ B 10} > 0/8]

+ Iim ]P’ﬁN[ sup ‘ 3 /OtNLNH(%)ns(a:)ds‘ > 5/8]
zel'n

For large N, the first probability vanishes. Now we deal with the second term. We associate
to each slow bond containing a point b;, a unique pair of sites in ['y, namely Nb; and Nb;+1.
By the triangular inequality, in order to show that the second expression above is zero, it is
sufficient to verify that

lim IP’B sup MY s (N D)
N—oo 0<t<T
+NLNH(%) ns(Nb; + 1)} ds ‘ > 5/84 -
for each ¢ = 1,..., k. The expression inside the integral above can be explicitly written as

N N

{NHES) = HER) + N7 %) — H(3)] o (Nb)

{1 (B0~ HSED) 4 (52— ()] Y (V£ 1),

Since H is smooth and 3 € [0,1), the terms inside the parenthesis involving N'=# converge
to zero and the terms involving N converge to plus or minus the space derivative of H at b;.
Therefore, again by the triangular inequality, it remains to show that, for any ¢ > 0,

Tim PﬁN[ sup ]/Ot auH(bi){ns(Nbi) - ns(sz-H)}ds‘ > 5} (7.21)

N—oo OStST
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equals to zero. The integral inside the probability above is continuous as a function of the
time t. Moreover, it has a Lipschitz constant bounded by |0,H (b;)|. If 0,H(b;) = 0, then
there is nothing to do. Otherwise, let to = 0 < ¢t; < --- < t, = T be a partition of [0, 7]
with mesh bounded by (|29, H (b;)|)~*. Notice the partition is fixed, depending only on the
function H. By the triangular inequality, (7.21) is bounded by

Tim PﬁNH/Otj (‘)uH(bi){ns(Nbi) - nS(Nb,-Jrl)}ds > 5/2].

- N—o00
=0

Therefore, we just need to prove that, for any § > 0 and any ¢ € [0, 7]

Tim IP’ﬁNH/Ot{nS(Nbi) - nS(NbH—l)}ds‘ > 5} —0.

N—oo

Applying Markov’s inequality, we bound the previous probability by

5 EﬁNH/Ot{%Wbi) . nS(Nbl-Jrl)}dsH.

Now, in order to conclude it is enough to do the following. First add and subtract the
empirical mean in the box of size e N around Nb; and Nb; + 1. Then, by the triangular
inequality and since [ (z) — 72" (z+1)| < 2, the term involving the two empirical means
vanish. For the other two terms, we invoke Lemma 7.4.2. This finishes the claim.

Proposition 7.5.1. For § € [0,1), any limit point of @ﬁlév 1s concentrated in absolutely
continuous paths m(du) = p(t,u) du, with positive density p(t,-) bounded by 1, such that
p(t,-) is a weak solution of (7.4).

Proof. Let {H; : i > 1} be a countable dense set of functions on C?*(T), with respect to
the norm || H||e + ||0?H||s. Provided by (7.20) and intercepting a countable number of
sets of probability one, is straightforward to extend (7.20) for all functions H € C?*(T)
simultaneously. O

7.5.2 Characterization of Limit Points for g =1

The idea in this case is to show that p(t,-) is an integral solution of (7.5) for a small domain
of functions and then extend this set to Hjy,.
Let Cy C Hiy be the set of functions H in L*(T) such that for x € T

H(z) = a + /(Ox] <b+/0yh(z)dz>W(dy),

for some function h in C(T) and a,b € R satisfying

/Olh(x)dx =0, /(0’1] <b—|—/oyh(2’)dZ>W(dy) — 0.
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Note that a function in Cy is continuous in T\{by, ..., by} and well defined everywhere. Now,
fix a function H € Cy and define the martingale M (H) as in (7.9). We aim that, for every
§ > 0, the result in (7.11) holds for H € Cy . In fact, this was already shown, for H € C?*(T),
in the proof of Proposition 7.3.1. By (7.10), for ¢t € [0, T]]
2
)]

(MN(H)) ST Y7 € [H(EE) — H
Since H € Cy,, H is differentiable with bounded derivative, except at the points by, ..., by.

ze€Tn
T

Therefore, for any pair x,x + 1 such that there is no b; between  and I“ , the following
inequality holds

2=

gxﬂ[H(xTH) _H(%)] = N2

On the other hand, if there is some {b; : ¢ = 1, .., k} in the interval [£, Z£4), then Y, ., = N7
and in this case we get to:

2 4
Yoo |[HEH - HE) | < 5 lH]E

Since there are only finite k slow bonds, we conclude that the quadratic variation of M (H)
vanishes as N — oo. Now, Doob’s inequality is enough to conclude. As above, by a simple
change of variables, we may rewrite the martingale MY (H) in terms of the empirical measure

n (7.19). Now we want to analyze the integral term in the martingale decomposition
(7.19).

Lemma 7.5.2. For any H € Cy,

lozH].

Jim L3 ’NQ]LNH(%) - iiH(%)‘ ~ 0.
z€Tn

Proof. Recall the definition of the set I'y given in Section 7.3 and rewrite the previous sum
as

23N HE) - £ HE)| 5 Y | NI HE) - £ HE)] (722)
I%FN zel'y
Outside by, ...,bg, the operator d—ﬁ coincides with the Laplacian, and outside I'y, the

discrete operator N?Ly coincides with the discrete Laplacian. Hence, the first term above
is equal to

& |V (HER) + HER - 28 () - H () |
It is easy to verify that H € C?(T\{by,...,bx}) and has bounded derivatives. Thus, by a

Taylor expansion on H, it follows that the previous sum converges to zero as N — 400. On
the other hand, the second sum in (7.22) is bounded by the sum of




and

S NEL [ — HZ)| + N [ - HZ) .

zel'y
Since H € CW, H is a continuous function, therefore bounded. Since I'y has k elements,
the first sum above converges to zero as N — +o0o. It remains to analyze the second sum
above, where now the definition of the domain Cyy is crucial. For each = € I'y, one of the

conductances above is equal to N~'. Let us suppose that £, ., = N~'and £, =1, the
other case being completely analogous In this case, there exists some b; € (5, ’“"j\’,l] From

the definition of Cy and the measure W, the functlon H has a discontinuity at b; of size

/0 " h(dz) dz

Besides that, the function H has also sided-derivatives at b; of the same value. With this in
mind, is easy to see that

[H(57) = H(F)) + NH(55) = H(§)]

converges to zero as N — 0o. Recalling there are finite 2k elements in ['y, we finish the
proof of the lemma. O

Now, fix H € Cy and take a continuous function H¢ which coincides with H in T\ U%_,
(b —e,b; + €) and that ||H®||ooc < ||H||co- The choice of € will be determined later. Notice
that

sup |(m, H® — H)| < sup Z/ p(t,u) |H (u) — H(u)|du < 4ke || H| o -
b;

0<t<T 0<t<T —e, b +e)

For every 0 > 0,

@f[w_; sup ]m,H) — (mo, H) — /Ot (e L) ds) > 5] (7.23)

0<t<T

SQE[WJ sup ‘<7Tt>H€> — (mo, H®) — /Ot<7TS>da:dd H>d5’ > 5/3}

0<t<T
—1—2@5[71: sup ‘<7Tt,H€—H>‘ > 5/3}.
0<t<T

By a suitable choice of e, the second probability in the sum above is null. Since H*® and

dci d{‘fVH are continuous, by the Portmanteau’s Theorem and Proposition A.2.7, it holds that

@f[w; sup )<7rt,Hf> — (mo, H) — /Ot (e, L dWH)ds‘ > 5/3}

0<t<T

t
< i @ [re s [ ) — (mo 1) — [ (o) as| > 03]
0

N—>oo 0<t<T
t
= 1im P [ sup [(nl¥, 1) — (nl, 1) — / (v de i H) ds| > 6/3].
N—o00 0<t<T 0
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Notice that the last equality is just the definition of the measure Q%v Since there is only
one particle per site, it holds that supy,p |(7}, H* — H)| < 4k 5||HHOo , since H¢ coincides
with H in T\ U%, (b; — €,b; + ). Adding and subtracting (7, N?LyH), (7N, H) and
(m{Y, H), we obtain that

_ t
tuw 2, [ sup (%) — (w1 — [ o) ds| > 6/3]
N—oo L 0<t<T 0

i ¢
< lim ]P’BN sup ‘(WiV,H> —(x{', H) — / <7TéV,N2LNH>dS‘ > 5/12]
0

T N—ooo L o<t<T

+ T P[4 Y [NLyH(E) - £ H(E)| > 012
) z€T N
+2 lim IP’B [ sup )(WfV,HE—H)) > 5/12]
N—o0 OStST

With another suitable choice of ¢, the third probability in the sum above is null. Lemma
7.5.2 implies that the second probability above is zero for N sufficiently large. Recall we
proved that (7.11) holds for H € Cy, so that the first term in the sum above is zero. Finally,
from the previous computations we conclude that (7.23) is zero for any 6 > 0. Therefore,
Q7 is concentrated on absolutely continuous paths m;(du) = p(t,u) du with positive density
bounded by 1 and for any fixed H € Cy, Q7 as.

t
(or, H) — (po, H) = / <ps, 4 d H> ds, forallte0,T]. (7.24)
0

Proposition 7.5.3. For =1, any limit point of Q'B Nis concentrated in absolutely contin-
uous paths m(du) = p(t,u) du, with positive density ,0( -) bounded by 1, such that p(t,-) is
a weak solution of (7.5).

Proof. By a density argument, (7.24) also holds, Q? a.s., for all H € Cyy simultaneously. It
remains to extend (7.24) for H € Hj;. For that purpose fix H € Hj;,. Thus, for x € T

H(z)=a+ /(o,m] (B + /Oy h(z) dz) W(dy),

with o, 8 € R, h € L*(T) satisfying (7.3). Let h,, € C(T) converging to h € L*(T). Define

H,(z) = oy + /( . (ﬁn + /0 ' ha(2) d2> W (dy)

where «,, — « and 8, — (. By the Dominated Convergence Theorem, it follows that H,
converges uniformly to H. Therefore (7.24) is true for all H € Hiy. O
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7.5.3 Characterization of Limit Points for § € (1, c0)

In this regime of the parameter 3, Proposition 7.4.6 says that Q” is concentrated on tra-
jectories absolutely continuous with respect to the Lebesgue measure m(du) = p(t,u)du
such that, for each interval (b;, b;+1), p(t,-) belongs to L*(0,T; H'(b;, b;11)). It is well known
that the Sobolev space H!(a,b) has the following properties: all its elements are absolutely
continuous functions with bounded variation, c.f. [4] and [18], therefore with lateral limits
well-defined. Such property is inherited by L?(0,T; H'(b;, bi41)) in the sense that we can
integrate in time the lateral limits. Therefore, Q%a.s., for each i = 1,...,k and for any
t e [0,77:

t t
/ p(s,bf)ds < oo and / p(s,biy1)ds < oo,
0 0

To simplify notation, in this subsection we denote a = b; and b = b;,;. Fix h € C*(T)
and define H : [0,7] x T — R by H(t,u) = h(t,u) 1 (u).
Recall that m;(du) = p(t,u)du. We begin by claiming that

t
Q[ ms (o H) — (o Ho) = [ (o 92H, + 0. ds
0 (7.25)

t t
— / OuH (s,a%) p(s,a™) ds + / OuH (5,7 ) p(s,b7)ds =0,Vt € [0, T]] = 1.
0 0

In order to prove (7.25), it is enough to show that, for every § > 0

t
Qf[ﬂ-: sup ’<,0t7Ht> - <p07H0> - / <p3783Hs+85H5> ds
0

0<t<T

t t
- / OuH(s,a%) p(s,a™) ds —i—/ OuH (s,07) p(s,b7) ds‘ > 5} =0.

0 0
Since the boundary integrals are not well-defined in the whole Skorohod space D([0,T], M),
we cannot use directly Portmanteau’s Theorem. To avoid this technical obstacle, fix € > 0,
which will be taken small later. Adding and subtracting the convolution of p(t,u) with ¢,
the probability above is less than or equal to the sum of

t
@f[ﬂ: sup ((pr, He) — (po, Ho) — / (ps, O3 H + O, H,) ds
0

0<t<T

t t (7.26)
- / 0uH (s,a%) (ps * 1:)(a) ds + / OuH (5,57) (ps % 12)(b = <) ds| > 5/2]

and

Q|7 sw | / 0, H(s, ) (po # 1.)(a) ds — / 0uH(5,57) (py % 12)(b— 2) ds

0<t<T

_/OtauH(S,a+)p(S,a+)d8+/OtauH(S,b)p(s,b)ds‘ > 5/2]_
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where ¢, and the convolution p*:. were defined in (7.17). The convolutions above are suitable
averages of p around the boundary points a and b. Therefore, as € | 0, the set inside the
previous probability decreases to a set of null probability. It remains to deal with (7.26).

By Portmanteau’s Theorem, Proposition A.2.7 and since there is only one particle per
site, (7.26) is bounded from above by

t
sup ‘(m,H> — {mo, Ho) — / (my, 2 H, + 0,H,) ds
0

E
N—o00 0<t<T

_/OtauH(s,a+) (7r5*LE)(a)ds—{—/Ot@uH(s,b_)(ws*La)(b—e)ds) > 5/2].

Now, by the definition of Qﬁjﬁv , we can rewrite the previous expression as

t
lim IP’ﬁN[ sup ‘<7TiV,Ht> — (ml’, Hp) —/0 (rN,0?H, + 0,H,) ds

s ' Yu
N—o00 0<t<T

t t
—/ GUH(s,a+)77§N(Na+1)ds+/ auH(s,b_)niN(Nb)ds‘ > 5/2}.
0 0

If we consider the discrete torus as embedded in the continuous torus, Na + 1 is the closest
site to the right of @ and Nb is the closest site to the left of b. The next step is to add and
subtract (7, N2 ILyH) and the previous probability becomes now bounded from above by
the sum of

N—ooco HMN 0<t<T

t

T B, [ sup | (x, ) - <7T5V,HO>—/ (), N L H, + 0,H.) ds | > /4]
0

and

t t
lim P? [ sup ’/ (mN, N* Ly H,) ds —/<7TN 02H,) ds
0 0

N s ' u S
N—oo "N 1 gcor

t t
—/ 8uH(s,a+)n§N(Na+1)ds+/ &LH(s,b’)an(Nb)ds‘ > 5/4]
0 0

Repeating similar computations to the ones performed in Section 7.3 we can show (7.11) for
a test function H that depends also on time. Therefore the first probability above is null.
Now we focus on showing that the second probability above is null. Recalling the definition
of H(s,-) above, we have that H(s,-) is zero outside the interval [a,b]. Besides that, for
the set of vertices {Na + 2,..., Nb — 1}, the discrete operator N?Ly coincides with the
discrete Laplacian, which applied to H(s, ) converges uniformly to the continuous Laplacian
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of H(s,-). Hence, by the triangular inequality, it is enough to show that, for any § > 0:

t
fn B, [ s [ [ OV LyH () - 0L} (V) ds

N—o0 0<t<T

t
[ OV L) — 02,5 (N + 1) s
0

t
i1 / (N2 Ly Hy(Y2) — 92H,(X2)} 1, (NB) ds

t
[ O LyHL (%) - (%} (o 1) ds
0

t t
—/ O,H(s,a™)nN(Na + 1) ds—i—/ OuH (5,b7) 0N (Nb) ds
0 0

>0 =

Since h € C?(T), the term involving the Laplacian above is bounded. Now, by the triangular
inequality, it is sufficient to show that, for any 6 > 0:

lim }P’ﬁ sup /NILNH (5¢)ns(Na) d$+/ NLyH,(¥%) ny(Na + 1)ds

N—o0 O<t<T

/ NLyH,(5) ns(Nb) ds+/ NLyH,(2H) ng(Nb+ 1) ds

—/ auH(s,a+)n§N(Na+1)ds+/ O H (s,67)nN (Nb) ds | > 5} =0.
0 0
For each one of the four vertices appearing inside the previous probability, the operator
Ly has two conductances, one equals to N~° and the other equals to 1. Since 8 > 1, the
terms involving N~° converge to zero. The terms involving the conductances equal to 1,
converge to plus or minus the lateral space derivatives of H. Recall from definition of H
that 0, H(s,a”) = 0, H(s,b") =0 for all 0 < s < t. From this, it remains to show that for
any 0 > 0

lim IP’ﬁ sup

N—oo H N 0<t<T

—/ 8uH(s,a+)n§N(Na+1)ds+/ 8uH(s,b’)n§N(Nb)ds‘ > 5},
0 0

/aHsa )ns(Na +1 ds—/ OuH (5,07) ns(Nb) ds

is null. Last expression is bounded from above by

lim ]P’ﬁ sup /8Hs a ){ns(Na—i-l) niN(Na—l—l)}ds‘ > 6/2]

HN

N—roo 0<t<T
—l—J\}lm ]P)ﬁ sup ‘/ OuH (5,0~ ){nS(Nb) (Nb)}ds‘ > 5/2]
= 0<t<T

The integral inside the probability above is a continuous function of the time ¢. Moreover,
it has a bounded Lipschitz constant. The same argument as the one used in (7.21) together
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with Lemma 7.4.4 imply that the previous expression converges to zero when ¢ | 0, which
proves (7.25).

Proposition 7.5.4. For 5 € (1,00), any limit point of {Qﬁ}iV : N > 1} is concentrated
in absolutely continuous paths m(du) = p(t,u) du, with positive density p(t,-) bounded by 1,
such that p(t,-) is a weak solution of (7.6) in each cylinder [0,T] X [b;, bi+1].

Proof. Given (7.25), it remains to extend the result for all functions H and all cylinders
[0,T] x [b;, b;11] simultaneously. Intercepting a countable number of sets of probability one
and applying a density argument as in Proposition 7.5.1, the statement follows. [

7.6 Uniqueness of Weak Solutions

The uniqueness of weak solutions of (7.4) is standard and we refer to [16] for a proof. It
remains to prove uniqueness of weak solutions of the parabolic differential equations (7.5)
and (7.6). In both cases, by linearity it suffices to check the uniqueness for v(-) = 0. Notice
that existence of weak solutions of (7.4), (7.5) and (7.6) is guaranteed by tightness of the
process as proved in Section 7.3, together with the characterization of limit points as proved
in Section 7.5.

7.6.1 Uniqueness of weak solutions of (7.5)

Let p: Ry x T — R be a weak solution of (7.5) with v = 0. By Definition 7.1.3, for all
H € Hiy and all £ > 0

¢ d d
(pr, HY = /0 <Ps,%mH>ds. (7.27)

From Theorem 1 of |9], the operator —%ﬁ has a countable number of eigenvalues {\, : n >

0} and eigenvectors {F,, : n > 0}. All eigenvalues have finite multiplicity, 0 = A\g < Ay < - -+
and lim,,_,,, A\, = 0o. Moreover, the eigenvectors {F,, : n > 0} form a complete orthonormal
system in L?(T). For ¢ > 0, define

Rt) = 3 s o B

neN 1+ /\n)

Notice that R(0) = 0 and since p; belongs to L*(T), R(t) is well defined for all ¢ > 0. By
(7.27), it follows that 4 (p;, F},)? = —2\,(p;, F,)?. Thus

2\
d n 2
ZR)(t) = — E ——(pt, F)",
(dt )( ) n2(1 +)\n) <pt7 >
neN
because » n<N ﬁj}j‘\n)(pt, F,)? converges uniformly to Y #jxn)@t’ F,)?, as N increases

to infinity. Therefore R(t) > 0 and (£ R)(t) <0, for all ¢ > 0 and since R(0) = 0, it follows
that R(t) = 0 for all ¢ > 0. As a consequence of {F}, : n > 0} being a complete orthonormal
system, it follows that (p;, p;) = 0, which is enough to conclude.
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7.6.2 Uniqueness of weak solutions of (7.6)

At first, we begin with an auxiliary lemma on integration by parts.

Lemma 7.6.1. Let p(t,-) be a function in the Sobolev space L*(0,T;H(a,b)). Then, for
any H € C%Y([0,T] x [a,b]):

/OT /ab p(s,u) 0 H(s,u)duds
N /OT /ab (e ) duds /oT {p<5’ b) H(s,b) — p(s,a) H(s, a)} ds .

Notice the partial derivative in p is the weak derivative, while the partial derivative in
H is the usual one. Besides that, the function H is smooth, but possibly not null at the
boundary [0,7] x {a, b}, and therefore is not valid the integration by parts in the sense of
L*(0,T;H"(a,b)), which has no boundary integrals.

Proof. Fix € > 0 and write H = H® + (H — H®), where H® coincides with H in the region
0, T]x (a+¢€, b—e), has compact support contained in [0, 7] % (a, b) and belongs to C**([0, T| x
(a,b)). By the assumptions on H¢, we have that

/OT /ab p(s,u) 0, H (s, u) duds

Last result is a consequence of H® having compact support strictly contained in the open
set (a,b). Let f.: [a,b] — R be the function such that f(u) =1ifu € (a+¢,b—¢), f(a) =
f(b) = 0, and interpolated linearly otherwise. The decomposition H = H f¢ + H(1 — f°)

can be done, but now the function H f¢ does not have the properties as required above for
H*. Nevertheless, taking a suitable approximating sequence of functions H*¢, it follows that

/OT /ab p(s,u) 0, H (s,u)duds
= [ [ ottt 070 + 00, (15,00 = )} s

Taking the limit as € | 0 yields the statement of the lemma. O

Let p(t,-) be a weak solution of (7.6) with v = 0. Provided by Lemma 7.6.1, for any
function H € CY2([0,T] X (b, bi11)),

/bb pe(w) H (t, u) du + / /bb {000 (5,0) — )0, (5,0) buds =,
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From this point, uniqueness is a particular case of a general result in [17], namely Theorem
II1.4.1. In sake of completeness, we sketch an adaptation of it to our particular case. Denote
by Wy = W5 5([0,T] x (a,b)) the space of functions with one weak derivative in space
and time, both belonging to L?([0,7] X (a,b)) and vanishing at time 7. By extending the
previous equality to H € WQ{T it follows that

T prbit1
/ / {8ups(u) OuH (s,u) — ps(u) 0sH (s, u)} duds = 0. (7.28)
o Ju
It is not difficult to show that the function
T
H(s,u) = —/ p(r,u) dr

belongs to W; ;. Replacing last function in (7.28), then we can rewrite (7.28) as

/OT /:Hl {%as(éuH(S,u))Q — (asH(S,U))z}duds _ 0.

By Fubini’s Theorem we get to

%/bibiﬂ {(auH(T, U))Q - (3uH(0,u))2}du—/0T /bibiﬂ(asH(S,u))Q duds = 0.

By the definition of H, its weak space derivative vanishes at time 7', so that the first integral
above is null. Therefore, 0,H is identically null, and by the definition of H above, this
implies that p vanishes, finishing the proof.
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Chapter 8

Hydrodynamic Limit for a type of
Exclusion Processes with slow bonds in
dimension > 2

Joint work with Tertuliano Franco and Glauco Valle.
To be appear in the Journal of Applied Probability 48.2 (June 2011).

8.1 Notation and Results

Let T? be the d-dimensional torus, which is [0, 1)¢ with periodic boundary conditions, and T4,
be the discrete torus with N¢ points, i.e., {0,..., N — 1}¢ with periodic boundary conditions.
We denote by n = (n(x))memzv a typical configuration in the state space Qy = {0,1}T%, for
which, n(z) = 0 means that site z is vacant, and 7n(x) = 1 that site x is occupied. If a bond
of N7'T¢ has vertices & and £, it will be denoted by [&, £].

Recall that {e; : j =1, ..., d} is the canonical basis of R?. The symmetric nearest neighbor
exclusion process with exchange rates fi\fy >0, 7,y € T4, |z — y| = 1, is a Markov process
with configuration space {1y, whose generator Ly acts on functions f: Qy — R as

(Lnf)m) =Y Z Evve, LT = F()] (8.1)

xG'I[‘d Jj=1

where 7™ is the configuration obtained from 7 by exchanging the variables n(z) and
n(x +e;):
n(@+e;), if y=u,
(™) (y) = n(x), ify=x+e;,
n(y), otherwise .

Let vY, a € [0, 1], be the Bernoulli product measure €y, i.e., the product measure whose
marginals have Bernoulli distribution with parameter a. Then {v) : 0 < a < 1} is a family
of invariant, in fact reversible, measures for any symmetric exclusion process.

127



Figure 8.1: The darker region corresponds to A. The bolded bonds have exchanges rates

|Cz,j'ej|

<, any other bond has exchange rate 1.

Now, fix a simple connected region A C T¢ with smooth boundary dA. Denote by 5(u)
the normal unitary exterior vector to the smooth surface A in the point u € 9A. If € A
and HTEJ e AL, or ¥ € Al and HT% € A, we define Q?m as a vector 5(u) evaluated in an
arbitrary but fixed point u € dA N [z, 2 + e;]. The exclusion process with slow bonds over

. . . . . N . N
OA is a symmetric nearest neighbor exclusion process with exchange rates &', te; = Satejn
given by

. e . . .
M if £ecAand 52 €Al or £ eAland T2 €A,
N (8.2)
1, otherwise,
for j =1,...,d, and for every x € T%. In this case, the exchange rate of a bond crossing the

boundary dA is also of order N~!, but it depends on the angle of incidence: the crossing of
OA by a particle gets harder to happen as the direction of entrance gets closer to the tangent
plane to the surface OA.

From now on, the rates in the definition of Ly will always be given by (8.2). Denote
by {nY :t > 0} a Markov process with state space Qy and generator Ly speeded up by
N2, Let D(R,,Qy) be the Skorohod space of cadlag trajectories taking values in Q. For
a measure x4 on Qy, denote by IPLV the probability measure on D(R,,Qy) induced by the
initial state ; and the Markov process {n : ¢t > 0}. The expectation with respect to ]P’ﬁf is
going to be denoted by E}.

A sequence of probability measures {uy : N > 1} is said to be associated to a profile
v : T4 — [0, 1] if uy is a probability measure on Qy, for every N, and

lim iy ‘ﬁz H(%)n(x) —/H(u)fy(u)du’ >0, =0 (8.3)

N—o0 .
z€T%,
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for every 6 > 0, and every continuous function H : T¢ — R.

The exclusion process with slow bonds over OA has a related random walk on N~1T% that
describes the evolution of the system with a single particle. Thus particles in the exclusion
process evolve independently as such random walk except for the hard core interaction. To
simplify notation later, we introduce here the generator of this random walk, which is given

L)) =Y (s, [HOF) —HE)| + €y, [HOEFH - HE)| ) 34

for every H : N7'T¢ — R and every x € T%. We will not differentiate the notation for
functions H defined on T¢ and on N~'T%.

8.1.1 The Operator £,

Here we define the operator £, and state its main properties. First, its domain is defined
as a set of functions that are two times continuously differentiable inside and outside A
and satisfy some additional conditions related to their behavior at JA. Such conditions are
imposed in order to have good properties of £, that allows us to conclude the uniqueness
of solutions of the hydrodynamic equation, and obtain a strong convergence result for the
empirical measures in the proof of the hydrodynamic limit. The necessity of these conditions
are going to be made clear later in the text.

Definition 8.1.1. Recall that 5 denotes the normal exterior vector to the surface OA. The
domain ®, C L*(T?) will be the set of functions H € L*(T?), such that H(u)= h(u)+A14(u),
where:

(1) A € R;
(i1) h € C*(T9);
(i) Vh|or(u) = =A((u).
Now, we define the operator Ly : Dy — L*(T9) by
LAH = Ah.

Geometrically, the operator £, removes the discontinuity around the surface A and then
acts like the laplacian operator.

Remark 8.1.1. It is not entirely obvious why there exist functions h € C*(T%) such that
Vh|oa(u) = =X 5(u), for X\ # 0. For an example of such a function, consider firstly g : T? —
R defined by
_ A dist (u,0A), if ue AL,
g(u) = { ~Ndist (u,0A), if uEA.
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Since ON has no self intersection and is smooth, it is simple to check that there exists a
sufficiently small € > 0 such that

V={uecT: dist(u,0N) < e}

has smooth boundary and without self intersection. Thus, the function g is smooth in the
open neighborhood V' of OA, and satisfies the condition Vg|ap(u) = —A f(u) However, g is
not differentiable in the space T¢. To solve this problem, it is enough to multiply g by > P,
where {®;} is a partition of unity such that the support of any ®; is contained in V and
Y @i(u) =1 forallu e U CV, U an open set containing ON. Finally, the function

u) Z ®;(u)

satisfies the required conditions.

For the next result we need to introduce some notation. We denote by I the identity
operator in L?(T?) and by ((-,-)) and || - || its usual inner product and norm:

(f.9) = Tdf(U) g(u)du and || =/{f. [, f g€ L*(T.

Theorem 8.1.2. There exists a Hilbert space (H}, (-, )1.4) which is compactly embedded in
L*(T%) such that Dy C H} and Ly can be extended to Ly : Hy — L*(T?) in such a way that
the extension enjoys the following properties:

(a) The domain HY is dense in L*(T?);
(b) The operator Ly is self-adjoint and non-positive: (H,—LyH)) >0, for all H in H};
(¢) The operator 1 — Ly : Hi — L*(T9) is bijective and Dy is a core for it;
(d) The operator Ly is dissipative, i.e.,
|wH — LAH| > pl|H]|,
for all H € H and p > 0;

(e) The eigenvalues of —Lx form a countable set 0 = po < py < -+ with lim, . pt, = 00,
and all these eigenvalues have finite multiplicity;

(f) There exists a complete orthonormal basis of L*(T¢) composed of eigenvectors of —Lx.

In view of (a), (¢) and (d), by the Hille-Yoshida Theorem, Ly is the generator of a strongly
continuous contraction semigroup in L?(T?).

The space H} will be defined in Section 8.2. The name has been chosen in analogy to
the notation used for Sobolev spaces.
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8.1.2 The hydrodynamic equation

Consider a bounded Borel measurable profile py : T4 — R. A bounded function p : Ry xT? —
R is said to be a weak solution of the parabolic differential equation

dp = Lap
{ p(0.) = pol). (8.5)

if for all functions H in H} and all ¢ > 0, p satisfies the integral equation

(pe Y — (oo, H) — / (pos LAHY ds = 0, (8.6)

where p; is the notation for p(¢,-). We prove in Subsection 8.3.3 the uniqueness of weak
solutions of (8.5). Existence follows from the convergence result for the empirical measures
associated to the diffusively rescaled exclusion processes with slow bonds over A, this is
discussed in Section 8.3. Here we do not use time dependent test functions as usual in the
definition of weak solution, but we have a well posed problem and we do not need a solution
in a stronger sense to prove the hydrodynamic limit which is the next stated theorem.

Theorem 8.1.3. Fiz a Borel measurable initial profile v : T¢ — [0,1] and consider a
sequence of probability measures uy on Sy associated to . Then, for any t > 0,

lim P,QVN{ o ST Ha/N)my(a) — 3 H(u)p(t,u)du‘ > 5} — 0,

N—oo y
€T

for every § > 0 and every function H € C(T?), where p is the unique weak solution of the
differential equation (8.5) with py = 7.

8.2 The operator L,

We begin by studying properties of £, defined on the domain ®, and we consider the
extension afterwards.

Lemma 8.2.1. The domain Dy is dense in L*(T?).

Proof. Tt is enough to prove that there exists a subset of ©, which is dense in L*(T¢). All
smooth functions with support contained in T?\OA belong to D, which is clearly a dense
subset of L?(T%), since A is a smooth zero Lebesgue measure surface that divides T4\OA
in two disjoint open regions. [J O]

From now on, we use /4 to denote the d-dimensional Lebesgue measure on T¢.
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Lemma 8.2.2. The operator —Lp : Dy — LQ(']I‘d) 18 symmetric and non-negative. Further-
more, it satisfies a Poincaré inequality, which means that there exists a finite constant C' > 0
such that

|| < € (Lot )+ ([ H)dr) (8.7

Td
for all functions H € 2.

Proof. Let H,G € D). Write H = h+ A\, 15 and G = g + Ay 1,, as in Definition 8.1.1. By
the first Green identity and condition (iii) in Definition 8.1.1, we have that

An / Agdu = N, / (Vg-C) dS = =\, Ay Volg_1(9A) (8.8)
A oA
= Ag/ (Vh-()dS = )\g/Ahdu,
OA A

where dS is a infinitesimal element of volume of OA and Vol,s_1(0A) is its (d—1)-dimensional
volume. Thus,

(H,—LAGY) = (h+ A1, —Ag) = — /

T

_ —/ gAhdu—/\g/Ahdu — (—LAH, G
Td A

hAgdu—)\h/Agdu
d A

For the non-negativeness, using (8.8) above,

(H,—Lp H) = —/ h Ah du — )\h/ Ahdu
Td A
= |VA|? du + A} Volg_1(OA) > 0.
Td
It remains to prove the Poincaré inequality. Write

||HH2_</WH($)dI>2:/Td [H(u)— TdH(v)alvralu,

which can be rewritten as

/W Kh(w - /T h(v) dv) + )\h<1A(u) _ éd(A)>rdu‘

Now apply the inequality (a + b)? < 2 (a? + b?) to the previous expression to obtain that it
is bounded by

2 /Td (h(u) - /w h(v) dv>2 du+ 272 (@(A) - (Ed(A))2> .
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By the usual Poincaré inequality, see 4], the last expression is less than or equal to
20, [ |Vh(u)?du+2X2 (éd(A) - (zdm))?) .
Td

Choosing a constant Cy > 0 such that £4(A) — (£g(A))? < CyVolg_1(OA), the previous
expression is bounded above by

2 max{C4,Cy} (—LAH, H)) ,

which finishes the proof with C' = 2 max{C},Cy}. O O

Denote by ((-,-))1,a the inner product on ®, defined by
<<F7 G>>1,A = <<F> G» + <<F> - ‘CAG» :

Let H} be the set of all functions F in L?(T?) for which there exists a sequence {F}, : n > 1}
in D such that F, converges to F'in L?*(T¢) and F, is Cauchy for the inner product {(-,-))1 .
Such sequence {F,} is called admissible for F. For F, G in H}, define

(F,G)1a = lm (F,,Ga)1n s (8.9)

n—oo

where {F,}, {G,} are admissible sequences for F, G, respectively. By [20, Proposition
5.3.3], the limit exists and does not depend on the admissible sequence chosen. Moreover,
H} endowed with the scalar product ((-, )1 A just defined is a real Hilbert space. From now
on, we consider H} with the norm induced by ((-,-))1.o, unless we mention that we are going
to use the L2-norm.

Lemma 8.2.3. The embedding H} C L*(T%) is compact.
Proof. Let {H,} a bounded sequence in H). Fix {F,} as a sequence in D, such that
|F,, — Hy,|| — 0 and {F,} is also bounded in H}. Thus, to get a convergent subsequence
of {H,}, it is sufficient to find a convergent subsequence of {F,} in L*(T%). Write F, =
frn + Ay, with £, € C?(T9). Then,
Expanding the right hand side and using (8.8), we get that

(Fus Fadia = [1fall® + X3 a(A) + 2>\n/ fa(w) du + ||V full* + A7 Vola—1(0A) ,

A

which is greater or equal to

1ull? + A204(A) — A2 — £4(A) / F2(0) du+ [V full? + A2 Vol (9A)
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:(QM)—1+WM4&M»A2+O—%AM)Afﬁmdu+[;ﬁwym+HVﬁW

> (Vola-a(94) = a(A)) A2 + (1= CalA)) 11l + IV £l

If we put fn = fn + A\n, and write F,, = fn — A\ 1,c, an analogous computation shows that
(Fn, F)1.a is greater or equal than

(Vola-1(88) = €ad)) A2+ (1 = LaAD) | ol + 9

By the classical isoperimetric inequality on the torus (see |3, Lemma 4.6] for the statement
and a direct proof), we have that

max{ Volg_1(A) — £4(A), Voly_1(A) — £4(A) } > 0.

Since {(Fh, Fn)1a} is a bounded sequence, we conclude that {\,} is bounded, as well
the sequence {||f.||* + [[Vf.l|*}. By the Rellich-Kondrachov Compactness Theorem, see
[4, Theorem 5.7.1], {f,} has a convergent subsequence in L?(T¢). From this subsequence,
choosing a convergent subsequence of {\,} finishes the proof. O O

Lemma 8.2.4. The image of 1 — Ly : D — L*(T?) is dense in L*(T?).

Proof. By a similar argument to the one found in Lemma 8.2.1, it is enough to show that any
smooth function f with support contained in T?\OA belongs to (I — £4)(D,). Therefore,
we need to find a function h in C?(T¢) with support in T¢\OA such that

h—Ah = f. (8.10)

From the classical theory of second-order elliptic equations, e.g., see |4, Theorem 5.7.1|, there
exists h € C? satisfying (8.10). O
O

Proof of Theorem 8.1.2. (a) Since D5 C H}, it follows from Lemma 8.2.1 that H} is dense
in L2(T?).

(b) Denote I — £y = A : D) — L?(T9). From Lemma 8.2.2, A is linear, symmetric and
strongly monotone on the Hilbert space L?(T?). By strongly monotone, we mean that there

exists ¢ > 0 such that
(AH H) > c||HH27 VH € D, .

In this case, A satisfies the inequality above with ¢ = 1. By [20, Theorem 5.5.a], in the

conditions above, the Friedrichs extension A : Hi — L?*(T?) is self-adjoint, bijective and

strongly monotone. By an abuse of notation, define now the extension £, : H} — L*(T?) as

(I—.A). Since I and A are self-adjoint in H}, this property is inherited by £, : H} — L*(T?).
For non-positiveness, note that

(—LaH H) = (I - A)H, H)) = —(H,H)) + (AH,H) > 0.
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(c) As mentioned in the proof of (b) above, the Friedrichs extension A : H} — L*(T?) is
bijective. So it remains to show that D, is a core of A : H} — L?*(T?). For any operator B,
denote by G(B) the graphic of B. Then D, is a core for A, if the closure of G(A|g, )r?x~2
in L? x L? is equal to G(A). Since A is self-adjoint, A is a closed operator, or else, G(A) is
a closed set. Thus the closure of G(Alop,) is a subset of G(A). Let H € H}, from Lemma
8.2.4, there exists a sequence {H,} in D, such that A H, converges to A H in L?. Hence,
as proved in [20, Theorem 5.5.a], A™! is a bounded linear operator, and H,, converges to H
in L?, which yields that the closure of G(A|p,) contains G(A).

(d) Fix a function H in H} and g > 0. Put G = (ul — £,)H. Taking the inner product
with respect to H on both sides of this equality, we obtain that

p(H H) + (—LuH H) = (H.G) < (H H)* (G G)"*.

Since H belongs to H}, by (b), the second term on the left hand side is positive. Therefore,
plH[ <Gl = [ (pl = La)H].

(e) and (f) We have seen that the operator (I — L) : Dy — L*(T) is symmetric and
strongly monotone. By Lemma 8.2.3 , the embedding H} C L*(T¢) is compact. Therefore,
by |20, Theorem 5.5.c|, the Friedrichs extension A : Hi — L*(T), satisfies claims (e) and
(f) with 1 < Ay < XAy < -+, A\, T oo, In particular, the operator —L£, = (A — 1) has the
same property with 0 < p; < ps < ---, p,, T 00. Since 0 is an eigenvalue of —L,, a constant
function is an eigenfunction with eigenvalue 0, then (e) and (f) also hold. O O

8.3 Scaling Limit

Let M be the space of positive Radon measures on T? with total mass bounded by one
endowed with the weak topology. For a measure 7 € M and a measurable m-integrable
function H : T¢ — R, we denote by (r, H) the integral of H with respect to 7.

Recall that {n" : ¢t > 0} denote a Markov process with state space Qy and generator
Ly speeded up by N2 Let 7¥ € M be the empirical measure at time ¢ associated to
{nY :t > 0}, which is the random measure in M given by

1
T = i > 0 (@) bay (8.11)

d
zeT§,

where ¢, is the Dirac measure concentrated on u.

Note that
() H) = 52 Y HGIn' (2)
z€TY,
for the empirical measures, and (7w, H) = {(p, H)), for absolutely continuous measures 7 with
L? bounded density p, and H € L*(T?).
Fix T' > 0. Let D([0,T], M) be the space of M-valued cadlag trajectories 7 : [0, 7] — M
endowed with the Skorohod topology. Then, the M-valued process {7} : ¢ > 0} is a
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random element of D([0, 7], M) whose distribution is determined by the initial distribution
of {nY¥ :t > 0}. For each probability measure ;1 on {0y, denote by Qf}’N the distribution of
{mN .t > 0} on the path space D([0,T], M), when n}’ has distribution p.

Proposition 8.3.1. Fiz a Borel measurable profile v : T — [0, 1] and consider a sequence
{n : N > 1} of measures on Sy associated to v in the sense of (8.3). Then there exists
a unique weak solution p of (8.5) with initial condition v and the sequence of probability
measures QQ;VN converges weakly to Q) as N 1 oo, where Q} is the probability measure on
D([0,T], M) concentrated on the deterministic path m(t,du) = p(t,u)du.

It is straightforward to obtain Theorem 8.1.3 as a corollary of the previous proposition.
The proof of Proposition 8.3.1 follows directly from the uniqueness of weak solutions of (8.5),
proved in Subsection 8.3.3, and the next two results:

Proposition 8.3.2. For any sequence {uy : N > 1} of probability measures with puy con-
centrated on Sy, the sequence of measures {Qﬁ;vN : N > 1} is tight.

Proposition 8.3.3. Fiz a Borel measurable profile v : T — [0, 1] and consider a sequence
{pun : N > 1} of probability measures on Qo associated to 7y in the sense of (8.3). Then
any limit point of Qﬁ]év 18 concentrated on absolutely continuous trajectories that are weak
solutions of (8.5) with initial condition 7.

Proof of Proposition 8.3.1. By Proposition 8.3.2, the set of measures { QJ’VN : N > 1} is
tight. Since the Skorohod space D([0,T], M) is Polish, by Prohorov’s Theorem, tightness is
equivalent to relative compactness (for the weak convergence). By the relative compactness,
in order to prove the convergence of the sequence (Qﬁ]év )n>1 to the probability measure Q3},
it is enough to show that any convergent subsequence of (QﬁJ’VN Jn>1 has limit equal to Q.
Let Q" be a limit of a convergent subsequence. By Proposition 8.3.3, Q* is concentrated
on trajectories 7(t,du) = p(t,u) du such that p(t,u) is a weak solution of (8.5) with initial
condition 7. Uniqueness of weak solutions of (8.5) proved in Section 8.3.3 implies that
Q' -Q}. O 0

In Subsection 8.3.1, we prove Proposition 8.3.2 and in Subsection 8.3.2 we prove Proposi-
tion 8.3.3. As a consequence, we have the existence of solutions of (8.5) with initial condition
7. We complete the proof in Subsection (8.3.3) showing the uniqueness of weak solutions of
(8.5).

8.3.1 Tightness

Here we prove Proposition 8.3.2. Let D([0,T],R) be the space of R-valued cadlag trajectories
with domain [0, T'] endowed with the Skorohod topology. To prove tightness of {m}¥ : 0 <t <
T} in D([0,T], M), it is enough to show tightness in D([0, 7], R) of the real-valued processes
{{(zN H) : 0 <t < T} for a set of functions H : T* — R which is dense in the space of
continuous real functions on T? endowed with the uniform topology, see [16]. Furthermore,
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if a sequence of distributions in D([0,T],R) endowed with the uniform topology is tight,
then it is also tight in D([0,7],R) endowed with the Skorohod topology. Here we prove
tightness of {(7,H) : 0 <t < T} in D([0,T],R), endowed with the uniform topology, for
H € C*(T%).

Fix H € C?*(T?). By definition {(z¥, H) : 0 <t < T} is tight in D([0,7],R) endowed
with the uniform topology if, for the boundedness,

lim supIP’ {sup |(W§V,H)|>m] =0, (8.12)
m—eo N 0<t<T
and, for the equicontinuity,
lim limsup P | sup [(mY, H) — (xl,H)| >¢| =0, foralle>0. (8.13)
=0 N_ooo [t—s|<6

The limit in (8.12) is trivial since

[(m", H)| < sup [H (u)].

ueTe
So we only need to prove (8.13). By Dynkyn’s formula (see appendix in [16]),

MY = (zN H) — (z), H /NQLN ,H)ds (8.14)

is a martingale. By the previous expression, (8.13) follows from

lim limsup PY | sup [M;Y = MY|>¢e| =0, foralle >0, (8.15)
=0 Nooo [t—s|<8
and
lim lim sup P} { sup / N2 Ly {m? )dr‘ } =0, foralle >0. (8.16)
=0 N-oo 0<t—s<4

Indeed, we show the stronger results below:

lim limsup ENy
6—=0  Nooo H

sup |MY — M;V|] =0, (8.17)

jt—s/<6

and

/ N2Ly(aN | H)dr

lim limsup E%, N [ sup ] =0. (8.18)

=0 Nooo 0<t—s<§
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To verify (8.17), we use the quadratic variation of M that we denote by (M}). By Doob’s
inequality, we have that

N
EuN

sup ]MtN—Mé{V]] < QE/]:[N {SUP |MtN’:|
[t—s|<d 0<t<T
1
2
< 28} | swp P < am [(017)

0<t<T

1
2

Since
(M) = / N2[Lyg(x, HY — 2 H)Ly (¥ H)]ds

we obtain by a straightforward computation that

) = [ NS st [ne) o+ )~ H )

Jj= 1x€'ﬂ'd
Therefore, since 5:\,73:+e7- <1,
T < 2
(M) < g 20 D e, [HER) — H(F)]
7=1 zeTd,
Td 2
< — (sup [VH(u)-¢) . (8.19)
N ETd

Thus, M}¥ converges to zero in L? and (8.17) holds.
We finish the proof by verifying (8.18). Write

d
N2 Lp(r H) = 5= 30 S e (@) — mo(o + ¢)) (H(E) — H(%))

= d
Jj=1 zeTy,

-1, Z S e [ N e, (H(‘”j;’f) - H(%)) +E, . (H(z?veﬂ - H(%))} :

Jj=1 xGTd

Define 'y C T% as the set of vertices whose have some adjacent edge with exchange rate
not equal to one. Then N2Ly (7™, H) is equal to the sum of

s )

v D D m() [H(5) + H() —2H(%)] (5.20)

J=1 z¢I'n

and




By the Taylor expansion (remember H € C?), the absolute value of the summand in (8.20)
is bounded by N2 sup,cra |AH(u)|. Considering the factor N=%*2 in front of the sum, we
conclude that the expression (8.20) is bounded in absolute value by d sup,cra |[AH (u)|.

Since there are in order of N9 ! vertices in I'y, and Seate; < 1, the absolute value of the
expression (8.21) is bounded by

=N “H(Ijjj) — H(Z)| +|H(52) - H(%)!} < 2d sup [VH(u) - ¢

d
j=1 2Ty ueT

By the boundedness of expressions (8.20) and (8.21), there exists C' > 0, depending only on
H, such that [N?*Ly (Y, H)| < C, which yields

and (8.18) holds.

8.3.2 Characterization of limit points

Let v : T¢ — [0, 1] be a Borel measurable profile and consider a sequence {uy : N > 1} of
measures on {1y associated to 7y in the sense of (8.3). We prove Proposition 8.3.3 in this
subsection, i.e., that all limit points Q* of the sequence QQ;VN are concentrated on absolutely
continuous trajectories m(t,du) = p(t,u)du, whose density p(t,u) is a weak solution of the
hydrodynamic equation (8.5) with v as initial condition.

Let Q* be a limit point of the sequence Qf}l’VN and assume, without loss of generality, that
QY converges to Q*.

Since there is at most one particle per site, Q* is concentrated on trajectories m(du)
which are absolutely continuous with respect to the Lebesgue measure, m(du) = p(t,u)du,
and whose density p is non-negative and bounded by 1, see [16, Chapter 4].

We shall prove the following result:

Lemma 8.3.4. Any limit point Q" of QQ;VN is concentrated on absolutely continuous trajec-
tories m(du) = p(t,u)du such that, for any H € D,

(o ) — (. HY) = / (pe, LAH) ds. (8.22)

By the previous lemma we can show Proposition 8.3.3.

Proof of Proposition 8.3.3. It just remains to extend the equality (8.22) to functions H €
H}. By Theorem 8.1.2, the set D, is a core for the Friedrichs extension I — Ly : H} —
L*(T%). Thus, for any H € H}, there exists a sequence H, € D, such that H, — H and
(I — Ly) H, — (I — LA) H, both in L?(T?). This implies that £y H,, — L5 H in L?(T?).
Replacing H,, in equality (8.22), and taking the limit as n — oo finishes the proof. [ ]
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The remain of this section is devoted to the proof of Lemma 8.3.4. Fix a function H € D,
and define the martingale M by

(rN. HY — (), H / N2Ly(zN H)ds. (8.23)
We claim that, for every ¢ > 0,

lim P, | sup [MY] > 8] = 0. (8.24)

N
N—ooo H 0<t<T

For H € C?, this follows from Chebyshev inequality and the estimates done in the proof of
tightness, where we have shown that

N—oo H 0<t<T —oo M 0<t<T

2
lim EY { sup \MN] < lim Eleup (Mﬂ} =0. (8.25)

For H = h+ A1, in ®,, the first inequality in (8.19) is still valid and

) < ke Y 6 [ - )

JZIIETN
d
= E=Y Y e -] (5.26)
Jj=1 z¢T'n
d
bt Y S € [ - H(E)] (8.27
j=1 zel'n

where I'y is also defined in the proof of tightness. The expression (8.26) goes to zero as
N increases, since the function h is Lipschitz. For the expression in (8.27), let x € I'y. If
€ A and 52 € AP then Nove; < - The same occurs if ¥ € AP and € AL If
5 hoth belong to A or AL, the exchange rate £V 'ove; is one, but |H(S2) — H(L)| =
) — h(£)] < % supyere [VH(u) - €. In both cases, the expression (8.27) is of order
—d). Therefore from (8.25), we obtain (8.24). O

Q 3 ZIH =

(“¥
(N

The next step is to show that we can replace N?Ly by the continuous operator £, in
the martingale formula (8.23) and that the resulting expression still converges to zero in
probability. This will follow from the ensuing proposition. Recall the definition of Ly given
n (8.4).

Proposition 8.3.5. For any H € D,,

lim — Z ‘NQ]LNH(%) LaH(Z)| =0 (8.28)

N—oo [V
wETd
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Proof. As usual, put H = h 4+ A1,, where h € CQ(Td). Rewrite the sum in (8.28) as

1
i 3 VLG - LB )]+ 5 3 [NLH) - Lar(3)].

m%l—‘]\] zel'y

The first term above is equal to

o 2 V() + ) 2n(2)) - An(z)

¢y

which converges to zero because h € C?. The second one is less than or equal to the sum of

a2 X IAn(E) (8.29)

zel' N

and

=D S INEY, o (H (55 = H(F))

zel'y j=1

Ny, (H(55) — H(%))| - (8.30)

Since there are O(N91) terms in 'y, the expression in (8.29) converges to zero as N — 0.
Since OA is smooth, the quantity of points x € 'y for which both &Y ote;, and wx e, are
different of one is negligible. Therefore, we must only worry about points x € I'y such that,

for some j, only one of £ wve, and &, is of order N~1. This occurs in one of the following

four cases: & € A, % € A and He] e AL L el FH e A and Heﬂ e A; & e Al

T e Aand T € AE, % € AL, wNe’ e AL and A ge A. The analysis of these cases are
analogous, thus we only consider the first one. Suppose £ € A, 5= € A and HT% e Al In
this case, the summand in (8.30) can be rewritten as

NE e, (H(T) = H(5)) + N, (H(*F) = H())

= 1oy e ) = H(R) + N H(F) - H(F)].

which becomes uniformly (in z € I'y) close to

=G - €] Sgn<Cx,j ' €j> — (%) = A Gjej — ge(F)-

—

The condition Vh|pp(u) = —A ((u), which was imposed in the definition of ®,, implies that

lim N (H(5) = H($)) + N, (H(5) — H(§)) =

Therefore, the terms in (8.30) converge uniformly to zero, and the same holds for the whole
sum. [ O
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Corollary 8.3.6. For H € D, and for every § > 0,

t
fim QY[ sup [, 1) — (el ) — [N La) s
0

N—ooo KN |: 0<t<T

> 5] = 0.
Proof. By a simple calculation, the martingale defined in (8.23) can be rewritten as
MY = (xN H) — (r) H) — /t<7r£V,N2]LNH)ds.
0
The result follows from Proposition 8.3.5 and expression (8.24). O O
At this point we have all the ingredients needed to prove Lemma 8.3.4, which says that,

under Q*, with probability one, (8.22) holds for any H € ©,. In order to prove this, it is
enough to show that, for any § > 0, and any H € D,

@*[ sup )(Wt,H) — (mo, HY — /Ot(WS,EA]-D ds

0<t<T

> 6] = 0. (8.31)

So let H be a fixed function in ®,. The idea to estimate the probability in (8.31) is to apply
Portmanteau’s Theorem to replace QQ* by Qﬁ]’VN and then use Corollary 8.3.6. But to obtain
an appropriate inequality we need the set

t
{ sup ‘(ﬂ't,H> — (m, H) — / (s, LAH) ds‘ > 5}
0<t<T 0
to be open in D([0,T], M). In order to guarantee this, we need H to be continuous which
is not the case. To solve this problem, we use approximations of H by smooth functions.
For € > 0, define
(ON)® = {u € T% dist(u, OA) < £} .

Let H® be a smooth function which coincides with H on T¢\(OA)°* and supqe |H®| <
suppa |[H|. Fix 6 > 0. By the triangular inequality,

Q*[oi‘?%‘m’m ~ lmo, H) — /Ot (oo LAH) ds| > 6]
SQ*[OEET (me, HY) — (mo, HY) — /0 t (g, LAH) ds‘ > 5/3] (8.32)
+2@*[OZ?£T’<7Q,HE—H>’ > 5/3].

Recall that Q* is concentrated on trajectories m(du) = p(t,u)du whose density p is
non-negative and bounded above by 1. Then, under Q*,

sup |(m H — H)| < sup / plt, u) | HE (u) — H(w)| du
(0A)

0<t<T 0<t<T E

< 20,((0A)F) sup |H(u)] .

ueTd
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Therefore, for small enough ¢, the second probability in the right hand side of inequality
(8.32) is null. So it remains to show that

Q*[OileT’<7Tt,H€> — (mo, H?) — /Ot (s, LAH) ds) > 5/3} =0.

If Gy, Ga, G3 are continuous functions, the application from D([0,7], M) to R that
associates to a trajectory {m,0 <t < T} the number

t
sup ’<7Tt,G1> - <7T0,G2> - / (%;G:a) ds‘
0

0<t<T

is continuous in the Skorohod metric. Notice that H® and £, H are continuous functions.
By Portmanteau’s Theorem,

Q*[ sup )<7rt,Ha> — (mp, H) — /Ot (e, LA H) ds) > 5/3}

0<t<T
t
< lim @Q’NN[ sup \<7riV,HE> — (my, HY) — / (m), LAH) ds\ > 6/3}, (8.33)
N—oco 0<t<T 0

since QQ;VN converges weakly to Q" and the above set is open.

Now we replace H* by H. This may be confusing to the reader, however the previous
introduction of H® was a necessary step in the proof. From this point, to deal with the right
hand side in (8.33), we need Corollary 8.3.6. Hence H* should be replaced by H.

By definition,

sup (w5 — 1) < <0 ST | (/N) — H(x/N)

0<t<T
S d
z€Tq

< (tal(@8)) +O(%)) 2 sup | H (w)]

u€eT
because H¢ coincides with H in T\(0A)¢. Using the same argument as before, we obtain

t
tim QY[ sup [(m, ) — (o, ) - / (oo LAH) ds| > /3]
0

N—o00 0<t<T

< Tim @QJVN[ sup )m,H) ~ (o, H) — /t (g, LAH) ds‘ > 5/9]
0

- N—oo 0<t<T

+2 lim QA’N[ sup ’(Wt,HE—H>‘ > 6/9}.

Nooo PN 0<t<T

Again, for small enough ¢, the second probability in the sum above is null. From Corollary
8.3.6, we finally conclude that (8.31) holds. Therefore Q* is concentrated on absolutely
continuous paths m;(du) = p(t,u)du with positive density bounded by 1, and Q* a.s.

(oo HY) — (o0, HY) = / (ps . LAHY) ds.

for any H € ©,. Hence we have proved Lemma 8.3.4.
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8.3.3 Uniqueness of weak solutions

Now, we prove that the solution of (8.5) is unique. It suffices to check that the only solution
of (8.5) with py = 0 is p = 0, because of the linearity of £5. Let p: R, x TY — R be a weak
solution of the parabolic differential equation

{ Op = Lap
p(0,-) = 0.

By definition,

(et = [ donLattyas, (8.34)

for all functions H in H} and all ¢+ > 0. From the Theorem 8.1.2, the operator —L, has
countable eigenvalues {u, : n > 0} and eigenvectors {F,}. All eigenvalues have finite
multiplicity, 0 = po < g < -+, and lim,,_, p, = 00. Besides, the eigenvectors {F,,} form
a complete orthonormal system in the L?(T?). Define

Rt) = 3 oy (o B

neN 1+ Mn)

for all t > 0. Notice that R(0) = 0 and R(t) is well defined because p; belongs to L?*(T?).
Since p satisfy (8.34), we have that 4 ((p;, F,,))*> = =2, {(ps, F,,))>. Then

(B0 == 3 s (o ).

because ZnSN%«pt,FnW converges uniformly to ZneN%«pt,Fn)}% as N in-
creases to infinity. Thus R(t) > 0 and (£ R)(¢) <0, for all ¢ > 0 and R(0) = 0. From this,
we obtain R(t) = 0 for all ¢ > 0. Since {F,} is a complete orthonormal system, (p:, p;)) = 0,
for all t > 0, which implies p = 0.
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Part IV

Appendix
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Appendix A

A.1 Analysis tools

Proposition A.1.1. Let H be a Hilbert space, f : H — R a linear functional. If there exists
Ky > 0 and there exists the positive integer number k such that

Slelg{f(fﬁ) — rllzl3} < Ko, (A1)

then f is bounded.

Proof. The supremum above implies |f(z)| < Ko + l|z||3, for all z € H. Thus, ||f|lx =
SUP| <1 | ()] < Ko + k. -

Proposition A.1.2. Let E be a metric space, F C E a closed set and g : F — R a lower
semi-continuous functional. Then, the extension

o) = { g(x), if ve€F,

400, otherwise,
18 lower semi-continuous.

Proof. Consider a sequence x,, — .

If x ¢ F, since FC is open, then lim  f(z,) = 400 = f(x).

If € F, and only finite x,, belong to F, then lim f(x,) = +o0 > f(z).

If x € F, and there are infinite x,, € F, let be z,, the subsequence of all these terms
whose belongs F'. Since g is lower semi-continuous, then lim, f(z,) = lim g(z,,) > g(r) =

f(z). O

Proposition A.1.3. Given the sequences of real numbers an,by > 0 and cy 7 0,

@ilog(a]v—l—b]v) = max{%ilogam @ilogb]v}
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Proof. Since the logarithmic function is increasing, the left side above is greater or equal
than the left side. On the other hand,

h_]{[n$ log(ay +by) < %% log 2 max{ay, by}
— Tim L
= hj{fnalogmax{a]v,b]v}
= max{%%loga]v, @%legbz\;}.
O]

Proposition A.1.4. Let E be a metric space, and f,q: E — R two lower semi-continuous
functionals. Then, fV g and f + g are also lower semi-continuous.

Proof.
(fVvg)(z) < lm f(z,)V lim g(z,) < lm (f V g)(z,)

and
(f+9)(x) < lim f(z,)+ lim g(z,) < Lm (f + g)(zn) .

Tp—T Tp—T Tp—T

]

Proposition A.1.5. Let {f,} be a sequence of lower semi-continuous functions. Then
sup,, fn s a lower semi-continuous function.

Proof. For all z € F,

ful2) < lim f,(zy) < lim [sup fn@k)}, V.

Tp—T Tp—T n

Proposition A.1.6. Let {f,} be a sequence of conver functions. Then sup,, [, is a conver
function.

Proof. For all x,y € E and for each 6 € [0, 1],
Fu(62+ (1= 0)) < 0fule) + (1= 0)fuly) < 0[sup fu()| + (1= 0)[sup fulw)] v

O

Proposition A.1.7. Assume that L is a reversible generator with respect to an invariant
measure v in a countable space-state E, and V : Ry x E'— R is a bounded function (clearly,
L+ V; will be a symmetric operator in L*(v)). Denote by Ty the largest eigenvalue of L+ V;:

Lo= sup {(Viif%) + (Lf f)}
[ fll2=1

Then, the supremum above can be taken over only positive functions f, or else,

o= sup {(G (VP + LV

f density
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Proof. Follows from the expression for the Dirichlet Form (see [16]),

(L, o = =3 D viw) Lz, y)[f(y) — f(2)),

z,yelE

and the inequality ||/ (y)| — | /()] | < [f(y) - /(@)]. =

Proposition A.1.8. Denote by Hy(un|vY) the entropy of a probability measure py with
respect to a stationary state vY. We refer to [16, Section A1.8] for a precise definition.
Then, there exists a finite constant Ky, depending only on «, such that

Hy(un|v)) < KoN,
for all probability measures py.

Proof. Recall that /Y is Bernoulli product of parameter a. By the explicit formula given in
|16, Theorem A1.8.3],

pun(n
Hy(unlv)) = ) pwv(n) logyﬁéi
ne{0,1}T~ o\

> pn(n) log :

N
nE{O,l}TN VCV (n)

IN

1
2 () log A (L= o)

ne{0,1}TN
= N(—loglaN(l1—-a)]).

IN

O

Recall the Definition 2.4.2 of the space L*(0,T;H'(T\{a})): space of all measurable
functions ¢ : [0, 7] — H'(T\{a}) with

T ) 1/2
€]l 220,732 (1\{a})) = ( /0 186301 (o) dt) = oo

Lemma A.1.9. If a function & € L*([0,T] x T) is such that there exists a function O¢ €
L2([0,T) x T) satisfying

(0uH, &) = —{(H,06),
for all functions H € C%'([0,T] x T) with compact support in [0,T] x (T\{a}), then & €
L2(0, T; HY(T\{a})).
Proof. The function £ : [0,T] — H'(T\{a}) is mensurable, if:

(i) The function & : [0,T] — H*(T\{a}) is weakly measurable, i.e., for all G € L*(T\{a}),
the function ¢t — (G, 0&;) is Lebesgue mensurable.
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(it) The function £ : [0,7] — H*(T\{a}) is almost separably valued, i.e., there exists a
subset N C [0,7], with |[N| = 0, such that the set {&;t € [0,T]\N} is separable.

In this case, H'(T\{a}) is separable, since any subset of a separable Banach space is itself
separable, one can take N above to be empty, and it follows that we need verify the weak
measurability.

We know that ¢t — (G, 9¢;) is Lebesgue mensurable, for all G € C*'(T\{a}) with compact
support. By density, one can conclude that the function & : [0,7] — H'(T\{a}) is weakly
measurable.

To show that the norm ||€]| 120,721 (1\{a})) IS finite, use that 9¢ € L*([0,T] x T). O

Lemma A.1.10. Let p be a function in L*(0,T; H'(T\{a})). Then, for any F' € C**([0, T]x
(T\{a}))-

/OT /01 ps(u) By Fy(u) du ds

= [ [t Fwsyduds + [ {0 £ = 1) )} s,

Notice the partial derivative in p is the weak derivative, while the partial derivative in
H is the usual one. Besides that, the function F' is smooth, but possibly not null at the
boundary [0,7] x {0,1}, and therefore is not valid the integration by parts in the sense of
the Sobolev space L*(0,T; H'(T\{a})), which has no boundary integrals.

This lemma is proved in Lemma 7.6.1.

A.2 Skorohod space

Proposition A.2.1. M, is a closed subset of M endowed with the weak™ topology.

Proof. Let m, € My, 7, 9 ;o Tt is enough to prove that 0 < 7([a,b]) < b — a, for all
la,b] € T. Take a continuous function f. : T — R such that f.(u) = 1 if u belongs to
the interval [a,b], f.(u) =0, if x € T\[a — &,b + €| and is linearly interpolated in the other
regions. Thus,

b—a+2e> lim [ f.(u)pp(u)du = /Tfs(u)dﬂ(u) > m([a,b]) .

n—o0 T

O
Proposition A.2.2. D([0,T], My) is a closed subset of D([0,T], M) for the Skorohod topol-
0gy.

Proof. Let {m,(t,-);t € [0,T]} C D([O,T],Mo), {mn(t,-);t € [0,T]} converges to {m(t,-);t €
(0,7} in the Skorohod topology. By Skorohod metric, for all t € [0,7] and € > 0 fixed,

there exists t. € [0,¢] such that |t. —t| < € and 7, (¢, -) s 7(t,-), as n increases to infinity.
Each m,(t., ) € My and M, is a closed subset of M, then 7(t,-) € M. O
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Lemma A.2.3. Let {m,(t,);t € [0,T]} converging to {n(t,-);t € [0,T]} in the space
D([O, T], /\/l) with the Skorohod topology. Then m,(t,-) < 7(t,-), as n increases to infinity,
for almost surely t € (0,T), fort =0 and fort="T.

Proof. First, we recall the definition of Skorohod metric,

d(7my,, ) = inf max{||/\|| sup S(mn(t, ), m(A(t), ))}7
A€EA 0<t<
where A is a set of strictly increasing continuous functions A of [0,7] onto itself, ||A| =
SupS#‘lOg AB=A) (s)
{m(t,-); t € [O,T]} € D([0,T], M), the function ¢ — m(t,) has at most countably many
points of discontinuity. Let ¢ € (0,7) point of continuity of ¢ — 7 (¢, ),

O(mn(t,-), w(t, ) < 0(ma(t,-), m(A(L), ) + 0(m(AR), ), 7(Z, ) -

Choosing a suitable A € A, the last two terms above are small, when n is large. Thus the
convergence almost surely is true.

The convergence in t = 0 and ¢t = T is obtained from the fact that functions A € A must
to satisfy A(0) =0 and A\(T) =T O

) and 0 is the metric wich metrize the convergence w* in M. Since

Proposition A.2.4. Let G' € C**([0,T] x T\{a}), for all i = 1,2,3. The functional

€ D([0,T], Mo) — (mp, GL) — (o, G2) — /0T<7rt,c:§> dt

s continuous in Skorohod topology.
Proof. This statement follows from A.2.3. O

Proposition A.2.5. Let H € 01’2([0,T] X T\{a}) the linear functional defined by (3 -
D([0,T], Mp) — R, defined in (4.2), is continuous in Skorohod topology.

Proof. By definition of ¢}; and the fact that H € C2([0,T] x T\{a}), we have that the
functions H, and 8, H; + AH, belongs to C+*([0,T] x T\{a} ), Vt € [0, T]. Proposition A.2.4
concludes the proof. O

Proposition A.2.6. Let H € C2([0,T] x T\{a} ), the functional

7 du) = p(-, u)du € D([0, T), My) > / (o). (OuHL)?) dt

s upper semi-continuous in Skorohod topology.
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Proof. Let {m,(t,-); t € [0,T]} converging to {m(¢,-); t € [0,T]} in the space D([0,T], My)
with the Skorohod topology. By Proposition A.2.3, m,(t, ) N 7(t,-), as n increases to infinity,

for almost surely ¢ € [0, T]. Consider the approximation of the identity tc(u) = =1(_. ) (u).
Since p* 1. converges, as € | 0, to pin L*([0, 7] x T) and |p? — (ps * t2)?| < 2|ps — pe * ¢, then

T T

| o, @)t =ty [ o), 0,1 e
0 e 0

By Portmanteau Theorem, (p" * t.)(t,u) = 5 f[u_e’uﬁ] pr(v)dv converves, as n — 00, to

(p*te)(t,u) = 5 f[ufe wtel pt(v) dv, for almost all (t,u). And, since x is concave, the right

side above is equal to

T

lim lim <X(2—16 /[~—e,~+e] pr(v) dv), (8th)2> dt

e—0n—oo 0

T
st tn [ (3 [ @) @uHF ) dt.
0 [ _6='+5]

e—=0n—o0

Since p™ is uniformly bounded by 1 and H € C*?([0,T] x T\{a} ), it is easy to see that we
may interchange limits. This shows that the last expression is equal to

T

lim [ (x(pr), (OuH:)?) dt .

n—oo 0

]

Proposition A.2.7. If Gi, G2, G5 are continuous functions defined in the torus T, the
application from D([0,T], M) to R that associates to a trajectory {m; : 0 < t < T} the
number

t
sup | (0, GL) — (m0,Ga) — / (0, Gs) ds
0

0<t<T

is continuous for the Skorohod metric in D([0,T], M).

Proof. If G is a continuous function in the torus, the application 7 — (7, G) is a continuous
application from M to R in the weak topology. From this observation and the definition
of the Skorohod metric as an infimum under reparametrizations (c.f. [16]), the statement
follows. O]

A.3 Properties of weak solutions of (1.7)

In Section 2.4, we prove that the weak solution of hydrodynamic equation belongs to a
Sobolev space, then these properties may follow from this fact. But here we present different
proofs. In the first two lemmata we use only the definition of weak solution.
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Lemma A.3.1. Let p: [0,T] x T — R the solution of (1.7). Then, the function

fr1
a(t) = lim [—/ ps(u) du| ds
0 (a—e,a)

3

15 well defined and it is absolutely continuous with respect to Lebesgue.

Proof. Let’s choose the auxiliar function h.(z) = 11(,_.q(z) — 1, which belongs to L*(T)
and satisfies [ ho(z)dz = 0. Now we define

H.(r) = /(] (Be [ hete)dz) i+ o).

for B. € R such that f(o 1 (65 + fo dz) (dy + 61(dy)) = 0. Notice that H., defined in

this way, belongs to Dy C C*2([0,T] x T\{a}). Since p : [0,T] x T — R is a integral
solution of (1.7),

/Ot ds E /(a—a,a) ps(u) du} = /Ot ds (ps, he) + /Ot ds (ps, 1)
= (pt, He) — (po, He) + /Ot ds (ps, 1).

By the choose of k., we have that [ h.(z) dz = f(a c.a) Li0y1(%) dz—y converges to Ly (a)—
y, as € | 0. This fact and Dominated Convergence Theorem implies that H. converges to
H, where H is equal to

H(x) = /( (8 L) ) (dy + ().

for 5 € R such that f(o,l] (ﬁ + 1jp4(a) — y) (dy + 01(dy)) = 0. Thus,

/Ot ds E /(a_w) ps(u) du] — (pt, HY — {po, H) + /Ot ds (ps, 1),

uniformly in ¢, as € | 0, because p is a bounded function. So, we have proved that v, is
well-defined. We will prove now that v, is lipschitz, in particular, it is absolutely continuous.
For all t <t €[0,7],

[(pe, H) — (pv, H)| = hm\(pt,H> (pr, He)|
= 11m|/ Ps, he) ds
< 2t —t|.

where, in last inequality, we have used that |p;| < 1, Lebesgue almost surely, for all ¢ € [0, T,
and fT |he(2)|dz < 2, for all € > 0. O
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One can observe that, fixed a € T, any redefinition of p;(a) for all values of ¢ € [0, 7]
does not change the fact p; is a integral solution of (1.7). We will do that in the following
way: the values of pi(a) will be chosen as djj\“ (t), the Radon-Nykodyn derivative of v, with
respect to Lebesgue.

Lemma A.3.2. Let f : [0,7] — R be a continuous function and p : [0,T] x T — R the
solution of (1.7) redefined in a € T, as said before. Then,

lim [ f(s) [— /(a_E ) ps(u) du} ds = /Otf(s)ps(a) ds.

el 0
%f(a—a,a) ps(u) du) ds = [ ps(a) ds. Because f is con-
tinuous, the result follows from an uniform approximation of f by simple functions. The
second limit is analogous. [l

Proof. By previous Lemma, lim, fot [

In what follows, we obtain a natural consequence that any function in #!'(T\{a}), almost
surely in time, will be continuous in T\{a}.

Proposition A.3.3. If£: [0, T]x T — R belongs to L*(0, T; H'(T\{a})) then, almost surely
intel0,T],

&(v) — &(u) = / 0u&t(2)dz, Yu,v € (a,1+a),
(u,v)
where 0,€ is given in the Definition 2.4.2 .

Proof. From Definition 2.4.2 |

/()T[TauH(s,r)ﬁ(s,r) drds = —/OT/TH(s,r)aug(s,r) drds,

for all H € C%!([0,T] x T) with compact support contained in [0,7] x (T\{a}). Using
approximation of indicators functions by continuous functions, it implies, Lebesgue almost
surely in time,

/T@uH(r)&(T) dr = —/TH(T) Ou&e(r) dr, (A.2)

for all H € C! with compact support contained in T\{a}. Recall the notation that f;(u) is
equal to f(t,u), for all function f :[0,7] x T — R. Fixed a time ¢ € [0, 7] for which is valid
the equality above.

Define the sequence of step functions f,, : T — R by

fn(z) = n[l(v,v+%)<z) - 1(u,u+%)(z)]

and the sequence of H,, : T — R by

(0,r)
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Since f, is not a continuous function, H, ¢ C'. However, the equality (A.2) is still valid
for such f, and H,, through the approximation of f, and H, by the continuous functions
fe: T — R and functions HE(r) = f(o,r) fE(z) dz, respectively. These functions fZ are defined
by fi(z) =0, forall z€ T\{(u—e,u+1+e)U(v—c,v+ 1 +e)U{a}}, fi(z) = ¢, for all
z€ (u,u+1l), fo(z) =d;, for all z € (v,v+ 1), in the other intervals f: is defined by linear
interpolation. The constants ¢, and d;, are choosen in such way that f(u_g’w%ﬁ) fe(z)dz =

—1 and f(v—s,fu—&-l—i-a) fe(z)dz = 1.

Figure A.1: Functions f; and f,

n—oo

Notice that H,(r) — —1(w(r), almost surely. Using Cauchy-Schwarz, (—0,&, Hy)
converges to (0,&t, L)), as n — oo. Denote by (-,-) the intern product in L*(T). By the
definition of f,,, we have that

ty Jn) = t dz — t dz .
(Enfu) = n /(Mﬂ/n)fm — /(%uﬂ/n)g(z) :

Take the limit when n increases to infinity, by the Lebesgue-Besicovitch Differentiation Theo-
rem (c.f. [5]) we obtain that (&, f,) converges to & (v)—¢&:(u), almost surely in u,v € (a, 1+a),
which finishes the proof. O]

Proposition A.3.4. Suppose that there exists a function 0,§ : [0,T] x T — R such that,
almost surely in t € [0,T],

gt(v) - ft(u) = augt(z) dZ, ‘v’u, v e (av I+ CL) )

(u0)

almost surely in t € [0,T) and [} 0.6(2)dz = 0. Then, & € L*(0,T;H'(T\{a})) and 9,¢
corresponds to that one in Definition 2.4.2 .
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Proof. By the hypothese about &, we get

(0,H,€)) / /8 H,( /Or Du&i(2) dz + £4(0 )] drds .

Since H belongs to C%!, the second term above is null. In the first integral we use Fubini’s
Theorem, then the expression above is equal to

// oy ) dr 8z dzds—// (1) — H(t, 2)|0u(2) dzds

Now, we use again the hypothese about £ and the last expression becomes,

_ /0 ! /T H(t,2)80,6(2) dzds = —((H, 9,£)) .

Proposition A.3.5. Are equivalent:
(i) € € L*(0, T; H'(T\{a}));
(i1) Almost surely int € [0,T],

u) = / Oui(2) dz, Yu,v € (a,1+ a),

where 0,6 € L*([0,T] x T) and, a.s. int € [0,T), [;0.&(z)dz = 0;
) —

(ii1) There exists a positive integer number k such that supy (0.H,&) — k{(H, H)) < oo,
where the supremum is carried over all functions H in C%([0,T] x T) with compact
support contained in [0, T] x (T\{a}).

Proof. (i) = (ii) has been proved in A.3.3 and (ii) = (i) has been proved in A.3.4. (iii) =

() follows by the Riesz Representation Theorem and A.1.1. It just remains to prove (i) =

(43). Suppose that (i) is valid. By Cauchy-Schwarz and Young’s inequality,

(0.H,6) = —(H,0.8) < V{H, H){(.E 0uE))
< w(H, H)) + 5(0u8, 0u8)) .

from what we conclude (iz). O

Lemma A.3.6. Let £ € L?(0,T; H'(T\{a})) such that there exists a positive integer number
K that satisfies supy (0, H, &) — k{(H, H)) < oo, where the supremum is taken over all H €
CY1([0,T) x T) with compact support contained in [0,T] x (T\{a}). Then,

ow {(0r.6) st )} = & [ 1ol (43)

where the supremum is taken over all H € C%'([0,T] x T) with compact support contained

in [0,7] x (T\{a}).
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Proof. Using that £ € L*(0,T; H'(T\{a})) and the Young’s inequality,

(OuH, ) — w{(H, H) = —(H.0,) — n{(H,H) < L / 10,622 dt

for all H € C%([0,T] x T) with compact support contained in [0, 7] x (T\{a}). For the other
hand, there exists a sequence {H"}, C C%!([0,T] x T) with compact support contained in
[0, 7] x (T\{a}) such that —H" converges to 9,& in L?(0,T; L*(T)). Thus,

T
e | N0l de = lim {3 (—H",0.8) — s H", —H") | < sup (H,D,€) = s{(H. 1),
where also the supremum is taken over all H € C%'([0,7] x T) with compact support

contained in [0, 7] x (T\{a}). One can conclude this proof. O

Lemma A.3.7. Let f € L>®(T). Then, f x 1 is a Lipschitz function in the open interval
(a,14 a). Here, we identify the T\{a} with the open interval (a,1+ a).

Proof. Let u,v € (a,1+ a) and analyze that

|(f ) (w) = (f % ) (0)] < Hf!loo/TIL?(%U) —12(z,0)|dz < [ fllooZ|u — vl

[
Lemma A.3.8. For any v, € and m € D([0,T], M),
E((m*t1y) %12) < 0.
Proof. This proof follows by Lemma A.3.7, Definition 1.4.1 and Proposition A.3.5. O
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