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Resumo

Esta tese de doutorado é composta por três partes, todas elas rela-
cionadas com o processo de exclusão simétrico com elos lentos.
Tais elos são os que têm a menor taxa de passagem de partícu-
las, chamada de condutância. O objetivo desta tese é entender o
comportamento coletivo de sistemas microscópicos, através de pro-
cedimentos limites, obtendo leis macroscópicas determiníticas. A
primeira parte é um princípio grandes desvios para o limite de es-
cala da medida empírica, contendo também o limite hidrodinâmico
do processo de exclusão simétrico com elo lento e o limite hidro-
dinâmico do processo de exclusão fracamente assimétrico com elo
lento. A segunda parte trata do limite hidrodinâmico da medida
empírica, na presença de elos lentos com condutância N−β, onde
N é o parâmetro de escala. Três comportamentos diferentes são
exibidos, correspondendo aos casos β ∈ [0, 1), β = 1 e β > 1. A
terceira parte é um problema d-dimensional. Neste trabalho os elos
lentos têm sua posição espacial associada a uma superfície suave
e fechada, modelando uma membrana que diminui a passagem de
partículas. É apresentado o limite hidrodinâmico para esse modelo.

Palavras-Chaves: Elo lento; Limite Hidrodinâmico; Grandes
Desvios
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Abstract

This PhD thesis consists of three parts, all of them related to the
symmetric exclusion process in the presence of slow bonds, which
are particular bonds with smaller rate of passage of particles, called
conductance. The �rst part is a large deviation principle for the
scaling limit of empirical measure, containing also the hydrodynam-
ical limit of the symmetric exclusion process with slow bonds and
the hydrodynamical limit of weakly asymmetric exclusion process
with slows bonds. The second part deals with the hydrodynamical
limit of the empirical measure in the presence of slow bonds with
conductance N−β, where N is the scaling parameter. Three di�er-
ent behaviors are exhibited, corresponding to the cases β ∈ [0, 1),
β = 1 or β > 1. The third part is a d-dimensional problem. There,
the slow bonds have a spatial position associated to a smooth closed
surface, modeling a membrane slowing down the passage of parti-
cles. It is presented the hydrodynamical limit of such model.

Key words: Slow bond; Hydrodynamical limit; Large deviations
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Introduction

The exclusion process is a continuous time interacting particle system that has been the
subject of intense studies during the last decades due to the fact that, in one hand, it
provides insights on the dynamical aspects of some models from statistical physics, and, in
the other hand it is, up to some extent, mathematically tractable.

The exclusion process on the discrete d-dimensional torus with N sites, TdN = (Z/NZ)d,
is described by particles that move as independent random walks on a graph except for the
exclusion rule that prevents two particles from occupying the same site, or vertex. The
state space is therefore the set of con�gurations with at most one particle per site in the
discrete torus, namely {0, 1}Td

N . In the symmetric case, the process evolves as follows: at
each bond we associate a exponential clock, which is independent of the exponential clock for
any other bond. When this clock rings, the occupancies of the sites connected by the bond
are exchanged. The exchange rate for a bond is simply the parameter of the exponential
clock associated to it. Sometimes it will be called the conductance of this bond. We allow
the conductance to vary from bond to bond, and if x, y ∈ TdN are the nearest-neighbors, then
we denote the conductance of the bond (x, y) by ξNx,y = ξNy,x > 0. The speci�cation of the
exchange rates determines the environment for the exclusion process.

We would like understand the collective behavior of the microscopic system above (the
exclusion process). For this, we will need derive, through a limit procedure, deterministic
macroscopic laws. Such laws will characterize the collective behavior of our system. The
limit procedure mentioned earlier provides a bridge between the macroscopic and microscopic
systems, which is a central problem in the clasical statistical mechanics. More speci�cally,
when we say limit procedure, one wishes to prove at least the convergence of the time-
evolution of the spatial density of particles to the solution of a macroscopic equation. The
density of particles is also called by the empirical measure associated to the process. For
symmetric exclusion process, it has been shown that the time evolution of the density of
particles satis�es a parabolic evolution equation. This is the so called hydrodynamic limit,
and it corresponds to a law of large numbers for the empirical measure.

The hydrodynamic limit says little or nothing about the rate of convergence. As a very
natural consequence, it is almost unavoidable to ask oneself about deviations from the behav-
ior hydrodynamic. The large deviations rate function, associated to the dynamical, measures
the exponential decay of the asymptotic probability of deviations from the hydrodynamical
evolution, when the scaling parameter diverges. Thus, we are naturally led to the inves-
tigation and identi�cation of the large deviations rate function in the set of the empirical
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measures of the interacting particle systems.
This thesis studies the hydrodynamical behavior and large deviations principle of sym-

metric exclusion processes in non-homogeneous environments, where the non-homogeneity is
due to the presence of slow bond. While an usual bond has exchange rate one, a slow bond
has a lower exchange rate. With respect to the scaling parameter, we assume that a slow
bond has exchange rate of order N−1 in the �rst and third part this work and of order N−β,
for all β ≥ 0, in the second part.

When the environment is homogeneous, the exclusion process has a well-known hydro-
dynamical behavior under di�usive scaling. Recently, attention has been raised by the hy-
drodynamic behavior of interacting particle systems with random or inhomogeneous media.
One relevant and puzzling problem is to consider particle systems with slow bonds and to
analyze the macroscopic e�ect on the hydrodynamic pro�les, depending on the strength at
these bonds.

We present a brief review about some results on hydrodynamic behavior of the exclusion
process in random or inhomogeneous media. In [6] the author considered the one-dimensional
exclusion process with suitable random conductances {ck : k ≥ 1}. Assuming that {c−1

k : k ≥
1} satisfy a Law of Large Numbers, he proved that the randomness of the media is not present
in the macroscopic time evolution of the density of particles. In [7], the authors assumed that
the conductance over the bond [ x

N
, x+1
N

] is equal to [N(W (x+1/N)−W (x/N))]−1, where W
is an α-stable subordinator of a Lévy Process. In this case, the randomness survives in the
continuum, by replacing in the hydrodynamical equation the usual Laplacian by a generalized
operator d

dx
d
dW

, which results in the weak heat equation. In the same line of such quenched
result, [9] shows the analogous behavior for a general, but non-random, strictly increasing
function W . All the cited so far works are restricted to the one-dimensional setting, and
strongly based on convergence results for di�usions or random walks in one-dimensional
inhomogeneous media. Even the d-dimensional case treated in [21] has considered a class
of non-homogeneous environments that could be decomposed, in a proper sense, into d one-
dimensional cases. General su�cient conditions for the hydrodynamical limit of exclusion
process in inhomogeneous media were established in [14]. All the works above have in
common the association of exponential clocks to the bonds, the Bernoulli product measure as
invariant measure, and, in some sense, the similarity with to the symmetric simple exclusion
process.

In [19], it is studied the totally asymmetric simple exclusion process with a single bond
having its clock parameter smaller than the other bonds. Such �slow bond", not only slows
down the passage of particles across it, but also has a macroscopical impact since it disturbs
the hydrodynamic pro�le. Somewhat intermediate between the symmetric and asymmetric
case, in [2] it is considered a single asymmetric bond in the exclusion process, when the
model is considered on the torus. This unique asymmetric bond gives rise to a �ux in the
torus and also in�uences the macroscopic evolution of the density of particles.

In the asymmetric case, e.g. [19] and [2], the slow bond parameter does not need to be
rescaled, in order to have a macroscopic in�uence. Nevertheless, in the symmetric case, from
[7] and [9], we see that the parameter at the slow bond must be of order N−1 in order to
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have macroscopical impact. As a consequence, one can observe a distinct behavior of slow
bonds in symmetric and asymmetric settings.

About large deviations for the symmetric exclusion process in non-homogeneous environ-
ment, there is no previous references. However, the model with a slow bond has a strong
similarity with models involving boundaries, as it was shown in the part II of this thesis.
As we can see there, when the slow bond has conductance N−β, the hydrodynamical be-
havior is driven by three di�erent PDE's with distinct boundary conditions, corresponding
to the respective values of β. So, this similarity with models involving boundaries allows
us to apply techniques of two previous works, namely [1] and [8]. The main di�culty for
establishing large deviations of symmetric exclusion process with a slow bond of parameter
N−1 was due to the behavior near the slow bond. In the previous works [1] and [8] the au-
thors have considered exclusion process with �xed rate of incoming and outcoming particles
at the boundaries, leading to Dirichlet boundary conditions, therefore with time-independent
values at the boundaries. On the other hand, the hydrodynamical behavior for the model
with a slow bond, when seen as a boundary, is driven by Neumann boundary conditions,
whose solutions are time-dependent at the boundaries. There is still plenty to do on this
subject, with a large number of natural open questions. For instance, the large deviations
for the model in the Part III of this thesis; the large deviations for cases β ∈ (0, 1) and β > 1
in Part II. In what follows we describe the content of each part of this thesis.

In Part I,Hydrodynamics and large deviations of exclusion processes with slow
bond, we analyze the one-dimensional symmetric exclusion with slow bond on the torus T.
This is a joint work with Tertuliano Franco. Let us introduce more precisely this model. For
a point a ∈ T �xed, the bond associated to the point a is taken as the bond that contains the
point a in the natural embedding of the discrete torus in the continuous torus, 1

N
TN ⊂ T,

see the Figure 1. If a is a common vertex of two bonds, we consider the bond lying in the
left side of point a. Note it is assumed an orientation in the continuous torus.

All the bonds have conductance equal to one, except the bond that is associate to the
point a ∈ T, which is called the slow bond. The conductance of this slow bond is chosen as
N−1.

a

1
N
TN ⊂ T

a

Figure 1: The slow bond is the bond associated with a.
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This model is a particular case of the model considered in [9]. We propose a simpler proof
of a hydrodynamic limit of this process. Besides, the proof and statement have a suitable
form to be applied in the proof of large deviations. The time evolution of the density
of particles ρ(t, ·), in the di�usive scaling limit, it is described by the partial di�erential
equation with Neumann's boundary conditions

∂tρ = ∆ρ
ρ(0, ·) = γ(·)
∂uρt(a

+) = ∂uρt(a
−) = ρt(a

+)− ρt(a
−) , ∀t ∈ [0, T ] ,

(1)

where a+ and a− stand for the right and left side of a macroscopic point a related to a slow
bond. More precisely, ρ(t, ·) is a solution of the corresponding integral equation

〈ρt, Ht〉 − 〈γ,H0〉 −
∫ t

0

〈ρs, (∂s +∆)Hs〉 ds

−
∫ t

0

{
ρs(a

+)∂uHs(a
+)− ρs(a

−)∂uHs(a
−)
}
ds

+

∫ t

0

{
ρs(a

+)− ρs(a
−)
}{
Hs(a

+)−Hs(a
−)
}
ds = 0 ,

(2)

for all test functions H ∈ C1,2
(
[0, T ]×T\{a}

)
and for all t ∈ [0, T ]. This space C1,2

(
[0, T ]×

T\{a}
)
of test functions is de�ned in the following way: a function H : [0, T ] × T →

R is said to belong to C1,2
(
[0, T ] × T\{a}

)
, if H restricted to [0, T ] × T\{a} belongs to

C1,2([0, T ]×T\{a}) and H has a C1,2 extension to [0, T ]× [a, 1+a], where we are identifying
(a, 1 + a) with T\{a}. This space of test functions should not be misunderstood with
C1,2([0, T ]× T), since a typical function of C1,2

(
[0, T ]× T\{a}

)
can have a discontinuity at

the point a ∈ T.
The proof for the large deviations upper bound can be outlined in the following scheme.

For each measure µN on {0, 1}TN , denote by PµN the probability measure on the space of
the trajectories D

(
[0, T ], {0, 1}TN

)
induced by the initial state µN and the Markov process

described above. Besides, let
{
exp {NJθ(πN)}

}
θ∈A be a family of mean-one positive mar-

tingales that can be expressed as function of the empirical measure πN . Let K be a compact
set in the space of trajectories. Then,

PµN
[
πN ∈ K

]
= EµN

[
exp

{
−NJθ(π

N)
}
exp

{
NJθ(π

N)
}
1{πN∈K}

]
≤ exp

{
−N inf

π∈K
Jθ(π)

}
EµN

[
exp

{
NJθ(π

N)
}
1{πN∈K}

]
≤ exp

{
−N inf

π∈K
Jθ(π)

}
.

(3)

Therefore, minimizing over θ in A, we get

lim
N→∞

1
N
logPµN

[
πN ∈ K

]
≤ − sup

θ∈A
inf
π∈K

Jθ(π) ,
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and it just remains to justify the exchange between the supremum and the in�mum. This
is done through the Minimax Lemma, see [16, Lemma A2.3.3]. The extension to closed sets
(not only compact sets) is made in Section 4.3, following the standard way of proving that
the family of probabilities {PµN}N is exponentially tight. The natural way to �nd a family of
mean-one positive martingales is to consider the Radon-Nikodym derivative of a (su�ciently
large) family of small perturbation of the original process with respect to the original process
itself. In our case, the small perturbation is given by the weakly asymmetric exclusion process
with a slow bond, indexed on the class of functions H ∈ C1,2

(
[0, T ]× T\{a}

)
.

Unfortunately, this Radon-Nikodym derivative is not a function of the empirical measure,
so the argument in (3) can not be applied. This is the main di�culty in the proof of a
upper bound: we have to show that the Radon-Nikodym derivative is superexponentially
close to a function of the empirical measure. Here, superexponentially means that the
di�erence between the Radon-Nikodym derivative and a function of the empirical measure
has expectation of order smaller than exp {−CN}, for any chosen C > 0. This is done using
the results of Chapter 3.

Closely related to this question, it is the energy of trajectories. Following steps of [1] and
[8], we de�ne an energy (see De�nition (1.4.1)) and in Section 3.1 we prove that, in the limit,
the trajectories with in�nity energy are not relevant. The idea is that, in order to obtain the
large deviations, one looks to the probability of observing events far from the expected limit
trajectory. However, it not necessary to consider all kind of trajectories. In the limit, some
kinds of trajectories are hardly seen, in the sense that they are of probability of order even
smaller than exponential. The advantages of such restriction to the class of trajectories of
�nite energy are clear.

Next, we describe the strategy of the proof of the lower bound. We start proving a law
of large numbers for a empirical measure evolving according to the perturbations such as
those considered in the proof of the upper bound. This was made in Chapter 5 for the
class of pertubations H ∈ C1,2([0, T ] × T). The second step consists in proving that the
entropy of the perturbation of the process with respect to process itself, when divided by N ,
converges, as N tends to in�nity, to the rate function I∗. This rate function is evaluated in
the solution of the hydrodynamical equation associated to the perturbation of the original
process. At this point is possible to conclude the proof of the lower bound for the set of
all paths π(t, du) = ρ(t, u)du such that ρ is a unique weak solution of the hydrodynamical
equation associated to the perturbation of the original process.

The part dedicated to this work is divided as follows. In Chapter 1, we introduce notation
and state the main results, namely Theorem 1.2.2, Theorem 1.3.2 and Theorem 1.4.1. In
Chapter 2 we prove the Theorem 1.2.2. In Chapter 3, we establish the energy estimates. In
Chapter 4, we prove the upper bound that is the part (i) of the Theorem 1.4.1. In Chapter
5 we prove the Theorem 1.3.2. Finally, the lower bound that is the part (ii) of the Theorem
1.4.1 is proved in the Chapter 6.

The Part II of this thesis, Hydrodynamical behavior of symmetric exclusion with
slow bonds of parameter N−β, gives a complete characterization of the hydrodynamic
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limit scenario for the one-dimensional exclusion process with slow bonds above. It is a joint
work with Tertuliano Franco and Patrícia Gonçalves, see [10].

Here, all the bonds have an exponential clock with parameter equal to 1, except for k of
bonds. As in the �rst work, in order to select those k bonds, we start with k macroscopic
points b1, . . . , bk ∈ T, and consider the respective associated bonds in 1

N
TN ⊂ T, see Figure

1. Those bonds will be also called slow bonds and their conductances are equal to N−β, with
β ∈ [0,+∞). The scale here will be taken to be di�usive in all bonds.

We prove that the time evolution of the empirical density of particles, in the di�usive
scaling, has a distinct behavior according to the range of the parameter β. Note that the
hydrodynamical limit for the β = 1 was already treated in the �rst work. However, in
this work we present a simple proof for this hydrodynamical behavior. The reason why the
proof here is simpler is that we consider the test functions as being the subset of functions
H ∈ C1,2

(
[0, T ]× T\{b1, . . . , bk}

)
satisfying

∂uHs(b
+
i ) = ∂uHs(b

−
i+1) = Hs(b

+
i )−Hs(b

−
i+1) , ∀s ∈ [0, T ] and ∀i = 1, ..., k . (4)

This simplify the proof of characterization of the limit points, because we avoid the use of
the Replacement Lemma. And the condition (4) prevents us to work with the integrals over
the boundary of T\{b1, ..., bk}, which appear in the integral equation (2). In the �rst work
we have considered the set C1,2

(
[0, T ]×T\{a}

)
, because the choice of C1,2

(
[0, T ]×T\{a}

)
seems to be the best adapted to large deviations.

If β ∈ [0, 1), the conductances in these slow bonds do not converge to zero fast enough in
order to appear in the hydrodynamical limit. As a consequence, there is no macroscopical
in�uence of the slow bonds in the continuum and we obtain the hydrodynamical equation as
the usual heat equation. The proof of the last result is based on the Replacement Lemma,
and the range parameter of β for which it holds in the sense that, it only works for β ∈ [0, 1).

As β increases, the conductance at the slow bonds decreases and the passage of particles
through these bonds becomes more di�cult. In fact, for β ∈ (1,+∞), the clock parameters
tends to zero faster than at the critical value β = 1 and each slow bond gives rise to a
barrier in the continuum limit. Macroscopically this phenomena gives leads to the usual heat
equation with Neumann's boundary conditions at each macroscopic point {bi : i = 1, ..., k}.
This means that the spatial derivative of ρ at each {bi : i = 1, ..., k} equals to zero and,
physically, this represents an isolated boundary. Moreover, the uniqueness of weak solutions
of such equation says explicitly that the macroscopic evolution of the density of particles
is independent for each interval [bi, bi+1], however the passage of particles in the discrete
torus through the slow bonds is still possible. The proof of this result is also based on the
Replacement Lemma and requires sharp energy estimates.

Since the regime β = 1 was already known from previous works, the main contribution
of this article is the complete characterization of the three distinct behaviors for the time
evolution of the empirical density of particles, exhibiting a phase transition depending on the
parameter of the conductance at the slow bonds. As far as we know, no similar phenomena
were exploited before for the hydrodynamic limit of interacting particle systems. Moreover,
for the regime β ∈ (1,∞) the density evolves according to the heat equation with Neu-
mann's boundary conditions, which has a meaningful physical interpretation. This the other
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great novelty developed in this paper. So far, partial di�erential equations with Dirichlet's
boundary conditions could be approached by e.g. studying interacting particle systems in
contact with reservoirs. Here, by considering partial di�erential equations with Neumann's
boundary conditions, we give a step towards extending the set of treatable partial di�erential
equations by the hydrodynamic limit theory.

In order to achieve our goal, the main di�culties appear in the characterization of limit
points for each regime of β. We overcome this di�culty by developing a suitable Replacement
Lemma, which allows us to replace the product of site occupancies by functions of the
empirical measure in the continuum limit. Furthermore, that lemma is also crucial for
characterizing the behavior near the slow bonds.

Our result can also be extended to non-degenerate exclusion type models as introduced
in [13]. In such models, particles interact with hard core exclusion and the rate of exchange
between two consecutive sites is in�uenced by the number of particles in the vicinity of the
exchanging sites. The jump rate is strictly positive, so that all the con�gurations are erdogic,
in the sense that a move to an unoccupied site can always occur. It was shown in [13] that the
hydrodynamical equation for such models is given by a non-linear partial equation. Having
established the Replacement Lemma, the extension of our results to these models is almost
standard [9]. We also believe that our method is robust enough �tting other models such as
independent random walks, the zero-range process, the generalized exclusion process, when
a �nite number of slow bonds is present.

The chapter dedicated to this work is divided as follows. In Section 7.1, we introduce
notation and state the main result, namely Theorem 7.1.1. In Section 7.2 we make precise
the scaling limit and sketch the proof of Theorem 7.1.1. In Section 7.3, we prove tightness
for any range of the parameter β. In Section 7.4, we prove the Replacement Lemma and
we establish the energy estimates, which are fundamental for characterizing the limit points
and the uniqueness of weak solutions of the partial di�erential equations considered here. In
Section 7.5 we characterize the limit points as weak solutions of the corresponding partial
di�erential equations. Finally, uniqueness of weak solutions is refereed to Section 7.6.

The Part III of this thesis is the work Hydrodynamic limit for a type of exclusion
processes with slow bonds in dimension ≥ 2, [12]. It is a joint work with Tertuliano
Franco and Glauco Valle, accepted for publication in Journal of Applied Probability (June
2011).

We now describe the exclusion processes which we are concerned. Let {ej : j = 1, ..., d} be
the canonical basis of Rd and Λ ⊂ Td be a simple connected region with smooth boundary
∂Λ. If the bond [ x

N
,
x+ej
N

] ∈ N−1TdN has one vertex in each of the regions Λ and Λ{, its
exchange rate is de�ned as N−1 times the absolute value of the inner product between ej
and the normal exterior vector to ∂Λ. For others edges, the exchange rate is de�ned as one.
This means that the slow bonds are among those crossing the boundary of Λ. We call this
process the exclusion process with slow bonds over ∂Λ.

We can interpret ∂Λ as a permeable membrane, which slows down the passage of particles
between the regions Λ and Λ{. For this type of exclusion process, the membrane does
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not completely prevent the passage of particles, and still survives in the continuum limit,
appearing explicitly in the hydrodynamic equation. The exchange rate of particles for a bond
crossing ∂Λ is smaller if the bond is close to a tangent line of ∂Λ. Note that this assumption
has physical meaning, take for example cases of re�ections in several physical models: Partial
re�ection of light crossing a medium with di�erent refraction indexes, mechanical systems
where particles try to cross some interface, etc. However the direction of the speed of particles
is not changed as usually occur in physical re�ection. Our de�nition of the exchange rates
also allows a strong convergence result for the empirical measures associated to the exclusion
process making simpler the proof of the hydrodynamic limit.

The hydrodynamical equation of the exclusion process with slow bonds over ∂Λ is a
parabolic partial di�erential equation ∂tρ = LΛρ, where the operator LΛ is a sort of d-
dimensional Krein-Feller operator. Without the presence of slow bonds, the operator LΛ

would be replaced by the laplacian operator acting on C2 functions and the hydrodynamical
equation would therefore be the heat equation. Here, the existence of the membrane modi�es
the domain, and thus the operator itself. In fact, we observe that the proper domain for LΛ

contains functions that are discontinuous over ∂Λ. Geometrically, LΛ glues the discontinuity
of a function around ∂Λ and then behaves like the laplacian.

One possible approach to prove the hydrodynamic limit for the exclusion process with
slow bonds over ∂Λ is through Gamma convergence. In [14], this approach and the conditions
for it to hold are discussed, see also [6]. There, the coersiveness condition would require some
kind of Rellich-Kondrachov's Theorem (namely, the compact embedding in L2 of some sort
of Sobolev space supporting an extension of LΛ, see [4]). In the method presented here, we go
in this direction, but instead of reach the hypotheses in [14], we have used similar analytical
tools in order to obtain a short and simple proof of uniqueness of the hydrodynamic equation.
We also show that the extension of LΛ satis�es the Hille-Yoshida Theorem. On the other
hand, the convergence from discrete to continuous that we present here is made in a very
direct way, and it was inspired by the convergence of the discrete laplacian to the continuous
laplacian.

The chapter dedicated to this work is divided as follows: In Section 8.1, we de�ne the
model and state all results contained in the paper; Section 8.2 is devoted to prove the results
concerning the continuous operator LΛ; In Section 8.3, the hydrodynamic limit is proved.
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Part I

Hydrodynamics and large deviations for

the exclusion processes with slow bond
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Chapter 1

Notation and Results

1.1 The model

Let TN = Z/NZ be the one-dimensional discrete torus with N points. The points of TN ,
called sites, are represented by the last characters of the alphabet (x, y and z). Denote by
η the con�gurations of the state space {0, 1}TN so that η(x) = 0, if site x is vacant and
η(x) = 1, if site x is occupied.

We de�ne now the exclusion process with state space {0, 1}TN and with conductance
{ξNx,x+1;x ∈ TN} at the bond of vertices x, x+ 1. The dynamics of this Markov process can
be described as follows. At each bond of vertices x, x+1, we associate an exponential clock of
parameter ξNx,x+1, which are independent of the exponential clock for any other bonds. When
this clock rings, the values of η at the vertices of this bond are exchanged. This process can
also be characterized in terms of its in�nitesimal generator LN , which acts on local functions
f : {0, 1}TN → R as

(LNf)(η) =
∑
x∈TN

ξNx,x+1

[
f(ηx,x+1)− f(η)

]
, (1.1)

where ηx,x+1 is the con�guration obtained from η by exchanging the variables η(x), η(x+1):

(ηx,x+1)(y) =


η(x+1), if y = x
η(x), if y = x+ 1
η(y), otherwise .

(1.2)

Denote by T = [0, 1) the one-dimensional continuous torus, where we are identifying the
values 0 and 1. Fix a point a ∈ T. In the model, it is assumed that the jump rates are given
by

ξNx,x+1 = ξNx+1,x =

{
1
N
, if a ∈

(
x
N
, x+1
N

]
1, otherwise .

(1.3)

To simplify notation, sometimes we denote ξNx,x+1 by ξNx . In some parts of this work, we
will consider a = 0, but in other parts we will write the results for a general a ∈ T. Such
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double choice was taken aiming to simplify notation in some parts and, when necessary,
to make clear that all results apply to a �nite number of slow bonds associated to points
a1, . . . , ak ∈ T. We write aN for the site of the left side of the slow bond in the discrete torus
TN , a ∈

(
aN
N
, aN+1

N

]
. For instance, when a = 0, then aN = −1.

A simple computation shows that the Bernoulli product measures {νNα ; 0 ≤ α ≤ 1} are
invariant, in fact reversible, for the dynamics. The measure νNα is obtained by placing a
particle at each site, independently from other sites, with probability α. Thus, νNα is a
product measure over {0, 1}TN with marginals given by

νNα {η; η(x) = 1} = α , forx ∈ TN .

Denote by {ηNt ; t ∈ [0, T ]} the Markov process on {0, 1}TN associated to the generator
LN , de�ned in (1.1), speeded up by N2. When the dependency of N is evident, sometimes, we
omit the index N of ηNt . Let D

(
[0, T ], {0, 1}TN

)
be the path space of càdlàg trajectories with

values in {0, 1}TN . For a measure µN on {0, 1}TN , denote by PµN the probability measure on
D
(
[0, T ], {0, 1}TN

)
induced by the initial state µN and the Markov process {ηNt ; t ∈ [0, T ]}.

Expectation with respect to PµN is denoted by EµN .

A sequence of probability measures {µN ;N ≥ 1} is said to be associated to a pro�le
ρ0 : T → [0, 1] if

lim
N→∞

µN

[ ∣∣∣ 1
N

∑
x∈TN

H( x
N
)η(x)−

∫
H(u)ρ0(u)du

∣∣∣ > δ
]
= 0 , (1.4)

for every δ > 0 and every continuous functions H : T → R.

The quantity just introduced in the de�nition above can be reformulated in terms of
empirical measures. Let M be the space of positive measures on T with total mass bounded
by one endowed with the weak topology. Consider the measure πN ∈ M, which is obtained
by rescaling space by N and by assigning mass N−1 to each particle:

πN(η, du) = 1
N

∑
x∈TN

η(x) δ x
N
(du) ,

where δu is the Dirac measure concentrated on u. The measure πN(η, du) is called the
empirical measure associated to the con�guration η. The dependence in η will frequently be
omitted to keep notation as simple as possible. With this notation 1

N

∑
x∈TN

H( x
N
)η(x) is

the integral of H with respect to the empirical measure πN , denoted by 〈πN , H〉.
We consider the time evolution of the empirical measure πNt associated to the Markov

process {ηNt ; t ≥ 0} by:

πNt (du) = πN(ηt, du) = 1
N

∑
x∈TN

ηt(x) δ x
N
(du) . (1.5)

24



Fix T > 0. Let D
(
[0, T ],M

)
be the space of M-valued càdlàg trajectories π : [0, T ] → M

endowed with the Skorohod topology. Notice that {πNt ; 0 ≤ t ≤ T} belongs to D
(
[0, T ],M

)
and inherits the Markov property from {ηNt ; t ≥ 0} ∈ D

(
[0, T ], {0, 1}TN

)
.

For each probability measure µN on {0, 1}TN , denote by QµN the measure on the path
space D

(
[0, T ],M

)
induced by the measure µN and the empirical process πNt introduced in

(1.5).

The exclusion process with slow bond has a related random walk on 1
N
TN that describes

the evolution of the system with a single particle. Thus particles in the exclusion process
evolve independently as such random walk except for the hard core interaction. To simplify
notation later, we introduce here the generator of this random walk with conductances ξNx,x+1,
which is given by

(LNH)( x
N
) = ξNx,x+1

{
H(x+1

N
)−H( x

N
)
}
+ ξNx,x−1

{
H(x−1

N
)−H( x

N
)
}
, (1.6)

for x in TN and a function H : 1
N
TN → R. We will not distinguish the notation for functions

H de�ned on T and on TN .

The indicator function of a set A will be written by 1A(u), which is one when u ∈ A and
zero otherwise. Given a function f : T → R, we will denote f(a−) and f(a+), respectively,
for the left and right side limits of f at the point a ∈ T. In the case that a = 0, we can also
use the notation f(1) and f(0) for denote, respectively, the left and right side limits of f
at the point 0 ∈ T. We are going to use the notation gt(u) to denote g(t, u), for a function
g : [0, T ] × T. It must cause no confusion with the notation for time derivative, namely
∂tg(t, u).

1.2 Hydrodynamic limit of exclusion process with slow

bond

1.2.1 The hydrodynamic equation

For a non-negative integer k denote by Ck(T) the set of continuous functions from T to R
with continuous derivatives of order up to k. The set C0(T) will be written just as C(T).
For non-negative integers j and k denote by Cj,k([0, T ]× T) the set of continuous functions
from [0, T ]×T to R with continuous derivatives of order up to j in the temporal coordinate,
t ∈ [0, T ], and k in the spatial coordinate, u ∈ T.

The study of exclusion process dynamics in presence of a slow bond requires the use of
functions de�ned in the continuous torus, which must be smooth except possibly at the point
a ∈ T. In such a way, consider the following

De�nition 1.2.1. Denote by C1,2
(
[0, T ]×T\{a}

)
the space of functions H : [0, T ]×T → R

such that
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1. H restricted to [0, T ]× T\{a} belongs to C1,2([0, T ]× T\{a});

2. H has a C1,2 extension to [0, T ] × [a, 1 + a], where we are identifying (a, 1 + a) with
T\{a}.

It is of worth pointing out the meaning of such de�nition. Note this space of test
functions should not be misunderstood with C1,2([0, T ] × T), since a typical function of
C1,2

(
[0, T ]× T\{a}

)
can have a discontinuity at the point a ∈ T.

Denote by 〈·, ·〉 the inner product in L2(T) and by ρt the function ρ(t, ·).

De�nition 1.2.2. Consider a bounded density pro�le γ : T → R. A bounded function
ρ : [0, T ]× T → R is said to be a weak solution of the parabolic di�erential equation

∂tρ = ∆ρ
ρ(0, ·) = γ(·)
∂uρt(a

+) = ∂uρt(a
−) = ρt(a

+)− ρt(a
−) , ∀t ∈ [0, T ] ,

(1.7)

if the following two conditions are ful�lled:

(1) ρ ∈ L2
(
0, T ;H1(T\{a})

)
;

(2) For all functions H ∈ C1,2
(
[0, T ] × T\{a}

)
and for all t ∈ [0, T ], ρ satis�es the

integral equation

〈ρt, Ht〉 − 〈γ,H0〉 =

∫ t

0

〈ρs, (∂s +∆)Hs〉 ds

+

∫ t

0

{
ρs(a

+)∂uHs(a
+)− ρs(a

−)∂uHs(a
−)
}
ds

−
∫ t

0

{
ρs(a

+)− ρs(a
−)
}{
Hs(a

+)−Hs(a
−)
}
ds .

(1.8)

Remark 1.2.1. For a heuristics about why we denote the integral equation (1.8) in the way
(1.7), one should multiply both sides of (1.7) by a test function H ∈ C1,2

(
[0, T ] × T\{a}

)
,

integrate in space and time and then perform twice a formal integration by parts, obtaining
the equation

〈ρt, Ht〉 − 〈γ,H0〉 =

∫ t

0

〈ρs, (∂s +∆)Hs〉 ds

+

∫ t

0

{
ρs(a

+)∂uHs(a
+)− ρs(a

−)∂uHs(a
−)
}
ds

−
∫ t

0

{
∂uρs(a

+)Hs(a
+)− ∂uρs(a

−)Hs(a
−)
}
ds ,

Applying the formal boundary conditions about ρ, one gets (1.8). Besides, it shows that any
solution in the strong sense of (1.7) is a weak solution of (1.7).
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In Section 2.6, we show uniqueness of integral solutions. Existence follows from the
tightness of the sequence of probability measures QµN introduced in Section 2.2 and the
characterization of limit points given in Section 2.5.

We are now in position to state the main result of this section:

Theorem 1.2.2. Fix a continuous initial pro�le γ : T → [0, 1] and consider a sequence
of probability measures µN on {0, 1}TN associated to γ in the sense (1.4). Then, for any
t ∈ [0, T ],

lim
N→∞

PµN

[ ∣∣∣ 1
N

∑
x∈TN

H( x
N
)ηt(x)−

∫
H(u)ρ(t, u)du

∣∣∣ > δ

]
= 0 ,

for every δ > 0 and every function H ∈ C(T) . Here, ρ is the unique weak solution of the
linear equation (1.7) with ρ0 = γ.

1.3 Hydrodynamic limit of weakly asymmetric exclusion

process with a slow bond

For each function H ∈ C1,2([0, T ] × T), consider the time inhomogeneous Markov process
whose generator at time t is given by

(LHN,tf)(η) =
∑
x∈TN

ξNx e
Ht(

x+1
N

)−Ht(
x
N
) η(x)

(
1− η(x+1)

)[
f(ηx,x+1)− f(η)

]
+

∑
x∈TN

ξNx e
−Ht(

x+1
N

)+Ht(
x
N
) η(x+1)

(
1− η(x)

)[
f(ηx,x+1)− f(η)

]
,

(1.9)

for all f : {0, 1}TN → R, where ηx,x+1 is de�ned in (1.2) and the conductance ξNx was de�ned
in (1.3). Notice that, if the function H ∈ C1,2([0, T ] × T) is constant, the in�nitesimal
generator LHN,t is equal to the in�nitesimal generator LN , which is de�ned in (1.1).

For each probability measure µN on {0, 1}TN , denote by PHµN (QH
µN

, respectively) the prob-
ability measure on the space of trajectories D

(
[0, T ], {0, 1}TN

)
(D

(
[0, T ],M

)
, respectively)

corresponding to the inhomogeneous Markov process ηt (πNt , respectively) with generator
LHN de�ned in (1.9) accelerated by N2 and starting from µN .

1.3.1 The hydrodynamic equation

De�nition 1.3.1. Consider a bounded density pro�le γ : T → R and H ∈ C1,2([0, T ]× T).
A function ρ : [0, T ] × T → [0, 1] is said to be a weak solution of the partial di�erential
equation 

∂tρ = ∆ρ− 2 ∂u
(
χ(ρ)∂uH

)
ρ(0, ·) = γ(·)
∂uρt(a

+) = 2χ
(
ρt(a

+)
)
∂uHt(a

+) + ρt(a
+)− ρt(a

−), ∀ t ∈ [0, T ]
∂uρt(a

−) = 2χ
(
ρt(a

−)
)
∂uHt(a

−) + ρt(a
+)− ρt(a

−), ∀ t ∈ [0, T ]

(1.10)
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if the following two conditions are ful�lled:

(1) ρ ∈ L2
(
0, T ;H1(T\{a})

)
;

(2) For all functions G in C1,2
(
[0, T ]×T\{a}

)
, and all t ∈ [0, T ], ρ satis�es the integral

equation

〈ρt, Gt〉 − 〈γ,G0〉 =
∫ t

0

〈
ρs, (∂s +∆)Gs

〉
ds+ 2

∫ t

0

〈
χ(ρs)∂uHs , ∂uGs

〉
ds

+

∫ t

0

{
ρs(a

+)∂uGs(a
+)− ρs(a

−)∂uGs(a
−)
}
ds

−
∫ t

0

{
ρs(a

+)− ρs(a
−)
}{
Gs(a

+)−Gs(a
−)
}
ds ,

(1.11)

where ρs is the notation for ρ(s, ·), χ(α) = α(1− α).

Remark 1.3.1. Notice that the boundary integral is well de�ned by assumption (1). Choosing
H as the constant function identically equals one, we get the hydrodynamical equation (1.7),
as expected. Besides, the expressions ∂uρt(a

+) and ∂uρt(a
−) appearing in (1.10) di�er only

on its �rst parcel.
At least, the reason we call the integral equation (1.11) in the way (1.10) is the same

reason that we denote the integral equation (1.8) in the way (1.7). Suppose ρ is a smooth
solution of (1.11). Multiplying both sides by a test function G smooth in T\{a}, integrating
in space and time, and then performing the respective integrations by parts, some boundary
integrals will appear. These boundary conditions imposed in (1.10) are the exact conditions
needed to obtain the integral equation (1.11). Or else, any solution in the strong sense of
(1.10) is a weak solution of (1.10).

In Section 5.4, we shall prove uniqueness of such weak solutions. Existence of solutions
follows from the tightness of the sequence of probability measures QH

µN
introduced in Section

5.1 and the characterization of limit points given in Section 5.3.

We are now in position to state the main result of this section:

Theorem 1.3.2. Let H ∈ C1,2([0, T ] × T). Fix a continuous initial pro�le γ : T → [0, 1]
and consider a sequence of probability measures µN on {0, 1}TN associated to γ in the sense
(1.4). Then, for any t ∈ [0, T ],

lim
N→∞

PHµN

[ ∣∣∣ 1
N

∑
x∈TN

G( x
N
)ηt(x)−

∫
G(u)ρ(t, u)du

∣∣∣ > δ

]
= 0 ,

for every δ > 0 and every function G ∈ C(T) . Here, ρ is the unique weak solution of the
diferential equation (1.10) with ρ0 = γ.
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1.4 Large deviations

Denote by M0 the subset of M of all absolutely continuous measures with density bounded
by 1:

M0 =
{
ω ∈ M; ω(du) = ρ(u)du and 0 ≤ ρ ≤ 1 almost surely

}
.

The set M0 is a closed subset of M endowed with the weak topology (see A.2.1). This
property is inherited by D

(
[0, T ],M0

)
, which is a closed subset of D

(
[0, T ],M

)
for the

Skorohod topology.
Denote by ∂u the partial derivative of a function with respect to the space variable. Let

L2([0, T ]× T) be the Hilbert space of measurable functions H : [0, T ]× T → R such that∫ T

0

∫
T

(
H(s, u)

)2
du ds < ∞ ,

endowed with the scalar product 〈〈H,G〉〉 de�ned by

〈〈H,G〉〉 =

∫ T

0

∫
T
H(s, u)G(s, u) du ds .

De�nition 1.4.1. For H ∈ C0,1([0, T ] × T) with compact support contained in [0, T ] ×
(T\{a}), de�ne EH : D([0, T ],M) → R by

EH(π) =

{
〈〈∂uH, ρ〉〉 − 2〈〈H,H〉〉 , if π ∈ D([0, T ],M0) ,

+∞ , otherwise .

Futhermore, de�ne the energy functional E : D([0, T ],M) → R by

E(π) = sup
H

EH(π) , (1.12)

where the supremum is taken over all H ∈ C0,1([0, T ] × T) with compact support contained
in [0, T ]× (T\{a}).

In Section 2.4, we prove that π ∈ D([0, T ],M) with E(π) < ∞, there exists ρ ∈
L2(0, T ;H1(T\{a})), such that π(t, du) = ρt(u)du.

De�nition 1.4.2. Let H ∈ C1,2([0, T ]×T\{a} ), de�ne for π ∈ D([0, T ],M) with E(π) <∞,
π(t, du) = ρt(u)du,

`H(π) = 〈ρT , HT 〉 − 〈ρ0, H0〉 −
∫ T

0

〈ρt, (∂t +∆)Ht〉 dt

−
∫ T

0

{ρt(a+)∂uHt(a
+)− ρt(a

−)∂uHt(a
−)} dt

(1.13)
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and

ĴH(π) = `H(π)−
∫ T

0

〈χ(ρt), (∂uHt)
2〉 dt

−
∫ T

0

ρt(a
−)(1− ρt(a

+))
(
eHt(a+)−Ht(a−) − 1

)
dt

−
∫ T

0

ρt(a
+)(1− ρt(a

−))
(
e−Ht(a+)+Ht(a−) − 1

)
dt .

(1.14)

De�nition 1.4.3. For all function H ∈ C1,2([0, T ] × T\{a} ), we de�ne the functional
JH : D([0, T ],M) → R, by

JH(π) =

{
ĴH(π), if E(π) <∞ ,
+∞, otherwise.

De�ne I : D([0, T ],M) → [0,∞] by

I(π) = sup
H∈C1,2([0,T ]×T\{a} )

JH(π)

and I∗ : D([0, T ],M) → [0,∞] by

I∗(π) = sup
H∈C1,2([0,T ]×T)

JH(π) .

Denote by D0
(
[0, T ],M0

)
the subset of D

(
[0, T ],M0

)
consisting of all paths π(t, du) =

ρ(t, u)du such that there exists H ∈ C1,2([0, T ] × T) that ρ = ρH is a unique weak solution
of (1.10).

We are now in position to state the main result of this section:

Theorem 1.4.1. The sequence of measures {QνNα
;N ≥ 1} satis�es:

(i) Upper bound: Let C be a closed subset of D
(
[0, T ],M

)
. Then

lim
N→∞

1
N
logQνNα

[C] ≤ − inf
π∈C

I(π) .

(ii) Lower bound: Let O be an open subset of D
(
[0, T ],M

)
. Then

lim
N→∞

1
N
logQνNα

[O] ≥ − inf
π∈O∩D0([0,T ],M0)

I∗(π) .

The item (i) of the theorem above is proved in Chapter 4. The other item of the last
theorem is proved in Chapter 6.
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Chapter 2

Hydrodynamic limit for the exclusion

process with slow bond

2.1 Scaling Limit

We begin by recalling that for a function H : T → R, 〈πNt , H〉 stands for the integral of H
with respect to πNt :

〈πNt , H〉 = 1
N

∑
x∈TN

H( x
N
) ηt(x) .

This notation should not be mistaken with the inner product in L2(T). Also, when πt has a
density ρ, π(t, du) = ρ(t, u)du, we sometimes write 〈ρt, H〉 for 〈πt, H〉.

We also recall that QµN is the measure on the path space D([0, T ],M) induced by the
probability measure µN on {0, 1}TN and the empirical process πNt introduced in the Chapter
1.

Proposition 2.1.1. Fix a continuous pro�le ρ0 : T → [0, 1] and consider a sequence {µN :
N ≥ 1} of measures on {0, 1}TN associated to ρ0 in the sense (1.4). Let Q be the probability
measure on D([0, T ],M) concentrated on the deterministic path π(t, du) = ρ(t, u)du, where
ρ is the unique weak solution of (1.7). Then, the sequence of probability measures QµN

converges weakly to Q, as N → ∞.

It is straightforward to obtain the Theorem 1.2.2 as a corollary of the previous proposition.
The proof of the Proposition 2.1.1 is divided in three parts. In Section 2.2, we show that

the sequence {QµN : N ≥ 1} is tight and in Section 2.5 we characterize the limit points of this
sequence. For that we have proved that all limit points of this sequence are concentrated on
weak solutions of the hydrodynamic equation (1.7). As a consequence, we have the existence
of weak solutions of (1.7) with initial condition γ. The uniqueness of weak solutions of (1.7)
is presented in Section (2.6) and this implies the uniqueness of limit points of the sequence
{QµN : N ≥ 1}.
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2.2 Tightness

Proposition 2.2.1. The sequence of measures {QµN , N ≥ 1} is tight in the Skorohod space
D
(
[0, T ],M

)
.

Proof. It is well known (see Proposition 4.1.7 in [16]) that, in order to prove such tightness,
it is enough to show tightness of the real-valued processes {〈πNt , H〉; 0 ≤ t ≤ T} for a set
of smooth functions H : T → R dense in C(T) for the uniform topology. Furthermore, if a
sequence of distributions in D

(
[0, T ],R

)
endowed with the uniform topology is tight, then it

is also tight in D
(
[0, T ],R

)
endowed with the Skorohod topology.

Here, we prove that the sequence {〈πNt , Ht〉; 0 ≤ t ≤ T} is tight in D
(
[0, T ],R

)
, endowed

with the uniform topology, for H ∈ C1,2
(
[0, T ] × T\{a}

)
. Notice that C2(T) is a subset

of the C1,2
(
[0, T ] × T\{a}

)
, then the set C1,2

(
[0, T ] × T\{a}

)
is dense in in C(T) for the

uniform topology.
Fix H ∈ C1,2

(
[0, T ]×T\{a}

)
. By de�nition {〈πNt , Ht〉; 0 ≤ t ≤ T} is tight in D([0, T ],R)

endowed with the uniform topology if, for the boundedness,

lim
m→∞

sup
N

PµN
[

sup
0≤t≤T

|〈πNt , Ht〉| > m
]
= 0 , (2.1)

and, for the equicontinuity,

lim
δ→0

lim
N→∞

PµN
[

sup
|t−s|≤δ

|〈πNt , Ht〉 − 〈πNs , Hs〉| > ε
]
= 0 , for all ε > 0 . (2.2)

The limit in (2.1) is trivial since |〈πNt , H〉| ≤ ‖H‖∞. So we only need to prove (2.2).
By Dynkyn's formula (see appendix in [16]), for any function H ∈ C1,2

(
[0, T ]× T\{a}

)
,

MN
t (H) = 〈πNt , Ht〉 − 〈πN0 , H0〉 −

∫ t

0

{
〈πNs , ∂sHs〉+N2LN〈πNs , Hs〉

}
ds (2.3)

is a martingale. By the previous expression, (2.2) follows from

lim
δ→0

lim
N→∞

PµN
[

sup
|t−s|≤δ

|MN
t −MN

s | > ε
]
= 0 , for all ε > 0 , (2.4)

and

lim
δ→0

lim
N→∞

PµN
[

sup
0≤t−s≤δ

∣∣∣ ∫ t

s

N2LN〈πNr , H〉dr
∣∣∣ > ε

]
= 0 , for all ε > 0 . (2.5)

To prove (2.4) it is enough to prove that the quadratic variation of the martingale MN
t (H),

〈MN(H)〉t, converges uniformly to zero in L1(PµN ), as N → ∞. The quadratic variation
〈MN(H)〉t is equal to∫ t

0

N2
[
LN〈πNs , Hs〉2 − 2〈πNs , H〉LN〈πNs , Hs〉

]
ds .
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Just applying the de�nition of the generator LN , the quadratic variation, 〈MN(H)〉t, can be
rewritten as ∫ t

0

∑
x∈TN

ξNx,x+1

[(
ηs(x)− ηs(x+1)

)(
Hs(

x+1
N

)−Hs(
x
N
)
)]2

ds . (2.6)

Since any function H ∈ C1,2
(
[0, T ] × T\{a}

)
has bounded �rst derivative in T\{a}, there

is a constant C > 0 such that
∣∣Hs(

x+1
N

) − Hs(
x
N
)
∣∣ ≤ CN−1 for any x 6= aN . Applying this

inequality in (2.6) and recalling that ξNaN ,aN+1 = ξNaN = N−1, we get the bound

〈MN(H)〉t ≤ T (C2 + 2‖H‖2∞)

N
.

The next step is to analyze the limit (2.5). Recall the de�nition of the operator LN
given in (1.6). By a simple changing of variables, it is easy to see that N2LN〈πNs , Hs〉 =
〈πNs , N2LNHs〉, which on his hand is

〈πNs , N2LNHs〉 = 1
N

∑
x 6=aN

x6=aN+1

ηs(x)
[
N2

(
Hs(

x+1
N

) +Hs(
x−1
N

)− 2Hs(
x
N
)
)]

+ ηs(aN)
[(
Hs(

aN+1
N

)−Hs(
aN
N
)
)
+N

(
Hs(

aN−1
N

)−Hs(
aN
N
)
)]

+ ηs(aN + 1)
[
N
(
Hs(

aN+2
N

)−Hs(
aN+1
N

)
)
+
(
Hs(

aN
N
)−Hs(

aN+1
N

)
)]
.

(2.7)

Since H ∈ C1,2
(
[0, T ]×T\{a}

)
, H

∣∣
[0,T ]×T\{a} ∈ C1,2([0, T ]×T\{a}) with bounded derivatives

of �rst and second order. By Taylor expansion, we obtain that

|N2LN〈πNs , H〉| ≤ 2
[
‖∆H‖∞ + ‖∂uH‖∞ + ‖H‖∞

]
.

We have concluded that there is a constant C > 0 depending only H such that∣∣∣∣∫ t

r

N2LN〈πNs , H〉ds
∣∣∣∣ ≤ C|t− r| ,

which implies the limit (2.5).

2.3 Replacement Lemma

We obtain fundamental results that allow us to replace the mean occupation of a site by the
mean density of particles in a small macroscopic box around this site. This result implies
that the limit trajectories must belong to some Sobolev space, what will be clari�ed later.
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Denote by HN(µN |νNα ) the entropy of a probability measure µN with respect to the
invariant state νNα . For a precise de�nition and properties of the entropy, we refer the reader
to [16]. In Proposition A.1.8 in the Appendix we review a classical result saying that there
exists a �nite constant K0 := K0(α), such that

HN(µN |νNα ) ≤ K0N , (2.8)

for any probability measure µN ∈ {0, 1}TN .
Denote by 〈·, ·〉νNα the scalar product of L2(νNα ) and denote by DN the Dirichlet form of

f , which is the convex and lower semicontinuous functional (see Corollary A1.10.3 of [16])
de�ned by

DN(f) = 〈−LN
√
f ,

√
f〉νNα ,

where f is a probability density with respect to νNα (i.e. f ≥ 0 and
∫
fdνNα = 1). An

elementary computation shows that

DN(f) =
∑
x∈TN

ξNx,x+1

2

∫ (√
f(ηx,x+1)−

√
f(η)

)2

dνNα (η) ,

By Theorem A1.9.2 of [16], if {SNt : t ≥ 0} stands for the semi-group associated to the
generator N2LN , then

HN(µNS
N
t |νNα ) + N2

∫ t

0

DN(f
N
s ) ds ≤ HN(µN |νNα ) ,

provided fNs stands for the Radon-Nikodym derivative of µNSNs (the distribution of ηs start-
ing from µN) with respect to νNα .

From this point, we denote the integer part of εN , namely bεNc, simply by εN . Next,
we de�ne the local density of particles, which corresponds to the mean occupation in a box
around a given site. We represent this empirical density in the box of size ` around a given
site x by η`(x). The idea is to de�ne a box around the site x in such way it avoids the slow
bond.

De�nition 2.3.1. If x ∈ TN is such that x
N

∈ (a−ε, a), then the empirical density is de�ned
by

ηεN(x) = 1
εN

aN∑
y=aN−εN+1

η(y) .

Otherwise, if, let us say, x
N
/∈ (a− ε, a), then the empirical density is de�ned by

ηεN(x) = 1
εN

x+εN∑
y=x+1

η(y) .
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According to the previous de�nition of local density of particles, we de�ne an approxi-
mation of identity in the continuous torus given by

ιaε(u, v) =


1
ε
1(a−ε,a)(u) , if v ∈ (a− ε, a)

1
ε
1(v,v+ε)(u) , otherwise.

(2.9)

We also de�ne the convolution

(ψ ∗ ιaε)(v) = 〈ψ, ιaε(·, v)〉 ,

for all function ψ : T → R or measure ψ in T.

To simplify notation, we de�ne the functions

g1 : {0, 1}Z → R by g1(η) = η(0)(1− η(1)) (2.10)

and
g̃1 : [0, 1]× [0, 1] → R by g̃1(α, β) = α(1− β) .

Also,
g2 : {0, 1}Z → R by g2(η) = η(1)(1− η(0)) (2.11)

and
g̃2 : [0, 1]× [0, 1] → R by g̃2(α, β) = β(1− α) .

Lemma 2.3.1. Fix a function F : T → R. Let be f density with respect to νNα . Then, for
any A > 0,

1
N

∑
x 6=aN

∫
F ( x

N
)
{
τxgi(η)− g̃i(η

εN(x), ηεN(x+1))
}
f(η) dνNα (η)

≤ 12Aε
∑
x 6=aN

(
F ( x

N
)
)2

+ 3
A
DN(f) , ∀i = 1, 2 ,

(2.12)

F (aN
N
)

∫ {
τaNgi(η)− g̃i(η

εN(aN), η
εN(aN+1))

}
f(η) dνNα (η)

≤ 6AεN
(
F (aN

N
)
)2

+ 3
A
DN(f) , ∀i = 1, 2 ,

(2.13)

1
N

∑
x∈TN

∫
F ( x

N
){η(x)− ηεN(x)}f(η) dνNα (η) ≤ 4Aε

∑
x∈TN

(
F ( x

N
)
)2

+ 1
A
DN(f) (2.14)

and ∫
{η(x)− ηεN(x)}f(η) dνNα (η) ≤ 4NAε + 1

A
DN(f) , ∀x ∈ TN . (2.15)
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Proof. We handle with the inequalities (2.12) and (2.13) for i = 1. The proof for the others
inequalities are analogous. First of all, rewrite η(x)(1− η(x+1))− ηεN(x)(1− ηεN(x+1)) as

η(x)− ηεN(x)− η(x)(η(x+1)− ηεN(x+1))− ηεN(x+1)(η(x)− ηεN(x)) .

We will consider only the function η(x)(η(x+1) − ηεN(x+1)), for the others functions the
proof is analogous. Then we claim that for f density with respect to νNα and for any A > 0,
it is true that

1
N

∑
x6=aN

∫
F ( x

N
)η(x)

{
η(x+1)− ηεN(x+1)

}
f(η) dνNα (η)

≤ 4Aε
∑
x 6=aN

(
F ( x

N
)
)2

+ 1
A
DN(f)

(2.16)

and ∫
F (aN

N
)η(aN)(η(aN+1)− ηεN(aN+1))f(η) dνNα (η)

≤ 2AεN
(
F (aN

N
)
)2

+ 1
A
DN(f) .

(2.17)

Recall De�nition 2.3.1. First we will analyse a site x such that x+1
N

/∈ (a − ε, a]. In this
case, ∫

F ( x
N
)η(x)(η(x+1)− ηεN(x+1))f(η) dνNα (η)

=

∫
F ( x

N
)η(x)

{
1
εN

x+1+εN∑
y=x+2

(η(x+1)− η(y))
}
f(η) dνNα (η) .

In the expression above, writing η(x+1)− η(y) as a telescopic sum, we get∫
F ( x

N
)η(x)

{
1
εN

x+1+εN∑
y=x+2

y−1∑
z=x+1

(η(z)− η(z + 1))
}
f(η) dνNα (η) .

Now, rewriting the last expression as twice the half and making the change of variables
η 7→ ηz,z+1 (using that the probability νNα is invariant) it becomes as

1
2εN

x+1+εN∑
y=x+2

y−1∑
z=x+1

F ( x
N
)

∫
η(x)(η(z)− η(z + 1))(f(η)− f(ηz,z+1)) dνNα (η) .

Since a− b = (
√
a−

√
b)(

√
a+

√
b), applying the Cauchy-Schwarz inequality, for any A > 0,

we bound the previous expression from above by

1
2εN

x+1+εN∑
y=x+2

y−1∑
z=x+1

A
ξNz,z+1

(
F ( x

N
)
)2 ∫ (√

f(η) +
√
f(ηz,z+1)

)2

dνNα (η)

+ 1
2εN

x+1+εN∑
y=x+2

y−1∑
z=x+1

ξNz,z+1

A

∫ (√
f(η)−

√
f(ηz,z+1)

)2

dνNα (η) .
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The second sum above is bounded by

1
AεN

x+1+εN∑
y=x+2

∑
z∈TN

ξNz,z+1

2

∫ (√
f(η)−

√
f(ηz,z+1)

)2

dνNα (η) ≤ 1
A
DN(f) .

Since ξNz,z+1 = 1 for all z ∈ {x+1, . . . , x+ εN} and f is density with respect to νNα , it yields
the boundedness of the �rst sum by

1
εN

x+1+εN∑
y=x+2

y−1∑
z=x+1

2A
(
F ( x

N
)
)2 ≤ 2AεN

(
F ( x

N
)
)2
.

Thus, for any site x such that x+1
N

/∈ (a− ε, a], we have that∫
F ( x

N
)η(x)(η(x+1)− ηεN(x+1))f(η) dνNα (η) ≤ 2AεN

(
F ( x

N
)
)2

+ 1
A
DN(f) .

Taking x = aN in the last inequality, we obtain the inequality (2.17).
In order to achieve (2.16), we need to analyse the other sites. Let x be a site such that

x+1
N

∈ (a− ε, a]. In this case,∫
F ( x

N
)η(x)(η(x+1)− ηεN(x+1))f(η) dνNα (η)

=

∫
F ( x

N
)η(x)

{
1
εN

aN∑
y=aN−εN+1

(η(x+1)− η(y))
}
f(η) dνNα (η) .

Now, we split the last summation into two blocs: {aN −εN +1, · · · , x} and {x+1, · · · , aN}.
Then we proceed by writing η(x+1)− η(y) as a telescopic sum, getting

F ( x
N
)

∫
η(x)

{
1
εN

x∑
y=aN−εN+1

x∑
z=y

(η(z + 1)− η(z))
}
f(η) dνNα (η)

+ F ( x
N
)

∫
η(x)

{
1
εN

aN∑
y=x+2

y−1∑
z=x+1

(η(z)− η(z + 1))
}
f(η) dνNα (η) .

Then, by the same arguments used above and since ξNz,z+1 = 1 for all z in the range {aN −
εN + 1, . . . , aN − 1}, we bound the previous expression by

4AεN
(
F ( x

N
)
)2

+ 1
A
DN(f) .

This conclude the claim (2.16).
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Proposition 2.3.2 (Replacement Lemma). Given a bounded function F : T → R, then

lim
ε→0

lim
N→∞

EµN
[ ∣∣∣ ∫ t

0

1
N

∑
x∈TN

F ( x
N
){ηs(x)− ηεNs (x)} ds

∣∣∣ ] = 0 ,

lim
ε→0

lim
N→∞

EµN
[ ∣∣∣ ∫ t

0

1
N

∑
x 6=aN

F ( x
N
)
{
τxgi(η)− g̃i(η

εN(x), ηεN(x+1))
}
ds

∣∣∣ ] = 0 , ∀i = 1, 2

and

lim
ε→0

lim
N→∞

EµN
[ ∣∣∣ ∫ t

0

F (aN
N
)
{
τaNgi(η)− g̃i(η

εN(aN), η
εN(aN+1))

}
ds

∣∣∣ ] = 0 , ∀i = 1, 2 ,

where gi and g̃i, i = 1, 2 were de�ned in (2.10) and (2.11).

Proof. We will prove the �rst limit, the other ones are similar.
Using the de�nition of the entropy and Jensen's Inequality, the expectation is bounded

from above by

HN (µN |νNα )
γN

+ 1
γN

logEνNα
[
exp

{
γ
∣∣∣ ∫ t

0

1
N

∑
x∈TN

F ( x
N
){ηs(x)− ηεNs (x)} ds

∣∣∣}] ,
for all γ > 0. In view of (2.8), to prove this proposition, it is enough to show that the
second term vanishes as N → ∞ and then ε ↓ 0 for every γ > 0. Since e|x| ≤ ex + e−x and
by Proposition A.2.7, we may remove the absolute value inside the exponential. Thus, to
complete the prove of this proposition, we need to show that

1
γN

logEνNα
[
exp

{
γ

∫ t

0

1
N

∑
x∈TN

F ( x
N
){ηs(x)− ηεNs (x)} ds

}]
= 0 ,

for every γ > 0.
By Feynman-Kac formula (c.f. Proposition A.1.7 and [16], Lemma 7.2, p. 336), for each

�xed N the previous expression is bounded from above by

t sup
f

{∫
1
N

∑
x∈TN

F ( x
N
)
{
η(x)− ηεN(x)

}
f(η) dνNα (η)− N

γ
DN(f)

}
,

where the supremum is carried over all density functions f with respect to νNα . From inequal-
ity (2.14) of the Lemma 2.3.1, and assumption over the function F , the previous expression
is less than or equal to

t sup
f

{
4Aε

∑
x∈TN

(
F ( x

N
)
)2

+ 1
A
DN(f)− N

γ
DN(f)

}
.

Here, if we were proving the others limits of the statement of this proposition, we would
have that use the others inequalities of the Lemma 2.3.1.
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Letting A = γ
N
, the last expression becomes

4γεt
N

∑
x∈TN

(
F ( x

N
)
)2
.

For all γ > 0, this expression vanishes as N → ∞ and then ε ↓ 0, which concludes the proof
of �rst limit in statement of the lemma. For the second limit, one needs just multiply and
divide the expectation there by N and proceed as before.

Proposition 2.3.3 (Replacement Lemma for a Single Site). For each bounded function
F : [0, T ]× T, site x ∈ TN and ε > 0, let

V F,x
N,ε (t, η) = F (t, x

N
){η(x)− ηεN(x)}

Then,

lim
ε↓0

lim
N→∞

EνNα
[∣∣∣∫ T

0

V F,aN
N,ε (t, ηt) dt

∣∣∣] = 0 .

Proof. This proof follows by same method as in Proposition 2.3.2. The unique di�erence is
that to apply the inequality (2.15) of the Lemma 2.3.1.

2.4 Sobolev spaces

We prove in this section that any limit point Q∗ of the sequence QN
µN

is concentrated on
trajectories ρ(t, u)du which belongs to the Sobolev space, which will be de�ned ahead. Let
Q∗ be a limit point of the sequence QN

µN
and assume without loss of generality that the

sequence QN
µN

converges to Q∗.
We repeat here the de�nition of the Sobolev Space from [4].

De�nition 2.4.1 (Sobolev space). The Sobolev space H1(T\{a}) consists of all locally
summable functions ζ : T\{a} → R such that there exists ∂ζ ∈ L2(T\{a}) satisfying

〈∂uG, ζ〉 = −〈G, ∂ζ〉 ,

for all G ∈ C∞(T\{a}) with compact support. For ζ ∈ H1(T\{a}), we de�ne the norm

‖ζ‖H1(T\{a}) = ‖∂ζ‖L2 .

De�nition 2.4.2. The space L2(0, T ;H1(T\{a})) consists of all measurable functions ξ :
[0, T ] → H1(T\{a}) with

‖ξ‖L2(0,T ;H1(T\{a})) :=
(∫ T

0

‖ξt‖2H1(T\{a}) dt
)1/2

< ∞ .

We refer to [4] for more informations about Sobolev spaces.
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Proposition 2.4.1. The measure Q∗ is concentrated on paths ρ(t, u)du such that ρ belongs
to L2(0, T ;H1(T\{a})).

The proof is based on the Riez Representation Theorem and follows from the next lem-
mata.

Lemma 2.4.2. Fix any function H : T → R and let f be a density with respect to νNα . Then,∫
1
εN

∑
x∈TN

H( x
N
)
{
η(x− εN)− η(x)

}
f(η) dνNα (η)

≤ N DN(f) +
2
N

∑
x∈TN

(
H( x

N
)
)2{1 + 1

ε
1(a−ε,a](

x
N
)} .

Moreover, this inequality is remains valid replacing {η(x−εN)−η(x)} by {η(x)−η(x+εN)}.

Proof. This proof follows the same steps as in the Lemma 2.3.1. One begins by writing as a
telescopic sum, ∫

1
εN

∑
x∈TN

H( x
N
)
{
η(x0)− η(x1)

}
f(η) dνNα (η)

= 1
εN

∑
x∈TN

H( x
N
)

x1−1∑
y=x0

∫ {
η(y)− η(y + 1)

}
f(η) dνNα (η) ,

where x0 = x− εN and x1 = x or x0 = x and x1 = x+ εN .
Now, following the same arguments as in Lemma 2.3.1, we bound the previous expression

by

1
εN

∑
x∈TN

(
H( x

N
)
)2 x1−1∑

y=x0

A
2ξNy,y+1

∫
{
√
f(η) +

√
f(ηy,y+1)}2 dνNα (η)

+ 1
εN

∑
x∈TN

x1−1∑
y=x0

ξNy,y+1

2A

∫
{
√
f(η)−

√
f(ηy,y+1)}2 dνNα (η) .

(2.18)

The second sum above is less than or equal to 1
A
DN(f). Since f is density with respect to

νNα and also the de�nition of ξNy,y+1, the �rst sum in (2.18) is less than or equal to

1
εN

∑
x∈TN

(
H( x

N
)
)2 x1−1∑

y=x0

2A
ξNy,y+1

≤ 2A
εN

∑
x∈TN

(
H( x

N
)
)2{εN +N1(a−ε,a](

x
N
)} .

This inequality is true for x0 = x − εN and x1 = x or x0 = x and x1 = x + εN . Choosing
A = 1

N
, it yields the inequality in the statement of the lemma.
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For a function H : T → R, ε > 0 and a positive integer N , de�ne UN(ε,H, η) by

UN(ε,H, η) =
1
εN

∑
x∈TN

H( x
N
)
{
η(x− εN)− η(x)

}
− 2

N

∑
x∈TN

(
H( x

N
)
)2{1 + 1

ε
1(a−ε,a](

x
N
)} .

(2.19)

Recall the de�nition of the constant K0 given in (2.8).

Lemma 2.4.3. For every k ≥ 1, consider the functions H1, . . . , Hk from [0, T ] × T to R.
Then, for every ε > 0,

lim
δ↓0

lim
N→∞

EµN
[
max
1≤i≤k

{∫ T

0

UN(ε,Hi(s, ·), ηδNs ) ds
}]

≤ K0 .

Proof. It follows from the Replacement Lemma that in order to prove the lemma we just
need to show that

lim
N→∞

EµN
[
max
1≤i≤k

{∫ T

0

UN(ε,Hi(s, ·), ηs) ds
}]

≤ K0 .

By the entropy and Jensen's Inequalities, for each �xed N , the previous expectation is
bounded from above by

H(µN |νNα )
N

+ 1
N
logEνNα

[
exp

{
max
1≤i≤k

{
N

∫ T

0

UN(ε,Hi(s, ·), ηs) ds
}}]

.

By (2.8), the �rst term is bounded by K0. Since exp{max1≤j≤k aj} is bounded from above
by

∑
1≤j≤k exp{aj} and since limN N

−1 log{aN + bN} is less than or equal to the maximum

of limN N
−1 log aN and limN N

−1 log bN , the limit, as N → ∞, of the previous expression is
less than or equal to

K0 + max
1≤i≤k

lim
N→∞

1
N
logEνNα

[
exp

{
N

∫ T

0

UN(ε,Hi(s, ·), ηs) ds
}]

.

We now prove that, for each �xed i the limit above is nonpositive.
Fix 1 ≤ i ≤ k. By Feynman-Kac's formula and the variational formula for the largest

eigenvalue of a symmetric operator, for each �xed N , the second term in the previous ex-
pression is bounded from above by∫ T

0

sup
f

{∫
UN(ε,Hi(s, ·), ηs)f(η)dνNα (η)−NDN(f)

}
ds .

In last formula the supremum is taken over all probability densities f with respect to νNα .
Applying the Lemma 2.4.2, the result is straightforward.
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Lemma 2.4.4.

EQ∗

[
sup
H

{∫ T

0

∫
T
∂uH(s, u) ρs(u) du ds − 2

∫ T

0

∫
T
H(s, u)2 du ds

}]
≤ K0 ,

where the supremum is carried over all functions H in C0,1([0, T ]×T) with compact support
in [0, T ]× (T\{a}).

Proof. Consider a sequence {H`, ` ≥ 1} dense (with respect to the norm ‖H‖∞ + ‖∂uH‖∞)
in the subset C0,1([0, T ] × T) of the functions with support contained in [0, T ] × (T\{a}).
Recall that we suppose that QN

µN
converges to Q∗. By Lemma 2.4.3, for every k ≥ 1

lim
δ↓0

EQ∗

[
max
1≤i≤k

{
1
ε

∫ T

0

∫
T
Hi(s, u) [ρ

δ
s(u− ε)− ρδs(u)] du ds

− 2

∫ T

0

∫
T

(
Hi(s, u)

)2 {1 + 1
ε
1(a−ε,a](u)} du ds

}]
≤ K0 ,

where ρδ(u) := (ρ ∗ ιaδ)(u). Letting δ ↓ 0, we obtain

EQ∗

[
max
1≤i≤k

{
1
ε

∫ T

0

∫
T
Hi(s, u) [ρs(u− ε)− ρs(u)] du ds

− 2

∫ T

0

∫
T

(
Hi(s, u)

)2 {1 + 1
ε
1(a−ε,a](u)} du ds

}]
≤ K0 .

Changing variables in the �rst integral,

EQ∗

[
max
1≤i≤k

{∫ T

0

∫
T

1
ε
[Hi(s, u+ ε)−Hi(s, u)]ρs(u) du ds

− 2

∫ T

0

∫
T

(
Hi(s, u)

)2 {1 + 1
ε
1(a−ε,a](u)} du ds

}]
≤ K0 .

Since Hi in C0,1([0, T ]× T) with compact support in [0, T ]× (T\{a}). Making ε ↓ 0 in the
last inequality, we obtain

EQ∗

[
max
1≤i≤k

{∫ T

0

∫
T
∂uHi(s, u)ρ(s, u) du ds

− 2

∫ T

0

∫
T

(
Hi(s, u)

)2
du ds

}]
≤ K0 .

To conclude the proof it remains to apply the Monotone Convergence Theorem and recall
that {H`, ` ≥ 1} is a dense sequence (with respect to the norm ‖H‖∞ + ‖∂uH‖∞) in the
subset of functions of C0,1([0, T ]× T) with support contained in [0, T ]× (T\{a}).
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Proof of Proposition 2.4.1. Denote by ` : C0,1([0, T ]× T) → R the linear functional de�ned
by

`(H) =

∫ T

0

∫
T
∂uH(s, u) ρs(u) du ds .

Since C0,1([0, T ]×T) with support contained in [0, T ]× (T\{a}) is dense in L2([0, T ]×T), by
Lemma 2.4.4 and Proposition A.1.1, ` is Q∗-almost surely bounded functional in C0,1([0, T ]×
T), we can extend it to a Q∗-almost surely bounded functional in L2([0, T ]×T). In particular,
by Riesz representation theorem, there exists a function G in L2([0, T ]× T) such that

`(H) = −
∫ T

0

∫
T
H(s, u)G(s, u) du ds .

One can use the Lemma A.1.9 to conclude the proof of the proposition.

2.5 Characterization of limit points

We prove in this section that all limit points Q∗ of the sequence QµN are concentrated
on absolutely continuous trajectories π(t, du) = ρ(t, u)du, whose density ρ(t, u) is a weak
solution of the hydrodynamic equation (1.7) with γ = ρ0.

Let Q∗ be a limit point of the sequence QµN and assume, without loss of generality, that
QµN converges to Q∗.

Since there is at most one particle per site, Q∗ is concentrated on trajectories πt(du)
which are absolutely continuous with respect to the Lebesgue measure, πt(du) = ρ(t, u)du,
and whose density ρ is non-negative and bounded by 1. For more explications we refer the
reader to [16].

In Proposition 2.4.1, we proved that ρ(t, ·) belongs to L2
(
0, T ;H1(T\{a})

)
. It is well

known that the Sobolev space H1(T\{a}) has special properties: all its elements are ab-
solutely continuous functions with bounded variation, c.f. [4], therefore with well de�ned
lateral limits. Such property is inherited by L2

(
0, T ;H1(T\{a})

)
in the sense that we can

integrate in time the lateral limits.
Let H ∈ C1,2

(
[0, T ]× T\{a}

)
. We begin by claiming that

Q∗

[
π· : 〈ρt, Ht〉 − 〈γ,H0〉 −

∫ t

0

〈ρs, (∂s +∆)Hs〉 ds

−
∫ t

0

{
ρs(a

+)∂uHs(a
+)− ρs(a

−)∂uHs(a
−)
}
ds

+

∫ t

0

{
ρs(a

+)− ρs(a
−)
}{
Hs(a

+)−Hs(a
−)
}
ds = 0, ∀t ∈ [0, T ]

]
= 1 .

(2.20)
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In order to prove the last equality, its enough to show that, for every δ > 0

Q∗

[
π· : sup

0≤t≤T

∣∣∣∣∣ 〈ρt, Ht〉 − 〈γ,H0〉 −
∫ t

0

〈ρs, (∂s +∆)Hs〉 ds

−
∫ t

0

{
ρs(a

+)∂uHs(a
+)− ρs(a

−)∂uHs(a
−)
}
ds

+

∫ t

0

{
ρs(a

+)− ρs(a
−)
}{
Hs(a

+)−Hs(a
−)
}
ds

∣∣∣∣∣ > δ

]
= 0 .

Since the boundary integrals are not well-de�ned in the whole Skorohod space D
(
[0, T ],M0

)
,

we cannot use directly Portmanteau's Theorem. To avoid this technical obstacle, �x ε > 0,
which will be taken small later. Adding and subtracting the convolution of ρt(u) with ιε := ιaε ,
recall de�nition (2.9). Then, we can see the probability above is less than or equal to the
sum of

Q∗

[
π· : sup

0≤t≤T

∣∣∣∣∣ 〈ρt, Ht〉 − 〈γ,H0〉 −
∫ t

0

〈ρs, (∂s +∆)Hs〉 ds

−
∫ t

0

{
(ρs ∗ ιε)(a+)∂uHs(a

+)− (ρs ∗ ιε)(a−)∂uHs(a
−)
}
ds

+

∫ t

0

{
(ρs ∗ ιε)(a+)− (ρs ∗ ιε)(a−)

}{
Hs(a

+)−Hs(a
−)
}
ds

∣∣∣∣∣ > δ/3

]
,

(2.21)

Q∗

[
π· : sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
(ρs ∗ ιε)(a+)∂uHs(a

+)− (ρs ∗ ιε)(a−)∂uHs(a
−)
}
ds

−
∫ t

0

{
ρs(a

+)∂uHs(a
+)− ρs(a

−)∂uHs(a
−)
}
ds

∣∣∣∣∣ > δ/3

]
and

Q∗

[
π· : sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
(ρs ∗ ιε)(a+)− (ρs ∗ ιε)(a−)

}{
Hs(a

+)−Hs(a
−)
}
ds

−
∫ t

0

{
ρs(a

+)− ρs(a
−)
}{
Hs(a

+)−Hs(a
−)
}
ds

∣∣∣∣∣ > δ/3

]
.

The convolutions above are suitable averages of ρ around the boundary point 0. Therefore,
as ε ↓ 0, the set inside the three previous probabilities decreases to a set of null probability.
It remains to deal with (2.21). We want use the Portmanteau's Theorem and Proposition
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A.2.7, and conclude that the probability (2.21) is bounded from above by

lim
N→∞

QµN

[
π· : sup

0≤t≤T

∣∣∣∣∣ 〈ρt, Ht〉 − 〈γ,H0〉 −
∫ t

0

〈ρs, (∂s +∆)Hs〉 ds

−
∫ t

0

{
(ρs ∗ ιε)(a+)∂uHs(a

+)− (ρs ∗ ιε)(a−)∂uHs(a
−)
}
ds

+

∫ t

0

{
(ρs ∗ ιε)(a+)− (ρs ∗ ιε)(a−)

}{
Hs(a

+)−Hs(a
−)
}
ds

∣∣∣∣∣ > δ/3

]
.

(2.22)

Although the functions Ht, H0, (∂s +∆)Hs, ιε(·, a−) and ιε(·, a+) may not belong to C(T),
we can proceed as in Subsections 7.5.2 and 8.3.2 (see (7.23) and (8.32)) in order to justify
why (2.21) is bounded from above by (2.22). Next we outline the main arguments involved in
that procedure. Before applying the Portmanteau's Theorem, we replace these functions by
continuous functions such that the new functions coincide with the original functions in the
torus except on small neighborhood of the points of the discontinuity the functions Ht, H0,
(∂s +∆)Hs, ιε(·, a−) and ιε(·, a+) and their L∞-norm are bounded from above by L∞-norm
of the respective original function. Using the rule that has only one particle per site, the set
where we compare this change has small probability. Thus, we have continuous functions
and we are able to apply the Portmanteau's Theorem and Proposition A.2.7. After using
the Portmanteau's Theorem, let us return to the original functions, by the same arguments
as above. Then, we obtain the expression (2.22).

If we consider the discrete torus as embedded in the continuous torus, aN is the closest
site to the left of a and aN+1 is the closest site to the right of a. Since (πNs ∗ιε)( xN ) = ηεNs (x),
for all x ∈ TN . Using the de�nition of QµN , we can rewrite the previous expression as

lim
N→∞

PµN

[
sup

0≤t≤T

∣∣∣∣∣ 〈πNt , Ht〉 − 〈πN0 , H0〉 −
∫ t

0

〈πNs , (∂s +∆)Hs〉 ds

−
∫ t

0

{
ηεNs (aN + 1)∂uHs(a

+)− ηεNs (aN)∂uHs(a
−)
}
ds

+

∫ t

0

{
ηεNs (aN + 1)− ηεNs (aN)

}{
Hs(a

+)−Hs(a
−)
}
ds

∣∣∣∣∣ > δ/3

]
.

The next step is to add and subtractN2LN〈πNs , Hs〉 and the previous probability becomes
now bounded from above by the sum of

lim
N→∞

PµN

[
sup

0≤t≤T

∣∣∣∣∣ 〈πNt , Ht〉 − 〈πN0 , H0〉 −
∫ t

0

〈πNs , ∂sHs〉+N2LN〈πNs , Hs〉 ds

∣∣∣∣∣ > δ/6

]
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and

lim
N→∞

PµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

N2LN〈πNs , Hs〉 ds−
∫ t

0

〈πNs ,∆Hs〉 ds

−
∫ t

0

{
ηεNs (aN + 1)∂uHs(a

+)− ηεNs (aN)∂uHs(a
−)
}
ds

+

∫ t

0

{
ηεNs (aN + 1)− ηεNs (aN)

}{
Hs(a

+)−Hs(a
−)
}
ds

∣∣∣∣∣ > δ/6

]
.

(2.23)

The expression inside the �rst probability is the martigaleMN
t (H) de�ned in (2.3). Using the

fact that the martingaleMN
t (H) converges to zero in L2(PµN ), which is proved in Proposition

2.2.1, and Doob's inequality, the �rst probability is equal to

lim
N→∞

PµN
[

sup
0≤t≤T

∣∣∣MN
t (H)

∣∣∣ > δ/6
]
= 0 ,

for every δ > 0,
We going to show now that the second probability above is null. By expression (2.7) for

N2LN〈πNs , Hs〉 the probability (2.23) is less than or equal to the sum of

lim
N→∞

PµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

〈πNs ,∆Hs〉 ds

−
∫ t

0

1
N

∑
x6=aN

x6=aN+1

ηs(x)N
2[Hs(

x+1
N

) +Hs(
x−1
N

)− 2Hs(
x
N
)] ds

∣∣∣∣∣ > δ/18

]
,

lim
N→∞

PµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
ηεNs (aN + 1)∂uHs(a

+)− ηεNs (aN)∂uHs(a
−)
}
ds

−
∫ t

0

{
ηs(aN+1)N∇NHaN+1 − ηs(aN)N∇NHaN−1

}
ds

∣∣∣∣∣ > δ/18

]
and

lim
N→∞

PµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
ηεNs (aN + 1)− ηεNs (aN)

}{
Hs(a

+)−Hs(a
−)
}
ds

−
∫ t

0

{
ηs(aN + 1)− ηs(aN)

}
∇NHaN ds

∣∣∣∣∣ > δ/18

]
.

Since H ∈ C1,2
(
[0, T ] × T\{a}

)
, the discrete Laplacian, which applied to Hs converges

uniformly to the continuous Laplacian of Hs. Then the �rst probability is null. To prove
that the others probabilities are null, we observe that N∇NFx converges uniformly to ∂uFs,
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as N → ∞ and ∇NFaN converges uniformly to Fs(a+) − Fs(a
−), as N → ∞, since F ∈

C1,2
(
[0, T ] × T\{a}

)
. By the rule of maximum of one particle per site and approximation

of integral by Riemann sums, for the previous probabilities be null, we need prove that the
probabilities

lim
N→∞

PµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
ηεNs (aN + 1)− ηs(aN+1)

}
∂uHs(a

+)

−
{
ηεNs (aN)− ηs(aN)

}
∂uHs(a

−) ds

∣∣∣∣∣ > δ

]
and

lim
N→∞

PµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{{
ηεNs (aN + 1)− ηεNs (aN)

}
−
{
ηs(aN + 1)− ηs(aN)

}}{
Hs(a

+)−Hs(a
−)
}
ds

∣∣∣∣∣ > δ

]
.

converge to zero, as ε ↓ 0, ∀δ > 0. It follows by Replacement Lemma 2.3.3.

Proposition 2.5.1. Fix a Borel measurable pro�le γ : T → [0, 1] and consider a sequence
{µN : N ≥ 1} of probability measures on {0, 1}TN associated to γ in the sense of (1.4). Then
any limit point of QµN is concentrated on absolutely continuous paths πt(du) = ρ(t, u)du, with
positive density ρt bounded by 1, such that ρ is a weak solutions of (1.7) with initial condition
γ.

Proof. Let {Hi : i ≥ 1} be a countable dense set of functions on C1,2
(
[0, T ] × T\{a}

)
,

with respect to the norm ‖H‖∞ + ‖∂uH‖∞ + ‖∂2uH‖∞. Provided by (2.20) and intercepting
a countable number of sets of probability one, is straightforward to extend (2.20) for all
functions H ∈ C1,2

(
[0, T ]× T\{a}

)
simultaneously.

2.6 Uniqueness of weak solutions

This section is devoted to the uniqueness of weak solutions of (1.7). To simplify notation,
along this section, we will consider a = 0 and sometimes we will denote 0+ = 0 and 0− = 1.

Denote L2(T)⊥1 the subspace of functions g ∈ L2(T) with zero mean, or else, satisfying∫
T
g(u) du = 0 .

De�nition 2.6.1. Denote by H2
bc(T) the set of functions H : T → R such that H is twice

di�erentiable with H ∈ C(T), ∂uH is absolutely continuous and ∆H ∈ L2(T)⊥1. Moreover,
H satis�es the boundary conditions:

∂uH(0+) = ∂uH(0−) = H(0+)−H(0−) .
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Proposition 2.6.1. Let ρ : [0, T ] × T → R be a weak solution of the parabolic di�erential
equation (1.7) with initial condition γ : T → R. Then, for all t ∈ [0, T ] and for all H ∈
H2

bc(T), holds

〈ρt, H〉 − 〈γ,H〉 =

∫ t

0

〈ρs,∆H〉 ds , (2.24)

for all t ∈ [0, T ].

Proof. Let H ∈ H2
bc(T). Here, we will denote 0+ = 0 and 0− = 1. Hence H satis�es

∂uH(0) = ∂uH(1) = H(0)−H(1) .

Consider hn ∈ C(T) such that
∫
hn(x) dx = 0 and hn converges to ∆H and βn converging

to ∂uH(0), and de�ne

Hn(x) = H(0) + βnx+

∫ x

0

∫ y

0

hn(z) dz dy .

Notice that Hn ∈ C1,2
(
[0, T ]× T\{0}

)
, ∂uHn(0) = ∂uHn(1) and ∆Hn = hn. Then,

〈ρt, Hn〉 − 〈γ,Hn〉 =

∫ t

0

〈ρs, hn〉 ds

+

∫ t

0

{
ρs(0)− ρs(1)

}
∂uHn(0) ds

−
∫ t

0

{
ρs(0)− ρs(1)

}{
Hn(0)−Hn(1)

}
ds .

(2.25)

Since Hn converges to H and hn converges to ∆H, we just need to analyse the boundary
terms. By de�nition of Hn, ∂uHn(0) = ∂uHn(1) = βn converges to ∂uH(0). Using that hn
converges to ∆H in L2 and βn converges to ∂uH(0), we get Hn(1) converges to

H(0) + ∂uH(0) +

∫ 1

0

∫ y

0

∆H(z) dz dy . (2.26)

By de�nition of the set H2
bc(T), we have that∫ y

0

∆H(z) = ∂uH(y)− ∂uH(0) .

The expression (2.26) is equal to H(1). Thus, Hn(0) −Hn(1) converges to H(0) −H(1) =
∂uH(0). One can obtain the equation (2.24).

The next step is to construct the inverse of the operator ∆ : H2
bc(T) → L2(T). For

g ∈ L2(T)⊥1, de�ne

[(−∆)−1g](x) =

∫ 1

0

G(x, z)g(z) dz, (2.27)
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where the function G : [0, 1]× [0, 1] → R is given by

G(x, z) =
x(1− z)

2
− (x− z)1{0≤z≤x≤1} .

Proposition 2.6.2. The operator (−∆)−1 enjoys the following properties:

(a) ∀ g ∈ L2(T)⊥1, (−∆)−1g ∈ C1(T\{0}) and ∂u(−∆)−1g is absolutely continuous in
T\{0}, both having �nite side limits around the point 0;

(b) ∀ g ∈ L2(T)⊥1, [(−∆)−1g](0+)−[(−∆)−1g](0−) = ∂u[(−∆)−1g](0+) = ∂u[(−∆)−1g](0−);

(c) ∀ g ∈ L2(T)⊥1, (−∆)−1g ∈ H2
bc(T);

(d) ∀ g ∈ L2(T)⊥1, −∆(−∆)−1g = g;

(e) The operators −∆ : H2
bc(T) → L2(T)⊥1 and (−∆)−1 : L2(T)⊥1 → H2

bc(T) are symmet-
ric and nonnegative;

(f) ∀ g ∈ H2
bc(T),

∫
T∆g(u) du = 0.

Proof. Let g be a function in L2(T)⊥1. By the de�nition of (−∆)−1,

[(−∆)−1g](x) = x

∫
T

(1− z)

2
g(z) dz − x

∫ x

0

g(z) dz +

∫ x

0

zg(z) dz , (2.28)

which easily implies (a). Item (b) follows by the assumption g has zero mean. Items (a) and
(b) imply (c). Deriving (2.28) twice and recalling item (c), we obtain (d).

Let g, h ∈ H2
bc(T). Integrating by parts,

〈−∆g, h〉 = 〈∂ug, ∂uh〉+ ∂ug(0
+)h(0+)− ∂ug(0

−)h(0−) .

Since g, h ∈ H2
bc(T), these functions satisfy the boundary conditions g(0+) − g(0−) =

∂ug(0
+) = ∂ug(0

−) and h(0+) − h(0−) = ∂uh(0
+) = ∂uh(0

−). Putting them together we
observe that

〈−∆g, h〉 = 〈∂ug, ∂uh〉+ ∂ug(0
+)∂uh(0

+), (2.29)

which implies symmetry and non-negativity. The same holds for (−∆)−1, using the item
(d). Item (f) follows from expression (2.29) with h = −1.

Proposition 2.6.3. Let ρ be a weak solution of the hydrodynamic equation (1.7) with zero
initial condition. For all t ∈ [0, T ], holds the equality

〈ρt, (−∆)−1ρt〉 = −2

∫ t

0

〈ρs, ρs〉 ds . (2.30)

In particular, since the hydrodynamical equation (1.7) is linear, there is at most one weak
solution with initial condition ρ0.
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Proof. Notice that the mean of a weak solution of (1.7) is constant in time, therefore ρt ∈
L2(T)⊥1 for any time t ∈ [0, T ].

Take a partition 0 = t0 < t1 < · · · < tn = T of the interval [0, T ], so that

〈ρt, (−∆)−1ρt〉 − 〈ρ0, (−∆)−1ρ0〉

=
n−1∑
k=0

〈ρtk+1
, (−∆)−1ρtk+1

〉 − 〈ρtk+1
, (−∆)−1ρtk〉

+
n−1∑
k=0

〈ρtk+1
, (−∆)−1ρtk〉 − 〈ρtk , (−∆)−1ρtk〉 .

We handle the second term, the �rst one being similar because (−∆)−1 is a symmetric
operator. Since ρ is a weak solution of (1.7), ρtk belongs to L

2(T)⊥1 and recalling Proposition
2.6.1 and Proposition 2.6.2 item (c),

〈ρtk+1
, (−∆)−1ρtk〉 − 〈ρtk , (−∆)−1ρtk〉

= −
∫ tk+1

tk

〈ρs, ρs〉 ds+
∫ tk+1

tk

〈ρs, ρs − ρtk〉 ds .
(2.31)

The sum over k of the �rst term in the right side of (2.31) is exactly the expression that
we announced in (2.30). We shall treat the remainder. Let ιδ : T → R be an smooth
approximation of identity and Φδ : T → R a smooth function bounded by one, equals to zero
in the interval (−δ, δ), and equals to one in T\(−2δ, 2δ). De�ne

ρδs(u) = (ρs ∗ ιδ)(u)Φδ(u) .

It is of easy veri�cation that ρδs ∈ H2
bc(T), for any s ∈ [0, T ], and also that ρδs(·) converges

to ρs(·) in L2(T), when δ ↓ 0. Adding and subtracting ρδ, the second term on the r.h.s of
(2.31) can be written as∫ tk+1

tk

〈ρs − ρδs, ρs − ρtk〉 ds+
∫ tk+1

tk

〈ρδs, ρs − ρtk〉 ds . (2.32)

Fix ε > 0. Since ρδs(·) converges to ρs(·) in L2(T), applying the Dominated Convergence
Theorem, the sum in k of the �rst term in (2.32) is bounded in modulus by ε for some δ(ε)
small.

Fix now such δ = δ(ε). Since ρδs ∈ H2
bc(T) and since ρ is a weak solution of (1.7), the

second term in (2.32) is equal to ∫ tk+1

tk

∫ s

tk

〈ρr,∆ρδs〉 dr ds ,

whose modulus is bounded by C(ρ, δ)(tk+1 − tk)
2, concluding the proof of (2.30).
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To see that this implies the uniqueness of solutions with a initial solution ρ0, note that
the hydrodynamical equation (1.7) is linear, being enough to prove there is a unique weak
solution with zero initial condition. Besides, if ρ is a weak solution of (1.7) with zero initial
condition, then ρt ∈ L2(T)⊥ for any time t ∈ [0, T ]. Then, by the item (e) of the Proposition
2.6.2, 〈ρt, (−∆)−1ρt〉 ≥ 0, for all t ∈ [0, T ]. Using (2.30), we have 〈ρt, (−∆)−1ρt〉 = 0, for all
t ∈ [0, T ]. From item (d), �xed t ∈ [0, T ], there exists ft ∈ H2

bc(T) such that ρt = (−∆)ft,
and thus

〈ρt, (−∆)−1ρt〉 = 〈−∆ft, ft〉 = 〈∂uft, ∂uft〉+ (∂uft(0
+))2 .

Then, ∂uft(u) = 0, u - almost surely and for all t ∈ [0, T ]. Since ρt = (−∆)ft, we have
ρt(u) = 0, u - almost surely and for all t ∈ [0, T ]. This concludes the proof.
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Chapter 3

Superexponential Estimates

In this chapter, we present some results needed in order to show a Large Deviations Principle
for our model. Given a ∈ T, recall that aN denotes the site of the left side of the slow bond
in the discrete torus TN . In the others chapters, we can choose a = 0, but here a is any.
Such choice has been taken since, with this notation, becomes more clear that all results
are immediately generalized for �nite slow bonds associated to �nite points a1, . . . , ak ∈ T.
Before proceeding we introduce some tools that we use in the sequel.

For the Large Deviations, the Replacement Lemma presented in Section 2.3.2 is not
enough, because we need to prove that the di�erence between cylinder functions and functions
of the density �eld are superexponentially small, that is, of order smaller that exp{−CN},
for all C > 0.

Proposition 3.0.4 (Superexponential Estimate). Let Fi : [0, T ]×T → R, i = 1, 2, such that

lim
N→∞

∫ T

0

{
(F2(t,

aN
N
))2 + 1

N

∑
x 6=aN

(
F1(t,

x
N
)
)2}

dt < ∞ .

For each ε > 0, consider

V F1,F2

N,ε (t, η) = 1
N

∑
x 6=aN

F1(t,
x
N
)
{
τxg1(η)− g̃1(η

εN(x), ηεN(x+1))
}

+ F2(t,
aN
N
)
{
τaNg1(η)− g̃1(η

εN(aN), η
εN(aN+1))

}
,

where g1 and g̃1 were de�ned in (2.10). Then, for any δ > 0,

lim
ε↓0

lim
N→∞

1
N
logPνNα

[∣∣∣ ∫ T

0

V F1,F2

N,ε (t, ηt) dt
∣∣∣ > δ

]
= −∞ . (3.1)

Finally, it is true the same result with g2 and g̃2 replacing by g1 and g̃1.
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Proof. Using the Proposition A.2.7, it is enough to prove (3.1) without the absolute value
for V F1,F2

N,ε and V −F1,−F2

N,ε .
Let C > 0, by Chebyshev exponential inequality, we get

PνNα
[ ∫ t

0

V F1,F2

N,ε (s, ηs) ds > δ
]

≤ exp {−CδN}EνNα
[
exp

{
CN

∫ t

0

V F1,F2

N,ε (s, ηs) ds
}]

.

To conclude the proof of the theorem it is therefore enough to show that

lim
ε↓0

lim
N→∞

1
N
logEνNα

[
exp

{∫ T

0

CN V F1,F2

N,ε (t, ηt) dt
}]

≤ 0 , (3.2)

for every C > 0, because in this case we would have proved that left hand side of (3.1) is
bounded from above by −Cδ for every C > 0 and it would remain to let C increase to ∞.

From Feynman-Kac formula (see [16], Lemma 7.2, p. 336 and Proposition A.1.7), for
each �xed N the previous expectation is bounded from above by

exp
{∫ T

0

sup
f

[ ∫
CN V F1,F2

N,ε (t, η)f(η)dνNα (η)−N2DN(f)
]
dt
}
,

where the supremum is carried over all density functions f with respect to νNα . Replacing
the expression of V F1,F2

N,ε (t, η) and using the Lemma 2.3.1, the expression in (3.2) becomes
bounded from above by∫ T

0

sup
f

[
6CAε

(
2
∑
x 6=aN

(
F1(t,

x
N
)
)2

+N(F2(t,
aN
N
))2

)
+ 6C

A
DN(f)−NDN(f)

]
dt .

Choosing A = 6C
N
, the expression above becomes

36C2ε

∫ T

0

(
2
N

∑
x 6=aN

(
F1(t,

x
N
)
)2

+ (F2(t,
aN
N
))2

)
dt .

For all C > 0, this expression vanishes as N → ∞ and then ε ↓ 0, which concludes this
proof.

Proposition 3.0.5 (Superexponential Estimate for a single site). For each bounded function
F : [0, T ]× T, site x ∈ TN and each ε > 0, let

V F,x
N,ε (t, η) = F (t, x

N
){η(x)− ηεN(x)}

Then, for any δ > 0,

lim
ε↓0

lim
N→∞

1

N
logPνNα

[∣∣∣∫ T

0

V F,x
N,ε (t, ηt) dt

∣∣∣ > δ
]
= −∞.
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Proof. This proof follows by same method as in Proposition 3.0.4. The unique di�erence is
that to apply the inequality (2.15) of the Lemma 2.3.1, we need to see that

PνNα
[∣∣∣∫ T

0

V F,x
N,ε (t, ηt) dt

∣∣∣ > δ
]
≤ PνNα

[∣∣∣∫ T

0

{η(x)− ηεN(x)} dt
∣∣∣ > δ

‖F‖∞

]
.

3.1 Energy estimates

We prove in this section an energy estimate. It permits to exclude paths with in�nite energy
in the large deviations regime. The energy is presented in Section 1.4, more speci�cally, in
De�ni�on 1.4.1. By Lemma 2.4.4 and Proposition A.1.1, if π has �nite energy, its density ρ
belongs to L2

(
0, T ;H1(T\{a})

)
. The next proposition is the fundamental result needed to

obtain the energy estimates.

Proposition 3.1.1.

lim
ε↓0

lim
N→∞

1
N
logPµN

[
EH(πN ∗ ιaε) ≥ l

]
≤ −l +K0 .

Proof. We begin by claiming that, for enough small ε > 0, holds the equality∫ T

0

∫
T
∂vH(t, v)(πNt ∗ ιaε)(v)dvdt =

∫ T

0

1
εN

∑
x∈TN

H(t, x
N
) [ηt(x)− ηt(x+ εN)]dt . (3.3)

Since H has support contained in [0, T ] × (T\{a}), there exists some ε0 > 0 such that
H(t, v) vanishes if v ∈ (a− εo, a+ ε0), for all t ∈ [0, T ]. Applying Fubini's Theorem,∫ T

0

∫
T
∂uH(t, v)(πNt ∗ ιaε)(v) dv dt

=

∫ T

0

1
N

∑
x∈TN

ηt(x)
(∫

T
∂uH(t, v)ιaε(

x
N
, v) dv

)
dt .

From the de�nition of ιaε given in (2.9) and taking 0 < ε < ε0, the last expression is equal to∫ T

0

1
N

∑
x∈TN

ηt(x)
(∫

T\(a−ε,a+ε)
∂uH(t, v)1

ε
1(v,v+ε)(

x
N
) dv

)
dt

=

∫ T

0

1
N

∑
x∈TN

ηt(x)
(

1
ε
1T\(a−ε,a+ε)(

x
N
)[Ht(

x
N
)−Ht(

x
N
− ε)]

)
dt .

Using again that H(t, v) vanishes if v ∈ (a− ε, a+ ε), for all t ∈ [0, T ], the expression above
is equal to ∫ T

0

1
εN

∑
x∈TN

ηt(x)[Ht(
x
N
)−Ht(

x
N
− ε)] dt ,
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concluding the claim.

Applying the de�nition of energy and (3.3), for enough small ε > 0, we have that

EH(πN ∗ ιaε) =
∫ T

0

1
εN

∑
x∈TN

H(t, x
N
) [ηt(x)− ηt(x+ εN)]dt

− 2

∫ T

0

∫
T

(
H(t, u)

)2
du dt .

Let us introduce the notation

VN(ε,H, η) =
1
εN

∑
x∈TN

H( x
N
){η(x)− η(x+ εN)} − 2

N

∑
x∈TN

(
H( x

N
)
)2
.

To prove the statement of proposition, just left to show that

lim
ε↓0

lim
N→∞

1
N
logPµN

[ ∫ T

0

VN(ε,Ht, ηt) dt ≥ l
]
≤ −l +K0 .

By Tchebychev exponential inequality,

1
N
logPµN

[ ∫ T

0

VN(ε,Ht, ηt)dt ≥ l
]

≤ 1
N
logEµN

[
exp

{
N

∫ T

0

VN(ε,Ht, ηt)dt
}]

− l ,

and the proof reduces to the statement

lim
ε↓0

lim
N→∞

1
N
logEµN

[
exp

{
N

∫ T

0

VN(ε,Ht, ηt)dt
}]

≤ K0 .

From de�nition of the entropy and Jensen's Inequality, the expectation is bounded from
above by

K0 +
1
N
logEνNα

[
exp

{
N

∫ T

0

VN(ε,Ht, ηt)dt
}]

.

By the Feynman-Kac formula and the variational formula for the largest eigenvalue of a
symmetric operator, for each �xed N ,

1
N
logEνNα

[
exp

{
N

∫ T

0

VN(ε,Ht, ηt)dt
}]

≤
∫ T

0

sup
f

{∫
VN(ε,Ht, η)f(η)dν

N
α (η)−NDN(f)

}
dt .

The supremum is taken over all probability densities f with respect to νNα . Using the Lemma
2.4.2, the last expression is bounded from above by∫ T

0

2
εN

∑
x
N
∈(a−ε,a]

(
Ht(

x
N
)
)2
dt .

Since H has compact support, for ε > 0 enough small the expression above vanishes.
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Corollary 3.1.2. Let {Hj} dense in the subset C0,1([0, T ]×T) of the functions with support
contained in [0, T ]× (T\{a}). Then,

lim
ε↓0

lim
N→∞

1
N
logPµN

[
max
1≤j≤k

EHj
(πN ∗ ιaε) ≥ l

]
≤ −l +K0T . (3.4)

Proof. Follows from the fact exp{max1≤j≤k aj} is bounded from above by
∑k

j=1 exp{aj} and
by Proposition A.2.7
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Chapter 4

Large Deviations Upper Bound

Recall that PνNα and PHνNα are probabilities measures on the space D([0, T ], {0, 1}TN ). The
probability PνNα corresponds to the homogeneous Markov process ηt with generator LN de-
�ned in (1.1) accelerated by N2 and starting from νNα . For H ∈ C1,2([0, T ] × T\{a} ), the
probability PHνNα corresponds to the inhomogeneous Markov process ηt with generator LHN
de�ned in (1.9) accelerated by N2 and starting from the invariant measure νNα .

Handwaving, the prove of the large deviations upper bound is constructed by an op-
timization over a class of mean-one positive martingales, which must be functions of the
process, or, as in our case, close to functions of the process. In Section 4.1, we will ob-
tain one good candidate to mean-one positive martingale, the Radon-Nikodym derivative
of the measure PHνNα with respect to PνNα . Unfortunately, dPHνNα /dPνNα is not a function of
the empirical measure, see your expression in (4.3). The �rst step in the proof of a large
deviations principle is therefore to show that dPHνNα /dPνNα is superexponentially close to a
function of the empirical measure. Here superexponentially means that the L1-norm of the
di�erence between the Radon-Nikodym derivative and a function of the empirical measure
has expectation of order smaller than exp {−CN} for all C > 0. In Chapter 3, we prove the
superexponential estimates.

4.1 Radon-Nikodym derivative

By (dPHνNα /dPνNα )(t) let us denote the Radon-Nikodym derivative of PHνNα with respect to PνNα
restricted to the σ-algebra generated by {ηs, 0 ≤ s ≤ t}. It is a general fact of stochastic
process that (dPHνNα /dPνNα )(t) is a mean-one positive martingale. The explicit formula of the
Radon-Nikodym derivative of a Markov process with respect to another one (see Appendix
of [16]) shows that (dPHνNα /dPνNα )(T ) is equal to

exp

{
N
[
〈πNT , HT 〉 − 〈πN0 , H0〉 − 1

N

∫ T

0

e−N〈πN
t ,Ht〉(∂t +N2LN)e

N〈πN
t ,Ht〉dt

]}
. (4.1)
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In what follows of this section, we present some simple and long calculations in order to
arrive at a suitable form of (dPHνNα /dPνNα )(T ), which we will denote by dPHνNα /dPνNα . In a �rst
reading, the reader can assume (4.3), and go ahead with no future di�culties.

Denote ∇NHx = Ht(
x+1
N

)−Ht(
x
N
). By simple calculations, dPHνNα /dPνNα can be rewritten

as

exp

{
N〈πNT , HT 〉 −N〈πN0 , H0〉 −N

∫ T

0

〈πNt , ∂tHt〉 dt

−N2

∫ T

0

∑
x∈TN

ξNx,x+1ηt(x)
(
1− ηt(x+1)

)(
e∇NHx − 1

)
dt

−N2

∫ T

0

∑
x∈TN

ξNx,x+1ηt(x+1)
(
1− ηt(x)

)(
e−∇NHx − 1

)
dt

}
.

Using the de�nition of ξN and performing some more calculations, the last expression be-
comes

exp

{
N〈πNT , HT 〉 −N〈πN0 , H0〉 −N

∫ T

0

〈πNt , ∂tHt〉 dt

−N2

∫ T

0

∑
x6=aN

x6=aN+1

ηt(x)(∇NHx −∇NHx−1) dt

−N2

∫ T

0

∑
x 6=aN

ηt(x)
(
1− ηt(x+1)

)(
e∇NHx −∇NHx − 1

)
dt

−N2

∫ T

0

∑
x 6=aN

ηt(x+1)
(
1− ηt(x)

)(
e−∇NHx +∇NHx − 1

)
dt

−N2

∫ T

0

{
ηt(aN + 1)∇NHaN+1 − ηt(aN)∇NHaN−1

}
dt

−N

∫ T

0

ηt(aN)
(
1− ηt(aN+1)

)(
e∇NHaN − 1

)
dt

−N

∫ T

0

ηt(aN + 1)
(
1− ηt(aN)

)(
e−∇NHaN − 1

)
dt

}
.

Since H ∈ C1,2
(
[0, T ] × T\{a}

)
and by Taylor's expansion up to the second order, we

get ∣∣∣ 1
N

∑
x 6=aN

x6=aN+1

ηt(x)N
2(∇NHx −∇NHx−1)− 1

N

∑
x∈TN

ηt(x)∆Ht(
x
N
)
∣∣∣ = OH(

1
N
) .
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Using again the Taylor's expansion up to the second order and the elementary inequality
|eu − 1− u− (1/2)u2| ≤ (1/6)|u|3e|u|, the expression∣∣N2

(
e∇NHx −∇NHx − 1

)
− 1

2
(∂uHt)

2( x
N
)
∣∣

is OH(
1
N
), for each x 6= aN . By the same reason, the expression∣∣N2

(
e−∇NHx +∇NHx − 1

)
− 1

2
(∂uHt)

2( x
N
)
∣∣

is also OH(
1
N
), for each x 6= aN . It is also easy to see that |N∇NHaN+1 − ∂uHt(

aN+1
N

)|=
OH(

1
N
) and |N∇NHaN−1 − ∂uHt(

aN
N
)| = OH(

1
N
).

Putting together the facts above, we can rewrite the Radon-Nikodym derivative,
dPH

νNα

dP
νNα

,
as

exp

{
N〈πNT , HT 〉 −N〈πN0 , H0〉 −N

∫ T

0

〈πNt , (∂t +∆)Ht〉 dt

−N

∫ T

0

1
N

∑
x 6=aN

ηt(x)
(
1− ηt(x+1)

)
1
2
(∂uHt)

2( x
N
) dt

−N

∫ T

0

1
N

∑
x 6=aN

ηt(x+1)
(
1− ηt(x)

)
1
2
(∂uHt)

2( x
N
) dt

−N

∫ T

0

{
ηt(aN + 1)∂uHt(

aN+1
N

)− ηt(aN)∂uHt(
aN
N
)
}
dt

−N

∫ T

0

ηt(aN)
(
1− ηt(aN+1)

)(
e∇NHaN − 1

)
dt

−N

∫ T

0

ηt(aN + 1)
(
1− ηt(aN)

)(
e−∇NHaN − 1

)
dt−NOH,T (

1
N
)
]}

.

To write this in a simple form, we introduce some notation. For each function H ∈
C1,2

(
[0, T ]× T\{a}

)
, we consider the linear functional `

int

H : D
(
[0, T ],M

)
→ R given by

`
int

H (π) = 〈πT , HT 〉 − 〈π0, H0〉 −
∫ T

0

〈πt, (∂t +∆)Ht〉 dt . (4.2)

Recall the notation g1, g̃1, g2 and g̃2 de�ned in (2.10) and (2.11). With this notation we may
write the Radon-Nikodym derivative dPHνNα /dPνNα as

exp

{
N
[
`
int

H (πN)−
∫ T

0

1
2N

∑
x 6=aN

{
τxg1(ηt) + τxg2(ηt)

}
(∂uHt)

2( x
N
) dt

]
−N

∫ T

0

{
ηt(aN + 1)∂uHt(

aN+1
N

)− ηt(aN)∂uHt(
aN
N
)
}
dt

(4.3)
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−N

∫ T

0

{
τaNg1(ηt)

(
e∇NHaN − 1

)
+ τaNg2(ηt)

(
e−∇NHaN − 1

)}
dt

−N OH,T (
1
N
)

}
.

We begin by de�ning a set where the Radon-Nikodym derivative dPHνNα /dPνNα is close to
a function of the empirical measure. Consider

V 1
N,ε(t, η) = V F1,F2

N,ε (t, η) , V 2
N,ε(t, η) = V G1,G2

N,ε (t, η) ,

V 3
N,ε(t, η) = V ∂H,aN

N,ε (t, η) , V 4
N,ε(t, η) = V ∂H,aN+1

N,ε (t, η) ,

where V F1,F2

N,ε , V G1,G2

N,ε , V ∂H,aN
N,ε and V ∂H,aN+1

N,ε have been de�ned in Propositions 3.0.4 and
3.0.5 with F1(t, u) = 1

2
(∂uHt)

2(u), F2(t,
aN
N
) = e∇NHaN − 1, G1(t, u) = 1

2
(∂uHt)

2(u) and
G2(t,

aN
N
) = e−∇NHaN − 1.

De�ne BH
δ,ε as the set of trajectories {ηt}0≤t≤T such that

BH
δ,ε =

{
η ∈ D([0, T ], {0, 1}TN ) ;

∣∣∣ ∫ T

0

V i
N,ε(t, ηt) dt

∣∣∣ ≤ δ , i = 1, 2, 3, 4

}
. (4.4)

From Propositions 3.0.4 and 3.0.5, the set BH
δ,ε has probability superexponentially close

to 1: for each δ > 0 and H ∈ C1,2([0, T ]× (0, 1) ),

lim
ε↓0

lim
N→∞

1
N
logPνNα

[
(BH

δ,ε)
{
]
= −∞ . (4.5)

Since ηεN(x) = (πN ∗ ιaε)( xN ). In view of this identity and the expression (4.3) for
dPHνNα /dPνNα , on BH

δ,ε the Radon-Nikodym derivative can be written as a function of the

empirical measure modulo some small errors, i.e., dPHνNα /dPνNα restricted to BH
δ,ε is equal to

exp

{
N

[
`
int

H (πN)−
∫ T

0

1
2N

∑
x 6=aN

g̃1

(
(πNt ∗ ιaε)( xN ), (π

N
t ∗ ιaε)(x+1

N
)
)
(∂uHt)

2( x
N
) dt

−
∫ T

0

1
2N

∑
x6=aN

g̃2

(
(πNt ∗ ιaε)( xN ), (π

N
t ∗ ιaε)(x+1

N
)
)
(∂uHt)

2( x
N
) dt

−
∫ T

0

[
(πNt ∗ ιaε)(aN+1

N
)∂uHt(

aN+1
N

)− (πNt ∗ ιaε)(aNN )∂uHt(
aN
N
)
]
dt

−
∫ T

0

g̃1

(
(πNt ∗ ιaε)(aNN ), (πNt ∗ ιaε)(aN+1

N
)
)
(e∇NHaN − 1) dt

−
∫ T

0

g̃2

(
(πNt ∗ ιaε)(aNN ), (πNt ∗ ιaε)(aN+1

N
)
)
(e−∇NHaN − 1) dt

+ OH,T (
1
N
) + O(δ)

]}
.

(4.6)
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The Radon-Nikodym derivative already is one function of the empirical measure more
small errors, but to conclude the upper bound large deviations we will need take some limits.
For these operations will be true to ensure that the boundary terms in (4.6) are well de�ned.
For this reason we will make πN ∗ ιaε more smooth. In this way, we will replace πN by πN ∗ ιγ,
where ιγ is a continuous approximation of identity. Thus, we will work with (πN ∗ ιγ) ∗ ιaε .
Since πN ∗ ιγ belongs to D([0, T ],M0), by Lemma A.3.8, E((πN ∗ ιγ) ∗ ιaε) is �nite. This will
ensure that the boundary terms are well de�ned.

For this fact, we will need of the next technical lemmata, which proofs are in the end of
section.

Let f : T → R+, any continuous function such that the support of f is contained in
[−1

4
, 1
4
], ‖f‖∞ ≤ 4, f(0) > 0, ‖f‖L1 = 1 and f(u) = f(1− u) for all u ∈ T. De�ne now the

continuous approximation of identity ιγ by ιγ(u) = 1
γ
f(u

γ
).

Lemma 4.1.1.
|(πNt ∗ ιaε)(v)− ((πNt ∗ ιγ) ∗ ιaε)(v)| ≤

γ
ε
,

uniformly in v ∈ T, N and in t ∈ [0, T ].

Lemma 4.1.2. Recalling that `
int

H is the linear functional de�ned in (4.2).

`
int

H (πN) = `
int

H

(
(πN ∗ ιγ) ∗ ιaε

)
+OH(ε) +OH(

γ
ε
) ,

uniformly in N .

Lemma 4.1.3. For i = 1, 2, the function∣∣∣g̃i((πNt ∗ ιaε)( xN ), (π
N
t ∗ ιaε)(x+1

N
)
)
− g̃i

(
((πNt ∗ ιγ) ∗ ιaε)( xN ), ((π

N
t ∗ ιγ) ∗ ιaε)(x+1

N
)
)∣∣∣

is equal to O(γ
ε
).

The Lemmata 4.1.1, 4.1.2 and 4.1.3 allow to replace πN by πNt ∗ ιγ in the expression
of Radon-Nikodym derivative (4.6). Then, restricted to the set BH

δ,ε, the Radon-Nikodym
derivative dPHνNα /dPνNα becomes

exp

{
N

[
`
int

H

(
(πN ∗ ιγ) ∗ ιaε

)
−

∫ T

0

1
2N

∑
x 6=aN

g̃1

(
((πNt ∗ ιγ) ∗ ιaε)( xN ), ((π

N
t ∗ ιγ) ∗ ιaε)(x+1

N
)
)
(∂uHt)

2( x
N
) dt

−
∫ T

0

1
2N

∑
x 6=aN

g̃2

(
((πNt ∗ ιγ) ∗ ιaε)( xN ), ((π

N
t ∗ ιγ) ∗ ιaε)(x+1

N
)
)
(∂uHt)

2( x
N
) dt

(4.7)
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−
∫ T

0

[
((πNt ∗ ιγ) ∗ ιaε)(aN+1

N
)∂uHt(

aN+1
N

)− ((πNt ∗ ιγ) ∗ ιaε)(aNN )∂uHt(
aN
N
)
]
dt

−
∫ T

0

g̃1

(
((πNt ∗ ιγ) ∗ ιaε)(aNN ), ((πNt ∗ ιγ) ∗ ιaε)(aN+1

N
)
)
(e∇NHaN − 1) dt

−
∫ T

0

g̃2

(
((πNt ∗ ιγ) ∗ ιaε)(aNN ), ((πNt ∗ ιγ) ∗ ιaε)(aN+1

N
)
)
(e−∇NHaN − 1) dt

+ OH,T (
1
N
) + O(δ) + OH(ε) + OH(

γ
ε
)

]}
.

Lemma 4.1.4. Let χ be the function de�ned by χ(α) = α(1 − α), for all α ∈ [0, 1]. Then,
for i = 1, 2, ∣∣∣ 1

N

∑
x 6=aN

g̃i

(
((πNt ∗ ιγ) ∗ ιaε)( xN ), ((π

N
t ∗ ιγ) ∗ ιaε)(x+1

N
)
)
(∂uHt)

2( x
N
)

−
∫
T
χ
(
((πNt ∗ ιγ) ∗ ιaε)(v)

)
(∂uHt)

2(v) dv
∣∣∣ = OH,ε(

1
N
) ,

uniformly in t ∈ [0, T ].

Lemma 4.1.5. The function∣∣∣((πNt ∗ ιγ) ∗ ιaε)(aN+1
N

)∂uHt(
aN+1
N

)− ((πNt ∗ ιγ) ∗ ιaε)(aNN )∂uHt(
aN
N
)

− ((πNt ∗ ιγ) ∗ ιaε)(a+)∂uHt(a
+)− ((πNt ∗ ιγ) ∗ ιaε)(a−)∂uHt(a

−)
∣∣∣

is OH,T,ε,γ(
1
N
), uniformly in t ∈ [0, T ].

Lemma 4.1.6.∣∣∣g̃1(((πNt ∗ ιγ) ∗ ιaε)(a−), ((πNt ∗ ιγ) ∗ ιaε)(a+)
)(
eHt(a+)−Ht(a−) − 1

)
− g̃1

(
((πNt ∗ ιγ) ∗ ιaε)(aNN ), ((πNt ∗ ιγ) ∗ ιaε)(aN+1

N
)
)
(e∇NHaN − 1)

∣∣∣
is OH,T,ε,γ(

1
N
), uniformly in t ∈ [0, T ]. The result analogous is valid for g̃2.

Using the Lemmata 4.1.4, 4.1.5 and 4.1.6, we can rewrite the expression (4.7) of the
Radon-Nikodyn derivative dPHνNα /dPνNα , on the set BH

δ,ε, as

exp

{
N

[
`
int

H

(
(πN ∗ ιγ) ∗ ιaε

)
−
∫ T

0

∫
T
χ
(
((πNt ∗ ιγ) ∗ ιaε)(v)

)
(∂uHt)

2(v) dv dt
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−
∫ T

0

[
((πNt ∗ ιγ) ∗ ιaε)(a+)∂uHt(a

+)− ((πNt ∗ ιγ) ∗ ιaε)(a−)∂uHt(a
−)
]
dt

−
∫ T

0

g̃1

(
((πNt ∗ ιγ) ∗ ιaε)(a−), ((πNt ∗ ιγ) ∗ ιaε)(a+)

)
(eHt(a+)−Ht(a−) − 1) dt

−
∫ T

0

g̃2

(
((πNt ∗ ιγ) ∗ ιaε)(a−), ((πNt ∗ ιγ) ∗ ιaε)(a+)

)
(e−Ht(a+)+Ht(a−) − 1) dt

+ OH,T,ε,γ(
1
N
) + O(δ) + OH(ε) + OH(

γ
ε
)

]}
.

(4.8)

Now, we need write the Radon-Nikodym derivative in a short expression. This will be
useful for future manipulations in the upper bound of large deviations. One can see a simi-
larity between the expression above and the expression of the funcional ĴH , de�ned in (1.14).
Before we continue with this replacement, we must clarify some details.

We begin observing that the functional `H , de�ned in (1.13), can be written in another
form. Indeed, recalling the De�nition (4.2) of the functional `

int

H : D
(
[0, T ],M

)
→ R

`
int

H (π) = 〈πT , HT 〉 − 〈π0, H0〉 −
∫ T

0

〈πt, (∂t +∆)Ht〉 dt ,

we obtain the follows expression for

`H(π) = `
int

H (π)−
∫ T

0

{ρt(a+)∂uHt(a
+)− ρt(a

−)∂uHt(a
−)} dt .

An important observation is that (πN ∗ ιγ) ∗ ιaε has energy �nite, it follows by Lemma
A.3.8. Now, we just need to remember the expression of ĴH and the De�nition 1.4.3 of
the functional JH , to be able to rewrite the expression (4.8). Thus, the Radon-Nikodym
derivative dPHνNα /dPνNα restricted to the set BH

δ,ε is equal to

exp
{
N
[
JH

(
(πN ∗ ιγ) ∗ ιaε

)
+OH,T,ε,γ(

1
N
) +O(δ) +OH(ε) +OH(

γ
ε
)
]}

. (4.9)

Unfortunately, the set {π; E(π) < ∞} not is closed. In sense of Proposition A.1.2, it
must to be �nite the functional in a closed set. In this way, we introduce the next de�nitions.

De�nition 4.1.1. Let Ak,l, A
ε,γ
k,l and A

ε
k,l be the subsets of trajectories given by

Ak,l = {π ∈ D
(
[0, T ],M

)
; max

1≤j≤k
EHj

(π) ≤ l} ,

Aεk,l =
{
π ∈ D

(
[0, T ],M

)
; π ∗ ιaε ∈ Ak,l

}
,

Aε,γk,l =
{
π ∈ D

(
[0, T ],M

)
; (π ∗ ιγ) ∗ ιaε ∈ Ak,l

}
.
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Proposition 4.1.7. For �xed ε, γ, k, l, the set Aε,γk,l is closed.

Proof. It is su�cient to show that the function ψ : D
(
[0, T ],M

)
→ R given by ψ(π) =

EHj
((πN ∗ ιγ) ∗ ιaε) is continuous. Let {πnt ; t ∈ [0, T ]}n converging to {πt; t ∈ [0, T ]} on

D([0, T ],M). Therefore, πnt
ω∗
→ πt, almost surely in time. For such t, πt ∗ ιγ = limn→∞ πnt ∗ ιγ,

since ιγ is a continuous function. By Dominated Convergence Theorem,

((πt ∗ ιγ) ∗ ιaε)(v) =
∫
T
lim
n→∞

(πnt ∗ ιγ)(u) ιaε(u, v) du = lim
n→∞

((πnt ∗ ιγ) ∗ ιaε)(v) . (4.10)

Again by the Dominated Convergence Theorem,

〈〈∂uHj, (πt ∗ ιγ) ∗ ιaε〉〉 =
∫ T

0

∫
T
∂uHj(t, v)((πt ∗ ιγ) ∗ ιaε)(v) dv dt

= lim
n→∞

∫ T

0

∫
T
∂uHj(t, v)((π

n
t ∗ ιγ) ∗ ιaε)(v) dv dt = lim

n→∞
〈〈∂uHj, (π

n ∗ ιγ) ∗ ιaε 〉〉 .

Proposition 4.1.8. For k, l �xed,

lim
ε↓0

lim
γ↓0

lim
N→∞

1
N
logPνNα

[
{πN ∈ (Aε,γk,l )

{}
]
≤ −l +K0T .

Proof. For all r > 0,

PνNα
[
max
1≤j≤k

EHj
((πN ∗ ιγ) ∗ ιaε) ≥ l

]
≤ PνNα

[
max
1≤j≤k

EHj
(πN ∗ ιaε) ≥ l − r

]
+ PνNα

[
max
1≤j≤k

EHj

(
(πN ∗ ιγ) ∗ ιaε − πN ∗ ιaε

)
≥ r

]
.

By Proposition 4.1.1,

max
1≤j≤k

EHj

(
(πN ∗ ιγ) ∗ ιaε − πN ∗ ιaε

)
= max

1≤j≤k

〈〈
∂uHj, (π

N ∗ ιγ) ∗ ιaε − πN ∗ ιaε
〉〉

≤ Cγ
ε
,

where C = C({H}1≤j≤k). Therefore,

PνNα
[
max
1≤j≤k

EHj
((πN ∗ ιγ − πN) ∗ ιaε) ≥ r

]
≤ PνNα

[
Cγ
ε

≥ r
]
,

which can be only one or zero, independently of N , assuming the value zero if γ is enoughly
small. Then,

lim
γ↓0

lim
N→∞

1
N
logPνNα

[
max
1≤j≤k

EHj
((πN ∗ ιγ) ∗ ιaε) ≥ l

]
≤ lim

N→∞
1
N
logPνNα

[
max
1≤j≤k

EHj
(πN ∗ ιaε) ≥ l − r

]
.

By corollary 3.1.2, we get

lim
ε↓0

lim
γ↓0

lim
N→∞

1
N
logPνNα

[
max
1≤j≤k

EHj
((πN ∗ ιγ) ∗ ιaε) ≥ l

]
≤ −l +K0T + r .

Because r is arbitrary, it �nishes the proof.
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Fix a sequence {Fi}i≥1 of smooth non-negative functions dense in the subset of non-
negative functions C(T) for the uniform topology. For i ≥ 1 and j ≥ 1, de�ne the set

Dj
i =

{
π ∈ D([0, T ],M); 0 ≤ 〈πt, Fi〉 ≤

∫
T
Fi(u) du+

1
j
‖F ′

i‖∞, 0 ≤ t ≤ T
}
, (4.11)

and for m ≥ 1 and j ≥ 1, let

Ej
m =

m⋂
i=1

Dj
i .

Proposition 4.1.9. It hold:

(i) For i ≥ 1 and j ≥ 1, the set Dj
i is a closed subset of D

(
[0, T ],M

)
;

(ii) D([0, T ],M0) = ∩j≥1 ∩m≥1 E
j
m;

(iii) For m ≥ 1 and j ≥ 1, limN→∞
1
N
logPνNα [{π

N ∈ (Ej
m)

{}] = −∞ .

Proof. (i) This statement follows from the fact for Fi continuous, then the function that
associate for each π ∈ D

(
[0, T ],M

)
the number sup0≤t≤T 〈πt, Fi〉 is continuous.

(ii) The inclusion D([0, T ],M0) ⊂ ∩j≥1 ∩m≥1 E
j
m is trivial. The other hand follows

approximating indicators functions of open intervals by an suitable sequence in {Fi}i≥1 and
in j.

(iii) The probability PνNα [{π
N ∈ (Ej

m)
{}] is

PνNα
[ m⋃
i=1

{
1
N

∑
x∈TN

Fi(
x
N
)ηt(x) >

∫
T
Fi(u) du+

1
j
‖F ′

i‖∞, for some t ∈ [0, T ]
}]

.

From the inequality∣∣∣ 1
N

∑
x∈TN

Fi(
x
N
)−

∫
T
Fi(u) du

∣∣∣ ≤ ∑
x∈TN

∫
[ x
N
,x+1

N
)

|Fi( xN )− Fi(u)| du ≤ ‖F ′
i‖∞
N

,

the probability PνNα [{π
N ∈ (Ej

m)
{}] becomes zero for N su�ciently large.

From Lemma A.3.8, E((π ∗ ιγ) ∗ ιaε) <∞, for all π ∈ D([0, T ],M). Then, we de�ne

Jk,l,m,jH,γ,ε,ζ(π) =

{
ĴH

(
(π ∗ ιγ) ∗ ιaε

)
, if π ∈ Aζ,γk,l ∩ Ej

m ,

+∞, otherwise.

Finally, the Radon-Nikodym derivative dPHνNα /dPνNα restricted to the set {πN ∈ Aζ,γk,l ∩
Ej
m} ∩BH

δ,ε is

exp
{
N
[
Jk,l,m,jH,γ,ε,ζ(π

N) +OH,T,ε,γ(
1
N
) +O(δ) +OH(ε) +OH(

γ
ε
)
]}

. (4.12)

Here toward the end of the section we present the proofs of lemmata above.
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Proof of Lemma 4.1.1. Writing the expression |(πNt ∗ ιaε)(v)− ((πNt ∗ ιγ) ∗ ιaε)(v)| as∣∣∣ 1
N

∑
x∈TN

ηt(x)ι
a
ε(

x
N
, v)−

∫
T

1
N

∑
x∈TN

ηt(x)ιγ(u− x
N
)ιaε(u, v) du

∣∣∣ .
Using the rule of maximum of one particle per site, the last expression is bounded by

1
N

∑
x∈TN

∣∣∣ιaε( xN , v)− ∫
T
ιγ(u− x

N
)ιaε(u, v) du

∣∣∣ .
Fix N , v and ε, then ιaε(·, v) is the indicator function of an open interval (z, z+ ε), for z = v
or z = a−ε. The summand above is possibly not zero only if x

N
belongs to the open intervals

(z − γ
4
, z + γ

4
) or (z + ε− γ

4
, z + ε+ γ

4
). The summands are bounded by 1

ε
, and the number

of non zero summands is of order γN , which concludes the proof.

Proof of Lemma 4.1.2. First we compare `
int

H (((πN ∗ ιγ) ∗ ιaε)) with `
int

H ((πN ∗ ιaε)). Using the
Lemma 4.1.1, we obtain the di�erence between this functions is∣∣∣∣∣〈((πNT ∗ ιγ) ∗ ιaε)− (πNT ∗ ιaε), HT

〉
−
〈
((πN0 ∗ ιγ) ∗ ιaε)− (πN0 ∗ ιaε), H0

〉
−
∫ T

0

〈
((πNt ∗ ιγ) ∗ ιaε)− (πNt ∗ ιaε), (∂t +∆)Ht

〉
dt

∣∣∣∣∣ ≤ C(H)γ
ε
.

Then, we need only analyze the expression below∣∣∣`intH ((πN ∗ ιaε))− `
int

H (πN)
∣∣∣ = ∣∣∣〈(πNT ∗ ιaε)− πNT , HT

〉
−
〈
(πN0 ∗ ιaε)− πN0 , H0

〉
−
∫ T

0

〈
(πNt ∗ ιaε)− πNt , (∂t +∆)Ht

〉
dt
∣∣∣ .

We handle only the �rst term, because the others terms are similar. Thus,〈
(πNt ∗ ιaε), Ht

〉
=

∫
T
(πNt ∗ ιaε)(v)Ht(v)dv =

∫
T

1
N

∑
y∈TN

ηt(y)ι
a
ε(

y
N
, v)Ht(v)dv

= 1
N

∑
y∈TN

ηt(y)

∫
T
Ht(v) ι

a
ε(

y
N
, v) dv = 〈πNt , Ht〉+OH(ε) .

This approximation holds uniformly in time and N , since H ∈ C1,2([0, T ]× (0, 1) ) and there
is at most one particle per site. Therefore,

|`intH (πN ∗ ιaε)− `
int

H (πN)| = OH(ε) .
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Proof of Lemma 4.1.3. This proof follows by the de�nition of g̃1 and g̃2 (see (2.10) and
(2.11)), the triangular inequality and the Lemma 4.1.1.

Proof of Lemma 4.1.4. Consider i = 1. To simplify notation, denote

fN( x
N
) := g̃1

(
((πNt ∗ ιγ) ∗ ιaε)( xN ), ((π

N
t ∗ ιγ) ∗ ιaε)(x+1

N
)
)

and

gN(v) := g̃1

(
((πNt ∗ ιγ) ∗ ιaε)(v), ((πNt ∗ ιγ) ∗ ιaε)(v)

)
= χ

(
((πNt ∗ ιγ) ∗ ιaε)(v)

)
.

From the de�nition of ιaε , if x 6= aN ,

|(% ∗ ιaε)( xN )− (% ∗ ιaε)(v)| ≤
‖%‖∞
εN

, ∀v ∈ [ x
N
, x+1
N

] ,

where % is any bounded function de�ned on the torus. The same inequality is still valid with
x+ 1 replacing x in left side of inequality. Since ‖πNt ∗ ιγ‖∞ ≤ 4, if x 6= aN ,

|fN( x
N
)− gN(v)| = O( 1

εN
), ∀v ∈ [ x

N
, x+1
N

] .

Then, ∣∣∣ 1
N

∑
x 6=aN

fN( x
N
)(∂uHt)

2( x
N
)−

∫
T
gN(v)(∂uHt)

2(v) dv
∣∣∣

≤
∣∣∣ 1
N

∑
x 6=aN

fN( x
N
)
[
(∂uHt)

2( x
N
)−N

∫
T
1[ x

N
,x+1

N
)(v)(∂uHt)

2(v) dv
]∣∣∣

+
∣∣∣ ∑
x6=aN

∫
T
1[ x

N
,x+1

N
)(v)

[
fN( x

N
)− gN(v)

]
(∂uHt)

2(v) dv
∣∣∣

+
∣∣∣ ∫

T
1
[
aN
N
,
aN+1

N
)
(v)gN(v)(∂uHt)

2(v) dv
∣∣∣

≤ 1
N

∑
x 6=aN

∣∣∣(∂uHt)
2( x
N
)−N

∫
T
1[ x

N
,x+1

N
)(v)(∂uHt)

2(v) dv
∣∣∣

+O( 1
εN

)

∫
T
|(∂uHt)

2(v)| dv + 1
N
‖(∂uHt)

2‖∞ .

The �rst sum is OH(
1
N
), since H belongs to C1,2([0, T ]× (0, 1) ), which �nishes the proof.

Proof of Lemma 4.1.5. This proof follows by fact that ιaε(·, aNN ), ιaε(·, aN+1
N

), ∂uHt(
aN
N
) and

∂uHt(
aN+1
N

) converges to ιaε(·, a−), ιaε(·, a+), ∂uHt(a
−) and ∂uHt(a

+), respectively, as N in-
creases to in�nity.
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1
N

0 a
1

a − ε

ιaε (·, a−) = ιaε (·,
aN
N )

aN
N

Figure 4.1: ιaε(·, a−) and ιaε(·, aNN )
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1
N

0 1
a − ε

a + ε

ιaε (·, a
+)

a

ιaε (·,
aN+1

N )

aN+1

N
aN+1

N + ε

Figure 4.2: ιaε(·, aN+1
N

) and ιaε(·, a+)

Proof of Lemma 4.1.6. We only analyze the �rst statement, the second one is just the same
argument. By de�nition of g̃1, the expression in the left side of the �rst equality is bounded
above by∣∣∣((πNt ∗ ιγ) ∗ ιaε)(aNN )(e∇NHaN − 1)− ((πNt ∗ ιγ) ∗ ιaε)(a−)(eHt(a+)−Ht(a−) − 1)

∣∣∣
+
∣∣∣((πNt ∗ ιγ) ∗ ιaε)(aNN )((πNt ∗ ιγ) ∗ ιaε)(aN+1

N
)(e∇NHaN − 1)

− ((πNt ∗ ιγ) ∗ ιaε)(a−)((πNt ∗ ιγ) ∗ ιaε)(a+)(eHt(a+)−Ht(a−) − 1)
∣∣∣ .

The conclusion follows by fact that ιaε(·, aNN ), ιaε(·, aN+1
N

) and e∇NHaN −1 converges to ιaε(·, a−),
ιaε(·, a+) and eHt(a+)−Ht(a−) − 1, respectively, as N increases to in�nity.

4.2 Upper bound for compact sets

Proposition 4.2.1 (Upper bound for compact sets). For every K compact subset of the
space D([0, T ],M).

lim
N→∞

1
N
logQνNα

[K] ≤ − inf
π∈K

I(π) .

For proof this proposition we need analyze that happens with open sets.
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Let O be an open set of D([0, T ],M) and �x H ∈ C1,2([0, T ]× (0, 1) ). Then,

lim
N→∞

1
N
logQνNα

[O] = lim
N→∞

1
N
logPνNα [π

N ∈ O]

= max
{

lim
N→∞

1
N
logPνNα [{π

N ∈ O ∩ Aζ,γk,l ∩ E
j
m} ∩BH

δ,ε] ,

Rl
k(ζ, γ), R

j
m, R

δ
H(ε)

}
,

where we have denoted

Rl
k(ζ, γ) = lim

N→∞
1
N
logPνNα [{π

N ∈ (Aζ,γk,l )
{}] ,

Rj
m = lim

N→∞
1
N
logPνNα [{π

N ∈ (Ej
m)

{}] ,

Rδ
H(ε) = lim

N→∞
1
N
logPνNα [(B

H
δ,ε)

{] .

Using Propositions 4.1.8 and 4.1.9 and the limit (4.5), the expressions above satisfy

lim
ζ↓0

lim
γ↓0

Rl
k(ζ, γ) ≤ −l +K0T , Rj

m = −∞ , and lim
ε↓0

Rδ
H(ε) = −∞ .

Just applying the Radon-Nikodym derivative, and using the expression (4.12),

PνNα
[
{πN ∈ O ∩ Aζ,γk,l ∩ E

j
m} ∩BH

δ,ε

]
= EHνNα

[(dPH

νNα

dP
νNα

)−1

1
{
{πN ∈ O ∩ Aζ,γk,l ∩ E

j
m} ∩BH

δ,ε

}]
.

= EHνNα

[
exp

{
N
[
− Jk,l,m,jH,γ,ε,ζ(π

N) +OH,T,ε,γ(
1
N
) +O(δ) +OH(ε) +OH(

γ
ε
)
]}

1
{
{πN ∈ O ∩ Aζ,γk,l ∩ E

j
m} ∩BH

δ,ε

}]
.

Therefore,

1
N
logPνNα [{π

N ∈ O ∩ Aζ,γk,l ∩ E
j
m} ∩BH

δ,ε]

≤ sup
π∈O

{−Jk,l,m,jH,γ,ε,ζ(π)}+OH,T,ε,γ(
1
N
) +O(δ) +OH(ε) +OH(

γ
ε
) .

For all γ, ε, ζ, δ > 0, k, l,m, j ∈ N and H ∈ C1,2([0, T ]× T\{a} ),

lim
N→∞

1
N
logQνNα

[O]

≤ max
{
sup
π∈O

{−Jk,l,m,jH,γ,ε,ζ(π)}+O(δ) +OH(ε) +OH(
γ
ε
), Rl

k(ζ, γ), R
j
m, R

δ
H(ε)

}
= max

{
sup
π∈O

{−Jk,l,m,jH,γ,ε,ζ(π)}+O(δ) +OH(ε) +OH(
γ
ε
), Rl

k(ζ, γ), R
δ
H(ε)

}
.
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Optimizing over γ, ε, ζ, δ, k, l,m, j,H, the right side of the above inequality is bounded by

inf
γ,ε,ζ,δ,

k,l,m,j,H

max
{
sup
π∈O

{−Jk,l,m,jH,γ,ε,ζ(π)}+O(δ) +OH(ε) +OH(
γ
ε
), Rl

k(ζ, γ), R
δ
H(ε)

}
= inf

γ,ε,ζ,δ,
k,l,m,j,H

sup
π∈O

max
{
−Jk,l,m,jH,γ,ε,ζ(π) +O(δ) +OH(ε) +OH(

γ
ε
), Rl

k(ζ, γ), R
δ
H(ε)

}
.

(4.13)

Proposition 4.2.2. For �xed γ, ε, ζ, δ, k, l,m, j,H, the functional

max
{
− Jk,l,m,jH,γ,ε,ζ(π) +O(δ) +OH(ε) +OH(

γ
ε
), Rl

k(ζ, γ), R
δ
H(ε)

}
.

is upper semi-continuous in D([0, T ],M).

Proof. The unique term that depends on π in the functional of the statement of this Propo-
sition is Jk,l,m,jH,γ,ε,ζ(π). By the de�nition of the functional and the Propositions A.1.2, 4.1.7,

4.1.9, we only need to prove the continuity of Ĵ((π ∗ ιγ) ∗ ιaε) in D([0, T ],M).
Let πn be a sequence in D([0, T ],M) converging to some π. In particular, πnt converges

to πt in M, for almost all t ∈ [0, T ]. Recall that M is endowed with the weak topology.
According to (4.10) and iterated aplications of Dominated Convergence Theorem yields the
continuity of Ĵ((π ∗ ιγ) ∗ ιaε).

Provided by the proposition above, we may apply the Minimax Lemma [16, Lemma
A2.3.3], interchanging supremum with in�mum in (4.13), and passing to compacts sets.
Then, for all K ⊂ D([0, T ],M) compact,

lim
N→∞

1

N
logQνNα

[K]

≤ sup
π∈K

inf
γ,ε,ζ,δ,

k,l,m,j,H

max
{
− Jk,l,m,jH,γ,ε,ζ(π) +O(δ) +OH(ε) +OH(

γ
ε
), Rl

k(ζ, γ), R
δ
H(ε)

}
. (4.14)

Proposition 4.2.3. For all π ∈ D([0, T ],M),

lim
ε↓0

lim
l→∞

lim
k→∞

lim
ζ↓0

lim
γ↓0

lim
j→∞

lim
m→∞

Jk,l,m,jH,γ,ε,ζ(π) ≥ JH(π) .

Proof. Let π ∈ D([0, T ],M). Be begin by taking limits in m and j:

lim
j→∞

lim
m→∞

Jk,l,m,jH,γ,ε,ζ(π) =

{
ĴH((π ∗ ιγ) ∗ ιaε), if π ∈ Aζ,γk,l ∩ D([0, T ],M0) .

+∞, otherwise,

The last equality follows from the fact: if π does not belong to D([0, T ],M0), there exist
some m and j such that π /∈ Ej

m. To check this, one needs only to apply the de�nition of a
measure be absolutely continuous with respect to Lebesgue, and the density of the functions
{Fi}i≥1, whose appear in (4.11). We step to the next limit. We claim that

lim
γ↓0

{
ĴH((π ∗ ιγ) ∗ ιaε), if π ∈ Aζ,γk,l ∩ D([0, T ],M0)

+∞, otherwise
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≥
{
ĴH(π ∗ ιaε), if π ∈ Aζk,l+1 ∩ D([0, T ],M0) ,

+∞, otherwise.
(4.15)

If π ∈ Aζ,γk,l ∩ D([0, T ],M0),

max
1≤j≤k

EHj
(π ∗ ιaζ) ≤ l + max

1≤j≤k

〈〈
∂uHj, [π ∗ ιaζ − (π ∗ ιγ) ∗ ιaζ ]

〉〉
.

Since

(πt ∗ ιaζ)(v)− ((πt ∗ ιγ) ∗ ιaζ)(v) =
∫
T
ρt(z)

[
ιaζ(z, v)−

∫
T
ιγ(−(z − u))ιaζ(u, v) du

]
dz , (4.16)

for ζ �xed, we can choose enough small γ such that π belongs to Aζk,l+1 ∩D([0, T ],M0). At

this point, we must to analyse the semicontinuity of the terms which sum compounds ĴH ,
see de�nition 1.14. By the Proposition A.2.6

−
∫ T

0

∫
T
(∂uH)2(t, u)χ(ρt(u)) du dt

is lower semicontinuous and by A.2.5, `
int

H is continuous. It remains to check the terms
associated to the point a, namely

−
∫ T

0

{ρt(a+)∂uHt(a
+)− ρt(a

−)∂uHt(a
−)} dt ,

−
∫ T

0

ρt(a
−)(1− ρt(a

+))(eHt(a+)−Ht(a−) − 1) dt and

−
∫ T

0

ρt(a
+)(1− ρt(a

−))(e−Ht(a+)+Ht(a−) − 1) dt .

From simple calculations, one can verify that, for �xed ε > 0, (π∗ιγ)∗ιaε converges uniformly
to π ∗ ιaε in a left (and right) neighborhood of a, see (4.16). Notice that, from the de�nition
of ιaε , the left and right limits around a of π ∗ ιaε are well de�ned.

The ensuing step is to take the limit in ζ ↓ 0. We claim that

lim
ζ↓0

{
ĴH(π ∗ ιaε), if π ∈ Aζk,l+1 ∩ D([0, T ],M0) ,

+∞, otherwise.

≥
{
ĴH(π ∗ ιaε), if π ∈ Ak,l+2 ∩ D([0, T ],M0) ,

+∞, otherwise.
(4.17)

Indeed, if π ∈ Aζk,l+1 ∩ D([0, T ],M0), then

max
1≤j≤k

EHj
(π) = max

1≤j≤k
EHj

(π ∗ ιaζ) + max
1≤j≤k

〈〈∂uHj, π − π ∗ ιaζ 〉〉

≤ l+1 + max
1≤j≤k

∫ T

0

∫
T
∂uHj(t, u)(ρt(u)− (πt ∗ ιaζ)(u)) du dt .
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It is possible choose the ζ such that the integral is less than or equal to 1, because the
Lebesgue Di�erentiation Theorem.

Passing the limit in k → ∞, we will have

lim
k→∞

{
ĴH(π ∗ ιaε), if π ∈ Ak,l+2 ∩ D([0, T ],M0) ,

+∞, otherwise,

=

{
ĴH(π ∗ ιaε), if E(π) ≤ l + 2 and π ∈ D([0, T ],M0) ,

+∞, otherwise.
(4.18)

Now, we take limit in l → ∞,

lim
l→∞

{
ĴH(π ∗ ιaε), if E(π) ≤ l + 2 and π ∈ D([0, T ],M0) ,

+∞, otherwise.

≥
{
ĴH(π ∗ ιaε), if E(π) <∞ ,

+∞, otherwise.

Finally we can make ε ↓ 0

lim
ε↓0

{
ĴH(π ∗ ιaε), if E(π) <∞ ,

+∞, otherwise.
= JH(π) .

The last equality is true, because for π in the set {π; E(π) < ∞} we have πt(du) = ρt(u)du
and it is well de�ned the left and right limits around a of ρt, ∀t ∈ [0, T ].

Applying the proposition above in (4.14), we have that

lim
N→∞

1
N
logQνNα

[K] ≤ sup
π∈K

inf
H

{−JH(π)} = − inf
π∈K

sup
H

JH(π) = − inf
π∈K

I(π) .

This concludes the proof of the upper bound for compact sets.

4.3 Upper bound for closed sets

Proposition 4.3.1 (Upper bound for closed sets). For every C closed subset of D([0, T ],M).

lim
N→∞

1
N
logQνNα

[C] ≤ − inf
π∈C

I(π) .

As we shall see in the next proposition, the upper bound for closed sets is an immediate
consequence of upper bound for compact sets and exponential tightness. By exponential
tightness, we mean that for all n ∈ N there exist compact sets Kn ⊂ D([0, T ],M) such that

lim
N→∞

1
N
logQN [K

{
n] ≤ −n .
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Proposition 4.3.2. If the sequence of probability {QN}N is exponentially tight and holds
the inequality

lim
N→∞

1
N
logQN [K] ≤ − inf

π∈K
I(π) ,

for any compact set K, then {QN}N satis�es

lim
N→∞

1
N
logQN [C] ≤ − inf

π∈C
I(π) ,

for any closed set C.

Proof. Let C be a closed set. Since QN [C] ≤ QN [C ∩Kn] +QN [K
{
n] and C ∩Kn is compact,

lim
N→∞

1
N
logQN [C] ≤ max

{
lim
N→∞

1
N
logQN [C ∩Kn], lim

N→∞
1
N
logQN [K

{
n]
}

≤ max
{
− inf

π∈C∩Kn

I(π), −n
}
≤ max

{
− inf

π∈C
I(π), −n

}
.

Since n is arbitrary, the inequality follows.

The rest of this section is concerned about exponential tightness, whose proof is essentially
the same as found in [16]. For sake of completeness, we include here all the steps involved,
emphasizing the slight di�erences. First of all, we claim that the exponential tightness is
just a consequence of

Lemma 4.3.3. For every ε > 0 and every continuous function H : T → R,

lim
δ↓0

lim
N→∞

1
N
logQνNα

[
sup

|t−s|≤δ
|〈πt, H〉 − 〈πs, H〉| > ε

]
= ∞ .

Indeed, suppose the lemma above. Let Hl ∈ C2(T) be a dense set of functions in C(T)
for the uniform topology. For each δ > 0 and ε > 0, denote by Cl,δ,ε the following set of
paths:

Cl,δ,ε =
{
π ∈ D([0, T ],M) ; sup

|t−s|≤δ
|〈πt, Hl〉 − 〈πs, Hl〉| ≤ ε

}
.

Therefore, from the Lemma 4.3.3,

lim
δ↓0

lim
N→∞

1
N
logQνNα

[
π 6∈ Cl,δ,ε

]
= ∞ ,

for each l ≥ 1 and ε > 0. Thus, for each positive integers l,m and n, there exists δ = δ(l,m, n)
such that

QνNα

[
π 6∈ Cl,δ, 1

m

]
≤ e−Nnml

for all N large enough. Modifying δ, if necessary, we may extend this inequality for all
positive integers N . Consider Ko

n de�ned by

Ko
n =

⋂
l≥1,m≥1

Cl,δ(l,m,n), 1
m
.
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From Arzelá-Ascoli, Kn = Ko
n ∩D([0, T ],M0) is a compact set for each n ≥ 1. On the other

hand, since there is at most one particle per site, QνNα
[Kn] = QνNα

[Ko
n]. Furthermore, by

construction,

QνNα

[
π 6∈ Ko

n

]
≤

∑
l≥1,m≥1

e−Nnml ≤ C e−Nn ,

where C is a constant not depending in the parameters. In particular,

lim
N→∞

1
N
logQνNα

[
π 6∈ Ko

n

]
≤ −n ,

which is the exponential tightness. Therefore, it just remains to prove Lemma 4.3.3.

Proof of Lemma 4.3.3. Fix ε > 0 and H : T → R continuous. Firstly, notice that{
sup

|t−s|≤δ
|〈πt, H〉 − 〈πs, H〉| > ε

}
⊂

bTδ−1c⋃
k=0

{
sup

kδ≤t<(k+1)δ

|〈πt, H〉 − 〈πkδ, H〉| > ε
4

}
.

We have here ε
4
instead of ε

3
due to the presence of jumps. Since we are concerned only about

dynamical large deviations, the initial measure can be taken as the equilibrium measure.
Using the useful fact

lim
N→∞

1
N
log(aN + bN) = max

{
lim
N→∞

1
N
log(aN), lim

N→∞
1
N
log(bN)

}
, (4.19)

and the invariance of the measure, in order to prove the Lemma 4.3.3, it is enough to show
that

lim
δ↓0

lim
N→∞

1
N
logQνNα

[
sup
0≤t≤δ

|〈πt, H〉 − 〈π0, H〉| > ε
]
= ∞ , (4.20)

for every ε > 0 and every H ∈ C2(T). Recall that

M c,H
t = exp

{
N
[
〈πNt , cH〉 − 〈πN0 , cH〉

− 1
N

∫ t

0

e−N〈πN
s ,cH〉(∂s +N2LN)e

N〈πN
s ,cH〉 ds

]}
is a positive martingale equal to 1 at time 0. The constant c above will be chosen a posteriori
as enoughly large. Rewriting the expression above, using the fact that H not depends of
time, we get

M c,H
t = exp

{
Nc〈πNt , H〉 −Nc〈πN0 , H〉

−
∫ t

0

∑
|x−y|=1

N2 ξNx,y [e
c[H( y

N
)−H( x

N
)] − 1] ηs(x)(1− ηs(y)) ds

}
.
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Now, to obtain (4.20), are su�cient the limits

lim
δ↓0

lim
N→∞

1
N
logQνNα

[
sup
0≤t≤δ

∣∣∣ 1
N
logM c,H

t

∣∣∣ > c ε
]
= −∞ (4.21)

and

lim
δ↓0

lim
N→∞

1
N
logQνNα

[
sup
0≤t≤δ

∣∣∣ ∫ t

0

UN(H, s, ηs) ds
∣∣∣ > cε

]
= −∞ , (4.22)

where
UN(H, s, ηs) =

∑
|x−y|=1

NξNx,y [e
c[H( y

N
)−H( x

N
)] − 1]ηs(x)(1− ηs(y)) .

We claim now that the expression |
∫ t
0
UN(H, s, ηs) ds| is bounded by C(c,H)t. For sites x

such that a 6∈ [x−1
N
, x+1
N

], one just needs to expand the exponential with the Taylor's formula
and use H ∈ C2(T). The other sites are in number of two, and H ∈ C1(T) guarantees the
limitation.

Provided by the previous boundedness, we conclude that for δ enoughly small the prob-
ability in (4.22) vanishes.

On the other hand, to prove (4.21), observe we can neglect the absolute value, since

QνNα

[
sup
0≤t≤δ

∣∣∣ 1
N
logM c,H

t

∣∣∣ > c ε
]

≤ QνNα

[
sup
0≤t≤δ

1
N
logM c,H

t > c ε
]
+QνNα

[
sup
0≤t≤δ

1
N
logM c,H

t < −c ε
]

and again (4.19). Because M c,H
t is a mean one positive martingale, we can apply Doob's

Inequality, which yields

QνNα

[
sup
0≤t≤δ

1
N
logM c,H

t > c ε
]
= QνNα

[
sup
0≤t≤δ

M c,H
t > ec εN

]
≤ 1

ecεN
.

Passing the log function and dividing by N , we get

lim
δ↓0

lim
N→∞

1
N
logQνNα

[
sup
0≤t≤δ

1
N
logM c,H

t > cε
]
≤ −c ε .

Since c is arbitrary large, it �nishes the proof.
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Chapter 5

Hydrodynamic limit for the weakly

asymmetric exclusion process with a

slow bond

Recall that PνNα and PHνNα are probabilities measures on the space D([0, T ], {0, 1}TN ). The
probability PνNα corresponds to the homogeneous Markov process ηt with generator LN de-
�ned in (1.1) accelerated by N2 and starting from νNα . For H ∈ C1,2([0, T ] × T), the
probability PHνNα corresponds to the inhomogeneous Markov process ηt with generator LHN
de�ned in (1.9) accelerated by N2 and starting from the invariant measure νNα .

We callQH
νNα

the probability measure on the space of trajectoriesD
(
[0, T ],M

)
correspond-

ing to the inhomogeneous Markov process πNt with generator LHN de�ned in (1.9) accelerated
by N2 and starting from νNα .

Proposition 5.0.4. Consider a bounded density pro�le ρ0 : T → R and H ∈ C1,2([0, T ] ×
T). The sequence of probabilities {QH

µN
; N ≥ 1} converges in distribution to the probability

measure concentrated on the absolutely continuous path πt(du) = ρ(t, u)du whose density
ρ(t, u) is the unique weak solution of the partial di�erential equation (1.10).

It is straightforward to obtain Theorem 1.3.2 as a corollary of the previous proposition.
The proof of this result is divided in two parts. In Section 5.1, we show that the sequence
{QH

µN
; N ≥ 1} is tight, in Section 5.3 we characterize the limit points of this sequence. We

prove the uniqueness of a weak solutions of the partial di�erential equation (1.10) in Section
5.4.

5.1 Tightness

Proposition 5.1.1. For H ∈ C1,2([0, T ]×T) �xed, the sequence of measures {QH
µN

; N ≥ 1}
is tight in the Skorohod topology of D

(
[0, T ],M

)
.
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Proof. In order to prove tightness of the sequence of measures {QH
µN

: N ≥ 1} induced in
the Skorohod space D

(
[0, T ],M

)
by the random elements {πNt : 0 ≤ t ≤ T}. We will use

same arguments presented in Section 2.2. We begin by considering the martingale

MH
N,t(G) = 〈πNt , Gt〉 − 〈πN0 , G0〉 −

∫ t

0

〈πNs , ∂sGs〉+N2LHN,s〈πNs , Gs〉 ds , (5.1)

with H ∈ C1,2([0, T ]× T) and G ∈ C1,2
(
[0, T ]× T\{a}

)
. The generator LHN,s was de�ned in

(1.9). Firstly, we show that the L2(PHµN )-norm of this martingale vanishes as N → ∞.
The quadratic variation of MH

N,t(G) is given by

〈MH
N (G)〉t =

∫ t

0

N2
[
LHN,s〈πNs , Gs〉2 − 2〈πNs , Gs〉LHN,s〈πNs , Gs〉

]
ds

Applying the de�nition of the generator LHN,s, the quadratic variation can be rewritten as

〈MH
N (G)〉t =

∫ t

0

∑
x∈TN

ξNx,x+1e
∇NHxηs(x)(1− ηs(x+1))(∇NGx)

2 ds

+

∫ t

0

∑
x∈TN

ξNx,x+1e
−∇NHxηs(x+1)(1− ηs(x))(∇NGx))

2 ds ,

where ∇NFx denotes the diference Fs(x+1
N

) − Fs(
x
N
). Using the de�nition of ξN and that

H ∈ C1,2([0, T ] × T) and G ∈ C1,2
(
[0, T ] × T\{a}

)
, the expression above is bounded from

above by TCH,GN−1.
To conclude the proof of tightness, we need to proof that the term inside the integral in

(5.1) is bounded uniformly in s ∈ [0, T ]. For this, it is enough to prove that N2LHN,s〈πNs , Gs〉
is equal to

1
N

∑
x6=aN

x6=aN+1

ηs(x)N
2[Gs(

x+1
N

) +Gs(
x−1
N

)− 2Gs(
x
N
)]

+ 1
N

∑
x6=aN

[
ηs(x)(1− ηs(x+1)) + ηs(x+1)(1− ηs(x))

]
N∇NHxN∇NGx

+ ηs(aN+1)N∇NGaN+1 − ηs(aN)N∇NGaN−1

+ ηs(aN)(1− ηs(aN+1)) e∇NHaN ∇NGaN

− ηs(aN+1)(1− ηs(aN)) e
−∇NHaN ∇NGaN + OH,G(

1
N
) .

(5.2)

Indeed, for obtain the last equality, we use the expression (1.9) of the generator LHN,s and
write N2LHN,s〈πNs , Gs〉 as

N
∑
x 6=aN

[
e∇NHxηs(x)(1− ηs(x+1))− e−∇NHxηs(x+1)(1− ηs(x))

]
∇NGx

+ ηs(aN)(1− ηs(aN+1)) e∇NHaN ∇NGaN

− ηs(aN+1)(1− ηs(aN)) e
−∇NHaN ∇NGaN .
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Using Taylor's expansion in the functions e∇NHx and e−∇NHx , the �rst term above becomes

N
∑
x 6=aN

(ηs(x)− ηs(x+1))∇NGx + OH,G(
1
N
)

+ 1
N

∑
x6=aN

[
ηs(x)(1− ηs(x+1)) + ηs(x+1)(1− ηs(x))

]
N∇NHxN∇NGx .

Making change of variables in the �rst term above, we get

1
N

∑
x6=aN

x6=aN+1

ηs(x)N
2[Gs(

x+1
N

) +Gs(
x−1
N

)− 2Gs(
x
N
)]

+ ηs(aN+1)N∇NGaN+1 − ηs(aN)N∇NGaN−1 .

This establishes the formula (5.2).

5.2 Sobolev space

In this section, we prove that any limit point QH
∗ of the sequence QH

µN
is concentrated on

trajectories ρt(u)du such that ρt(u) belongs to the sobolev space L2
(
0, T ;H1(T\{a})

)
de�ned

in 2.4.2.

Proposition 5.2.1. The measure QH
∗ is concentrated on paths ρt(u)du such that ρ belongs

to L2
(
0, T ;H1(T\{a})

)
.

This proof follows the same steps in the proof of Proposition 2.4.1. The main di�erence
here is we are going to use the estimate about the Radon-Nikodym dPHνNα /dPνNα derivative
presented in (4.3) and then pro�t the results already reached for the probability PνNα (sym-
metric case). After that, we proceed in the same way as in Proposition 2.4.1.

The Radon-Nikodym derivative of the probabilities PνNα and PHνNα has the expression (4.3).
Using the rule of maximum of one particle per site, we get∥∥∥∥∥dP

H
νNα

dPνNα

∥∥∥∥∥
∞

≤ eC(H,T )N . (5.3)

Lemma 5.2.2 (Replacement Lemma). Given a bounded function G : T → R, then

lim
ε→0

lim
N→∞

EHµN
[ ∣∣∣ ∫ t

0

1
N

∑
x∈TN

G( x
N
){ηs(x)− ηεNs (x)} ds

∣∣∣ ] = 0 ,

lim
ε→0

lim
N→∞

EHµN
[ ∣∣∣ ∫ t

0

1
N

∑
x 6=aN

G( x
N
)
{
τxgi(η)− g̃i(η

εN(x), ηεN(x+1))
}
ds

∣∣∣ ] = 0 , ∀i = 1, 2
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and

lim
ε→0

lim
N→∞

EHµN
[ ∣∣∣ ∫ t

0

G(aN
N
)
{
τaNgi(η)− g̃i(η

εN(aN), η
εN(aN+1))

}
ds

∣∣∣ ] = 0 , ∀i = 1, 2 ,

where gi and g̃i, i = 1, 2 were de�ned in (2.10) and (2.11).

Proof. The proof follows by the same arguments of the Lemma 2.3.2. But, it has one
di�erence: we need use the Radon-Nikodym derivative.

We only prove the �rst limit, as in Lemma 2.3.2. From de�nition of the entropy and
Jensen's Inequality, the expectation is bounded from above by

HN(µN |νNα )
γN

+
1

γN
logEHνNα

[
exp

{
γ
∣∣∣ ∫ t

0

∑
x∈TN

G( x
N
)
{
ηs(x)− ηεNs (x)

}
ds
∣∣∣}]

,

for all γ > 0. In view of (2.8), to prove the lemma, it is enough to show that the second
term vanishes as N → ∞ and then ε ↓ 0 for every γ > 0. Here is the di�erence: we use (5.3)
in the second term above, getting the boundedness of it by

C(H,T )

γ
+

1

γN
logEνNα

[
exp

{
γ
∣∣∣ ∫ t

0

∑
x∈TN

G( x
N
)
{
ηs(x)− ηεNs (x)

}
ds
∣∣∣}]

.

The same way that in Proposition 2.3.2 gives the result.

Recall the de�nition of UN in (2.19),

UN(ε,H, η) =
1
εN

∑
x∈TN

H( x
N
)
{
η(x− εN)− η(x)

}
− 2

N

∑
x∈TN

(H( x
N
))2{1 + 1

ε
1(a−ε,a](

x
N
)} .

Lemma 5.2.3. For every k ≥ 1, consider the functions G1, . . . , Gk de�ned on [0, T ]×(T\{a})
taking values in R. Then, for every ε > 0,

lim
δ↓0

lim
N→∞

EHµN
[
max
1≤i≤k

{∫ T

0

UN(ε,Gi(s, ·), ηδNs ) ds
}]

≤ K0 + C(H,T ) .

Proof. It follows from the Replacement Lemma that in order to prove the lemma we just
need to show that

lim
N→∞

EHµN
[
max
1≤i≤k

{∫ T

0

UN(ε,Gi(s, ·), ηs) ds
}]

≤ K0 + C(H,T ) .
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By the entropy and Jensen's Inequalities, for each �xed N , the previous expectation is
bounded from above by

H(µN |νNα )
N

+ 1
N
logEHνNα

[
exp

{
max
1≤i≤k

{
N

∫ T

0

UN(ε,Gi(s, ·), ηs) ds
}}]

.

By (2.8), the �rst term is bounded by K0. Using the Radon-Nikodym derivative and (5.3),
the second term is bounded from above by

C(H,T ) + 1
N
logEνNα

[
exp

{
max
1≤i≤k

{
N

∫ T

0

UN(ε,Gi(s, ·), ηs) ds
}}]

.

Now, this proof follows for the same arguments of the Lemma 2.4.3.

Lemma 5.2.4.

EQH
∗

[
sup
G

{∫ T

0

∫
T
∂uG(s, u) ρs(u) du ds − 2

∫ T

0

∫
T
G(s, u)2 du ds

}]
≤ K0 + C(H,T ) ,

where the supremum is carried over all functions G in C0,1([0, T ]×T) with compact support
in [0, T ]× (T\{a}).

The proof of this lemma is the same of 2.4.4, replacing Lemma 2.4.3 by Lemma 5.2.3,
and will be omitted.

Proof of Proposition 5.2.1. Analogously as in the Proposition 2.4.1, denote by `
int

: C0,1([0, T ]×
T) → R the linear functional de�ned by

`
int

(G) =

∫ T

0

∫
T
∂uGs(u) ρs(u) du ds .

Using the Lemma 5.2.4 and Proposition A.1.1 and proceeding as in proof of 2.4.1, we obtain
that `

int

is QH
∗ -almost surely bounded functional in L2([0, T ]×T). To conclude we apply the

Riesz representation theorem.

5.3 Characterization of limit points

This section is devoted to prove that all limit points of the sequence {QH
µN

: N ≥ 1} are
concentrated on trajectories of measures absolutely continuous with respect to the Lebesgue
measure: π(t, du) = ρt(u)du, whose density ρt(u) is a weak solution of the hydrodynamic
equation (1.10).

Let QH
∗ be a limit point of the sequence {QH

µN
: N ≥ 1} and assume, without lost of

generality, that {QH
µN

: N ≥ 1} converges to QH
∗ . The existence of QH

∗ is guaranteed by
Proposition 5.1.1.
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Since there is at most one particle per site, it is easy to show that QH
∗ is concentrated on

trajectories πt(du) which are absolutely continuous with respect to the Lebesgue measure,
πt(du) = ρt(u)du and whose density ρt(·) is non-negative and bounded by 1 (for more details
see [16]).

In Proposition 5.2.1, we proved that ρ(t, ·) belongs to L2
(
0, T ;H1(T\{a})

)
. It is well

known that the Sobolev space H1(T\{a}) has special properties: all its elements are ab-
solutely continuous functions with bounded variation, c.f. [4], therefore with lateral limits
well-de�ned. Such property is inherited by L2

(
0, T ;H1(T\{a})

)
in the sense that we can

integrate in time the lateral limits.
Let G ∈ C1,2

(
[0, T ]× T\{a}

)
. We begin by claiming that

QH
∗

[
π· : 〈ρt, Gt〉 − 〈ρ0, G0〉 −

∫ t

0

〈ρs, (∂s +∆)Gs〉 ds

− 2

∫ t

0

〈χ(ρs), ∂uHs∂uGs〉 ds

−
∫ t

0

{
ρs(a

+)∂uGs(a
+)− ρs(a

−)∂uGs(a
−)
}
ds

+

∫ t

0

{
ρs(a

+)− ρs(a
−)
}{
Gs(a

+)−Gs(a
−)
}
ds = 0, ∀t ∈ [0, T ]

]
= 1 .

(5.4)

In order to prove the equality above, its enough to show that, for every δ > 0

QH
∗

[
π· : sup

0≤t≤T

∣∣∣∣∣ 〈ρt, Gt〉 − 〈ρ0, G0〉 −
∫ t

0

〈ρs, (∂s +∆)Gs〉 ds

− 2

∫ t

0

〈χ(ρs), ∂uHs∂uGs〉 ds

−
∫ t

0

{
ρs(a

+)∂uGs(a
+)− ρs(a

−)∂uGs(a
−)
}
ds

+

∫ t

0

{
ρs(a

+)− ρs(a
−)
}{
Gs(a

+)−Gs(a
−)
}
ds

∣∣∣∣∣ > δ

]
= 0 .

Since the boundary integrals and the integral with χ are not well-de�ned in the whole
Skorohod space D

(
[0, T ],M0

)
, we cannot use directly Portmanteau's Theorem. To avoid

this technical obstacle, �x ε > 0, which will be taken small later. Adding and subtracting
the convolution of ρt(u) with ιε := ιaε , it is de�ned in (2.9). Then probability above is less
than or equal to the sum of

QH
∗

[
π· : sup

0≤t≤T

∣∣∣∣∣ 〈ρt, Gt〉 − 〈ρ0, G0〉 −
∫ t

0

〈ρs, (∂s +∆)Gs〉 ds

− 2

∫ t

0

〈χ(ρs ∗ ιε), ∂uHs∂uGs〉 ds
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−
∫ t

0

{
(ρs ∗ ιε)(a+)∂uGs(a

+)− (ρs ∗ ιε)(a−)∂uGs(a
−)
}
ds

+

∫ t

0

{
(ρs ∗ ιε)(a+)− (ρs ∗ ιε)(a−)

}{
Gs(a

+)−Gs(a
−)
}
ds

∣∣∣∣∣ > δ/4

]
,

(5.5)

QH
∗

[
π· : sup

0≤t≤T

∣∣∣∣∣ 2
∫ t

0

〈χ(ρs ∗ ιε), ∂uHs∂uGs〉 ds− 2

∫ t

0

〈χ(ρs), ∂uHs∂uGs〉 ds

∣∣∣∣∣ > δ/4

]
,

QH
∗

[
π· : sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
(ρs ∗ ιε)(a+)∂uGs(a

+)− (ρs ∗ ιε)(a−)∂uGs(a
−)
}
ds

−
∫ t

0

{
ρs(a

+)∂uGs(a
+)− ρs(a

−)∂uGs(a
−)
}
ds

∣∣∣∣∣ > δ/4

]
and

QH
∗

[
π· : sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
(ρs ∗ ιε)(a+)− (ρs ∗ ιε)(a−)

}{
Gs(a

+)−Gs(a
−)
}
ds

−
∫ t

0

{
ρs(a

+)− ρs(a
−)
}{
Gs(a

+)−Gs(a
−)
}
ds

∣∣∣∣∣ > δ/4

]
.

The set inside the three previous probabilities decreases to a set of null probability, as ε ↓ 0. It
remains to deal with (5.5). By Portmanteau's Theorem, Proposition A.2.7 and the exclusion
rule, (5.5) is bounded from above by

lim
N→∞

QH
µN

[
π· : sup

0≤t≤T

∣∣∣∣∣ 〈πt, Gt〉 − 〈π0, G0〉 −
∫ t

0

〈πs, (∂s +∆)Gs〉 ds

− 2

∫ t

0

〈χ(πs ∗ ιε), ∂uHs∂uGs〉 ds

−
∫ t

0

{
(πs ∗ ιε)(a+)∂uGs(a

+)− (πs ∗ ιε)(a−)∂uGs(a
−)
}
ds

+

∫ t

0

{
(ρs ∗ ιε)(a+)− (ρs ∗ ιε)(a−)

}{
Gs(a

+)−Gs(a
−)
}
ds

∣∣∣∣∣ > δ/4

]
.

In the step above, we need to be carefully. Because the functions inside the probability above
may not continuous. For mores details, we recommend to see the Section 2.5 or Subsections
7.5.2 and 8.3.2.

If we consider the discrete torus as embedded in the continuous torus, aN = −1 is the
closest site to the left of 0 and aN + 1 = 0 is the closest site to the right of a = 0. Since
(πNs ∗ ιε)( xN ) = ηεNs (x), for all x ∈ TN . Using the de�nition of QH

µN
, we can rewrite the
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previous expression as

lim
N→∞

PHµN

[
sup

0≤t≤T

∣∣∣∣∣ 〈πNt , Gt〉 − 〈πN0 , G0〉 −
∫ t

0

〈πNs , (∂s +∆)Gs〉 ds

− 2

∫ t

0

〈χ(πNs ∗ ιε), ∂uHs∂uGs〉 ds

−
∫ t

0

{
ηεNs (aN + 1)∂uGs(a

+)− ηεNs (aN)∂uGs(a
−)
}
ds

+

∫ t

0

{
ηεNs (aN + 1)− ηεNs (aN)

}{
Gs(a

+)−Gs(a
−)
}
ds

∣∣∣∣∣ > δ/4

]
.

The next step is to add and subtract N2LHN,s〈πNs , Gs〉 and the previous probability becomes
now bounded from above by the sum of

lim
N→∞

PHµN

[
sup

0≤t≤T

∣∣∣∣∣ 〈πNt , Gt〉 − 〈πN0 , G0〉 −
∫ t

0

〈πNs , ∂sGs〉+N2LHN,s〈πNs , Gs〉 ds

∣∣∣∣∣ > δ/8

]
and

lim
N→∞

PHµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

N2LHN,s〈πNs , Gs〉 ds−
∫ t

0

〈πNs ,∆Gs〉 ds

− 2

∫ t

0

〈χ(πNs ∗ ιε), ∂uHs∂uGs〉 ds

−
∫ t

0

{
ηεNs (aN + 1)∂uGs(a

+)− ηεNs (aN)∂uGs(a
−)
}
ds

+

∫ t

0

{
ηεNs (aN + 1)− ηεNs (aN)

}{
Gs(a

+)−Gs(a
−)
}
ds

∣∣∣∣∣ > δ/8

]
.

(5.6)

The expression inside the �rst probability is the martigale MH
N,t(G) de�ned in (5.1). Using

the fact that the martingale MH
N,t(G) converges to zero in L2(PHµN ), which is proved in

Proposition 5.1.1, and Doob's inequality, the �rst probability above is equal to

lim
N→∞

PHµN
[

sup
0≤t≤T

∣∣∣MH
N,t(G)

∣∣∣ > δ/8
]
= 0 ,

for every δ > 0,
We will show that the probability (5.6) is null. By expression (5.2) for N2LHN,s〈πNs , Gs〉

the expression (5.6) is less than or equal to

lim
N→∞

PHµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

〈πNs ,∆Gs〉 ds

−
∫ t

0

1
N

∑
x6=aN

x6=aN+1

ηs(x)N
2[Gs(

x+1
N

) +Gs(
x−1
N

)− 2Gs(
x
N
)] ds

∣∣∣∣∣ > δ/32

]
,

(5.7)
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lim
N→∞

PHµN

[
sup

0≤t≤T

∣∣∣∣∣ 2
∫ t

0

〈χ(πNs ∗ ιε), ∂uHs∂uGs〉 ds

−
∫ t

0

1
N

∑
x 6=aN

[
ηs(x)(1− ηs(x+1)) + ηs(x+1)(1− ηs(x))

]
N∇NHxN∇NGx ds

∣∣∣∣∣ > δ/32

]
,

(5.8)

lim
N→∞

PHµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
ηεNs (aN + 1)∂uGs(a

+)− ηεNs (aN)∂uGs(a
−)
}
ds

−
∫ t

0

{
ηs(aN+1)N∇NGaN+1 − ηs(aN)N∇NGaN−1

}
ds

∣∣∣∣∣ > δ/32

]
and

lim
N→∞

PHµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
ηεNs (aN + 1)− ηεNs (aN)

}{
Gs(a

+)−Gs(a
−)
}
ds

+

∫ t

0

{
ηs(aN)(1− ηs(aN+1))e∇NHaN

− ηs(aN+1)(1− ηs(aN))e
−∇NHaN

}
∇NGaN ds

∣∣∣∣∣ > δ/32

]
.

Since G ∈ C1,2
(
[0, T ] × T\{a}

)
, the discrete laplacian of G converges uniformly to the

continuous laplacian of G, and therefore the expression (5.7) is null. To prove that the others
probabilities are null, we observe that N∇NHx and N∇NGx converge uniformly to ∂uHs and
∂uGs, as N → ∞, respectively. Since H ∈ C1,2([0, T ] × T) and G ∈ C1,2

(
[0, T ] × T\{a}

)
,

∇NHaN and ∇NGaN converge uniformly to 0 and Gs(a
+)−Gs(a

−), as N → ∞, respectively.
By the rule of maximum of one particle per site and approximation of integral by Riemann
sums, in order to be null (5.7) and (5.8), it is su�cient to show that go to zero the expressions

lim
N→∞

PHµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

1
N

∑
x 6=aN

[
ηεNs (x)(1− ηεNs (x+1))

− ηs(x)(1− ηs(x+1))
]
∂uHs(

x
N
)∂uGs(

x
N
) ds

∣∣∣∣∣ > δ

]
,

lim
N→∞

PHµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

1
N

∑
x 6=aN

[
ηεNs (x+1)(1− ηεNs (x))

− ηs(x+1)(1− ηs(x))
]
∂uHs(

x
N
)∂uGs(

x
N
) ds

∣∣∣∣∣ > δ

]
,

84



lim
N→∞

PHµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
ηεNs (aN + 1)− ηs(aN+1)

}
∂uGs(a

+)

−
{
ηεNs (aN)− ηs(aN)

}
∂uGs(a

−) ds

∣∣∣∣∣ > δ

]
,

and

lim
N→∞

PHµN

[
sup

0≤t≤T

∣∣∣∣∣
∫ t

0

{
ηεNs (aN + 1)− ηs(aN + 1)

}{
Gs(a

+)−Gs(a
−)
}

−
{
ηεNs (aN) + ηs(aN)

}{
Gs(a

+)−Gs(a
−)
}
ds

∣∣∣∣∣ > δ

]
,

converge to zero, as ε ↓ 0, ∀δ > 0. It follows by Replacement Lemma 5.2.2.

Proposition 5.3.1. Fix a Borel measurable pro�le ρ0 : T → [0, 1] and consider a sequence
{µN : N ≥ 1} of probability measures on {0, 1}TN associated to ρ0 in the sense of (1.4). Then
any limit point of QH

µN
is concentrated on absolutely continuous paths πt(du) = ρ(t, u)du,

with positive density ρt bounded by 1, such that ρ is a weak solutions of (1.10) with initial
condition ρ0.

Proof. Let {Gi : i ≥ 1} be a countable dense set of functions on C1,2
(
[0, T ] × T\{a}

)
,

with respect to the norm ‖G‖∞ + ‖∂uG‖∞ + ‖∂2uG‖∞. Provided by (5.4) and intercepting
a countable number of sets of probability one, is straightforward to extend (5.4) for all
functions G ∈ C1,2

(
[0, T ]× T\{a}

)
simultaneously.

5.4 Uniqueness of weak solutions

This section is devoted to the uniqueness of weak solutions of (1.10). To simplify notation,
along this section, we will consider a = 0 and sometimes we will denote 0+ = 0 and 0− = 1.

Proposition 5.4.1. Let ρ : [0, T ] × T → R be a weak solution of the parabolic di�erential
equation (1.10) with initial condition γ : T → R. Then, for all t ∈ [0, T ] and for all
G ∈ H2

bc(T), holds

〈ρt, G〉 − 〈γ,G〉 =
∫ t

0

〈
ρs,∆G

〉
ds+ 2

∫ t

0

〈
χ(ρs)∂uHs , ∂uG

〉
ds , (5.9)

for all t ∈ [0, T ].

Proof. This proof is like to proof 2.6.1, we will denote 0+ = 0 and 0− = 1. Let G ∈ H2
bc(T).

Consider gn ∈ C(T) such that
∫
gn(x) dx = 0 and gn converges to ∆G and βn converging to

∂uG(0), and de�ne

Gn(x) = G(0) + βnx+

∫ x

0

∫ y

0

gn(z) dz dy .
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Notice that Gn ∈ C1,2
(
[0, T ]× T\{0}

)
, ∂uGn(0) = ∂uGn(1) and ∆Gn = gn. Then,

〈ρt, Gn〉 − 〈γ,Gn〉 =

∫ t

0

〈ρs, gn〉 ds+ 2

∫ t

0

〈
χ(ρs)∂uHs , ∂uGn

〉
ds

+

∫ t

0

{
ρs(0)− ρs(1)}∂uGn(0) ds

−
∫ t

0

{
ρs(0)− ρs(1)

}{
Gn(0)−Gn(1)

}
ds .

(5.10)

Since Gn converges to G, gn converges to ∆G and ∂uGn = βn +
∫ x
0
gn(z) dz converges to

∂uG(0) +
∫ x
0
∆G(z) dz = ∂uG, one can conclude this proof like as in Proposition 2.6.1.

Recall the de�nition of the inverse operator (−∆)−1 : L2(T) → H2
bc(T) in (2.27).

Proposition 5.4.2. Let ρ and λ be two weak solutions of the asymmetric equation with
pertubation H ∈ C1,2([0, T ] × T) given in De�nition 1.3.1, with respective initial conditions
ρ0 and λ0. For all t ∈ [0, T ], holds the equality〈

ρt, (−∆)−1λt
〉
−
〈
ρ0, (−∆)−1λ0

〉
= −2

∫ t

0

〈
ρs, λs

〉
ds

+2

∫ t

0

〈
χ(ρs)∂uHs, ∂u(−∆)−1λs

〉
ds+ 2

∫ t

0

〈
χ(λs)∂uHs, ∂u(−∆)−1ρs

〉
ds .

(5.11)

Proof. This proof is very similar to proof of the Proposition 2.6.3. The mean of a weak
solution of (1.10) is also constant in time, thus ρt, λt ∈ L2(T)⊥1 for any time t ∈ [0, T ].

Take a partition 0 = t0 < t1 < · · · < tn = T of the interval [0, T ] and, as like in
Proposition 2.6.3, we write〈

ρt, (−∆)−1λt
〉
−

〈
ρ0, (−∆)−1λ0

〉
=

n−1∑
k=0

〈
ρtk+1

, (−∆)−1λtk+1
〉 −

〈
ρtk+1

, (−∆)−1λtk〉

+
n−1∑
k=0

〈
ρtk+1

, (−∆)−1λtk〉 −
〈
ρtk , (−∆)−1λtk〉 .

(5.12)

Since ρ is a weak solution of (1.7), λtk belongs to L
2(T)⊥1 and recalling the Proposition 5.4.1

and the Proposition 2.6.2 item (c), the second term above can be written as〈
ρtk+1

, (−∆)−1λtk〉 −
〈
ρtk , (−∆)−1λtk〉

=−
∫ tk+1

tk

〈ρs, λtk〉 ds+ 2

∫ tk+1

tk

〈
χ(ρs)∂uHs, ∂u(−∆)−1λtk

〉
ds

=−
∫ tk+1

tk

〈ρs, λs〉 ds+ 2

∫ tk+1

tk

〈
χ(ρs)∂uHs, ∂u(−∆)−1λs

〉
ds+Rk,1

n (ρ, λ) +Rk,2
n (ρ, λ) ,

(5.13)
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where

Rk,1
n (ρ, λ) =

∫ tk+1

tk

〈ρs, λs − λtk〉 ds

and

Rk,2
n (ρ, λ) = 2

∫ tk+1

tk

〈
χ(ρs)∂uHs, ∂u(−∆)−1(λtk − λs)

〉
ds .

The �rst term in (5.12) is similar to the second one, because (−∆)−1 is a symmetric operator,〈
ρtk+1

, (−∆)−1λtk+1
〉 −

〈
ρtk+1

, (−∆)−1λtk〉

=−
∫ tk+1

tk

〈ρs, λs〉 ds+ 2

∫ tk+1

tk

〈
χ(λs)∂uHs, ∂u(−∆)−1ρs

〉
ds+Rk,3

n (λ, ρ) +Rk,4
n (λ, ρ) ,

(5.14)

where

Rk,3
n (λ, ρ) =

∫ tk+1

tk

〈λs, ρs − ρtk+1
〉 ds

and

Rk,4
n (λ, ρ) = 2

∫ tk+1

tk

〈
χ(λs)∂uHs, ∂u(−∆)−1(ρtk+1

− ρs)
〉
ds .

The sum over k of the �rsts two terms in the right side of (5.13) and of (5.14) is exactly the
expression that we announced in (5.11). We shall treat the remainder.

We claim that

n−1∑
k=0

{
Rk,1
n (ρ, λ) +Rk,2

n (ρ, λ) +Rk,3
n (λ, ρ) +Rk,4

n (λ, ρ)
}

converges to zero, as n→ ∞.
If we prove this claim, the proof of this proposition is completed. To prove this claim we

will proceed as in Proposition 2.6.3. Let ιδ : T → R be an smooth approximation of identity
and Φδ : T → R a smooth function bounded by one, equals to zero in the interval (−δ, δ),
and equals to one in T\(−2δ, 2δ). De�ne

ρδs(u) = (ρs ∗ ιδ)(u)Φδ(u) .

It is of easy veri�cation that ρδs, λ
δ
s ∈ H2

bc(T), for any s ∈ [0, T ], and also that ρδs(·) converges
to ρs(·) in L2(T), as δ ↓ 0.

Adding and subtracting ρδ, Rk,1
n (ρ, λ) can be written as∫ tk+1

tk

〈ρs − ρδs, λs − λtk〉 ds+
∫ tk+1

tk

〈ρδs, λs − λtk〉 ds . (5.15)

Fix ε > 0. Since ρδs(·) converges to ρs(·) in L2(T), applying the Dominated Convergence
Theorem, the sum in k of the �rst term in (5.15) is bounded in modulus by εt for some δ(ε)
small.
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Fix now such δ = δ(ε). Since ρδs ∈ H2
bc(T) and since λ is a weak solution of (1.10), the

second term in (5.15) is equal to∫ tk+1

tk

{∫ s

tk

〈λr,∆ρδs〉 dr + 2

∫ s

tk

〈
χ(λr)∂uHs, ∂uρ

δ
r

〉
dr
}
ds ,

whose modulus is bounded by C(ρ,H, δ(ε))(tk+1 − tk)
2. Thus,

n−1∑
k=0

Rk,1
n (ρ, λ) ≤ ε t + C(ρ,H, δ(ε)) t max

k∈{0,··· ,n−1}
|tk+1 − tk| .

Taking the limit on expression above, as n→ ∞, and recalling that ε > 0 is any, we get

lim
n→∞

n−1∑
k=0

Rk,1
n (ρ, λ) = 0 .

Now, we use the Young's inequality, then Rk,2
n (ρ, λ) is bounded from above by

ε

∫ tk+1

tk

〈
χ(ρs)∂uHs, χ(ρs)∂uHs

〉
ds+ 1

ε

∫ tk+1

tk

〈
∂u(−∆)−1(λtk − λs), ∂u(−∆)−1(λtk − λs)

〉
ds ,

for all ε > 0. Integration by parts, the second term above is equal to

1
ε

∫ tk+1

tk

〈
λtk − λs, (−∆)−1(λtk − λs)

〉
ds

+1
ε

∫ tk+1

tk

{[
(−∆)−1(λtk − λs)

]
(1)

[
∂u(−∆)−1(λtk − λs)

]
(1)

}
ds

−1
ε

∫ tk+1

tk

{[
(−∆)−1(λtk − λs)

]
(0)

[
∂u(−∆)−1(λtk − λs)

]
(0)

}
ds .

(5.16)

Using the Proposition 2.6.2 item (b), the two last terms in the expression above can be
written as

−1
ε

∫ tk+1

tk

{[
(−∆)−1(λtk − λs)

]
(0)−

[
(−∆)−1(λtk − λs)

]
(1)

}2

ds .

We will use that λ is a weak solution of (1.10), (−∆)−1(λtk − λs) belongs to H2
bc(T) and the

Proposition 5.4.1, then the �rst term in (5.16) is equal to

1
ε

∫ tk+1

tk

{
−
∫ s

tk

〈λr, (λtk − λs〉 dr + 2

∫ s

tk

〈
χ(λr)∂uHs, ∂u(−∆)−1(λtk − λs)

〉
dr
}
ds .

Thus, there exists the constants C(H) > 0 and C(λ,H) > 0 such that

n−1∑
k=0

Rk,2
n (ρ, λ) ≤ εC(H) t + 1

ε
C(λ,H) t max

k∈{0,··· ,n−1}
|tk+1 − tk| .
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One can conclude that the limit of
∑n−1

k=0 R
k,2
n (ρ, λ) is zero, as n → ∞. For �nish the proof

of claim, we proceed with Rk,3
n (λ, ρ) and with Rk,4

n (λ, ρ) in the same way that with Rk,1
n (ρ, λ)

and Rk,2
n (ρ, λ).

Corollary 5.4.3. Let ρ and λ be two weak solutions of the asymmetric equation with per-
tubation H ∈ C1,2([0, T ] × T) given in De�nition 1.3.1, with respective initial conditions ρ0
and λ0. Then,

〈ρt − λt, (−∆)−1(ρt − λt)〉 ≤ 〈ρ0 − λ0, (−∆)−1(ρ0 − λ0)〉 ect , (5.17)

for all t ∈ [0, T ] and some constant c ∈ R. In particular, there exists at most one weak
solution of the asymmetric equation with perturbation H.

Proof. From Proposition 5.4.2, the expression

〈ρt − λt, (−∆)−1(ρt − λt)〉 (5.18)

is equal to

−2

∫ t

0

〈ρs − λs, ρs − λs〉 ds+ 4

∫ t

0

〈
[χ(ρs)− χ(λs)]∂uHs , ∂u(−∆)−1(ρs − λs)

〉
ds .

Let us estimate the second integral in the expression above. By Young's inequality, for any
ε > 0,

4

∫ t

0

〈[χ(ρs)− χ(λs)]∂uHs , ∂uρs − ∂uλs〉 ds

≤ 2εC(H)

∫ t

0

〈
χ(ρs)− χ(λs), χ(ρs)− χ(λs)

〉
ds

+
2

ε

∫ t

0

〈
∂u(−∆)−1(ρs − λs), ∂u(−∆)−1(ρs − λs)

〉
ds .

By hypothesis, ρ and λ take values in the interval [0, 1]. Therefore, because χ(·) is a Lipschitz
function,

2εC(H)

∫ t

0

〈
χ(ρs)− χ(λs), χ(ρs)− χ(λs)

〉
ds ≤ εCH

∫ t

0

〈ρs − λs, ρs − λs〉 ds .

By integration by parts and Proposition 2.6.2 item (b), the term

2

ε

∫ t

0

〈
∂u(−∆)−1(ρs − λs), ∂u(−∆)−1(ρs − λs)

〉
ds

is equal to

2

ε

∫ t

0

〈ρs − λs, (−∆)−1(ρs − λs)〉 ds

−2

ε

∫ t

0

{
(−∆)−1(ρs − λs)(0)− (−∆)−1(ρs − λs)(1)

}2
ds .
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We conclude that, for enough small ε, the expression (5.18) is bounded from above by

2

ε

∫ t

0

〈ρs − λs, (−∆)−1(ρs − λs)〉 ds .

Thus, it just remains to apply Gronwall's inequality to obtain (5.17).
To see that this implies the uniqueness of solutions with the same initial condition γ.

Use item (d) of the Proposition 2.6.2, for �xed t ∈ [0, T ], to obtain ft ∈ H2
bc(T) such that

ρt − λt = (−∆)ft, and thus

0 = 〈ρt − λt, (−∆)−1(ρt − λt)〉 =
〈
−∆ft, ft〉 = 〈∂uft, ∂uft〉+ (∂uft(0

+))2 .

Then, ∂uft(u) = 0, u - almost surely and for all t ∈ [0, T ]. Since ρt − λt = (−∆)ft, we have
ρt(u) = λt(u), u - almost surely and for all t ∈ [0, T ]. This concludes the proof.
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Chapter 6

Large Deviations Lower Bound

In this chapter we will present in Proposition 6.0.6 the lower bound of the Large Deviation
Principle. For this, we will need the next lemmata.

Lemma 6.0.4. For each function H ∈ C1,2([0, T ]×T). Let ρH be a unique weak solution of
(1.10). Then,

I∗(ρH) = ĴH(ρ
H) =

∫ T

0

〈
χ(ρHt ), (∂uHt)

2
〉
dt . (6.1)

Proof. Using that ρH is weak solution of (1.10), for all G ∈ C1,2([0, T ]× T), we get

ĴG(ρ
H) =

∫ T

0

〈
χ(ρHt ), (∂uHt)

2
〉
dt−

∫ T

0

〈
χ(ρHt ), (∂uHt − ∂uGt)

2
〉
dt .

Then,

I∗(ρH) = sup
G∈C1,2([0,T ]×T)

ĴG(ρ
H) = ĴH(ρ

H) =

∫ T

0

〈
χ(ρHt ), (∂uHt)

2
〉
dt .

Lemma 6.0.5. For each H ∈ C1,2([0, T ] × T). Denote by H
(
PHνNα |PνNα

)
the entropy of a

probability measure PHνNα with respect to a probability measure PνNα . We refer to [16, Section

A1.8] for a precise de�nition. Then,

lim
N→∞

1
N
H

(
PHνNα |PνNα

)
= I(ρH) ,

where ρH is a unique weak solution of (1.10).

Proof. By the explicit formula for entropy

1
N
H

(
PHνNα |PνNα

)
= 1

N
EHνNα

[
log

dPHνNα
dPνNα

]
. (6.2)
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Recall the de�nition of the set BH
δ,ε given in (4.4). We claim the probability (BH

δ,ε)
{ with

respect to PHνNα is superexponentially small. Indeed, using (5.3)

PHνNα
[
(BH

δ,ε)
{
]
= EνNα

[
dPHνNα
dPνNα

1(BH
δ,ε)

{

]
≤ eC(H,T )NPνNα

[
(BH

δ,ε)
{
]
.

By (4.5), we get

lim
ε↓0

lim
N→∞

1
N
logPHνNα

[
(BH

δ,ε)
{
]
= −∞ . (6.3)

From (6.3) and the fact that 1
N
log

dPH

νNα

dP
νNα

is bounded by C(H,T ), the right hand side of (6.2)

is equal to

1
N
EHνNα

[
log

dPHνNα
dPνNα

1BH
δ,ε

]
+ oN(1) , (6.4)

for all δ > 0 and each ε enoughly small (ε < ε(δ)). Applying the expression (4.9) for the

Radon-Nikodym derivative, 1
N
log

dPH

νNα

dP
νNα

on the set BH
δ,ε is equal to

ĴH
(
(πN ∗ ιγ) ∗ ιaε

)
+OH,T,ε,γ(

1
N
) +O(δ) +OH(ε) +OH(

γ
ε
) ,

for all δ > 0 and all ε and γ small enough. Since this expression is bounded and the
probability of (BH

δ,ε)
{ with respect to PHνNα vanishes as N increases to in�nity, the expression

(6.4) becomes

EHνNα
[
ĴH

(
(πN ∗ ιγ) ∗ ιaε

)]
+OH,T,ε,γ(

1
N
) +O(δ) +OH(ε) +OH(

γ
ε
) + oN(1) ,

for all δ > 0 and all ε and γ small enough. The functional ρ 7→ ĴH
(
(ρ∗ ιγ)∗ ιaε

)
is continuous

with respect to the Skorohod topology with ε and γ �xed, see the Proposition A.2.4. By
Proposition 5.0.4 the sequence QH

µN
converges weakly to the probability concentrated on the

weak solution of (1.10). In particular, as N increases to in�nity the previous expectation
converges to

ĴH
(
(ρH ∗ ιγ) ∗ ιaε

)
+O(δ) +OH(ε) +OH(

γ
ε
) .

It remains to let γ ↓ 0 and ε ↓ 0, then δ ↓ 0 and recall identity (6.1).

Recall that D0
(
[0, T ],M0

)
is the subset of D

(
[0, T ],M0

)
that consists of all paths

π(t, du) = ρ(t, u)du such that there exists H ∈ C1,2([0, T ] × T) that ρ = ρH is a unique
weak solution of (1.10).

Proposition 6.0.6. Let O be an open set of D
(
[0, T ],M

)
. Then

lim
N→∞

1
N
logQνNα

[O] ≥ − inf
π∈O∩D0([0,T ],M0)

I∗(π) .
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Proof. This proof is essentially the same as found in [16]. Let π ∈ O∩D0
(
[0, T ],M0

)
, there

exists H ∈ C1,2([0, T ] × T) such that π(t, du) = ρHt (u)du, where ρ
H is a weak solution of

(1.10). Denote by PHνNα ,O the probability on space D
(
[0, T ], {0, 1}TN

)
given by

PHνNα ,O[A] =
PHνNα [A, π

N ∈ O]

PH
νNα

[πN ∈ O]
,

for all measurable set A of D
(
[0, T ], {0, 1}TN

)
. Using this probability, we may rewrite

1
N
logQνNα

[O] as

1
N
logEHνNα ,O

[dPνNα
dPH

νNα

]
+ 1

N
logQH

νNα
[O] .

By Proposition 5.0.4, since O is a neighborhood that contains ρH , the second expression
above converges to 0 as N increases to in�nity. Applying Jensen's inequality, the �rst one is
bounded below by

EHνNα ,O
[

1
N
log

dPνNα
dPH

νNα

]
.

Using the de�nition of probability PHνNα ,O and expression (6.2), the last expression becomes

1

QH
νNα

[O]

{
− 1

N
H

(
PHνNα |PνNα

)
− EHνNα

[
1
N
log

dPνNα
dPH

νNα

1{πN∈O{}

]}
.

Once again, by Proposition 5.0.4, QH
νNα

[O] converges to 1 as N → ∞. Since by (5.3) the

expression 1
N
log

dP
νNα

dPH

νNα

is bounded, the second term inside braces vanishes as N → ∞. There-

fore,
lim
N→∞

1
N
logQνNα

[O] ≥ lim
N→∞

− 1
N
H

(
PHνNα |PνNα

)
= −I∗(ρH) .
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Chapter 7

Hydrodynamical behavior of symmetric

exclusion with slow bonds of parameter

N−β

Joint work with Tertuliano Franco and Patrícia Gonçalves.
To be appear in the Annales de l'Institut Henri Poincaré: Probability and Statistics (B).

7.1 Notation and Results

Let TN = {1, . . . , N} be the one-dimensional discrete torus with N points. At each site, we
allow at most one particle. Therefore, we will be concerned about the state space {0, 1}TN .
Con�gurations will be denoted by the Greek letter η, so that η(x) = 1, if the site x is occu-
pied, otherwise η(x) = 0.

We de�ne now the exclusion process with state space {0, 1}TN and with conductance
{ξNx,x+1}x at the bond of vertices x, x + 1. The dynamics of this Markov process can be
described as follows. At each bond of vertices x, x + 1, we associate an exponential clock
of parameter ξNx,x+1. When this clock rings, the value of η at the vertices of this bond are
exchanged. This process can also be characterized in terms of its in�nitesimal generator LN ,
which acts on local functions f : {0, 1}TN → R as

LNf(η) =
∑
x∈TN

ξNx,x+1

[
f(ηx,x+1)− f(η)

]
,

where ηx,x+1 is the con�guration obtained from η by exchanging the variables η(x) and
η(x+ 1):

(ηx,x+1)(y) =


η(x+ 1), if y = x ,
η(x), if y = x+ 1 ,
η(y), otherwise.
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The Bernoulli product measures {νNα : 0 ≤ α ≤ 1} are invariant and in fact, reversible,
for the dynamics introduced above. Namely, νNα is a product measure on {0, 1}TN with
marginal at site x in TN given by

νNα {η : η(x) = 1} = α.

Denote by T the one-dimensional continuous torus [0, 1). The exclusion process with a
slow bond at each point b1 . . . , bk ∈ T is de�ned with the following conductances:

ξNx,x+1 =


N−β, if {b1, . . . , bk} ∩ ( x

N
, x+1
N

] 6= ∅ ,

1, otherwise .

The conductances are chosen in such a way that particles cross bonds at rate one, except
k particular bonds in which the dynamics is slowed down by a factor N−β, with β ∈ [0,∞).
Each one of these particular bonds contains the macroscopic point bi ∈ T; or bi coincides
with some vertex x

N
and the slow bond is chosen as the bond to the left of x

N
. To simplify

notation, we denote by Nbi the left vertex of the slow bond containing bi.

Denote by {ηt := ηtN2 : t ≥ 0} the Markov process on {0, 1}TN associated to the generator
LN speeded up by N2. Although ηt depends on N and β, we are not indexing it on that in
order not to overload notation. Let D(R+, {0, 1}TN ) be the path space of càdlàg trajectories
with values in {0, 1}TN . For a measure µN on {0, 1}TN , denote by PβµN the probability mea-
sure on D(R+, {0, 1}TN ) induced by the initial state µN and the Markov process {ηt : t ≥ 0}
and denote by EβµN the expectation with respect to PβµN .

De�nition 7.1.1. A sequence of probability measures {µN : N ≥ 1} on {0, 1}TN is said to
be associated to a pro�le ρ0 : T → [0, 1] if for every δ > 0 and every continuous functions
H : T → R

lim
N→∞

µN

{
η :

∣∣∣ 1
N

∑
x∈TN

H( x
N
) η(x)−

∫
T
H(u) ρ0(u)du

∣∣∣ > δ
}

= 0. (7.1)

Now we introduce an operator which corresponds to the generator of the random walk in
TN with conductance ξNx,x+1 at the bond of vertices x, x+1. This operator acts on H : T → R
as

LNH( x
N
) = ξNx,x+1

[
H
(
x+1
N

)
−H

(
x
N

)]
+ ξNx−1,x

[
H
(
x−1
N

)
−H

(
x
N

)]
. (7.2)

We will not di�erentiate the notation for functions H de�ned on T and on TN . The
indicator function of a set A will be written by 1A(u), which is one when u ∈ A and zero
otherwise.
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7.1.1 The Operator d
dx

d
dW

Given the points b1, . . . , bk ∈ T, de�ne the measure W (du) in the torus T by

W (du) = du+ δb1(du) + · · ·+ δbk(du) ,

so that W is the Lebesgue measure on the torus T plus the sum of the Dirac measure in
each of the {bi : i = 1, ..., k}.

Let H1
W be the set of functions F in L2(T) such that for x ∈ T

F (x) = a +

∫
(0,x]

(
b+

∫ y

0

f(z) dz
)
W (dy),

for some function f in L2(T) and a, b ∈ R such that∫ 1

0

f(x) dx = 0 ,

∫
(0,1]

(
b+

∫ y

0

f(z) dz
)
W (dy) = 0 . (7.3)

De�ne the operator

d

dx

d

dW
: H1

W → L2(T)

d

dx

d

dW
F = f.

For more details we refer the reader to [9].

7.1.2 The hydrodynamical equations

Consider a continuous density pro�le γ : T → [0, 1]. Denote by 〈·, ·〉 the inner product in
L2(T), by ρt a function ρ(t, ·) and for an integer n denote by Cn(T) the set of continuous
functions from T to R and with continuous derivatives of order up to n. For I an interval
of T, here and in the sequel, for n and m integers, we use the notation Cn,m([0, T ] × I) to
denote the set of functions de�ned on the domain [0, T ]×I, that are of class Cn in time and
Cm in space.

De�nition 7.1.2. A bounded function ρ : [0, T ] × T → R is said to be a weak solution of
the parabolic di�erential equation with initial condition γ(·):{

∂tρ = ∂2uρ
ρ(0, ·) = γ(·) (7.4)

if, for t ∈ [0, T ] and H ∈ C2(T), ρ(t, ·) satis�es the integral equation

〈ρt, H〉 − 〈γ,H〉 −
∫ t

0

〈ρs, ∂2uH〉 ds = 0.
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De�nition 7.1.3. A bounded function ρ : [0, T ] × T → R is said to be a weak solution of
the parabolic di�erential equation with initial condition γ(·):{

∂tρ =
d

dx

d

dW
ρ

ρ(0, ·) = γ(·)
(7.5)

if, for t ∈ [0, T ] and H ∈ H1
W , ρ(t, ·) satis�es the integral equation

〈ρt, H〉 − 〈γ,H〉 −
∫ t

0

〈
ρs,

d

dx

d

dW
H
〉
ds = 0 .

Following the notation of [4], denote by L2(0, T ;H1(a, b)) the space of functions % ∈
L2([0, T ] × [a, b]) for which there exists a function in L2([0, T ] × [a, b]), denoted by ∂u%,
satisfying ∫ T

0

∫ b

a

(∂uH)(s, u) %(s, u) du ds = −
∫ T

0

∫ b

a

H(s, u) (∂u%)(s, u) du ds ,

for any H ∈ C0,1([0, T ]× [a, b]) with compact support in [0, T ]× (a, b).

De�nition 7.1.4. Let [bi, bi+1] ⊂ T. A bounded function ρ : [0, T ]× [bi, bi+1] → R is said to
be a weak solution of the parabolic di�erential equation with Neumann's boundary conditions
in the cylinder [0, T ]× [bi, bi+1] and with initial condition γ(·):

∂tρ = ∂2uρ
ρ(0, ·) = γ(·)
∂uρ(t, bi) = ∂uρ(t, bi+1) = 0, ∀t ∈ [0, T ]

(7.6)

if, for t ∈ [0, T ] and H ∈ C1,2([0, T ]× [bi, bi+1]), ρ(t, ·) satis�es the integral equation∫ bi+1

bi

ρ(t, u)H(t, u) du−
∫ bi+1

bi

γ(u)H(0, u) du

−
∫ t

0

∫ bi+1

bi

ρ(s, u) {∂2uH(s, u) + ∂sH(s, u)} du ds

+

∫ t

0

∂uH(s, bi+1) ρ(s, b
−
i+i) ds−

∫ t

0

∂uH(s, bi) ρ(s, b
+
i ) ds = 0

(7.7)

and ρ(t, ·) belongs to L2(0, T ;H1(bi, bi+1)).

Since in De�nition 7.1.4 we impose ρ ∈ L2(0, T ;H1(bi, bi+1)), the integrals are well-de�ned
at the boundary. This is a consequence of the following two facts. On one hand, it follows
from the assumption that ρ(t, ·) ∈ H1(bi, bi+1), almost surely in t ∈ [0, T ]. On the other hand,
it is well-known that functions belonging to H1(bi, bi+1) and with sided limits at bi and bi+1

are absolutely continuous with respect to the Lebesgue measure, see [18] for instance. We
refer the reader to [4] for classical results about Sobolev spaces.
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Heuristically, in order to establish an integral equation for the weak solution of the heat
equation with Neumann's boundary conditions as above, one should multiply (7.6) by a test
function H and perform twice a formal integration by parts to arrive at (7.7).

We are now in position to state the main result of this paper:

Theorem 7.1.1. Fix β ∈ [0,∞). Consider the exclusion process with k slow bonds cor-
responding to macroscopic points b1, . . . , bk ∈ T and with conductance N−β at each one of
these slow bonds.

Fix a continuous initial pro�le γ : T → [0, 1]. Let {µN : N ≥ 1} be a sequence of
probability measures on {0, 1}TN associated to γ. Then, for any t ∈ [0, T ], for every δ > 0
and every H ∈ C(T), it holds that

lim
N→∞

PβµN
{
η. :

∣∣∣ 1
N

∑
x∈TN

H( x
N
) ηt(x)−

∫
T
H(u) ρ(t, u)du

∣∣∣ > δ
}

= 0 ,

where :

• if β ∈ [0, 1), ρ(t, ·) is the unique weak solution of (7.4);

• if β = 1, ρ(t, ·) is the unique weak solution of (7.5);

• if β ∈ (1,∞), in each cylinder [0, T ] × [bi, bi+1], ρ(t, ·) is the unique weak solution of
(7.6).

Remark 7.1.2. The assumption that all slow bonds have exactly the same conductance is not
necessary at all. In fact, last result is true when considering each slow bond containing the
macroscopic point bi with conductance N−βi. In that case, we would obtain a parabolic dif-
ferential equation with the behavior at each [bi, bi+1] given by the regime of the corresponding
βi as above. Another straightforward generalization is to consider conductances not exactly
equal to N−β, but of order N−β, in the sense that the quotient with N−β converges to one.
For sake of clarity, we present the proof under the conditions of Theorem 7.1.1.

7.2 Scaling Limit

Let M be the space of positive measures on T with total mass bounded by one, endowed
with the weak topology. Let πNt ∈ M be the empirical measure at time t associated to ηt,
namely, it is the measure on T obtained by rescaling space by N and by assigning mass N−1

to each particle:
πNt = 1

N

∑
x∈TN

ηt(x) δx/N , (7.8)

where δu is the Dirac measure concentrated on u. For an integrable function H : T → R,
〈πNt , H〉 stands for the integral of H with respect to πNt :

〈πNt , H〉 = 1
N

∑
x∈TN

H( x
N
) ηt(x) .
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This notation is not to be mistaken with the inner product in L2(R). Also, when πt has a
density ρ, namely when π(t, du) = ρ(t, u)du, we sometimes write 〈ρt, H〉 for 〈πt, H〉.

Fix T > 0. Let D([0, T ],M) be the space of M-valued càdlàg trajectories π : [0, T ] → M
endowed with the Skorohod topology. For each probability measure µN on {0, 1}TN , denote
by Qβ,N

µN
the measure on the path space D([0, T ],M) induced by the measure µN and the

empirical process πNt introduced in (7.8).
Fix a continuous pro�le γ : T → [0, 1] and consider a sequence {µN : N ≥ 1} of measures

on {0, 1}TN associated to γ. Let Qβ be the probability measure on D([0, T ],M) concentrated
on the deterministic path π(t, du) = ρ(t, u)du, where:

• if β ∈ [0, 1), ρ(t, ·) is the unique weak solution of (7.4);

• if β = 1, ρ(t, ·) is the unique weak solution of (7.5);

• if β ∈ (1,∞), in each cylinder [0, T ] × [bi, bi+1], ρ(t, ·) is the unique weak solution of
(7.6).

Proposition 7.2.1. As N ↑ ∞, the sequence of probability measures {Qβ,N
µN

: N ≥ 1}
converges weakly to Qβ.

The proof of this result is divided into three parts. In the next section, we show that
the sequence {Qβ,N

µN
: N ≥ 1} is tight, for any β ∈ [0,∞). In Section 7.5 we characterize

the limit points of this sequence for each regime of the parameter β. Uniqueness of weak
solutions is presented in Section 7.6 and this implies the uniqueness of limit points of the
sequence {Qβ,N

µN
: N ≥ 1}. In the �fth section, we prove a suitable Replacement Lemma for

each regime of β, which is crucial in the task of characterizing limit points and uniqueness.

7.3 Tightness

Proposition 7.3.1. For any �xed β ∈ [0,∞), the sequence of measures {Qβ,N
µN

: N ≥ 1} is
tight in the Skorohod topology of D([0, T ],M).

Proof. In order to prove tightness of {πNt : 0 ≤ t ≤ T} it is enough to show tightness of the
real-valued processes {〈πNt , H〉 : 0 ≤ t ≤ T} for H ∈ C(T). In fact, c.f. [16] it is enough to
show tightness of {〈πNt , H〉 : 0 ≤ t ≤ T} for a dense set of functions in C(T) with respect to
the uniform topology. For that purpose, �x H ∈ C2(T). By Dynkin's formula,

MN
t (H) = 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0

N2LN〈πNs , H〉 ds , (7.9)

is a martingale with respect to the natural �ltration Ft := σ(ηs : s ≤ t). In order to prove
tightness of {〈πNt , H〉 : N ≥ 1}, we prove tightness of the sequence of the martingales and
the integral terms in the decomposition above. We start by the former.
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We begin by showing that the L2(PβµN )-norm of the martingale above vanishes as N →
+∞. The quadratic variation of MN

t (H) is given by

〈MN(H)〉t =

∫ t

0

∑
x∈TN

ξNx,x+1

[
(ηs(x)− ηs(x+ 1))(H(x+1

N
)−H( x

N
))
]2
ds. (7.10)

It is easy to show that 〈MN(H)〉t ≤ T
N
‖∂uH‖2∞. Here and in the sequel we use the notation

‖H‖∞ := supu∈T |H(u)|.
Thus, MN

t (H) converges to zero as N → +∞ in L2(PβµN ). Notice that above we used the
trivial bound ξNx,x+1 ≤ 1. By Doob's inequality, for every δ > 0,

lim
N→∞

PβµN

[
sup

0≤t≤T
|MN

t (H)| > δ

]
= 0 , (7.11)

which implies tightness of the sequence of martingales {MN
t (H);N ≥ 1}. Now, we need to

examine tightness of the integral term in (7.9).
Denote by ΓN the subset of sites x ∈ TN such that x has some adjacent slow bond,

namely, ξNx,x+1 = N−β or ξNx−1,x = N−β. The term N2LN〈πNs , H〉 appearing inside the time
integral in (7.9) is explicitly given by

N
∑
x/∈ΓN

ηs(x)
[
H(x+1

N
) +H(x−1

N
)− 2H( x

N
)
]

+N
∑
x∈ΓN

ηs(x)
[
ξNx,x+1{H(x+1

N
)−H( x

N
)}+ ξNx−1,x{H(x−1

N
)−H( x

N
)}
]
.

By Taylor expansion on H, the absolute value of the �rst sum above is bounded by ‖∂2uH‖∞.
Since there are at most 2k elements in ΓN , ξx,x+1 ≤ 1 and since there is only one particle
per site, the absolute value of the second sum above is bounded by 2 k‖∂uH‖∞. Therefore,
there exists a constant C := C(H, k) > 0, such that |N2LN〈πNs , H〉| ≤ C, which yields∣∣∣∣∫ t

r

N2LN〈πNs , H〉ds
∣∣∣∣ ≤ C|t− r| .

By Proposition 4.1.6 of [16], last inequality implies tightness of the integral term. This
concludes the proof.

7.4 Replacement Lemma and Sobolev Spaces

In this section, we obtain fundamental results that allow us to replace the mean occupation
of a site by the mean density of particles in a small macroscopic box around this site. This
result implies that the limit trajectories must belong to some Sobolev space, this will be
clear later. Before proceeding we introduce some tools that we use in the sequel.

103



Denote by HN(µN |να) the entropy of a probability measure µN with respect to the in-
variant state να. For a precise de�nition and properties of the entropy, we refer the reader
to [16]. In Proposition A.1.8 in the Appendix we review a classical result saying that there
exists a �nite constant K0 := K0(α), such that

HN(µN |να) ≤ K0N, (7.12)

for any probability measure µN ∈ {0, 1}TN .
Denote by 〈·, ·〉να the scalar product of L2(να) and denote byDN the Dirichlet form, which

is the convex and lower semicontinuous functional (see Corollary A1.10.3 of [16]) de�ned as:

DN(f) = 〈−LN
√
f ,

√
f〉να ,

where f is a probability density with respect to να (i.e. f ≥ 0 and
∫
fdνα = 1). An

elementary computation shows that

DN(f) =
∑
x∈TN

ξNx,x+1

2

∫ (√
f(ηx,x+1)−

√
f(η)

)2

dνα .

By Theorem A1.9.2 of [16], if {SNt : t ≥ 0} stands for the semi-group associated to the
generator N2LN , then

HN(µNS
N
t |να) + N2

∫ t

0

DN(f
N
s ) ds ≤ HN(µN |να) ,

provided fNs stands for the Radon-Nikodym derivative of µNSNs (the distribution of ηs start-
ing from µN) with respect to να.

7.4.1 Replacement Lemma

Now, we de�ne the local density of particles, which corresponds to the mean occupation in
a box around a given site. We represent this empirical density in the box of size ` around
a given site x by η`(x). For β ∈ [0, 1), this box can be chosen in the usual way, but for
β ∈ [1,∞), this box must avoid the slow bond. From this point on, we denote the integer
part of εN , namely bεNc, simply by εN .

De�nition 7.4.1. For β ∈ [0, 1), de�ne the empirical density by

ηεN(x) = 1
εN

x+εN∑
y=x+1

η(y) .
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De�nition 7.4.2. For β ∈ [1,∞), if x is such that {Nb1, . . . , Nbk} ∩ {x, . . . , x+ εN} = ∅,
then the empirical density is de�ned by

ηεN(x) = 1
εN

x+εN∑
y=x+1

η(y) .

Otherwise, if, let us say, Nbi ∈ {x, . . . , x + εN} for some i = 1, .., k, then the empirical
density is de�ned by

ηεN(x) = 1
εN

Nbi∑
y=Nbi−εN+1

η(y) .

Since we are considering a �nite number of slow bonds, the distance between two consec-
utive macroscopic points related to two consecutive slow bonds is at least ε, for ε su�ciently
small. As a consequence, we can suppose, without lost of generality that in the previous
de�nition, bi is unique.

Lemma 7.4.1. Fix β ∈ [0, 1). Let f be a density with respect to the invariant measure να.
Then, ∫

{η(x)− ηεN(x)}f(η)να(dη) ≤ 2(kNβ−1 + ε) +N DN(f) , ∀x ∈ TN .

Proof. From De�nition 7.4.1 we have that∫
{η(x)− ηεN(x)}f(η)να(dη) =

∫ {
1
εN

x+εN∑
y=x+1

(η(x)− η(y))
}
f(η) να(dη) .

Writing η(x)− η(y) as a telescopic sum, the last expression becomes equal to∫ {
1
εN

x+εN∑
y=x+1

y−1∑
z=x

(η(z)− η(z + 1))
}
f(η) να(dη) .

Rewriting the expression above as twice the half and making the transformation η 7→ ηz,z+1

(for which the probability να is invariant) it becomes as:

1
2εN

x+εN∑
y=x+1

y−1∑
z=x

∫
{η(z)− η(z + 1)}(f(η)− f(ηz,z+1)) να(dη) .

Since (a− b) = (
√
a−

√
b)(

√
a+

√
b) and by the Cauchy-Schwarz's inequality, for any A > 0,

we bound the previous expression from above by

1
2εN

x+εN∑
y=x+1

y−1∑
z=x

A

ξNz,z+1

∫
{η(z)− η(z + 1)}2

(√
f(η) +

√
f(ηz,z+1)

)2

να(dη)

+ 1
2εN

x+εN∑
y=x+1

y−1∑
z=x

ξNz,z+1

A

∫ (√
f(η)−

√
f(ηz,z+1)

)2

να(dη) .
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The second sum above is bounded by

1
2εN

x+εN∑
y=x+1

∑
z∈TN

ξNz,z+1

A

∫ (√
f(η)−

√
f(ηz,z+1)

)2

να(dη) =
1
A
DN(f) .

On the other hand, since f is a density, the �rst sum is bounded from above by

1
2εN

x+εN∑
y=x+1

y−1∑
z=x

4A

ξNz,z+1

≤ 1
εN

x+εN∑
y=x+1

2A(kNβ + εN) = 2A(kNβ + εN) .

Notice that the term kNβ comes from the existence of k slow bonds. Choosing A = 1
N
, the

proof ends.

Lemma 7.4.2 (Replacement Lemma). Fix β ∈ [0, 1). Let b ∈ T and let x be the right (or
left) vertex of the bond containing the macroscopic point b. Then,

lim
ε→0

lim
N→∞

EβµN
[ ∣∣∣ ∫ t

0

{ηs(x)− ηεNs (x)} ds
∣∣∣ ] = 0 .

Proof. From Jensen's inequality together with the entropy inequality (see for example Ap-
pendix 1 of [16]), for any γ ∈ R (which will be chosen large), the expectation appearing on
the statement of the Lemma is bounded from above by

HN(µN |να)
γN

+
1

γN
logEνα

[
exp

{
γ N

∣∣∣ ∫ t

0

{ηs(x)− ηεNs (x)} ds
∣∣∣}] . (7.13)

By Proposition A.1.8, HN(µN |να) ≤ K0N , so that it remains to focus on the second sum-
mand above. Since e|x| ≤ ex + e−x and

lim
N

1
N
log(aN + bN) = max

{
lim
N

1
N
log aN , lim

N

1
N
log bN

}
, (7.14)

we can remove the modulus inside the exponential. By Feynman-Kac's formula, see Lemma
A1.7.2 of [16] and Proposition A.1.7, the second term on the right hand side of (7.13) is less
than or equal to

t sup
f density

{∫
{η(x)− ηεN(x)}f(η)να(dη)−N DN(f)

}
.

Applying Lemma 7.4.1 and recalling that γ is arbitrarily large, the proof �nishes.

The next two results are concerned with both cases β = 1 and β ∈ (1,∞).

Lemma 7.4.3. Fix β ∈ [1,∞). Let f be a density with respect to the invariant measure να.
Then, ∫

{η(x)− ηεN(x)}f(η)να(dη) ≤ NDN(f) + 4ε , ∀x ∈ TN .

Moreover, given a function H : T → R:

1
N

∑
x∈TN

∫
H( x

N
){η(x)− ηεN(x)}f(η)να(dη) ≤ NDN(f) +

4ε
N

∑
x∈TN

(
H( x

N
)
)2

.
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Proof. Recall the De�nition 7.4.2. Let �rst x be a site such that there is no slow bond
connecting two sites in {x, . . . , x+ εN}. In this case,∫

H( x
N
){η(x)− ηεN(x)}f(η)να(dη)

=

∫
H( x

N
)
{

1
εN

x+εN∑
y=x+1

(η(x)− η(y))
}
f(η)να(dη) ,

and following the same arguments as in Lemma 7.4.1, we bound the previous expression
from above by

(H(
x
N

))2

2εN

x+εN∑
y=x+1

y−1∑
z=x

∫
A

ξNz,z+1

{η(z)− η(z + 1)}2
(√

f(η) +
√
f(ηz,z+1)

)2

να(dη)

+
1

2εN

x+εN∑
y=x+1

y−1∑
z=x

∫
ξNz,z+1

A
{η(z)− η(z + 1)}2

(√
f(η)−

√
f(ηz,z+1)

)2

να(dη) .

Since ξNz,z+1 = 1 for all z ∈ {x, . . . , x + εN − 1}, it yields the boundedness of the previous
expression by

2εNA
(
H( x

N
)
)2

+
DN(f)

A
.

Let now x be a site such that Nbi ∈ {x, . . . , x+ εN} for some i = 1, . . . , k. In this case,∫
H( x

N
){η(x)− ηεN(x)}f(η)να(dη)

=

∫
H( x

N
)
1

εN

Nbi∑
y=Nbi−εN+1

{
η(x)− η(y)

}
f(η)να(dη)

(7.15)

Now we split the last summation into two cases, y > x and y < x and then we proceed by
writing η(x) − η(y) as a telescopic sum as in Lemma 7.4.1. Then, by the same arguments
of Lemma 7.4.1 and since ξNz,z+1 = 1 for all z in the range {Nbi − εN + 1, . . . , Nbi − 1}, we
bound the previous expression by

4εNA
(
H( x

N
)
)2

+
DN(f)

A
.

Now the �rst claim of the lemma follows by taking the particular caseH( x
N
) = 1 and choosing

A = 1
N
.

Finally, if in (7.15) we sum over x ∈ TN and then divide by N , one concludes the second
claim of the lemma.

Lemma 7.4.4 (Replacement Lemma). Fix β ∈ [1,∞). Then, for every x ∈ TN

lim
ε→0

lim
N→∞

EβµN
[ ∣∣∣ ∫ t

0

{ηs(x)− ηεNs (x)} ds
∣∣∣ ] = 0 .
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Moreover, given a function H : T → R satisfying

lim
N→∞

1
N

∑
x∈TN

(
H( x

N
)
)2

< ∞ ,

also holds

lim
ε→0

lim
N→∞

EβµN
[ ∣∣∣ ∫ t

0

1
N

∑
x∈TN

H( x
N
){ηs(x)− ηεNs (x)} ds

∣∣∣ ] = 0 .

Proof. The proof follows exactly the same arguments in Lemma 7.4.2. Therefore, is su�cient
to show that the expressions

t sup
f density

{∫
{η(x)− ηεN(x)}f(η)dνα −NDN(f)

}
and

t sup
f density

{∫
1
N

∑
x

H( x
N
){η(x)− ηεN(x)}f(η)dνα −NDN(f)

}
,

vanish as N → +∞, which is an immediate consequence of Lemma 7.4.3.

In the next subsection, we will need the following variation of Lemma 7.4.3:

Lemma 7.4.5. Let H : T → R and let f be a density with respect to να. Then, for every
x ∈ TN ∫

1

εN

∑
x∈TN

H( x
N
)
{
η(x)− η(x+ εN)

}
f(η) να(dη)

≤NDN(f) +
2

εN

∑
x∈TN

(
H( x

N
)
)2{

ε+Nβ−1

k∑
i=1

1[bi,bi+ε)(
x
N
)
}
.

The proof of the last lemma follows the same steps as above and for that reason will be
omitted. Nevertheless, we sketch the idea of the proof. One begins by writing η(x)−η(x+εN)
as a telescopic sum and proceeding as in Lemma 7.4.3. The only relevant di�erence in this
case is that is not possible to avoid the slow bonds inside the telescopic sum, and therefore
the upper bound depends on β.

7.4.2 Sobolev Spaces

We prove in this subsection that any limit point Qβ
∗ of the sequence {Qβ,N

µN
: N ≥ 1} is con-

centrated on trajectories ρ(t, u)du with �nite energy, meaning that ρ(t, u) belongs to some
Sobolev space. For β ∈ [0, 1), this result is an immediate consequence of the uniqueness of
weak solutions of the heat equation. The case β = 1 is a particular case of the one considered
in [9]. Therefore, we will treat here the remaining case β ∈ (1,∞). Such result will play an
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important role in the uniqueness of weak solutions of (7.6).

Let Qβ
∗ be a limit point of {Qβ,N

µN
: N ≥ 1} and assume without lost of generality that

the whole sequence converges weakly to Qβ
∗ .

Proposition 7.4.6. The measure Qβ
∗ is concentrated on paths π(t, u) = ρ(t, u)du. Moreover,

there exists a function in L2([0, T ]× T), denoted by ∂uρ, such that∫ T

0

∫
T
(∂uH)(s, u) ρ(s, u) du ds = −

∫ T

0

∫
T
H(s, u) (∂uρ)(s, u) du ds ,

for all H in C0,1([0, T ]× T) whose support is contained in [0, T ]× (T\{b1, . . . , bk}).

The previous result follows from the next lemma. Recall the de�nition of the constant
K0 given in (7.12).

Lemma 7.4.7.

EQβ
∗

[
sup
H

{∫ T

0

∫
T
(∂uH)(s, u) ρ(s, u) du ds

− 2

∫ T

0

∫
T

(
H(s, u)

)2

du ds
}]

≤ K0 ,

where the supremum is carried over all functions H in C0,1([0, T ]×T) with support contained
in [0, T ]× (T\{b1, . . . , bk}).

We start by showing Proposition 7.4.6 assuming the last result. Later and independently
we will prove the previous lemma.

Proof of Proposition 7.4.6. Denote by ` : C0,1([0, T ]× T) → R the linear functional de�ned
by

`(H) =

∫ T

0

∫
T
(∂uH)(s, u) ρ(s, u) du ds .

Since the set of functionsH ∈ C0,1([0, T ]×T) with support contained in [0, T ]×(T\{b1, . . . , bk})
is dense in L2([0, T ] × T) and since by Lemma 7.4.7, ` is a Qβ

∗ -a.s. bounded functional in
C0,1([0, T ] × T), we can extend it to a Qβ

∗ -a.s. bounded functional in L2([0, T ] × T). In
particular, by the Riesz Representation Theorem, there exists a function G in L2([0, T ]×T)
such that

`(H) = −
∫ T

0

∫
T
H(s, u)G(s, u) du ds .

This �nishes the proof.

For a smooth function H : T → R, ε > 0 and a positive integer N , de�ne VN(ε,H, η) by

VN(ε,H, η) = 1
εN

∑
x∈TN

H( x
N
){η(x)− η(x+ εN)} − 2

N

∑
x∈TN

(
H( x

N
)
)2

.

In order to prove the Lemma 7.4.7, we need the following technical result:
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Lemma 7.4.8. Consider H1, . . . , Hk functions in C0,1([0, T ]×T) with support contained in
[0, T ]× (T\{b1, . . . , bk}). Hence, for every ε > 0:

lim
δ→0

lim
N→∞

Eβ
µN

[
max
1≤i≤k

{∫ T

0

VN(ε,Hi(s, ·), ηδNs ) ds
}]

≤ K0 . (7.16)

Proof. It follows from Lemma 7.4.4 that in order to prove (7.16), we just need to show that

lim
N→∞

Eβ
µN

[
max
1≤i≤k

{∫ T

0

VN(ε,Hi(s, ·), ηs) ds
}]

≤ K0 .

By the entropy and the Jensen's inequality, for each �xed N , the previous expectation is less
than or equal to

H(µN |να)
N

+
1

N
logEνα

[
exp

{
max
1≤i≤k

N

∫ T

0

VN(ε,Hi(s, ·), ηs)ds
}]

.

By (7.12), the �rst term above is bounded by K0. Since exp{max1≤j≤k aj} is bounded from
above by

∑
1≤j≤k exp{aj} and by (7.14), the limit as N ↑ ∞, of the second term of the

previous expression is less than or equal to

max
1≤i≤k

lim
N→∞

1

N
logEνα

[
exp

{
N

∫ T

0

VN(ε,Hi(s, ·), ηs)ds
}]

.

We now prove that, for each �xed i the limit above is nonpositive.
Fix 1 ≤ i ≤ k. By the Feynman-Kac's formula and the variational formula for the largest

eigenvalue of a symmetric operator, for each �xed N , the previous expectation is bounded
from above by ∫ T

0

sup
f

{∫
VN(ε,Hi(s, ·), η)f(η)να(dη)−NDN(f)

}
ds.

In last formula the supremum is taken over all probability densities f with respect to να.
By assumption, each of the functions {Hi : i = 1, . . . , k} vanishes in a neighborhood of each
bi ∈ T. This together with Lemma 7.4.5, imply that the previous expression has nonpositive
limsup. This is enough to conclude.

We de�ne now an approximation of the identity in the continuous torus given by

ιε(u, v) =



1
ε
1(v,v+ε)(u) , if v ∈ T\ ∪ki=1 (bi − ε, bi) ,

1
ε
1(b1−ε,b1)(u) , if v ∈ (b1 − ε, b1) ,

...
...

1
ε
1(bk−ε,bk)(u) , if v ∈ (bk − ε, bk) .

(7.17)
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The convolution of a measure π with ιε is de�ned by

(π ∗ ιε)(v) =

∫
ιε(u, v) π(du) .

For a function ρ, the convolution ρ ∗ ιε is understood as the convolution of the measure
ρ(u) du with ιε. Recall De�nition 7.4.2. At this point, an important remark is the equality

ηεNt (x) = (πNt ∗ ιε)( xN ) , (7.18)

which is of straightforward veri�cation.

Proof of Lemma 7.4.7. Consider a sequence {Hi : i ≥ 1} dense (with respect to the norm
‖H‖∞ + ‖∂uH‖∞) in the subset of C0,1([0, T ] × T) of functions with support contained in
[0, T ]× (T\{b1, . . . , bk}).

Recall that we suppose that {Qβ,N
µN

: N ≥ 1} converges to Qβ
∗ . By (7.16) and (7.18), for

every k ≥ 1,

lim
δ→0

EQβ
∗

[
max
1≤i≤k

{1

ε

∫ T

0

∫
T
Hi(s, u)

{
ρδs(u)− ρδs(u+ ε)

}
du ds

− 2

∫ T

0

∫
T
(Hi(s, u))

2 du ds
}]

≤ K0 ,

where ρδs(u) = (ρs ∗ ιδ)(u) as de�ned above. Letting δ ↓ 0, performing a change of variables
and then letting ε ↓ 0, we obtain that

EQβ
∗

[
max
1≤i≤k

{∫ T

0

∫
T
(∂uHi)(s, u)ρ(s, u) du ds

− 2

∫ T

0

∫
T
(Hi(s, u))

2 du ds
}]

≤ K0 .

To conclude the proof it remains to apply the Monotone Convergence Theorem and recall
that {Hi : i ≥ 1} is a dense sequence (with respect to the norm ‖H‖∞ + ‖∂uH‖∞) in the
subset of functions of C0,1([0, T ]×T) with support contained in [0, T ]× (T\{b1 . . . , bk}).

Remark 7.4.9. In terms of Sobolev spaces, we have just proved that, for β ∈ (1,∞), Qβ
∗ -

almost surely, the limit trajectory ρ(t, u)du is such that ρ(t, u) belongs to L2(0, T ;H1(bi, bi+1)),
in each cylinder [0, T ] × (bi, bi+1). Notice that in view of the presence of slow bonds and
of Lemma 7.4.5 is it not possible to obtain the same result considering the whole space
L2(0, T ;H1(T)).
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7.5 Characterization of Limit Points

We prove in this section that all limit points Qβ
∗ of the sequence {Qβ,N

µN
: N ≥ 1} are

concentrated on trajectories of measures absolutely continuous with respect to the Lebesgue
measure: π(t, du) = ρ(t, u)du, whose density ρ(t, u) is a weak solution of the hydrodynamic
equation (7.4), (7.5) or (7.6), for each corresponding value of β.

Let Qβ
∗ be a limit point of the sequence {Qβ,N

µN
: N ≥ 1} and assume, without lost of

generality, that {Qβ,N
µN

: N ≥ 1} converges to Qβ
∗ . The existence of Qβ

∗ is guaranteed by
Proposition 7.3.1.

Since there is at most one particle per site, it is easy to show that Qβ
∗ is concentrated on

trajectories πt(du) which are absolutely continuous with respect to the Lebesgue measure,
πt(du) = ρ(t, u)du and whose density ρ(·)t, · is non-negative and bounded by 1 (for more
details see [16]). We distinguish the regime of β in di�erent subsections below. In all the
cases, we will make use of the martingale MN

t (H) de�ned in (7.9). By a simple change of
variables, the integral term in (7.9) can be rewritten as a function of the empirical measure,
such that:

MN
t (H) = 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0

〈πNs , N2 LNH〉 ds , (7.19)

where LN was de�ned in (7.2).
We notice here that, for any choice of H, MN

t (H) is a martingale. In due course we
impose extra conditions on H in order to identify the density ρ(t, ·) as a weak solution of
the corresponding weak equation depending on the regime of the parameter β.

7.5.1 Characterization of Limit Points for β ∈ [0, 1)

Here, we want to show that ρ(t, ·) is a weak solution of (7.4). Let H ∈ C2(T). We begin by
claiming that

Qβ
∗

[
π· : 〈πt, H〉 − 〈π0, H〉 −

∫ t

0

〈πs, ∂2uH〉 ds = 0, ∀t ∈ [0, T ]
]

= 1. (7.20)

In order to prove the last claim, it is enough to show that, for every δ > 0:

Qβ
∗

[
π· : sup

0≤t≤T

∣∣∣〈πt, H〉 − 〈π0, H〉 −
∫ t

0

〈πs, ∂2uH〉 ds
∣∣∣ > δ

]
= 0.

By Portmanteau's Theorem and Proposition A.2.7, last probability is bounded from above
by

lim
N→∞

Qβ,N
µN

[
π· : sup

0≤t≤T

∣∣∣〈πt, H〉 − 〈π0, H〉 −
∫ t

0

〈πs, ∂2uH〉 ds
∣∣∣ > δ

]
since the supremum above is a continuous function in the Skorohod metric. Adding and
subtracting 〈πNs , N2 LNH〉 in the integral term above and recalling the de�nition of Qβ,N

µN
,
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the previous expression is bounded from above by

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣〈πNt , H〉 − 〈πN0 , H〉 −
∫ t

0

〈πNs , N2 LNH〉 ds
∣∣∣ > δ/2

]
+ lim

N→∞
PβµN

[
sup

0≤t≤T

∣∣∣ ∫ t

0

〈πNs , ∂2uH −N2 LNH〉 ds
∣∣∣ > δ/2

]
.

By (7.19) and (7.11), the �rst term in last expression is null. By the de�nition of ΓN given
in Section 7.3 and since there is only one particle per site, the second term in last expression
becomes bounded by

lim
N→∞

PβµN
[
T
N

∑
x/∈ΓN

∣∣∣∂2uH( x
N

)
−N2 LNH

( x
N

)∣∣∣ > δ/4
]

+ lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

1
N

∑
x∈ΓN

{
∂2uH( x

N
)−N2 LNH( x

N
)
}
ηs(x) ds

∣∣∣ > δ/4
]
.

Outside ΓN , the operator N2 LN coincides with the discrete Laplacian and since H ∈ C2(T),
the �rst term in last expression is zero. Recall that there are 2k elements in ΓN . Applying
the triangular inequality, the second expression in the previous sum becomes bounded by

lim
N→∞

PβµN
[

2kT
N

‖∂2uH‖∞ > δ/8
]

+ lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∑
x∈ΓN

∫ t

0

N LNH( x
N
) ηs(x) ds

∣∣∣ > δ/8
]
.

For large N , the �rst probability vanishes. Now we deal with the second term. We associate
to each slow bond containing a point bi, a unique pair of sites in ΓN , namely Nbi and Nbi+1.
By the triangular inequality, in order to show that the second expression above is zero, it is
su�cient to verify that

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

{N LNH(Nbi
N

) ηs(Nbi)

+N LNH(Nbi+1
N

) ηs(Nbi + 1)} ds
∣∣∣ > δ/8k

]
= 0,

for each i = 1, . . . , k. The expression inside the integral above can be explicitly written as{
N [H(Nbi−1

N
)−H(Nbi

N
)] +N1−β [H(Nbi+1

N
)−H(Nbi

N
)]
}
ηs(Nbi)

+
{
N1−β [H(Nbi

N
)−H(Nbi+1

N
)] +N [H(Nbi+2

N
)−H(Nbi+1

N
)]
}
ηs(Nbi + 1) .

Since H is smooth and β ∈ [0, 1), the terms inside the parenthesis involving N1−β converge
to zero and the terms involving N converge to plus or minus the space derivative of H at bi.
Therefore, again by the triangular inequality, it remains to show that, for any δ > 0,

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

∂uH(bi)
{
ηs(Nbi) − ηs(Nbi + 1)

}
ds

∣∣∣ > δ
]

(7.21)
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equals to zero. The integral inside the probability above is continuous as a function of the
time t. Moreover, it has a Lipschitz constant bounded by |∂uH(bi)|. If ∂uH(bi) = 0, then
there is nothing to do. Otherwise, let t0 = 0 < t1 < · · · < tn = T be a partition of [0, T ]
with mesh bounded by δ(|2∂uH(bi)|)−1. Notice the partition is �xed, depending only on the
function H. By the triangular inequality, (7.21) is bounded by

n∑
j=0

lim
N→∞

PβµN
[ ∣∣∣ ∫ tj

0

∂uH(bi)
{
ηs(Nbi) − ηs(Nbi + 1)

}
ds

∣∣∣ > δ/2
]
.

Therefore, we just need to prove that, for any δ > 0 and any t ∈ [0, T ]

lim
N→∞

PβµN
[ ∣∣∣ ∫ t

0

{
ηs(Nbi) − ηs(Nbi + 1)

}
ds

∣∣∣ > δ
]
= 0.

Applying Markov's inequality, we bound the previous probability by

δ−1 EβµN
[ ∣∣∣ ∫ t

0

{
ηs(Nbi) − ηs(Nbi + 1)

}
ds

∣∣∣ ] .
Now, in order to conclude it is enough to do the following. First add and subtract the
empirical mean in the box of size εN around Nbi and Nbi + 1. Then, by the triangular
inequality and since |ηεNs (x)− ηεNs (x+1)| ≤ 2

εN
, the term involving the two empirical means

vanish. For the other two terms, we invoke Lemma 7.4.2. This �nishes the claim.

Proposition 7.5.1. For β ∈ [0, 1), any limit point of Qβ,N
µN

is concentrated in absolutely
continuous paths πt(du) = ρ(t, u) du, with positive density ρ(t, ·) bounded by 1, such that
ρ(t, ·) is a weak solution of (7.4).

Proof. Let {Hi : i ≥ 1} be a countable dense set of functions on C2(T), with respect to
the norm ‖H‖∞ + ‖∂2uH‖∞. Provided by (7.20) and intercepting a countable number of
sets of probability one, is straightforward to extend (7.20) for all functions H ∈ C2(T)
simultaneously.

7.5.2 Characterization of Limit Points for β = 1

The idea in this case is to show that ρ(t, ·) is an integral solution of (7.5) for a small domain
of functions and then extend this set to H1

W .
Let CW ⊂ H1

W be the set of functions H in L2(T) such that for x ∈ T

H(x) = a +

∫
(0,x]

(
b+

∫ y

0

h(z)dz
)
W (dy),

for some function h in C(T) and a, b ∈ R satisfying∫ 1

0

h(x) dx = 0 ,

∫
(0,1]

(
b+

∫ y

0

h(z) dz
)
W (dy) = 0 .
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Note that a function in CW is continuous in T\{b1, ..., bk} and well de�ned everywhere. Now,
�x a function H ∈ CW and de�ne the martingale MN

t (H) as in (7.9). We aim that, for every
δ > 0, the result in (7.11) holds for H ∈ CW . In fact, this was already shown, for H ∈ C2(T),
in the proof of Proposition 7.3.1. By (7.10), for t ∈ [0, T ]

〈MN(H)〉t ≤ T
∑
x∈TN

ξNx,x+1

[
H(x+1

N
)−H( x

N
)
]2
.

Since H ∈ CW , H is di�erentiable with bounded derivative, except at the points b1, . . . , bk.
Therefore, for any pair x, x + 1 such that there is no bi between x

N
and x+1

N
, the following

inequality holds

ξNx,x+1

[
H(x+1

N
)−H( x

N
)
]2

≤ 1

N2
‖∂2uH‖2∞.

On the other hand, if there is some {bi : i = 1, .., k} in the interval [ x
N
, x+1
N

), then ξNx,x+1 = N−β

and in this case we get to:

ξNx,x+1

[
H(x+1

N
)−H( x

N
)
]2

≤ 4

N2β
‖H‖2∞ .

Since there are only �nite k slow bonds, we conclude that the quadratic variation of MN
t (H)

vanishes as N → ∞. Now, Doob's inequality is enough to conclude. As above, by a simple
change of variables, we may rewrite the martingaleMN

t (H) in terms of the empirical measure
as in (7.19). Now we want to analyze the integral term in the martingale decomposition
(7.19).

Lemma 7.5.2. For any H ∈ CW ,

lim
N→∞

1
N

∑
x∈TN

∣∣∣N2LNH( x
N
)− d

dx
d
dW
H( x

N
)
∣∣∣ = 0 .

Proof. Recall the de�nition of the set ΓN given in Section 7.3 and rewrite the previous sum
as

1
N

∑
x/∈ΓN

∣∣∣N2LNH( x
N
)− d

dx
d
dW
H( x

N
)
∣∣∣ + 1

N

∑
x∈ΓN

∣∣∣N2LNH( x
N
)− d

dx
d
dW
H( x

N
)
∣∣∣ . (7.22)

Outside b1, . . . , bk, the operator d
dx

d
dW

coincides with the Laplacian, and outside ΓN , the
discrete operator N2 LN coincides with the discrete Laplacian. Hence, the �rst term above
is equal to

1
N

∑
x/∈ΓN

∣∣∣N2
(
H(x+1

N
) +H(x−1

N
)− 2H( x

N
)
)
− ∂2uH( x

N
)
∣∣∣ .

It is easy to verify that H ∈ C2(T\{b1, . . . , bk}) and has bounded derivatives. Thus, by a
Taylor expansion on H, it follows that the previous sum converges to zero as N → +∞. On
the other hand, the second sum in (7.22) is bounded by the sum of

1
N

∑
x∈ΓN

∣∣∣ d
dx

d
dW
H( x

N
)
∣∣∣
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and ∑
x∈ΓN

∣∣∣NξNx,x+1

[
H(x+1

N
)−H( x

N
)
]
+NξNx−1,x

[
H(x−1

N
)−H( x

N
)
] ∣∣∣ .

Since H ∈ CW , d
dx

d
W
H is a continuous function, therefore bounded. Since ΓN has k elements,

the �rst sum above converges to zero as N → +∞. It remains to analyze the second sum
above, where now the de�nition of the domain CW is crucial. For each x ∈ ΓN , one of the
conductances above is equal to N−1. Let us suppose that ξNx,x+1 = N−1 and ξNx−1,x = 1, the
other case being completely analogous. In this case, there exists some bi ∈ ( x

N
, x+1
N

]. From
the de�nition of CW and the measure W , the function H has a discontinuity at bi of size∫ bi

0

h(dz) dz .

Besides that, the function H has also sided-derivatives at bi of the same value. With this in
mind, is easy to see that

[H(x+1
N

)−H( x
N
)] +N [H(x−1

N
)−H( x

N
)]

converges to zero as N → ∞. Recalling there are �nite 2k elements in ΓN , we �nish the
proof of the lemma.

Now, �x H ∈ CW and take a continuous function Hε which coincides with H in T\ ∪ki=1

(bi − ε, bi + ε) and that ‖Hε‖∞ ≤ ‖H‖∞. The choice of ε will be determined later. Notice
that

sup
0≤t≤T

|〈πt, Hε −H〉| ≤ sup
0≤t≤T

k∑
i=1

∫
(bi−ε,bi+ε)

ρ(t, u) |Hε(u)−H(u)| du ≤ 4 k ε ‖H‖∞ .

For every δ > 0,

Qβ
∗

[
π· : sup

0≤t≤T

∣∣∣〈πt, H〉 − 〈π0, H〉 −
∫ t

0

〈πs, d
dx

d
dW
H〉 ds

∣∣∣ > δ
]

(7.23)

≤ Qβ
∗

[
π· : sup

0≤t≤T

∣∣∣ 〈πt, Hε〉 − 〈π0, Hε〉 −
∫ t

0

〈πs, d
dx

d
dW
H〉 ds

∣∣∣ > δ/3
]

+2Qβ
∗

[
π· : sup

0≤t≤T

∣∣∣〈πt, Hε −H〉
∣∣∣ > δ/3

]
.

By a suitable choice of ε, the second probability in the sum above is null. Since Hε and
d
dx

d
dW
H are continuous, by the Portmanteau's Theorem and Proposition A.2.7, it holds that

Qβ
∗

[
π : sup

0≤t≤T

∣∣∣〈πt, Hε〉 − 〈π0, Hε〉 −
∫ t

0

〈πs, d
dx

d
dW
H〉 ds

∣∣∣ > δ/3
]

≤ lim
N→∞

Qβ,N
µN

[
π : sup

0≤t≤T

∣∣∣〈πt, Hε〉 − 〈π0, Hε〉 −
∫ t

0

〈πs, d
dx

d
dW
H〉 ds

∣∣∣ > δ/3
]

= lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣〈πNt , Hε〉 − 〈πN0 , Hε〉 −
∫ t

0

〈πNs , d
dx

d
dW
H〉 ds

∣∣∣ > δ/3
]
.
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Notice that the last equality is just the de�nition of the measure Qβ,N
µN

. Since there is only
one particle per site, it holds that sup0≤t≤T

∣∣〈πNt , Hε−H〉
∣∣ ≤ 4 k ε‖H‖∞ , since Hε coincides

with H in T\ ∪ki=1 (bi − ε, bi + ε). Adding and subtracting 〈πNs , N2 LNH〉, 〈πNt , H〉 and
〈πN0 , H〉, we obtain that

lim
N→∞

PβµN
[

sup
0≤t≤T

|〈πNt , Hε〉 − 〈πN0 , Hε〉 −
∫ t

0

〈πNs , d
dx

d
dW
H〉 ds| > δ/3

]
≤ lim

N→∞
PβµN

[
sup

0≤t≤T

∣∣∣〈πNt , H〉 − 〈πN0 , H〉 −
∫ t

0

〈πNs , N2 LNH〉 ds
∣∣∣ > δ/12

]
+ lim

N→∞
PβµN

[
1
N

∑
x∈TN

∣∣∣N2LNH( x
N
)− d

dx
d
dW
H( x

N
)
∣∣∣ > δ/12

]
+2 lim

N→∞
PβµN

[
sup

0≤t≤T

∣∣∣〈πNt , Hε −H〉
∣∣∣ > δ/12

]
.

With another suitable choice of ε, the third probability in the sum above is null. Lemma
7.5.2 implies that the second probability above is zero for N su�ciently large. Recall we
proved that (7.11) holds for H ∈ CW , so that the �rst term in the sum above is zero. Finally,
from the previous computations we conclude that (7.23) is zero for any δ > 0. Therefore,
Qβ

∗ is concentrated on absolutely continuous paths πt(du) = ρ(t, u) du with positive density
bounded by 1 and for any �xed H ∈ CW , Qβ

∗ a.s.

〈ρt, H〉 − 〈ρ0, H〉 =

∫ t

0

〈
ρs ,

d
dx

d
dW
H
〉
ds , for all t ∈ [0, T ] . (7.24)

Proposition 7.5.3. For β = 1, any limit point of Qβ,N
µN

is concentrated in absolutely contin-
uous paths πt(du) = ρ(t, u) du, with positive density ρ(t, ·) bounded by 1, such that ρ(t, ·) is
a weak solution of (7.5).

Proof. By a density argument, (7.24) also holds, Qβ
∗ a.s., for all H ∈ CW simultaneously. It

remains to extend (7.24) for H ∈ H1
W . For that purpose �x H ∈ H1

W . Thus, for x ∈ T

H(x) = α+

∫
(0,x]

(
β +

∫ y

0

h(z) dz

)
W (dy) ,

with α, β ∈ R, h ∈ L2(T) satisfying (7.3). Let hn ∈ C(T) converging to h ∈ L2(T). De�ne

Hn(x) = αn +

∫
(0,x]

(
βn +

∫ y

0

hn(z) dz

)
W (dy) ,

where αn → α and βn → β. By the Dominated Convergence Theorem, it follows that Hn

converges uniformly to H. Therefore (7.24) is true for all H ∈ H1
W .
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7.5.3 Characterization of Limit Points for β ∈ (1,∞)

In this regime of the parameter β, Proposition 7.4.6 says that Qβ
∗ is concentrated on tra-

jectories absolutely continuous with respect to the Lebesgue measure πt(du) = ρ(t, u) du
such that, for each interval (bi, bi+1), ρ(t, ·) belongs to L2(0, T ;H1(bi, bi+1)). It is well known
that the Sobolev space H1(a, b) has the following properties: all its elements are absolutely
continuous functions with bounded variation, c.f. [4] and [18], therefore with lateral limits
well-de�ned. Such property is inherited by L2(0, T ;H1(bi, bi+1)) in the sense that we can
integrate in time the lateral limits. Therefore, Qβ

∗a.s., for each i = 1, . . . , k and for any
t ∈ [0, T ]: ∫ t

0

ρ(s, b+i ) ds <∞ and
∫ t

0

ρ(s, b−i+1) ds <∞.

To simplify notation, in this subsection we denote a = bi and b = bi+1. Fix h ∈ C2(T)
and de�ne H : [0, T ]× T → R by H(t, u) = h(t, u)1[a,b](u).

Recall that πt(du) = ρ(t, u)du. We begin by claiming that

Qβ
∗

[
π· : 〈ρt, Ht〉 − 〈ρ0, H0〉 −

∫ t

0

〈ρs, ∂2uHs + ∂sHs〉 ds

−
∫ t

0

∂uH(s, a+) ρ(s, a+) ds+

∫ t

0

∂uH(s, b−) ρ(s, b−) ds = 0,∀t ∈ [0, T ]
]

= 1 .

(7.25)

In order to prove (7.25), it is enough to show that, for every δ > 0

Qβ
∗

[
π : sup

0≤t≤T

∣∣∣〈ρt, Ht〉 − 〈ρ0, H0〉 −
∫ t

0

〈ρs, ∂2uHs + ∂sHs〉 ds

−
∫ t

0

∂uH(s, a+) ρ(s, a+) ds+

∫ t

0

∂uH(s, b−) ρ(s, b−) ds
∣∣∣ > δ

]
= 0 .

Since the boundary integrals are not well-de�ned in the whole Skorohod space D([0, T ],M),
we cannot use directly Portmanteau's Theorem. To avoid this technical obstacle, �x ε > 0,
which will be taken small later. Adding and subtracting the convolution of ρ(t, u) with ιε,
the probability above is less than or equal to the sum of

Qβ
∗

[
π· : sup

0≤t≤T

∣∣∣〈ρt, Ht〉 − 〈ρ0, H0〉 −
∫ t

0

〈ρs, ∂2uHs + ∂sHs〉 ds

−
∫ t

0

∂uH(s, a+) (ρs ∗ ιε)(a) ds+
∫ t

0

∂uH(s, b−) (ρs ∗ ιε)(b− ε) ds
∣∣∣ > δ/2

] (7.26)

and

Qβ
∗

[
π : sup

0≤t≤T

∣∣∣ ∫ t

0

∂uH(s, a+) (ρs ∗ ιε)(a) ds−
∫ t

0

∂uH(s, b−) (ρs ∗ ιε)(b− ε) ds

−
∫ t

0

∂uH(s, a+) ρ(s, a+) ds+

∫ t

0

∂uH(s, b−) ρ(s, b−) ds
∣∣∣ > δ/2

]
.
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where ιε and the convolution ρ∗ιε were de�ned in (7.17). The convolutions above are suitable
averages of ρ around the boundary points a and b. Therefore, as ε ↓ 0, the set inside the
previous probability decreases to a set of null probability. It remains to deal with (7.26).

By Portmanteau's Theorem, Proposition A.2.7 and since there is only one particle per
site, (7.26) is bounded from above by

lim
N→∞

Qβ,N
µN

[
π· : sup

0≤t≤T

∣∣∣ 〈πt, H〉 − 〈π0, H0〉 −
∫ t

0

〈πs, ∂2uHs + ∂sHs〉 ds

−
∫ t

0

∂uH(s, a+) (πs ∗ ιε)(a) ds+
∫ t

0

∂uH(s, b−) (πs ∗ ιε)(b− ε) ds
∣∣∣ > δ/2

]
.

Now, by the de�nition of Qβ,N
µN

, we can rewrite the previous expression as

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ 〈πNt , Ht〉 − 〈πN0 , H0〉 −
∫ t

0

〈πNs , ∂2uHs + ∂sHs〉 ds

−
∫ t

0

∂uH(s, a+) ηεNs (Na+ 1) ds+

∫ t

0

∂uH(s, b−) ηεNs (Nb) ds
∣∣∣ > δ/2

]
.

If we consider the discrete torus as embedded in the continuous torus, Na+ 1 is the closest
site to the right of a and Nb is the closest site to the left of b. The next step is to add and
subtract 〈πNs , N2 LNH〉 and the previous probability becomes now bounded from above by
the sum of

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ 〈πNt , Ht〉 − 〈πN0 , H0〉 −
∫ t

0

〈πNs , N2 LNHs + ∂sHs〉 ds
∣∣∣ > δ/4

]
and

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

〈πNs , N2 LNHs〉 ds −
∫ t

0

〈πNs , ∂2uHs〉 ds

−
∫ t

0

∂uH(s, a+) ηεNs (Na+ 1) ds+

∫ t

0

∂uH(s, b−) ηεNs (Nb) ds
∣∣∣ > δ/4

]
.

Repeating similar computations to the ones performed in Section 7.3 we can show (7.11) for
a test function H that depends also on time. Therefore the �rst probability above is null.
Now we focus on showing that the second probability above is null. Recalling the de�nition
of H(s, ·) above, we have that H(s, ·) is zero outside the interval [a, b]. Besides that, for
the set of vertices {Na + 2, . . . , Nb − 1}, the discrete operator N2 LN coincides with the
discrete Laplacian, which applied to H(s, ·) converges uniformly to the continuous Laplacian
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of H(s, ·). Hence, by the triangular inequality, it is enough to show that, for any δ > 0:

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ 1
N

∫ t

0

{N2 LNHs(
Na
N
)− ∂2uHs(

Na
N
)} ηs(Na) ds

+ 1
N

∫ t

0

{N2 LNHs(
Na+1
N

)− ∂2uHs(
Na+1
N

)} ηs(Na+ 1) ds

+ 1
N

∫ t

0

{N2 LNHs(
Nb
N
)− ∂2uHs(

Nb
N
)} ηs(Nb) ds

+ 1
N

∫ t

0

{N2 LNHs(
Nb+1
N

)− ∂2uHs(
Nb+1
N

)} ηs(Nb+ 1) ds

−
∫ t

0

∂uH(s, a+) ηεNs (Na+ 1) ds+

∫ t

0

∂uH(s, b−) ηεNs (Nb) ds
∣∣∣ > δ

]
= 0.

Since h ∈ C2(T), the term involving the Laplacian above is bounded. Now, by the triangular
inequality, it is su�cient to show that, for any δ > 0:

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

NLNHs(
Na
N
) ηs(Na)ds+

∫ t

0

NLNHs(
Na+1
N

) ηs(Na+ 1)ds

+

∫ t

0

N LNHs(
Nb
N
) ηs(Nb) ds+

∫ t

0

N LNHs(
Nb+1
N

) ηs(Nb+ 1) ds

−
∫ t

0

∂uH(s, a+) ηεNs (Na+ 1) ds+

∫ t

0

∂uH(s, b−) ηεNs (Nb) ds
∣∣∣ > δ

]
= 0.

For each one of the four vertices appearing inside the previous probability, the operator
LN has two conductances, one equals to N−β and the other equals to 1. Since β > 1, the
terms involving N−β converge to zero. The terms involving the conductances equal to 1,
converge to plus or minus the lateral space derivatives of H. Recall from de�nition of H
that ∂uH(s, a−) = ∂uH(s, b+) = 0 for all 0 ≤ s ≤ t. From this, it remains to show that for
any δ > 0

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

∂uH(s, a+) ηs(Na+ 1) ds−
∫ t

0

∂uH(s, b−) ηs(Nb) ds

−
∫ t

0

∂uH(s, a+) ηεNs (Na+ 1) ds+

∫ t

0

∂uH(s, b−) ηεNs (Nb) ds
∣∣∣ > δ

]
,

is null. Last expression is bounded from above by

lim
N→∞

PβµN
[

sup
0≤t≤T

∣∣∣ ∫ t

0

∂uH(s, a+)
{
ηs(Na+ 1)− ηεNs (Na+ 1)

}
ds
∣∣∣ > δ/2

]
+ lim

N→∞
PβµN

[
sup

0≤t≤T

∣∣∣ ∫ t

0

∂uH(s, b−)
{
ηs(Nb)− ηεNs (Nb)

}
ds
∣∣∣ > δ/2

]
.

The integral inside the probability above is a continuous function of the time t. Moreover,
it has a bounded Lipschitz constant. The same argument as the one used in (7.21) together
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with Lemma 7.4.4 imply that the previous expression converges to zero when ε ↓ 0, which
proves (7.25).

Proposition 7.5.4. For β ∈ (1,∞), any limit point of {Qβ,N
µN

: N ≥ 1} is concentrated
in absolutely continuous paths πt(du) = ρ(t, u) du, with positive density ρ(t, ·) bounded by 1,
such that ρ(t, ·) is a weak solution of (7.6) in each cylinder [0, T ]× [bi, bi+1].

Proof. Given (7.25), it remains to extend the result for all functions H and all cylinders
[0, T ] × [bi, bi+1] simultaneously. Intercepting a countable number of sets of probability one
and applying a density argument as in Proposition 7.5.1, the statement follows.

7.6 Uniqueness of Weak Solutions

The uniqueness of weak solutions of (7.4) is standard and we refer to [16] for a proof. It
remains to prove uniqueness of weak solutions of the parabolic di�erential equations (7.5)
and (7.6). In both cases, by linearity it su�ces to check the uniqueness for γ(·) ≡ 0. Notice
that existence of weak solutions of (7.4), (7.5) and (7.6) is guaranteed by tightness of the
process as proved in Section 7.3, together with the characterization of limit points as proved
in Section 7.5.

7.6.1 Uniqueness of weak solutions of (7.5)

Let ρ : R+ × T → R be a weak solution of (7.5) with γ ≡ 0. By De�nition 7.1.3, for all
H ∈ H1

W and all t > 0

〈ρt, H〉 =

∫ t

0

〈
ρs,

d

dx

d

dW
H
〉
ds . (7.27)

From Theorem 1 of [9], the operator − d
dx

d
dW

has a countable number of eigenvalues {λn : n ≥
0} and eigenvectors {Fn : n ≥ 0}. All eigenvalues have �nite multiplicity, 0 = λ0 ≤ λ1 ≤ · · ·
and limn→∞ λn = ∞. Moreover, the eigenvectors {Fn : n ≥ 0} form a complete orthonormal
system in L2(T). For t > 0, de�ne

R(t) =
∑
n∈N

1

n2(1 + λn)
〈ρt, Fn〉2.

Notice that R(0) = 0 and since ρt belongs to L2(T), R(t) is well de�ned for all t ≥ 0. By
(7.27), it follows that d

dt
〈ρt, Fn〉2 = −2λn〈ρt, Fn〉2. Thus

( d
dt
R)(t) = −

∑
n∈N

2λn
n2(1 + λn)

〈ρt, Fn〉2 ,

because
∑

n≤N
−2λn

n2(1+λn)
〈ρt, Fn〉2 converges uniformly to

∑
n∈N

−2λn
n2(1+λn)

〈ρt, Fn〉2, asN increases

to in�nity. Therefore R(t) ≥ 0 and ( d
dt
R)(t) ≤ 0, for all t > 0 and since R(0) = 0, it follows

that R(t) = 0 for all t > 0. As a consequence of {Fn : n ≥ 0} being a complete orthonormal
system, it follows that 〈ρt, ρt〉 = 0, which is enough to conclude.
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7.6.2 Uniqueness of weak solutions of (7.6)

At �rst, we begin with an auxiliary lemma on integration by parts.

Lemma 7.6.1. Let ρ(t, ·) be a function in the Sobolev space L2(0, T ;H1(a, b)). Then, for
any H ∈ C0,1([0, T ]× [a, b]):∫ T

0

∫ b

a

ρ(s, u) ∂uH(s, u) du ds

=−
∫ T

0

∫ b

a

∂uρ(s, u)H(u, s) du ds+

∫ T

0

{
ρ(s, b)H(s, b)− ρ(s, a)H(s, a)

}
ds .

Notice the partial derivative in ρ is the weak derivative, while the partial derivative in
H is the usual one. Besides that, the function H is smooth, but possibly not null at the
boundary [0, T ] × {a, b}, and therefore is not valid the integration by parts in the sense of
L2(0, T ;H1(a, b)), which has no boundary integrals.

Proof. Fix ε > 0 and write H = Hε + (H −Hε), where Hε coincides with H in the region
[0, T ]×(a+ε, b−ε), has compact support contained in [0, T ]×(a, b) and belongs to C0,1([0, T ]×
(a, b)). By the assumptions on Hε, we have that∫ T

0

∫ b

a

ρ(s, u) ∂uH(s, u) du ds

=−
∫ T

0

∫ b

a

∂uρ(s, u)H
ε(s, u) du ds+

∫ T

0

∫ b

a

ρ(s, u)∂u(H −Hε)(s, u) du ds .

Last result is a consequence of Hε having compact support strictly contained in the open
set (a, b). Let fε : [a, b] → R be the function such that f(u) = 1 if u ∈ (a+ ε, b− ε), f(a) =
f(b) = 0, and interpolated linearly otherwise. The decomposition H = H f ε + H(1 − f ε)
can be done, but now the function H f ε does not have the properties as required above for
Hε. Nevertheless, taking a suitable approximating sequence of functions Hε, it follows that∫ T

0

∫ b

a

ρ(s, u) ∂uH(s, u) du ds

=−
∫ T

0

∫ b

a

{
∂uρ(s, u)H(s, u)f ε(u) + ρ(s, u)∂u

(
H(s, u)(1− f ε(u))

)}
du ds.

Taking the limit as ε ↓ 0 yields the statement of the lemma.

Let ρ(t, ·) be a weak solution of (7.6) with γ ≡ 0. Provided by Lemma 7.6.1, for any
function H ∈ C1,2([0, T ]× (bi, bi+1)),∫ bi+1

bi

ρt(u)H(t, u) du+

∫ t

0

∫ bi+1

bi

{
∂uρs(u)∂uH(s, u)− ρs(u)∂sH(s, u)

}
du ds = 0.
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From this point, uniqueness is a particular case of a general result in [17], namely Theorem
III.4.1. In sake of completeness, we sketch an adaptation of it to our particular case. Denote
by W 1

2,T = W 1
2,T ([0, T ] × (a, b)) the space of functions with one weak derivative in space

and time, both belonging to L2([0, T ] × (a, b)) and vanishing at time T . By extending the
previous equality to H ∈ W 1

2,T it follows that∫ T

0

∫ bi+1

bi

{
∂uρs(u) ∂uH(s, u)− ρs(u) ∂sH(s, u)

}
du ds = 0 . (7.28)

It is not di�cult to show that the function

H(s, u) = −
∫ T

s

ρ(r, u) dr

belongs to W 1
2,T . Replacing last function in (7.28), then we can rewrite (7.28) as∫ T

0

∫ bi+1

bi

{1

2
∂s(∂uH(s, u))2 − (∂sH(s, u))2

}
du ds = 0 .

By Fubini's Theorem we get to

1

2

∫ bi+1

bi

{
(∂uH(T, u))2 − (∂uH(0, u))2

}
du−

∫ T

0

∫ bi+1

bi

(∂sH(s, u))2 du ds = 0 .

By the de�nition of H, its weak space derivative vanishes at time T , so that the �rst integral
above is null. Therefore, ∂sH is identically null, and by the de�nition of H above, this
implies that ρ vanishes, �nishing the proof.
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Chapter 8

Hydrodynamic Limit for a type of

Exclusion Processes with slow bonds in

dimension ≥ 2

Joint work with Tertuliano Franco and Glauco Valle.
To be appear in the Journal of Applied Probability 48.2 (June 2011).

8.1 Notation and Results

Let Td be the d-dimensional torus, which is [0, 1)d with periodic boundary conditions, and TdN
be the discrete torus with Nd points, i.e., {0, ..., N − 1}d with periodic boundary conditions.
We denote by η = (η(x))x∈Td

N
a typical con�guration in the state space ΩN = {0, 1}Td

N , for
which, η(x) = 0 means that site x is vacant, and η(x) = 1 that site x is occupied. If a bond
of N−1TdN has vertices x

N
and y

N
, it will be denoted by [ x

N
, y
N
].

Recall that {ej : j = 1, ..., d} is the canonical basis of Rd. The symmetric nearest neighbor
exclusion process with exchange rates ξNx,y > 0, x, y ∈ TdN , |x − y| = 1, is a Markov process
with con�guration space ΩN , whose generator LN acts on functions f : ΩN → R as

(LNf)(η) =
∑
x∈Td

N

d∑
j=1

ξNx,x+ej
[
f(ηx,x+ej)− f(η)

]
, (8.1)

where ηx,x+ej is the con�guration obtained from η by exchanging the variables η(x) and
η(x+ ej):

(ηx,x+ej)(y) =


η(x+ ej), if y = x ,
η(x), if y = x+ ej ,
η(y), otherwise .

Let νNα , α ∈ [0, 1], be the Bernoulli product measure ΩN , i.e., the product measure whose
marginals have Bernoulli distribution with parameter α. Then {νNα : 0 ≤ α ≤ 1} is a family
of invariant, in fact reversible, measures for any symmetric exclusion process.
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1
N
T2
N

Λ{

Λ

Figure 8.1: The darker region corresponds to Λ. The bolded bonds have exchanges rates
|~ζx,j ·ej |
N

, any other bond has exchange rate 1.

Now, �x a simple connected region Λ ⊂ Td with smooth boundary ∂Λ. Denote by ~ζ(u)
the normal unitary exterior vector to the smooth surface ∂Λ in the point u ∈ ∂Λ. If x

N
∈ Λ

and x+ej
N

∈ Λ{, or x
N

∈ Λ{ and x+ej
N

∈ Λ, we de�ne ~ζx,j as a vector ~ζ(u) evaluated in an
arbitrary but �xed point u ∈ ∂Λ ∩ [x, x + ej]. The exclusion process with slow bonds over
∂Λ is a symmetric nearest neighbor exclusion process with exchange rates ξNx,x+ej = ξNx+ej ,x
given by 

|~ζx,j · ej|
N

, if x
N

∈ Λ and x+ej
N

∈ Λ{ , or x
N

∈ Λ{ and x+ej
N

∈ Λ ,

1 , otherwise,

(8.2)

for j = 1, . . . , d, and for every x ∈ TdN . In this case, the exchange rate of a bond crossing the
boundary ∂Λ is also of order N−1, but it depends on the angle of incidence: the crossing of
∂Λ by a particle gets harder to happen as the direction of entrance gets closer to the tangent
plane to the surface ∂Λ.

From now on, the rates in the de�nition of LN will always be given by (8.2). Denote
by {ηNt : t ≥ 0} a Markov process with state space ΩN and generator LN speeded up by
N2. Let D(R+,ΩN) be the Skorohod space of càdlàg trajectories taking values in ΩN . For
a measure µ on ΩN , denote by PNµ the probability measure on D(R+,ΩN) induced by the
initial state µ and the Markov process {ηNt : t ≥ 0}. The expectation with respect to PNµ is
going to be denoted by ENµ .

A sequence of probability measures {µN : N ≥ 1} is said to be associated to a pro�le
γ : Td → [0, 1] if µN is a probability measure on ΩN , for every N, and

lim
N→∞

µN

∣∣∣ 1
Nd

∑
x∈Td

N

H( x
N
)η(x)−

∫
H(u)γ(u)du

∣∣∣ > δ

 = 0 (8.3)
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for every δ > 0, and every continuous function H : Td → R.
The exclusion process with slow bonds over ∂Λ has a related random walk on N−1TdN that

describes the evolution of the system with a single particle. Thus particles in the exclusion
process evolve independently as such random walk except for the hard core interaction. To
simplify notation later, we introduce here the generator of this random walk, which is given
by

(LNH)( x
N
) =

d∑
j=1

{
ξNx,x+ej

[
H(

x+ej
N

)−H( x
N
)
]
+ ξNx,x−ej

[
H(

x−ej
N

)−H( x
N
)
]}

, (8.4)

for every H : N−1TdN → R and every x ∈ TdN . We will not di�erentiate the notation for
functions H de�ned on Td and on N−1TdN .

8.1.1 The Operator LΛ

Here we de�ne the operator LΛ and state its main properties. First, its domain is de�ned
as a set of functions that are two times continuously di�erentiable inside and outside Λ
and satisfy some additional conditions related to their behavior at ∂Λ. Such conditions are
imposed in order to have good properties of LΛ that allows us to conclude the uniqueness
of solutions of the hydrodynamic equation, and obtain a strong convergence result for the
empirical measures in the proof of the hydrodynamic limit. The necessity of these conditions
are going to be made clear later in the text.

De�nition 8.1.1. Recall that ~ζ denotes the normal exterior vector to the surface ∂Λ. The
domain DΛ ⊂ L2(Td) will be the set of functions H ∈ L2(Td), such that H(u)= h(u)+λ1Λ(u),
where:

(i) λ ∈ R;

(ii) h ∈ C2(Td);

(iii) ∇h|∂Λ(u) = −λ ~ζ(u).

Now, we de�ne the operator LΛ : DΛ → L2(Td) by

LΛH = ∆h .

Geometrically, the operator LΛ removes the discontinuity around the surface ∂Λ and then
acts like the laplacian operator.

Remark 8.1.1. It is not entirely obvious why there exist functions h ∈ C2(Td) such that

∇h|∂Λ(u) = −λ ~ζ(u), for λ 6= 0. For an example of such a function, consider �rstly g : Td →
R de�ned by

g(u) =

{
λ dist (u, ∂Λ) , if u ∈ Λ{ ,
−λ dist (u, ∂Λ) , if u ∈ Λ .
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Since ∂Λ has no self intersection and is smooth, it is simple to check that there exists a
su�ciently small ε > 0 such that

V = {u ∈ Td : dist (u, ∂Λ) < ε }

has smooth boundary and without self intersection. Thus, the function g is smooth in the
open neighborhood V of ∂Λ, and satis�es the condition ∇g|∂Λ(u) = −λ ~ζ(u). However, g is
not di�erentiable in the space Td. To solve this problem, it is enough to multiply g by

∑
iΦi,

where {Φi} is a partition of unity such that the support of any Φi is contained in V and∑
iΦi(u) = 1 for all u ∈ U ⊂ V , U an open set containing ∂Λ. Finally, the function

h(u) = g(u)
∑
i

Φi(u)

satis�es the required conditions.

For the next result we need to introduce some notation. We denote by I the identity
operator in L2(Td) and by 〈〈·, ·〉〉 and ‖ · ‖ its usual inner product and norm:

〈〈f, g〉〉 =

∫
Td

f(u) g(u) du and ‖f‖ =
√
〈〈f, f〉〉 , f, g ∈ L2(Td) .

Theorem 8.1.2. There exists a Hilbert space (H1
Λ, 〈〈·, ·〉〉1,Λ) which is compactly embedded in

L2(Td) such that DΛ ⊂ H1
Λ and LΛ can be extended to LΛ : H1

Λ → L2(Td) in such a way that
the extension enjoys the following properties:

(a) The domain H1
Λ is dense in L2(Td);

(b) The operator LΛ is self-adjoint and non-positive: 〈〈H,−LΛH〉〉 ≥ 0, for all H in H1
Λ;

(c) The operator I− LΛ : H1
Λ → L2(Td) is bijective and DΛ is a core for it;

(d) The operator LΛ is dissipative, i.e.,

‖µH − LΛH‖ ≥ µ‖H‖ ,

for all H ∈ H1
Λ and µ > 0;

(e) The eigenvalues of −LΛ form a countable set 0 = µ0 ≤ µ1 ≤ · · · with limn→∞ µn = ∞,
and all these eigenvalues have �nite multiplicity;

(f) There exists a complete orthonormal basis of L2(Td) composed of eigenvectors of −LΛ.

In view of (a), (c) and (d), by the Hille-Yoshida Theorem, LΛ is the generator of a strongly
continuous contraction semigroup in L2(Td).

The space H1
Λ will be de�ned in Section 8.2. The name has been chosen in analogy to

the notation used for Sobolev spaces.

130



8.1.2 The hydrodynamic equation

Consider a bounded Borel measurable pro�le ρ0 : Td → R. A bounded function ρ : R+×Td →
R is said to be a weak solution of the parabolic di�erential equation{

∂tρ = LΛρ
ρ(0, ·) = ρ0(·) ,

(8.5)

if for all functions H in H1
Λ and all t > 0, ρ satis�es the integral equation

〈〈ρt, H〉〉 − 〈〈ρ0, H〉〉 −
∫ t

0

〈〈ρs,LΛH〉〉 ds = 0, (8.6)

where ρt is the notation for ρ(t, ·). We prove in Subsection 8.3.3 the uniqueness of weak
solutions of (8.5). Existence follows from the convergence result for the empirical measures
associated to the di�usively rescaled exclusion processes with slow bonds over Λ, this is
discussed in Section 8.3. Here we do not use time dependent test functions as usual in the
de�nition of weak solution, but we have a well posed problem and we do not need a solution
in a stronger sense to prove the hydrodynamic limit which is the next stated theorem.

Theorem 8.1.3. Fix a Borel measurable initial pro�le γ : Td → [0, 1] and consider a
sequence of probability measures µN on ΩN associated to γ. Then, for any t ≥ 0,

lim
N→∞

PNµN
{ ∣∣∣ 1

Nd

∑
x∈Td

N

H(x/N) ηt(x)−
∫
Td

H(u)ρ(t, u)du
∣∣∣ > δ

}
= 0 ,

for every δ > 0 and every function H ∈ C(Td), where ρ is the unique weak solution of the
di�erential equation (8.5) with ρ0 = γ.

8.2 The operator LΛ

We begin by studying properties of LΛ de�ned on the domain DΛ and we consider the
extension afterwards.

Lemma 8.2.1. The domain DΛ is dense in L2(Td).

Proof. It is enough to prove that there exists a subset of DΛ which is dense in L2(Td). All
smooth functions with support contained in Td\∂Λ belong to DΛ, which is clearly a dense
subset of L2(Td), since ∂Λ is a smooth zero Lebesgue measure surface that divides Td\∂Λ
in two disjoint open regions. �

From now on, we use `d to denote the d-dimensional Lebesgue measure on Td.
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Lemma 8.2.2. The operator −LΛ : DΛ → L2(Td) is symmetric and non-negative. Further-
more, it satis�es a Poincaré inequality, which means that there exists a �nite constant C > 0
such that

‖H‖2 ≤ C 〈〈−LΛH,H〉〉+
(∫

Td

H(x) dx
)2

(8.7)

for all functions H ∈ DΛ.

Proof. Let H,G ∈ DΛ. Write H = h + λh 1Λ and G = g + λg 1Λ, as in De�nition 8.1.1. By
the �rst Green identity and condition (iii) in De�nition 8.1.1, we have that

λh

∫
Λ

∆g du = λh

∫
∂Λ

(∇g · ~ζ) dS = −λh λg Vold−1(∂Λ) (8.8)

= λg

∫
∂Λ

(∇h · ~ζ) dS = λg

∫
Λ

∆h du ,

where dS is a in�nitesimal element of volume of ∂Λ and Vold−1(∂Λ) is its (d−1)-dimensional
volume. Thus,

〈〈H,−LΛG〉〉 = 〈〈h+ λh 1Λ,−∆g〉〉 = −
∫
Td

h∆g du− λh

∫
Λ

∆g du

= −
∫
Td

g∆h du− λg

∫
Λ

∆h du = 〈〈−LΛH,G〉〉 .

For the non-negativeness, using (8.8) above,

〈〈H,−LΛH〉〉 = −
∫
Td

h∆h du− λh

∫
Λ

∆h du

=

∫
Td

|∇h|2 du+ λ2hVold−1(∂Λ) ≥ 0 .

It remains to prove the Poincaré inequality. Write

‖H‖2 −
(∫

Td

H(x) dx
)2

=

∫
Td

[
H(u)−

∫
Td

H(v) dv
]2
du ,

which can be rewritten as∫
Td

[(
h(u)−

∫
Td

h(v) dv
)
+ λh

(
1Λ(u)− `d(Λ)

)]2
du .

Now apply the inequality (a + b)2 ≤ 2 (a2 + b2) to the previous expression to obtain that it
is bounded by

2

∫
Td

(
h(u)−

∫
Td

h(v) dv
)2

du+ 2λ2h

(
`d(Λ)− (`d(Λ))

2
)
.
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By the usual Poincaré inequality, see [4], the last expression is less than or equal to

2C1

∫
Td

|∇h(u)|2 du+ 2λ2h

(
`d(Λ)− (`d(Λ))

2
)
.

Choosing a constant C2 > 0 such that `d(Λ) − (`d(Λ))
2 ≤ C2Vold−1(∂Λ), the previous

expression is bounded above by

2 max{C1, C2} 〈〈−LΛH,H〉〉 ,

which �nishes the proof with C = 2 max{C1, C2}. �

Denote by 〈〈·, ·〉〉1,Λ the inner product on DΛ de�ned by

〈〈F,G〉〉1,Λ = 〈〈F,G〉〉 + 〈〈F,−LΛG〉〉 .

Let H1
Λ be the set of all functions F in L2(Td) for which there exists a sequence {Fn : n ≥ 1}

in DΛ such that Fn converges to F in L2(Td) and Fn is Cauchy for the inner product 〈〈·, ·〉〉1,Λ.
Such sequence {Fn} is called admissible for F . For F , G in H1

Λ, de�ne

〈〈F,G〉〉1,Λ = lim
n→∞

〈〈Fn, Gn〉〉1,Λ , (8.9)

where {Fn}, {Gn} are admissible sequences for F , G, respectively. By [20, Proposition
5.3.3], the limit exists and does not depend on the admissible sequence chosen. Moreover,
H1

Λ endowed with the scalar product 〈〈·, ·〉〉1,Λ just de�ned is a real Hilbert space. From now
on, we consider H1

Λ with the norm induced by 〈〈·, ·〉〉1,Λ, unless we mention that we are going
to use the L2-norm.

Lemma 8.2.3. The embedding H1
Λ ⊂ L2(Td) is compact.

Proof. Let {Hn} a bounded sequence in H1
Λ. Fix {Fn} as a sequence in DΛ such that

‖Fn − Hn‖ → 0 and {Fn} is also bounded in H1
Λ. Thus, to get a convergent subsequence

of {Hn}, it is su�cient to �nd a convergent subsequence of {Fn} in L2(Td). Write Fn =
fn + λn1Λ, with fn ∈ C2(Td). Then,

〈〈Fn, Fn〉〉1,Λ = 〈〈fn + λn1Λ, fn + λn1Λ〉〉+ 〈〈fn + λn1Λ,−∆fn〉〉 .

Expanding the right hand side and using (8.8), we get that

〈〈Fn, Fn〉〉1,Λ = ‖fn‖2 + λ2n`d(Λ) + 2λn

∫
Λ

fn(u) du+ ‖∇fn‖2 + λ2nVold−1(∂Λ) ,

which is greater or equal to

‖fn‖2 + λ2n`d(Λ)− λ2n − `d(Λ)

∫
Λ

f 2
n(u) du+ ‖∇fn‖2 + λ2nVold−1(∂Λ)
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=
(
`d(Λ)− 1 + Vold−1(∂Λ)

)
λ2n + (1− `d(Λ))

∫
Λ

f2
n(u) du+

∫
Λ{
f 2
n(u) du+ ‖∇fn‖2

≥
(
Vold−1(∂Λ)− `d(Λ

{)
)
λ2n + (1− `d(Λ)) ‖fn‖2 + ‖∇fn‖2 .

If we put f̃n = fn + λn, and write Fn = f̃n − λn1Λ{ , an analogous computation shows that
〈〈Fn, Fn〉〉1,Λ is greater or equal than(

Vold−1(∂Λ)− `d(Λ)
)
λ2n + (1− `d(Λ

{)) ‖f̃n‖2 + ‖∇f̃n‖2 .

By the classical isoperimetric inequality on the torus (see [3, Lemma 4.6] for the statement
and a direct proof), we have that

max{Vold−1(∂Λ)− `d(Λ
{) , Vold−1(∂Λ)− `d(Λ) } > 0 .

Since {〈〈Fn, Fn〉〉1,Λ} is a bounded sequence, we conclude that {λn} is bounded, as well
the sequence {‖fn‖2 + ‖∇fn‖2}. By the Rellich-Kondrachov Compactness Theorem, see
[4, Theorem 5.7.1], {fn} has a convergent subsequence in L2(Td). From this subsequence,
choosing a convergent subsequence of {λn} �nishes the proof. �

Lemma 8.2.4. The image of I− LΛ : DΛ → L2(Td) is dense in L2(Td).

Proof. By a similar argument to the one found in Lemma 8.2.1, it is enough to show that any
smooth function f with support contained in Td\∂Λ belongs to (I − LΛ)(DΛ). Therefore,
we need to �nd a function h in C2(Td) with support in Td\∂Λ such that

h−∆h = f . (8.10)

From the classical theory of second-order elliptic equations, e.g., see [4, Theorem 5.7.1], there
exists h ∈ C2 satisfying (8.10). �

Proof of Theorem 8.1.2. (a) Since DΛ ⊂ H1
Λ, it follows from Lemma 8.2.1 that H1

Λ is dense
in L2(Td).

(b) Denote I− LΛ = A : DΛ → L2(Td). From Lemma 8.2.2, A is linear, symmetric and
strongly monotone on the Hilbert space L2(Td). By strongly monotone, we mean that there
exists c > 0 such that

〈〈AH,H〉〉 ≥ c ‖H‖2 , ∀H ∈ DΛ .

In this case, A satis�es the inequality above with c = 1. By [20, Theorem 5.5.a], in the
conditions above, the Friedrichs extension A : H1

Λ → L2(T2) is self-adjoint, bijective and
strongly monotone. By an abuse of notation, de�ne now the extension LΛ : H1

Λ → L2(T2) as
(I−A). Since I and A are self-adjoint inH1

Λ, this property is inherited by LΛ : H1
Λ → L2(T2).

For non-positiveness, note that

〈〈−LΛH,H〉〉 = 〈〈−(I−A)H,H〉〉 = −〈〈H,H〉〉+ 〈〈AH,H〉〉 ≥ 0 .
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(c) As mentioned in the proof of (b) above, the Friedrichs extension A : H1
Λ → L2(T2) is

bijective. So it remains to show that DΛ is a core of A : H1
Λ → L2(T2). For any operator B,

denote by G(B) the graphic of B. Then DΛ is a core for A, if the closure of G(A|DΛ
)L2×L2

in L2 × L2 is equal to G(A). Since A is self-adjoint, A is a closed operator, or else, G(A) is
a closed set. Thus the closure of G(A|DΛ

) is a subset of G(A). Let H ∈ H1
Λ, from Lemma

8.2.4, there exists a sequence {Hn} in DΛ such that AHn converges to AH in L2. Hence,
as proved in [20, Theorem 5.5.a], A−1 is a bounded linear operator, and Hn converges to H
in L2, which yields that the closure of G(A|DΛ

) contains G(A).

(d) Fix a function H in H1
Λ and µ > 0. Put G = (µI−LΛ)H. Taking the inner product

with respect to H on both sides of this equality, we obtain that

µ 〈〈H,H〉〉 + 〈〈−LΛH,H〉〉 = 〈〈H,G〉〉 ≤ 〈〈H,H〉〉1/2 〈〈G,G〉〉1/2 .

Since H belongs to H1
Λ, by (b), the second term on the left hand side is positive. Therefore,

µ‖H‖ ≤ ‖G‖ = ‖(µI− LΛ)H‖.
(e) and (f) We have seen that the operator (I − LΛ) : DΛ → L2(T) is symmetric and

strongly monotone. By Lemma 8.2.3 , the embedding H1
Λ ⊂ L2(Td) is compact. Therefore,

by [20, Theorem 5.5.c], the Friedrichs extension A : H1
Λ → L2(Td), satis�es claims (e) and

(f) with 1 ≤ λ1 ≤ λ2 ≤ · · · , λn ↑ ∞. In particular, the operator −LΛ = (A − I) has the
same property with 0 ≤ µ1 ≤ µ2 ≤ · · · , µn ↑ ∞. Since 0 is an eigenvalue of −LΛ, a constant
function is an eigenfunction with eigenvalue 0, then (e) and (f) also hold. �

8.3 Scaling Limit

Let M be the space of positive Radon measures on Td with total mass bounded by one
endowed with the weak topology. For a measure π ∈ M and a measurable π-integrable
function H : Td → R, we denote by 〈π,H〉 the integral of H with respect to π.

Recall that {ηNt : t ≥ 0} denote a Markov process with state space ΩN and generator
LN speeded up by N2. Let πNt ∈ M be the empirical measure at time t associated to
{ηNt : t ≥ 0}, which is the random measure in M given by

πNt =
1

Nd

∑
x∈Td

N

ηNt (x) δx/N , (8.11)

where δu is the Dirac measure concentrated on u.
Note that

〈πNt , H〉 = 1
Nd

∑
x∈Td

N

H( x
N
)ηNt (x) ,

for the empirical measures, and 〈π,H〉 = 〈〈ρ,H〉〉, for absolutely continuous measures π with
L2 bounded density ρ, and H ∈ L2(Td).

Fix T > 0. Let D([0, T ],M) be the space of M-valued càdlàg trajectories π : [0, T ] → M
endowed with the Skorohod topology. Then, the M-valued process {πNt : t ≥ 0} is a
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random element of D([0, T ],M) whose distribution is determined by the initial distribution
of {ηNt : t ≥ 0}. For each probability measure µ on ΩN , denote by QΛ,N

µ the distribution of
{πNt : t ≥ 0} on the path space D([0, T ],M), when ηN0 has distribution µ.

Proposition 8.3.1. Fix a Borel measurable pro�le γ : Td → [0, 1] and consider a sequence
{µN : N ≥ 1} of measures on ΩN associated to γ in the sense of (8.3). Then there exists
a unique weak solution ρ of (8.5) with initial condition γ and the sequence of probability
measures QΛ,N

µN
converges weakly to Qγ

Λ as N ↑ ∞, where Qγ
Λ is the probability measure on

D([0, T ],M) concentrated on the deterministic path π(t, du) = ρ(t, u)du.

It is straightforward to obtain Theorem 8.1.3 as a corollary of the previous proposition.
The proof of Proposition 8.3.1 follows directly from the uniqueness of weak solutions of (8.5),
proved in Subsection 8.3.3, and the next two results:

Proposition 8.3.2. For any sequence {µN : N ≥ 1} of probability measures with µN con-
centrated on ΩN , the sequence of measures {QΛ,N

µN
: N ≥ 1} is tight.

Proposition 8.3.3. Fix a Borel measurable pro�le γ : Td → [0, 1] and consider a sequence
{µN : N ≥ 1} of probability measures on ΩN associated to γ in the sense of (8.3). Then
any limit point of QΛ,N

µN
is concentrated on absolutely continuous trajectories that are weak

solutions of (8.5) with initial condition γ.

Proof of Proposition 8.3.1. By Proposition 8.3.2, the set of measures {QΛ,N
µN

: N ≥ 1} is
tight. Since the Skorohod space D([0, T ],M) is Polish, by Prohorov's Theorem, tightness is
equivalent to relative compactness (for the weak convergence). By the relative compactness,
in order to prove the convergence of the sequence (QΛ,N

µN
)N≥1 to the probability measure Qγ

Λ,
it is enough to show that any convergent subsequence of (QΛ,N

µN
)N≥1 has limit equal to Qγ

Λ.
Let Q∗ be a limit of a convergent subsequence. By Proposition 8.3.3, Q∗ is concentrated
on trajectories π(t, du) = ρ(t, u) du such that ρ(t, u) is a weak solution of (8.5) with initial
condition γ. Uniqueness of weak solutions of (8.5) proved in Section 8.3.3 implies that
Q∗ = Qγ

Λ. �

In Subsection 8.3.1, we prove Proposition 8.3.2 and in Subsection 8.3.2 we prove Proposi-
tion 8.3.3. As a consequence, we have the existence of solutions of (8.5) with initial condition
γ. We complete the proof in Subsection (8.3.3) showing the uniqueness of weak solutions of
(8.5).

8.3.1 Tightness

Here we prove Proposition 8.3.2. Let D([0, T ],R) be the space of R-valued càdlàg trajectories
with domain [0, T ] endowed with the Skorohod topology. To prove tightness of {πNt : 0 ≤ t ≤
T} in D([0, T ],M), it is enough to show tightness in D([0, T ],R) of the real-valued processes
{〈πNt , H〉 : 0 ≤ t ≤ T} for a set of functions H : Td → R which is dense in the space of
continuous real functions on Td endowed with the uniform topology, see [16]. Furthermore,
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if a sequence of distributions in D([0, T ],R) endowed with the uniform topology is tight,
then it is also tight in D([0, T ],R) endowed with the Skorohod topology. Here we prove
tightness of {〈πNt , H〉 : 0 ≤ t ≤ T} in D([0, T ],R), endowed with the uniform topology, for
H ∈ C2(Td).

Fix H ∈ C2(Td). By de�nition {〈πNt , H〉 : 0 ≤ t ≤ T} is tight in D([0, T ],R) endowed
with the uniform topology if, for the boundedness,

lim
m→∞

sup
N

PNµN

[
sup

0≤t≤T
|〈πNt , H〉| > m

]
= 0 , (8.12)

and, for the equicontinuity,

lim
δ→0

lim sup
N→∞

PNµN

[
sup

|t−s|≤δ
|〈πNt , H〉 − 〈πNs , H〉| > ε

]
= 0 , for all ε > 0 . (8.13)

The limit in (8.12) is trivial since

|〈πNt , H〉| ≤ sup
u∈Td

|H(u)| .

So we only need to prove (8.13). By Dynkyn's formula (see appendix in [16]),

MN
t = 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0

N2LN〈πNs , H〉ds (8.14)

is a martingale. By the previous expression, (8.13) follows from

lim
δ→0

lim sup
N→∞

PNµN

[
sup

|t−s|≤δ
|MN

t −MN
s | > ε

]
= 0 , for all ε > 0 , (8.15)

and

lim
δ→0

lim sup
N→∞

PNµN

[
sup

0≤t−s≤δ

∣∣∣ ∫ t

s

N2LN〈πNr , H〉dr
∣∣∣ > ε

]
= 0 , for all ε > 0 . (8.16)

Indeed, we show the stronger results below:

lim
δ→0

lim sup
N→∞

ENµN

[
sup

|t−s|≤δ
|MN

t −MN
s |

]
= 0 , (8.17)

and

lim
δ→0

lim sup
N→∞

ENµN
[

sup
0≤t−s≤δ

∣∣∣ ∫ t

s

N2LN〈πNr , H〉dr
∣∣∣] = 0 . (8.18)
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To verify (8.17), we use the quadratic variation of MN
t that we denote by 〈MN

t 〉. By Doob's
inequality, we have that

ENµN

[
sup

|t−s|≤δ
|MN

t −MN
s |

]
≤ 2ENµN

[
sup

0≤t≤T
|MN

t |
]

≤ 2ENµN
[
sup

0≤t≤T
|MN

t |2
]1
2

≤ 4ENµN
[
〈MN

T 〉
]1
2 .

Since

〈MN
t 〉 =

∫ t

0

N2[LN〈πNs , H〉2 − 2〈πNs , H〉LN〈πNs , H〉]ds ,

we obtain by a straightforward computation that

〈MN
t 〉 =

∫ t

0

N2

d∑
j=1

∑
x∈Td

N

ξNx,x+ej
1

N2d

[
(ηs(x)− ηs(x+ ej))(H(

x+ej
N

)−H( x
N
))
]2
ds .

Therefore, since ξNx,x+ej ≤ 1,

〈MN
t 〉 ≤ T

N2d−2

d∑
j=1

∑
x∈Td

N

ξNx,x+ej

[
H(

x+ej
N

)−H( x
N
)
]2

≤ Td

Nd

(
sup
u∈Td

|∇H(u) · ej|
)2

. (8.19)

Thus, MN
t converges to zero in L2 and (8.17) holds.

We �nish the proof by verifying (8.18). Write

N2LN〈πNs , H〉 = 1
Nd−2

d∑
j=1

∑
x∈Td

N

ξNx,x+ej((ηs(x)− ηs(x+ ej))
(
H(

x+ej
N

)−H( x
N
)
)

= 1
Nd−2

d∑
j=1

∑
x∈Td

N

ηs(x)
[
ξNx,x+ej

(
H(

x+ej
N

)−H( x
N
)
)
+ ξNx,x−ej

(
H(

x−ej
N

)−H( x
N
)
)]
.

De�ne ΓN ⊂ TdN as the set of vertices whose have some adjacent edge with exchange rate
not equal to one. Then N2LN〈πNs , H〉 is equal to the sum of

1
Nd−2

d∑
j=1

∑
x/∈ΓN

ηs(x)
[
H(

x+ej
N

) +H(
x−ej
N

)− 2H( x
N
)
]

(8.20)

and

+ 1
Nd−2

d∑
j=1

∑
x∈ΓN

ηs(x)
[
ξNx,x+ej

(
H(

x+ej
N

)−H( x
N
)
)
+ ξNx,x−ej

(
H(

x−ej
N

)−H( x
N
)
)]
. (8.21)
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By the Taylor expansion (remember H ∈ C2), the absolute value of the summand in (8.20)
is bounded by N−2 supu∈Td |∆H(u)|. Considering the factor N−d+2 in front of the sum, we
conclude that the expression (8.20) is bounded in absolute value by d supu∈Td |∆H(u)|.

Since there are in order of Nd−1 vertices in ΓN , and ξx,x+ej ≤ 1, the absolute value of the
expression (8.21) is bounded by

1
Nd−2

d∑
j=1

∑
x∈ΓN

[
|H(

x+ej
N

)−H( x
N
)|+ |H(

x−ej
N

)−H( x
N
)|
]
≤ 2d sup

u∈Td

|∇H(u) · ej| .

By the boundedness of expressions (8.20) and (8.21), there exists C > 0, depending only on
H, such that |N2LN〈πNs , H〉| ≤ C, which yields∣∣∣∣∫ t

r

N2LN〈πNs , H〉ds
∣∣∣∣ ≤ C(t− r) ,

and (8.18) holds.

8.3.2 Characterization of limit points

Let γ : Td → [0, 1] be a Borel measurable pro�le and consider a sequence {µN : N ≥ 1} of
measures on ΩN associated to γ in the sense of (8.3). We prove Proposition 8.3.3 in this
subsection, i.e., that all limit points Q∗ of the sequence QΛ,N

µN
are concentrated on absolutely

continuous trajectories π(t, du) = ρ(t, u)du, whose density ρ(t, u) is a weak solution of the
hydrodynamic equation (8.5) with γ as initial condition.

Let Q∗ be a limit point of the sequence QΛ,N
µN

and assume, without loss of generality, that
QΛ,N
µN

converges to Q∗.
Since there is at most one particle per site, Q∗ is concentrated on trajectories πt(du)

which are absolutely continuous with respect to the Lebesgue measure, πt(du) = ρ(t, u)du,
and whose density ρ is non-negative and bounded by 1, see [16, Chapter 4].

We shall prove the following result:

Lemma 8.3.4. Any limit point Q∗ of QΛ,N
µN

is concentrated on absolutely continuous trajec-
tories πt(du) = ρ(t, u)du such that, for any H ∈ DΛ,

〈〈ρt, H〉〉 − 〈〈γ,H〉〉 =

∫ t

0

〈〈ρs , LΛH〉〉 ds . (8.22)

By the previous lemma we can show Proposition 8.3.3.

Proof of Proposition 8.3.3. It just remains to extend the equality (8.22) to functions H ∈
H1

Λ. By Theorem 8.1.2, the set DΛ is a core for the Friedrichs extension I − LΛ : H1
Λ →

L2(Td). Thus, for any H ∈ H1
Λ, there exists a sequence Hn ∈ DΛ such that Hn → H and

(I − LΛ)Hn → (I − LΛ)H, both in L2(Td). This implies that LΛHn → LΛH in L2(Td).
Replacing Hn in equality (8.22), and taking the limit as n→ ∞ �nishes the proof. �
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The remain of this section is devoted to the proof of Lemma 8.3.4. Fix a function H ∈ DΛ

and de�ne the martingale MN
t by

〈πNt , H〉 − 〈πN0 , H〉 −
∫ t

0

N2LN〈πNs , H〉 ds . (8.23)

We claim that, for every δ > 0,

lim
N→∞

PNµN
[

sup
0≤t≤T

∣∣MN
t

∣∣ > δ
]

= 0 . (8.24)

For H ∈ C2, this follows from Chebyshev inequality and the estimates done in the proof of
tightness, where we have shown that

lim
N→∞

ENµ
[
sup

0≤t≤T
|MN

t |
]
≤ lim

N→∞
ENµ

[
sup

0≤t≤T
〈MN

t 〉
]1
2

= 0 . (8.25)

For H = h+ λ1Λ in DΛ, the �rst inequality in (8.19) is still valid and

〈MN
t 〉 ≤ T

N2d−2

d∑
j=1

∑
x∈Td

N

ξNx,x+ej

[
H(

x+ej
N

)−H( x
N
)
]2

= T
N2d−2

d∑
j=1

∑
x/∈ΓN

[
h(

x+ej
N

)− h( x
N
)
]2

(8.26)

+ T
N2d−2

d∑
j=1

∑
x∈ΓN

ξNx,x+ej

[
H(

x+ej
N

)−H( x
N
)
]2
, (8.27)

where ΓN is also de�ned in the proof of tightness. The expression (8.26) goes to zero as
N increases, since the function h is Lipschitz. For the expression in (8.27), let x ∈ ΓN . If
x
N

∈ Λ and x+ej
N

∈ Λ{, then ξNx,x+ej ≤ 1
N
. The same occurs if x

N
∈ Λ{ and x+ej

N
∈ Λ. If

x
N
,
x+ej
N

both belong to Λ or Λ{, the exchange rate ξNx,x+ej is one, but |H(
x+ej
N

) − H( x
N
)| =

|h(x+ej
N

) − h( x
N
)| ≤ 1

N
supu∈Td |∇H(u) · ej|. In both cases, the expression (8.27) is of order

O(N−d). Therefore, from (8.25), we obtain (8.24). �
The next step is to show that we can replace N2LN by the continuous operator LΛ in

the martingale formula (8.23) and that the resulting expression still converges to zero in
probability. This will follow from the ensuing proposition. Recall the de�nition of LN given
in (8.4).

Proposition 8.3.5. For any H ∈ DΛ,

lim
N→∞

1

Nd

∑
x∈Td

N

∣∣∣N2LNH( x
N
)− LΛH( x

N
)
∣∣∣ = 0 . (8.28)
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Proof. As usual, put H = h+ λ1Λ, where h ∈ C2(Td). Rewrite the sum in (8.28) as

1

Nd

∑
x/∈ΓN

∣∣∣N2LNH( x
N
)− LΛH( x

N
)
∣∣∣+ 1

Nd

∑
x∈ΓN

∣∣∣N2LNH( x
N
)− LΛH( x

N
)
∣∣∣ .

The �rst term above is equal to

1

Nd

∑
x/∈ΓN

∣∣∣N2
(
h(

x+ej
N

) + h(
x−ej
N

)− 2h( x
N
)
)
−∆h( x

N
)
∣∣∣ ,

which converges to zero because h ∈ C2. The second one is less than or equal to the sum of

1

Nd

∑
x∈ΓN

|∆h( x
N
)| (8.29)

and

1

Nd−1

∑
x∈ΓN

d∑
j=1

∣∣∣NξNx,x+ej(H(
x+ej
N

)−H( x
N
))

+NξNx,x−ej(H(
x−ej
N

)−H( x
N
))
∣∣∣ . (8.30)

Since there are O(Nd−1) terms in ΓN , the expression in (8.29) converges to zero as N → ∞.
Since ∂Λ is smooth, the quantity of points x ∈ ΓN for which both ξNx,x+ej and ξNx,x−ej are
di�erent of one is negligible. Therefore, we must only worry about points x ∈ ΓN such that,
for some j, only one of ξNx,x+ej and ξ

N
x,x−ej is of order N

−1. This occurs in one of the following

four cases: x
N

∈ Λ, x−ej
N

∈ Λ and x+ej
N

∈ Λ{; x
N

∈ Λ, x−ej
N

∈ Λ{ and x+ej
N

∈ Λ; x
N

∈ Λ{,
x−ej
N

∈ Λ and x+ej
N

∈ Λ{; x
N

∈ Λ{, x−ej
N

∈ Λ{ and x+ej
N

∈ Λ. The analysis of these cases are
analogous, thus we only consider the �rst one. Suppose x

N
∈ Λ, x−ej

N
∈ Λ and x+ej

N
∈ Λ{. In

this case, the summand in (8.30) can be rewritten as

NξNx,x+ej(H(
x+ej
N

)−H( x
N
)) +NξNx,x−ej(H(

x−ej
N

)−H( x
N
))

= |~ζx,j · ej| [H(
x+ej
N

)−H( x
N
)] +N [H(

x−ej
N

)−H( x
N
)] ,

which becomes uniformly (in x ∈ ΓN) close to

−λ|~ζx,j · ej| sgn
(
~ζx,j · ej

)
− ∂h

∂uj
( x
N
) = −λ ~ζx,j · ej − ∂h

∂uj
( x
N
) .

The condition ∇h|∂Λ(u) = −λ ~ζ(u), which was imposed in the de�nition of DΛ, implies that

lim
N→∞

NξNx,x+ej(H(
x+ej
N

)−H( x
N
)) +NξNx,x−ej(H(

x−ej
N

)−H( x
N
)) = 0 .

Therefore, the terms in (8.30) converge uniformly to zero, and the same holds for the whole
sum. �

141



Corollary 8.3.6. For H ∈ DΛ and for every δ > 0,

lim
N→∞

QΛ,N
µN

[
sup

0≤t≤T

∣∣∣〈πNt , H〉 − 〈πN0 , H〉 −
∫ t

0

〈πNs ,LΛH〉 ds
∣∣∣ > δ

]
= 0 .

Proof. By a simple calculation, the martingale de�ned in (8.23) can be rewritten as

MN
t = 〈πNt , H〉 − 〈πN0 , H〉 −

∫ t

0

〈πNs , N2LN H〉 ds .

The result follows from Proposition 8.3.5 and expression (8.24). �

At this point we have all the ingredients needed to prove Lemma 8.3.4, which says that,
under Q∗, with probability one, (8.22) holds for any H ∈ DΛ. In order to prove this, it is
enough to show that, for any δ > 0, and any H ∈ DΛ,

Q∗
[

sup
0≤t≤T

∣∣∣〈πt, H〉 − 〈π0, H〉 −
∫ t

0

〈πs,LΛH〉 ds
∣∣∣ > δ

]
= 0 . (8.31)

So let H be a �xed function in DΛ. The idea to estimate the probability in (8.31) is to apply
Portmanteau's Theorem to replace Q∗ by QΛ,N

µN
and then use Corollary 8.3.6. But to obtain

an appropriate inequality we need the set{
sup

0≤t≤T

∣∣∣〈πt, H〉 − 〈π0, H〉 −
∫ t

0

〈πs,LΛH〉 ds
∣∣∣ > δ

}
to be open in D([0, T ],M). In order to guarantee this, we need H to be continuous which
is not the case. To solve this problem, we use approximations of H by smooth functions.

For ε > 0, de�ne
(∂Λ)ε = {u ∈ Td; dist(u, ∂Λ) ≤ ε} .

Let Hε be a smooth function which coincides with H on Td\(∂Λ)ε and supTd |Hε| ≤
supTd |H|. Fix δ > 0. By the triangular inequality,

Q∗
[

sup
0≤t≤T

∣∣∣〈πt, H〉 − 〈π0, H〉 −
∫ t

0

〈πs,LΛH〉 ds
∣∣∣ > δ

]
≤ Q∗

[
sup

0≤t≤T

∣∣∣〈πt, Hε〉 − 〈π0, Hε〉 −
∫ t

0

〈πs,LΛH〉 ds
∣∣∣ > δ/3

]
+ 2Q∗

[
sup

0≤t≤T

∣∣∣〈πt, Hε −H〉
∣∣∣ > δ/3

]
.

(8.32)

Recall that Q∗ is concentrated on trajectories πt(du) = ρ(t, u)du whose density ρ is
non-negative and bounded above by 1. Then, under Q∗,

sup
0≤t≤T

|〈πt, Hε −H〉| ≤ sup
0≤t≤T

∫
(∂Λ)ε

ρ(t, u) |Hε(u)−H(u)| du

≤ 2 `d((∂Λ)
ε) sup

u∈Td

|H(u)| .
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Therefore, for small enough ε, the second probability in the right hand side of inequality
(8.32) is null. So it remains to show that

Q∗
[

sup
0≤t≤T

∣∣∣〈πt, Hε〉 − 〈π0, Hε〉 −
∫ t

0

〈πs,LΛH〉 ds
∣∣∣ > δ/3

]
= 0 .

If G1, G2, G3 are continuous functions, the application from D([0, T ],M) to R that
associates to a trajectory {πt, 0 ≤ t ≤ T} the number

sup
0≤t≤T

∣∣∣〈πt, G1〉 − 〈π0, G2〉 −
∫ t

0

〈πs, G3〉 ds
∣∣∣

is continuous in the Skorohod metric. Notice that Hε and LΛH are continuous functions.
By Portmanteau's Theorem,

Q∗
[

sup
0≤t≤T

∣∣∣〈πt, Hε〉 − 〈π0, Hε〉 −
∫ t

0

〈πs,LΛH〉 ds
∣∣∣ > δ/3

]
≤ lim

N→∞
QΛ,N
µN

[
sup

0≤t≤T

∣∣∣〈πNt , Hε〉 − 〈πN0 , Hε〉 −
∫ t

0

〈πNs ,LΛH〉 ds
∣∣∣ > δ/3

]
, (8.33)

since QΛ,N
µN

converges weakly to Q∗ and the above set is open.
Now we replace Hε by H. This may be confusing to the reader, however the previous

introduction of Hε was a necessary step in the proof. From this point, to deal with the right
hand side in (8.33), we need Corollary 8.3.6. Hence Hε should be replaced by H.

By de�nition,

sup
0≤t≤T

∣∣∣〈πNt , Hε −H〉
∣∣∣ ≤ 1

Nd

∑
x∈Td

N

∣∣∣Hε(x/N)−H(x/N)
∣∣∣

≤
(
`d((∂Λ)

ε) +O( 1
N
)
)
2 sup
u∈T

|H(u)| ,

because Hε coincides with H in T\(∂Λ)ε. Using the same argument as before, we obtain

lim
N→∞

QΛ,N
µN

[
sup

0≤t≤T

∣∣∣〈πt, Hε〉 − 〈π0, Hε〉 −
∫ t

0

〈πs,LΛH〉 ds
∣∣∣ > δ/3

]
≤ lim

N→∞
QΛ,N
µN

[
sup

0≤t≤T

∣∣∣〈πt, H〉 − 〈π0, H〉 −
∫ t

0

〈πs,LΛH〉 ds
∣∣∣ > δ/9

]
+2 lim

N→∞
QΛ,N
µN

[
sup

0≤t≤T

∣∣∣〈πt, Hε −H〉
∣∣∣ > δ/9

]
.

Again, for small enough ε, the second probability in the sum above is null. From Corollary
8.3.6, we �nally conclude that (8.31) holds. Therefore Q∗ is concentrated on absolutely
continuous paths πt(du) = ρ(t, u)du with positive density bounded by 1, and Q∗ a.s.

〈〈ρt, H〉〉 − 〈〈ρ0, H〉〉 =

∫ t

0

〈〈ρs , LΛH〉〉 ds ,

for any H ∈ DΛ. Hence we have proved Lemma 8.3.4.
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8.3.3 Uniqueness of weak solutions

Now, we prove that the solution of (8.5) is unique. It su�ces to check that the only solution
of (8.5) with ρ0 ≡ 0 is ρ ≡ 0, because of the linearity of LΛ. Let ρ : R+ ×Td → R be a weak
solution of the parabolic di�erential equation{

∂tρ = LΛρ
ρ(0, ·) = 0 .

By de�nition,

〈〈ρt, H〉〉 =

∫ t

0

〈〈ρs,LΛH〉〉 ds , (8.34)

for all functions H in H1
Λ and all t > 0. From the Theorem 8.1.2, the operator −LΛ has

countable eigenvalues {µn : n ≥ 0} and eigenvectors {Fn}. All eigenvalues have �nite
multiplicity, 0 = µ0 ≤ µ1 ≤ · · · , and limn→∞ µn = ∞. Besides, the eigenvectors {Fn} form
a complete orthonormal system in the L2(Td). De�ne

R(t) =
∑
n∈N

1

n2(1 + µn)
〈〈ρt, Fn〉〉2,

for all t > 0. Notice that R(0) = 0 and R(t) is well de�ned because ρt belongs to L2(Td).
Since ρ satisfy (8.34), we have that d

dt
〈〈ρt, Fn〉〉2 = −2µn〈〈ρt, Fn〉〉2. Then

( d
dt
R)(t) = −

∑
n∈N

2µn
n2(1 + µn)

〈〈ρt, Fn〉〉2 ,

because
∑

n≤N
−2µn

n2(1+µn)
〈〈ρt, Fn〉〉2 converges uniformly to

∑
n∈N

−2µn
n2(1+µn)

〈〈ρt, Fn〉〉2, as N in-

creases to in�nity. Thus R(t) ≥ 0 and ( d
dt
R)(t) ≤ 0, for all t > 0 and R(0) = 0. From this,

we obtain R(t) = 0 for all t > 0. Since {Fn} is a complete orthonormal system, 〈〈ρt, ρt〉〉 = 0,
for all t > 0, which implies ρ ≡ 0.
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Part IV

Appendix
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Appendix A

A.1 Analysis tools

Proposition A.1.1. Let H be a Hilbert space, f : H → R a linear functional. If there exists
K0 > 0 and there exists the positive integer number κ such that

sup
x∈H

{f(x)− κ‖x‖2H} ≤ K0, (A.1)

then f is bounded.

Proof. The supremum above implies |f(x)| ≤ K0 + κ‖x‖2H, for all x ∈ H. Thus, ‖f‖H∗ =
sup‖x‖H≤1 |f(x)| ≤ K0 + κ.

Proposition A.1.2. Let E be a metric space, F ⊆ E a closed set and g : F → R a lower
semi-continuous functional. Then, the extension

f(x) =

{
g(x), if x ∈ F ,
+∞, otherwise,

is lower semi-continuous.

Proof. Consider a sequence xn → x.
If x /∈ F , since F { is open, then limn f(xn) = +∞ = f(x).
If x ∈ F , and only �nite xn belong to F , then limn f(xn) = +∞ ≥ f(x).
If x ∈ F , and there are in�nite xn ∈ F , let be xnk

the subsequence of all these terms
whose belongs F . Since g is lower semi-continuous, then limn f(xn) = limnk

g(xnk
) ≥ g(x) =

f(x).

Proposition A.1.3. Given the sequences of real numbers aN , bN ≥ 0 and cN ↗ ∞,

lim
N

1
cN

log(aN + bN) = max
{
lim
N

1
cN

log aN , lim
N

1
cN

log bN

}
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Proof. Since the logarithmic function is increasing, the left side above is greater or equal
than the left side. On the other hand,

lim
N

1
cN

log(aN + bN) ≤ lim
N

1
cN

log 2max{aN , bN}

= lim
N

1
cN

logmax{aN , bN}

= max
{
lim
N

1
cN

log aN , lim
N

1
cN

log bN

}
.

Proposition A.1.4. Let E be a metric space, and f, g : E → R two lower semi-continuous
functionals. Then, f ∨ g and f + g are also lower semi-continuous.

Proof.
(f ∨ g)(x) ≤ lim

xn→x
f(xn) ∨ lim

xn→x
g(xn) ≤ lim

xn→x
(f ∨ g)(xn)

and
(f + g)(x) ≤ lim

xn→x
f(xn) + lim

xn→x
g(xn) ≤ lim

xn→x
(f + g)(xn) .

Proposition A.1.5. Let {fn} be a sequence of lower semi-continuous functions. Then
supn fn is a lower semi-continuous function.

Proof. For all x ∈ E,

fn(x) ≤ lim
xk→x

fn(xk) ≤ lim
xk→x

[
sup
n
fn(xk)

]
, ∀n .

Proposition A.1.6. Let {fn} be a sequence of convex functions. Then supn fn is a convex
function.

Proof. For all x, y ∈ E and for each θ ∈ [0, 1],

fn

(
θx+ (1− θ)y

)
≤ θfn(x) + (1− θ)fn(y) ≤ θ

[
sup
n
fn(x)

]
+ (1− θ)

[
sup
n
fn(y)

]
, ∀n .

Proposition A.1.7. Assume that L is a reversible generator with respect to an invariant
measure ν in a countable space-state E, and V : R+×E → R is a bounded function (clearly,
L+Vt will be a symmetric operator in L2(ν)). Denote by Γt the largest eigenvalue of L+Vt:

Γt = sup
‖f‖2=1

{
〈Vt, f 2〉ν + 〈Lf, f〉ν

}
.

Then, the supremum above can be taken over only positive functions f , or else,

Γt = sup
f density

{
〈Vt, (

√
f)2〉ν + 〈L

√
f,

√
f〉ν

}
.
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Proof. Follows from the expression for the Dirichlet Form (see [16]),

〈Lf, f〉ν = −1
2

∑
x,y∈E

ν(x)L(x, y)[f(y)− f(x)]2 ,

and the inequality | |f(y)| − |f(x)| | ≤ |f(y)− f(x)|.

Proposition A.1.8. Denote by HN(µN |νNα ) the entropy of a probability measure µN with
respect to a stationary state νNα . We refer to [16, Section A1.8] for a precise de�nition.
Then, there exists a �nite constant K0, depending only on α, such that

HN(µN |νNα ) ≤ K0N ,

for all probability measures µN .

Proof. Recall that νNα is Bernoulli product of parameter α. By the explicit formula given in
[16, Theorem A1.8.3],

HN(µN |νNα ) =
∑

η∈{0,1}TN

µN(η) log
µN(η)

νNα (η)

≤
∑

η∈{0,1}TN

µN(η) log
1

νNα (η)

≤
∑

η∈{0,1}TN

µN(η) log
1

[α ∧ (1− α)]N

= N (− log[α ∧ (1− α)]) .

Recall the De�nition 2.4.2 of the space L2(0, T ;H1(T\{a})): space of all measurable
functions ξ : [0, T ] → H1(T\{a}) with

‖ξ‖L2(0,T ;H1(T\{a})) :=
(∫ T

0

‖ξt‖2H1(T\{a}) dt
)1/2

< ∞ .

Lemma A.1.9. If a function ξ ∈ L2([0, T ] × T) is such that there exists a function ∂ξ ∈
L2([0, T ]× T) satisfying

〈〈∂uH, ξ〉〉 = −〈〈H, ∂ξ〉〉 ,
for all functions H ∈ C0,1([0, T ] × T) with compact support in [0, T ] × (T\{a}), then ξ ∈
L2(0, T ;H1(T\{a})).

Proof. The function ξ : [0, T ] → H1(T\{a}) is mensurable, if:

(i) The function ξ : [0, T ] → H1(T\{a}) is weakly measurable, i.e., for all G ∈ L2(T\{a}),
the function t 7→ 〈G, ∂ξt〉 is Lebesgue mensurable.
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(ii) The function ξ : [0, T ] → H1(T\{a}) is almost separably valued, i.e., there exists a
subset N ⊂ [0, T ], with |N | = 0, such that the set {ξt; t ∈ [0, T ]\N} is separable.

In this case, H1(T\{a}) is separable, since any subset of a separable Banach space is itself
separable, one can take N above to be empty, and it follows that we need verify the weak
measurability.

We know that t 7→ 〈G, ∂ξt〉 is Lebesgue mensurable, for all G ∈ C1(T\{a}) with compact
support. By density, one can conclude that the function ξ : [0, T ] → H1(T\{a}) is weakly
measurable.

To show that the norm ‖ξ‖L2(0,T ;H1(T\{a})) is �nite, use that ∂ξ ∈ L2([0, T ]× T).

Lemma A.1.10. Let ρ be a function in L2(0, T ;H1(T\{a})). Then, for any F ∈ C0,1([0, T ]×
(T\{a})): ∫ T

0

∫ 1

0

ρs(u) ∂uFs(u) du ds

= −
∫ T

0

∫ 1

0

∂uρs(u)F (u, s) du ds+

∫ T

0

{
ρs(1)Fs(1)− ρs(1)Fs(0)

}
ds .

Notice the partial derivative in ρ is the weak derivative, while the partial derivative in
H is the usual one. Besides that, the function F is smooth, but possibly not null at the
boundary [0, T ] × {0, 1}, and therefore is not valid the integration by parts in the sense of
the Sobolev space L2(0, T ;H1(T\{a})), which has no boundary integrals.

This lemma is proved in Lemma 7.6.1.

A.2 Skorohod space

Proposition A.2.1. M0 is a closed subset of M endowed with the weak* topology.

Proof. Let πn ∈ M0, πn
ω∗
→ π. It is enough to prove that 0 ≤ π([a, b]) ≤ b − a, for all

[a, b] ⊂ T. Take a continuous function fε : T → R such that fε(u) = 1 if u belongs to
the interval [a, b], fε(u) = 0, if x ∈ T\[a − ε, b + ε] and is linearly interpolated in the other
regions. Thus,

b− a+ 2ε ≥ lim
n→∞

∫
T
fε(u)ρn(u)du =

∫
T
fε(u)dπ(u) ≥ π([a, b]) .

Proposition A.2.2. D
(
[0, T ],M0

)
is a closed subset of D

(
[0, T ],M

)
for the Skorohod topol-

ogy.

Proof. Let {πn(t, ·); t ∈ [0, T ]} ⊂ D
(
[0, T ],M0

)
, {πn(t, ·); t ∈ [0, T ]} converges to {π(t, ·); t ∈

[0, T ]} in the Skorohod topology. By Skorohod metric, for all t ∈ [0, T ] and ε > 0 �xed,

there exists tε ∈ [0, t] such that |tε − t| < ε and πn(tε, ·)
ω∗
→ π(t, ·), as n increases to in�nity.

Each πn(tε, ·) ∈ M0 and M0 is a closed subset of M, then π(t, ·) ∈ M0.
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Lemma A.2.3. Let {πn(t, ·); t ∈ [0, T ]} converging to {π(t, ·); t ∈ [0, T ]} in the space

D
(
[0, T ],M

)
with the Skorohod topology. Then πn(t, ·)

ω∗
→ π(t, ·), as n increases to in�nity,

for almost surely t ∈ (0, T ), for t = 0 and for t = T .

Proof. First, we recall the de�nition of Skorohod metric,

d(πn, π) = inf
λ∈Λ

max
{
‖λ‖, sup

0≤t≤T
δ(πn(t, ·), π(λ(t), ·))

}
,

where Λ is a set of strictly increasing continuous functions λ of [0, T ] onto itself, ‖λ‖ =

sups 6=t

∣∣∣ log λ(t)−λ(s)
t−s

∣∣∣ and δ is the metric wich metrize the convergence ω∗ in M. Since

{π(t, ·); t ∈ [0, T ]} ∈ D
(
[0, T ],M

)
, the function t → π(t, ·) has at most countably many

points of discontinuity. Let t ∈ (0, T ) point of continuity of t→ π(t, ·),

δ(πn(t, ·), π(t, ·)) ≤ δ(πn(t, ·), π(λ(t), ·)) + δ(π(λ(t), ·), π(t, ·)) .

Choosing a suitable λ ∈ Λ, the last two terms above are small, when n is large. Thus the
convergence almost surely is true.

The convergence in t = 0 and t = T is obtained from the fact that functions λ ∈ Λ must
to satisfy λ(0) = 0 and λ(T ) = T .

Proposition A.2.4. Let Gi ∈ C1,2
(
[0, T ]× T\{a}

)
, for all i = 1, 2, 3. The functional

π ∈ D([0, T ],M0) 7→ 〈πT , G1
T 〉 − 〈π0, G2

0〉 −
∫ T

0

〈πt, G3
t 〉 dt

is continuous in Skorohod topology.

Proof. This statement follows from A.2.3.

Proposition A.2.5. Let H ∈ C1,2
(
[0, T ] × T\{a}

)
, the linear functional de�ned by `

int

H :
D([0, T ],M0) → R, de�ned in (4.2), is continuous in Skorohod topology.

Proof. By de�nition of `
int

H and the fact that H ∈ C1,2
(
[0, T ] × T\{a}

)
, we have that the

functions Ht and ∂tHt+∆Ht belongs to C1,2
(
[0, T ]×T\{a}

)
, ∀t ∈ [0, T ]. Proposition A.2.4

concludes the proof.

Proposition A.2.6. Let H ∈ C1,2
(
[0, T ]× T\{a}

)
, the functional

π(·, du) = ρ(·, u)du ∈ D([0, T ],M0) 7→
∫ T

0

〈χ(ρt), (∂uHt)
2〉 dt

is upper semi-continuous in Skorohod topology.
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Proof. Let {πn(t, ·); t ∈ [0, T ]} converging to {π(t, ·); t ∈ [0, T ]} in the space D
(
[0, T ],M0

)
with the Skorohod topology. By Proposition A.2.3, πn(t, ·)

ω∗
→ π(t, ·), as n increases to in�nity,

for almost surely t ∈ [0, T ]. Consider the approximation of the identity ιε(u) = 1
2ε
1(−ε,ε)(u).

Since ρ∗ ιε converges, as ε ↓ 0, to ρ in L1([0, T ]×T) and |ρ2t − (ρt ∗ ιε)2| ≤ 2|ρt−ρt ∗ ιε|, then∫ T

0

〈χ(ρt), (∂uHt)
2〉 dt = lim

ε→0

∫ T

0

〈χ(ρt ∗ ιε), (∂uHt)
2〉 dt ,

By Portmanteau Theorem, (ρn ∗ ιε)(t, u) = 1
2ε

∫
[u−ε,u+ε] ρ

n
t (v) dv converves, as n → ∞, to

(ρ ∗ ιε)(t, u) = 1
2ε

∫
[u−ε,u+ε] ρt(v) dv, for almost all (t, u). And, since χ is concave, the right

side above is equal to

lim
ε→0

lim
n→∞

∫ T

0

〈
χ
(

1
2ε

∫
[· −ε,·+ε]

ρnt (v) dv
)
, (∂uHt)

2
〉
dt

≥ lim
ε→0

lim
n→∞

∫ T

0

〈
1
2ε

∫
[· −ε,·+ε]

χ(ρnt (v)) dv, (∂uHt)
2
〉
dt .

Since ρn is uniformly bounded by 1 and H ∈ C1,2
(
[0, T ]× T\{a}

)
, it is easy to see that we

may interchange limits. This shows that the last expression is equal to

lim
n→∞

∫ T

0

〈χ(ρnt ), (∂uHt)
2〉 dt .

Proposition A.2.7. If G1, G2, G3 are continuous functions de�ned in the torus T, the
application from D([0, T ],M) to R that associates to a trajectory {πt : 0 ≤ t ≤ T} the
number

sup
0≤t≤T

∣∣∣ 〈πt, G1〉 − 〈π0, G2〉 −
∫ t

0

〈πs, G3〉 ds
∣∣∣

is continuous for the Skorohod metric in D([0, T ],M).

Proof. If G is a continuous function in the torus, the application π 7→ 〈π,G〉 is a continuous
application from M to R in the weak topology. From this observation and the de�nition
of the Skorohod metric as an in�mum under reparametrizations (c.f. [16]), the statement
follows.

A.3 Properties of weak solutions of (1.7)

In Section 2.4, we prove that the weak solution of hydrodynamic equation belongs to a
Sobolev space, then these properties may follow from this fact. But here we present di�erent
proofs. In the �rst two lemmata we use only the de�nition of weak solution.
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Lemma A.3.1. Let ρ : [0, T ]× T → R the solution of (1.7). Then, the function

ψa(t) = lim
ε↓0

∫ t

0

[1
ε

∫
(a−ε,a)

ρs(u) du
]
ds

is well de�ned and it is absolutely continuous with respect to Lebesgue.

Proof. Let's choose the auxiliar function hε(z) = 1
ε
1(a−ε,a)(z) − 1, which belongs to L2(T)

and satis�es
∫
T hε(z) dz = 0. Now we de�ne

Hε(x) =

∫
(0,x]

(
βε +

∫ y

0

hε(z) dz

)
(dy + δ1(dy)) ,

for βε ∈ R such that
∫
(0,1]

(
βε +

∫ y
0
hε(z) dz

)
(dy + δ1(dy)) = 0. Notice that Hε, de�ned in

this way, belongs to DW ⊂ C1,2
(
[0, T ] × T\{a}

)
. Since ρ : [0, T ] × T → R is a integral

solution of (1.7),∫ t

0

ds
[1
ε

∫
(a−ε,a)

ρs(u) du
]

=

∫ t

0

ds 〈ρs, hε〉+
∫ t

0

ds 〈ρs, 1〉

= 〈ρt, Hε〉 − 〈ρ0, Hε〉+
∫ t

0

ds 〈ρs, 1〉.

By the choose of hε, we have that
∫ y
0
hε(z) dz =

1
ε

∫
(a−ε,a) 1[0,y](z) dz−y converges to 1[0,y](a)−

y, as ε ↓ 0. This fact and Dominated Convergence Theorem implies that Hε converges to
H, where H is equal to

H(x) =

∫
(0,x]

(
β + 1[0,y](a)− y

)
(dy + δ1(dy)) ,

for β ∈ R such that
∫
(0,1]

(
β + 1[0,y](a)− y

)
(dy + δ1(dy)) = 0. Thus,∫ t

0

ds
[1
ε

∫
(a−ε,a)

ρs(u) du
]
→ 〈ρt, H〉 − 〈ρ0, H〉+

∫ t

0

ds 〈ρs, 1〉,

uniformly in t, as ε ↓ 0, because ρ is a bounded function. So, we have proved that ψa is
well-de�ned. We will prove now that ψa is lipschitz, in particular, it is absolutely continuous.
For all t < t′ ∈ [0, T ],

|〈ρt, H〉 − 〈ρt′ , H〉| = lim
ε↓0

|〈ρt, Hε〉 − 〈ρt′ , Hε〉|

= lim
ε↓0

|
∫ t′

t

〈ρs, hε〉 ds|

≤ 2|t′ − t| .

where, in last inequality, we have used that |ρt| ≤ 1, Lebesgue almost surely, for all t ∈ [0, T ],
and

∫
T |hε(z)|dz ≤ 2, for all ε > 0.
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One can observe that, �xed a ∈ T, any rede�nition of ρt(a) for all values of t ∈ [0, T ]
does not change the fact ρt is a integral solution of (1.7). We will do that in the following
way: the values of ρt(a) will be chosen as dψa

dλ
(t), the Radon-Nykodyn derivative of ψa with

respect to Lebesgue.

Lemma A.3.2. Let f : [0, T ] → R be a continuous function and ρ : [0, T ] × T → R the
solution of (1.7) rede�ned in a ∈ T, as said before. Then,

lim
ε↓0

∫ t

0

f(s)
[1
ε

∫
(a−ε,a)

ρs(u) du
]
ds =

∫ t

0

f(s)ρs(a) ds .

Proof. By previous Lemma, limε↓0
∫ t
0

[
1
ε

∫
(a−ε,a) ρs(u) du

]
ds =

∫ t
0
ρs(a) ds. Because f is con-

tinuous, the result follows from an uniform approximation of f by simple functions. The
second limit is analogous.

In what follows, we obtain a natural consequence that any function in H1(T\{a}), almost
surely in time, will be continuous in T\{a}.

Proposition A.3.3. If ξ : [0, T ]×T → R belongs to L2(0, T ;H1(T\{a})) then, almost surely
in t ∈ [0, T ],

ξt(v)− ξt(u) =

∫
(u,v)

∂uξt(z) dz, ∀u, v ∈ (a, 1 + a) ,

where ∂uξ is given in the De�nition 2.4.2 .

Proof. From De�nition 2.4.2 ,∫ T

0

∫
T
∂uH(s, r) ξ(s, r) dr ds = −

∫ T

0

∫
T
H(s, r)∂uξ(s, r) dr ds ,

for all H ∈ C0,1([0, T ] × T) with compact support contained in [0, T ] × (T\{a}). Using
approximation of indicators functions by continuous functions, it implies, Lebesgue almost
surely in time, ∫

T
∂uH(r) ξt(r) dr = −

∫
T
H(r) ∂uξt(r) dr, (A.2)

for all H ∈ C1 with compact support contained in T\{a}. Recall the notation that ft(u) is
equal to f(t, u), for all function f : [0, T ]×T → R. Fixed a time t ∈ [0, T ] for which is valid
the equality above.

De�ne the sequence of step functions fn : T → R by

fn(z) = n[1(v,v+ 1
n
)(z)− 1(u,u+ 1

n
)(z)]

and the sequence of Hn : T → R by

Hn(r) =

∫
(0,r)

fn(z) dz .
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Since fn is not a continuous function, Hn /∈ C1. However, the equality (A.2) is still valid
for such fn and Hn, through the approximation of fn and Hn by the continuous functions
f εn : T → R and functions Hε

n(r) =
∫
(0,r)

f εn(z) dz, respectively. These functions f
ε
n are de�ned

by f εn(z) = 0, for all z ∈ T\{(u− ε, u+ 1
n
+ ε) ∪ (v − ε, v + 1

n
+ ε) ∪ {a}}, f εn(z) = cεn, for all

z ∈ (u, u+ 1
n
), f εn(z) = dεn, for all z ∈ (v, v + 1

n
), in the other intervals f εn is de�ned by linear

interpolation. The constants cεn and dεn are choosen in such way that
∫
(u−ε,u+ 1

n
+ε)

f εn(z) dz =

−1 and
∫
(v−ε,v+ 1

n
+ε)

f εn(z) dz = 1.

u
v − ε v

u− ε

n

−n

u+ 1
n

u+ 1
n
+ ε

v + 1
n
+ ε

v + 1
n

Figure A.1: Functions f εn and fn

Notice that Hn(r)
n→∞−→ −1(u,v)(r), almost surely. Using Cauchy-Schwarz, 〈−∂uξt, Hn〉

converges to 〈∂uξt,1[u,v)〉, as n → ∞. Denote by 〈·, ·〉 the intern product in L2(T). By the
de�nition of fn, we have that

〈ξt, fn〉 = n

∫
(v,v+1/n)

ξt(z)dz − n

∫
(u,u+1/n)

ξt(z)dz .

Take the limit when n increases to in�nity, by the Lebesgue-Besicovitch Di�erentiation Theo-
rem (c.f. [5]) we obtain that 〈ξt, fn〉 converges to ξt(v)−ξt(u), almost surely in u, v ∈ (a, 1+a),
which �nishes the proof.

Proposition A.3.4. Suppose that there exists a function ∂uξ : [0, T ] × T → R such that,
almost surely in t ∈ [0, T ],

ξt(v)− ξt(u) =

∫
(u,v)

∂uξt(z) dz, ∀u, v ∈ (a, 1 + a) ,

almost surely in t ∈ [0, T ] and
∫
T ∂uξt(z) dz = 0. Then, ξ ∈ L2(0, T ;H1(T\{a})) and ∂uξ

corresponds to that one in De�nition 2.4.2 .
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Proof. By the hypothese about ξ, we get

〈〈∂uH, ξ〉〉 =
∫ T

0

∫
T
∂uHs(r)

[ ∫
(0,r)

∂uξt(z) dz + ξs(0)
]
dr ds .

Since H belongs to C0,1, the second term above is null. In the �rst integral we use Fubini's
Theorem, then the expression above is equal to∫ T

0

∫
T

∫
(z,1)

∂uHs(r) dr ∂uξt(z) dz ds =

∫ T

0

∫
T
[H(t, 1)−H(t, z)]∂uξt(z) dz ds .

Now, we use again the hypothese about ξ and the last expression becomes,

−
∫ T

0

∫
T
H(t, z)∂uξt(z) dz ds = −〈〈H, ∂uξ〉〉 .

Proposition A.3.5. Are equivalent:

(i) ξ ∈ L2(0, T ;H1(T\{a}));

(ii) Almost surely in t ∈ [0, T ],

ξt(v)− ξt(u) =

∫
(u,v)

∂uξt(z) dz , ∀u, v ∈ (a, 1 + a) ,

where ∂uξ ∈ L2([0, T ]× T) and, a.s. in t ∈ [0, T ],
∫
T ∂uξt(z) dz = 0;

(iii) There exists a positive integer number κ such that supH 〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉 < ∞ ,
where the supremum is carried over all functions H in C0,1([0, T ] × T) with compact
support contained in [0, T ]× (T\{a}).

Proof. (i) ⇒ (ii) has been proved in A.3.3 and (ii) ⇒ (i) has been proved in A.3.4. (iii) ⇒
(i) follows by the Riesz Representation Theorem and A.1.1. It just remains to prove (i) ⇒
(iii). Suppose that (i) is valid. By Cauchy-Schwarz and Young's inequality,

〈〈∂uH, ξ〉〉 = −〈〈H, ∂uξ〉〉 ≤
√

〈〈H,H〉〉〈〈∂uξ, ∂uξ〉〉
≤ κ〈〈H,H〉〉+ 1

2
〈〈∂uξ, ∂uξ〉〉 ,

from what we conclude (iii).

Lemma A.3.6. Let ξ ∈ L2(0, T ;H1(T\{a})) such that there exists a positive integer number
κ that satis�es supH〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉 < ∞, where the supremum is taken over all H ∈
C0,1([0, T ]× T) with compact support contained in [0, T ]× (T\{a}). Then,

sup
H

{
〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉

}
= 1

4κ

∫ T

0

‖∂uξt‖2L2 dt , (A.3)

where the supremum is taken over all H ∈ C0,1([0, T ] × T) with compact support contained
in [0, T ]× (T\{a}).
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Proof. Using that ξ ∈ L2(0, T ;H1(T\{a})) and the Young's inequality,

〈〈∂uH, ξ〉〉 − κ〈〈H,H〉〉 = −〈〈H, ∂uξ〉〉 − κ〈〈H,H〉〉 ≤ 1
4κ

∫ T

0

‖∂uξt‖2L2 dt ,

for all H ∈ C0,1([0, T ]×T) with compact support contained in [0, T ]×(T\{a}). For the other
hand, there exists a sequence {Hn}n ⊂ C0,1([0, T ] × T) with compact support contained in
[0, T ]× (T\{a}) such that −Hn converges to ∂uξ in L2(0, T ;L2(T)). Thus,

1
4κ

∫ T

0

‖∂uξt‖2L2 dt = lim
n→∞

{
1
2κ
〈〈−Hn, ∂uξ〉〉 − κ

4κ2
〈〈−Hn,−Hn〉〉

}
≤ sup

H
〈〈H, ∂uξ〉〉 − κ〈〈H,H〉〉 ,

where also the supremum is taken over all H ∈ C0,1([0, T ] × T) with compact support
contained in [0, T ]× (T\{a}). One can conclude this proof.

Lemma A.3.7. Let f ∈ L∞(T). Then, f ∗ ιaε is a Lipschitz function in the open interval
(a, 1 + a). Here, we identify the T\{a} with the open interval (a, 1 + a).

Proof. Let u, v ∈ (a, 1 + a) and analyze that

|(f ∗ ιaε)(u)− (f ∗ ιaε)(v)| ≤ ‖f‖∞
∫
T
|ιaε(z, u)− ιaε(z, v)| dz ≤ ‖f‖∞ 2

ε
|u− v| .

Lemma A.3.8. For any γ, ε and π ∈ D([0, T ],M),

E((π ∗ ιγ) ∗ ιaε) <∞ .

Proof. This proof follows by Lemma A.3.7, De�nition 1.4.1 and Proposition A.3.5.
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