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jugó un papel fundamental en el desarrollo de mi tesis.

Michelle merece un párrafo especial. Espero que me consideres tu amigo como yo te

considero a ti. Ha sido muy especial para mi habernos conocido y haber compartido pocos

pero profundos momentos de amistad.

La ”grande turma” dinámica: Alexander, Matheus, Nuno, Bladismir, Sergio fue un grato

placer trabajar con ustedes en estos dos últmos años... y Mario, tienes algún nuevo cursito

de lectura para proponer???

Muchas personas dentro del Impa aliviaron mi estad́ıa en el Brasil: Vinicus conquien

dividi departamento durante tres años y compartimos grades charlas de esoterismo, filosof́ıa,
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ad-honoris” quien me recibió con el precepto ”amigos de mis amigos son mi amigos” y con

el cual cultivamos una gran amistad. Asi también Vitor, estoy seguro que no será la primera
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Ursula, Mike, Tereza, Patricia y Nana quien me acompaño como pareja este ultimo año y

medio.

Para finalizar debo mencionar a las personas que me apoyaron desde chile: Agradecer

a toda la comunidad dinámica de chile por haber creido en mi. Especialmente a Rafael

Labarca, Sergio Plaza, H.H. y Bernardo.

A mi hermana Marcela, por ayudarme hasta ahora en este proyecto y ayudarme con la

pesada carga ... a Ignacio que, una vez mas, quedo postergado (mi deuda sigue creciendo

contigo)... y a mis padres.
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Blair, José Maŕıa Aznar, Ariel Sharon, Los narcos de Rio, ACM, Pinochet, Lavin.



1. Introduction

A central topic in dynamical systems is the study of statistical properties of the system.

In this direction, we can consider the average along the orbits and then compare it with

the average of the system in the ambient space. Given any ergodic invariant measure for

the system it is well-known that for almost every point with respect to this measure the

temporal and spatial averages coincide. In many cases, the invariant measure is a singular

measure, so it may be physically very difficult to find a point satisfying the property above.

An SRB measure is an invariant measure for the system for which the time average coincides

with the spatial average in a positive Lebesgue measure subset of the ambient space.

A program towards a global theory of diffeomorphisms has been proposed a few years ago

by Palis [12]. The core of his conjecture is that every dynamical system can be approximated

by one having only finitely many attractors, all of which have finitely many SRB measures

which are robust with respect to small perturbations of the system.

Statistical stability tells us much about how the system varies under small deterministic

perturbations.

The question of the existence of SRB measures has an affirmative answer in the setting of

uniformly hyperbolic systems [18, 7, 6, 16], as well as of systems with certain weak forms

of hyperbolicity [4, 2].

Uniformly expanding smooth maps are well-known to be statistically stable, as are Axiom

A diffeomorphisms [17] restricted to the basin of their attractors. On the other hand, [1,

3] proved statistical stability for a large class of transformations exhibiting non-uniformly

expanding behavior. Statistical stability for a certain open class of diffeomorphisms having

partially hyperbolic attractors whose central direction is mostly contracting was proved

in [10, 9] .

In [2] it was proved that SRB measures exist for diffeomorphisms having dominated split-

ting with mostly expanding center-unstable direction and other technical conditions. The

main tool used there is the existence of Gibbs cu-states. Gibbs cu-states are the non-uniform

version of the Gibbs u-states introduced by Pesin and Sinai [14]. Several other properties of

Gibbs u-states are proved in [5].

In this paper we extend this properties to Gibbs cu-states, especially with respect to their

relationship with SRB measures.

1.1. Statement of results. — Let us consider diffeomorphisms f : M → M defined

over a compact Riemanian boundaryless manifold M . We denote by m a fixed normalized

Riemannian volume form on M and we call it the Lebesgue measure on M .

The time average of a continuous function ϕ : M → R along the orbit of x ∈M is:
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ϕ̃(x) = lim
n→∞

1

n

n−1
∑

j=0

ϕ(f j(x)).

If µ is an invariant measure, the basin of µ is the set

B(µ) = {x ∈M : ϕ̃(x) =

∫

M

ϕdµ, ∀ϕ ∈ C(M ;R)}.

An invariant measure µ is an SRB measure or physical measure if B(µ) has positive Lebesgue

measure.

Let f : M → M be a C2-diffeomorphism. Let U ⊆ M be a neighborhood such that

f(U) ⊆ U and Λ = ∩n≥1f
n(U) is an attractor.

The attractor Λ has a dominated splitting if there is a continuous Df -invariant decompo-

sition TΛM = Ecu ⊕ Ecs of the tangent bundle to M over Λ and some constant 0 < λ < 1

satisfying

‖Dfn|Ecs
x ‖‖(Df−n|Ecu

fn(x))‖ ≤ Cλn,

for every x ∈ Λ, and for every n ≥ 1. The subbundle Ecs is uniformly contracting if

‖Dfn|Ecs
x ‖ ≤ Cλn,

for every x ∈ Λ and n ≥ 1. In this case, we denote Ecs = Es and we say that the attractor

Λ is partially hyperbolic.

The diffeomorphism f has non-uniform expansion along the center-unstable direction if

there exists a constant c0 > 0 such that

(1) lim sup
n→∞

1

n

n−1
∑

j=0

log ‖Df−1|Ecu
fj(x)‖ ≤ −c0 < 0.

for all x in a full Lebesgue measure subset of U . Under these conditions Alves, Bonatti and

Viana [2] proved:

Theorem 1.1. — If f ∈ Diff2(M) has an attractor Λ which is partially hyperbolic with

non-uniformly expansion along the center-unstable direction, then there exist finitely many

ergodic SRB measures and the union of their basins covers a full Lebesgue measure subset of

the basin of Λ.

The main tool used in the proof of Theorem 1.1 is the construction of Gibbs cu-states.

Denote by u = dimEcu and s = dimEcs.
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Definition 1. — An invariant measure µ supported in Λ is a Gibbs cu-state if the u larger

Lyapunov exponents are positive µ-almost everywhere and the conditional measures of µ along

the corresponding local strong-unstable manifolds are almost everywhere absolutely continu-

ous with respect to Lebesgue measure on these manifolds.

Theorem 1.1 is a direct consequence of the following result also proved in [2] and the

uniformly contracting condition on the center-stable direction.

Theorem 1.2. — If f ∈ Diff2(M) has an attractor Λ which admits a dominated splitting

with non-uniform expansion along the center-unstable direction, then there exist ergodic Gibbs

cu-states supported on Λ.

Alves, Bonatti and Viana give a constructive proof of the existence of Gibbs cu-states (see

[2] or Subsection 3.1 for more details).

We first study the Gibbs cu-state in the setting of diffeomorphisms with dominated split-

ting and obtain a general description of such measures.

A cylinder C is a diffeomorphic image of Bu×Bs where Bu and Bs are balls in R
u and R

s

respectively. We say that a C1-disk D crosses C if it is contained in C and is a graph over

Bu.

Theorem A. — Let f ∈ Diff2(M) exhibit an attractor with dominated splitting and let µ

be a Gibbs cu-state for f . Then

1. for µ-almost every point x and every δ > 0 small enough, there exists a cylinder con-

taining x, C(x, δ) ⊆ B(x, δ), and a family K(x, δ) of disjoint unstable disks crossing the

cylinder C(x, δ) such that their union K(x, δ) has positive µ-measure;

2. denoting by ρz the density of the conditional measure µz along the disk through z, then,

for µ-almost every z ∈ supp µ and for every x, y ∈W u
loc(z), we have

(2)
ρz(x)

ρz(y)
=

∞
∏

k=0

det(Df−1|Ecu
f−k(x)

)

det(Df−1|Ecu
f−k(y)

)
.

3. the support of µ contains global unstable manifolds whose union has full µ-measure;

4. every ergodic component of µ is a Gibbs cu-state.

The main tools used in the proof are Pesin theory and distortion properties given by the

dominated splitting.

If we add the hypothesis of non-uniform expansion along the center unstable direction,

our main result is Theorem C below. But an essential ingredient in its proof is the following

fact: the construction of Gibbs cu-states done in [2] provides all the possible Gibbs cu-states.

We denote by G(f) the class of Gibbs cu-states for f constructed in Theorem 1.2.
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Theorem B. — If f ∈ Diff2(M) has a dominated splitting which is non-uniformly expand-

ing along the Ecu direction, then every ergodic Gibbs cu-state supported in Λ is in G(f).

Another ingredient in the proof of Theorem C are the uniform bounds obtained from [2]

and the properties of Gibbs cu-states given by Theorem A.

Theorem C. — Consider the set of pairs (f, µ) where f ∈ Diff2(M) has an attractor with

dominated splitting and non-uniform expansion along the center-unstable direction with uni-

form c0 and µ is a Gibbs cu-state for f . Then this set is closed.

As a corollary of Theorem C we obtain the following relationship between SRB measures

and Gibbs cu-states:

Corollary D. — If f ∈ Diff2(M) has an attractor with dominated splitting which is non-

uniformly expanding along the Ecu direction, then every ergodic SRB measure is a Gibbs

cu-state.

Another consequence of Theorem C is related to the statistical stability of partially hy-

perbolic diffeomorphisms.

Definition 2. — We say that f0 ∈ Diffr(M) is Cr-statistically stable if for every sequence

fn ∈ Diffr(M) converging to f0 in the Cr-topology, and for every sequence µn of SRB mea-

sures for fn, the weak* accumulation measures of (µn)n are in the convex hull of finitely

many SRB measures for f0.

Corollary E. — If f ∈ Diff2(M) has an attractor Λ which is partially hyperbolic and non-

uniformly expanding along the center-unstable direction with c0 uniform in a neighborhood

of f , then f is Ck-statistically stable, k ≥ 2.

An interesting consequence of Theorem C is the following

Theorem F. — Let f ∈ Diff2(M) have an attractor Λ exhibiting a dominated splitting with

non-uniform expansion along the center-unstable direction. Let us suppose that f satisfies

(3) lim sup
n→+∞

1

n
‖Dfn|Ecs

x ‖ < 0

for any disk D contained in some unstable local manifold and for Lebesgue almost every

point x ∈ D. Then f has finitely many SRB measures and the union of their basins covers a

full Lebesgue measure subset of the basin of Λ. In addition, if non-uniform expansion along

the central-unstable direction holds in a Ck-neighborhood of f with uniform c0 and every

diffeomorphism in such neighboorhood satisfies (3) , then f is Ck-statistically stable, k ≥ 2.
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This paper is organized as follows. In Section 2 we study the Gibbs cu-states using only the

hypothesis of dominated splitting on the attractor and we prove Theorem A. In Section 3

we add the hypothesis of non-uniform expansion along the center-unstable direction. We

first outline the proof of Theorem 1.2 and then we prove Theorem B and Theorem C.

Finally, Section 4 is dedicated to studying the relationship between Gibbs cu-states and

SRB measures. There we prove Corollary D, Corollary E and Theorem F, and we present

an example of an open class of diffeomorphisms of the torus T
n, n ≥ 4, with dominated

splitting, but not partially hyperbolic, exhibity non-uniform expansion along the center-

unstable direction, and admitting a unique SRB measure whose basin has full Lebegue

measure in T
n.

2. Gibbs cu-states

In this section we assume that f : M →M is a C2-diffeomorphism exhibiting an attractor

with dominated splitting and that there is a Gibbs cu-state µ for f supported on Λ. Our

main goal is to prove Theorem A. We first fix some definitions and notations.

Let X, Y be compact metric spaces. Let ν be a Borelean probability measure over X. Let

h : X → Y be a measurable function. We denote by h∗ν the push-forward measure defined

on Y by

h∗ν(B) = ν(h−1(B))

for every measurable set B ⊆ Y . If A ⊆ X is such that ν(A) > 0, then we denote by (ν|A)

the restriction measure defined on A by

(ν|A)(B) =
ν(A ∩B)

ν(A)

for every measurable set B ⊆ A.

Denote by F the partition of X × Y into ”horizontal lines”

F = {X × {y} : y ∈ Y }.

Let πY : X → Y be the canonical projection. Given a measure µ on X × Y we write

µ̂ = πY ∗µ. The measure µ is absolutely continuous with respect to ν along the lamination F

if there exists a measurable function ρ : X × Y → [0,+∞) such that

µ(B) =

∫

B

ρ(x, y) dν(x) dµ̂(y)
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for every measurable set B ⊆ X × Y . The measures µy = ρ(·, y)ν are called conditional

measures of µ along the ”leaf” F(y) = X × {y} and ρ(·, y) = ρy(·) is the density of µy along

the ”leaf” F(y).

Proposition 2.1. — For µ-almost every point x and every δ > 0 small enough, there exists

a cylinder containing x, C(x, δ) ⊆ B(x, δ), and a family K(x, δ) of disjoint unstable disks

crossing the cylinder C(x, δ) such that their union K(x, δ) has positive µ-measure.

Proof. — If µ is a Gibbs cu-state for f , then µ-almost every x ∈ Λ has u positive Lyapunov

exponents in the Ecu
x direction. By Pesin´s theory [13], for such x there exists a unique

C1-embedded disk W u
loc(x) tangent to Ecu

x at x, and such that the diameter of fn(W u
loc(x))

converges exponentially fast to zero as n→∞. The C1-disk W u
loc(x) depends in a measurable

way on the point x. This implies that there exists a sequence (Λn)n of nested compact subsets

with µ(Λ \ Λn) converging to zero as n→∞, and that there exist continuous maps

Λn 3 x 7→ W u
loc(x)

which associate to every point x ∈ Λn an embedded C1-disk W u
loc(x). The sets Λn are called

hyperbolic blocks of Λ. In particular, there exists a uniform lower bound on the size of W u
loc(x)

in Λn: there are δn > 0 such that the pre-image of W u
loc(x) under the exponential map of M

at x contains the graph of a C1 map defined from B(0, δn) ⊆ Ecu
x to Ecs

x .

Given any 0 < δ < δn/4 and x ∈ Λn we can define the tubular neighborhood C(x, δ) of

W u
loc(x) as the image under the exponential map of M at y of all the vectors of norm less than

δ > 0 in the orthogonal complement of Ecu
y , for all y ∈ W u

loc(x). If δ > 0 is small enough then

this neighborhood C(x, δ) is a cylinder and it comes equipped with the canonical projection

π onto W u
loc(x) which is a C1 map. We denote by K(x, δ) the family of local strong-unstable

manifolds at points of Λn that cross C(x, δ).

There exist y1, .., yk ∈ Λn such that Λn ⊆ ∪
k
j=1C(yj, δ), because Λn is compact. We may

suppose that each of these cylinders has positive µ-measure, and we obtain a covering (µ

mod 0) of Λn. As a consequence, for all j = 1, .., k we have µ(Λn ∩ C(yj, δ)) > 0. On the

other hand, for each z ∈ Λn∩C(yj, δ), we have that W
u
δn
(z) crosses C(yj, δ), because δ < δn/4.

Then, for all j = 1, .., k,

µ(K(yj, δ)) > µ(Λn ∩ C(yj, δ)) > 0.

We consider the set of x ∈ supp µ such that x ∈ Λn for some n ≥ 1. This set has full

µ-measure. For δ > 0, there exists y ∈ Λn such that x ∈ C(y, δ). Since x is in suppµ, C(y, δ)

must have positive µ measure. It is clear that δ can be chosen arbitrary small. To obtain

the statement, we write C(x, δ) = C(y, δ) and K(x, δ) = K(y, δ).
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If µ is a Gibbs cu-state and x ∈ supp µ, then Proposition 2.1 implies for each δ > 0 small

enough, there exists a cylinder C(x, δ) and a family K(x, δ) of disks crossing C(x, δ). Let Bs

be the image under the exponential map of M at x of all vectors of norm less than or equal

to δ > 0 contained in the orthogonal complement of Ecu
x and let πs : C(x, δ) → Bs be the

projection on Bs along the center-unstable leaves. We can induce a measure µ̂ on Bs given

by

µ̂(A) = µ(π−1s (A) ∩K(x, δ))

for measurable A ⊆ Bs, where K(x, δ) is the union of all disks in K(x, δ). Of course µ̂ is

locally f -invariant, i.e. µ̂(B ∩ K(x, δ)) = µ̂(f−1(B ∩ K(x, δ))) for every Borelean set B,

because µ is f -invariant.

Let µ be a Gibbs cu-state for f , z ∈ supp µ and µz be the conditional measure of µ in

W u
loc(z). The conditional measure µz is f -invariant if

µf−1(z)(f
−1(A)) = µz(A)

for all Borelean sets A ⊆ W u
loc(z).

Lemma 2.1. — The conditional measure µz is f -invariant for µ-almost every z ∈ supp µ.

Proof. — LetB = {z : µz is not f−invariant} and assume that µ(B) > 0. By Proposition 2.1

there exist z′ ∈ suppµ, δ > 0, a cylinder C(z′, δ) and a family of unstable disks K(z ′, δ) such

that µ(B ∩K(z′, δ)) > 0 and µ̂(B ∩K(z′, δ)) > 0, where K(z′, δ) is the union of the disks in

the family K(z′, δ).

For each z ∈ B ∩ K(z′, δ), let Az ∈ W u
loc(z) be such that µz(Az) > 0 and assume that

µf−1(z)(f
−1(Az)) > µz(Az) (the case µf−1(z)(f

−1(Az)) < µz(Az) is analogous). If we put

E = ∪z∈B∩K(z′,δ)Az, the disintegration of the measure implies that µ(f−1(E)) > µ(E),

which contradicts the f -invariance of µ.

In fact, by disintegration,

µ(E) =

∫

B∩K(z′,δ)

∫

Az

dµz dµ̂(z) =

∫

B∩K(z′,δ)

µz(Az)dµ̂(z).

On the other hand, we have

µ(f−1(E)) =

∫

f−1(B∩K(z′,δ))

∫

f−1(Az)

dµz dµ̂(z) =

∫

f−1(B∩K(z′,δ))

µz(f
−1(Az))dµ̂(z).

Since µ̂(B ∩ K(z′, δ)) = µ̂(f−1(B ∩ K(z′, δ))), and since we are assuming we have the in-

equality µf−1(z)(f
−1(Az)) > µz(Az), it follows that µ(f−1(E)) > µ(E).
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An essential ingredient here is the Holder control of the Jacobian given by the domination.

Lemma 2.2. — There exists ξ > 0 such that, given L > 0 and any C2 disk D ⊆ U

transverse to the center stable direction Ecs, then there exists C1 > 0 such that

x 7→ log | det(Df |Txf
n(D))|

is (C1, ξ)-Holder on every domain of diameter L inside any fn(D), n ≥ 1.

We refer the reader to the proof in [2], Section 2. We observe that this constant depends

only on the diffeomorphism f .

We denote by ρz the density of the conditional measure µz of µ along the unstable disk

through z. Our next goal is to characterize this density.

Lemma 2.3. — For every x and y in the same local unstable manifold, the product

∞
∏

k=0

det(Df−1|Ecu
f−k(x)

)

det(Df−1|Ecu
f−k(y)

)

converges and is bounded away from zero and infinity.

Proof. — Let x, y ∈ W u
ε (z) and set Ju

k (x) = | detDf−1|Ecu
fk(x)

|, k ≥ 0. Lemma 2.2 implies

that the map x → log(Ju
k (x)

−1) is (C1, ξ)-Holder. Let λ > 0 be the smallest Lyapunov

exponent for z in the Ecu-direction. Then, for N ≥ 1,

∣

∣

∣

∣

∣

log
N
∏

k=0

Ju
k (x)

Ju
k (y)

∣

∣

∣

∣

∣

≤
N
∑

k=0

| log Ju
k (x)− log Ju

k (y)|

≤
N
∑

k=0

C1distfk(Wu
ε (z))

(fk(x), fk(y))ξ

≤
N
∑

k=0

C1C
ξe−kλξdistWu

ε (z)(x, y)
ξ

The symmetry of the product (we may exchange x and y) implies that the product con-

verges for all x, y ∈W u
ε (z) and is non-zero. Moreover the convergence is absolute and Holder

with respect to x and y, so the product is bounded away from zero and infinity.

Remark 1: The convergence of the product depends only on f and on the smallest Lya-

punov exponent along the disk.
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Proposition 2.2. — For µ-almost every z ∈ supp µ and for every x, y ∈ W u
loc(z),

ρz(x)

ρz(y)
=

∞
∏

k=0

det(Df−1|Ecu
f−k(x)

)

det(Df−1|Ecu
f−k(y)

)
.

This implies that the densities are bounded away from zero and infinity.

Proof. — We fix z and W u
loc(z) = D. Since µz is absolutely continuous with respect to

Lebesgue measure in D, there exists some ρ : D → R which is measurable and positive

µz-almost everywhere such that

µz(B) =

∫

B

ρ dmD

for all Borelean subsets B ⊆ D. Let ρn be the density of µf−n(z). By change of variables and

by the invariance of conditional measures we have for x ∈ W u
loc(z) that

(4) ρ(x) = Cρn(f
−n(x))

n−1
∏

k=0

Ju
k (x)

for any n ≥ 0 where C > 0 is a constant of normalization depending of z and n. Then, for

every x, y ∈ W u
loc(z),

ρ(x)

ρ(y)
=

ρn(f
−n(x))

ρn(f−n(y))

n−1
∏

k=0

Ju
k (x)

Ju
k (y)

.

By Lemma 2.3 the right hand product converges to a non-zero value, so the quotient

ρn(f
−n(x))/ρn(f

−n(y)) also converges. On the other hand, for all ε > 0 there exists a

compact subset Kε ⊆ W u
loc(z) with m(W u

loc(z) \Kε) < ε such that ρn|f
n(Kε) is continuous;

moreover the continuity is uniform with respect to n due to (4). Then for x, y ∈ Kε and

taking n large enough, we have

ρn(f
−n(x))

ρn(f−n(y))
→ 1

when n→∞. This completes the proof.

If x has a local strong unstable manifold W u
loc(x), the global unstable manifold of x is the

set

W u(x) =
⋃

n≥0

fn(W u
loc(f

−n(x)).

13



Next result follows from the fact that the densities ρ are f -invariant and bounded away

from zero and infinity.

Corollary 2.1. — If µ is a Gibbs cu-state of f , then the support of µ contains global

unstable manifolds whose union has full µ-measure.

Proof. — Let Λn be a hyperbolic block. Then for all x ∈ Λn there exists W u
δ (x) with δ > 0

uniform. Moreover 0 < µ(Λn) < 1− εn, with εn → 0 as n→∞. Let µn be the restriction of

µ to Λn. It is sufficient to prove that for µn-almost every x ∈ Λn, one has W u
δ (x) ⊆ suppµn.

For each x ∈ suppµn, we can construct a cylinder C that contains W u
δ (x) and such that if

z ∈ Λn ∩C, then W u
δ (z) crosses C. Suppose there is y ∈W u

δ (x) such that y /∈ suppµn. Then

there exists a small neighborhood y ∈ V ⊆ C such that µn(V ) = 0. But by the disintegration

of µn we have

µn(V ) =

∫

µn,z(V ∩W u
δ (z)) dµ̂n(z),

but each µn,z has strictly positive density. Then there exists a neighborhood of x having

zero µ̂n-measure, which contradicts the fact that x is in the support of µn.

Let R(f) be the set of regular points of f , that is the set of points in M such that the

Birkhoff average exists and

lim
n→+∞

1

n

n−1
∑

k=0

ϕ(fk(x)) = lim
n→−∞

1

n

n+1
∑

k=1

ϕ(fk(x))

for all ϕ ∈ C0(M ;R). It is well-known that this set has full measure with respect to any f -

invariant measure µ. Consider x ∈ suppµ such that W u(x) ⊆ suppµ and µx(W
u(x)∩R(f)) =

1. Then Lebesgue almost every point of W u(x) is contained in a unique ergodic component

of µ.

Let µ be a Gibbs cu-state for f and let µ∗ be an ergodic component of µ. Since the support

of µ∗ consists of entire global manifolds (by Corollary 2.1) µ∗ must be a Gibbs cu-state.

Corollary 2.2. — If µ is a Gibbs cu-state of f , then every ergodic component of µ is a

Gibbs cu-state.

Here we conclude the proof of Theorem A. Proposition 2.1 and Proposition 2.2 correspond

to statements 1 and 2 of Theorem A and Corollary 2.1 and Corollary 2.2 correspond to

statements 3 and 4. Next lemma plays an important role in the following sections:

14



Lemma 2.4. — Let µ be a Gibbs cu-state for f . For µ-almost every x ∈ Λ and every

δ > 0 small enough, there exists a cylinder C(x, δ) such that µ̂-almost every disk D ∈ K(x, δ)

satisfies B(µ) ∩R(f) ∩D has full Lebesgue measure in D.

Proof. — We observe that µ(B(µ)∩R(f)) = 1. For almost every x ∈ B(µ)∩R(f)∩ supp µ

and every δ > 0 small enough, there exists a cylinder C and a family K of disk crossing C

such that the union of those disks has positive µ-measure. Let us consider the probability

measure (µ|K). Then

(µ|K)(B(µ) ∩R(f) ∩K) = 1.

By disintegration, µ̂|K-almost every disk D ∈ K satisfies

µD(D ∩B(µ) ∩R(f)) = µD(D).

Because µD is absolutely continuous with respect to Lebesgue measure and the density ρD

is bounded from zero and infinity, it follows that mD(B(µ) ∩R(f) ∩D) = mD(D).

3. Gibbs cu-states and the non-uniform expansion condition

3.1. Building Gibbs cu-states. — Let f : M → M be a C2-diffeomorphism having an

attractor Λ with a dominated splitting and non-uniform expansion along the Ecu direction.

The goal of this subsection is to briefly review the construction of Gibbs cu-states (cf.

Theorem 1.2 [2]).

A disk D ⊂ U is tangent to the center-unstable cone field Ccu if the tangent subspace to

D at each point x ∈ D is contained in the corresponding cone Ccu(x). We fix a C2 disk D

tangent to the center-unstable cone field such that:

1. The set of points in D having non-hyperbolic behavior has full Lebesgue measure in

the disk. This is possible because we assume that almost every point in U satisfies (1).

2. There are fixed ξ > 0 and C1 > 0 as in Lemma 2.2 such that the functions Jk defined on

fk(D) ⊂ U by Jk(x) = log | detDf |Txf
k(D)|, for k = 1, .., n are (C1, ξ)-Holder. These

constants depend only on f .

Definition 3. — Given σ < 1, we say that n is a σ-hyperbolic time for a point x ∈ U if

n
∏

j=n−k+1

‖Df−1|Ecu
fj(x)‖ ≤ σk

for all 1 ≤ k ≤ n.

15



Conditions 1 and 2 above imply that there exist many (positive density at infinity) σ-

hyperbolic times for points x ∈ D satisfying (1) with σ < e−c0/3. The rate depends on c0

and f . This follows from an adapted version of Pliss lemma [15] also proved in [11] and [2]:

Proposition 3.1. — Given any x ∈ D̃ and any sufficient large N ≥ 1, there exists σ-

hyperbolic times 1 ≤ n1 < .. < nl ≤ N for x with l ≥ −| log σ|
sup | log ‖Df−1|Ecu‖−2| log σ|

N .

Remark 2: Hyperbolic times can not be continuous with respect to the diffeomorfism f ,

but the rate

θ =
−| log σ|

sup | log ‖Df−1|Ecu‖ − 2| log σ|

depends continuously on f (in the C1-topology and c0.

As a consequence of the existence of σ-hyperbolic times, we obtain backward uniform

contraction and bounded distortion properties. More precisely (see [2] ) :

Proposition 3.2. — There exist C2 > 0 and δ1 > 0 such that for all x ∈ D, for all

σ-hyperbolic times n and for every y ∈ D such that distfn(D)(f
n(x), fn(y)) ≤ δ1, we have

(5) distfn−k(D)(f
n−k(x), fn−k(y)) ≤ σk/2distfn(D)(f

n(x), fn(y)),

(6)
1

C2
≤
| detDfn|TyD|

| detDfn|TxD|
≤ C2.

The constant C2 in (6) above depends on σ, δ1 and depends on the Hölder constant C1.

We remark that (6) is similar to the quotient factor in Proposition 2.2.

For each j ≥ 1, let Ĥj be a finite set of x ∈ D such that j is an σ-hyperbolic time for x.

For δ = δ1/4, we denote by ∆j(x, δ) the δ-neighborhood of f j(x) inside f j(D). We choose

Ĥj such that the balls ∆j(x, δ) are pairwise disjoint. We denote by ∆j the union of such

balls.

We can choose Ĥj satisfying the following (see [2] Proposition 3.3 and Lemma 3.4): there

exists a constant τ > 0, depending only on f , such that for any j

f j∗mD(∆j ∩ f j(U)) ≥ f j∗mD(∆j ∩ f j(Ĥj)) ≥ τmD(Ĥj)

Consider the set of accumulation points of (∆j)j:

∆∞ =
∞
⋂

n=1

⋃

j≥n

∆j.

Observe that ∆j ⊆ f j(D) ⊆ f j(U). Then, since U is positively invariant,
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⋃

j≥n

∆j ⊆ fn(U) ⊆ fn−1(U)

and so ∆∞ ⊆ Λ.

Given y ∈ ∆∞ there exist a sequence (ji)i → ∞, disks Di = ∆(xi, δ) ⊆ ∆ji and points

yi ∈ Di, yi → y as i → ∞. By passing to a subsequence if necessary, we may suppose that

the centers xi converge to some point x and, by Arzela-Ascoli theorem, that the Di converge

to a disk D(x) of radius δ around x. Then y is in the closure D(x) of D(x), and D(x) ⊆ ∆∞

and the points x are in the set

Ĥ∞ =
∞
⋂

n=1

⋃

j≥n

f j(Ĥj).

Observe that Di is contained in the ji-iterate of D, which was taken tangent to the center-

unstable cone field. So the domination property implies that the angle between Di and Ecu

goes to zero as i → ∞. By Proposition 3.2, given k ≥ 1 then f−k is a σk/2-contraction on

Di, for every large i. Passing to the limit, we get that every f−k is a σk/2-contraction on

D(x), and that D(x) is tangent to the center-unstable subbundle at every point of D(x) ⊆ Λ,

including x.

In particular we have shown that the subspace Ecu
x is indeed uniformly expanding for Df .

The domination property means that any expansion that Df exhibits along the comple-

mentary direction is weaker than this. Then, see [13], there exists a unique strong-unstable

manifold W u
loc(x) tangent to Ecu which is contracted by negative iterates of f at a rate of at

least σk/2, when k gets large. Moreover D(x) is contained in W u(x) because it is contracted

by every f−k, k ≥ 1, and all its negative iterates are tangent to the center-unstable cone

field. Summing up, we have

Proposition 3.3. — The family of disks D(x), with x ∈ Ĥ∞, constructed as above satisfies:

1. the radius of D(x) is δ1/4 uniformly in x ∈ Ĥ∞;

2. for every y ∈ ∆∞ there exists x ∈ Ĥ∞ such that y ∈ D(x);

3. for all x ∈ Ĥ∞, the subspace Ecu
x satisfies

‖Df−k|Ecu
x ‖ ≤ σk/2, for all k ≥ 0;

4. D(x) is contained in the corresponding strong-unstable manifold W u
loc(x);

5. D(x) is tangent to the center-unstable subbundle at every point of Λ ∩D(x).

We now consider the sequence of averages of push-forwards of Lebesgue measure restricted

to such a disk D
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µn =
1

n

n−1
∑

j=0

f j∗ mD.

Remark 3: The argument that follows does not change if we consider ϕmD instead of

mD, where ϕ is a measurable function bounded away from zero and infinity, mD- almost

everywhere.

We decompose µn as a sum of two measures νn and ηn, where

νn =
1

n

n−1
∑

j=0

f j∗ mD|∆j

and ηn = µn − νn. Observe that the support of νn is ∪n−1j=0∆j.

Now, we consider any subsequence (nk)k such that µnk
and νnk

converge to µ and ν

respectively. Then the support of ν is contained in the set

∆∞ =
∞
⋂

n=1

⋃

j≥n

∆j ⊆ Λ

of accumulation points of (∆j)j. Proposition 3.3 gives a characterization of the support of

ν. Moreover ([2] Proposition 3.5 and Remark 3.6), there is α1 = α1(c0, f) > 0 such that, for

all n ≥ 1 and k ≥ n large enough,

νk(f
n(U)) ≥ νk(f

k(U)) ≥ α1.

This is because f k(U) ⊆ fn(U). Then, ν(fn(U)) ≥ α1 and so

ν(Λ) = ν(
⋂

n≥1

fn(U)) = lim inf
n→∞

ν(fn(U)) ≥ α1.

Recall from Proposition 3.3 that, given any y ∈ ∆∞, there exist a point x ∈ Ĥ∞ and a

disk D(x) of size δ1/4 around x such that y ∈ D(x) ⊆ ∆∞. For any such x and r > 0

small, let Cr(x) be the tubular neighborhood of D(x), defined as the union of the images

under the exponential map at each point z ∈ D(x) of all vectors orthogonal to D(x) at z

with norm less than or equal to r. We take r to be sufficiently small, so that Cr(x) is a

cylinder endowed with the canonical projection π : Cr(x) → D(x). We may suppose that

the boundary of Cr(x) has zero ν-measure (observe that r depends on the size of the domain

of the exponential map, and so depends continuously on f).

For any ε > 0, we can fix a cover of D(x) by finitely many domains Dx,l ⊆ D(x), l =

1, .., N(ε), small enough so that the intersection of each Cx,l = π−1(Dx,l) with any smooth

disk γ tangent to the center-unstable cone field has diameter less than ε inside γ. We choose
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the cover with the least possible N(ε) and take the Dx,l diffeomorphic to the compact ball

Bu, so that every Cx,l is a cylinder.

We say that a disk γ crosses Cx,l if π maps γ ∩ Cx,l diffeomorphicaly onto Dx,l. For each

j ≥ 0, let Kj(x, l) be the union of the intersections of Cx,l with all the disks in ∆j that

cross Cx,l and let K∞(x, l) be the union of the intersections of Cx,l with all the disks in ∆∞

that cross Cx,l. Fixing a small enough ε for at least one of the cylinders Cx,l the part of the

measure ν that is carried by the disks in K∞(x, l) has positive mass α > 0, depending on

the rate of hyperbolic times, and so depending on c0 and f (See [2] Lemma 4.2 and Lemma

4.3).

In the following we write C = Cx,l, D̃ = Dx,l and Kj, 0 ≤ j ≤ ∞, the family of disks whose

union is Kj = Kj(x, l).

Observe that from the construction of µn the measure f j∗mD|∆j is absolutely continuous

with respect to Lebesgue measure along f j(D). Moreover, from Proposition 3.2(6) the

density of the normalization of this measure is uniformly bounded from below and from

above. The construction preserves this property for νn and ν.

Let us introduce K̂ = ∪0≤j≤∞Kj × {j}. In this space, we consider the sequence of finite

measures ν̂n defined by

ν̂n(B0 × {0} ∩ .. ∩Bn−1 × {n− 1}) =
1

n

n−1
∑

j=0

f j∗mD(Bj),

and ν̂n(Bn) = 0 whenever B is in ∪n≤j≤∞Kj×{j}. We also consider a sequence of partitions

Pk in K̂ constructed as follows. Fix an arbitrary point z ∈ D̃ and let V be the inverse image

π−1(z) under the canonical projection. Fix a sequence Vk, k ≥ 1, of increasing partitions of

V with diameter going to zero. Then, by definition, two points (x,m), (y, n) ∈ K̂ are in the

same atom of the partition Pk if

– the disk in ∆m containing x and the disk in ∆n containing y intersect some common

element of Vk;

– either m ≥ k and n ≥ k, or m = n < k.

It is clear from the construction that for any point ξ ∈ Kj and every 0 ≤ j ≤ ∞, one has

P1(ξ) ⊃ .. ⊃ Pk(ξ) ⊃ . . . ,

and ∩∞k=1Pk(ξ) coincides with the intersection of the cylinder C with the disk in ∆j that

contains ξ. We define π̂ : K̂ → D̃ by π̂(x, j) = π(x).

Clearly, any weak* accumulation measure of the sequence ν̂n must be supported in K∞×

{∞}. We have chosen a sequence (nk)k such that νnk
converges to the measure ν. It is easy
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to see that this is just the same as saying that ν̂k converges to the measure ν̂ defined by

ν̂(B × {∞}) = ν(B) for any Borel set B ⊆ C, so ν and ν̂ are naturally identified.

Proposition 3.4. — There exist C3 > 1, depending on f only, and a family of conditional

measures (νγ)γ of ν|K∞ along the disks γ ∈ K∞ such that νγ is absolutely continuous with

respect to the Lebesgue measure mγ on γ, with

(7)
1

C3
mγ(B) ≤ νγ(B) ≤ C3mγ(B)

for any Borel set B ⊆ γ.

The reader can see the proof in [2] Section 4. The constant C3 depends on the Lebesgue

measure along the disks in the cylinder (so depends on f) and depends on the constant C2

obtained in Proposition 3.2.

The construction of Gibbs cu-states concludes as follows: there exists an ergodic com-

ponent µz of µ having positive measure on K∞ which is absolutely continuous along the

disks.

Each disk D ∈ K∞ is completely contained in some ergodic component because it is

contained in some local-unstable manifold. In particular, all Lyapunov exponents of µz in

the center unstable direction are larger than − log σ > 0. The domination condition implies

that all the other exponents are less than − log σ + log λ < − log σ. Again, by Pesin theory,

µz-almost every point has a local strong-unstable manifold which is an embedded disk whose

backward orbits contract at the exponential rate log σ. Moreover the disks D ∈ K∞ contain

the local strong-unstable manifolds of points in its interior.

Summing up this section, we have the following

Theorem 3.1. — [Alves, Bonatti, Viana [2]] Any diffeomorphism f with a dominated split-

ting which is non-uniformly expanding along the center unstable direction has an ergodic

Gibbs cu-state. More precisely: there exist a cylinder C ⊆ M and a family K∞ of disjoint

disks contained in C which are graphs over Bu, and a ergodic invariant probability measure

µ supported on Λ such that:

1. the cylinder contains a ball whose radius is uniformly bounded away from zero, depend-

ing continuously on the diffeomorphism f ;

2. there exists α > 0 such that the union of all disks in K∞ has µ-measure larger than α,

depending on f and c0;

3. µ has absolutely continuous conditional measures along the disk in K∞. The densities

of the conditional measures are bounded away from zero and infinity by a constant

depending on f and c0;

4. the u = dimEcu largest Lyapunov exponents are larger than − log σ > 0.
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3.2. Proofs of Theorems B and C. — We start by proving Theorem B. Let f ∈

Diff2(M) and Λ be an attractor having a dominated splitting which is mostly expanding

along the Ecu direction. Let G(f) be the class of Gibbs cu-states constructed in Subsec-

tion 3.1. Theorem B can be reformulated in the following words: every ergodic Gibbs

cu-state supported in Λ must be in G(f).

Proof of Theorem B: Let µ be an ergodic Gibbs cu-state for f supported on Λ. Let also

D ⊆ W u
loc(x) be in the support of µ, such that D ∩ B(µ) has full µD-measure in D (cf.

Lemma 2.4). We may assume that D satisfies condition 2 in Subsection 3.1 taking an iterate

of D if necessary ([2] Corollary 2.4, Proposition 2.9). Condition 1 is satisfied by ergodicity:

consider the function ϕ(x) = log ‖Df−1|Ecu
x ‖. Birkhoff´s Ergodic Theorem implies

lim
n→∞

1

n

n−1
∑

j=0

log ‖Df−1|Ecu
fj(x)‖ =

∫

log ‖Df−1|Ecu
y ‖ dµ(y) ≤ −c0 < 0

for µD-almost every point in D, where c0 depends on the Lyapunov exponents of D in the

Ecu direction. But µD = ρDmD where ρD is a measurable function bounded away from zero

and infinity, so the claim above holds Lebesgue-almost everywhere in D.

Let µ̃ be a ergodic Gibbs cu-state obtained as a weak* accumulation measure of

1

n

n−1
∑

j=0

f j∗

(

µD
µD(D)

)

.

Of course, µ̃ ∈ G(f) because µD is absolutely continuous with respect to Lebesgue measure

on D.

Observe that for every continuous ϕ : M → R we have

(8)
1

n

n−1
∑

j=0

f j∗

(

µD(ϕ)

µD(D)

)

=
1

µD(D)

∫

D

1

n

n−1
∑

j=0

ϕ ◦ f j(x) dµD.

Denote by Fn the average 1
n

∑n−1
j=0 ϕ ◦ f j. Each Fn is µD-integrable and bounded by ‖ϕ‖.

Also Fn converges pointwise to
∫

ϕdµ because B(µ) has full µD-measure on the disk D. The

dominated convergence theorem implies that the right hand side of (8) converges to
∫

ϕ dµ.

On the other hand the left hand side of (8) was assumed to have an accumulation measure

µ̃, so it converges to
∫

ϕ dµ̃. As a consequence µ = µ̃.

Let (fn) be a sequence of diffeomorphisms converging to f in the Ck-topology, k ≥ 2. We

assume that each fn exhibits a dominated splitting with non-uniform expansion along the

Ecu(fn) direction with constants C, α and c0 not depending on n ≥ 0 (cf. Subsection 1.1.

Let µn be an ergodic Gibbs cu-states of fn. We will assume that µn tends to a probability
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measure µ∗ in the weak* topology (taking a subsequence if necessary). To prove Theorem C,

we need to prove that µ∗ is a cu-Gibbs state for f .

Is clear that µ∗ is f -invariant. By Theorem B each µn is a Gibbs cu-state in G(f). Then,

for each n ≥ 1, there exist (Cn)n and (Kn
∞)n cylinders and families of disks associated to

(fn, µn). From Subsection 3.1 we may assume that:

(a) the size of the disks is uniformly bounded from below;

(b) there exists α > 0 such that, for all n ≥ 0, we have

(9) µn(K
n
∞) ≥ α > 0,

where Kn
∞ is the union of the disks in Kn

∞, since we are assuming that c0 is uniform (cf.

Proposition 3.1;

(c) there exist C3 > 1 such that for all n ≥ 1 the family of conditional measures (µn,D)D∈Kn
∞

of µn|K
n
∞ along the disks D ∈ Kn

∞ satisfies:

(10)
1

C3
mD(B) ≤ µn,D(B) ≤ C3mD(B)

for any Borel set B ⊆ D.

We prove that µ∗ is an Gibbs cu-state by completing the following steps.

1. We construct a cylinder C∗ and a family K∗∞ of disjoint disks contained in C∗ which are

graphs over Bu such that all the disks in K∗∞ are local uniformly expanding manifolds

under f .

2. The union K∗
∞ of all disks in K∗∞ has positive µ∗-measure.

3. The restriction of µ∗ to that union has absolutely continuous conditional measures along

the disks in K∗∞.

4. Almost every ergodic component of µ∗ is a Gibbs cu-state.

Of course, by the ergodic decomposition theorem, µ∗ must be a Gibbs cu-state, because

all of its ergodic components are Gibbs cu-states.

We prove these steps in the following lemmas:

Lemma 3.1. — There exist a cylinder C∗ and a family K∗∞ of disjoint disks contained in C
∗

which are graphs over Bu such that all disks in K∗∞ are local uniformly expanding manifolds.

Proof. — Let (Cn)n and (Kn
∞)n be the sequences of cylinders and families of disks associated

to µn respectively. By the compactness of M and considering a subsequence if necessary, we

may suppose that Cn converges to C∗.

We claim that C∗ is a cylinder. Indeed, the Cn are diffeomorphic images of Bu×Bs where

Bu and Bs are compact balls in R
u and R

s respectively corresponding to Cn, n ≥ 1. Let
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(Bu
n)n and (Bs

n)n be the diffeomorphic images of Bu and Bs in M , respectively. By the

Arzela-Ascoli Theorem (Bu
n)n converges to a disk Bu

∗ and (Bs
n)n converges to a disk Bs

∗. So,

for C∗ to be a cylinder, it must satisfy:

(i) the diameters of Bu
n and Bs

n do not go to zero, when n tends to infinity.

(ii) the angle between Bu
n and Bs

n does not go to zero, when n tends to infinity.

On the one hand by construction , each Cn contains balls with radius uniformly bounded

away from zero from Theorem 3.1, so (i) is fullfilled. On the other hand, by the domination

property at the family (fn), (ii) must hold.

Now, we considered the family K∗∞ of disks Du contained in C∗ which are accumulated by

sequences (Du
n)n of disk, Du

n ∈ K
n
∞, n ≥ 1. Observe that every disk Du

n ∈ K
n
∞ is tangent

to the center-unstable cone field for fn; by continuity of the splitting with respect to the

diffeomorphism, Du ∈ K∗∞ must be tangent to the center-unstable cone field of f . For any

x, y ∈ Du let (xn)n and (yn)n be two sequences of points in Du
n converging to x and y

respectively. By Proposition 3.3, for all k ≥ 0 fixed we have

dist(f−kn (xn), f
−k
n (yn)) ≤ σ−k/2dist(xn, yn).

Passing to the limit when n→∞, we obtain

dist(f−k(x), f−k(y)) ≤ σ−k/2dist(x, y),

for all x, y ∈ Du and all k ≥ 0. We conclude that every f k is an σk/2-contraction on D(x),

and D(x) is tangent to the center-unstable subbundle at every point in Λ∩D(x) (including

x).

In particular we have shown that the subspace Ecu
x is indeed uniformly expanding for

Df . The domination property means that any expansion Df may exhibit along the comple-

mentary direction is weaker than this. Then, there exists a unique strong-unstable manifold

W u
loc(x) tangent to Ecu which is contracted by negative iterates of f by a rate of at least σk/2,

when k gets large, see [13]. Moreover D(x) is contained in W u(x) because it is contracted

by every f−k, k ≥ 1, and all its negative iterates are tangent to the center-unstable cone

field.

Lemma 3.2. — The union of all disks in K∗∞ has positive µ∗-measure.

Proof. — Recall from Subsection 3.1 that there exists α > 0 such that, for all n ≥ 0, we

have

µn(K
n
∞) ≥ α > 0.

23



Let δ > 0. Then there exists n0 ∈ N such that, for all n ≥ n0

Kn
∞ ⊆ B(K∗

∞, δ).

On the other hand,

K∗
∞ =

⋂

δ>0

B(K∗
∞, δ).

Choosing δ > 0 such that ∂µ∗(B(K∗
∞, δ)) = 0, we have

µ∗(B(K∗
∞, δ)) = lim

n→∞
µn(B(K∗

∞, δ)) ≥ α > 0,

and so,

µ∗(K∗
∞) = lim inf

δ→0
µ∗(B(K∗

∞, δ)) ≥ α > 0.

Lemma 3.3. — There exist a constant C1 > 0 and a family of conditional measures (µ∗D)D
of µ∗|K∗

∞ along the disks D ∈ K∗∞ such that µ∗D is absolutely continuous with respect to

Lebesgue measure mD on D, with

1

C3
mD(B) ≤ µ∗D(B) ≤ C3mD(B)

for every Borel set B ⊆ D.

Proof. — By the compactness of C∗, for any ξ ∈ D where D is any disk in K∗∞, the expo-

nential map is well defined in a ball of radius r̃ > 0 around ξ. For any Borel set B ⊂ D we

define the set B̃ as the tubular neighborhood of B, that is, the union of the images under

the exponential map at each point ξ ∈ B of all vectors orthogonal to D at ξ.

We fix a sequence of partitions Pk on K∗∞ constructed as follows. Let V be the inverse

image of Bs
∗ under the diffeomorphism between Bu

∗ × Bs
∗ and C∗. Fix a sequence Vk, k ≥ 1,

of increasing partitions of V with positive diameter less than r̃ and going to zero. Then, we

say that two points x, y ∈ K̂ are in the same atom of the partition Pk if the disk in D1

containing x and the disk in D2 containing y intersect the same element of Vk. It is clear

from the construction that for any point ξ ∈ K∗
∞,

P1(ξ) ⊃ .. ⊃ Pk(ξ) ⊃ . . .

and ∩∞k=1Pk(ξ) coincides with the disk in D that contains ξ.

For any Borelean set B ⊆ D we have, from Proposition 3.4,
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1

C3
m(Bn)µn(Pk(ξ)) ≤ µn(B̃ ∩ Pk(ξ)) ≤ C3m(Bn)µn(Pk(ξ))

where C3 does not depend on n, Dn is a disk in Kn
∞ near D and Bn = B̃ ∩Dn, n ≥ 1. By

construction m(Bn) converges to m(B) and so passing to the limit when n→∞ we have

1

C3
m(B)µ∗(Pk(ξ)) ≤ µ∗(B̃ ∩ Pk(ξ)) ≤ C3m(B)µ∗(Pk(ξ)).

Now, by the Radon-Nikodym Theorem, we have that the disintegration of µ∗ along the disk

∩∞k=1Pk(ξ) is absolutely continuous with respect to Lebesgue measure in this disk, and the

densities are almost everywhere bounded from above by C3 and from below by 1/C3.

Remark 4: The densities of µ∗D are uniformly (with respect to D) bounded away from zero

and infinity.

Let ξ be an invariant measure for f . Given a point x let us denote by ξx the probability

measure given by the time average along the orbit of x

∫

ϕ dξx = lim
n→∞

1

n

n−1
∑

j=0

ϕ ◦ f j(x)

for every continuous ϕ : M → R. According to the Ergodic Decomposition Theorem (cf. [11])

ξx is well defined and ergodic for every x in a set Σ(f) ⊆M that has full measure with respect

to any invariant measure. Moreover, for every bounded measurable function ϕ : M → R we

can write

∫

ϕ dξ =

∫ ∫

ϕ dξx dξ(x),

and for every such ϕ the integral
∫

ϕdξ coincides with the time average ξ-almost everywhere.

Fix B a measurable subset of M such that

mγ(B ∩ γ) = 0 for every γ ∈ K∗∞,

and µ(B) is maximal among all measurable sets with this property. Observe that µ∗(B) = 0,

because µ∗ is absolutely continuous along the leaves on K∗∞ (cf. Lemma 3.3). Let Z∞ =

K∗
∞ ∩ Σ(f) ∩R(f) \B. Then µ∗(Z∞) > 0 and let (µ∗|Z∞) be the restriction of µ∗ to Z∞.

Let A be any measurable subset of Z∞ such that mγ(A ∩ γ) = 0 for every γ ∈ K∗∞. Then

µ∗(A) must be zero, since we took µ∗(B) maximal. This means that (µ∗|Z∞) is absolutely

continuous with respect to the product mγ × µ̂∗, where µ̂∗ stands for the quotient measure

induced by (µ∗|Z∞) on K∗∞. As a consequence, the conditional measures µ̃∗γ of (µ∗|Z∞)
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on the disks γ ∈ K∗∞ are absolutely continuous with respect to Lebesgue measure mγ for

µ̂∗-almost all γ ∈ K∗∞. On the other hand, for any measurable set A ⊆ Z∞,

µ∗(A) =

∫

µ∗x(A) dµ∗(x),

where the integral is taken over Σ(f) ⊆M .

Let us denote by 1A the characteristic function of the measurable subset A. Then we have

(as already mentioned)

µ∗x(A) =

∫

1A dµ∗x = lim
n→∞

1

n

n−1
∑

j=0

1A(f
j(x))

µ∗-almost everywhere. So µ∗x(A) can be non-zero only if x has some iterate in A ⊆ Z∞,

for µ∗-almost every point x. Let k(z) denote the first backward return time to Z∞ of a

point z ∈ Z∞, this means k(z) is the smallest positive integer such that f−k(z)(z) ∈ Z∞.

This is defined µ∗-almost everywhere, by Poincare’s recurrence theorem. Observing also that

µ∗z = µ∗fj(z) for every z and every integer j ∈ Z, we have

µ∗(A) =

∫

µ∗x(A) dµ∗(x) =

∫

Z∞

k(z)µ∗z(A) dµ∗(z)

for any measurable subset A of Z∞.

Lemma 3.4. — Let λ be a finite measure on a measure space Z, with λ(Z) > 0. Let K be

a measurable partition of Z, and (λz)z∈Z be a family of finite measures on Z such that

1. the function z → λz(A) is measurable, and constant on each element of K, for any

measurable set A ⊂ Z.

2. {w : λz = λw} is a measurable set with full λz-measure, for every z ∈ Z.

Assume that λ(A) =
∫

l(z)λz(A) dλ for some measurable function l : Z → R+ and any

measurable subset A of Z. Let {λ̃γ : γ ∈ K}, and {λ̃z,γ : γ ∈ K}, be the disintegrations of λ

and λz, respectively, into conditional probability measures along the elements of the partition

K. Then

λ̃z,γ = λ̃γ

for λ-almost every z ∈ Z and λ̂z-almost every γ, where λ̂z is the quotient measure induced

by λz on K.

The reader can see the proof in [2], Lemma 6.2.

Lemma 3.5. — The measure µ∗x is a Gibbs cu-state, for µ∗-almost every point x ∈ K∗
∞.
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Proof. — Let x ∈ K ∩ Σ ∩ R(f). Observe that K∗
∞ ∩ Σ ∩ R(f) has full µ∗-measure on K∗

∞

and that

lim
n→∞

1

n
log ‖Df−n|Ecu

fn(x)‖ ≤ lim
n→∞

1

n

n−1
∑

j=0

log ‖Df−1|Ecu
fj(x)‖

=

∫

log ‖Df−1|Ecu
y ‖ dµ

∗
x(y)

≤ −c0 < 0.

This implies that the u largest Lyapunov exponents are positive.

Now, if we take Z = Z∞, λ = (µ∗|Z∞), K = K∗∞, λz = (µ∗z|Z∞) and l(z) = k(z) for each

z ∈ Z∞ in Lemma 3.4, the conditional probability measures µ̃∗z,D of (µ∗z|Z∞) along the disks

D ∈ K∗∞ coincide almost everywhere with the corresponding conditional measures µ̃∗D of

(µ∗|Z∞). Recall that we had already shown that the latter are almost everywhere absolutely

continuous with respect to Lebesgue measure on the corresponding disks D ∈ K∗∞.

As we observed above, µ∗x = µ∗fj(x), for µ∗-almost every x and for all j ∈ Z. Now, we

define the measure ν∗ by

ν∗ =

∫

K∗

∞

µ∗x dµ(x).

For µ∗-almost every x ∈ K∗
∞, µ∗x is a Gibbs cu-state (cf. Lemma 3.5) and so is ν∗

ν∗(M)
. Of

course, by definition, ν∗ is a component (not necessarily ergodic) of µ∗, but ν∗(K∗
∞) > 0.

Writing K0 = supp ν∗, observe that K∗
∞ ⊆ K0 and by the invariance of the support we

have

K0 =
⋃

j∈Z

f j(K∗
∞).

Now let A ⊆ K0 be measurable. Then

µ∗(A) =

∫

M

µ∗x(A) dµ∗(x)

=

∫

K0

µ∗x(A) dµ∗(x) +

∫

M\K0

µ∗x(A) dµ∗(x)

= ν∗(A) +

∫

M\K0

µ∗x(A) dµ∗(x).

This proves that ν∗ is a component of µ∗. In order to prove that ν∗ = µ∗ it is sufficient to

prove that µ∗(M \K0) = 0.
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For N ∈ N, let us denote by KN
n the set

KN
n =

N
⋃

j=−N

f jn(K
n
∞),

and by KN
0 the set

KN
0 =

N
⋃

j=−N

f j(K∗
∞).

For all N ∈ N, we define µNn = (µn|K
N
n ) and ν∗N = (ν∗|KN

0 ) = (µ∗|KN
0 ). It is clear that, for

any N ∈ N fixed, µNn converges to ν∗N when n goes to infinity. On the other hand, for any

n ≥ 0 fixed, µNn converges to µn and ν∗N converges to ν∗ when N goes to infinity.

Lemma 3.6. — µ∗(M \K0) = 0

Proof. — Suppose otherwise. Let B ⊆M \K0 be an open set such that µ∗(B) ≥ β > 0 and

assume that µ∗(∂B) = 0. For a fixed ε > 0 we have µn(B) ≥ β − ε for n ≥ 0 large enough .

Taking δ > 0 small and fixed, then there exists N(n, δ) = N such that µn(B)− µNn (B) < δ.

If N does not depend on n ≥ 0, for instance if the set {N(n, δ) : n ≥ 0} is bounded,

then B is in the support of each µNn and, passing to the limit when n → ∞, a positive

measure subset of B intersects KN
0 ⊆ K0, which is a contradiction. Then we may assume

that N(n, δ) = N(n) goes to infinity when n→∞.

It is no restriction to assume also that µNn (f
−j
n (B)) = 0, for j = 0, . . . , N(n) − 1, with

N(n) > 0 (the case N(n) is analogous) and

0 < β − ε− δ ≤ µn(f
−N
n (B)).

This implies that f−Nn (B) intersects Kn
∞ in a positive µ̂n-measure subset of disks D in Kn

∞,

and on each of these disks D the Lebesgue measure of f−Nn (B) ∩ Dn is positive. More

precisely

0 < β − ε− δ ≤ µn(f
−N
n (B)) =

∫

Kn
∞

∫

D

1f−N
n (B)(x)ρ

n
D(x) dmD(x) dµ̂n(D)

where ρnD is the density of µn along the disk D in Kn
∞. For each disk D in a positive

µ̂n-measure subset of Kn
∞ we have

0 <

∫

D

1f−N
n (B)(x)ρ

n
D(x) dmD(x) ≤ C(n)mD(f

−N
n (B)).

But for each n ≥ 0, B ∩ fNn (D)∩ fNn (Kn
∞) is contained in some disk whose diameter is expo-

nentially contracted for the past (cf. Proposition 3.3). This implies that mD(f
−N
n (B))→ 0

28



when n→∞. So C(n) must go to infinity. This is a contradiction because the densities are

uniformly bounded (cf. Proposition 3.4 and Lemma 3.3).

4. Gibbs cu-states and SRB measures

In this section we study the relationships between Gibbs cu-states and SRB measures and

conclude with some applications of our result to the study of statistical stability for partially

hyperbolic systems. First, our goal is to prove Corollary D.

We assume that f is a C2-diffeomorphism with a topological attractor Λ with a dominated

splitting which is non-uniformly expanding along the center-unstable direction. Consider a

disk D transverse to the center-stable direction. First, we prove that the constructions of

the previous section can be done replacing the disk D by a positive Lebesgue measure subset

E.

Proposition 4.1. — Given a center-unstable domain D and any positive Lebesgue measure

set E ⊆ D, every weak* accumulation point of

µn,E =
1

n

n−1
∑

j=0

f j∗

(

mE

mD(E)

)

has an ergodic component which is a Gibbs cu-state of f .

Proof. — Given any δ > 0 we may find pairwise disjoint domains D1, ..., Ds in D such that

the relative Lebesgue measure on E inside each Di is larger than 1−δ, and the total measure

of E outside the union of the Di is less than δmD(E). Then, for any j ≥ 1, we have

f j∗

(

mE

mD(E)

)

=
s
∑

i=1

mD(Di)

mD(E)
f j∗

(

mDi

mD(Di)

)

+
1

mD(E)
f j∗m(E\∪s

i=1
Di) −

1

mD(E)

s
∑

i=1

f j∗mDi\E.

The total masses of both the second and the third term do not depend on j, and are less

than δ. Therefore, every accumulation point of µn,E differs from an accumulation point of

s
∑

i=1

mD(Di)

mD(E)

1

n

n−1
∑

j=0

f j∗

(

mDi

mD(Di)

)

by a measure whose total mass is less than δ. Applying Theorem 1.2 to each domain

Di, every point of accumulation of this last sequence has an ergodic component which is

a Gibbs cu-state whose densities are uniformly bounded and satisfy the ratio relation of

Proposition 2.2. Making δ go to zero and applying Theorem A and Theorem C we get
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that every weak* accumulation point of µn,E has an ergodic component which is a Gibbs

cu-state.

Proof of Corollary D: Let µ be an ergodic SRB measure for f supported in Λ. Consider

any disk D inside U , where U is a neighborhood of Λ as in Subsection 1.1. Let us suppose

the D is transverse to the center-stable subbundle and intersecting the basin of µ on a full

Lebesgue measure subset D0. On one hand,

1

n

n−1
∑

j=0

f j∗

(

mD0

mD(D0)

)

=
1

mD(D0)

∫

D0

1

n

n−1
∑

j=0

δfj(x) dmD(x)

converges to µ when n→∞. On the other hand, by Proposition 4.1 and the hypothesis of

ergodicity it follows that µ must be a Gibbs cu-state.

4.1. Statistical Stability. — Now we present several applications of our results to the

study of statistical stability for systems with a weak form of hyperbolicity.

4.1.1. The partially hyperbolic case. — Now we assume that f has a partially hyperbolic

attractor Λ with splitting TΛM = Ecu ⊕ Es. The measure µ constructed in Section 3 has

an ergodic component µ∗, with support contained in Λ, which is a Gibbs cu-state. Then

there exists a disk D∞ ∈ K∞ such that mD∞
(B(µ∗)) > 0 ([2], lemma 4.5). Because the

strong-stable foliation is absolutely continuous [8], m(B(µ∗)) must be positive, so µ∗ is an

SRB measure. Moreover, a full Lebesgue measure subset of U is contained in the union of

finitely many SRB measures supported in Λ ([2], corollary 4.6)).

Proof of Corollary E: Let (µn)n be a sequence of ergodic SRB probability measures for fn,

converging to µ. By Theorem A, there exist a cylinder C∗ and a family K∗∞ of disjoint

disks contained in C∗ which are graphs over Bu and local uniformly expanding manifolds.

Moreover, µ(K∗∞) ≥ α > 0 and µ is absolutely continuous with respect to Lebesgue measure

along these disks.

Now if we take a tubular neighborhood of D∞ given by Lemma 2.4 using the stable

foliation, then since this foliation is Hölder continuous we have a positive Lebesgue measure

set of points in B(µ), so µ is an SRB measure. By Theorem 1.1 there are finitely many

ergodic SRB measures and the union of their basins covers a full Lebesgue measure subset

of U , so µ must be in the convex hull of such measures.

4.1.2. The dominated splitting case. — In the setting where f has an attractor with domi-

nated splitting Ecs⊕Ecu and with s = dimEcs Lyapunov exponent of µ all negatives, µ is in

fact a SRB measure. This is a consequence of the absolute continuity property of µ and the
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absolute continuity of the stable lamination [13]: the union of the stable manifolds through

the point whose time averages are given by µ is a positive Lebesgue measure subset of M .

Proof of Theorem F: First we prove the existence of SRB measures. Let µ be an ergodic

Gibbs cu-state for f . It exists by Theorem 1.2. Let D∞ be a disk such that D∞∩B(µ)∩R(f)

has full Lebesgue measure on D∞. Such a disk exists by Lemma 2.4, and is contained in

some local unstable manifold. By hypothesis, Lebesgue almost every point in D∞ satisfies

(3). So the set A of points in D∞ ∩B(µ)∩R(f) satisfying (3) has full Lebesgue measure on

D∞.

For ε > 0, we denote by D∞(ε) the tubular neighborhood of radius ε around D∞, defined

as the image under the exponential map of M of all the vectors of norm less that ε > 0 in

the orthogonal complement of Ecu
x , for all x ∈ D∞. If ε > 0 is small enough then D∞(ε) is

a cylinder.

For every point in x ∈ A, there exists a C1 embedded disk W s
loc(x) tangent to Ecs

x at x such

that the diameter of fn(W s
loc(x)) converges exponentially fast to zero as n→∞. These disks

W s
loc(x) depend in a measurable way on the point x, and the lamination {W s

loc(x) : x ∈ A}

is absolutely continuous. Since A ∈ B(µ) every y ∈ W s
loc(x) is in B(µ) also.

The domination condition on the splitting together the absolute continuity of the stable

lamination implies that every disk D tangent to the Ecu direction crossing D∞(ε), and close

enough to D∞, intersects the lamination {W s
loc(x) : x ∈ A} in a positive Lebesgue measure

subset. Finally, Fubini’s Theorem implies that the Lebesgue measure of B(µ) is positive.

Now we prove that there are finitely many ergodic SRB measures. Suppose otherwise.

Let (µn) be a sequence of ergodic SRB measures of f converging in the weak* topology to

a measure µ. By Corollary D, each µn must be a Gibbs cu-state for f . Theorem C implies

that µ is a Gibbs cu-state. By the argument used above, µ must be an SRB measure also.

Observe from Theorem B that µn ∈ G(f) for each n, so there is a sequence Cn of hyperbolic

blocks associated to µn converging to C, a hyperbolic block associated to µ. Moreover, the

size of the disks crossing the cylinder is uniformly bounded from below.

Let D∞ crossing C, D∞(ε) and A be the sets defined above for µ. Let Dn and An be

the corresponding subsets defined for µn in the block Cn. For n ≥ 1 large enough, the

disk Dn crosses D∞(ε). The argument above implies that Dn intersects the lamination

{W s
loc(x) : x ∈ A} in a subset with positive Lebesgue measure on Dn. Each Dn is contained

in some local unstable manifold, so if there exists some point in the basin of µ then every

point in these manifolds is in the basin too. But there exists a positive Lebesgue measure

subset of Dn contained in the basin of µn, so B(µ) = B(µn) for all n > 1 large enough, and

then µ = µn.
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Let µ1, . . . µn be the finitely many SRB measures for f supported in Λ. Now we prove that

m(B(Λ) \∪ni=1B(µi)) = 0. Suppose that m(U \∪ni=1B(µi)) > 0. Then there exists a C2-disk

D tangent to the center-unstable cone field such that conditions 1 and 2 of Section 3.1 hold

and mD(D ∩ ∪
n
i=1B(µi)) = 0. Let µ = µi be a Gibbs cu-state constructed from the iterates

of Lebesgue measure on D as in Section 3.1.

From this construction, given k ≥ 1 large enough, the Lebesgue measure of f n(D)∩B(µ)

on fn(D) is bounded from below away from zero, thus the Lebesgue measure of D ∩ B(µ)

on D is also bounded from below and away from zero. This is a contradiction.

In order to prove statistical stability, consider (fn)n a sequence of C2-diffeomorphisms

converging to f in the Ck-topology, k ≥ 2. Assume that (µn)n is a sequence of ergodic

SRB measures for (fn)n≥1 and that µ is a weak* accumulation measure of this sequence. By

Corollary D, each µn must be a Gibbs cu-state for fn. Theorem C implies that µ is a Gibbs

cu-state. By Theorem A every ergodic component of µ is a Gibbs cu-state. Applying to

each ergodic component of µ the argument used above, every ergodic component of µ must

also be an SRB measure, and so it must be in the convex hull of finitely many ergodic SRB

measures.

Example : Bonatti and Viana [4] constructed an open class of diffeomorphisms N defined

on T
n, n ≥ 4 such that every f ∈ N satisfies:

(a) f has a dominated splitting but is not partially hyperbolic,

(b) f is non-uniformly expanding in the center-unstable direction.

They also proved there exist SRB measures for such f . After this, Tahzibi [19] proved that

(c) the SRB measure is unique.

In this case, the SRB measure corresponds to a unique Gibbs cu-state and by Theorem C

this SRB measure is Ck-statistically stable, k ≥ 2.

Remark 5: However, it is not known whether there are general conditions ensuring the

uniqueness of the SRB measure for partial hyperbolic diffeomorphisms or for diffeomorphisms

with dominated splitting.
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