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Introducao

Uma ‘web’ é uma colecao de d-folheagoes em posicao geral e com a mesma
codimensao. O nome Francés e Alemao para o conceito é, respectivamente,
‘tissu’ e ‘Gewebe’. “Webs’ tém sido estudadas por varios autores do ponto de
vista local e com vérias técnicas. Akivis e Shelekhon [1] utilizam técnicas da
Geometria Diferencial, Hénaut [14] técnicas de D-médulos e Alcides e Nakai
[22] técnicas de Geometria Analitica. Tais estudos incluem linearizacao de
‘webs’, curvatura de ‘webs’, posto de ‘webs’, ‘webs’ hexagonais, etc.

Na tese, estudamos 'webs’ do ponto de vista global. A idéia principal
desse trabalho é generalizar, se possivel, os trabalhos e resultados conhecidos
para folheagoes (1-web) em CP? para ‘webs’.

O estudo de ‘webs’ singulares é motivado pela equacao diferencial implicita
de primeira ordem na forma

F(z,y,p)=0,  p= Z—i (%)
onde F' é uma polindémio de grau d em p. Nos pontos (zg, Yo, po) € C* onde a

derivada parcial F, = 2E£ =£ 0, podemos reescrever a equacao acima na forma
p 6p )

_dy

p_%:f]<x7y)7 jzla"'7d7

pelo teorema das funcoes implicitas, onde f; sao fungoes holomorfas numa

vizinhanga (g, yo). Portanto temos d-curvas passando por (zg, o). No ponto
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onde F' = F, = 0, nao esperamos boas propriedades como acima em geral.
Vérios estudos foram feitos [ver [27], [8] [2], [9], [29]] para dar a forma
local normal das curvas integrais de (*) numa vizinhanca de tais pontos.

No capitulo 1, definimos d-’webs’ como dadas por
ao(z,y)dy® + ay(z,y)dy*dz + - - + aq(z,y)dz® = 0

onde a’;s sao polinémios. A nogao de grau de uma ‘web’ ¢ dada pelo niimero
de tangéncias de uma reta genérica com as curvas integrais da ‘web’. Sobre
esse fato, damos condigoes para que a reta no infinito sejam nao invariante

pelo d-‘web’. Damos entdo a forma de uma d-"web’ de grau n em CP2. Isto é,

Proposicao 1.4.2 Uma d-‘web’ singular, W, de grau n em CP? pode ser

expressa numa carta afim (z,y) € C? por uma equagao diferencial da forma

d—

d d
Z i(z,y)da? dy®™ + Z (zdy — ydx)?da"dy 7 *gip(z,y) =0 (%)
3=0 0

<.

=
Il

7=1
onde
a) gjx sao polindmios homogéneos de grau n(ou gj; = 0. )
b) a;-s sao polinomios de grau < n para 7 =0,...,d.
¢) a reta no infinito, L., é invariante por W, se e somente se ggo = 0.

Segue da proposi¢ao anterior uma estrutura do espaco projetiva para o con-
junto de d-‘webs’ em CP?, onde d € N,d > 0.

Colocando p = % na forma (*), temos uma fungao F' : C> — C. Por-
tanto observamos neste capitulo que dado uma d-‘web’ em CP? podemos
associar a ela uma superficie Sy, = F~!(0) C PT*CP? e uma folheagao Fy,

em Sy, cujas folhas, quando projetadas por 7 : PT*CP? — CP?, dao a
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d-‘web’ em CP2.
Como uma corolario do proposi¢ao acima, damos uma outra forma da uma

d-web em CP? de grau n :

Corolario 1.4.2 Uma d-‘web’ singular, W, de grau n em CP? tambem pode

ser expressa em coordenadas homogéneas (x,vy, z) € C? por

d—

d
SN Ay, 2)al By E =0 ()

0

<.

ES
Il

Jj=0

onde
a) Aj, sao polinomios homogéneos de grau n.
b) a =axdy — ydz, f = zdx — xdz,y = ydz — zdy, com z7y + yf + za = 0.

Agora colocando G(z,v, z, «, 3,7) como na forma (#*) temos uma fungao

G : C? x C3 — C e a superficie associada ao d-‘web’ é dada por
Sw, ={G =0} C X = {zy+yB+ za =0} C CP?> x CP°.

Observamos que X ¢ isomorfa ao PT*CP? e a funcao G(x,vy, z,, 3,7) é
simétrica no seguinte sentido: dada uma d-‘web’ de grau n, entao trocando
as posigoes de (z,y,2) e (a, 3,7) temos uma n-‘web’ de grau d.

E importante observar que a escritura (*%) nao é unica. Isto é
Gi(z,y,2,a,8,7) e Ga(z,y, 2,a, 3,7) defina a mesma d-‘web’ em CP? se e
somente se (G(a:, Y, z,, 3,7) — AGs(z,y, 2, , B, ’y)) é divisivel por zy+y06+
za, para alguma \ € C*.

No capitulo 2 observamos que em seu estudo de fungoes do plano no
plano, Whitney [28] provou que qualquer destas fungoes pode ser aproximada
por uma outra com singularidades particularmente simples. Aplicando esta

filosofia para 7T|Swd : Sy, — C? temos as seguintes propriedades:
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(1) Sy, é liso
(2) o conjunto critico de 7 ¢ liso
(3) as unicas singularidades de 7 sdo nés e cispides

(4) as singularidades da curva discriminate sao nds e cispides.

Dizemos que uma d-‘web’ in CP? é genérica se ela tem as propriedades (1)-

(4). Nesse sentido provamos:

Teorema 2.1.1 O conjunto dos d-‘webs’ de grau n, em CP? com as pro-

priedades (1)-(4) acima é um subconjunto aberto e denso no espaco dos

d-‘webs’.

Finalmente no iltimo capitulo, damos o nimero de ctspides e nés da
projecao e também o nimero de singularidades da folheagao genérica Fy,

em Syy,, em termos de d e do grau da web n. Entao provamos:

Teorema 3.3.1 Seja W, uma d-'web’ genérica em CP? de grau n. Entdo o

ntimero de cuspides k e de nés § da projecao 7 : Sy, — CP? sao dados por
= 3(d — 2)(n? + nd + d)
2(d — 2)(d — 3)(3d + d® + 4nd + 4n?)
Teorema 3.3.2 Seja W,; uma d-web genérica em CP? de grau n tal que
a folheacao assosciada Fyy, em Sy, tem somente singularidades isoladas.
Entao o numero total das singularidades de Fy, é dado por
Z mult(Fyy,, p) = 3nd* + 3n*d — d* — n* — dnd + 3n + 3d
peswd
No Teorema 3.3.2 observamos que o resultado é simétrico em n e d, isto é,

> malt(Fw,,p) = H(n,d) = H(d,n).

pGSWd



Damos também a férmula da soma dos indices de Baum-Bott para a fol-

heacao Fy, em Syy,. Isto é

Proposicao 3.2.1 Seja W, uma d-web genérica em CP? de grau n. Entao

Z BB(JTWdap) = 3(”’ + d)
PESW,
onde BB representa o indice de Baum-Bott. Comparamos os resultados no
Teorema 3.3.2 e na Proposicao 3.2.1 com o caso d = 1. Isto é colocando d = 1

no Teorema 3.3.2 e na Proposicao 3.2. temos os seguintes :

Z mult(Fw,,p) = 2(n* +n + 1) (1)
™ BB(Fw,p) =3(n+ 1) @)

Mas observamos que quando d = 1, a 1-web, é dada por

ao(z,y)dy + a1(z,y)dr + (vdy — ydz)gio(x,y) = 0

isto 6, uma folhecao F em CP? de grau n na carta afim (z,9), sy, + Sy —
C? representa a explosdo uma vez das (n? + n + 1) singularidades genéricas
de F e a superficie Sw, € obtida apds a explosao. Como a explosao da cada
singularidade d4 mais 2 singularidades em S)y, temos que o nimero total das
singularidades de F = (pi] Swd)*]:" em Sy, é 2(n* +n + 1) coincidindo com
(1).

Seja Nz e Ny = (pils,, )"(Ng) os fibrados normias (ver [5]) de F e F
respectivamente, entao

(n2+4n+1)
a(Ne) =a(Ng)+ D> D,
j=1

onde D}s sao os divisores obtidos apds os explosoes. Portanto
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Coincidindo com (2).

(n24+n+1)

(V7)) Y p

=1
(n+2)?—(n*+n+1)

3(n+1)



Introduction

A web is a collection of d-foliations in general position of the same codi-
mension. The French and German names for the concept are respectively
'tissu’ and 'Gewebe’.Webs have been studied by various authors from the lo-
cal point of view and using various techniques.Akivis and Shelekhon [1] used
techniques of differential geometry, Hénaut [14] techniques of D-modules and
Alcides and Nakai techniques of Analytic Geometry. Such studies include lin-
earization of webs, curvature of webs, rank of webs, hexagonal webs,etc.

In this thesis, we study webs from a global point of view. The main idea
of this work is to generalise, if possible, the works and results known for
foliations on CP? to webs.

The study on singular webs is motivated by the first order implicit differ-
ential equation

dy

F(x,y,p) =0, = (%)

where F is a polynomial of degree d in p. At points (zg, o, po) € C* where
the partial derivative F), = %—I; # 0, we can locally rewrite the above equation

in the form
d

Y .
p:%:fj(:my)v ]:L;d

by the implicit function theorem , where f; are holomorphic functions in a
neighborhood of (zg, o). Hence we have integral d-curves passing through

(%0, Y0). At a point where F' = F,, = 0,we cannot expect good properties as
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the above in general. Various studies have been made [see [27], [8] [2], [9],
[29]] to give the local normal forms of integral curves of () in a neighborhood
of such points.

In chapter 1, we define algebraic d-webs in CP? as given by
ao(z,y)dy® + ay(z,y)dy* dz + - - + aq(z,y)dz® = 0

where a’s are polynomials. The notion of a degree of a web is given as been
the number of tangencies of a generic line with the integral curves of the
webs. Based on this definition, we give conditions by which the line at in-
finity is not invariant by the d-web. We give then the form of a d—web of
degree n in CP?. That is:

Proposition 1.4.2 A singular d-web, W, of degree n , in CP? can be
expressed in the affine chart (x,y) € C? by a differential equation of the form

d—j

d
Z i(m,y)dz dy® +Z (zdy — ydx) da"dy* 7 *g(z,y) =0 (%)
=0

7=1 k=0

where
a) gjr are homogeneous polynomials of degree n (or gz = 0)
b) a;s are polynomials of degree dega; < n for j =0,...,d.
c) the line at infinity, £, is invariant by W; if and only if g4 = 0.

It follows from the proposition above that we have a projective struture
for the set of d—Webs in CP?, where d € N,d > 0.

Putting p = 2% in the form (), we obtain a function F': C*> — C. Thus
we observe in thls chapter that given a d-web in CP? we can associate to it a
surface Sy, = F~1(0) C PT*CP? and a foliation Fyy, on Sy, whose leaves,
when projected by 7 : PT*CP? — CP?, gives the d-web in CP?.
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As a corollary of the above proposition, we give another form of a d-web in

CP? of degree n as:

Corollary 1.4.2 A singular d-web, W, of degree n, in CP? can also be

expressed in homogeneous coordinates (z,y, z) € C3 by

d—

d
SN Ay, 2)al By TR =0 ()

0

<.

ES
Il

Jj=0

where
a) Aj, are homogeneous polynomials of degree n.
b) a =zdy — ydz, f = zdx — xdz,y = ydz — zdy, with vy + yf + za = 0.

Now putting G(z,y, 2, «, 3,7) as the form (%) we obtain a function G :

C3 x C* — C and the surface associated to the d-web is given by
={G=0'C X ={zy+yB+z2a=0} Cc CP*xCP

We observe that X is isomorphic to PT*CP? and the function G(z, v, z, o, 3, 7)
is symmetric in the following sense: suppose we have a d-web of degree n,
then interchanging the positions of (z,y, z) and (a, 3, ) we obtain an n-web
of degree d.

It is important to observe that the form (xx) is not unique. That is
Gi(z,y,2,a, 3,7) and Ga(z,y, 2, a, 3,7) define the same d-web in CP? if and
only if (Gl(x, Y, z,, 8,7) — AGa(z,y, 2, a, 3, ’y)) is divisible by zy+yB+ za,
for some A € C*.

In chapter 2 we observe that in his study of mappings of the plane to the
plane, Whitney [28], has shown that any such map can be approximated by
a map having particularly simple singularities. Applying this philosophy to

7T|5Wd : Syy, — C? we have the following properties:
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(1) Sy, is smooth
(2) the critical set of 7 is smooth
(3) the only singularities of 7 are folds and ordinary cusps

(4) the only singularities of the discriminant curve are nodes and ordinary

cusps.

We call any d-web in CP? a generic web if it has properties (1) through (4).

In this sense we prove:

Theorem 2.1.1 The set of d-webs of degree n, in CP? with properties (1)

through (4) above is an open dense subset in the space of d-webs.

Finally in the last chapter, we give the number of cusps and nodes of the
projection and also the number of singularities of the generic foliation Fy,

in Sy,, in terms of d and the degree of the web n. Thus we prove:

Theorem 3.3.1 Let W, be a generic d-web in CP? of degree n. Then the
number of cusps k and nodes § of the projection 7 : Sy, — CP?, are given
by

k=3(d—2)(n*>+nd+d)

6 =2(d—2)(d—3)(3d + d* + 4nd + 4n?)

Theorem 3.3.2 Let W, be a generic d-web in CP? of degree n such the
associated foliation Fyy, in Sy, has only isolated singularities. Then the

total number of singularities of Fyy, is given by

Z mult(Fw,,p) = 3nd*> + 3n*d — d* —n? — 4nd + 3n + 3d

peSWd
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In Theorem 3.3.2, we observe that the result is symmetric in n and d, that
is,
> malt(Fw,,p) = H(n,d) = H(d,n).
PESw,
We give also a formula for the sum of the indices of Baum-Bott for the foli-

ation Fyy, on Syy,. That is

Proposition 3.2.1 Let W, be a generic d-web in CP? of degree n.Then

> BB(Fw,,p) =3(n+d)
PESW,
where BB represents the Baum-Bott index.
We compare the results in Theorem 3.3.2 and Proposition 3.2.1 in the
case d = 1. That is putting d = 1 in Theorem 3.3.2 and Proposition 3.2.1 we
get the following;:

> malt(F,,p) = 2(n” +n+1) (1)
PESW,
> BB(Fw,,p) =3(n+1) (2).
PESW,

But we observe that when d = 1, the 1-web is given by

ao(z,y)dy + a1(z,y)dx + (vdy — ydz)gio(x,y) =0

that is a foliation F in CP? of degree n in the affine coordinates (z,y),
7|5y, * Sw, — C? represents the blow-up once of the (n® +n + 1) generic
singularities of F and the surface Syy, is obtained after the blow-up. Since
the blow-up of each singularity gives rise to 2 other singularities in Syy,,
we have that the total number of singularities of F = (7| Swl)*ﬁ in Sy, is

2(n? + n + 1) coinciding with (1).
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Let Nz and Nz = (7|s,, )*(Nz) be the normal line bundles (see [5]) of F
and F respectively, then

n2+4n+1
a(Nr) =a(Ng) + > D;

J=1

where D’s are the divisors obtained after the blow-ups. Hence

n?4+n+1

[Cl(Nf)r = [Cl(Nﬁ)rJr Z D}

= n+2?*-(*+n+1)
= 3(n+1)

Coinciding with (2).
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Chapter 1

Singular d-webs

1.1 Non Singular d-webs in C?

Definition 1.1.1. A local non-singular d-web Wy in (C?,0) is defined by
d foliations Fj, j=1,...,d of analytic, smooth complex curves of (C%0) in

general position. That is, the leaves passing through 0 €C? are given by

F;(z,y) = const. where
F;: (C*0) — (C,0)
holomorphic, F;(0) = 0 then dF;(0) A dF;(0) # 0 for all 1<i < j <d.

In particular, each F; is a submersion(i.e dF;(0) #0). We denote a non-
singular d-web by W, = [F1, ..., F4l.

Example 1.1.1.

Let (z,y) be a system of coordinates in UC C* and Fj,j = 1,...,d be
the foliations defined respectively by y + a;x = const with the o two by two
distinct, then [Fy, ..., Fq| defines a non-singular d-web in U.

Definition 1.1.2. 1) A non-singular d-web Wy = [Fy, ..., Fq4] in (C,0) is

linear if all the leaves of the foliations F; are straight lines.
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2)Two non-singular d-webs Wy = [F1,...,Fq] and W, = [Fi,..., Fj] in
(C%,0) are locally equivalent (or conjugate) if there exists a local isomor-
phism @ : (C?,0) — (C?,0) such that ®*F; = F; j=1,...,d.

3)A non- singular d-web Wy is linearizable if it is conjugate to a d-web

linear.

Example 1.1.2. 1)Any 2-web is linearizable, that is locally conjugated to

the 2-web x=const, y=const.

2)If a 8-web is linearizable, then is locally conjugated to the 3-web x=const,

y=const and r+y=const.

x +y =cte
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1.2 Singular d-webs in (C?%0)

The study of singular d-webs in U a neighborhood of (C?,0) is motivated
by the first order implicit differential equation

F(z,y,p) = ao(z,y)p’ + ar(z, y)p" " + - + ag(z,y) = 0 (+)

where p = Z—Z and the coefficients a; are germs of holomorphic functions in

U with ap # 0.
Consider locally in PT*U, the surface

S ={(z,y,p) € PT"U; F(x,y,p) = 0}

and let a = dy — pdx.
Here PT*U is the projective cotangent space of U whose elements are tangent
lines in the tangent space of U.
PT*U is covered by two coordinates patches having coordinates (z,y,p) or
(z,9,9),q = 5

The 1-form « defines on S a foliation F(a)) whose leaves, when projected
on the plane (z,y) by the natural projection 7|g : S — C? 7(x,y,p) =
(x,y), gives origin to the solutions of the d-web in U.
The foliation F(«) induced by a on S is also defined by a vector field Z,
meromorphic on PT*U and tangent to S. This vector field satisfies iz(a) = 0,
iz(dF) = 0 along S where iz denotes the interior product and it’s given by

0 0 0
Z :Fpa +pr8_y — (£, +pr)6_p

restricted to S.

Definition 1.2.1. A germ of a singular d-web Wy in (C%0) is given by
the triple (Swd,ﬂgwd,}"wd) where Sy, is the surface in PT*C? given by the
equation F(:E,y,p) = Z?:O a’j(xvy)pj; 7T|Swd . SWd — (CQ’ ﬂ-(x’yap> = (x’y)
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the natural projection and Fyy, the foliation on Sy, given by a = dy — pdx
or by the vector field Z = Fpa% —i—pra% — (F, +pr)8% restricted to Syy,.

Definition 1.2.2. [4] The set of critical points of 7|, : Sw, — C? is
called the criminant of F' and is given by the equations F' = F,, = 0. The
set of critical values of the projection is called the discriminant of F, and is
obtained by eliminating p from the equations F' = F, = 0. We denote the

discriminant curve by A(zx,y).

Remark 1.2.1. The discriminant curve is also given as the p-resultant of F’
and F},, denoted by Res,(F, F,,). That is if

F(x,y,p) = ao(x,y)p* + a1(z,y)p? 1 + - + aa(z,y)
Fy(x,y,p) = pao(x,y)p* ' + (d — Vay(z, y)p? 2 + - + ag_1(z,y)

then Res,(F, F},) is the (2d-1) by (2d-1) determinant

Qo a1 T ad—1 Qq
Qo ai T ag—1 Qg
ao ai ce ad—-1 Q4
dag (d—1)ay e Qg—1
da,o (d — 1)61,1 s ag—1
d&o (d — 1)&1 s Ag—1

with zeros in all blank spaces.

Definition 1.2.3. [8] The singular set of the d-web W, denoted by Sing(W;)

is given by
e the zeros of the vector field Z,ie FF = F, = F, + pF, =0
e singularities of the projection 7| Sy, ¢ Sy, — C2.
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Remark 1.2.2.
a) The singular set of Wy is contained in the criminant.

b) We will call Sy, the surface associated to the d-web and o the canonical
1-form of the d-web.

c) We rewrite F(z,y,p) = Z;l:o a;(z,y)p?7 as

d

Q=" a;(w,y)(de)’ (dy)".

=0
d) The leaves of a d-web are obtained as follows: Let the d-web be given
by
aj(@, y)(da) (dy)™~ = 0.

B

J=0

Take p = (z,y) € C? at which A(z,y) # 0 and let

£, (z(t),y(t))

be a holomorphic mapping on some disk D(0,7) such that ©(0)=p and

f a; (w(0),y(8) ) (Y y' (1) =0

J

for allt € D(0,r). The germs of leaves through p are the images under

all possible ¢ as before of an eventually smaller neighborhood of 0.

¢)
= Z aj(w,y)(dz)! (dy)"™ =0

and



define the same d-web in C? if and only if Q = fQ for some meromor-
phic function

f:C*=C

which is nowhere zero. The importance of this property lies in the fact
that it allows one to extend the d-web from C? to the complex projective
plane CP2.

Example 1.2.1.
z*dy* + (y* — 1)dz® =0

defines a 2-web W, in C? with discriminant curve
A(z,y) = {(z,y);2(y* — 1) = 0}
and the leaves through (zg,vo) € C*\A is given by

1 1
t 2 (t, sin [i— + —+ sin_lyo]).
t i

1.3 Singular d-webs on CP?

The d-web, W, in C? extends to CP? as follows: The projective space
CP? has three affine coordinates (z,y), (u,v), (r, s) related by the transition

functions: ¢(u,v) = (%, %) = (z,y) and ¥(r, s) = (f, %) = (z,y).

Consider
d
Qz,y, dx,dy) = a;(x,y)(dz) (dy)*
j=0
where a’;s are polynomials and n = max{dega;,j = 0,...,d} on C? and its

corresponding singular d-web W, as in 1.2. Using the coordinates map ¢ one
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can transport W, to (u,v) € C2. To this end,write

Qu, v, du, dv) = (¢*"Q)(u,v,du, dv)

= Yl D))
=, % E;;%) (—du)’ (udv — vdu)*™
_ E%mijwj@mmmmywmdi

where .
I [d—k 1 vy |
, = (—1) HE g Py
bj(u,v) = (—1)u (d—j> ak(u,u)v

and j =0,1,2,...,d.

Multiplying the last expression of Q by w24+" in order to cancel the pole,
we obtain ' := u?**"Q) on (u,v) € C2. Then the two webs W/, and W, are
then identical on {(u,v) € C* : u # 0} by Remark 1.2.2.(e); however, W)
which is defined on all of (u,v) € C? is a well-defined extension of W;.

In a similar way,W; can be transported to the affine chart (r,s) by ¢ to
obtain a web W, induced by Q" on (r,s) € C2.

It follows from the above construction that in each affine chart, Wy is

given by the integral curves of the following

In (z,y) € C% )
Q=3 a;(z,y)(dx) (dy)"
j=0
In (u,v) € C?
Q= Xd: u I, (u, v) (du)? (dv)*
=0
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In (r,s) € C%

O = Z rc;(r, s)(dr) (ds)?

7=0
where .
I (d—k 1 v
— (1) - - j—k
by(,v) = (~1)’u Z(d_) d(po)y
k=0
I (d—k s 1
— (1) c - j—k
C](Tas) ( 1)“ ;(d—j) ad—k(r 7d)s

and 7=0,1,2,...,d.
This shows that W, is a singular d-web in CP? and may have singularities
on the line at infinity £,, = CP?*\C?.

1.4 Degree of a d-web

Let W, be a singular d-web in CP? and £ C CP? be a generic line. We
say that p € L is a tangency point of W, with L, if the tangents of some of

the leaves of WW; through p with £ coincide at p. This can be expressed as
follows: let W, be given by

d

Q=2 a;(z,y)(de) (dy)*7 =0

J=0

in an affine chart Uy = (z,y) € C? and £ N Uy be parametrized by p(t) =
(xo + at,yo + (t) where p = (29, y0) = ¢(0). Then p is a tangency point of
W, with L if and only if ¢t = 0 is a root of the polynomial

aj(p(t))o’ 7.

hE

he(t) =

J=0

The multiplicity of tangency of W; with £ at p is, by definition, the multi-

plicity of ¢ = 0 as a root of hy. We denote this number by m(W;, L; p).
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Remark 1.4.1. m(Wj, L; p) does not depend on the parametrization of £N
Up! and is invariant under analytic change of variables. Hence we can define

the total number of tangencies of W, with L as
m(Wa, £) := Y m(Wa, L;p)
peL

where m(Wy, L£;p) = 0 if p € L is not a tangency point.

Example 1.4.1. 1) Consider the 3-web
dy® + dx® = 0.

Let p € L be the generic line y = axz + 8. Then hy(z) = o® + 1 and
m(Ws, L : p) = 0 and p is not a tangency point if a® # —1. If a®> = —1 then
all points of £ are tangency points, which means that the line is a leaf of the
web.

2) Consider the 3-web

dy® + 12zdydz® + 6ydz® = 0.
Let p € £ be the generic line y = ax + 3. Then
he(z) = o® + 12ax + 6ax + 63

and

—a’ — 64
p=(o=—qg5 oeth)

is a tangency point of W5 with multiplicity 1. Hence m(Wjs, L : p) = 1.

Proposition 1.4.1. Let W, be a singular d-web in CP?. Suppose that W;
is expressed in the affine chart (x,y) € Uy by the polynomial ‘d-form’

d

> as(@,y)(dz) (dy)™7 =0

=0

Lif the parametrization has a non-zero derivative at p
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where max{dega;,j =1,...,d} < deg(ap) =n where n > d.

Let
n
aj =) aj
k=0
J=0,...,d, where a;; is the homogeneous part of degree k of a;.

Then the line at infinity Lo, = CP?*\Uy, is not invariant by Wy if and only

if the following d(dTH) equations ()

( d
ijyd Jajp_ =0, k=0,...,d—1
7=0
d—1
d— .
Z( 1J Iy a;, r =0, k=0,...,d—2

1 (d—j
\ j=0 d—1

are all identically zero.

Proof:
Consider first the change of variables
1 v
r=—Yy=-
u u

where {u = 0} represents L., in the affine chart U,. We saw in section 1.3

that this change of variables transforms the equation

aj(z,y)(dz)’ (dy)*~ =0

S,
I Mm.
o
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into

u?bo(u, v)(dv)® + Z uIb;(u,v)(du) (dv)™7 =0 (x%)

j=1

where b; are polynomials defined by

o= 5 (7))

and j=0,1,2,....d
If

n
ak:E ags ; k=0,...,d
s=0

where a; s is the homogeneous part of degree s of ay, then we write

bj(u,v) = fio(v)u" + fia()u" "+ + fin(v)

where
J
. d—k .
fis = (=1) ( ) ap,s(1, v)o’ "
o \d—J
and
1=12....d;, s=0,1,...,n.
If
4 .
1=1 s=0
] =2 s=0,1
fin—s =0 for< j=3 s=0,1,2
|l j=d s=0,1,2,...,d 1
That is
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\ k=0

d+1)

or going back to the affine chart (z,y) € Uy as the equations () given

in lemma, then we can rewrite b;(u, v) as
bj(u,v) = ujl;j(u,v), j=1,...,d

where Bj is a polynomial.
Hence (**) can be rewritten as

d
bouvdv Z uvdujdv =0

or dividing by u¢, as

d
uvdv Z uvdujdvd]—O

Observe now that,u is not a factor of by since deg ag = n. Hence

fO,n = Qon 7_/5 0.
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This implies that Lo, = {u = 0} is not invariant by Wj.
On the other hand, if the @ equations (x) listed in the proposition are
not all identically zero, then clearly {u = 0} is an invariant solution of Wj.
Hence the proof.

O

Corollary 1.4.1. Let Wy be a singular d-web in CP?.
a)If L1 and Ly are projective lines, which are not algebraic solutions of Wy,
then m(Wa, £1) = m(Wa, L2).

From this assertion we can define the degree of Wy, deg(Wy) as m(Wgy, L)
where L is a projective line which is not an algebraic solution of Wy.
b)Suppose that Wy is expressed in the affine chart (x,y) € Uy by the polyno-
mial ‘d-form’ ;

> aj(@,y)(da) (dy)* =0

=0
where max{dega;,j =1,...,d} < deg(ap) =n where n > d.
Then n — d < deg(Wy) < n.
Moreover, degWy) =n —d < Ly is not invariant by Wj.

Proof:
Let £ be a projective line, which is not invariant by W,. After a linear change
of variables, we can suppose that £L N Uy = {y = 0}, in the affine chart U,.

In this case
he(t) = aq(t, 0),

hence
m(Wy, L) = deg(aq(t,0)) + m(Wa, LN Ly).

On the other hand, if we take the change of coordinates

r=—Yy=

v
E
u u
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then the d-web is given by

> u b, v)(du) (dv)" = 0 ()

Jj=0

by(u,v) = (—1)u” (d - k) a2, Lyt

k=0 d_j

where

and a parametrization of £ in the new system is
1
v=0u=s=-
t
and
LNLy={v=u=0}

Suppose (*) is divisible by «™, m = 0,...,d. Then the d-web is given in
the (u,v) chart by

d
> ut by (w,v)(du) (dv)* T =0 5 m=0,...,d.

=0
Hence m(W;y, L; L N L) is the multiplicity of s = 0 as a root of

1
he(s) = s ™ba(s,0) = s"’mad(g, O) ;7 m=0,...,d

which is equal ton —m —degag ; m=0,...,d.

Hence

mWy, L) = deg(aq(t,0)) + m(Wa, LN L)

= n—-m ; m=0,...,d

Since L is arbitrary, this proves a) and b).

The last part of b) follows from Proposition 1.4.1.
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Proposition 1.4.2. A singular d-web, Wy of degree n. , in CP? can be ex-
pressed in the affine chart (x,y) € C? by a differential equation of the form

IS

d d d—j
Z i(z,y)dedy® + Z (zdy — ydx) de"dy* 7 *gin(z,y) =0 (%)
Jj=0 0

T

Jj=1

where

a) gjr are homogeneous polynomials of degree n(or g; =0).
b) a/js are polynomials of degree dega; <n for j =0,...,d.
¢) Lo is invariant by Wy if and only if the ga = 0.

Proof:
Let the d-web be given in the affine chart (z,y) € Uy by

d
Zaj(x, y)dz! dy™? =0
=0

where

max{dega;,j=1,---,d} <n.

If deg(W;) = n — d, then we have the ( U equations (x) listed in Proposi-
+ d(d+1)

tion 1.4.1. Solving for the a; for k =n — d+ 1,...,nin the & equations
we have :
n—k
k—n+d
ajr(z,y) g Tty g, (@, y)
l:O j—1
for j=0,...,dk=n—d+1,...,n and where g;; are homogenous polyno-

mials of degree n — d.
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Now

d d n—d d n
Zajdxjdyd_j = Z a; 1 (z,y)de! dy®™7 + Z Z a; 1(w,y)dz’ dy®™
j=0 j=0 k=0 7=0 k=n—d+1
d d n
= a;(w,y)daldy®7 + Z Z a; 1 (x, y)dz dy®™
=0 5=0 k=n—d+1

where deg a;(z,y) < (n —d).
Substituting the values of a;, the second expression on the right-hand side
of the equation above becomes:

i n
) aulwy)ddldy® =

=0 k=n—d+1

d n
—n+d I
-y v S ( 5 )mk_w_”lyj‘ldﬂdyd‘]gz,k<x,y)

=0 k=n—d+1 =0 J
d d d—s

S99 S SISl R EE e
=0 s—1 1=0

making the substitution s =k —n+d

d d-—s d
_ szx Ay g, (z,y Z ( 1) oIyl i gyt

s=1 =0 =0
d dzs s+l s . |
= 2 2 e, y>Z< )(—ydx)j_l(xdy)s_m
s=1 1=0 P —1
d d—s s
= ZZda: dyd - sgzs(x y) ( ) (—yd.z’)m(:z;dy)s*m
s=1 1=0 pr

Jg—1
m:j—l.Hence

since ( ° ) = 0 for s < j — 1 < 0 and making the change of variable

d d-s

Z S ajaloy)doldy’ = 3 3 (ady - yda)odaldy g, a.)

7=0 k=n—d+1 s=1 [=0
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Therefore

d d .
Y aj(w,y)dddy’? =Y " d(w, y)da’ dy’ I+ (wdy—ydz)? g;da’ dy®=+.
7=0

7=0 7 1

a
L
a

d

Il
<)
B
I

Hence the proposition.
O

Corollary 1.4.2. A singular d-web, W, of degree n, in CP? can also be
expressed in homogenous coordinates (x,y,z) € C> by

d d—j
G(z,y,2,0,8,7) ==Y > Aplx,y,2)0? By 7F =0 (%)

§=0 k=0

where
a) Aji are homogenous polynomials of degree n.

b) a =xdy —ydx, = zdr — xdz,y = ydz — zdy, with zy + y8 + za = 0.

Proof:
Let
x:£_>dg;:ZdX_XdZ
Z A
Y p _ZdY —-YdZ
y—z—> Z/——22

Substituting in (%) of Proposition 1.4.2. we have

zd:aj( )ZdX XdZ)i(ZdY — Y dZ)d=i

ZQd
7=0
d d—j
(XdY — YdX)(ZdX — XdZ)¥(ZdY —YdZ)*i* X Y
+;§ 72 gf’“(z Z) 0
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Putting
a=XdY —-YdX

B=ZdX — XdZ
v =YdZ — ZdY

and eliminating the pole Z2%+" gives

U

d d—j
DN AKX, Z)od By

7=0 0

=
Il

where Aj; are homogeneous polynomials of degree n and zoo + y + zy = 0.

Hence the proposition.
O

Remark 1.4.2. The form (xx) of the d-web in the corollary above is not

unique. That is

d d—j

Gi(z,y, 2,0, 6,7) ZZA]k T, Y, %2 )O‘jﬁk’Yd_j_k =0

=0 k=0

and
d_

d
=) Y A (z,y,2)0 By TR =0

=0

<.

G2(3373/72,04>57

<.
i}
[e]

where za + y8 + 2y = 0 defines the same d-web of degree n in CP? if and
only if
Gl(x7y7 Z, 04;57’7) - )\G2($7y7 Z, Od,ﬂ;”}’)

is divisible by za + y( + x7, for some A € C*.

Remark 1.4.3. We denote by W(2,d,n) the space of d-webs of degree n
in CP2. By the Proposition 1.4.2. W(2,d,n) can be parametrized using
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polynomials ag, a1, ..., aq and g for
(j=1;k=0,1,...,d—1
j=2k=0,1,...,d—2

j=d—1k=0,1
(| J=d;k=0.

Since by remark 1.2.19(b), Q and ' defines the same d-web if and only if
there exists a non-zero constant A such that ' = AQ, each W (2,d,n) can be
topologized in the natural way: a neighborhood of W € W(2,d, n) consists
of all d-webs of degree n whose defining polynomials have coefficients close
to that of W, up to multiplication by a non-zero constant.

Therefore W(2, d, n) may be considered as an open subset of the complex

projective space CP(N), where

N = (@+1) <§k> d+1)(n+1)_1

(d+1)n+1)(n+d+2)—2
5 :

Corollary 1.4.3. The set W(2,d,n) of all d-webs on CP? of degree n is
an open, connected and dense subset of the complex projective space CP(N),
where

N — (d+1)(n—|—1)(n+d+2)—2.
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Chapter 2

Generic Properties Of Webs in
CP?

2.1 Some Generic Properties

Consider a d-web W, of degree n in CP?, given in an affine chart by the
triple (Sw,, 7|sy, ; Fw,) where Sy, is the surface in PT*CP? given by the

equation
d d d—j
F(z,y,p) =Y a;(z,9)p"7 + > (zp— yVp" 7 gin(x,y),
§=0 j=1 k=0

W\Swd : Sy, — CP? is the restriction of 7(z,y,p) = (z,y) the natural
projection to Sy, and Fyy, the foliation on Sy, given by the restriction of
a = dy — pdx to Sy, or by the vector field Z = Fpa% +pra% — (F, +pr)a%

restricted to Syy,.

Remark 2.1.1. The surface Sy, can be covered by 6 affine charts {U; }j 15

see chapter 3.
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Definition 2.1.1. The ramification curve,denoted by R, of w|Sw, : Sy, —

CP? is given by the {(z,y,p)|F = F, = 0} and the discriminant curve,

denoted by A(z,y), is obtained by eliminating p from the equations F =
F,=0.

We will consider d-webs, W;,, satistying the following properties:
(i) zero is a regular value of F'(in particular, Sy, is smooth)
(ii) the ramification curve is smooth

(iii) the only singularities of the projection are ordinary folds and ordinary

cusps for d > 3

(iv) the only singularities of the discriminant curve are nodes and ordinary

cusps

Definition 2.1.2. [8] a) A point of Sy, where F' = F, = 0 but F,, # 0
is called a fold point of the projection. The projection of a fold point is a
regular point of the discriminant.

b)A point of Sy, where F' = F, = F,, =0, F,,, # 0 and F,F,, — F,F,, #0
is called an ordinary cusp point of the projection and it’s projection gives an

ordinary cusp point of the discriminant.

Remark 2.1.2. It can be proved that the following conditions are equiva-
lent:

a) F(z) = Fy(2) = Fyp(2) = 0; Fppp # 0 and F(2) Fyy(2) — Fy(2) Fpa(z) # 0.
b) z is a regular point of the the map (F, F), F,) : C* — C3.

c¢) The discriminant curve has a local branch at 7(z) which is a cusp.
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Definition 2.1.3. [2§]

a) At an ordinary fold, 7Sy, : Sy, — CP? is isomorphic to a mapping

X==x
Y =42
b) At an ordinary cusp, 7|Syy, : Sy, — CP? is isomorphic to a mapping
X=x
Y =zy+ 93

Definition 2.1.4. A point of A\ is called a node or an ordinary cusp if it

has a local equation isomorphic to y? = x? or y*> = 3 respectively.

=

// )

node

fold cusp

Figure 2.1:

We will prove in this section that the properties above are generic prop-

erties of d-webs. In this sense we define:
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Definition 2.1.5. By a generic d- web of degree n, Wy, in CP? we mean
that properties (i),(ii),(iii) and (iv) above are satisfied.

We adopt the notion of genericity as follows: A subset of W(2,n,d) is

called generic if is an open and dense subset in W(2,n, d).

Theorem 2.1.1. The set of d-webs of degree n with properties (1), (i), (iii)
and (iv) is Zariski open dense subset of W(2,n,d)

The theorem will be broken down into the following lemmas and the
proofs will be given basically using the following transversality theorem in

algebraic geometry see [26].

Theorem 2.1.2. Let f : X — Z and w : X — A be proper morphisms
(C* functions) between smooth varieties(resp. C°° manifolds) and W be a
smooth subvariety(resp. submanifold) of Z. Also assume that 7 is surjective
and f is transverse to W, then there exists an open and dense subset U of A

such that f|.-1() is transverse to W for every a € U.
Lemma 2.1.1. Generically Sy, is smooth.

Proof: Fix an affine chart C* ~ U;. Let F : U; — C given by

d—j

d d
F(z,y,p) =Y aj(z,y)p"7 + ) > (xp — y)p™ Fgin(z,y)

j=0 7=1 k=0

defines Sy, in Uy, where ajs are polynomials of degree < n and gj; are

homogenous of degree n.
Define F : Uy x W(2,n,d) — C by

R.

—J
F(z,y,p,a,9) = Zajxy P YD (ap -yt g, y)
j=1 k=0
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where a and g represent the coefficients of the a’s and g s respectively. and

we have the following diagram

U x W(2,n,d) —= W(2,n,d)
F |
C

Since
_ E j .8,k
aj - askw Yy
s,k

OF __
Bago =1

we have that

Hence for any vector (z, 9, p, do, d1, - - . , g, §) wWe have that

D(m,y,p,ao,al,..,,ad,g)F(j7 g;pa d07 a_la s >a_d7 g) 7é 0.

Hence 0 is a regular value of . Therefore by Theorem 2.1.2 ,there exists
an open dense subset W; of W(2,n,d) such that 0 is regular value of F' for
every (ag,a1,...,0aq4,9) € Wi.
Similarily, by the same arguments we obtain open dense subsets Wa, Wi, Wy, W5, We
of W(2,n,d) in the other 5 charts.
Let W = N%_,W; and since the intersection of finite number of open dense
subsets is an open dense subset, the lemma follows.
O

Remark 2.1.3. It follows from the proof that ﬂ?zle is a Zariski open set.

Lemma 2.1.2. Generically the singularities of the projection 7|Syy, are folds
and ordinary cusps for d > 3. In the particular the ramification curve is

smooth.

Remark 2.1.4. Under generic conditions,for d=2, it is not possible for the

projection to exhibit a cusp singularity, since the projection to the (z,y) plane
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has 0,1,2 or infinitely many points in a fibre. Infact, if F = a(z,y)p* +
b(z,y)p+c(z,y) and the discriminant curve /\ = b(x,y)+4a(x, y)c(z,y) ez-
hibits a cusp at (xo,Yo), then it is possible to prove that a(xg, yo) = b(xo, yo) =

c(xo,Y0) = 0 which is not a generic condition.

Proof of Lemma 2.1.2: Fix an affine chart C? ~ U; as above. Define

G1: Uy x W(2,n,d) — C?

by
Gi(z,y,p,0,9) = (F, F})
and
Gy : U x W(2,n,d) — C?
by

G2(xay7p7aag) = (F7 FP?FPP>

where a and g represent the coefficients of the a}s and gj; s respectively and

we have the following diagrams

U xW(2,n,d) = W(E2,n,d) | U xW?2,nd = W(2n,d
Gl Go |
C? C3

Now since
_ J s,k
a; = E :askx )
s,k
we have that

oF OF

2G dady  daly! 1 p
daf,0ag, oF,  oF,

d a1
dagy  dag,
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and

OF OF OF
dafy  agy’  dagy”

2

092G 1 pop
2 OF, OF, OF,

det( —— dﬁ):det _aadp = D anz =det| 0 1 p —1

80;0060/00 aaoo 00 aOO aOO

0 0 1

0Fpp 0Fpp 0Fpp
dafy  dago ' Oagy” ]

Hence there exist a 2 x 2 matrix of DG; and a 3 x 3 matrix of DG, with
determinants different from zero. This implies that (0,0) and (0,0,0) are
regular values of G; and G5 respectively.

Therefore by Theorem 2.1.2, exists open dense subsets W} and W2 of W(2, n, d)

such that (0,0) and (0,0,0) are regular values of G; and G, respectively for

every (ag,ar,...,aq,9) € W/, j=1,2.

Similarily, by the same arguments we obtain open dense subsets W% ) Wg, WZ, Wg , Wg;
j =1,2 of W(2,n,d) in the other 5 charts for the 2 maps G; and G5 respec-

tively.

Let W/ = m?zlwg' ,7 = 1,2 and since the intersection of finite number of

open dense subsets is an open dense subset, the lemma follows.
O

Lemma 2.1.3. Let
U:RxR— C?x(C2 U(r,y) = (r(x), 7(y))

where R C Sy, is the ramification curve of .
Let D = {(a,a) € C? x C?}
If U is transversal to D at (xg,yo), then the discriminant curve, /\, of ™ has

a node at w(xo) = w(yo).

Proof: Follows from the fact that
DY (g, yo)(v1,v2) = (Dm(xg)v1, D7(yo)ve).
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Lemma 2.1.4. Generically ¥ is transversal to D.

Proof:
Let

R={F=F,=0} Cc C*x W(2,n,d).
and

o J .5,k
aj = E :a’skxy
s,k

The tangent space of R is given by

e _
U1
v2 OF  QF 9F  OF  _9F
d d—1
Vs Ox Oy Op  dag, Odaf;
TR = ;
v OF, OF, 9F, OF, 0k
vs Ox Oy op  0ad, 6agg !
PR _
U1 U1
V2 oF OF 0 1 V2
oz oy p
U3 U3
= ;
v o, 9F, 9F g | v
v oz oy op
5 Us
Let
ACTRA={vs=vr=---=0}
The map

Dﬂ— : A — <C27 (UI,UQ,U37U4,U5) E— (U17U2>
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U1
V2
V3
V4

Us




is surjective. Infact, given any (v, v;) € C?, we can always solve for vs, vy, vs

in the system:

or + oF + vg + 0
— — (Y Vy =
oz 1 y 2 4 T PUs
OF,  OF,  OF,
=0
G v + ay vy + 8]9 VU3 + Us

In particular
DnxDrn:Ax A— C?xC?

is surjective. Therefore the map W is transversal to the diagonal D. Hence
the lemma.
J

Remark 2.1.5. Lemma 2.1.2 implies that all local singular branches of the
discriminant curve are cusps. Lemma 2.1.3 implies that the singularities of

the discriminant curve are either cusps or nodes.

Proof of Theorem 2.1.1:
The proof follows froms Lemmas 2.1.1, 2.1.2, 2.1.3 and 2.1.4.
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Chapter 3

Number of Singularities of
Generic Webs in CP?

In this chapter, we will use analytic and algebro-geometric arguments to
count the number of singularities of the contact 1-form « in Sy, and also to
calculate the number of nodes and cusps of the discriminant curve. We ac-
complish these objectives, by exploring the geometry of the space PT*(CP?).

The number of singularities of « in Sy, is obtained using technologies and
results in [5].

The number of cusps of the discriminant curve is obtained using the tech-
nology of sheaf of jets of vector bundles and the number of nodes is obtained

from the genus formula.

3.1 The Surface Sy,

The projective cotangent space of CP?, PT*(CP?), can be covered by six
affine coordinates (‘7:7 yvp)7 (377 y?p1)7 (u7 U, Q)7 (ua v, Q1)7 (T’, S, t) and (T’, S, tl)'

These coordinates are related as follows:
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4 4 (
1 x 1
u== r=2=2 ==
z y P =3
_y _ 1 1
v=<2 s== ==
p y q1 p
g=y—ap (t=;F th =g
\ \ p—yY L 1 t

where we observe that if (z,y,p) is an affine chart in PT*CP?, then (z,y)
gives an affine coordinate in CP? with (z, y, p) representing the line in T}, ,yCP?
given by dy — pdx = 0.

We denote by H and £ the divisors on PT*(CP?) associated to the sur-
faces given by {y = ax + 8} and {p = 0} respectively on the first coordinate
system (z,y,p). Note that H = n*(H), where H denotes the divisor associ-
ated to a line in CP2.

We will write H, = Hls,, = j*H and & = {]s,,, = j*¢ where j :—
PT*CP?, as the divisors of H and & restricted to Syy,.

Lemma 3.1.1. Let W, be a generic d-web of degree n in CP?.Then the

canonical line bundle, Kg,, , of the associated surface Sy, is given by

Ks,, =—3H, +R,

where R, = R|5Wd is the divisior of the ramification curve R C Sy, .

Proof:

Since 7| Sy, Sy, — CP? is branched along A, choose a mermorphic
2-form w on CP? such that w is holomorphic in a neighborhood of ANC? for
some afine coordinate system C? and w(p) #0 Vp € /. Then away from R
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the zeros and poles of (7|s,, )*(w) correspond to those of w. Therefore
KSWd = 7" (Kcp2) +Rr
= 3m(H)+ R,
= —3H,+ R,

The divisor R, appears because R C Sy, is a locus of ordinary folds, so that

it gives origin to zeroes of (s, )*(w). O

3.2 Some Facts About Projective Bundles

Let E be a complex vector bundle of rank r over a manifold X. We
denote by P(E) the projective bundle of E whose fibres are the projective
spaces derived from the fibres of E.

Let 7 : P(F) — X and 7*(F) be the pull-back bundle of E to P(E). We

have the following diagram.

ve P(E) «— 7%E) — Og(-1)

Il K
re X «— F

If z is a point of P(E) with 7(z) = z, the fibre of 7*(E) at x is a copy
of F, and contains the 1-dimensional vector subspace which corresponds to
the line of E, giving rise to the point z in the fibre P(E),. The aggregate
of these lines is a line bundle over P(E) (a sub-bundle of 7*(E)) called the
tautological bundle Og(—1) of P(E). The dual bundle of the tautological
bundle is denoted by Og(1).

We have the following exact sequences, (see Appendix B of [10]):

0—0p(-1)—7(E)—Q—0
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where @ is the quotient bundle 7(E)/Og(—1).

0 — Opm) — 7 (E) ® Op(1) — Tpmyx — 0 (2)

where Tp(g)/x is the relative tangent bundle of P(E) over X.

The following proposition and it’s proof can be found in [12, Page 606].

Proposition 3.2.1. For X any compact oriented C* manifold, E — X
any complex vector bundle of rank r, the cohomology ring H*(P(E)) is gen-
erated, as an H*(X)-algebra, by the Chern class

n = c1(Og(1))
of the tautological bundle, with the single relation
N —c (B (B 2+ + (1) e (E)n + (=1)"¢,(E) = 0.

Lemma 3.2.1. The class, [a] := Opr«cp2 ((a)o—(a)oo>, of the contact form
a = dy — pdz on PT*CP? is given by

o] = —H ¢

where (a)g and (o) represents the divisors of zeros and poles of o respec-

tively.

Proof: Note that a doesn’t vanish in any point of the affine coordinates

(z,y,p). If we change to the other affine coordinates by the coordinate
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changes given in (1), we get

p%(pldy — dx)
L (dv — qdu)
u_}h((hdv — du)

L (ds — tdr)

s(rt—s)

—L ~(t;ds — dr)

\ s(r—t1s)

From this, we get that

Opr-cp? ((Oé)o) =0

and
Opr+cp? ((a)oo) =(u=0)+(pr=0)=H+&

Hence the lemma.

g

Remark 3.2.1. In particular, in our case where E = T*CP?, we observe
that the contact form dy —pdz on PT*CP? represents the tautological bundle
Og(1) and if n = ¢;(Og(1)), then from Lemma 3.2.1 we have that

n=§+H.
Hence
Zln, H]
* * 2 _ )
H(P(T°CPT)) = H3=0=mn?—3nH + 3H?
Z[¢, H]

H=0=8 —eH+H?
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Lemma 3.2.2. The following relations hold:
a) EH=H*¢=1
b) £ =0
Proof: a) Since &2 — ¢H + H? = 0 we have by multiplying by H that
EH—-EH+H? =0

which implies that £&2H = H?{, since H® = 0. But, since H? represents a
generic fiber of m we have that H2¢ = 1.
b) Again since £2 — éH + H? = 0 we have by multiplying by & that

&~ EH+EH =0
which implies €2 = 0 from a).

Lemma 3.2.3. The following relations hold:

a) H2 =d
b) & =n
c) H..& =n+d

where A? and (A.B) means the self intersection of the divisor A and inter-

section of the divisors A and B respectively.

Proof: We take an affine coordinate system (z,y,p) such that H and & are
given by the surfaces by {y = ax + #} and {p = 0} respectively.

a)We look for the number of points of intersection of the generic hyper-
planes {y = az + (} and {y = o/z + ('} with the surface Syy,. Since this

gives a generic fiber of m and 7 has degree d, we get H2 = d.
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b)We look for the number of points of intersection of the hyperplanes

{p =0} and {p = €}, where € is a constant, with the surface Sy,, given by

d d—j

Zaj z,y)p*I —|—ZZ zp — y)Y p* I g (z,y) =0

7=1 k=0
in the chart (z,y, p). These hyperplanes intersect in the (r, s, t) chart at points
of the form (r,0,0). Hence rewriting the equation of the surface Sy, in the

chart (r, s,t) and putting s = p = 0 gives the polynomial in r of degree n:

gd()(lv Ir) =0

Hence &2 = n.

¢)The intersection of the hyperplanes {y = ax + #} and {p = 0} with
Sy, is given by the polynomial in  of degree n + d:

d
F(z,az + 3,0) = a4(z, ax + ) —1—2 —az — B gja—j(z, az + 3) = 0.
7j=1

Hence (H,).(&) =n +d.

Lemma 3.2.4. The class of the surface Sy, in PT*CP? is given by
L:=d¢+ nH.

Proof:
Let the class of Sy, in PT*CP? be given by

L :=a& + bH.
Since

H2=H’L=d

E=eL-n
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we have

aH?* +VH3 =d
al® +bHE: =n

But since
53 :0:H3,§2H :§H2 =1,

we have that

Hence

Lemma 3.2.5. The class of the ramification curve R C Sy, is given by
R, = (n+ 1)H, + (d — 2)§,.
In particular we have the following relations:
a) Hy R, = (d—1)(2n + d)
b) &Ry =n?+2nd+d—n

Moreover the degree of the discriminant curve ,/\, in CP?  deg (), is an
even integer and is given by deg () = H,.R, = (d — 1)(2n + d).

Proof:
Let J'£ denote the sheaf of the 15 partial jets along the fibers of the line
bundle £ relative to the projection 7 : PT*CP? — CP?. We have the

following exact sequence (see Appendix):

0— QI}DT*CPQ/CPZ QL— JL—L-—0

49



where Q.o po scp> denote the 1-forms of PT*CP? relative to 7 : PT*CP? —
CP? (essentially, the forms of the type a(z,y,p)dp).
Since J'L has rank 2 and R = {F = F, = 0}, the divisor R in PT*CP? is
given by the top Chern class of J'£. That is
R = (cz(Jlﬁ)).

By the Whitney formula we get

c(J'L) = C(QulmT*(cm/(cp2 ® ﬁ) x (L)
where

c(E) = co(E) + c1(E)t + co( ) + c3(E)* + - - + ¢, (E)t",

r is the rank of the vector bundle E. Therefore

R = (CQ(J1£)>

= G (QI%DT*(CPQ/CPQ ® 5) x (L)

= a (Qﬂl»T*c(:PZ/CP2 ® C) [Swd}

where ¢;(L£) = [Syy,] is the class of Syy,.
Therefore

R, = R’SWd =JjR= = J (Cl ((Q]%DT*(CPH(CPQ ® E)‘Swd))
= G (Q]%’T*CPQ /(CPZ‘Swd) +a (£|Swd)
where j : Sy, — PT*CP? and we use the fact that

If j: Y < X and F a vector bundle on X, and [Y] represents the class of Y’
in X, then

a(B)Y] = j. (ci(E|y)).
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We now calculate
C1 (QllP’T*(CPZ/(CPQ) :
By [10, Appendix B.5.8. Page 435] we have the following exact sequence:

0— O[F’T*(CPQ — W*(T*CP2) ® OT*(CP2(1) - T[P’T*(CP2/(CP2 —0

where Tp(r+cp2y/cpe is the relative tangent bundle of PT*CP? over CP?.

Dualizing this sequence gives:

0— QI%"T*(CPQ/(CP2 - W*(TCPQ) ® Op«cp2(—1) — Opr-cpz — 0
Therefore by the Whitney Formula

€1 (QI%DT*CPQ/(CP2) = a (77*(TCP2) ® OT*CPQ(—l))
= (7" (TCP?) — 2¢;(Op-cp2(1))
= 3H—-2n
= H-2

since ¢(Opr+cp2) =1 and n = H + &. Hence

Ry = a (QIIP’T*(CP2 JCP? |Swd) + ¢ (£|Swd)
= (M. —26) + (nH, +d§;) = (n+ 1)H, + (d = 2)§,

In particular

A)H, Ry = (n+1DH?+(d—2)¢H,
= (n+1)d+(d—2)(n+d)
= (d—1)(2n+4d)
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a)&- Ry = (n+1H.& +(d— 2)€72=
= (n+1)(n+d)+n(d—2)
= n’+2nd+d—n

The degree of A is computed by noting that 7|z : R — A is generically

injective. Hence if H is a line in CP? such that H cuts A transversally, then

deg (A)=8(HNA)=4(rm"HNR)=H, R, = (d—1)(2n + d).
Hence the lemma.
O

Lemma 3.2.6. Let W, be a generic d-web of degree n in CP?. Then the

Fuler characteristic of the associated surface Sy, is given by

X(Sy,) = 6n*d + 6nd* — 14nd + d* + 6n — 8n® — K

where K is the number of cusps of the discriminant curve /.

Proof:

Since the topological degree of 7 is d, according to [7] we have:
X (Sw,) = d|X(CP?) = X(1)] + X(RU Ro) (%)

where R C Sy, is the ramification curve and Ry = (7—1(A) — R). Now, over
a general smooth point of A, the map 7 has (d-1) preimages, one fold point
on R and (d-2) regular points on Ry. Over a node of A, there lie two folds
points on R, Ry meets R once transversally at each fold point, and (d-4)
regular points. Over a cusp of /A, Ry meets R twice at the point of R lying
over the cusp, and is smooth there; it otherwise has (d-3) regular points. In
any case, over either a node or a cusp of A, there are only (d-2) preimages,

instead of the (d-1) preimages over a generic point of A. Therefore

X(RU Ry) = X(vr‘l(A)) = (d—1DX(A) — (6 + k).
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where ¢ is the number of nodes of A. By the adjuction formula we have that

—-X(R) = Ks, R.+R:
= (=3H, +R,).R, + R?
= —3H, R, +2R?
= 3(d-D@2n+d)+2|(n+1)2d+2(n+1)(d—2)(n+d) +n(d— 2)2]
= 6n2d + 6nd*> — 14nd + d* — 3d + 6n — 8n?
Since R and A differ, topologically, only over the nodes, we have that the
Euler number of A is
X(A) = X(R)-9§
= —6n°d —6nd® + l4nd — d* + 3d — 6n + 8n® — §
Hence from (*) we have
X(Sw,) = 3d—dX(L)+ (d—1)X(A)— (0 + k)
= 3d-X(Q)-6—k
= 3d— (—6n*d —6nd®>+ 14nd — d* +3d —6n +8n> —6) —6 — K
= 6n2d+6nd> — 1dnd + d* + 6n — 8n*> — k

3.3 Generic Singularities

Given a d-web in CP?, (Sw,,7|s,, , F(a)), we define the singular set of
Wy, Sing(W,) as the zero set of the canonical 1-form oo = dy — pdzx on the
criminant {F' = F,, = 0}. This set is given:

e the set of zeros of the vector field Z = F,Z + pra% — (Fp + pr)a%

called the contact singular points.
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e the set of points satisfying {F = F,, = F,, = 0}  called the contact

regular points. These points correspond to the cusps of A.

Definition 3.3.1. [8] Let Wy be a generic d-web in CP?. A point 2 =
(z,y,p) € SingW;y is generic singularity of Wy if it’s one of the following
types:

a) z is isolated contact singular and is an ordinary fold point of | Sy, U-€
points where F' = F, = F, + pF,, = 0 but F,, # 0.

b) z is contact reqular and is an ordinary cusp of 7| Sy, 1-€ points where
F=F,=F,=0butF,+pF, #0,F,, #0,F,F,, — F,F,, #0.

Definition 3.3.2. [4] The multiplicity of a singular point is the mazximum

number of zeros it can split up into under deformation of the equation F' = 0.

We observe that the criminant R is a complete intersection, in the chart
(x,y,p) defined by the pair (F, F},).

Definition 3.3.3. [4, Proposition 2.7]

(a) The multiplicity of a contact singular point corresponding to an ordi-
nary fold of the projection is given by
9,

It =di .
mult(F (@), ) ch< F F, F, +pF, >

(b) The multiplicity of a contact reqular point corresponding to a cusp of
the projection is given by
O,
< F,F,, F,, >

mult(Wa, q) = dimc

Remark 3.3.1. When the web is generic then mult(Wy,q) = 1 if F(q) =
F,(q) = Fp(q) =0, since 0 is a regular value of the map (F, F,, F,).
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Lemma 3.3.1. Let W, be generic d-web of degree n in CP? with isolated

contact singularities. Then
Cl(N;-‘) - _Hr - gr
where N} is the dual normal line bundle of the foliation F(c).

Proof: According to [4, page 20|, we have:

a(Np) = Os,,, (@) — (@)).

Hence the lemma follows from Lemma 3.2.1.

OJ

Corollary 3.3.1. The tangent line bundle, Tx, of the foliation F (&) is equiv-
alent to a divisor

D=2H, - & —R,.

Proof: Follows from the fact that(cf. [5, Page 20])

Ks,y, = ai(Nz) + a(TF)
]

Theorem 3.3.1. Let W, be a generic d-web in CP? of degree n. Then the
number of cusps k and nodes § of the projection 7 : Sy, — CP?, are given
by

k=3(d—2)(n*+nd+d)

§=1(d—2)(d —3)(3d + d* + 4nd + 4n?).

2

Proof: Note that

Kk = Z mult(Wy, p)

pESWd

= [FZO]Q[FPIO]Q[FPPZO]
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Let J?(L) denote the sheaf of 2"¢ partial jets along the fibers of the line
bundle £ relative to the projection m : PT*CP? — CP?. We have the

following exact sequences (see Appendix):

2

0— (QHﬂT*sz/sz) QL — JHL) — JHL) — 0

0 — (Qbpecrrjer) @ £ — JHL) — £ — 0

where Q. cpe Jcp> denote the 1-forms of PT*CP? relative to CP2.
The number of cusps is the number of zeros of a section of the vector bundle
J?(L). These zeros are given by the top Chern class of J?(L). Since J*(L)

has rank 3 we have
K=c3 <J2(£)).
By the Whitney formula we get
o(20)) = (@) e (Bpcpryer) © L)
= o(L) x o(bpecprjere @ £) x e (Ubgece /CP2)®2 @ L)
where
¢(E) = co(E) + c1(BE)t + co( ) + cs(E)Y® + - - + e (E)t",

r is the rank of the vector bundle E. Therefore

2

€3 <J2(£)> =ca(l) X a (QI%’T*(CPQ/(CPQ ® £) X ¢ ((QllP’T*CPQ/(CP2> ® 5)
and
1 (QHl)T*(CPz/CPz ® ﬁ) = (Q]%»T*@p2/<cp2) + a(£)

®2
Cl((QleT*ccm/cm) ® 5) =201 (QI%DT*CP2/<CP2) +a(£)
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But in the proof of Lemma 3.2.5., we have that

C1 (Q]%DT*(CPQ/(CP2> - H - 2§
Hence

C1 QI}J’T*CF’?/CPZ & E) =nH+ dé- +H — 25 = (n + 1)H + (d — 2)5
1 (Wecprjops)® © L) = nH + €+ 2(H — 26) = (n+ 2/H + (d - )¢

Observing that H? = 0, = 0, H?¢ = 1, HE? = 1 we have that

kK = c3 <J2(£))
= all)xa (QIlP’T*(CPQ/(CPZ ® ﬁ) X Cl((Q%’T*CPWCP?)@z ® L‘)
- (nH + d§> . ((n +1)H A+ (d— 2)5) . ((n +2YH + (d — 4)5)
= nn+1)(d—4)+n(d-2)(n+2)+n(d—-2)(d—4)+dn+1)(n+2) +
+ dn+1)(d—4)+d(d—2)(n+2)
= (m+2)(2nd —2n—d+d*) + (d—4)(n* —n+2nd + d)
= 3n*d —6nd + 3nd* — 6n° + 3d* — 6d
= 3n (n(d —2)+d(d— 2)) +3d(d — 2)
= 3n(n+d)(d—2)+3d(d—2)
= 3(d—2)(n®+nd+d)

To calculate the number of nodes of the discriminant curve A\, we observe
that
the genus of the ramification curve R, being a desingularization of the dis-

criminant curve A\, is given by

(b—1)(b—2)

g(R) = 5

— (0 + k)
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where b is the degree of A and § and k are the of number of nodes and cusps
respectively of A.

Therefore

20 = (b—1)(b—2) -2k —2g(R)
= b —3b—2k+ X(R)

Hence substituting the values of
b=H,R,=(d—1)2n+d)
k=3(d—2)(n®+nd+d)
X(R) = —6n%*d — 6nd? + 14nd — d*> + 3d — 6n + 8n?.

we have

20 = (4n*d® +4nd® + d* — 8n’d — 8nd* — 2d® + 4n® + 4nd + d?)
+ (—=6nd — 3d*> + 6n + 3d) + (—6n*d — 6nd> — 6d* + 12n* + 12nd + 12d)
+  (—6n*d — 6nd* 4 14nd — d* + 3d — 6n + 8n?)
= 4n’d® + 4nd® + d* — 20n°d — 20nd* — 2d° + 24n* + 24nd — 9d* + 18d
= dnd*(n+d) — 20nd(n + d) + 24n(n + d) + (d* — 2d*> — 9d* + 18d)
= dn(n+d)(d* — 5d +6) +d(d — 2)(d* - 9)
= (d—2)(d— 3)(4n* + 4nd + d* + 3d)

Hence the theorem.
O

Theorem 3.3.2. Let W, be a generic d-web in CP? of degree n such the
associated foliation Fyy, in Sy, has only isolated singularities. Then the total

number of singularities of Fyy, is given by

Z mult(Fyy,, p) = 3nd* + 3n*d — d*> — n* — 4nd + 3n + 3d.

pESWd
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Proof:

From [5, Proposition 1, page 21], we have that
2
> mult(Fw,, p) = X(Sw,) + K, -c1(Nry,) + [Cl(wad)]
PESw,

Now

KSWd.Cl(Nde) = (—3Hr + Rr)(Hr + fr)
= —3H?-36H, + &6 R+ HUR,
= -3d-3n+d)+n*+2nd+d—n+(d—1)(2n+d)
= n?+d*+4nd — 6n — 6d

and

2
|:Cl (wad):| = (HT_’_ST)Q = H72"+2H7‘§r+€3 = 3(7’H—d)
From Lemma 3.2.4 we that

X(Sw,) = 6n’d+6nd*— ldnd +d* +6n — 8n* — &
= 6n*d+ 6nd*> — 14nd + d*> + 6n — 8n® — 3(d — 2)(n* + nd + d)
= 3n%d+ 3nd*> — 2d®> — Tnd + 6n — 2n* + 6d (3)
Hence the theorem follows by adding (1), (2) and (3).
0J
In [5, Chapter3], Brunella defines the Baum-Bott index BB(F,p) of a

foliation F with isolated singularities on a surface and proves the following

theorem:

Theorem 3.3.3. Let F be a foliation on a compact surface X. Then

Y BB(F.p) = [cl(Nf)} y

pESIngF
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In particular we have the following:

Proposition 3.3.1. Let W, be a generic d-web in CP? of degree n.Then
> BB(Fw,,p) =3(n+d)
PESw,

where BB represents the Baum-Bott indez.

Proof: Follows from Theorem 3.3.3. and equation (2) of the proof of Theo-
rem 3.3.2.
Hence the Proposition.

U

Remark 3.3.2. We observe here that when d = 1 and the singularities of
the foliation are generic, the surface Syy, is obtained as the blow-up of the

(n® +n + 1) singularities of the foliation F in CP2. Therefore

(n?4n+1)

[Cl(Nf)i| = [Cl(N]i-)i| + Z Dj
j=1
where D; are the divisors obtained after the blow-ups. Hence

9 9 (n?4+n+1)
[Cl(Nf)] = [Cl(N]:")] + >, D
j=1
= (n4+2)?2—-(*+n+1)
= 3(n+1)
Coinciding with the result Proposition 3.2.1.

On the other hand, the number of singularities of F is 2(n® +n + 1), which
coincides with the result of Theorem 3.3.2 if we put d = 1.
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Appendix

We give a brief explanation of the vector bundles J%(£) and J*(L£). We

recommend the reader to see [11, Chapter 5] for more details.

The Vector Bundle J?(L)
Let U = {U,,a € A} be an open covering for PT*CP?2.
The bundle J?(L£) is given by the collection

Ofa 0*fa
Ipa’ Op2

(Uai (fa 7)ae A

where f, € L(Us), (TasYa,Pa) € U, and vT means the transpose of the
vector v.

Loosely speaking J2(L) represents the " Taylor series in the variable p to the
2" order”. That is, a section F' € H'(PT*CP?, L) near a point z = (0,0, 0)
in local coordinates has a local defining equation near z given by

OF 0*F
F(z)+ —(2)p+ G_Zﬂ(z)p2 +....

Ip
Let log and kap be the transition functions of £ and Qpp.qps scpe (essentially

1-forms of the type ao(Za, Yo, Pa)dPa in Uy ) respectively. Then if U,NUsz # ¢,

fa - laﬁf,@

Ofa __ Olg of
(977 — k‘aﬁ (9p§ f/B ‘I’ kaﬁlaﬁﬁ

fa _ 1.2 lap 2 0Olag s 2 %3

af 6p5 (9])5
Therefore
fa lag 0 0 fs
0fa _ Alagp ofs
a’% = kaog on koglas 0 Bp
8 fa 2 Plag 2 Olag 12 fs
o7 kap o ZkapTps Kaplas o
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Let

lag 0 0
ol.,
Mag = | kap32  Faplap 0
2 82laﬁ 2 Olap 2
kap o ZhapTps Kaplas

It’s easily checked that { Mz} defines a cocyle.Hence J?(L) is a vector bundle
of rank 3.
By the same arguments we get that J(£) is a vector bundle of rank 2.

Consider the map
(L) — JHL)

given in the open set U, by
T T
(er,Oa Va,1, Ua,Z) (Ua,Oa er,l) .

This map is surjective and it’s kernel is formed by all (0,0, v42)" € J?(L).
If U, N U # ¢, we have that

(Oa 07 Ua,Q)T = Maﬁ(oa Oa U,B,2)T
That is
Va2 = kiﬁlag.’vﬂg
Hence ker(p) may be identified with a line bundle isomorphic to

2

(QllP’T*(CPQ /(CP2) ® L.

We therefore have the exact sequence

2

®
0— <Q%DT*CP2/CP2) QL — J? (E) — J* (£> — 0
By the same arguments for the map
o JNL) — L
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given in the open set U, by
(Va0 vaﬁl)T — Vg0
we obtain the exact sequence
0— (Q]%DT*CPQ/Cm) ®L— J (E) — L — 0.

For further reading on jets bundles, we recommend the reader to see [11,
Chapter 5.
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