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1

Introduction

In this monograph we are going to expose the use of some ideas involved in the Line

Integral Convolution (LIC) algorithm for the generation of many Non-Photorealistic

Renditions on arbitrary raster images. In other words, our main objective is to create

images that could be considered as pieces of visual art generated using ideas from the

LIC algorithm. From this point of view, the output of our algorithms does not need

to be considered as right or wrong, an aesthetic judgement will be more appropriate.

That is what we are expecting from the reader.

It is well known that even since its roots Computer Graphics procedures have been

used by artists for both aesthetics and commercial purposes. Our motivation comes

from the original paper on LIC (1) which explores another kind of applications consid-

ered as realistic effects, more specifically blur-warping. In a similar way, we searched for

other uses of these LIC ideas mixing the already known NPR techniques like painterly

rendering and pencil sketches. This monograph is then the result of such experiments.

The material presented demands basic knowledge of ordinary differential equations

and vector calculus. Chapter 2 defines and explains the LIC algorithm to visualize

the structure of planar vector fields using white noise as the input image. Since our

approach uses arbitrary vector fields to guide the effects, two methods for designing

these vector fields are given in chapter 3. Chapter 4 discusses the actual NPR effects

results. There is also an appendix A which exposes the implementation of our proce-

dures using the CImg library for image processing and visualization of the results, and

an appendix B which is a gallery with our results.
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2

Line Integral Convolution

This chapter is about the main algorithm of this text: Line Integral Convolution (LIC).

It was introduced in (1) by B. Cabral and L. Leedom at the SIGGRAPH conference in

1993. LIC was designed primarily to plot 2D vector fields that could not be visualized

with traditional arrows and streamlines, i.e., fields with high density. Due to the low of

performance of the original algorithm on large images, over the years several alternatives

of the same calculations have been published to increase the speed and the details of

the visualization. We will discuss a fast procedure briefly. Since every other algorithm

here will be an extension or a derivation from LIC, it is important to have a good

understanding of how it works.

2.1 DDA Convolution

The LIC algorithm takes as input an image and a vector field defined on the same

domain. The output image is computed as a convolution of the intensity values over

the integral curves of the vector field (see Figure 2.1). In the case we want to visualize

the topology and structure of this field, the input image needs to have pixels uniformly

distributed and with mutually independent intensities (6). A simple white noise as

input image will be enough for what we want here. On the other hand, the input image

can be arbitrarily chosen, and the output image will have an effect depending on the

input vector field. We will turn to this subject later.

As stated in the original paper, LIC is a generalization of what is known as DDA

convolution. The DDA algorithm performs convolution on a line direction rather than

3



2. LINE INTEGRAL CONVOLUTION

Figure 2.1: LIC algorithm overview - Left to right: White noise, input vector field
and output LIC visualization.

on integral curves. For each pixel location (i, j) on the input image I, we want to

compute the pixel intensity in the output image O(i, j). For this, DDA takes the

normalized vector V (i, j) corresponding to that location and moves in its positive and

negative directions some fixed length L. This generates a line of locations

l(s) = (i, j) + sV (i, j), s ∈ {−L,−L+ 1, ..., 0, ..., L− 1, L}

and a line of pixels intensities I(l(s)) of length 2L + 1. Choosing a filter kernel K :

< → < with Supp(K) ⊆ [−L,L], the line function I(l(s)) is filtered and normalized to

generate the intensity output O(i, j):

O(i, j) =
1

2L+ 1

L∑
s=−L

I(l(s))K(l−1(i, j)− s) ≡ 1
2L+ 1

Il(i,j) ~K

The symbol ~ stands for discrete convolution and is responsible for the name of

the algorithm. So for each pixel we perform a discrete convolution of the input image

with some fixed filter kernel. As a special case, when K is chosen to be a box kernel

(K ≡ 1 on [−L,L] and K ≡ 0 everywhere else), the convolution becomes the average

sum of the pixels I(l(s)):

O(i, j) =
1

2L+ 1

L∑
s=−L

I(l(s))

Fig 2.2 depicts the process. As expected, DDA is very sensitive to the fixed length L,

since we are assuming not only that the vector field can be locally approximated by
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2.2 LIC Formulation

a straight line, but also that this line has fixed length L everywhere, generating a

uneven visualization: linear parts are better represented than vortices or paths with

high curvature. Line integral convolution remedies this by performing convolution over

integral curves.

Figure 2.2: DDA convolution - Convolution over a line of pixels. Picture adapted from
(1).

2.2 LIC Formulation

LIC can be performed on 2D and 3D spaces. Because we are only concerned with the

generation of effects on 2D images, our vector field will have a planar domain. An

integral curve of the vector field v : Ω ⊂ <2 → <2, passing over x0 ∈ Ω at time τ0, is

defined as a function cx0 : [−L,L]→ <2 with:

d

dτ
cx0(τ) = v(cx0(τ)), cx0(0) = x0

that is, a curve solution of the initial value problem

d

dτ
c(τ) = v(c(τ)), c(0) = x0

Uniqueness of the solution of this ODE is reached when the field locally satisfies a

Lipschitz condition. When d
dτ cx(τ) 6= 0 for all x ∈ Ω and for all τ ∈ [−τ, τ ], every cx can

be reparametrized by arc length s (2). An easy computation of this reparametrization

leads to an alternate definition of integral curves:

5



2. LINE INTEGRAL CONVOLUTION

d

ds
cx0(s) =

v(cx0(s))
‖v(cx0(s))‖

, cx0(s0) = x0

Basically the generalization from DDA to LIC is done when one changes the line

l(s) involved, for the integral curve cl(0) ≡ c(i,j). The new output pixel O(i, j), with s0

such that c(i,j)(s0) = (i, j), is computed by LIC as:

O(i, j) =
1

2L+ 1

s0+L∑
s=s0−L

I(c(i,j)(s))K(s0 − s) ≡
1

2L+ 1
Ic(i,j) ~K

and simplifying with a box filter:

O(i, j) =
1

2L+ 1

s0+L∑
s=s0−L

I(c(i,j)(s))

Figure 2.3 shows this process. Notice that we are restricting the integral curve to

the interval [−L,L] for some fixed length L like in DDA. In general a good L depends

on the vector field and its density. Figure 2.4 show some examples for different values

of L and the same vector field.

Figure 2.3: LIC - Convolution over a integral curve of pixels. Picture adapted from (1).

To compute the integral curves of the input vector field, the solution of the ODE is

obtained by integration:

cx0(s) = x0 +
∫ s

s0

v(cx0(s′))ds′

6



2.2 LIC Formulation

Figure 2.4: Different Values for L - From top to bottom and left to right: Values for
L: 1,3,5,10,20, and 50.

The next pseudocode performs a discretization of this equation, storing in an array

C the pixel locations of the integral curve. The function vector field(p) returns the

vector at point p. The constant ds is the sample rate for the integral curve, see section

2.4 for an explanation.

Computing the integral curve for a pixel p = (x, y):

1 function compute_integral_curve(p){

2 V=vector_field(p)

3 add p to C

4 for (s=0;s<L;s=s+1){ // positive calculations

5 x=x+ds*V.x

6 y=y+ds*V.y

7 add the new (x,y) to C

8 compute the new V=vector_field(x,y)

9 }

10 (x,y)=p V=vector_field(p) //return to original point and original vector

11 for (s=0;s>-L;s=s-1){ // negative calculations

7



2. LINE INTEGRAL CONVOLUTION

12 x=x-ds*V.x

13 y=y-ds*V.y

14 add the new (x,y) to C

15 compute the new V=vector_field(x,y)

16 }

17 return C

18 }

To compute the convolution with a box kernel a simple average of the intensities is

used:

Computing the convolution along integral curves:

1 function compute_convolution(image,C){

2 sum=0

3 for each location p in C {

4 sum=sum+image(p)

5 }

6 sum=sum/(2*L+1) // normalization

7 return sum

8 }

Next is the pseudocode of the final LIC algorithm.

LIC Pseudocode with a box kernel:

1 function LIC(image){

2 create an empty image O_img

3 for each p on image{

4 array C=compute_integral_curve(p)

5 sum = compute_convolution(image,C)

6 set pixel p on O_img to sum

7 }

8 return O_img

9 }

Note that for a point on a particular integral curve c, its own integral curve is

highly related to c. The low performance of the LIC algorithm can be seen there: for
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2.3 A Fast LIC algorithm

each pixel location we have to compute the integral curve passing through that location

(without using the already computed integral curves) and perform a convolution with

some filter kernel. In the next section we will see how this relations can be explored to

increase speed of the LIC algorithm.

2.3 A Fast LIC algorithm

Given that when computed, an integral curve covers lot of pixels, uniqueness of the

solution of the ODE implies that the convolution involved in LIC can be reused. Choose

a box filter kernel and suppose we have an integral curve of a location (i, j), say c(i,j)

and another location along it c(i,j)(s), then their output values are related by

O(c(i,j)(s)) = O(i, j)−
s0−L+s∑
s′=s0−L

I(c(i,j)(s
′)) +

s0+L+s∑
s′=s0+L

I(c(i,j)(s
′))

Figure 2.5 illustrates this relation. In practice, to reuse an already computed con-

volution for a set of pixels, a matrix of the same size of the image is created such that

each entry stores the number of times that pixel has been visited. The order in which

the pixels are analyzed is important for the efficiency of this process. The goal is to

hit as many uncovered pixels with each new integral curve to reuse the convolutions as

possible, and thus it is not a good choice to make it in a scanline order. Nevertheless,

we can adopt another approach in which the image is subdivided in blocks and process

the pixels in scanline order on each block. For instance, we take the first pixel of each

block and make the calculations, then the second pixel and so on1.

Figure 2.5: FastLIC - Integral curves relation involved in the FastLIC approach. The
shaded region of the convolution could be reused.

1There are other methods to compute the order to process the pixels, see for example (6; 11).
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2. LINE INTEGRAL CONVOLUTION

The following is a pseudocode of the basic FastLIC algorithm (5). This code is used

on each block, as stated in the previous paragraph, to ensure reusability of the integral

curves.

FastLIC Pseudocode:

1 for each pixel p

2 if p hasn’t been visited then

3 compute the integral curve with center p=c(0)

4 compute the LIC of p, and add result to O(p)

5 m=1

6 while m<L

7 update convolutions for c(m) and c(-m)

8 set output pixels: O(c(m)) and O(c(-m))

9 set pixels c(m) and c(-m) as visited

10 m=m+1;

11

2.4 Final Considerations

As you can see from the previous sections, LIC is a simple but powerful tool for visual-

izing vector fields. In this section I want to make explicit some considerations regarding

the implementation of this algorithm. This section is optional for the readers whose

interest is the implementation rather than the applications. The already given material

is enough for what we want to develop with LIC.

The first consideration is about the space of the variable s. In section 2.1 we define

the DDA convolution for discrete values: s ∈ {−L,−L+ 1, ..., 0, ..., L−1, L}. However,

in general s is a real variable on the interval [−L,L]. The line of locations l(s) is in

general generated by sampling this interval, with l(0) = (i, j). It is clear that for some

sampling rates this line is not injective, given that our image is a raster image with

integer locations (i, j). The DDA line is computed as l(k∆s) = (i, j) +k∆sV (i, j) with

integer k ∈ [−L∆s ,
L

∆s ]. If ∆s ≡ 1 we will be back in our original definition. Practical

experience (6) shows that using a ∆s of about a third or half an image pixel width is

enough for good visualizations. The same sampling consideration is applied for integral

curves in the general LIC algorithm.

10



2.4 Final Considerations

Another thing one should consider when implementing LIC is that the domain of

the input I and output image O can be taken as continuous domains rather than a

grid of pixels (i, j). Basically we take a continuous rectangular domain and define a

set of cells with center a pixel location (i, j). Then to compute the output pixel at

location (i, j) one choose a number of samples locations within its correspondent cell,

perform the computations and compute an average intensity value. Because increasing

the number of samples on each cell increases the run time of the algorithm, a small

number is recommended.

Finally, when performing the convolution on pixels near the boundary of the image

domain, sometimes the algorithm will try to retrieve an intensity value of a invalid pixel

location, because generally the integral curve will leave the image domain. Figure 2.6

illustrates this. One solution is to pad the image with zeros on the boundary. This

however will cause sometimes black regions at the image boundaries. In the case we

have a vector field defined only on the image grid, we simply extend it arbitrarily and

smoothly on the domain (e.g., by repeating values).

Figure 2.6: Image Domain Overflowing - A padding with zeros is used to avoid
overflowing.
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3

Vector Field Design

In the previous chapter we saw how planar vector fields with high density can be visu-

alized using the LIC algorithm. We now turn on the subject to design the input vector

field. This is motivated by many graphics applications including texture synthesis, fluid

simulation and, as we will see in the next chapter, NPR effects on images.

3.1 Basic Design

In section 2.2 we saw that a vector field v : Ω ⊂ <2 → <2 defines the differential

equation
d

dτ
c(τ) = v(c(τ))

such that for each point x0 ∈ Ω, the solution, with intial condition cx0(s0) = x0, is the

integral curve cx0(τ). A singularity of the vector field v is a point x ∈ Ω such that

v(x) = 0.

A very basic vector field design consists of local linearizations and a classification

of the singularities. Explicitly, if v is given by the scalar functions F and G, i.e v(x) =

(F (x), G(x)), then the local linearization of v at a point x0 is

V ∗(x) = v(x0) + Jv(x0)(x− x0)

where Jv(x0) =

(
∂F
∂x (x0) ∂F

∂y (x0)
∂G
∂x (x0) ∂G

∂y (x0)

)
is the Jacobian matrix evaluated at the point

x0. When x0 is a singularity we have

V ∗(x) = Jv(x0)(x− x0)

13



3. VECTOR FIELD DESIGN

We will assume that for singularities x0 its corresponding Jacobian matrix has full rank

and thus that it has two non zero eigenvalues. This implies also that the only element

on the null space of the Jacobian is zero, and so the only singularity of the vector field

V ∗ is x0. We know from linear algebra that in this case the eigenvalues of the Jacobian

are both real or both complex. When they are real, we have three cases:

1. Both are positive. In this case the singularity is called a source.

2. Both are negative. In this case the singularity is called a sink.

3. One is positive and the other is negative. In this case the singularity is called a

saddle.

On the other hand, when the eigenvalues are complex, we have a center when the

real part of both are zero. Figure 3.1 shows this classification for the singularities of

our vector field.

Figure 3.1: Singularities Classification - Top and left to right: A sink, a source and
a saddle. Bottom and left to right: A center, and a mix of a saddle a sink and a center.

14



3.1 Basic Design

The basic design consists of providing locations and types of singularities on the

image domain. For instance, to create the center at (0, 0) shown in figure 3.1, we defined

the vector field as

V (x, y) =
(

0 −1
1 0

)(
x
y

)
In general the type of singularity can be stored as the Jacobian matrix JV , that we

can define as:

• JV =
(
−k 0

0 −k

)
for a sink.

• JV =
(
−k 0

0 k

)
for a saddle.

• JV =
(
k 0
0 k

)
for a source.

• JV =
(

0 −k
k 0

)
for a counter-clockwise center.

• JV =
(

0 k
−k 0

)
for a clockwise center.

where k > 0 is a constant representing the strength of the singularity. In practice, if

we want a vector field with a singularity of any type at position p0 = (x0, y0) , then

one defines the vector field as:

V (p) = e−d‖p−p0‖
2
JV

(
x− x0

y − y0

)
choosing the desired JV and where d is a decay constant that controls the influence

of the vector field on points near and far from the singularity. This is essential when

one wants to design a vector field which is a composition of many basic fields with

singularities. To construct such vector field, we define a simple vector field separately

for each singularity, and then we define the final vector field as their sum. For example

a vector field with a sink at q1 = (10, 10) and a center at q2 = (−5, 4) can be modeled

as:

V (p) = e−d1‖p−q1‖
2

(
−k1 0

0 −k1

)(
x− 10
y − 10

)
+ e−d2‖p−q2‖

2

(
0 −k2

k2 0

)(
x+ 5
y − 4

)
or more compactly:

15



3. VECTOR FIELD DESIGN

V (p) = Vq1(p) + Vq2(p)

Note that each Vqi has just one singularity, namely qi. This is not the case for our

final vector field, in which new singularities are present when Vq1(p) = −Vq2(p). In

particular, choosing each di properly, each qi is a singularity of the final vector field,

but it could happen that V (p) = 0 for points p where Vq1(p) 6= 0 and Vq2(p) 6= 0. There

is a method to control this undesired new singularities using Conley indices (4) but it

falls out of the scope of this monograph.

3.2 Another Approach - Distance Vector Fields

In the previous section we saw how to design planar vector fields classifying its sin-

gularities: the user chooses a location and type and a linear vector field its created

by choosing some other parameters like strength and influence. In this section we are

interested in constructing vector fields using gestures. The idea is to create a vector

field that resembles the direction of a given planar curve. We use a distance-based

vector field which is explained next.

Given a parametrized curve C : [a, b] ⊂ < → <2 the distance from a point p ∈ <2

to the curve is given by

d(p, C) ≡ min
t∈[a,b]

{d(p, C(t))}

The parameter t for which the equality holds in the equation above may be not

unique. Indeed, when C is a circumference and p is taken as the center of the circum-

ference, this equation will hold for every value of t. Nevertheless we obtained pleasant

results choosing an aleatory value from all the candidates. We will note this value by

τp. Also we took the Euclidean distance function d(x, y) =
√
x2 + y2 for simplicity. To

a curve C and a distance function d, we associated two vector fields V : <2 → <2 and

W : <2 → <2, each perpendicular to the other by definition:

V (p) ≡ C(τp)− p, 〈W (p), V (p)〉 ≡ 0

Assuming that C is differentiable with C ′(t) 6= 0 for all t ∈ [a, b], from the definition

it is clear that for a point p ∈ <2 with p 6= C(t) for all t ∈ [a, b], the vector W (p) has

16



3.2 Another Approach - Distance Vector Fields

the direction (up to sign) of the tangent vector of the curve at τp. In fact the function

f : < → < defined by

f(t) = 〈C(t)− p, C(t)− p〉

which measures the square of the distance from p to C(t) for each t ∈ [a, b], has a

minimmun at τp. On the other hand, we have

f ′(t) = 2〈C ′(t), C(t)− p〉

and thus f ′(τp) = 0 implies that

〈C ′(τp), V (p)〉 = 0

leading to W (p) = λC ′(τp) for λ ∈ < as claimed. From this we see that the vector field

W could be a good option to accomplish the design of a vector field that resembles a

given curve. However, given that in practice the curve C could be not differentiable

(creating it interactively for example), numerous artifacts in the final vector field ap-

pear. Figure 3.2 show some examples of V and W for different polylines created with

a mouse. Note also how all the points in the curve C became singularities of V and W ,

which is obvious from their definition.
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3. VECTOR FIELD DESIGN

Figure 3.2: Distance Vector Fields - Left to right: White noise with the curve C in
red and distance vector fields V and W .
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4

Effects Using LIC Ideas

Computational art can be thought as studies concerned in creating and producing

pieces of art by means of a computer1. In this monograph we are not going to discuss

the creative process that leads to a piece of art from the initial white canvas. These

subjects, I think, fall into the context of artificial intelligence and cognition and are

out of the scope of this text. The creativity involved here will be then of another kind;

we will be given an input digital image and we will create and use modifications of the

LIC algorithm to process it and generate a new digital image. The result image needs

not be compared to any other, since we will be creating rather than imitating styles.

Since the results are in some sense non-real, they are called NPR or non-photorealistic

rendering effects on images. Nevertheless we will be also including the original real

effects blur-warping for completeness.

4.1 Blur

A warping or blur effect can be achieved when using LIC on an arbitrary image rather

than on white noise. In this case the vector field will drive the warping effect in its

directions. To guarantee visual coherence on the result image, each RGB channel is

processed separately. A code in C++ using CImg can be found in the appendix section

A.2. Figure 4.1 shows some results.

As you may notice, the deformation on the final image depends strongly on the

input image and the vector field used. Also notice that in chapter 2 we were able to
1We will be referring just to graphic arts like painting, drawing and photography. This point of

view is independent from the definition of art, which we are not going to discuss here.

19
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Figure 4.1: Blur Effect - Left-Original Image, Middle-LIC on white noise of the vector
field used. Right-LIC of the original image.
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4.2 LIC Silhouette

visualize the structure of the vector field because of the uniformly distribution of the

white noise input image. In general, we compute as a preprocessing step a dithered

version of the input image to ensure this charactheristic and then perform the LIC to

generate a warping effect. Figure 4.2 shows an example.

Another application of blur-warping is to generate an animation that advects the

colors on the image in the direction of the input vector field. This is achieved by

iterating LIC several times with the same vector field. This technique could be used to

flow visualization not only for steady vector fields but unsteady aswell. However some

considerations need to be made to control the color advection at the image boundaries

(section 2.4). This black regions can be avoided with a technique called Image Based

Flow Visualization (10).

Figure 4.2: Warping a dithered image - From left to right images: dithered, and
warping the dithered image

4.2 LIC Silhouette

We can generate a silhouette image automatically with LIC. For this, a threshold is

defined to control the value of the convolution of a given pixel. The first step is to

convert the image to gray to avoid color incoherences. Then for each pixel we proceed
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4. EFFECTS USING LIC IDEAS

as in LIC, but the output pixel is set depending on the value of the convolution and

the thresholds predefined. This process can be used also to generate a dithered version

of the visualization of a vector field. Below is a pseudocode of this process. Figure 4.3

show examples of this method.

Figure 4.3: Automated Silhouette - Left-Original image, Middle-Dithered LIC, Right-
Automated Silhouette using LIC

function Silhouette(image){

convert image to gray(image)

for each pixel p in image

C=compute_integral_curve(p)

I=compute_convolution(image,C)

if (val 1<I< val 2) { set OutputImage(p)=color 1}

if (I<val 1){ set OutputImage(p)=color 2}

else{ set OutputImage(p)=color 3}

}
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This approach can be thought as a quantification of the image guided by the values

of the line integral convolution. We subdivide the interval [0, 1] in three parts, and

we choose an arbitrary color to each part to achieve different effects including the

silhouette. We obtained good results setting color i as the color of the first pixel p in

the original image that belongs to the i part of the subdivision.The thresholds val1 and

val2 can be set arbitrarily. However we found interesting results computing the mean

intensity value M of the LIC blurred image and then set val1 = M −M/3, val2 =

M +M/3. Sometimes when the image is too dark we invert colors as a preprocessing

step to ensure a good silhouette visualization. Figure 4.4 show some results with this

settings.

Figure 4.4: LIC Silhouette - Setting color i as the color of the first pixel in the original
image belonging to the i part of the [0, 1] subdivision.

It is important to note also the role of the vector field in this approach. Observe

that high (low) values of I correspond to convolutions over integral curves on regions

with high (low) intensities. Thus for vector fields with integral curves passing from

high intensity to low intensity regions we will have an I close to the mean value. That

is the reason for edges to appear in the final result for vector fields in directions of

discontinuities in the original image.
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4.3 Pencil Rendering

We adapted the algorithm described on (8; 9) to create a pencil effect. Below are some

results.

Figure 4.5: LIC Pencil Effect Examples - Some results of the interactive pencil
rendering with LIC

Our procedure is set to interactively paint pencil strokes in the direction of an input

vector field. Strokes are then integral curves with a fixed length L predefined. As a

preprocessing step we compute the gradient image of a grayscale version of the original

image as E(x, y) = |∂I(x,y)
∂x | + |

∂I(x,y)
∂y | to perform edge detection. The output energy

image is used as the height image and paper is modeled in the same way described in

(8). After this when the user clicks on the image, we process a predefined quantity

of pixels in the perpendicular direction, rather than this pixel alone. This is done to
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4.3 Pencil Rendering

create strokes with width greater than one pixel, ideal for this kind of effect. Figure

4.7 shows the process step by step. The pseudocode follows:

function Interactive_Pencil_rendering(image){

convert image to gray(image)

compute the energy image E(gray image)

create paper with E

array C=compute_integral_curve(mouseX, mouseY);

array PP=compute_perpendicular_path(mouseX,mouseY);

for each location p in C and PP {

paper_draw(p, presure);

}

}

As in (8), the parameter presure is a value in the interval [0, 1] to model the presure

of the pencil in the paper. The paper draw function is guided by the height input

image (in this case our energy image) and a sampling function that perturbs locally

and uniformly the presure to imitate a hand-made effect.

The method above can be trivially generalized for color images to create an spray-

like effect. Here we can choose to process all the colors by pixel or process each RGB

channel separately. The latter will create an image with aleatory colors uniformly

distributed from the original image. See Figure 4.6.

Figure 4.6: LIC Spray-Like Effect - Images from left to right: Processing all colors at
once, and processing each RGB channel separately.
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4. EFFECTS USING LIC IDEAS

Figure 4.7: LIC Pencil Effect Process - Images: Original, LIC blur, grayscale, energy,
interactive pencil rendering and final result.
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4.4 Painterly Rendering

4.4 Painterly Rendering

To create an image with a hand-painted appearance from an input photograph we used

the algorithm described in (7). The method uses curved brush strokes of multiples

sizes guided automatically by the contours of the gradient image. We adapted the

mentioned algorithm to create strokes in the directions of an input vector field. These

strokes are computed as integral curves like in LIC. The stroke length is controlled

by the style stroke maximum length like in the original algorithm. A pseudocode the

stroke computations procedure follow. Figure 4.8 shows an example.

LIC Strokes Procedure:

function makeLICStroke(pixel p, R,reference_img){

array C=compute_integral_curve(p) with L=style max length

strokeColor= reference_img.color(p)

K= new stroke with radius R,

with locations C,

and color strokeColor

}

Figure 4.8: Painterly Rendering - Left-Vector Field Image, Right- Painterly rendering.

4.5 Conclusions and Future Work

As we can see from this whole monograph, the Line Integral Convolution algorithm

ideas can be used not only to visualize high density planar vector fields, but also to
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4. EFFECTS USING LIC IDEAS

render non-realistic effects on arbitrary images by mixing already know NPR methods

like painterly rendering and pencil drawing. The vector field design stage is fundamental

in this approach, allowing the user to create a vector field to use as a guide for a

determined effect.

There are many ways to continue the work done here by either improving our results

or by creating totally new algoritms and experiments. For instance, given that our in-

teractive design is still slow, a GPU implementation for a real-time design will enhance

the experimentation process when creating new effects. Given that our painterly ren-

dering algorithm is not interactive, it could be a good experiment to create a system

to interactively paint strokes similarly to the pencil and spray effects of section 4.3.

Here some considerations with the layers of the original method need to be considered:

When the user clicks, is that pixel going to be approximated by which level of detail?.

Other future work could be a generalization to 3D spaces. For this, a tensor field de-

sign system will be more appropriate as suggested by the literature (3) increasing the

flexibility of the whole system and extending the range of visual effects. An interesting

next step of our system could be also the use of a Tangible User Interface for the design

and visualization of the results.

Out of the topic of this monograph, but still my main interest on flow and vector

visualization could be considered as future work. Scientific visualization is a growing

area that creates visual representations of complex scientific concepts to improve or

discover new understandings from a set of data information. However at this time it

is not clear a direct application into the field of computer music. The challenge is to

create a new visualization of a piece of music that could gives us an alternative way

to understand the basic sound components, or then an artistic visualization that could

be used in computer music composition: Given our new visualization of a particular

song, can we create another image that has the same characteristics in order to create

music from it?. The suggestion is to make a connection between two art components:

Graphics and music. Thus, can we use the LIC ideas to create this new visualization?,

what information could we retrieve from a song which advects an 1D white noise? and

can we visualize this advection?. These are examples of questions that could guide a

future work on scientific visualization and computer music.

28



Appendix A

Implementation in C++

This appendix is included to expose the main algorithms presented all along the chap-

ters making use of the CImg Library, which is an open source C++ image processing

toolkit created by David Tschumperlé at INRIA 1. For a better understanding, we will

introduce briefly some of its characteristics before going into our procedures.

A.1 Getting Started with CImg

The CImg Library consist of a single header file CImg.h that contains all the C++

classes and methods. This implies among other things, that a simple line of code is

needed to use it, namely

...

#include "lib_path/CImg.h"

...

using namespace cimg_library;

...

given that we had already downloaded the standard package from the website and

had placed it into lib path. All the classes and functions are encapsulated in the

cimg library namespace, so it is a good idea to use the second line of code too 2. The

main classes of the CImg Library are: CImg<T> for images, CImgList<T> for a list of

1http://cimg.sourceforge.net/
2This is different from the cimg namespace which implements functions with the same name as

standard C/C++ functions! Never use by default the cimg namespace.
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images, and CImgDisplay which is like a canvas to display any image. The template

parameter T specify the type of the pixels, for example a raster image with entries of

type double is defined as CImg<double>. Possible values of T are float, double and

unsigned char. As you may expect displaying an image with CImg is as simple as

with MATLAB. Here is the code to load and display an image called myimage.jpg

which is in the same directory as our code:

#include "lib_path/CImg.h"

using namespace cimg_library;

int main(){

CImg<unsigned char>("myimage.jpg").display();

return 0; // needed by the compiler

}

To load an image and put it into our code as a variable I, we use the code:

CImg<unsigned char> I("myimage.jpg"). To display an already loaded image I,

we use its display method: I.display(). The code above is a compact version of

these two steps: loading and displaying. We also could load an image and display it on

a CImgDisplay. This is useful when doing applications with interactivity, given that

the CImgDisplay class allows control to define the user callbacks like mouse clicks and

keyboard inputs. The correspondent code using a CImgDisplay is next:

#include "lib_path/CImg.h"

using namespace cimg_library;

CImgDisplay main_disp;

int main(){

main_disp.assign( CImg<unsigned char>("myimage.jpg"),"My very first display!!");

while (!main_disp.is_closed){

main_disp.wait();

}

return 0;

}
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The assign method takes as first argument the image we want to display. We could

re-assign any other loaded image at any moment. The second argument will be the

title of the window. The while loop is necessary to tell the program to wait for user

events. Here is where we should put the code to control user events. If this is ommited

the program will run normally but will close after displaying the image which ocurs in

a small fraction of time, so you will barely see the image!. Each CImgDisplay has its

own parameters to control the user events which can be retrieved like any other field of

the class with a point, some of them are: .mouse x or .mouse y to retrieve the integer

coordinates (x, y) of a user click on the display, .key to retrieve keyboard inputs and

.button which is of boolean type to indicate whether or not there was a click on the

display. To control the different buttons of the mouse separately we use .button&1 for

the left button and .button&2 for the right button. For more on this check the CImg

documentation.

Once we load an image on a variable, say I, we can retrieve the values of its pixel

(x,y,z) like we were handling a matrix, that is: I(x,y,z,v). The parameter v refers

to the type of image: v=1 for gray scale images, and v=3 for color images. CImg can

handle 3D images, in our case for 2D images we will have always z=1 when declaring

a 2D image and z=0 when retrieving pixel values. Remember that indices on C++

begins at 0, thus to retrieve the RGB components of a 2D image at pixel (10,10) we

will have: I(10,10,0,0) for red, I(10,10,0,1) for green and I(10,10,0,2) for blue.

Finally to retrieve any of the dimensions of I we can call .dimx() for the x dimension,

.dimv() for the v dimension and so on.

As an application the next function convert a color image to a grayscale image:

CImg<unsigned char> to_gray(CImg<unsigned char> img){

if (img.dimv()==1) return img; //already gray

CImg<unsigned char> gray(img.dimx(),img.dimy(),1,1);

for (int x=1;x<img.dimx()-1;x++){

for (int y=1; y<img.dimy()-1;y++){

gray(x,y,0,0)=.2989*img(x,y,0,0)+

.5870*img(x,y,0,1)+

.1140*img(x,y,0,2);

}

}
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return(gray);

}

Figure A.1: Color to gray conversion - Converting from color to grayscale using the
CImg library.

A.2 LIC in C++ using CImg

Section 2.2 exposed a general pseudocode of LIC with a box kernel. Basically, the

algorithm was composed of two functions: computing the integral curve, and computing

the convolution. The next code is a mix of these two functions to perform LIC with a

box kernel for an arbitrary input image using CImg. Our data type vector was defined

to store the vector values (vx, vy) of the (x, y) position. The vector field function

will be explained in the next section.

LIC-Box kernel with CImg:

CImg<double> LIC(CImg<double> img){

int n_chn=img.dimv(), n=img.dimx(), m=img.dimy();

CImg<double> OutputImg(n,m,1,n_chn);

double u, v, Vi, Vj, x, y, sum, ds; int u1,v1,L; ds=1; L=10;

for (int h=0;h<n_chn; h++){

for (int i=0;i<n;i++){

for (int j=0;j<m;j++){

vector V=vector_field(x,y);

u=i; v=j; Vi=V.x; Vj=V.y;

32



A.3 A Basic Vector Field Design System using CImg

sum=0;

for (int s=0;s<=L;s++){ //positive calculations

u=u+ds*V.x; v=v+ds*V.y;

u1=(int)floor(u); v1=(int)floor(v);

if (u1<0 || u1>n || v1<0 || v1>m) continue;

else sum=sum+img(u1,v1,h);

V=vector_field(u,v);

}

u=i; v=j; V.x=Vi; V.y=Vj;

for (int s=0;s<=-L;s=s-1){ //negative calculations

u=u-ds*V.x; v=v-ds*V.y;

u1=(int)floor(u); v1=(int)floor(v);

if (u1<0 || u1>n || v1<0 || v1>m) continue;

else sum=sum+img(u1,v1,h);

V=vector_field(u,v);

}

OutputImg(i,j,0,h)=sum/(2*L+1);

}

}

}

return(OutputImg);

}

A.3 A Basic Vector Field Design System using CImg

We can use CImg to create a system that can handle the basic vector field design ideas

of section 3.1. For this we use the classes vector and singular point to store vector

components and singular points with its respectives fields: parameters, type (Jacobian)

and position. The code looks like this:

typedef struct {double x, y;} vector;

class singular_point {

public:

vector pos; //position

vector W1,W2; //rows of the jacobian matrix
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double d, k; //parameters

public:

singular_point(vector poss,vector W11, vector W22, double k1, double d1){

pos=poss; W1=W11; W2=W22;k=k1;d=d1;

};

singular_point(){}; // constructor by default

}; // end of class singular_point

We store all the singularities in an simple array LIST OF SING with a global variable

length to control its length. The system begins loading an image stored globally as

image and waiting for user events. A click on the display will add a singularity at this

position. The type of the singularity to add is controled by the global variables V1, V2

which correspond to the rows of the jacobian of the actual singularity. This varibles are

initialized for a type sink by default, and can be modified with the keyboard: S for a

sink, O for a source, D for a saddle, C for a clockwise center and W for a couter-clockwise

center. The main function is next:

int main() {

load_img();

while (!main_disp.is_closed) {

main_disp.wait();

if(main_disp.button && main_disp.mouse_x>=0 && main_disp.mouse_y>=0){

int u0 = main_disp.mouse_x, v0 = main_disp.mouse_y;

vector pos; pos.x=u0; pos.y=v0;

singular_point s(pos,V1,V2,k,d);

length++; LIST_OF_SING[length-1]=s;

cout<<"Calculating LIC....\n";

image=LIC(image);

cout<<"done.\n";

image.display(main_disp);

}

if (main_disp.key){

switch (main_disp.key){

case cimg::keyQ: exit(0); break;

case cimg::keyS: V1.x=-k; V1.y=0.0; V2.x=0.0; V2.y=-k; break;

case cimg::keyO: V1.x=k; V1.y=0.0; V2.x=0.0; V2.y=k; break;
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case cimg::keyD: V1.x=k; V1.y=0.0; V2.x=0.0; V2.y=-k; break;

case cimg::keyC: V1.x=0.0; V1.y=-k; V2.x=k; V2.y=0.0; break;

case cimg::keyW: V1.x=0.0; V1.y=k; V2.x=-k; V2.y=0.0; break;

}

}

} // end while

return 0;

}

The additional function load img used to load the image and perform the variables

initialization:

void load_img(void){

char name[50];

cout<<"Please enter the image name (ex: dog.jpg):\n";

cin>>name;

CImg<double> im(name);

image=im;

main_disp.assign(image,"Basic Vector field Design");

d=0.0001; k=0.5; // by default

V1.x=-k; V1.y=0.0; V2.x=0.0; V2.y=-k; // sink by default

length=0; //no singular points so far

}

Finally, the actual normalized vector field computation for a point (x, y) is done as

sums of vector field influences of each singularity, see section 3.1. Here is the code:

vector vector_field(double x, double y) {

vector OUT; double d,k,x0,y0; vector U1,U2; OUT.x=OUT.y=0.0;

for (int i=0;i<length;i++){

double t;

d=LIST_OF_SING[i].d; k=LIST_OF_SING[i].k;

U1=LIST_OF_SING[i].W1; U2=LIST_OF_SING[i].W2;

x0=LIST_OF_SING[i].pos.x; y0=LIST_OF_SING[i].pos.y;

t=exp(-d*((x-x0)*(x-x0)+(y-y0)*(y-y0)));

OUT.x=OUT.x+t*(U1.x*k*(x-x0)+U1.y*k*(y-y0));

OUT.y=OUT.y+t*(U2.x*k*(x-x0)+U2.y*k*(y-y0));
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}

double NV=sqrt(OUT.x*OUT.x+OUT.y*OUT.y);

if (NV!=0){OUT.x=OUT.x/NV; OUT.y=OUT.y/NV;}

else{OUT.x=OUT.y=0;}

return OUT;

}

The figure below shows an example of this system.

Figure A.2: Basic Vector Field Design example using CImg - A simple combination
of a sink a saddle and a center

A.4 LIC effects in C++

This section concludes the implementation in C++ of the LIC effects presented in

chapter 4. We already saw the blur-warp effect on section A.2, and the silhouette

algorithm is straight forward from that code and the observations of section 4.2. We

will proceed then with the pencil effect and painterly rendering.

A.4.1 LIC Pencil Effect

The main class involved in the pencil effect is of course the paper class which stores the

height image (in our case the energy image) and the initial white canvas. The drawing
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function is called interactively with a certain presure perturbed by a sampling function.

The final value for a pixel p on the canvas depends linearly on this perturbed presure

and the intensity of the pixel p in the height image. For all our results prs=0.005:

class Paper{

public:

CImg<double> height_img;

CImg<double> canvas;

public:

Paper(int resX, int resY, CImg<double> H); //constructor

void draw(int coordX , int coordY , double prs);

double sampling(double pres , int res =10);

};

Paper::Paper(int resX, int resY, CImg<double> H){

this -> height_img =H;

CImg<unsigned char> grain(resX,resY,1,1,1);

this -> canvas=grain;

}

void Paper::draw( int coordX , int coordY , double prs ){

coordX=(coordX>0)?coordX:0;

coordY=(coordY>0)?coordY:0;

double d, h, g;

h=this->height_img(X,Y,0); h*=0.65;

g = this->sampling(prs);

d = h+g;

canvas(coordX,coordY,0)-=d;

canvas(coordX,coordY,0)=(canvas(coordX,coordY,0)<0)?

0.0:canvas(coordX,coordY,0);

}

double Paper::sampling(double pres, int res){

int aux = 0 ;

for (int i = 0 ; i < res ; ++i ){

double p = (double)std::rand()/(double)(RAND_MAX);

if ( p < pres ) ++aux;

37



A. IMPLEMENTATION IN C++

}

return (double)aux/(double)res ;

}

Next is the pencil effect main procedure using the above class of paper and the

CImg library. For this effect we set the length of the integral curves to L = 100 and

process lgd = 10 pixels in the perpendicular direction (see section 4.3).

void pencil_effect(CImg<double> original){

CImg<double> Height=to_gray(original);

Height=invert_colors(Height);

Height=energy(Height);

Height=normalize_0_1(Height);

int n=original.dimx(), m=original.dimy();

Paper paper( n, m, Height,1);

CImgDisplay main_disp(Height,"Pencil Effect");

int const lgd=10;

while (!main_disp.is_closed){

main_disp.wait();

if (main_disp.mouse_x>=0 && main_disp.mouse_y>=0){

int startx = main_disp.mouse_x, starty = main_disp.mouse_y;

vector V=vector_field(startx,starty,LIST_OF_SING);

vector Vppd; Vppd.x=-V.y; Vppd.y=V.x;

for (int i=0;i<lgd;i++){

double u=startx+i*Vppd.x, v=starty+i*Vppd.y;

double u0=u,v0=v;

vector Vstart=V=vector_field(u,v,LIST_OF_SING);

for (int s=0;s<100;s++){ // positive integral curve

u=u+V.x; v=v+V.y;

int u1=(int)floor(u), v1=(int)floor(v);

u1 = ( u1 < n ) ? u1 : n - 1;

v1 = ( v1 < m ) ? v1 : m - 1;

paper.draw( u1 , v1 , 0.005);

V=vector_field(u,v,LIST_OF_SING);

}

u= u0, v=v0; V=Vstart;
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for (int s=0;s<100;s++){ // negative integral curve

u=u-V.x; v=v-V.y;

int u1=(int)floor(u), v1=(int)floor(v);

u1 = ( u1 < n ) ? u1 : n - 1;

v1 = ( v1 < m ) ? v1 : m - 1;

paper.draw( u1 , v1 , 0.005);

V=vector_field(u,v,LIST_OF_SING);

}

}

paper.height.display(main_disp);

}

} // end while

}

A.4.2 Painterly Rendering

We implemented the algorithm of section 2.1 in (7) replacing the makeStroke procedure

with our new make LIC Stroke to paint strokes in the direction of the input vector field,

see section 4.4. Next is the code:

stroke make_LIC_Stroke(int x0,int y0,double R){

int n=image.dimx(), m=image.dimy();

int r=floor(ref_img(x0,y0,0,0));

int g=floor(ref_img(x0,y0,0,1));

int b=floor(ref_img(x0,y0,0,2));

int* strokeColor= new int[3];

strokeColor[0]=r; strokeColor[1]=g; strokeColor[2]=b;

stroke K= stroke(R,strokeColor);

point p,q; vector V; double ds=1.0;

p.x=q.x=x0; p.y=q.y=y0;

K.pts[K.lgth]=p; K.lgth++;

vector float_pt, float_qt; float_pt.x=p.x; float_pt.y=p.y;

float_qt.x=p.x; float_qt.y=p.y;

V=vector_field(x0,y0);

for (int so=0; so<R+sty.maxlgth*0.3;so++){

float_pt.x+=ds*V.x; float_pt.y+=ds*V.y;

p.x=(int)float_pt.x; p.y=(int)float_pt.y;
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A. IMPLEMENTATION IN C++

float_qt.x-=ds*V.x; float_qt.y-=ds*V.y;

q.x=(int)float_qt.x; q.y=(int)float_qt.y;

if (!(p.x<0 || p.x>n || p.y<0 || p.y>m)){

K.pts[K.lgth]=p; K.lgth++;

V=vector_field(float_pt.x,float_pt.y);

}

if (!(q.x<0 || q.x>n || q.y<0 || q.y>m)){

K.pts[K.lgth]=q; K.lgth++;

V=vector_field(float_qt.x,float_qt.y);

}

} //end for

return K;

}
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Appendix B

Gallery

Here are some of our results. All the images in full color and the source code can be

found in the website http://w3.impa.br/∼rdcastan/Visualization.

Figure B.1: Pigeon Point Lighthouse, California - Images from top to bottom and
left to right: Original, warp, LIC on a spray image with each RGB processed separately
and painterly
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B. GALLERY

Figure B.2: Plymouth Hoe, England - From top and left to right: Original, vector
field visualization, spray and LIC of the spray image.
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Figure B.3: Landscape - Painterly Rendering.
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B. GALLERY

Figure B.4: Girl Playing Guitar - LIC Silhouette effect.
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Figure B.5: Shoes in the Grass - LIC pencil effect.
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B. GALLERY

Figure B.6: Cows - LIC after spray effect.
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Figure B.7: Garden IMS, Rio de Janeiro - Painterly Rendering. Garden of the
Instituto Moreira Salles
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B. GALLERY

Figure B.8: Live Performance - Top to Bottom-Original (Anita Robinson from Viva
Voce), painterly and LIC pencil. 48



Figure B.9: Live Performance Continued... - Top to Bottom-LIC silhouette, spray
on each RGB and simple spray.
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B. GALLERY

Figure B.10: Live Performance Continued... - Top to Bottom-Dithered and LIC on
dithered
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