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Abstract

Corporations are often faced with the possibility of investing in specific
projects that might impact on their cash flow. The Real Option Analysis
approach became, in the last few years, an important instrument for man-
agers to take investment decisions.

The Real Option approach consists in the analysis of contracts, using the
same tools developed for financial derivative markets. In the case of stocks,
the Black and Scholes model assumes that the underlying asset of the contract
follows a Geometric Brownian Motion. Nevertheless, if we are interested in
modeling the cash flow that arises from a project that might be negative,
then a GBM cannot possibly be a good model. In this case we return to the
Bachelier model (which pre-dated Black and Scholes by almost 100 years),
and show that, together with some extensions, it yields consistent results.
The approach was implemented computationally and numerical results are
presented.
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Introduction

Large corporations often face the possibility to invest in projects to impact
their cash flow. Many of these opportunities can determine if the company
will be a major player in the market or will sunk down. For this reason, these
projects must be submitted to a careful analysis by the managers of the com-
pany. As stated by [Mun02], the first approach to deal with this challenge is
to recur to the Net Present Value. Nevertheless, this methodology can under-
estimate the value of the project once it does not take in account the value of
managerial flexibilities, like postponement, abandonment or creation of new
opportunities. To give a more realistic framework, Real Options Analysis
has become, in the last years, an important instrument that quantifies the
value of these optionalities, helping the managers to decide if a project must
be implemented.

As stated by [BL10], an acceptable model should have requirements like
capturing the of reality of real worlds situations, absence of arbitrage oppor-
tunities, use of market data, proper incorporation of risk, being empirically
testable, being mathematically transparent and being computationally effi-
cient.

In the existing literature, there are many studies in which the underlying
of the project cannot assume a negative value. Models consider that the
underlying asset follows a Geometric Brownian Motion, an Exponential Mean
Reverting or a Jump Process as described in [DP96]. However, sometimes it
is more realistic to allow the asset to assume negative values. For example,
suppose that our asset is the cash flow of a project. It is natural that this
underlying becomes negative in some states due to debts, judicial issues, poor
sales performance and others debts. To better reflect these factors, it would
be reasonable to adopt a dynamics for the asset that can assume negative
values in some states of nature.

In Chapter 2 of this work, the usual approach adopted by managers in pro-
cess of valuation is described. Concepts like Net Present Value, CAPM and
Systematic Risk are explained in the same context of [Mun02] and [RWJ01].
The strength and the weakness of these methods are pointed out and exam-
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ples are presented to clarify the ideas.
In Chapter 3 we explain another method of valuation called the Real

Option Analysis. This methodology uses the tools developed to derivatives
in financial markets presented in [KK01]. We present the most common as-
sumptions and show how to proceed to evaluate the prices of some contracts,
making hypothesis over the dynamics of the underlying asset.

In Chapter 4, we analyze several optionalities that can be priced using
Real Options Analysis. We explain several contracts, as described in [Hul05],
and provide examples to clarify the procedure.

In Chapter 5, we propose a new dynamics to the underlying asset and de-
velop a methodology to price derivatives based on this mathematical model.
A particular case of the model is the Bachelier one, analyzed in [MR05].
Properties of the model, like the so-called greeks are explained.

In Chapter 6, numerical results from the model developed in Chapter 5
are presented and discussed. The numerical implementation of the model
and the algorithm are shown in the Appendix. [Bra06] and [Hul05] are used
as references for the implementation of the algorithms.

In Chapter 7, we present the conclusion of the work and suggest avenues
for future research.
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Chapter 1

Classical Approach

1.1 Net Present Value

An investment is only justified if it gives return to the shareholders. Man-
agers need to identify projects that worth more than their cost of acquisition.
There are several ways to measure how an investment contributes to generate
value to the company.

The Net Present Value is the main tool used by companies to value
projects [Hul05]. It consists in the comparison of the discounted future cash
flow(DCF ) with the investment(I) needed to implement the project. Only if
the difference between DCF and I is positive, the project is initiated. This
rule is extremely simple and it has some other advantages like

∙ Comparability between projects

∙ It is clear and consistent

∙ Understandable for the majority of managers

∙ It considers the value of the money through time

Figure 1.1 illustrates a possible scenario over which the NPV is applied. The
NPV can be expressed as, in the moment of the analysis,

NPV =

+∞
∑

i=1

CFi

(1 +Rad)i
− I (1.1)

where CFi is the cash flow at time i. It remains to determine the parameter
Rad. Here lies one of the major problems of this analysis. It assumes that the
rate Rad is well known. Such rate needs to reflect the risk of the project from
the point of view of the shareholders, and consequently it is the rate that
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Figure 1.1: Discounted Cash Flow

they want to be rewarded to assume that risk. One way to solve this problem
is adopt r as the unorder Weighted Avarage Cost of Capital(WACC). The
latter is the return that a company must earn given its current assets or the
return required by shareholders on new investments that share approximately
the same risk as the current operations. For details, see [RWJ01].

Despite the simple calculation and interpretation, some criticism is made
on NPV analysis due to its strong assumptions. The assumption that future
cash flows are known is, in most practical cases, unrealistic. Uncertainties
related to political elections, central banks meetings, emergence of a market
competitor, abrupt changes in weather jeopardizing the harvests are some of
the factors that can substantially influence the performance of a company.

Another key point is the assumption of constant discounted adjustment
rate. The cash flow analysis of a company, is made through a considerable
period of time. For this reason, some authors have been considering it is not
reasonable to assume a constant interest free rate, which implies a variable
risk adjust discount rate.

A more realistic model can be built introducing stochastic behavior for
some variables. However, the great number of parameters to estimate de-
mands more data, which, in most of cases, are unavailable.

Back to the simple NPV , the central point is the good estimation of
the rate r. Another approach to calculate this rate is to extract it from the
market. For this, a general equilibrium model is suggested to allow us to
extract the desired rate to reward the agents for assuming such risk.

1.2 CAPM

CAPM is an equilibrium market model. From the behavior of the mar-
ket agents, we are able to price the assets in which the market will be in
equilibrium. The model is constructed over the following assumptions:
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1. Absence of transaction cost

2. Infinitely divisible assets

3. Absence of taxes

4. Perfect Competition

5. Agents make decisions following a Markowitz Analysis

6. Short selling is allowed

7. Unlimited borrowing and lending at a risk-free rate

8. Homogeneous expectations

9. All assets are negotiable

Despite of being a simple model, CAPM provides the necessary param-
eters not only for the NPV calculation but also, in future sections, for the
calculation of more complex models with stochasticity. It also allows us to
extract the market price of risk. Once we have this quantity, we can change
to the risk neutral world and price derivatives on the approach of Real Op-
tions Analysis for several proposal dynamics for the underlying of the option.
CAPM can be develop into a Financial framework as in [Pli97]

Consider the Mean-Variance Portfolio problem. The interest rate r is
deterministic, there are no arbitrage opportunities, and there exists some
portfolio with E[R] = � ∕= r. Our aim is

minimize var(R)

subject to E(R) = �

R is a portfolio return (1.2)

where � is a specified scalar. If � ≥ r, the feasible region in (1.2) is non-empty
and the solution of the problem is well defined. Now, let’s take a look at the
following problem

minimize var(V1)

subject to E(V1) = v(1 + �)

V0 = v (1.3)

To realize that these problems are equivalent, notice that if V̂1 is a solution
of (1.3), then R̂ ≡ (V̂1−v)/v satisfies the constraints in (1.2). If R is any other
return that is feasible to (1.2), then V1 ≡ v(1+R) satisfies E(V1) = v(1+ r),
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which means that V1 is feasible to (1.3) and var(R̂) ≤ var(R̂), therefore R̂ is
a solution of (1.2).

At this point, we use Lagrange Multipliers to solve (1.3). Introducing the
scalar �, we are interested in solving

maximize E

[

−1

2
V 2
1 + �V1

]

subject to V0 = v (1.4)

where the solution is given by

V̂ = �
EQ[L]− L

EQ[L]
+ v(1 + r)

L

EQ[L]
(1.5)

and L = Q/P is the state price density. Taking the expectation,

E[V̂ ] = �(EQ[L]− 1)/EQ[L] + v(1 + r)L/EQ[L] (1.6)

It follows that

E[V̂ ] = v(1 + �) ↔ � =
v[(1 + �)EQ[L]− (1 + r)]

EQ[L]− 1
(1.7)

Substituting this in (1.5), we see that V̂ is not only feasible to (1.2), but is
also optimal.

Conversely, suppose V̂ is a solution of (1.2) with � as in (1.7), it is also
the optimal solution for (1.4). If we assume that the investors utility function
is taken to be the quadratic function u(w) = −w2+�w and due to the one to
one correspondence between (1.2) and (1.4), the solution of (1.2) must be an
affine function of the state price density, leading to the following expression
to the return R̂ corresponding to V̂ :

R̂ =
�EQ[L]− r

EQ[L]− 1
− �− r

EQ[L]− 1
L (1.8)

This shows that the optimal solution R of the mean-variance portfolio
problem (1.2) is an affine function of the state price density.

The CAPM can be expressed as,
If R’ is a solution of the mean-variance portfolio problem (1.2) for � ≥ r

and R is the return of an arbitrary portfolio, then

E[R]− r =
�R′R

�2
R′

(E[R′]− r) (1.9)
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Another way to achieve at the same result is following Markowitz Theory.
From it, we now the possibility that each agent faces to borrow and lending
at the risk-free rate fixes its portfolio, independent of it risk aversion, being
the same portfolio of risky assets for all market participants. This imply that
all agents will have the same portfolio of risky assets, and at the equilibrium,
this will be the market portfolio. What it tells us is that each agent will have
a linear combination of the market portfolio and applications in the interest
rate.

The curve that represents the linear combination of the risky portfolio
and the riskless portfolio is called Capital Market Line(CML). It can be
represented by the equation

E(Ri) = Rf +
E(RM)− Rf

�2
M

�i (1.10)

where E(Ri) is the expected return of the risky portfolio, E(RM) is the
expected return of the market, �i is the volatility of the risky portfolio and
�M is the volatility of the market portfolio.

The term E(RM )−Rf/�
2
M is the market price of risk. In financial terms,

it can be thought as the additional return that can be gained adding one unity
of risk. As stated by [EGG06], the financial interpretation of (1.10) is

Expected Return = Price of Time + (Price of Risk x Amount of Risk)

At this point it is important to highlight that the equation 1.10 only
gives the expected return of efficient portfolios in the sense of Markowitz.
Thus, to develop a relation between inefficient portfolios and market price of
risk we need to investigate the properties of the systemic risk of a portfolio.

1.2.1 Systematic Risk

The Systematic Risk is the risk that affects a large number of assets. Un-
certainties related with the inflation rate and Gross Domestic Product(GDP)
affect, in different levels, most of the assets. These forces of economy are the
core of Systematic Risk. As explained in [RWJ01], the diversification of the
portfolio cannot eliminate the Systematic Risk. For this reason, the agents
on the economy are only rewarded by assuming this type of risk. Thus, the
expected return of an asset depends exclusively on it Systematic Risk. The
main point is how such risk is quantified. For this purpose, the measure used
is the � coefficient. Given an base asset, usually a market index, the � of a
specific asset represents how much Systematic Risk this asset is compared to
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the base asset, which has by definition �M = 1. It is shown in [EGG06] that
the � of the asset can be expressed as

�i =
�iM

�2
M

,

where �iM is the covariance between the i-th asset and the market portfolio,
and �2

M is the market portfolio variance.
Using no arbitrage arguments, it can be shown that all assets and portfo-

lios lie in a curve called the Security Market Line(SML) in the space expected
return versus beta. To identify this line we can take into account the mar-
ket portfolio with �M = 1 and expected return E(RM). As we know, that
interception of the line is the risk-free rate. Thus, we are able to determine
its equation as

E(Ri) = Rf + �i (E(RM)− Rf) = Rf +
�iM

�2
M

(E(RM)− Rf ) (1.11)

As is shown in the previous section, this is the famous CAPM equation. It
describes the expected return of all assets and portfolios on the economy.
This model allows us to establish the adjusted discount rate to calculate the
value of a project as proposed in Section (1.1). To calculate it, we will follow
the steps described by [Hul05], and it consists of

∙ Sample a good number of companies whose main business is in line
with the contemplated project

∙ Average their betas to have a proxy for the beta of the project

∙ Use the equation of CAPM to extract the adjusted discount rate

Now, all the required parameters to evaluate the NPV analysis is known
and the manager can evaluate the project. However, this analysis will not
take into account the value of some embedded optionalities like expansion,
abandonment or waiting to invest. The Real Options Approach can handle
some of these optionalities. One of its advantages is it does not need to
compute the adjusted discount rate. The reason for this is once we are
working in a risk neutral world, the rate of discount is the risk-free rate. But
to pass from the physical measure to the risk neutral one we need to know
the market price of risk and use Girsanov Theorem 1.

The natural step is to find a formulation that gives us the market price
of risk. Remember the market price of risk is defined by

E(Ri)−Rf

�i
= �i (1.12)

1for more explanations about Girsanov Theorem, see [KK01]
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Substituting equation (1.12) into (1.11) we arrive at,

�i =
�i

�i
(E(Ri)− Rf) (1.13)

Equation (1.13) will be extensively used to price derivatives in the risk neu-
tral measure. Before going further in Real Options analysis, we provide an
example to illustrate the procedure developed above.

1.3 A Clarifying Example

Suppose that an investor wants to open a full equity fast food company
and the initial investment required is U$$ 20.000.000,00. He expects to have
an annual cash flow of U$$ 1.000.000,00 with the new business.The risk-free
rate is 4% per year.

Our first step is to find the beta for the investment. We will look at
the betas from fast food companies and take the average of risk adjusted
discount rate. In 01/09/2010, the historical betas, extracted from Yahoo.com
for companies in this line of business are presented in the Table 1.1

Table 1.1: Historical Beta from Fast Food Companies

Company Beta
McDonalds 0.55
Burger King 0.34
Yum!Brands 1.04
Wendy’s 0.86

The average � is approximately �A = 0.7. We use the average of the
returns of the NYSE US 100 from 2004 to 2008 as a proxy for the expected
return of the market. The calculations give E(RM) = 6.2%. Using Equation
(1.11) to extract the risk adjusted rate, we have

E(Rp) = 0.04 + 0.7 (0.062− 0.04) = 0.0554

At this rate, we calculate the NPV from (1.1).

NPV = 106
(

1

1 + 0.0554
+

1

(1 + 0.0554)2
+

1

(1 + 0.0554)3
+ ...

)

(1.14)

− 2 107
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As the NPV = −1.949.458, 48 is a negative value, the manager rejects
its implementation. Note that if the cost of implementation was two million
dollars cheaper, the project should be implemented.

All the weakness of the NPV are well exposed in the example. The next
Chapter shows how to use the Real Options Approach to give more flexibility
for variables and to get a more realistic model.
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Chapter 2

The Real Options Approach

The main idea of the Real Options approach is to use the quantitative
finance modeling in the study of real assets to provide a better analysis on
flexibilities that are not taken into account in NPV . In the stock market
framework, it is supposed that the assets have a known dynamics, the Geo-
metric Brownian Motion(GMB). One of the attempt to use Real Options to
value a project was proposed by [MS86], where the dynamics of the project
follows a GBM. Nevertheless, even for stock assets this assumptions can be
strong as stated by [Man63] and [Fam65]. For this reason, it is important to
have in mind that other dynamics should be considered when one is trying
to model the dynamics of a project. Therefore, throughout this chapter, we
will digress on the most common hypothesis on project’s dynamics.

2.1 Project’s Dynamic as a Geometric Brow-

nian Motion

In this section we will work in the framework proposed by [MS86] and
follow the notation of [DP96]. Our aim is to price the value of waiting to
invest, an optionality not quantified by NPV .

Suppose that the project value, V , follows a GBM such as

dV (t) = �V (t)dt + �V (t)dW (t), (2.1)

where � is its expected growth and � is its volatility.
As time evolves, the value of the projects are known but its future values

are always unknown. Based on its value at time t, it is possible to establish
a clear rule of investment. This bring us naturally the same problem of the
American option valuation. Here the payoff at time t is defined as F (V (t)) =

17



max(V (t)− I, 0), where I is the sunk cost of implementing the project V (t).
Hence, the problem can be solved with dynamic programming techniques1.
However, there is a slight difference between this problem and the traditional
one. In the simplest version, we consider the firm’s investment opportunity,
F (V (t)), as a perpetual call option, and naturally it cannot depends on time,
because the investment opportunity yields no cash flows up to the time that
the investment is undertaken, the only return from holding it is its capital
appreciation.

Once we are the holder of the option, we want a rule that maximize its
expected present value:

F (V (t)) = max E[e−�(T−t)(V (T )− I)+], T ≥ t, (2.2)

where T is the unknown time where the decision is made, � is the discount
rate and the maximization is subject to Equation (2.2) for V .2

Instead of solving this problem by dynamic programming, we will use
contingent claim techniques. Because similar arguments will be applied in
some models from the next sections. It also has the advantage of not requiring
assumptions on risk preferences and discount rates. To simplify the problem,
we will assume that V is tradable.Consider a self-financing trading strategy
(x0, x1) in a project and a bond, with price S0(t), such that the wealth
process includes exactly one sold contract. Therefore, the portfolio Π(t) can
be represented by

Π(t) = x0(t)S0(t) + x1(t)V (t)− F (t, V (t)) (2.3)

Consider F is smooth enough to apply Ito’s Formula and remember that
it is a perpetuity (∂tF = 0).Thus,

dF = ∂vFdV (t) +
1

2
�2V (t)2∂vvFd[V (t), V (t)]. (2.4)

Equation (2.3) becomes, in differential form,

dΠ(t) = [x0(t)S0(t)r + x1(t)V (t)�]− (∂vF� +
�2

2
V 2(t)∂vvF )dt

+ (x1(t)V (t)� − ∂vFV (t)�) dW (t). (2.5)

To vanish the diffusion coefficient, we must have

x1(t) = ∂vF (t, V (t)) (2.6)

1for more details, see [Bra06]
2for integrability issues, we need to assume that � < �
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For arbitrage reasons, the wealth process must be a multiple of the bond
price minus the consumption of dividend,

dΠ(t) = rΠ(t)dt− �x1(t)V (t)dt. (2.7)

Hence,

rΠ(t)− ∂vF�V (t) = x0(t)S0(t)r + x1(t)V (t)� − (∂vF� +
1

2
�2S2

1(t))

= r [x0(t)S0(t) + x1(t)V (t)− F ] + Fr − x1(t)V (t)(� − r)

− (�∂vF +
�2

2
V 2(t)∂vvF )

= rΠ(t) + rF − (rV (t)∂vF +
�2

2
V 2(t)∂vvF ) (2.8)

It follows that

1

2
�2v2∂vvF + (r − �)v∂vF − rF = 0. (2.9)

Since we are dealing with a free boundary problem, we need three condi-
tions to determine uniquely the optimal point to invest, thus, they are

1. F (0) = 0

2. F (v∗) = V ∗ − I

3. F ′(v∗) = 1

where v∗ is this optimal price for investment. The two first conditions are
natural. If the project is worthless, then a contract on it must be worthless.
Second, at the point on the boundary, the contract must have the same value
of its payoff. The third is the ”smooth pasting” condition3.

The general solution of (2.9) is

F (v) = A1v
1 + A2v

2, (2.10)

where A1, A2 are constants and 1, 2 are the roots of the equation

1

2
�2( − 1) + (r − �) − r = 0. (2.11)

Solving (2.11), we have

 =
1

2
− r − �

�2
±

√

[

r − �

�2
− 1

2

]2

+
2r

�2
, (2.12)

3For details, see [WHD05]
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with 1 > 1 and 2 < 0. The first boundary condition gives us that A2 = 0,
leading to the solution of

F (v) = A1v
1 . (2.13)

Substituting (2.13) in the second boundary condition, we obtain

v∗ =
1

1 − 1
I. (2.14)

Finally, we differentiate (2.13) with respect to v, take v = v∗ and use the
third boundary condition, to determine the coefficient

A1 =
1

1(v∗)1
. (2.15)

Substituting (2.14) in (2.15), we have

A1 =
(1 − 1)1−1

1
1 I1−1

. (2.16)

Once we determined the free boundary condition, we are able to establish
the investment rule. It can be summarize as follow

∙ Hold the option if V (t) < v∗ (consequently, you must have V (t)− I <
F (V (t)))

∙ Exercise the option if V (t) ≥ v∗ (consequently, you must have V (t) −
I = F (V (t)))

In other words, invest only if the value of the project is the value of the
option to wait plus the sunk cost.

Table 2.1: The sensitivities of v∗ with respect of the parameters of the model.

Derivatives Interpretation
∂v∗

∂I
> 0 Lower sunk cost encourages investments

∂v∗

∂�
> 0 Lower uncertainty encourages investments

∂v∗

∂�
< 0 Higher cash flow encourages investments

∂v∗

∂r
> 0 Lower interest rate encourages investments

Note that if the project adds a huge value to the company and generates
huge cash flow(� → ∞), this means that you must invest immediately and
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the optionality to wait is worthless(F(V)=0). This would make � → ∞ in
(2.12), and we have  → ∞. By (2.14), v∗ → I which means that, by the
second boundary condition, the rule is exactly the NPV.

This is the main result of this section. The NPV rule, largely used in
the industry, is an asymptotic case of this Real Options Analysis in this
framework, which means that in every other situations, the value of waiting
is worthy and must be considered.

Conversely, if we have a project that generates poor cash flow (� → 0),
this means that you should not invest and the optionality to wait has a lot
of value. Making � → 0 in (2.12),we have  → 1 and, by (2.14), v∗ → ∞
revealing that the investments should not be made.

2.1.1 An Example

Suppose that an oil company is interested in building a refinery. The sunk
cost for implementing it is estimated in I = 108. The cash flow generated
by this project is due to sales of the oil projects that is reflected on the
prices of the company shares. Thus, assume the dynamics of the company’s
shares are perfectly correlated with the dynamics of the project’s value. After
a calibration procedure4, suppose that the following equation models the
project in the risk neutral measure,

dV (t) = 0.1V (t)dt+ 0.3V (t)dW (t). (2.17)

Due to large investments, the company will try to reinvest all the profits
and pay 5% of dividends. According to the theory developed in this section,
we need first to calculate the parameter , that is given by

 =
1

2
− 0.1− 0.05

0.32
±

√

[

0.1− 0.05

0.32
− 1

2

]2

+ 2
0.1

0.32

1 = 1.43 and 2 = −1.54.

The next step is essential to obtain the critical value for which the manager
would invest, and according to (2.14)

v∗ =
1.43

1.43− 1
108

v∗ = 332.558.140

Substituting v∗ in (2.15) we have A1 = 4.554 10−13.

4see [Tsa02] for calibration procedure to GBM
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With all these quantities calculated above, the value of the option can be
expressed as

F (v) =

{

4.554 10−13v1.43 if v ≤ 332.558.140
v − 100.000.000 if v > 332.558.140

At this stage, it is interesting to compare this method with the NPV .
Note that with this analysis, the value of the asset must be more than three
times the sunken cost for the project to be set up. With the NPV , it is only
necessary that the static discounted cash flow to be as high as sunken cost
to the manager invest.

The figures below illustrate the sensitivities of Table 2.1.

Figure 2.1: Sensitivities

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
7

3.1188

3.1188

3.1188

3.1188

3.1188

3.1188

3.1188

3.1188

I

∂V
* /∂

I

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.6

0.8

1

1.2

1.4

1.6
x 10

9

σ

∂ 
V

* /∂
 σ

 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−6

−5

−4

−3

−2

−1

0

1
x 10

13

δ

dV
* /d

δ

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

2

4

6

8

10
x 10

9

r

∂V
* /∂

r

2.2 Project’s Dynamic as an Exponential Mean

Reverting Process

Exponential Mean Reverting Process are largely used to model contracts
on interest rate. It was first proposed by [Vas77] and was largely accepted
because it has the interesting characteristics of, in a long run, reverting to a
mean. This is observed in interest rate and commodities price. The extension
to business valuation was made by [MS00] to value the shares of a company.
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Suppose now that the project’s value V (t) follows

dV (t) = �(V̄ − V (t))V dt + V (t)�dW (t). (2.18)

Now, we will suppose too that the dividend rate is a function that depends
only on V (t) = v. Following the same arguments developed in Section (2.1),
we arrive at

1

2
�2v2∂vvF + (r − �(v)) v∂vF − rF = 0. (2.19)

At a first glance, this equation has the advantage of being independent of
bias from discount rates and risk preferences. For this section we will follow
the approach proposed by [DP96] to range more possibilities of valuation.

Let � be the risk-adjusted discount rate, i.e. the rate that the agent is
rewarded by assuming the systematic risk of the project. The gains from
the project comes from the capital gain and from the dividend payment.
Note that for the Exponential Mean Reverting Process the rate of growth is
�(V̄ − V ). If we express the dividends as a function of v, we have

�(v) = �− �(V̄ − v) (2.20)

Substituting (2.20) in (2.21)

1

2
�2v2∂vvF + (r − �+ �(V̄ − v))v∂vF − rF = 0. (2.21)

The boundary conditions remain the same due to the same arguments. The
next step is to find the solution to the problem. Suppose that the solution
has the form of

F (v) = Av�ℎ(v), (2.22)

where A and � are constant coefficients and ℎ(V ) is a function satisfying a
differential equation with known solution. Substituting (2.22) in (2.21) we
have the following equation

0 = v�ℎ(v)

[

1

2
��(� − 1) + (r − �− �V̄ )� − r

]

+ v�+1

[

1

2
�2vℎ

′′

(v) + (�2� + r − �+ �V̄ − �v)ℎ
′

(v)− ��ℎ(v)− ��ℎ(v)

]

. (2.23)
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Since (2.23) must hold for every v, the terms in brackets must be zero.
Equating the first term to zero we obtain

1

2
��(� − 1) + (r − �− �V̄ )� − r = 0, (2.24)

where the positive solution is given by

� =
1

2
+

�− r − �V̄

�2
+

√

[

�− r − �V̄

�2
− 1

2

]2

+
2r

�2
. (2.25)

Equating the second term to zero,

1

2
�2vℎ

′′

(v) + (�2� + r − �+ �V̄ − �v)ℎ
′

(v)− ��ℎ(v)− ��ℎ(v) = 0. (2.26)

Making x = 2�v/�2, g(x) = ℎ(v) and substituting in (2.26) we arrive at
Kummer’s Equation

xg
′′

(x) + (b− x)g
′

(x)− �g(x) = 0, (2.27)

where

b = 2� +
2(r − �+ �V̄ )

�2
, (2.28)

with known solution given by the confluent hypergeometric series

H(x; �, b). (2.29)

This verify that the solution of (2.21) is

F (V ) = Av�H(
2�

�2
v; �, b). (2.30)

We need now to determine A and v∗. The third boundary condition gives
us that

F ′(v∗) = 1

F ′(v∗) = A�(v∗)�−1H + A(v∗)�
∂H

∂v
,

which implies that

1 = A�(v∗)�−1H + A(v∗)�
∂H

∂v

A =

(

�(v∗)�−1H + (v∗)�
∂H

∂v

)

−1

. (2.31)
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Substituting (2.31) in (2.30) and using the second boundary condition

v∗H/

[

�H + v∗
∂H

∂v

]

= v∗ − I

(v∗)2
∂H

∂v
+ v∗H(� − 1)− Iv∗

∂H

∂v
− IH� = 0. (2.32)

This nonlinear equation can be solved numerically. After calculations, we
substitute the value of v∗ in (2.30) and use the secondary boundary condition
to determine the value of A.

2.2.1 An Example

Suppose again that an oil company is interested in building a refinery. The
sunken cost to implement this is estimated in I = 1 per volume traded in the
market. The cash flow generated by this building is due to the sales of the
oil products that is reflected on the prices of the company shares. But now,
we will assume that the dynamics of the oil products prices(which follows an
exponential mean reverting process) is perfectly correlated with the project.
After a calibration procedure, the suggested model, in the physical measure,
is given by

dV = 2(3− V )V dt+ 2V dW (t). (2.33)

Substituting the values of (2.33) in (2.25), we have

� =
1

2
+

0.07− 0.05− 33

22
+

√

[

0.07− 0.05− 32

22
− 1

2

]2

+ 2
0.05

22

� = 1.0063

Calculating b from (2.28)

b = 2 1.0063 +
2(0.05− 0.07 + 2 3)

22

b = 5.0026

Once we have the values from b and �, we can determine the value of v∗ from
(2.32). Solving the nonlinear equation, we find that v∗ = 2.5147. Conse-
quently, A = 0.3324.

The solution is given by

F (v) =

{

0.3324v0.0063H(v, 1.0063, 5.0026) if v ≤ 2.5147
v − 1 if v > 2.5147

25



Again, note that the price of the commodity must be as high as twice
and a half the sunk cost to be interesting for the manager to implement the
project.

To analyze the sensitivity of v∗ with respect to the parameters of the
stochastic process, we vary them separately and see what happen with the
solution v∗. Then, we plot the numerical derivatives.

Figure (2.2) illustrate the sensitivities of v∗ with respect to its parameters

Figure 2.2: Sensitivities
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Chapter 3

Types of Contracts

The goal of the previous chapter was to provide an analysis of the project’s
dynamics. This chapter intends to answer questions related with the option-
alities embedded on projects. For didactic reasons, we calculated, in the
previous chapter, the cost of waiting to enter in a project. This is one type
of optionality that can be valued using Real Options techniques. Now, we
will discuss other types of contracts that can have their values evaluated.

3.1 The Abandonment Option

According to [KP06], abandonment options are presented virtually in
every project. They are important to avoid large losses coming from projets
that may affect company’s finances. This optionality allows its owner to
abandon a project(Vt) for a specific value (I), before incurring in major losses.
For this characteristic, these options are largely used in research projects.
Once the owner of the contract pays a value to avoid a major loss, the option
to abandon can be viewed as an American put option, where its payoff, at
time t, is max(I − Vt, 0). All numerical techniques to solve problems of
pricing puts can be used to price the Abandonment option. The approach
recommended by [KP06] and [Mun02] is the binomial tree due to its easy
implementation and easy understanding. However, both of them do not
explicitly say that they are assuming that the project follows a GBM. [Hul05]
implements a trinomial tree for an EMR process of oil prices to calculate the
value of a project with the embedded option to abandon it.

These examples illustrate how important it is to know the stochastic
model suggested to a process. The calibration or the estimation procedure
plays a central role in the results of the analysis. Once one has a good model
to describe the dynamics of the project, it can be an important tool for
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pricing financial derivatives.

3.1.1 Examples

Geometric Brownian Motion Context

Suppose that a commodity company is developing a new oil fuel for space-
ships. Due to market potential, it is estimated that the sales of the project
value today are US$500.000.000. The company is faced, for the next 10
years, with the possibility of continuing the research or selling its intellectual
property. The possibility of selling its rights gives reward it in 200.000.000.
The estimated volatility is 50% for the log returns of the cash flow and the
interest rate for the next 10 years is 6%.

To calculate the value to abandon the project, we calculate the price of
an American put option with the parameters

∙ S0 = 500.000.000

∙ K = 200.000.000

∙ � = 0.5

∙ r = 0.06

∙ T = 10

To solve the problem, we can use any numerical method for calculating
the price of an American put option. Thus, by using a binomial model, we
obtain the price numerically and we get

Price 35.450.722

Since we are dealing with large money values, it is recommended that
we use a fine grid in the numerical method adopted. Other methods could
be used like Crank-Nicolson and Longstaff-Schwartz, described in [Bra06], to
obtain the price. These methods can be interesting if we had a more exotic
path dependent derivative. It is important to point out that a very small
grid implies in large computational efforts that sometimes results in long
calculations.
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Table 3.1: Future Prices

Year Future Price
2011 54
2012 63
2013 60
2014 68

Exponential Mean Reverting Context

Suppose that we are in the same context of the previous problem, but
now the underlying asset follows an exponential mean reverting process as

dlogV =
[

V̂ − logV
]

dt+ dW (t). (3.1)

The spot price of a similar product, that is supposed to replicate our project,
is US$ 54,00. Its future prices are in Table 3.1.

Suppose that the interest rate is the same as in the previous example,
therefore the estimated recovery for each product is US$ 40,00 and the time
of development is the next four years. To evaluate the price of the contract,
we will use the trinomial tree method described in Appendix A.

After calculations, the price of each contract is

Price 5.72

3.2 Option to Expand

Suppose that a company is performing well on market and it intends to
expand its production to keep growing. In this process of expansion many
possibilities must be analyzed. They include the building of a new factory,
acquisition of competitor or simply the expansion of the industrial park.
Note that all of them offer the opportunity of receiving a revenue(Vt) by
the price of the sunk cost of implementation(I), discounted to the exercise
time. Usually, as described in [Hul05], the strike price depends on the initial
investment. Drawing the parallel with the financial market, the manager is
facing with a problem of pricing an American call option, where the payoff
is max(Vt − I, 0), on the value of additional capacity installed. Again, it can
be solved with traditional techniques.
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3.2.1 Examples

Geometric Brownian Motion Context

Suppose that a commodity company is performing very well due to an
economic boom in a developing country. It faces with the opportunity to
expand its current operations at a total cost of US$ 50 millions, during the
next 4 years. The present value of the expansion is US$ 20 millions and the
volatility is estimated in 50%. The interest rate is 6% a year.

To calculate the value of expanding the operation, we compute the price
of an American call option with the parameters

∙ S0 = 20.000.000

∙ K = 50.000.000

∙ � = 0.5

∙ r = 0.06

∙ T = 4

To solve the problem, we can use any numerical method for calculating
the price of an American put option. The following table presents the price
calculated using a binomial tree technique

Price 610.019,12

Exponential Mean Reverting Context

Suppose that we are faced with the possibility of expansion, but the
dynamics follow the same process of Section 3.1.1. Our problem can be
solved by the same method with a different final condition.

Suppose that all the previous parameters are the same and that the addi-
tional cost to the expansion is US$ 40. The interest rate is the same as in the
previous example. The estimated recovery for each product is US$ 150,00
and the time of development is the next four years. To evaluate the price of
the contract, we will use the trinomial tree method described in Appendix
A.

After the calculation, the price of each contract is

Price 27.73
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3.3 Abandonment and Expansion Simultane-

ously

Another case of interest is when a project has both options. In most
cases, this optionalities are dependent, meaning that the value of having
both optionalities is not the sum of the value that each of them has when
analyzed separately. Indeed, the manager needs to be careful in considering
the options once some exercise order doesn’t make sense (for example, if the
project was already abandoned it cannot be expanded). This lead us to four
possibilities at any arbitrary time:

1. Not abandon and not expand

2. Expanded and not abandoned

3. Abandoned and consequently not expanded

4. Expanded and after this abandoned

To calculate the price of an option with these two optionalities requires a
more sophisticated technique. Since the problem is a path-dependent option,
we can use the trinomial tree and compare the four possibilities in each node,
taking the one that increase the payoff or use Longstaff-Schwartz method.

To illustrate the procedure, suppose a contract with these two optionali-
ties and at the same conditions as stated before. If we use the trinomial tree
to find the price of this contract, we have

Price 29.96

One important remark needs to be made. Note that in this section we
simply transfer the techniques from financial market and apply them to real
assets. But all these techniques were developed for financial instruments
where the time plays a crucial role. One of the previous assumptions was
that the price of the contract was time independent, since we were dealing
with a perpetuity.

The modeling adopted in this chapter is not better or worst than that
developed in Chapter 2. It is simply different. The manager can justified
that is only reasonable to assume the process of the project in a finite horizon
of time. After this, it can consider there are so many uncertainties that the
cash flow cannot be estimated and it would be a huge error if the analysis
tried to model such cash flow.

To maintain the coherence of the work, we will analyze the same kind of
contract assuming a perpetuity of the cash flow of the project, and conse-
quently the time independence of the contract value.
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3.4 Abandonment and Expansion Simultane-

ously in a Perpetuity

For this section we will follow the approach suggested by [DP96]. Suppose
the company has the opportunity of investing in a project that demands an
initial capital investment I to be activated. Remember that the option’s
price is a function of the stochastic process Vt. We will consider now the
cash flow of the project is due to product’s sales which prices follow

dP = �Pdt+ �PdW (t) (3.2)

This price will determine if the company will invest and, consequently exer-
cise the option to expand, but also will ascertain if the operations must be
suspended, meaning that the abandonment option could be exercised.

Let’s call PH the value that makes the investment attractive, PL the price
for which machines should be turned off, by a fixed cost E and F0(P ) the
price of the option of investing. The prices determine three regions within all
price possibilities. The main idea will identify the ODE that must be satisfied
by the options in each region. After this, we will be able to determine the
boundaries prices and the value of the optionalities.

Suppose the price of the product that a company sells is in the interval
PL < P < PH . Thus, the option of expanding, F0, is alive and using the
same argument in Section 2.1 we have that F0 must satisfy

1

2
�2v2F

′′

0 + (r − �)vF
′

0 − rF0 = 0. (3.3)

If we impose F0(0) = 0 must be satisfied, which have the same interpretation
as before, we should have a solution that is given by

F0(P ) = A1P
1 , (3.4)

where A1 is a constant that will be determined by the other boundary condi-
tions and 1 can be determined as the positive roots of the quadratic equation
obtained when one substitutes (3.4) in (3.3).

Suppose the sales are doing well, the price PH is reached and the expan-
sion is taken. After the expansion, the option to abandon comes alive and,
if there is a big drop in the prices, it can be exercised.

To arrive at the ODE that is satisfied by the option to abandon, we repeat
the same arguments used in (2.1) with a slight difference. Once the project
was implemented, the instantaneous profit that flows from the project is
max(P − C, 0), where C is the cost flow of the project.
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Thus, proceeding exactly as before, we arrive at the following ODE

1

2
�2v2F

′′

1 + (r − �)vF
′

1 − rF1 + P − C = 0. (3.5)

The general solution is given by the sum of the solutions for the homogeneous
parts and a particular solution. Given that F1(P ) = P

�
− C

r
is a particular

solution, we have that

F1(P ) = B1P
1 +B2P

2 +
P

�
− C

r
. (3.6)

The parameters  are determined as before. But now, if the prices become
too high, the option of abandonment must have a zero value. This implies
that B1 = 0 to the solution converges to zero as P → ∞, which reduces the
solution to

F1(P ) = B2P
2 +

P

�
− C

r
. (3.7)

For no arbitrage arguments, at the critical prices PL e PH the value of
the options must be equal to their payoff. This condition with the smooth
pasting condition lead us to the following boundary condition

F1(PH)− I = F0(PH)

F ′

0(PH) = F ′

1(PH)

F1(PL) = F0(PL)− E

F ′

1(PH) = F ′

1(PH). (3.8)

Note that the system depends on the derivatives of both functions. Dif-
ferentiating (3.4) and (3.7), we have

F ′

0(P ) = A11P
(1−1) (3.9)

F ′

1(P ) = B22P
(2−1) +

1

�
(3.10)

Substituting (3.4), (3.7), (3.9) and (3.10) in (3.8),
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A1P
1
H = B2P

2
H +

PH

�
− C

r
− I

A11P
(1−1)
H = B22P

(2−1)
H +

1

�

A11P
(1−1)
L − E = B2P

(2)
L +

PL

�
− C

r

A11P
(1−1)
L = B22P

(2−1)
L +

1

�
.

Finally, all the unknown parameters (A1, B2, PL, PH) can be obtained
numerically solving the system above.

3.4.1 An Example

Suppose after a calibration procedure, the estimated process, in the risk
neutral measure, for a project is

dP = 0.1Pdt+ 0.5PdW (t) (3.11)

The company pays � = 5% in dividends and the operating cost is C = 100.
The fixed cost to abandon is E = 30 and the investment to enter in the
project is I = 70. Considering r = 10% and using (2.12), we have 1 = 1.24
and 2 = −0.64. To solve the system, we used the function ’fsolve’ from
MATLAB. After calculations,

A1 = 4.4

B2 = 7637.52

PL = 69.12

PH = 160.49

(3.12)
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Chapter 4

A New Perspective

After the understanding of the classical models, this chapter deals with
the problem of pricing real options when the dynamic of the project is a pure
mean reverting process. This model can sometimes be found in projects
of commodities companies. As described in [MR05], it was proposed by
Bachelier to model derivatives securities.

Suppose the cash flow of a commodity company follows a pure mean
reverting process like

dS(t) = �(�− S(t))dt+ �dW (t). (4.1)

Let us assume that V (t) is the PV associated, at time t, to the cash flow
S(t). Thus, we can define the PV as

V (t) := E

[

∫

∞

t

e−�(s−t)S(s)ds∣S(t)
]

. (4.2)

Note the difference between this approach and the previous one. In the
previous chapter, the cash flow was considered the dividends payed by the
project. Now, we are suggesting to first model the cash flow with a stochastic
behavior and then define the value of the project as a function of the cash
flow.

Since S(t) follows Ornstein-Uhlenbeck process, we know that S(t) is nor-
mal with conditional mean

E[S(s)∣S(t)] = S(t)e−�(s−t) + �(1− e−�(s−t)), t < s, (4.3)

and conditional variance given by

var[S(s)∣S(t)] = �2 1− exp (−2�(s− t))

2�
, t < s. (4.4)
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With the central absolute moment for normal random variables one can
verify that Fubini’s Theorem hypothesis are satisfied. Therefore, we can
reverse the order of integration and by the property (4.4), we can evaluate
the expression (4.2) as

V (t) = E

[

∫

∞

t

e−r(s−t)S(s)ds∣S(t)
]

=

∫

∞

t

e−r(s−t)E[S(s)∣S(t)]ds

=

∫

∞

t

e−r(s−t)
(

S(t)e−�(s−t) + �(1− e−�(s−t))
)

ds

= (S(t)− �)

∫

∞

t

e−(r+�)(s−t)ds+ �

∫

∞

t

e−r(s−t)ds

=
S(t)− �

r + �
+

�

r

=
S(t) + ��/r

r + �
.

Expressing S(t) in terms of V (t), we have the following relation

S(t) = (r + �)
(

V (t)− �

r

)

+ �. (4.5)

In the differential form, the expression becomes

dS(t) = (r + �)dV (t). (4.6)

By the previous relations, one can determine the dynamics of V (t) substi-
tuting (4.5) and (4.6) in (4.1)

dS(t) = �(�− S(t))dt+ �dW (t)

(r + �)dV (t) = �
(

�− (r + �)
(

V (t)− �

r

)

− �
)

dt+ �dW (t)

(r + �)dV (t) = �
(

�+ (r + �)(
�

r
− V (t))− �

)

dt+ �dW (t)

(r + �)dV (t) = �(r + �)
(�

r
− V (t)

)

dt+ �dW (t)

dV (t) = �
(�

r
− V (t)

)

dt +
�

r + �
dW (t).

Note that the dynamics of V (t) also follows an Ornstein-Uhlenbeck pro-
cess in the physical measure. As we are interested in pricing derivatives on
the project, we need to find both the dynamics in the risk neutral measure
to be able to price using Contingent Claim analysis.

36



Since we are dealing with a commodity company, it is reasonable assume
the project could be replicated by the existing contracts on the commodity
market. This is reasonable since the inflow of the project comes mainly from
the production of the commodity. At this stage, we will consider we are in a
complete market framework. We will assume that is possible for the investor
to replicate the payoff of one option on V (t), just trading the bond and a
contract V (t). We will assume the dynamics of V (t) follows the equation

dV (t) = �(�2 − V (t))dt+ �2dW (t),

where �2 =
�
r
and �2 =

�
r+�

.
By Girsanov, we are able to change the measure to price the contingent

claim in the risk neutral world. We introduce a market price of risk to
eliminate the parameter �2 of the dynamics of V (t). The expected growth
must be the risk free rate. The following equation must be satisfied by the
market price of risk � for the required expected growth

�(�2 − V (t))− �2�t = rV (t). (4.7)

Rearranging the terms, we have the following expression for �t

�t =
�(�2 − V (t))− rV (t)

�2

, (4.8)

which gives the risk neutral dynamic below for V (t)

dV (t) = rVtdt+ �2dW
ℚ(t). (4.9)

To obtain the solution for this equation, we take f(t, V (t)) = V (t)e−rt

and apply Ito’s formula to the expression, obtaining

df = −rV (t)e−rsdt+ e−rsdV (s)

d(V (s)e−rs) = −rV (s)e−rsdt+ rV (s)e−rs + e−rs�dWℚ(s)

d(V (s)e−rs) = e−rs�dWℚ(s). (4.10)

Integrating from 0 to t,

V (t)e−rt − V (0) =

∫ t

0

e−rs�dWℚ(s)

V (t)e−rt = V (0) +

∫ t

0

e−rs�dWℚ(s)

V (t) = ert
(

V (0) +

∫ t

0

e−rs�dWℚ(s)

)

. (4.11)
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The expression (4.11) shows that V (t)e−rt is a gaussian variable with zero
mean and variance given by

var2(0, t) =

∫ t

0

(

e−rs�
)2

ds

= �2

∫ t

0

e−2rsds

=
�2

2r

(

1− e−2rt
)

. (4.12)

To calculate the price of an European call option, we evaluate the expression

P (0, V (0)) = Eℚ
[

e−rT (V (t)−K)+
∣

∣ℱ0

]

P (0, V (0)) = e−rT

∫

∞

−d1

(

V (0)erT + erTvar(0, T )x−K
)

e−
x
2

2

1√
2�

dx

P (0, V (0)) = V (0) (1− Φ(−d1)) +

∫

∞

−d1

var(0, T )xe−
x
2

2

1√
2�

dx−Ke−rT (1− Φ(−d1))

P (0, V (0)) =
(

V (0)−Ke−rT
)

Φ(d1) + var(0, T )'(−d1),

where d1 is defined by

d1 :=
V (0)−Ke−rT

var(0, T )
,

and ' is the normal density. Since it is symmetric in y axis, we have '(−d1) =
'(d1). Thus

P (0, V (0)) =
(

V (0)−Ke−rT
)

Φ(d1) + var(0, T )'(d1).

The price for an arbitrary time t can be found proceeding exactly as
before, considering that V (t) ∈ ℱt and Wℚ(T )−Wℚ(t) is independent of ℱt

under ℚ. The price at time t is given by

P (t, V (t)) =
(

V (t)−Ke−r(T−t)
)

Φ(d1) + var(t, T )'(d1), (4.13)

where d1 is now defined by

d1 :=
V (t)−Ke−r(T−t)

var(t,T)
.

On the other hand, we can use the approach introduced by Black and
Scholes to derive the PDE associated with this stochastic process. Let
Pt = P (t, V (t)) be a contingent claim on V (t). We will follow the approach
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described in [KK01], that consists in following a self-financing trading strat-
egy (x0, x1) in project and the bond, with price S0(t), such that the wealth
process including exactly one sold contract

Π(t) = x0(t)S0(t) + x1(t)V (t)− P (t, V (t)) (4.14)

In differential form,

dΠ(t) = x0(t)dS0(t) + x1(t)dV (t)− dP (t, V (t)). (4.15)

We will suppose that the function P (t, V (t)) is smooth enough to apply Ito
Formula and obtain

dP = ∂tPdt+ ∂vPdV (t) +
1

2
∂vvPd[V (t), V (t)], (4.16)

that leads us to

dΠ(t) =

[

x0(t)S0(t)r + x1(t)� (�2 − V (t))−
(

∂tPdt+ ∂vP�(�2 − V (t)) +
�2
2

2
∂vvP

)]

dt

+ (x1(t)V (t)� − ∂vPV (t)�) dW (t). (4.17)

For P (t) to be a wealth process corresponding to a riskless portfolio, the
last term of (4.17) must vanish. Hence,

x1(t) = ∂vP (t, V (t)) (4.18)

For arbitrage reasons, all the variations of the wealth process Π(t) must be
due to inflow of the interest rate less the consumption of dividends, implying
that

dΠ(t) = rΠ(t)dt− x1(t)D(v)dt (4.19)

Substituting (4.19) and (4.18) in (4.17),

rΠ(t)− x1(t)D(v) = x0(t)S0(t)r + x1(t)P�(�2 − V (t))

− (∂tPdt+ ∂vP�(�2 − V (t)) +
1

2
�2P )

= r [x0(t)S0(t) + x1(t)V (t)− P ] + Pr − x1(t)V (t)r

−
(

rV (t)∂vP − ∂tP + ∂vP�(�2 − V (t)) +
�2

2
∂vvP

)

+ x1(t)P�(�2 − V (t))

= rΠ(t)−
[

∂tP + rV (t)∂vP +
�2
2

2
∂vvP − rP

]

. (4.20)
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Hence, for V (t) = v and t ≥ 0

∂tP + (rv −D(v))∂vP +
�2
2

2
∂vvP − rP = 0. (4.21)

Note that this equation is similar to Black and Scholes PDE except by
the term

�2

2

2
∂vvP ,

that does not have the dependency on the underlying squared. To better
understand the behavior of this PDE, we will simplify it taking D(v) = 0
and analyzing this simple case.

From an economical perspective, at a first glance, one can think that this
is the case when a company does not pay dividends. In fact, this is true, but
this is not as immediate as one may realize. The reason for this is explained
in the next section, when more properties of the dynamics of the process
would be enlightened. Now, assume this is true, then the equation becomes

∂tP + rv∂vP +
�2

2
∂vvP − rP = 0. (4.22)

Conversely, we know by Feymann-Kac’s Formula, the associated stochastic
differential equation is

dV (t) = rV (t)dt + �2dW
ℚ(t). (4.23)

Now, we will obtain the sensibility of the price of the option with respect
to the parameters, we derive (4.13) with respect to the desired parameter.

We first compute the sensitivity with respect to the underlying project.
This is

Δ =
∂P

∂V (t)

Δ = Φ(d1) +
(

V (t)−Ke−r(T−t)
)

'(d1)
∂d1

∂V (t)
+ var(t, T )'′(d1)

∂d1
∂V (t)

.

(4.24)

Using the fact that

'′(d1) = −d1'(d1) = −V (t)−Ke−r(T−t)

var(t, T )
'(d1), (4.25)

it follows that
(

V (t)−Ker(T−t)
)

'(d1) + var(t, T )'′(d1) = 0, (4.26)
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and (4.24) reduces to

Δ = Φ(d1). (4.27)

Note that, as in the Black and Scholes model, the delta has the same expres-
sion.

To calculate the Gamma, we differentiate (4.27 with respect to V (t),
obtaining

Γ =
∂2P

∂V (t)2

Γ = '(d1)
∂d1

∂V (t)

Γ =
'(d1)

var(t, T )
. (4.28)

To obtain the Theta, we differentiate (4.11) with respect to t, obtaining

Θ =
∂P

∂t

Θ = −rKe−r(T−t)Φ(d1) +
[

V (t)−Ke−r(T−t)
]

'(d1)
∂d1
∂t

+
∂var(t, T )

∂t
'(d1) + var(t, T )'′(d1)

∂d1
∂t

Θ = −rKe−r(T−t)Φ(d1) +
∂var(t, T )

∂t
'(d1). (4.29)

Evaluating ∂var(t,T )
∂t

∂var(t, T )

∂t
= −

√

�2

2r

1

2

(

e−2rt − e−2rT
)1/2

re−2rt

∂var(t, T )

∂t
= − �2e−2rt

2var(t, T )
, (4.30)

and substituting in (4.31),

Θ = −rKe−r(T−t)Φ(d1)−
�2e−2rt

2var(t, T )
'(d1). (4.31)

To calculate the Λ, we will use again the relation (4.26) to simplify the
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calculation, obtaining

Λ =
∂P

∂K

Λ = −er(T−t)Φ(d1)−
[

(V (t)−Ke−r(T−t))'(d1) + var(t, T )'′(d1)
] ∂d1
∂K

Λ = −er(T−t)Φ(d1). (4.32)

Finally, to calculate the V ega, we use again (4.26) and obtain

V ega =
∂P

∂�

V ega =
([

V (t)−Ke−r(T−t)
]

'(d1) + var(t, T )'′(d1)
) ∂d1
∂�

+
∂var(t, T )

∂�
'(d1)

V ega = '(d1)
∂d1
∂�

. (4.33)

As ∂d1
∂�

= −d1
�
, we have

V ega = −d1'(d1)

�
. (4.34)

Table (4.1) summarizes the behavior of the contract with respect to these
parameters.

Table 4.1: Sensitivities

Derivatives
∂P

∂V (t)
> 0

∂P
∂V (t)2

< 0
∂P
∂t

< 0
∂P
∂�

> 0
∂P
∂K

< 0

4.1 An Example

As an example, suppose Pt is a call option over an investment amount of
10MM. Suppose also the time to maturity is 2 years and � of the cash flow of
the company is 50% in a year. The interest rate for this model is assumed to
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be 0% in a year. We vary the NPV to show the behavior of the price of the
option. We use (4.13) to calculate the option price, varying the investment
and maintaining all other parameters fixed.

Figure (4.1) shows how the value of the call option varies with changes
in the strike.
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Figure 4.1: Investment vs Option Price

This model is good to get a feeling of how worth is the option to postpone
a project. But many of assumption are not reasonable. Both hypothesis are
very strong and we want to develop a model that can consider interest and
dividends. In the next chapter we try to relax these hypothesis.

4.2 Fixed Dividend Policies

Most of company has well established dividend policy. They pay a fixed
amount of the yearly cash flow. In this section, we will assume that the
company pays a fraction of the cash flow as dividends. It is important to
note the difference between this model and others at this point. In the Black
and Scholes framework, the dividend is a fraction of the underlying of the
option. In our case, our underlying is the process V (t) and not S(t), over
which the dividend is paid. This leads us to derive the relation between V (t)
and S(t) in the risk neutral measure, once we have this only in the physical
measure.

Again by Girsanov’s Theorem, we introduce the same price of risk as (4.8)
to obtain S(t) in the risk neutral measure.
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Thus,

dS(t) = �(�− S(t))dt+ �dW (t)

= �(�− S(t))dt+ �dWℚ(t)− ��tdt

= �(�− S(t))dt+ �dWℚ(t)− �(
�(�2 − V (t))− rV (t)

�2
)dt

= �(�− S(t))dt+ �dWℚ(t)− (�(r + �)(�2 − V (t))− (r + �)rV (t))dt

= �(�− S(t))dt+ �dWℚ(t) +
(

(�+ r)2V (t)− (r + �)��2

)

dt

=
(

��− �S(t) + (�+ r)2V (t)− (r + �)��

r

)

dt+ �dWℚ(t)

=
(

(r + �)
(

S(t) +
��

r

)

− (r + �)��

r
+ ��− �S(t)

)

dt+ �dWℚ(t)

= (��+ rS(t))dt+ �dWℚ(t).

Now we have both dynamics in the risk neutral risk, that are given by

dS(t) = (��+ rS(t))dt+ �dWℚ(t), (4.35)

and

(r + �)dV (t) = (r + �)rV (t)dt+ �dWℚ(t). (4.36)

Subtracting (4.35) from (4.36), we have

dS(t)− (r + �)dV (t) = ��dt+ r
(

S(t)− (r + �)V (t)
)

dt. (4.37)

Calling u = S(t)− (r + �)V (t) we have the following SDE

du = (��+ ru)dt. (4.38)

The equation above does not have the stochastic behavior, thus we can treat
it as an ODE. Noting that a particular solution is given by −��

r
and solving

du
dt

= ru, we have the general solution is given by

u = c1e
rt − ��

r
. (4.39)

This gives us the relation between V (t) and S(t) in the risk neutral measure,
that is

S(t) = (r + �)V (t)− ��

r
+ c1e

rt. (4.40)
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As S(t) is a Gaussian process, with finite expectation, we have, when the
time goes to infinity, c1 must be zero otherwise S(t) would not have finite
expectation.Thus,

S(t) = (r + �)V (t)− ��

r
. (4.41)

Now, we define

D(v) = −�
(

(r + �)v − ��

r

)

, (4.42)

and substitute the expression in the PDE in the beginning of this section.
This leads us to,

∂tP + ∂vP
(

rv +D(v)) +
�2

2
∂vvP − rP =

∂tP + ∂vP
(

rv − �
(

(r + �)v +
��

r

))

+
�2

2
∂vvP − rP =

∂tP + ∂vP
(

(

r − �r − ��
)

v − ���

r

)

+
�2

2
∂vvP − rP = 0 . (4.43)

This is a well known PDE which the existence and uniqueness of the
solution is guarantee, as stated by [Eva10]. For our numerical purpose, this
PDE can be solved using numerical analysis techniques like Crank-Nicolson
method.
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Chapter 5

Numerical Results and

Simulations

In this section, we solve the problems in a fixed dividend framework. We
will assume that a commodity company has a project with V0 = 5MM and
the required investment is I = 10MM . For this initial model, assume that
r = 0 and � = 0.

Suppose, after the calibration procedure, the following process for St is
presented to model a commodity company project cash flow.

dSt = 5(0.05− St)dt+ 20dWt. (5.1)

For a two year European and an American Call Option, under zero dividend
policy, we have the following prices

European American
Price 0.57MM 0.56MM

The European price is calculated with the formula developed in (4) and the
American price is calculated numerically. We can use the same arguments
presented in [KK01] to justify the value of both contracts must be the same
as in the Black and Scholes model. The difference between them is due to
numerical errors and the results can be used to check the accuracy of the
implemented algorithm. Figure 5.1 shows how the Option Price varies with
the NPV
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Figure 5.1: Option Price for a 0% interest rate
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Figure 5.2: Option Price Surface
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Varying the maturity in the interval 0 ≤ T ≤ 2.5, we have the Figure 5.3
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Figure 5.3: Option price for several maturities
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Now we consider a economy with r = 5% interest rate. All other hypoth-
esis remains the same. The prices for these contracts are

European American
Price 0.69MM 0.68MM

As expected, increasing the interest rate causes the increase in the price
of the option price. The chart of the option price is
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Figure 5.4: Option price for a 5% interest rate
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Figure 5.5: Option price surface for a 5% interest rate
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We turn to the case of the Fixed Dividend PDE. Suppose the cash flow
St from a project follows the stochastic process below,
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dSt = 5(0.2− St)dt+ 55dWt. (5.2)

The interest rate is 5%. The sunken cost is estimated as 10MM and the
NPV at time zero is V0 = 5MM .The company pays 5% of its cash-flow as
dividends. We expect that, as in the Black and Scholes model, the option
of the American style which does not pays dividends must be higher than
another call that pays dividends. The prices are presented in the table

Without Dividends With Dividends
Price 4.10 MM 2.92MM

The following chart illustrates what happens with the American call op-
tion that pays dividends.

Figure 5.6: American call option with dividends price surface
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Figure 5.7: American call option with dividends price
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Another interesting chart is the threshold curve that shows the optimal
time to invest in the project.

Figure 5.8: Threshold Curve
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At the same context, the price of an European call option, with the same
rate of dividends, is

Without Dividends With Dividends
Price 4.10 MM 0.81MM

Note that the price of the option is naturally lower than an option that
does not pay dividend but also is lower than the price of an American call
option, once the later has the possibility to exercise at any time during the
lifetime of the contract. We show below the chart for European Call Option
with dividends.

Figure 5.9: European call option with dividends price surface
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Figure 5.10: European call option with dividends price
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To obtain the numerical results to this section, we applied the Crank
Nicolson method in (4.43) PDE. The method and the algorithm are presented
in the Appendix.
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Chapter 6

Conclusions

This work presented the most usual approach for valuation. The most
used technique between the managers is likely to be the Net Present Value.
Despite having several advantages such as simplicity of calculation, it has
serious limitations as described in the text. In particular the drawn back of
not taking into account flexibility.

The approach of Real Options is shown as an alternative to NPV. Pre-
senting itself as a more flexible tool for pricing, this approach incorporates
more realistic assumptions and uncertainty about future realizations of cash
flows of the company. In general, this method can be used to calculate the
value of flexibility embedded in various types projects that managers have.

The first step to the valuation process through real options is to estimate
the stochastic process of the underlying asset. Because the valuation process
through real options is an adaptation of the techniques used in the capital
market for derivative pricing, the first proposal was to assess a range of deriva-
tives based on the fact that the asset followed a GBM. With the progress
of studies and techniques for pricing, other stochastic processes have been
suggested for the dynamics of the underlying asset.

The Exponential Mean Reverting Process is a process that is used to
model derivatives prices, largely used in commodities and interest rates mar-
kets. Its extension to Real Options Analysis was done not only for projects
related to commodities, but also for valuation in several areas like e-business.
The techniques used in pricing which follows this dynamic are usually more
complicated.

Alternatively, the work suggested a different dynamics for the cash flow
process, surprisingly undeveloped in the literature. This process are the
pure mean reverting process. This stochastic process can be found in some
projects related to commodities. A theoretical study was developed to price
derivatives for which the underlying asset has followed this dynamics. The

54



numerical results obtained came from algorithms developed for this specific
model.

The current study confirms that flexibilities like expansion, abandonment
and wait are worthy. They can often be significant in decision-making. Thus,
Real Option Approach can be considered as a strong tool in helping the
managers of several companies.

For future work, there are different strands to follow. The introduction of
jumps in the dynamics of the underlying asset may be interesting for certain
projects. The introduction of a stochastic interest rate is more realistic once,
usually, projects of companies has a medium and long term duration and
assume a constant interest rate over the period can be unrealistic. Also, the
introduction of stochastic volatility can reflect a more realistic framework.
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Appendix A

The Trinomial Tree

In this Chapter we will follow the approach of [Hul05] and [HW94].
The trinomial tree is a method used to solve problems involving expo-

nential mean reverting process. The dynamics of the underlying is described
by

dlogV =
[

V̂ − logV
]

dt+ dWt. (A.1)

The first step to build the tree, is to construct a symmetric tree around
zero. The numerical model is

dX = −Xdt+ dWt. (A.2)

Assume the spacing for the time is one year, Δt = 1. The spacing of the
underlying is taken as

ΔX = �
√
3Δt =

√
3 = 1.73, (A.3)

which provide a slightly more rapid convergence, as stated by [HW].
Define (i, j) as the node where t = iΔt and X = jΔX . For each node

there are three possibilities of ramification with the probabilities of transition
of each node given by

∙ pu = 1
6
+ 1

2
(a2j2Δt2 − ajΔt) = 1

6
+ 1

2
(4j2 − 2j)

∙ pm = 2
3
− a2j2Δt2 = 2

3
− 4j2

∙ pd =
1
6
+ 1

2
(a2j2Δt2 + ajΔt) = 1

6
+ 1

2
(4j2 + 2j)

In most of the cases, this will be the node adopted. The sum of these
probabilities must be the unity. As stated by [Hul05], for some points of
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Figure A.1: Node A
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Figure A.2: Node B

the grid these probabilities can assume negative values. To avoid this incon-
sistence, we need two more nodes with probabilities defined below. These
probabilities also pull back process when the path goes too far away from
the long run mean. The second kind of node occurs when the path goes to
high. It has the shape with the probabilities of transition of each node given
by

∙ pu = 7
6
+ 1

2
(a2j2Δt2 − 3ajΔt) = 7

6
+ 1

2
(4j2 − 6j)

∙ pm = −1
3
− a2j2Δt2 + 2ajΔt = −1

3
− 4j2 + 4j

∙ pd =
1
6
+ 1

2
(a2j2Δt2 − ajΔt) = 1

6
+ 1

2
(4j2 − 2j)

The same situation occurs when the prices are too low. The probabilities
of transition of each node are given by with the probabilities of transition of
each node given by

∙ pu = 1
6
+ 1

2
(a2j2Δt2 + ajΔt) = 1

6
+ 1

2
(4j2 + 2j)

∙ pm = −1
3
− a2j2Δt2 − 2ajΔt = −1

3
− 4j2 − 4j

∙ pd =
7
6
+ 1

2
(a2j2Δt2 + 3ajΔt) = 7

6
+ 1

2
(4j2 + 6j)
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Figure A.3: Node C

We can define a range [jmin, jmax] such that the probabilities of Figure (A.1)
remains positive. For j below jmin the node adopted is shown in Figure A.3
and for j higher than jmax the node as in Figure A.2. As stated in [Hul05],
we can define

jmax = ⌈0.184
aΔt

⌉
jmin = −jmax

With all these quantities in hand, we can build a symmetric tree that
represents the process (A.2).

The next step is, starting from the symmetric tree, to build a tree that
represents the original process. For this, we will displace the nodes by �(t)
where

�(t) = V (t)−X(t) (A.4)

Let �i be the difference ( A.4) at time iΔt. We also define the quantity
Q(i, j) as the present value of a bond which pays US$ 1 if the node (i,j) is
reached and nothing otherwise. Both quantities are calculated forward in
time matching the future prices. First we determine � and then evaluate the
value of Q. The formulae for �m and Qm, at time mΔ are expressed as

�m =
log

(

∑nm

j=−nm

Qm,je
−jΔRΔt

)

− logPm+1

Δt
, (A.5)

where Pm+1 is

Pm+1 =

nm
∑

j=−nm

Qm,je
−(�m+jΔR)Δt. (A.6)
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Qm+1,j =
∑

k

Qm,kq(k, j)e
−(�m+kΔR)Δt, (A.7)

where q(k, j) is the probability to pass from node (m, k) to node (m+ 1, j).
These steps establish the tree for the process of the class of (A.1). Now

if we want to price an American put or call on an asset which realization of
the process are represented by this tree, we only need to proceed backwards
on time and compare at each node the value of the option with its payoff,
taking that one which maximize the option value.
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Appendix B

Crank Nicolson for Fixed

Dividend PDE

The Crank-Nicolson scheme is a finite difference method that can be
viewed as a hybrid method between the explicit an implicit [Bra06]. It has
the interesting property of being unconditionally stable. The method also
guarantee the convergence to the solution of the PDE that the numerical
scheme represents. These properties make the numerical method interesting
to solve PDE’s. Discretizing PDE (B.1)

∂tP + ∂vP
(

(

r − �r − ��
)

v − ���

r

)

+
�2

2
∂vvP − rP = 0. (B.1)

The grid will be represented by the coordinates (v, t), where

v = 0, Δv, 2Δv, ..., MΔv = vmax

t = 0, Δt, 2Δt, ..., NΔt = T .

Let us denote Pi,j = P (iΔv, jΔt). For a call option, we have the following
boundary condition

1. P0,j = 0, j = 0, 1, 2, ..., N

2. PM,j = MΔv −Ke−r(N−j)Δt, j = 0, 1, 2, ..., N

3. Pi,N = max[iΔv −K, 0], i = 0, 1, 2, ..., M

where vmax is a large value for the project that cannot be reached by v in the
time interval under consideration. It represents +∞ in our grid.
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Equation (B.1) can be represented as a finite difference scheme:

Pi,j − Pi,j−1

Δt
+

1

2

(

(r − �r − ��
)

iΔv − ���

r

)(

Pi+1,j−1 − Pi−1,j−1

2Δv

)

+

(

1

2
(r − �r − ��

)

v − ���

r

)(

Pi+1,j − Pi−1,j

2Δv

)

+
�2

4

(

Pi+1,j−1 − 2Pi,j−1 + Pi−1,j−1

(Δv)2

)

+
�2

4

(

Pi+1,j − 2Pi,j + Pi−1,j

(Δv)2

)

=
r

2
Pi,j−1 +

r

2
Pi,j. (B.2)

Putting all terms indexed by j − 1 to one side of the equality and the
other indexed by j to the other side, we arrived at

−�iPi−1,j−1 + (1− �i)Pi,j−1 − iPi+1,j−1 = �iPi−1,j + (1 + �i)Pi,j + iPi+1,j,
(B.3)

where

� =
Δt

4

(

�2

(Δv)2
− (r − �r − ��

)

i− ���

rΔv

)

�i = −Δt

2

(

�2

(Δv)2
+ r

)

i =
Δt

4

(

�2

(Δv)2
+ (r − �r − ��

)

i+
���

rΔv

)

. (B.4)

In matrix form, we have

M1Pj−1 = M2Pj, (B.5)

where

M1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1− �1 −1 0 0 . . .
−�2 1− �2 −2 0 . . .
0 −�2 1− �2 −2 . . .

0
. . .

. . .
. . . . . .

0 . . . . . . −�M−1 1− �M−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

M2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 + �1 1 0 0 . . .
�2 1 + �2 2 0 . . .
0 �2 1 + �2 2 . . .

0
. . .

. . .
. . . . . .

0 . . . . . . �M−1 1 + �M−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠
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Pj = [P1,j , P2,j, ..., PM−1,j]
T

To solve this system of equations, one can use the LU decomposition or
SOR method to provide a better computational performance.

Another important issue is the fact that we are interested on American
options. Thus, at each iteration, the value of the option is given by the
maximum of the payoff and the value of the contract.

After the implementation of the algorithm, we test it against the closed
formula for an European call option.

We already know that the closed formula solution for an European call is
given by

P (0, V0) =
(

V0 −Ke−rT
)

Φ(d1) + var(0, T )'(d1),

where

d1 :=
V0 −Ke−rT

var(0, T )
,

and

var2(0, t) =
�2

2r

(

1− e−2rt
)

. (B.6)

If we adopt the model (5.1), with the following parameters

∙ V0 = 5

∙ I = 10

∙ r = 0

∙ T = 2

∙ � = 20

we have the relative error presented in Figure (B.1) when we vary V0. It is
verified that the rate of convergence is slow when we make V → 0 or V → ∞.
The result is presented below for the range of our example.
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Figure B.1: Relative Error
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We also analyze the behavior of the solution against the grid size, shown
in Figure (B.3) and (B.5). We also plot a zoom of this sensitivities.

Figure B.2: Sensitivities
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Figure B.3: Sensitivity of price with respect to dt

Figure B.4: sensitivities
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Figure B.5: Sensitivity of price with respect to dS
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Appendix C

Algorithms

This Chapter presents the Matlab Code used to compute the prices in
the previous sections.

C.1 Bachelier

The first algorithm presented is the Bachelier code. We use the Crank-
Nicolson method to solve the Bachelier PDE presented in Appendix B and
also calculate the price with the closed formula develop in Chapter 4. The
output of the function are the price calculated by the two methods. The
inputs of the function are the initial Net Present Value, the strike price of
the option, the interest rate, the time to maturity, the maximum value that
the underlying can’t achieve (it will represent the infinitum), the increment
of the asset and the increment of time.
Bachelier Function

function [AmPrice,EuPrice]=bachelier(S0, K, r, T, sigma, Smax, dS, dt)
tic

%Define the length of dS and dt
M=round(Smax/dS);
dS=Smax/M;
N=round(T/dt);
dt=T/N;

%Vector that indicates the grid position
vetS=linspace(0,Smax,M+1)’;
veti=0:M;
vetj=0:N;
matval=ones(M+1,N+1);%matrix that store the values of the contract
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%Matrix with Payoff of the contract in every time for all de S t
payoff=zeros(M+1,N+1);
for k = 1:M+1
for j=1:N+1
payoff(k,j)=vetS(k)-K*exp(-r*dt*(N-vetj(j)));
end
end

%Coefficients
alpha=0.25*dt*((sigma∧/(dS.2̂))-r*veti);
beta=-(dt/2)*((sigma∧2/(dS.2̂))+r*ones(size(veti)));
gamma=0.25*dt*((sigma∧2/(dS.2̂))+r*veti);

%Matrix with coefficients
M1=diag(-alpha(3:M),-1)+diag(1-beta(2:M))+diag(-gamma(2:M-1), 1);
M2=diag(alpha(3:M),-1)+diag(1+beta(2:M))+diag(gamma(2:M-1), 1);

%LU Decomposition to speed up the resolution of the system
[L,U]=lu(M1);
%Boundary Conditions

matval(:,N+1)=max(vetS-K,0);%At maturity, the payoff is S-K
matval(1,:)=zeros(size(vetj));%If S=-Inf then P t=0
matval(M+1,:)= Smax*ones(size(vetj))-K*exp(-r*dt*(N-vetj));%If S=Inf=¿P t=S-
K*epx

%Solve the system aux=zeros(M-1,1);
for j=N:-1:1
aux(1)=alpha(2)*(matval(1, j)+matval(1, j+1));
aux(M-1)=gamma(M)*(matval(M+1,j)+matval(M+1,j+1));
matval(2:M,j) = U∖(L∖(M2*matval(2:M,j+1) + aux));
matval(2:M,j) = max(matval(2:M,j),payoff(2:M,j));
end

%Price at t=0
AmPrice= interp1(vetS, matval(:,1), S0);

%Plot the Option Price versus S t at the maturity and in t=0
figure
plot(vetS,matval(:,end))
hold on
plot(vetS,matval(:,1),’r’)
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%Plot t x S t x P t
[x,y]=meshgrid(dt*vetj,vetS);

figure
surf(x,y,matval)

%Closed Formula to the Price

if r==0

EuPrice=sigma*sqrt(T)*normpdf(((S0-K*exp(-r*T))/(sigma*sqrt(T))),0,1)+...

(S0-K*exp(-r*T))*normcdf(((S0-K*exp(-r*T))/(sigma*sqrt(T))),0,1);

else

var0T=sqrt(0.5*sigma2̂*(1/r)*(1-exp(-2*r*T)));

EuPrice=var0T*normpdf((S0-K*exp(-r*T))/var0T,0,1)+...

(S0-K*exp(-r*T))*normcdf((S0-K*exp(-r*T))/var0T,0,1);

end

toc

end

The charts presented were produced calling

[p1,p2]=bachee(5, 10, 0, 2, 20, 100, 1, 1/50)

If we set the third input as 0.05, the code return the prices and the charts
for an interest rate of 5%.

C.2 Fixed Dividend Algorithm

Here, the core of the algorithm is almost identical to the previous one.
We implemented the Crank Nicolson scheme discussed in Appendix B. The
output of the functions are the price of an American call options without
dividends and the price of the contract which pays dividends. All the previous
inputs are necessary and also the mean reverting rate, long mean rate and
the dividend rate.
Fixed Dividend Function

function [AmPrice,EuPrice]=fixeddiv(S0, K, r, T, sigma,mu,kappa,div,Smax,
dS, dt)

tic
termo = mu*kappa*div/r;
newr = r-r*(kappa+div);

%Define the length of dS and dt
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M=round(Smax/dS);
dS=Smax/M;
N=round(T/dt);
dt=T/N;

%Vector that indicates the grid position
vetS=linspace(0,Smax,M+1)’;
veti=0:M;
vetj=0:N;
matval=ones(M+1,N+1);%matrix that store the values of the contract

%Coefficients

alpha=0.25*dt*((sigma∧2*ones(size(vetS))./(dS.∧2))’-newr*veti-termo./dS );
beta=-(dt/2)*((sigma∧2*ones(size(vetS))./(dS.∧2))’+r*ones(size(veti)));
gamma=0.25*dt*((sigma∧2*ones(size(vetS))./(dS.∧2))’+newr*veti +termo./dS);

%Matrix with coefficients
M2=diag(alpha(3:M),-1)+diag(1+beta(2:M))+diag(gamma(2:M-1), 1);
M1=diag(-alpha(3:M),-1)+diag(1-beta(2:M))+diag(-gamma(2:M-1), 1);

%LU Decomposition to speed up the resolution of the system
[L,U]=lu(M1);

%Boundary Conditions
matval(:,N+1)=max(vetS-K,0);%At maturity, the payoff is S-K
matval(1,:)=zeros(size(vetj));%If S=-Inf then P t=0
matval(M+1,:)= Smax*ones(size(vetj))-K;%If S=Inf=¿P t=S-K*epx

%Matriz com os Payoff em todos os instantes, pra todos valores de S t
payoff=zeros(M+1,N+1);
for k = 1:M+1
for j=1:N+1
payoff(k,j)=vetS(k)-K*exp(-r*dt*(N-vetj(j)));
end
end

%Solve the system aux=zeros(M-1,1);
trigger=zeros(M+1,N);%set a matrix to see where the contract is exercised
for j=N:-1:1
aux(1)=alpha(2)*(matval(1, j)+matval(1, j+1));
aux(M-1)=gamma(M)*(matval(M+1, j)+matval(M+1,j+1));
matval(2:M,j) = U∖(L∖(M2*matval(2:M,j+1) + aux));
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matval(2:M,j) = max(matval(2:M,j),payoff(2:M,j));
trigger(2:M,j)=(matval(2:M,j) =payoff(2:M,j));
end

%Price at t=0
AmercianCallPrice= interp1(vetS, matval(:,1), S0);

%Plot the trigger curve trigger(M+1,:)=(matval(M+1,1:N) =payoff(M+1,1:N));
indice=sum(trigger);
front = dS*indice-Smax/2;
figure
gr=plot(dt*(1:length(front)),front);
set(gr,’LineWidth’,2,’Color’,[0.64 .45 0.37])
title(’Trigger Curve’)
xlabel(’Time’)
ylabel(’NPV’)

%Plot Option value vs. V t at the maturity and at t=0
figure

plot(vetS,matval(:,end))
hold on
plot(vetS,matval(:,1),’r’)
title(’American Call Option with Dividend’)
xlabel(’V’)
ylabel(’Option Price’)

%Plot t x S t x P t
[x,y]=meshgrid(dt*vetj,vetS);

figure
surf(x,y,matval)
title(’American Call Option with Dividend’)
xlabel(’Time’)
ylabel(’V’)
zlabel(’Option Price’)

var0T=sqrt(0.5*sigma∧2*(1/r)*(1-exp(-2*r*T)));
EuroCallPrice=var0T*normpdf((S0-K*exp(-r*T))/var0T,0,1)+...

(S0-K*exp(-r*T))*normcdf((S0-K*exp(-r*T))/var0T,0,1);

toc

end

The charts presented were produced calling
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[p2,p1]=fixeddiv(5, 10, 0.05, 2, 11,0.2,5,0.05,100,1, 1/100)

To produce the European option solution, it is enough to comment one
of the lines

matval(2:M,j) = max(matval(2:M,j),payoff(2:M,j));

in the code.
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