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Chapter 1

Introduction

Commodity markets are unique in financial modeling. Their assets are not
like equities, interest rates or currencies, but real assets that are physically
produced, transported, stored and consumed. That way, it is natural to expect
that they should be treated differently from financial security markets.

Many market participants, such as large industries and governments, are
indeed interested in the physical liquidation of the contracts and delivery of the
assets. For this reason, a substantial amount of goods must be carried across
the globe, implying in considerable delivery costs and delays. As it is virtually
impossible to liquidate agricultural, metal or energy contracts with delivery
in real time, spot markets for commodities do not exist per se. Contracts are
made for future delivery or financial settlement.

The major commodity markets are the Chicago Board of Trade (CBOT)
which deals with corn, wheat, soy, silver and American Treasury Bond con-
tracts among others, and the New York Mercantile Exchange (NYMEX).
Other exchanges also play an important role in futures and commodities mar-
kets, such as the Chicago Mercantile Exchange, the London International Fi-
nancial Futures Exchange (LIFFE), the Singapore International Monetary
Exchange - SIMEX and the São Paulo Mercantile and Futures Exchange
(BM&F), see Hull (2006).

The fact that for most commodity contracts, future but not spot prices
are available, poses the problem of how to recover those prices. Spot prices
are necessary for derivative pricing and investment valuation. For this reason,
there is interest from both academics and practitioners in developing methods
to recover spot prices from futures data.

A number of models build up state space variables, in order to describe the
futures prices. The state space form builds the relationship between a vector
of observable time series (future prices for different maturities), and a vector
of unobservable ones. The components of this unobserved vector are called
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state variables. Spot prices are an example of a state variable, as they are not
directly observable. The spot prices are generated by a discrete time version of
the stochastic process used, called transition equation. The Kalman Filter is
then applied recursively to calculate the optimal estimator for the state vector
at time t using the information available at t. We shall treat this in detail in
section 2.1.

As mentioned by Schwartz (1997), the main difficulty in the empirical im-
plementation of commodity price models is that frequently the state variables,
such as the spot price for example, are not directly observable. The finan-
cial literature traditionally estimates the parameters of a model with hidden
factors by rewriting it in state space form and using the Kalman Filter.

Barlow, Gusev and Lai (2004) provide a good explanation of the Kalman’s
Filter application, and use it to calibrate three different models for electricity
prices. Schwartz (1997) also exposes the construction of the Kalman Filter in
a simple, but complete way.

In this work, we propose a methodology to recover spot prices from futures
without the use of Kalman Filter. We use maximum likelihood and nonlinear
least squares in a two-factor affine model based on Schwartz and Smith (2000).

The model we use describes commodity spot prices as a sum of short term
deviations over a long term pattern. When performing a Principal Compo-
nent Analysis in the data set of natural gas prices, for instance, we find that
the behavior of the two most important eigenvectors are very much like the
simulated paths for the short term deviations and long term dynamics con-
sidered by Schwartz and Smith (2000). It is important to note also that our
calibration method can be applied to other energy commodities other than
natural gas.

Our estimation procedure resembles to some extent the work done in Hik-
spoors and Jaimungal (2007). We use a nonlinear least-squares optimization
(NLLS), as in Hikspoors and Jaimungal (2007), to recover the hidden short
and long term factors from the futures data. However, we used a maximum
likelihood estimation in order to recover the model’s parameters, instead of
the further NLLS minimization used in Hikspoors and Jaimungal (2007).

The main advantage of our calibration procedure is its robustness. As we
show in Chapter 4, the model converges quickly for different initial guesses and
even with large perturbations. Besides that, our algorithm is computationally
cheaper than the Kalman Filter. It does not need to impose restrictions in
order to decrease the number of estimated parameters and it is not dependent
of a wise initial-guess selection in order to obtain convergence.

This work shall be divided as follows: Chapter 2 explores the literature
concerning commodity modeling and estimation via Kalman Filter. We detail
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some of the models and their estimation procedures.
Chapter 3 explains the Schwartz and Smith model, and detail the model’s

equations both in the “real world” and the risk neutral probability measures.
Besides, we also review the theoretical framework of risk neutral pricing.

Chapter 4 details the estimation procedure and the computational methods
used. We also validate our method using different numerical tests. Chapter
5 applies the algorithm to real data from one of the most liquid gas mar-
kets, namely the Henry Hub. We draw some final remarks and conclusions in
Chapter 6.
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Chapter 2

Commodity Price Models

In this Chapter, we detail commodity price models and some tools used in
their construction. We begin by explaining the estimation via Kalman Filter,
which is one of the most used tools for models with latent variables. Next, we
introduce commodity price models exploring the concept of convenience yield
and the theories of Storage and Expected Risk Premium. Finally, we review
some of the most classical commodity prices models, building a historical
literature review.

2.1 Theory of Storage, Expected Premium and Con-

venience Yield

As mentioned by Fama and French (1987), there are two popular views of
commodity prices; the theory of storage, and an alternative view that splits
a futures price into an expected risk premium and a forecast of a future spot
price. We call this second approach simply “risk premium models”.

The theory of storage explains the difference between contemporaneous
spot and future prices in terms of interest forgone in storing a commodity,
warehousing costs and a convenience yield on inventory.

The notion of convenience yield is very important and deserves some at-
tention. As defined in Brennan and Schwartz (1985), the convenience yield is
“the flow of services that accrues to an owner of the physical commodity, but
not to the owner of a contract for future delivery of the commodity”. The
owner of the physical commodity can choose where it will be stored and when
to liquidate the inventory. Therefore, the convenience yield can be thought of
as the value of being able to take advantage of temporary local shortages by
profiting from its physical ownership.

Brennan and Schwartz (1985) develop a model for evaluating natural re-
sources investment. The authors value the uncertain cash flow stream gen-
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erated by an investment project using a self-financing portfolio, whose cash
flows replace those which are to be valued. The construction of this portfolio
rests on the assumption that the convenience yield on the output commodity
can be written as a function of the output price alone, and that the interest
rate is non-stochastic.

Our main interest in Brennan and Schwartz (1985) lies in the relation
between spot and futures prices of a commodity and the convenience yield.
The authors assume that the convenience yield is a function only of the current
spot price, together with the assumption that the risk free interest rate is a
constant ρ. Formally:

Let F (S, τ) represent the futures price at time t for delivery of one unit of
the commodity at time T , where τ = T − t. Let S denote the spot price of
a single homogeneous commodity at time t, assumed to follow the following
stochastic process:

dSt = µtStdt+ σtStdZt, t ≥ 0

where dZt is the increment to a standard Brownian motion, σt is the instan-
taneous standard deviation of the spot price, (assumed to be known) and µt

is the trend in price, which may be stochastic.
The marginal convenience yield C(.) can be defined as a function of the

current spot price. For tractability, it is assumed to be:

C(S, t) = cS, c > 0

been simply a proportion of the current spot price. The authors then express
the instantaneous change in the futures prices as:

dFs = Fs[S(µ− ρ) + C]dt+ FsSσdZs. (2.1)

Since the convenience yield is not the same across producers, Fama and
French (1987) remark that in equilibrium only individuals with high conve-
nience yields will hold inventories. However, it is important to note that the
marginal convenience yield, net of storage costs, is inversely proportional to
the amount of the commodity held in inventory and directly proportional to
the current spot price.

Turning back to risk premium models, we address an important concept
called basis. Brennan and Schwartz (1985) define basis as “the difference
between the future prices and the current spot price”. Forecast power and
premium models state that it can be expressed as the sum of an expected
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premium and an expected change in the spot price. Formally:

F (t, T )− S(t) = Et[P (t, T )] + Et[S(T )− S(t)],

where Et[P (t, T )] = E[P (t, T )|Ft] in the historical (physical) measure P.
The expected premium Et[P (t, T )] can be defined as the bias of the futures

price as a forecast of the future spot price. That is:

Et[P (t, T )] = F (t, T )− S(t)− Et[S(T )].

Note, however, that the storage and premium theories are not concurrent.
In the opposite, they give different explanations to the same event. Fama and
French (1987) clarify this point with an example. Consider the case where
the basis is negative1. The premium approach implies that a negative basis is
explained by the expectation that prices will fall because some event (a harvest,
for example) will substantially increase inventories. The storage theory, in its
way, would explain the same situation with the argument that a negative basis
is caused by low inventories and a convenience yield larger than interest and
storage costs.

The situation that occurs when the basis has a positive sign, that is, futures
prices are higher than spot prices, is called contango or premium markets.
Similarly, when spot prices are higher than future prices (negative basis), we
have what is called backwardation, or discount markets. Further references
can be found in Hull (2006).

In this work, we will develop and calibrate a model based on the expected
premium theory. Nevertheless, some applications of the storage theory can be
found in Fama and French (1987) and Dixit and Pindyck (1994). We review
some models dealing with expected premium and convenience yields, focusing
on one factor and two-factor models.

Some of the two-factor models that will be studied in this Chapter have
been estimated by Kalman Filter. Therefore we include in Appendix C an
explanation of the state space representation and the Kalman Filter.

2.2 One-Factor and Two-Factor Models

In this Section, we build a literature review of one and two-factor commod-
ity models. Following a historical ordering of the models, we describe their
equations, estimation methods and main conclusions.

1Equivalently we can say that the spot price is greater than the futures price at time t
for delivery at time T .
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We first address the Gibson and Schwartz two-factor model for pricing
financial and real assets contingent on the price of oil. The factors used are
the spot price of oil and the convenience yield. They consider the spot price
of oil as the fundamental, but not the only, determinant of contingent claim
prices. That is why the convenience yield is added to the model.

The model assumes that the spot price of oil and the net convenience yield
follow a joint diffusion process specified as:

dSt = µStdt+ σ1dZ1t, (2.2)

dδt = κ(α− δt)dt+ σ2dZ2t. (2.3)

where δ is the instantaneous net convenience yield of oil, κ is the speed of
mean reversion, α is the long run equilibrium level and dZ1dZ2 = ρdt, where
ρ is the correlation coefficient between the two standard Brownian motions.

The settlement price of the closest maturity crude oil futures contract
trading on the NYMEX is used as a proxy for the spot price S, and the
instantaneous convenience yield was computed using the relationship between
the futures and the spot price of a commodity defined in Brennan and Schwartz
(1985), namely:

F (S, T ) = Se(r−δ)(T−t),

where r is the annualized riskless interest rate and δ the annualized convenience
yield.

The market price of risk λ is estimated from market prices of all crude
oil futures contracts traded on the NYMEX from 1984 to 1986. Then, they
are compared to their theoretical prices computed by solving numerically a
partial differential equation that describes the behavior of a futures contract.
For more details on the estimation of λ, refer to Gibson and Schwartz (1990).

Equations (2.2) and (2.3) are discretized and estimated using unrestricted
regressions on weekly data in order to estimate κ, α, σ2, ρ and σ1, while the
market price of convenience yield, λ, was estimated separately.

The model’s performance depends on the assumptions made on λ. How-
ever, their results show that the two-factor model is a reliable instrument
for the purpose of valuing short term financial instruments, such as futures
contracts.

An important contribution to the factors model in the literature was given
by Schwartz (1997). In this paper Schwartz compares three models of stochas-
tic behavior of commodity prices that take into account mean reversion. The
first of these three models, a simple one-factor model where the logarithm of
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the prices are assumed to follow a mean reverting process, is the most cited
one, which we shall address now.

The spot price is assumed to follow the stochastic process:

dSt = κ(µ− lnSt)Sdt+ σSdZt

Let X denote the logarithm of the spot price S. Applying Ito’s Lemma to
the previous equation, the log price is characterizes by an Ornstein-Uhlenbeck
(OU) stochastic process:

dXt = κ(α−Xt)dt+ σdZt; where α = µ− σ2

2κ
. (2.4)

For the risk-neutral model, consider α∗ = α − λ, where λ is the market
price of risk, and dZ∗ is the increment to the Brownian motion under the
equivalent martingale measure.

The OU process can be written under the risk-neutral measure as:

dXt = κ(α∗ −Xt)dt+ σdZ∗t . (2.5)

Calculating the first and second moments of Xt, we can obtain the fu-
tures price of a commodity with maturity T under the equivalent martingale
measure:

F (S, T ) = Ẽ[S(T )] = exp
(

E0[X(T )] +
1
2

Var0[X(T )]
)
.

Thus, F (S, T ) = exp
[
e−κTX + (1− e−κT )α∗ +

σ2

4κ
(1− e−2κT )

]
,

and

lnF (S, T ) = e−κTX + (1− e−κT )α∗ +
σ2

4κ
(1− e−2κT ). (2.6)

The coefficient κ determines the speed of the mean reversion to the long
run log price α, the coefficient σ characterizes the volatility process, and dZ
is an increment to a standard Brownian motion.

The estimation is carried in the state-space form, using the Kalman Filter.
Let yt = [lnF(Ti)], i = 1, 2, . . . , N , be an (N×1) vector of observable variables,
xt the state vector, and

dt =
[
(1− e−κTi)α∗ +

σ2

4κ
(1− e−2κTi)

]
,

for i = 1, 2, . . . , N , an (N × 1) a vector of deterministic variables. Let also
Zt = [e−κTi ], for i = 1, 2, . . . , N an (N × 1) vector and εt, a (N × 1) vector
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of serially uncorrelated disturbances with E[εt] = 0 and Var(εt) = H. We can
then write the measurement equation as:

yt = dt + Ztx + εt t = 1, . . . , T.

For the transition equation let ct = κα∆t, Qt = 1 − κ∆t and ηt serially
uncorrelated disturbances with E[ηt] = 0 and Var[ηt] = σ2∆t. From (2.5) the
transition equation can be written as:

xt = ct + Qtxt−1 + ηt, t = 1, . . . , T.

Schwartz (1997) uses weekly observations of future prices for oil, copper
and gold, and considers five maturity contracts. The interest rates used are
3-Month Treasury Bills.

The results of the one factor model show highly significant speed adjust-
ment coefficients for all four markets, and a market price of risk not signifi-
cantly different from zero. Logarithms of spot prices for the one-factor model
follows closely (but not identically) the logarithm of future prices for the oil
market. Encouraging results were also found for the copper data, differently
from the gold market, in which the one-factor model could not be fitted to the
data.

The second model is a two-factor model where the first factor is the spot
price of the commodity, and the second is the instantaneous convenience yield
δ. These factors are modeled as:

dS = (µ− δ)Sdt+ σ1SdZ1 (2.7)

dδ = κ(α− δ)dt+ σ2dZ2, (2.8)

dZ1dZ2 = ρdt (2.9)

The spot price is a standard process that allows a convenience yield, and
follows a OU stochastic process described in (2.8).

The author remarks that assuming a risk free interest rate following a OU
process, the model can can be extended to a three-factor model of commodity
contingent claims. It models the spot price of the commodity, the instanta-
neous yield and the instantaneous interest rate.

Schwartz’s second model two is estimated by a traditional application of
the Kalman Filter, whose transition and measurement equations can be seen
at Schwartz (1997), while model three has a simplified estimation. Instead of
simultaneously estimating the equations, Schwartz first estimates the interest
rate process and then uses model three to estimate the parameters of the spot
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price and the convenience yield process.
As pointed by Schwartz, the statistical comparison between the empirical

results is not straightforward as the models are not nested. Even though
models two and three are nested, they have the same number of estimated
parameters due to the simplification hypothesis done to estimate the interest
rate process. This complicates the how the likelihood’s function value could
be interpreted.

However, in relative performance, models two and three outperform model
one for all data sets, but alternate better relative performances among them,
depending on the data set used.

Lucia and Schwartz (2002) develop both one-factor and two-factor models
to recover the dynamics of the spot price. Their models differ with respect
to the stochastic process assumed for the spot price, the number of factors
considered, and the way the deterministic component (such as a trend) is
incorporated into the model.

The one-factor models assume that interest rates are constant, making
futures and forward prices equal. This implies that these prices always move
in the same direction (which is something contradicted by the data). Although
the constant interest rate assumption simplifies the calculations, it makes the
results relative to the long maturity contracts less accurate. Their one-factor
model for the logarithm of spot prices is:

lnPt = f(t) + Yt

where f(t) is a deterministic function of the time (totally predictable) that
models seasonality and Yt is an Orstein-Uhlenbeck process with a long term
mean equal to zero.

Lucia and Schwartz’s two-factor model allows for a long term equilibrium
price level and a short term mean reverting component, in the spirit of the
Schwartz and Smith model.2

lnPt = f(t) +Xt + εt

dXt = −κXtdt+ σXdZx

dεt = µεdt+ σεdZε

2The model developed by Schwartz and Smith (2000), and which we follow in this work
suggests that besides mean reverting, some commodity present uncertainty about the equi-
librium price to which prices revert. Their model then captures both mean reverting and
uncertainty effects. Further details of the model’s structure can be found on Chapter 2,
while its estimation is addressed in Chapter 3.
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The idea behind mean reverting processes is that when commodity prices
are higher than some long-run mean or equilibrium price level, the supply of
the commodity will increase because producers will have incentives to produce
more, or enter the market. That movement will end by increasing supply and
putting downward pressure on prices until they return to the equilibrium level.
The exact opposite happens when prices are bellow their long-run equilibrium
level. Therefore, even with the presence of short-run disequilibriuns there is a
natural correction movement inherent to commodity prices.

Hikspoors and Jaimungal (2007) also propose a two-factor model in order
to correct some of the deficiencies of the one-factor models. The authors build
mean-reverting spot price processes, with and without a jump process. Hik-
spoors and Jaimungal classify their model as a perturbation on the standard
one-factor mean-reverting approach, improving the fit of forward price curves
without loosing tractability.

Instead of modeling the second factor as a geometric Brownian motion
in the spirit of Pilipovic (1997), the authors choose the mean-reverting level
of the first factor to revert to a second long-run mean. This second factor’s
perturbation does not change the stationarity behavior presented by the one-
factor model. The spot-prices are defined as:

S
(i)
t = exp(g(i)

t +X
(i)
t ), i = 1, 2

g
(i)
t = A

(i)
0 +

n∑
k=1

(A(i)
k sin(2πkt) +B

(i)
k cos(2πkt))

dX(i)
t = βi(Y

(i)
t −X

(i)
t )dt+ σ

(i)
X dW (i)

t

dY (i)
t = αi(φi − Y (i)

t )dt+ σ
(i)
Y dZ(i)

t

where g(i)
t models seasonal movements, βi controls the speed of mean reversion

of X(i)
t to the stochastic long-run level Y (i)

t , αi controls the speed of mean-
reversion of the long-run level Y (i)

t to the target long-run mean φi, and σ(i)
X and

σ
(i)
Y are the volatility parameters that control the size of fluctuations around

the means. Finally,
dW (1)

t dW (2)
t = ρ12dt

and
dW (i)

t dZ(i)
t = ρidt, i = 1, 2.

The calibration process is an alternative to the Kalman Filter, and it is per-
formed in two-steps. First the authors calibrate the pure diffusion two-factor
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model to market futures prices, resulting in the risk-neutral model parameters.
Next, they reference a two-stage nonlinear least squares method to estimate
the real-world measures and extract the implied market prices of risk. This
method is commonly used in interest rate models calibration, and when ap-
plied to NYMEX Light Sweet Crude Oil data produced realistic and stable
parameters.

We illustrate the difference between one factor and two factor models in
Figures 2.1 and 2.2. We plot a five-year term structure of futures prices,
using the futures equation of Schwartz (1997) for the one-factor model and of
Schwartz and Smith (2000) for the two-factor model. The expression for the
Schwartz (1997) model is:3

F (S, T ) = exp[e−κ(T−t)X + (1− eκ(T−t))α∗ +
σ2

4κ
(1− e−2κ(T−t))],

while the expression for Schwartz-Smith’s model is:

F (S, T ) =exp
[
e−κ(T−t)X0 + Y0 + µ∗(T − t)− (1− e−κ(T−t))

λX
κ

]
=exp

[
1
2

(
(1− e−2κ(T−t))

σ2

2κ
+ η2(T − t) + 2(1− e−κ(T−t))

ρση

κ

)]
.

We use the parameters in Table 4.1 to generate the data with which we
shall build both term structures. The parameter α∗ of the 1997 Schwartz
model corresponds to −λx/κ in the Schwartz and Smith 2000 model.

In Figure 2.1, we can see that the one-factor model is not able to model
the long end of the curve, resulting in flat prices for the longest maturities.
This problem is corrected by the two-factor model, which is able to model the
long end movements of the futures curve. The price surface for the two-factor
model is shown in Figure 2.2.

Finally, in figure 2.3 we plot the absolute difference between the prices
generated by the one and two-factor models. Note that there is almost no
difference for the short maturities. This feature changes when we consider
longer contracts, making the difference clear.

3Note that this futures equation is equivalent to the exponential of the log futures prices
shown in equation 2.6
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Figure 2.1: Futures prices generated by the Schwartz 1997 one-factor model

Figure 2.2: Futures prices generated by the Schwartz and Smith 2000 two-
factor model
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Figure 2.3: Absolute difference between futures prices generated with one and
two factor models
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Chapter 3

The Schwartz and Smith

Model

3.1 Some basic results

In this chapter, we study in detail the derivation of the Schwartz and Smith
model, which is our working model.

Schwartz and Smith develop a two-factor model of commodity prices that
allows mean-reversion in short-term prices and uncertainty in the equilibrium
level to which prices revert.

They model long-run prices as a Brownian motion, reflecting expectations
of the exhaustion of existing supply, improving technology for the production
and discovery of the commodity, inflation, as well as political and regulatory
effects.

The short-term prices reflect the expected vanishing of the difference be-
tween spot and equilibrium prices. They are modeled as a Ornstein-Uhlenbeck
process. These deviations can be interpreted as short-term changes in demand,
resulting from weather changes of intermitent supply disruptions, which are
eased by the adjustment of inventory levels made by market participants.

While from an economical point view, as mentioned in Section 2.1, the risk
premium and the convenience yield views are quite different, it is interesting
to notice that the model in Schwartz and Smith (2000) can be viewed also as
a sthocastic convenience model. More precisely, it was shown in their work
that the long/short term is equivalent to the stochastic convenience model in
Gibson and Schwartz (1990), and a dictionary between the two models was
also presented. It was also argued in Schwartz and Smith (2000) that the
long/short term model leads to results that are more easily interpreted.

We begin by deriving the model in the physical probability measure P and
then move to the risk-neutral measure P̃.
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Consider a probability space (Ω,F ,P). The set Ω represents all possible
outcomes for a financial variable in the future. The set of all possible scenarios
has an actual probability measure P, which we sometimes call “real world”
measure. F is a σ-algebra, which is the collection of subsets of Ω whose
probability is defined, and P is a probability measure.

Our model equations are:

dXt = −κXtdt+ σdWX
t , (3.1)

dYt = µdt+ ηdW Y
t , (3.2)

St = exp(Xt + Yt). (3.3)

Equation (3.1) describes the short-term deviations in prices which reverts
toward zero, following an Orstein-Uhlenbeck (OU) process. The coefficient κ
describes the rate at which the short-term deviations are expected to vanish,
while σ is the volatility parameter for the short-term process.

In equation (3.2), the process Yt describes the equilibrium level of prices as
a standard Brownian motion with a drift parameter µ and volatility parameter
η. The changes in this process denote fundamental changes that are expected
to persist.

Finally, St models the joint dynamics of the processes. In order to keep
the model as simple as possible, and following Schwartz and Smith (2000), we
choose not to include seasonal adjustments (although it can be incorporated
by including deterministic time-depending constants).

To find the solution for the process Xt, we apply Ito’s Lemma using
f(x, t) = ektX and integrate both sides of the resulting equation. That is:

d(ektXt) = kektXtdt+ ekt[(−kXtdt+ σdWX
t ].

Integrating both sides from t to T :

ekTXT − ektXt = σ

∫ T

t
eksdWX

s

ekTXT = ektXt + σ

∫ T

t
eksdWX

s .

I.e,

XT = e−k(T−t)Xt + σe−κT
∫ T

t
eksdWX

s . (3.4)

17



The first and second conditional moments of (3.4) can be calculated as
follow:

E[XT |Xt] = E
[
e−k(T−t)Xt + σe−κT

∫ T

t
eksdWX

s |Xt

]

which yields,
E[XT ] = e−k(T−t)Xt. (3.5)

Note that the only stochastic part in (3.4) is
∫ t

0 e
ksdWX

s , so Xt will have
the integral’s distribution. As a Brownian motion is normally distributed, so
are

∫ t
0 e

ksdWX
s and Xt. (see Theorem 4.4.9 Shreve (2004)).

Besides, also by Theorem 4.4.9 in Shreve (2004), I(t) =
∫ t

0 e
ksdWX

s has zero
mean and variance

∫ t
0 e

2ksds. Therefore we have that:

Var[XT ] = Var
[
σ

∫ T

t
eksdWXs

]
= σ2e−2κT

∫ T

t
e−2ksds

Hence,

Var[XT ] = (1− e−2k(T−t))
σ2

2k
. (3.6)

For the process dYt, we simply integrate both sides of equation (3.2) from
t to T yielding

YT = Yt + µ(T − t) + η

∫ T

t
dW Y

t , (3.7)

from which
E[YT ] = Yt + µ(T − t), (3.8)

and
Var[YT ] = η2(T − t) (3.9)

are directly calculated.
We assume that the processes are correlated and have a correlation coef-

ficient ρXY . That is, we assume that dWX
t dW Y

t = ρXY dt. We can calculate
their covariance as

COV[Xt, Yt] = E[(Xt − E(Xt))(Yt − E(Yt))].
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Using equations (3.4) and (3.7), we have that:

COV[Xt, Yt] = E
[
σe−κT

∫ T

t
eksdWX

s η

∫ T

t
dW Y

s

]
= e−κTσηE

[∫ T

t
eksdWX

s

∫ T

t
dW Y

s

]
= σe−κT ηρ

∫ T

t
eksds

= (1− e−κ(T−t))
σηρ

k
.

Therefore the variance-covariance matrix for the processes is

COV(Xt, Yt) =

 (1− e−2k(T−t))σ
2

2k (1− e−κ(T−t))
σηρ

k
(1− e−κ(T−t))

σηρ

k
η2(T − t)

 . (3.10)

3.1.1 Brief Review of Risk Neutral Pricing

Let (Ω,F ,P) be a complete probability space. For purposes of derivative
pricing, we work with a risk-neutral probability measure P̃,1 but both measures
P and P̃ are equivalent. That is, they agree on what is possible and what is
not. Formally:

Definition 3.1.1. Let Ω be a nonempty set and F a σ-algebra of subsets of
Ω. Suppose that P and P̃ are two probability measures on (Ω,F). P̃ is said
to be absolute continuous with respect to P on the σ-algebra F , and we write
P̃ << P, if for all A ∈ F ,

P[A] = 0⇒ P̃[A] = 0

If both P̃ << P and P << P̃ hold, we say that P̃ and P are equivalent, and we
shall write P̃ ≈ P.

The risk-neutral or risk-free measure imposes no-arbitrage restrictions for
the calculated price. We define arbitrage as:

Definition 3.1.2. An arbitrage is a portfolio value process Xt satisfying X0 =
0 and also satisfying, for some time T > 0,

P[Xt ≥ 0] = 1, P[XT > 0] > 0.

1A probability measure eP is called risk neutral because when used for asset valuation its
formula does not take into account any risk aversion, in contrast to valuation in terms of
expected utility. For more on utility pricing, see Section 2.3 of Föllmer and Schied (2004).
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That is, an arbitrage is a way of trading where one starts with zero cap-
ital, and at time T has not lost any money. Furthermore, there is a positive
probability of having made money.

A very important theorem, called the First Fundamental Theorem of Asset
Pricing, relates risk neutral measures and arbitrage opportunities. Following
Shreve (2004), we have:

Theorem 3.1.1. If a model has a risk-neutral probability measure, then its
does not admit arbitrage.2

Proof. Define a discount process, or discount factor as

DT = e−
R T
0 r(t)dt. (3.11)

If a market has a risk-neutral probability measure P̃, then every discounted
portfolio value process is a martingale under P̃. In particular, every portfolio
value process satisfies Ẽ[DTXT ] = X0. Let XT be a portfolio value process
with X0 = 0. Then we have

Ẽ[DTXT ] = 0.

Suppose that XT satisfies P [XT < 0]. Since P̃ is equivalent to P, we have also
P̃[XT < 0] = 0. This, together with Ẽ[DTXT ] = 0, implies

P̃[XT > 0] = 0,

for otherwise we would have

P̃[DTXT > 0] > 0,

which would imply
Ẽ[DTXT ] > 0.

Because P and P̃ are equivalent, we have also P[XT > 0] = 0. Hence, Xt is
not an arbitrage. In fact, there cannot exist an arbitrage since every portfolio
value process Xt satisfying X0 = 0 cannot be an arbitrage.

This change of measures from the “real world” measure to the risk neutral
measure is performed with the help of a random variable Z, and is guaranteed
by the Girsanov Theorem. Before we state this theorem, we give some basic
definitions.

Definition 3.1.3. Let (Ω,F ,P) be a probability space. For each w ∈ Ω,
suppose there is a continuous function Wt, t ≥ 0, that satisfies W0 = 0 and

2With additional assumptions, the converse is also true. See Föllmer and Schied (2004).
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that depends on w. Then, Wt, t ≥ 0, is a Brownian motion if for all 0 = t0 ≤
t1 ≤ · · · ≤ tm the increments

Wt1 = Wt1 −Wt0 ,Wt2 −Wt1 , . . . ,Wtm −Wtm−1

are independent and each of these increments is normally distributed with

E[Wti+1 −Wti ] = 0,

Var[Wti+1 −Wti ] = ti+1 − ti.

Definition 3.1.4. A filtration for the Brownian motion Wt is a collection of
σ-algebras of Ft such that

1. Fs ⊂ Ft, for s < t

2. Wt is Ft-measurable

3. Wt −Ws is independent of Fs, for 0 ≤ s < t

Definition 3.1.5. A stochastic process Xt is said to be “adapted” to Ft, if Xt

is Ft-measurable, for every t.

Now we are ready to state Girsanov’s Theorem for a simple Brownian and
a new probability measure P̃. The proof of this theorem can be found at
Shreve (2004).

Theorem 3.1.2. (Girsanov) Let Wt, 0 ≤ t ≤ T , be a Brownian motion on
(Ω,F ,P), and let Ft, 0 ≤ t ≤ T , be a filtration for Wt. Let θt, 0 ≤ t ≤ T , be
an adapted process. Then define

Z(t) = exp
(
−1

2

∫ t

0
θ2(u)du−

∫ t

0
θ(u)dWu

)
, (3.12)

and assume E
[∫ t

0 θ
2(u)Z2(u)du

]
<∞.

We define a new probability measure P̃ as P̃(A) =
∫
A Z(T )dP. Then:

E[Z(T )] = 1 and (3.13)

W̃t = Wt +
∫ 1

0
θ(u)du. (3.14)

It is important to say that if a model allows multiple risk-neutral measures,
they might lead to different prices for a derivative security. Since it is still a
matter of debate as how to correctly price in incomplete markets with multiple
measures, it is important to have a criteria to guarantee that the risk-neutral
measure is unique.
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With a unique risk-neutral measure, it is possible to know the present value
of the future payments of a derivative security. This duty is performed by a
discount function as defined in equation (3.11) In other words, the price or
value at time t of any derivative that pays V (T ) at time T is

V (t) =
1

D(t)
Ẽ[D(T )V (T )|Ft].

Where Ẽ is the expected value taken with respect to the risk neutral measure.
Formally we can say that:

Definition 3.1.6. A derivative is replicable if there is a trading strategy X(t)
such that X(T ) = V , where V is a payoff received at the maturity time T .

Claim 1. Any derivative defined by a Ft-measurable random variable V is
replicable, and the value at time t of any replicating portfolio X(t) is

X(t) = Ẽ[e−
R T

t r(u)duV (t)|Ft], (3.15)

where r(t) is an adapted (Ft-measurable) interest rate process and e−
R t
0 r(u)du

is the discount process. We should also note that if a claim is replicable, then
its price is the same in all risk-neutral measures.

The Second Fundamental Theorem of Asset Pricing guarantees the unique-
ness of the risk neutral measure, if the market is complete. That is, if all
contingent claims are replicable. Formally:

Definition 3.1.7. An arbitrage free model is called complete if every contin-
gent claim is replicable.

Theorem 3.1.3. Consider a market that has a risk-neutral probability mea-
sure. The market is complete if and only if the risk-neutral measure is unique.

Proof. See Shreve (2004).

We rely on the risk neutral framework that we have built, to formally
define futures prices.

Definition 3.1.8. The futures price of an asset whose value at time T is S(T)
is given by

FutS(t, T ) = Ẽ[S(T )|Ft], 0 ≤ t ≤ T.

Recall that St = exp(Xt + Yt). It is immediate that the log of the future
spot price is normally distributed with

E[ln(St)] = e−κ(T−t)Xt + µ(T − t). (3.16)
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and

Var[ln(St)] = (1− e−2κ(T−t))
σ2

2κ
+ η2(T − t) + (1− eκ(T−t))

σηρ

κ
. (3.17)

3.1.2 Risk Neutral Model

We now apply the background of risk neutral pricing we reviewed in the previ-
ous section to derive a risk neutral version of the Schwartz and Smith model.

The risk-neutral version of the model can be written as:

dX∗t = (−κX∗t − λX)dt+ σdW̃X
t , (3.18)

dY ∗t = (µ− λY )dt+ ηdW̃ Y
t . (3.19)

where dW̃Xt are dW̃ Y t are increments of Brownian motions with

dW̃X
t dW̃ Y

t = ρXY dt.

The market price of risk settings adopted by Schwartz and Smith is fairly
standard, assuming constant market prices of risk. The risk premiums λx and
λy take the form of adjustments to the drift, being subtracted from the drift
processes X and Y.

Schwartz and Smith explain that, if we assume constant correlations be-
tween changes in the state variables and the aggregate wealth of the economy,
we would arrive at the same result of a constant drift reduction to the market
prices of risk.

A possible generalization of this constant subtraction assumption is also
pointed by the authors. They suggest that the short term risk premium to be
modeled as a linear function of the short-term deviations. That is:

λX = βXt + α. (3.20)

This functional form would allow for the possibility that the short-term risk
premium would be higher (or lower) in periods when spot prices are higher
than the equilibrium level. Substituting equation (3.20) into (3.18) would
yield:

dX∗t = −[(κ+ β)X∗t + α]dt+ σdZ̃Xt ,

and using that κ̃ = κ+ β, we would have that:

dX∗t = (−κ̃X∗t − α)dt+ σdZ̃Xt .

Returning to the risk-neutral model’s settlement, the solutions for its equa-
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tions are given by:

X∗T = X∗t e
−κ(T−t) − λX

κ
eκt + σe−κT

∫ T

t
eκsdW̃X

s , (3.21)

and

Y ∗T = Y ∗t + (µ− λY )(T − t) + η

∫ T

t
dW̃ Y

s , (3.22)

which were calculated using Ito’s Lemma similarly to what was done in Section
3.1.

The model’s moments were also calculated in the same way as previously.
The first conditional moments are given by:

Ẽ(XT ) = X∗t e
−κ(T−t) − λX

κ
eκt (3.23)

and
Ẽ(YT ) = Y ∗t + µ∗(T − t). (3.24)

where µ∗ = (µ− λY ).
The variance-covariance matrix is exactly the same as in (3.10). So we

have that
COV(X∗, Y ∗) = COV(X,Y ).

Note that the change from the physical measure P to the risk-neutral P̃
changes the mean rate of return of the stochastic processes, (see equations
(3.5) and (3.23) for Xt and (3.8) and (3.24) for Yt, but not the volatility.

As remarked by Shreve (2004), the volatility tells us which price paths are
possible. After the change of measure, we are still considering the same set of
stock price paths, but we have shifted their probability.

Finally, we address futures prices. Under the risk neutral process, the log
of the future spot price, ln(St) = Xt + Yt is normally distributed with

Ẽ[ln(St)] = X∗t e
−κ(T−t) − λX

κ
eκt + Y ∗t + µ∗(T − t)

and
Ṽar(ln(St)) = Var(ln(St)).

Now that we have obtained the moments in their risk neutral framework,
we are ready to obtain the futures prices. Those prices will be the focus of
our attention in the subsequent chapters.

Recall that futures prices are defined as the expected future spot price
under the risk neutral measure. The market price at time t for a futures
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contract with time T until maturity is given by

ln(Ft,T ) = ln(Ẽ(St,T )).

Then, we have that:

ln(Ft,T ) =Ẽ[ln(St,T )] +
1
2

Ṽar[ln(St,T )]

=e−κ(T−t)X∗t + Y ∗t + µ∗(T − t)− λX
κ
eκt

+
1
2

[
(1− e−2κ(T−t))

σ2

2κ
+ η2(T − t) + 2(1− e−κ(T−t))

ρση

κ

]
,

i.e,
ln(Ft,T ) = e−κ(T−t)Xt + Yt +A(T, t), (3.25)

where

A(T, t) =µ∗(T − t)− (1− e−κ(T−t))
λX
κ

+
1
2

[
(1− e−2κ(T−t))

σ2

2κ
+ η2(T − t) + 2(1− e−κ(T−t))

ρση

κ

]
.
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Chapter 4

Calibration

4.1 Discretization and Parametrization of the Stochas-

tic Processes

In spite of its continuous-time representation, the two-factor model has to be
estimated with real data, therefore, in discrete time. We must then use some
discretization scheme in order to give a discrete version of the continuous-time
equations.

As we have seen in Chapter 3, the Schwartz and Smith model consists of a
set of stochastic differential equations with two correlated Brownian motions
WX
t and W Y

t .
For computational purposes, it is useful to consider discretized Brownian

motions, where Wt is specified at discrete t values. We must set δt = T/N for
some positive integer N and let Wj denote Wtj with tj = jδt. Using W0 = 0,
(recall from the definition of the Brownian motion that W0 = 0) we have that:

Wj = Wj−1 + dWj for j = 1, 2, . . . , N, (4.1)

where each dWj is an independent random variable of the form
√
δtN(0, 1).

Consider the SDE

dXt = f(Xt)dt+ g(Xt)dWt, X(0) = X0 , 0 ≤ t ≤ T. (4.2)

Integrating (4.2) from 0 to t we have that:

Xt = X0 +
∫ t

0
f(Xs)ds+

∫ t

0
g(Xs)dWs, 0 ≤ t ≤ T, (4.3)

where f and g are scalar functions, and X0 is the initial condition.
As (4.2) satisfies the conditions of the Variation of Constants Theorem

(see Korn and Korn (2000)), the existence and uniqueness of its solution are
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guaranteed.
The second integral on the right-hand side is a stochastic integral, and dWs

is an increment to a Brownian motion. Note that Xt is a random variable for
each t.

The stochastic integral can be approximated by:

N−1∑
j=0

gtj (Wtj+1 −Wtj ),

where we integrate g with respect to the Brownian motion.
The first step to apply a numerical method to (4.4) is to discretize the

interval [0, T ]. Set then ∆t = T/L for some positive integer L, and τj = j∆t.
Following Higham (2001), we shall denote the numerical approximation Xτj

as Xj .
Considering the step τj , we integrate (4.2) from τj−1 to τj , such that:

Xj = Xj−1 +
∫ τj

τj−1

f(Xs)ds+
∫ τj

τj−1

g(Xs)dWs. (4.4)

A discretization scheme is important when a stochastic differential equa-
tion (SDE) cannot be solved explicitly. It provides a grid from which we
will simulate the trajectory of the SDE. The Euler-Maruyama (EM) method
approximates (4.4) as:

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)(Wτj −Wτj−1), j = 1, 2, . . . , L (4.5)

Further issues regarding the order of convergence can be found at Higham
(2001).

We apply the EM method to the traditional price SDE:

dXt = λXtdt+ µXtdWt, X0 = 0,

whose solution is given by:

Xt = X0exp
[(
λ− 1

2
µ2

)
t+ µWt

]
, (4.6)

were λ and µ are real constants.
In figure 4.1 we show the results of the discretization of (4.6) computed

using a discretized Brownian path over [0,1], δt = 2−8, λ = 2, µ = 1 and
10,000 observations. The Matlab codes for this approximation can be found
in the Appendix. We can see that the results obtained with the EM method
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are good, and that the Brownian path is well approximated.

Figure 4.1: Discretization using the Euler-Maruyama method

Although we can find closed-form solutions to the integrals in our model,
the discretization is useful for representing the model equations as a series of
discrete time integrals and calculating its likelihood functions.

We will measure time in years, and the model is intended to describe prices
in a daily basis. Therefore ∆t = 1/252, and every observed series is Sn,∆t,
0 ≤ n ≤ N , where N is the number of days in the data sample.

The discrete time versions of equations (3.21), (3.22) and (3.3) can be
written as:1

Xj = κθ∆t+ (1− k∆t)Xj−1 + σε1j , (4.7)

Yj = µ∆t+ Yj−1 + ηε2j , (4.8)

and Sj = exp(Xj + Yj), (4.9)

where
ε1j = (WX

τj −W
X
τj−1

) and ε2j = (W Y
τj −W

Y
τj−1

).

It is easy to see that equation (4.7) is equivalent to a first order autore-
gressive, AR(1), process and equation (4.8) is a random walk plus drift (RW).

An AR(1) is a stochastic process which satisfies the following difference
1Note that using the discretization scheme on equation (4.7) or (3.4) yields the same

results for small ∆t and T ≤ O(∆t−1). We chose to work with (4.7) for notational simplicity.
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equation:
Xj+1 = φ0 + φ1Xj + uj

where uj is a white noise sequence with zero mean, variance σ2 and E(ujus) =
0 for u 6= s. Hamilton (1994) shows that when |φ1| < 1 the effects of the u’s
for X die out over time, so there is a covariance-stationary process for Xt. The
stationarity property of the AR(1) is what makes it suitable for representing
a mean-reverting process in discrete time.

However, as remarked by Hamilton (1994), when |φ1| ≥ 1, the effects of u’s
for X accumulate rather than die out over time, and there is no covariance-
stationary process for Xt with finite variance that satisfies the AR(1) equation.

When φ1 = 1, the process is defined as a random walk, and when consid-
ering a constant term, as a random walk plus drift. The latter can be written
as:

Yj+1 = δ + Yj + vj .

Using the general form of the AR(1) and of the RW, we can parametrize
these processes for our model as follows:

For the discrete-time version of the AR(1),

Xj+1 = θ(1− eκ∆t) + e−κ∆tXj + σe−k∆t(W ∗j+1 −W ∗j ),

we have the following parameters

φ0 = θ(1− eκ∆T ),

φ1 = e−κ∆T ,

Var(un) =

√
σ2
X2κ

(1− e−2κ∆t)
,

where σ2
X is the variance of Xt given by equation (3.6).

From these relations, we have that:

θ = −λX
κ

(4.10)

Note that κ∗ stands for −κ in equation (3.18).
We discretize the Random Walk as

Yj = δ + Yj−1 + εYj , (4.11)

where
δ = (µ− λY )∆t (4.12)
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and
εYj = vjη

2∆t. (4.13)

The parameters of the RW can be estimated by Maximum Likelihood, and
the functional form of its estimators will be derived in the next section. It is
important to note that in our methodology we do not need to estimate λX
and λY . They are obtained by the relations shown in equations 4.12 and 4.10,
using the estimated parameters.

4.2 Overall Strategy

In this section, we explain the overall strategy for estimating the model’s
parameters. We start by noting that we have a data set of futures prices
which represent two processes (Xt and Yt) which are not observable. Our aim
is to recover these processes from the observable futures term structure.

One possible approach would be to represent our model in a state-space
form and estimate its parameters using the Kalman Filter. That is the tech-
nique used by Schwartz (1997), Schwartz and Smith (2000) and Barlow, Gusev
and Lai (2004).

Another possible method to recover spot prices from futures data, is the
use of nonlinear least squares as suggested by Hikspoors and Jaimungal (2007).
In this work we use a two-step approach similar to this one.

Figure 4.2 explains the overall strategy of our estimation algorithm, which
we now detail.

4.2.1 Hidden Processes Calibration

As addressed earlier, the main difficulty in implementing commodity models
lies in the non-observance of spot prices. Our aim is to obtain an algorithm
that recovers these hidden processes in a two-step approach using Non Linear
Least Squares and Maximum Likelihood estimation.

Using a given set of parameters, we shall first implement the Non Linear
Least Squares method in order to find candidates for the hidden processes.
We apply this method to the futures data matrix and solve the following
optimization problem for X.

Our aim is to find Xi, where X = argmin g(X,Y,Θ), where X =
(Xi), Y = (Yi) for i = 1, 2, . . . , N , and Θ is the parameter vector. So
we have that:
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Figure 4.2: Estimation strategy

min g(Xi, Yi,Θ) :=
1
2

N∑
i=1

M∑
j=1

(FutTj ,ti − F̄ )2,

subject to Yi = ln(Si)−Xi,

(4.14)

where F̄ is the matrix of logarithms of the observed prices andFutT,t is the
logarithm of the futures price. That is:

ln(FT,t) = Xte−κ(Tj−ti) + Yt +A(Tj − ti), (4.15)

and

A(Tj − ti) =µ(Tj − ti)

+
1
2

[
σ2

2k

(
1− e−2k(Tj−ti)

)
+ η2(Tj − ti) +

2σηρ
k

(
1− e−k(Tj−ti)

)]
.
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Upon imposing Yi = ln(Si)−Xi into (4.15), and differentiating for Xi, we
have that:

∂g

∂Xi
=

N∑
j=2

[
Xie−k(Tj−ti) + (Si −Xi) +A(Tj − ti)− F̄

] (
e−k(Tj−ti) − 1

)
.

Setting the last expression equal to zero yields

N∑
j=2

(
e−k(Tj−ti) − 1

)2
Xi =

N∑
j=2

(
F̄ −A(Tj − ti)− Si

) (
e−k(Tj−ti) − 1

)
.

Hence,

Xi =

∑N
j=2

(
F̄ −A(Tj − ti)− Si

) (
e−k(Tj−ti) − 1

)∑N
j=2

(
e−k(Tj−ti) − 1

)2 (4.16)

To recover Y , we only need to use the restriction Yi = ln(Si)−Xi, remem-
bering that the shortest maturity futures contract are a proxy for the spot
prices.

Next, we estimate the parameters that govern this process Xi using a
maximum likelihood approach for the parameter κ. The estimation of κ will
be detailed in the next section. The other parameters of Xi are obtained from
κ using the change of measure equations shown before.

A similar likelihood approach is done for the parameters’ estimations of
the random walk process Yi. We estimate its mean and variance using tradi-
tional likelihood estimation methods, which shall be described in the following
Section.

4.2.2 Likelihood Functions and Parameter Estimation

We shall address now the model’s calibration. We shall start by posing the
parameter estimation problem and deriving likelihood functions for this pur-
pose.

Consider a random variable X that is normally distributed and has a vector
of parameters Θ = (µ, σ2), where µ is the mean and σ2 is the variance of X.
Its probability density function (pdf) is given by:

gΘ(X) =
1√
2πσ

exp
(
−(X − µ)2

2σ2

)
.

The likelihood function is defined as
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L(Θ;X) =
N∏
i=1

gΘ(Xi),

where N is the sample size. We can apply a positive monotonic transformation
to the likelihood function and write is natural logarithm as

`(Θ;X) = logL(Θ, X)

=
N∑
i=1

loggΘ(Xi)

=
N∑
i=1

log
[

1√
2πσ

exp

(
−(X − µ)2

2σ2

)]

= −N
2

log(2πσ)−
N∑
i=2

(
−(X − µ)2

2σ2

)
.

The Maximum Likelihood (ML) method chooses the value θ = θ̂ that
maximizes `(Θ;X).

In our model, X is an Orstein-Uhlenbeck (OU) process with conditional

mean e−k∆tXt and conditional variance (1− e−2k∆t)
σ2

2k
, where ∆t is the time

increment. However, in order to allow a more general estimation, we derive
the likelihood estimators considering a process that reverts to θ.2 Plugging
these expressions for mean and variance into the likelihood function yields the
following likelihood function for the OU process:

f(Xti , θ, κ, σ) =
1

√
2π

√
σ2

2κ
(1− e−2κ∆t)

exp

−(Xti − θ − (Xti−1 − θ)e−κ∆t)2

σ2

κ
(1− e−2κ∆t)

 .
Its log-likelihood is then given by:

`(X, θ, κ, σ) =− N

2
log(2π)− N

2
log
(
σ2

2κ

)
− 1

2

N∑
i=2

log(1− e−2κ∆t)− κ

σ2

N∑
i=2

(Xti − θ − (Xti − θ)e−κ∆t)2

2
σ2

2κ
(1− e−2κ∆t)

.

The first step to find the maximum likelihood estimators θ̂,κ̂ and σ̂ is
to obtain the first order conditions for the maximization problem of the log-
likelihood function. Therefore, the estimators must satisfy:

2In our estimations we show that θ is in fact very close to zero.
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∂`(X, θ, κ, σ)
∂θ

=
∂`(X, θ, κ, σ)

∂κ
=
∂`(X, θ, κ, σ)

∂σ
= 0,

Deriving the log-likelihood function and setting the gradient equal to zero
we have that:

∂`(X, θ, κ, σ)
∂θ

= −2κ
σ2

N∑
i=2

(Xti−1 − θ − (Xti − θ)e−κ∆t)(e−κ∆t)
1− e−2κ∆t

,

which yields

θ̂ =
N∑
i=2

Xti −Xti(e
−κ(T−t) − 1)

1− e−2κ∆t
(N − 1)

1− e−2κ∆t

1− e−κ∆t
. (4.17)

Also,

∂`(X, θ, κ, σ)
∂σ

= −n
σ

+
2κ
σ3

N∑
i=2

(Xti − θ − (Xti−1 − θ)e−κ(T−t))2

1− e−2κ∆t
.

Hence,

σ̂ =

√√√√2κ
N

N∑
i=2

(Xti − θ − (Xti − θ)e−κ∆t)2

1− e−2κ∆t
. (4.18)

Note that expressions (4.17) and (4.18) show that the estimates for θ̂ and
σ̂ are functions of κ. We define that θ̂ = f(κ̂) and σ̂ = h(θ̂, κ̂).

There would then be two approaches to obtain maximum likelihood esti-
mates for the parameters. The first implies solving the system given by f(κ̂),

h(θ̂, κ̂) and
∂`

∂κ
= 0, which would be solved numerically as it does not have a

closed form solution. In the second approach we could substitute θ̂ = f(κ̂) and
σ̂ = h(θ̂, κ̂) directly into the likelihood function and maximize it with respect
to κ. This would lead to the following problem:

κ = argmaxV (κ),

where

V (κ) = −n
2

log
[
g(f(κ), κ)2

2κ

]
− 1

2

N∑
i=2

log
[
1− e−2κ(T−t)

]
. (4.19)

Note that V (κ) equals minus the log likelihood, so we can minimize −V (κ) or
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maximize V (κ). Note also that V (κ) should have a unique maximum.
Solving for κ̂ we can then obtain θ̂ = f(κ̂) and σ̂ = g(θ̂, κ̂), using only a one

dimensional search and requiring the evaluation of less complex expressions.
Finally, we address the estimation of the RW’s parameters. As mentioned

before, its estimators for the drift and variance parameters can be obtained
by Maximum Likelihood. The general form of the likelihood function can be
written as:

fXN ,XN−1,...,X1|X1
(XN , XN−1, . . . , X2|X1; Θ) =

T∏
i=2

fXN |XN−1
,

which for the random walk process takes the form:

logfYN ,YN−1,...,Y1|Y1
= −N − 1

2
log(2π)−N − 1

2
log(σ2)−

T∑
i=2

[
(Yti − δ − Yti−1)2

2σ2

]
.

Applying the first order conditions and setting the expressions obtained
equal to zero, we have that

∂log(L)(y|y1, θ)
∂δ

= −
N∑
i=2

[
(Yti − δ − Yti−1)

σ2

]
(−1) = 0

1
σ2

N∑
i=2

Yti − Yti−1 =
δ

σ2
(N − 1).

Thus,

δ̂ =
1

N − 1

N∑
i=2

(Yti − Yti−1). (4.20)

∂log(L)(y|y1, θ)
∂σ2

= −N − 1
2σ2

−
N∑
i=2

[
(Yti − δ − Yti−1)

σ2

] [
−

(Yti − δ − Yti−1)
2σ2

]
= 0

(N − 1)σ2 =
N∑
i=2

(Yti − δ − Yti−1)2.

Thus,

σ̂2 =
∑N

i=2(Yti − δ − Yti−1)2

N − 1
(4.21)

From the estimates in (4.20) and (4.21), we recover the parameters µ and
η using equations (4.12) and (4.13).
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κ σ θ λX η µ λY ρ

Initial Guess 1.5 0.28 0.1 0.15 0.14 -0.01 -0.03 0.3

Table 4.1: Initial Guess for model parameters

4.3 Numerical Implementation

In this section we address the numerical procedures used in order to validate
our methodology.

First we generate synthetic autoregressive and random walk processes, rep-
resenting Xt and Yt. We use Matlab’s normal random number randn generator
for this purpose. Each call to randn produces an independent “pseudorandom”
number from the N(0, 1) distribution.

Afterwards we create a matrix of log-futures prices with 24 maturities and
use our nonlinear least squares and maximum likelihood method to recover
the parameter vector from this matrix. The efficiency of our method will be
measured by its ability to recover the original parameters that generated the
log-futures matrix, and is addressed in the next section.

Following the common procedure in the literature, we keep the first matu-
rity contract for a proxy of the spot prices ln(S).

Using the new futures matrix F we start the parameter estimation proce-
dures. First we generate X using the first order conditions of the nonlinear
least squares problem stated in equation (4.16). We then recover Y using the
restriction

Yi = ln(Si)−Xi.

In the second part of the estimation we recover the parameters governing
the two processes. Due to the complex nature of the optimization problem
involving the mean reverting process, we use different approaches for each of
the processes X and Y. For the parameters’ estimation of process X we use
the optimization problem described by equation (4.19).

We input the initial values from table 4.1 based on Schwartz and Smith
(2000), and define the error tolerance to 10−6.3 If the difference between the
estimated parameters in two consecutive round of estimations is smaller than
the 10−6 tolerance, the estimation finishes and we compute the estimation
error, which is the difference between the initial guesses and the estimated
values. Otherwise, there is another iteration with an estimation round per-
formed.

During the iteration process, we solve the optimization problem in (4.19)
3We discuss why we use this value in the next Section.
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using Matlab’s function “fminbnd”. This command minimizes a single-variable
bounded nonlinear function in a given interval. Our inputs are the functional
form in (4.19) and an upper and lower bound for X. The bounds we initially
considered for X are 0.001 and 5.

Our aim is to estimate the parameters κ, σ and θ for the mean reverting
short-term process and η and µ for the long term geometric Brownian motion.

The risk neutral parameters λX and λY are recovered from θ and κ by
equations

λX = −θκ (4.22)

and

λY = µ− µ∗ (4.23)

where µ∗ is the United State’s Treasuries risk free interest rate.
The random walk parameters µ and η are recovered by traditional maxi-

mum likelihood estimates. The estimators for the drift and error variance of
the random walk are given by equations (4.20) and (4.21). We have then that:

µ = λY +
δ

∆t
,

and

η =

√
σ2
Y

∆t
.

4.4 Estimation Results

As mentioned before, the first results from our algorithm are obtained with
the synthetic data. We generate a matrix of futures prices F using the initial
guesses in Table 4.1. Then, we apply our algorithm to estimate the parame-
ters of X and Y , and compare the estimate results with the true values that
generated the data.

We define the estimation error as the difference between the known pa-
rameter value shown in Table 4.1 and the ones obtained from the algorithm.
If the estimation error is small and the estimates robust to different initial
guesses, it is natural to expect that the algorithm will converge when applied
to real data.

We display parameters estimates, estimation and iteration errors for sam-
ples of 1,000, 3,000, 10,000, 30,000 and 65,000 observations.

From the results obtained, we can see that the parameters’ estimates for
κ, σ and η are the most accurate ones. However, the estimates for θ and µ are
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N = 1, 000
Toler. κ θ σ η µ n. iter

True Values 1.5 0.1 0.28 0.14 -0.01
Param. Est. 10−6 1.8670 -0.0720 0.2700 0.1415 0.0003 4

Estim. Error -0.3670 -0.0720 0.0100 -0.0015 -0.0103

N = 3, 000
Toler. κ θ σ η µ n. iter

True Values 1.5 0.1 0.28 0.14 -0.01
Param. Est. 10−6 1.6188 0.0595 0.2709 0.2130 0.0005 4

Estim. Error -0.1188 -0.0595 0.0091 -0.0730 -0.0105

N = 10, 000
Toler. κ θ σ η µ n. iter

True Values 1.5 0.1 0.28 0.14 -0.01
Param. Est. 10−6 1.6695 -0.0791 0.2719 0.1472 -0.0002 4

Estim. Error -0.1695 0.1791 0.0081 -0.0072 -0.0102

N = 30, 000
Toler. κ θ σ η µ n. iter

True Values 1.5 0.1 0.28 0.14 -0.01
Param. Est. 10−6 1.5761 -0.0489 0.2779 0.1362 -0.0002 4

Estim. Error -0.0761 0.1489 0.0021 0.0038 -0.0100

N = 65, 000
Toler. κ θ σ η µ n. iter

True Values 1.5 0.1 0.28 0.14 -0.01
Param. Est. 10−6 1.4987 -0.0771 0.2822 0.142 0.0000 5

Estim. Error 0.0013 0.1771 -0.0022 -0.0020 -0.01

Table 4.2: Estimate Results - 1,000, 3,000, 10,000, 30,000 and 65,000 observa-
tions

Param. Est. stands for the estimated parameters, n. iter is the number of iterations,
Estim. Error is the estimation error, and Toler. is the tolerance.

also very good. The greater gains in error reduction appear when increasing
the sample size from 10,000 to 30,000 observations for θ, σ and η, while the
best results for κ are obtained for 65,000 observations. It is important to note
that even with small sample sizes (1,000 and 3,000) observations, the algorithm
was able to recover the original parameters with reasonable estimation errors.
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When we increase the sample size, the estimation errors decrease and we
recover the parameters more accurately. Figures 4.3, 4.4, 4.5, 4.6 and 4.7
show the behavior of absolute value of the estimation error for κ, θ, σ, η and
µ. The plots were obtained creating by simulating the processes X and Y with
65,000 observations, and evaluating the parameter estimates and their errors
in estimation steps of size 500. So, we plot 129 different observed errors for
each of the parameters.

Figure 4.3: Estimation error behavior - κ

Figure 4.4: Estimation error behavior - θ

Note from figure 4.3 that κ has the most erratic error convergence pattern.
There is a sharp reduction in the absolute error around a sample size of 10,500
followed by a region of quite higher errors until a sample size of 60,000, when
the absolute error decreases again and remains in a lower level.

The “U” behavior present in κ is also observed for σ at a sample size of
10,500, but with less intensity. For θ, η and µ, it occurs around a sample size
of 550.

This phenomenon may be due to the roundoff error in computations. As
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Figure 4.5: Estimation error behavior - σ

Figure 4.6: Estimation error behavior - η

Figure 4.7: Estimation error behavior - µ

mentioned by Press et al (1992), computers store numbers not with infinite
precision, but rather in some approximation. When data is stored in a floating
point (also called “real”) format, the arithmetic among numbers is not exact.

40



Therefore, when performing calculation with the floating numbers, we end up
adding a fractional error of at least εm.4

Roundoff errors accumulate with increasing amount of calculation. What
we can see in the absolute error plot, is a tradeoff between the error and the
number of observations added to the sample. For some parameters, the gain of
adding more data to the sample (from 10,500 to 30,500 observations) is offset
by the additional roundoff error introduced. The additional data only proves
to be efficient to reduce the estimation error instead of increasing it, after a
sample size of 30,500.

4.4.1 Choosing the best tolerance

We use a tolerance of 10−6 in the estimation process. This value is the optimal
stop criteria for the algorithm, based on tests using different initial guesses.
When two estimation steps are smaller than this tolerance, we say that the
algorithm has converged, and we call the difference between these steps of
“Iteration Error”.

We have tested several tolerances using different sets of true values for
generating the processes. The tolerances ranged from 10−2 to 10−12 in steps
of 10−2. For the sake of parsimony we display the results for one of these tests
for only two sets of initial guesses. Set 1: κ = 0.005, θ = 0.002, σ = 0.005,
η = 0.0004 and µ = 0.0001 and set 2: κ = 2, θ = 0.5, σ = 1.2, η = 1.4 and
µ = 0.5

Table 4.3 illustrates the kind of tests performed. For 10,000 observations
our algorithm converges within seven iterations, up to a tolerance of 10−8 for
the iteration error. While with 30,000 observations we obtain convergence up
to a tolerance of 10−6.

It is not worth-while choosing a tolerance lower than 10−6 because we can
still improve the iteration errors, and when using a tolerance higher than 10−6

the convergence (when obtained) requires a heavy computational burden.

4.5 Numerical Tests and Validation Exercises

We created a routine of tests in order to verify if our estimation procedure was
robust to other initial guesses apart from the one we used based on Schwartz
and Smith (2000).

In order to verify this, we generate a data set with a fixed parameter vector
and try to recover this vector with our estimation method, but using starting

4The machine accuracy, or simply εm, is the fractional accuracy to which floating-point
numbers are represented, corresponding to a change of one in the least significant bits of the
mantissa.
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N = 10, 000

Toler. κ θ σ η µ Iter.
True Val. 0.005 0.002 0.005 0.0004 0.0001
Estimates 0.2081 -0.0067 0.0001 0.0050 -0.0001

Est Error -0.2031 0.0087 0.0049 -0.0046 0.0002

It Error 1e-02 -6.10e-11 7.15e-04 3.62e-14 2.89e-12 -4.89e-07 3

It Error 1e-04 -6.12e-11 -2.73e-06 3.49e-14 1.75e-13 2.60e-09 4

It Error 1e-06 -8.23e-13 1.45e-08 3.50e-14 -8.06e-13 -2.55e-09 5

It Error 1e-08 -1.71e-13 -2.44e-10 1.28e-16 2.19e-13 7.25e-10 7

It Error 1e-10 -6.10e-11 6.88e-09 -2.46e-16 -6.35e-13 -2.10e-09 100

N = 30, 000

Toler. κ θ σ η µ Iter.
True Val. 2 0.5 1.2 1.4 0.5
Estimates 1.9241 1.9536 1.2139 2.3386 0.0014

Est Error 0.0759 -1.4536 -0.0139 -0.9386 0.4986

It Error 1e-02 -9.4e-03 2.43e-09 -4.19e-12 2.85e-06 8.198e-10 3

It Error 1e-04 -3.69e-09 -3.66e-07 3.72e-10 -3.09e-11 -6.51e-08 4

It Error 1e-06 -3.69e-09 -3.66e-07 3.72e-10 -3.09e-11 -6.51e-08 4

It Error 1e-08 5.53e-09 2.37e-07 3.94e-10 -3.37e-11 -3.34e-07 100

Table 4.3: Tolerance test for 10,000 and 30,000 observations
True Val. states for the true parameter values. Est Errors is the estimation error, and It

Error is the iteration error.

values significantly different from the ones used to generate the data.
There are two different tests performed. First, we disturb all parameters

in the same direction, creating a single gradient for all of them. Next, we
generate random disturbances with a uniform distribution in order to allow
each parameter to head to a different direction.

We created processes using 10,000, 30,000 and 65,000 observations that
can be seen in Figures 4.8, 4.9 and 4.10.
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In figures 4.9 and 4.10 we can see a better picture of the behavior of the
price processes X and Y . Note that the short-term process X has a stationary
behavior and can be seen as random shocks around zero, as stated in equation
(4.7).

The long term process Y behaves as expected for a geometric Brownian
motion. It has an erratic behavior that represents the structural shocks, such
as improving technology or discovery of a commodity.

Figure 4.8: X and Y processes - 10,000 observations

For test 1 we consider perturbations of 1, 5, 10, 15, 20, 50, 250, 300, 600
and 1000% of the original guesses. All data was generated with 1,000, 10,000
and 30,000 observations.

It is important to note that the algorithm converges to the same esti-

mated parameters for all initial guesses considered.
For test 2 we generate 150 different random shocks uniformly distributed

in the interval [0.8, 1.2], allowing each parameter to go to a different direction,
and then perturb each of them in the same amount of 1, 5, 10, 15, 20, 50, 250,
300, 600 and 1000% of the original guesses.

The results of this experiment can be seen in table 4.5. We disclose the
iteration errors for one random shock for each of the initial disturbances. To
see how the error behaves for all of the shocks we plot the iterative error for
each of the parameters against κ in table 4.6. The plots for the remaining
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Figure 4.9: X and Y processes - 30,000 observations

Figure 4.10: X and Y processes - 65,000 observations

parameters are shown in Appendix A.
As we can see from tables 4.4 and 4.5, the iteration error is very small for
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Perturbation κ θ σ η µ n. iter
N = 1.000

1% 5.9325e-10 -2.2675e-11 2.8907e-13 4.9444e-13 -1.0726e-10 5
5% 5.9309e-10 -1.1188e-10 6.0988e-12 -9.2545e-13 -2.3135e-10 5
10% 6.9500e-13 -1.9989e-11 2.8533e-14 -2.0134e-13 -5.5791e-12 5
15% 1.0076e-12 -1.7620e-10 3.3112e-14 2.3678e-13 9.3100e-11 5
20% 5.8985e-10 -1.8433e-10 2.3007e-13 -1.0090e-12 2.0484e-10 5
50% -1.1822e-09 -4.1515e-10 -6.4102e-12 1.6834e-12 -7.3711e-12 4
200% 5.4894e-12 6.0609e-09 -2.9976e-15 -3.8219e-14 -3.0179e-11 4
250% 5.9325e-10 5.7230e-09 3.1433e-12 1.8438e-13 -7.7243e-11 4
300% -6.0694e-10 5.0850e-09 -3.2226e-12 1.1498e-12 -7.0817e-11 4
600% -4.7948e-12 -3.8267e-10 2.1094e-15 -1.2157e-12 1.3567e-10 5

10000% 5.6457e-12 -5.5882e-10 -1.8208e-14 -9.0902e-13 1.5562e-10 5
N = 10, 000

1% 2.3670e-12 -4.9847e-07 6.7991e-11 -1.2335e-11 1.2601e-09 4
5% 1.0919e-09 -3.9759e-07 2.3135e-11 -4.1050e-12 -7.9858e-10 4
10% 1.8211e-09 -2.9591e-07 -2.1688e-11 4.1137e-12 7.2994e-10 4
15% -1.0936e-09 -2.1491e-07 2.2051e-11 -4.1084e-12 -2.3953e-10 4
20% 1.8214e-09 -1.4381e-07 3.4997e-11 -6.1812e-12 4.8950e-10 4
50% 1.0927e-09 8.7733e-08 2.3242e-11 -4.1188e-12 -7.2493e-10 4
200% 2.8639e-12 1.9378e-07 -1.1271e-11 2.0312e-12 -2.5109e-09 4
250% -2.9439e-12 2.1500e-07 -1.1415e-11 2.0632e-12 -1.0328e-09 4
300% 1.4544e-09 2.1790e-07 3.4747e-11 -6.1748e-12 -1.2711e-10 4
600% -3.6200e-10 2.6043e-07 3.3869e-11 -6.1890e-12 -3.8770e-11 4

10000% -3.6482e-10 3.3302e-07 -2.3725e-13 5.4678e-15 -1.1194e-10 4
N = 30, 000

1% -2.8000e-09 -4.1206e-10 -2.2479e-10 1.0572e-12 -2.1716e-10 4
5% 3.0479e-09 -8.6024e-10 2.8132e-10 -1.3250e-12 1.0485e-10 4
10% -2.4639e-10 -1.2308e-09 3.7967e-11 -1.8066e-13 -2.6056e-10 4
15% 1.2602e-09 -1.0083e-09 2.6070e-10 -1.2311e-12 -7.3939e-11 4
20% 2.5459e-09 -1.4718e-09 -3.5716e-11 1.7633e-13 1.4604e-10 4
50% -2.8001e-09 -1.9617e-09 -2.4352e-10 1.1466e-12 2.5638e-10 4
200% 2.2899e-09 -2.0578e-09 1.8794e-10 -8.8413e-13 -1.5517e-10 4
250% 5.1538e-10 -1.8375e-09 -5.4875e-11 2.6132e-13 -2.0853e-10 4
300% -3.3174e-09 -2.0758e-09 -1.6993e-10 7.9647e-13 -2.6000e-11 4
600% 31e-09 -2.4154e-09 -2.0371e-10 9.7028e-13 1.6014e-10 4
1000% 1.7844e-09 -2.5120e-09 3.8336e-11 -1.7747e-13 3.3644e-10 4

Table 4.4: Iteration errors - Perturbation on initial parameter guesses

all parameters and perturbations. The smaller error has the order of 10−12

and the largest of 10−7, showing that our algorithm is stable.
The best results are obtained for the parameters σ, µ and η for both

perturbation tests. However, they do not differ significantly from the results
for κ and θ.
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The relative superiority of the error order for η and µ over the others is
due to the nature of their optimization problem. The random walk estimators
have closed form solutions and can be easily obtained, while the estimates for
κ were obtained after an optimization routine, as there was no closed form
solution to the first order conditions in problem (4.19).

Perturbation κ θ σ η µ n. iter
N = 1.000

1% 1.5588e-13 7.6841e-07 -5.8137e-12 -1.1837e-12 -1.3874e-10 4
5% -1.1814e-09 -2.8537e-10 -9.3051e-12 1.9404e-12 2.0020e-10 5
10% 1.1448e-11 -8.6391e-11 -2.8537e-12 2.5069e-13 3.6887e-11 5
15% -5.9224e-10 -7.4801e-11 -3.1463e-12 1.6671e-12 -9.9810e-11 5
20% 6.0129e-10 -6.6498e-11 6.1151e-12 -1.7255e-12 -4.4398e-11 5
50% -2.0342e-11 -1.0245e-08 -2.9691e-12 1.0871e-12 6.7044e-11 4
200% -1.3846e-11 6.1162e-09 -1.8846e-14 6.5919e-13 -1.1103e-10 4
250% 5.8590e-10 6.1349e-09 2.6507e-13 5.2497e-13 -1.3818e-10 4
300% 1.7630e-09 5.8865e-09 9.5484e-12 -1.8963e-12 -1.6861e-10 4
600% 1.5588e-13 -6.1339e-10 -2.8658e-12 2.6648e-13 1.4188e-10 5
1000% 1.6573e-12 5.3872e-10 3.2687e-12 -1.6723e-12 2.1287e-10 5

N = 10, 000
1% -3.5824e-09 -5.0543e-08 -1.5187e-10 4.2077e-12 4.5406e-10 4
5% -1.0745e-08 2.3059e-07 -2.3130e-10 6.3195e-12 -1.0899e-09 4
10% 3.5820e-09 5.2839e-07 4.5236e-10 -1.2645e-11 -8.5655e-10 4
15% 4.7738e-09 7.8015e-07 2.6931e-12 2.7756e-17 -9.7599e-11 4
20% -4.7730e-09 9.9379e-07 -7.7797e-11 2.0987e-12 -1.9439e-09 4
50% -1.3131e-08 2.1060e-10 -1.5730e-10 4.1981e-12 -2.0405e-09 4
200% 4.7769e-09 1.2537e-09 -4.4745e-10 1.2631e-11 -6.1636e-10 4
250% -1.1942e-09 -4.3383e-09 -4.5071e-10 1.2635e-11 6.3791e-10 4
300% 2.3824e-09 -3.8130e-09 -1.4914e-10 4.2277e-12 4.8304e-10 4
600% -7.1585e-09 2.0419e-10 -5.2886e-10 1.4724e-11 -1.6384e-09 4
1000% -1.4784e-12 -2.8677e-09 -2.2540e-10 6.3286e-12 4.3748e-10 4

N = 30, 000
1% -1.5112e-09 1.3035e-07 8.6574e-12 7.7210e-13 -3.6861e-10 4
5% -1.9736e-10 1.4043e-07 -1.6828e-10 -1.3635e-11 5.2711e-10 4
10% 2.5352e-09 1.5255e-07 1.1496e-10 9.1974e-12 -2.2781e-10 4
15% 6.0871e-10 1.6578e-07 1.1424e-10 9.2376e-12 -3.1179e-10 4
20% -1.1224e-09 1.6928e-07 -4.7910e-11 -3.8302e-12 2.1726e-10 4
50% 8.1720e-10 1.9788e-07 -1.3084e-10 -1.0658e-11 9.2033e-11 5
200% 1.2249e-09 2.1444e-07 4.8476e-11 3.8727e-12 5.3027e-11 5
250% -5.1551e-10 2.2030e-07 -5.8102e-11 -4.6928e-12 -2.9875e-10 5
300% 2.4318e-09 2.2245e-07 1.4267e-10 1.1454e-11 -2.5337e-10 5
600% 7.1693e-10 2.2161e-07 -1.6890e-10 -1.3737e-11 -1.0010e-10 5
1000% 2.4198e-09 1.9912e-07 6.7814e-11 5.3883e-12 2.3257e-10 5

Table 4.5: Iteration errors - Random perturbation on initial parameter guesses
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The gain from increasing the number of observations from 1,000 to 10,000
and to 30,000 is not very significant in both tests, what again confirms the
stability of the algorithm. When considering the same perturbation size to all
elements of the parameter vector (test 1), we had some gain in parameters θ
and η. The error in θ decreased from an average order of 10−7 to 10−9, while
the one from η decreased from 10−12 to 10−13 in average.

The gain in the iteration error of κ and σ is not very obvious. In some
cases there was a decrease in the order of the error, such as in the 1000%
perturbation in σ in test 1, from 10−15 to 10−10. There was no significant
change in the iteration error for µ in either tests.

In test 2, for the random perturbations, the results do not differ much. We
have the same blur results for κ when passing from 10,000 to 30,000 observa-
tions and when increasing the perturbation size.

There is also not much change in the order of the error for σ and η when in-
creasing the perturbations or the number of observations. The same happened
to µ, κ and η either.

These findings gives strong evidence in favour of our method. The stability
of the method, even for very different starting values, indicates that the maxi-
mization problem may indeed have a global maximum. A formal mathematical
proof of this fact shall be addressed in future research.
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N = 10,000

1% perturbations 20% perturbations

250% perturbations 1000% perturbations

N = 30,000

1% perturbations 20% perturbations

250% perturbations 1000% perturbations

Table 4.6: Iteration errors plots - κ
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Chapter 5

Energy Market Data

5.1 Data Exploration

In this Section, we apply the theoretical framework developed for calibrating
a two-factor model to real data. As noted by Hikspoors and Jaimungal (2007)
and Lucia and Schwartz (2002), the energy commodity markets are different
from the traditional financial security ones. They lack the high level of liquidity
that many financial markets enjoy, the storage costs of most commodities
translate into peculiar price behaviors and commodity prices tend to have
strong mean-reverting trends.

We use data from the energy market, more specifically, natural gas prices
from the Henry Hub. The Henry Hub is a pipeline owned and operated by
Sabine Pipeline, LLC. The Sabine Pipeline discloses that the lines start in
eastern Texas, runs through and ends in Louisiana. The hub is physically
situated at Sabine’s Henry Gas Processing Plant.

The Henry Hub interconnects several pipelines in the United States that
collectively provide access to markets across the country. The Energy Infor-
mation Administration (EIA) estimates that approximately 49 percent of the
U.S. wellhead production of natural gas occurs near the Henry Hub or passes
close to it when moving to downstream consumption markets.

The EIA explains in its website that the Henry Hub prices are reported on
a daily basis, differently from its reports, which show an average wellhead price
for natural gas in monthly and annual basis. Therefore, market participants
have adopted spot and futures prices from the Henry Hub as a substitute
measure for the current wellhead price, making it the largest centralized point
for natural gas spot and futures trading in the United States.

Our data set consists of daily prices of Henry Hub Natural Gas Futures
from May 1996 to April 2008. The contracts’ trading unit is 10,000 million
British thermal units (mmBtu), and the price quotation is in U.S. dollars
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and cents per mmBtu. We work with 24 maturities, ranging from 1 to 24
month future contracts. The data has been adjusted so that each time series
correspond to a maturity, avoiding problems with the contracts’ expiry.

We can see the futures price surface plot in figure 5.1. We plot the data
from May 1996 to April 2008 for the 24 first maturities.

We begin by displaying some descriptive statistics and plots from the Henry
Hub data. We disclose the information relative to 1, 12 and 24 months ma-
turity contracts, believing that this is a proxy to the short, medium and long
term futures contracts.

ACF Lag 1 Lag 21 Lag 126 Lag 252
Pt 0.995 0.912 0.628 0.506

Pt − Pt−1 0.0034 0.018 0.023 -0.019
log(Pt) 0.996 0.936 0.726 0.564

log(Pt)− log(Pt−1) -0.018 0.027 0.015 -0.019

Table 5.1: Autocorrelation Functions for 1 month futures

ACF Lag 1 Lag 21 Lag 126 Lag 252
Pt 0.998 0.974 0.825 0.731

Pt − Pt−1 -0.0052 0.047 0.005 0.057
log(Pt) 0.998 0.977 0.851 0.741

log(Pt)− log(Pt−1) -0.013 0.024 -0.011 0.017

Table 5.2: Autocorrelation Functions for 12 month futures

ACF Lag 1 Lag 21 Lag 126 Lag 252
Pt 0.998 0.977 0.842 0.754

Pt − Pt−1 -0.011 0.024 -0.0016 0.091
log(Pt) 0.998 0.978 0.864 0.766

log(Pt)− log(Pt−1) 0.0 03 -0.001 -0.017 0.040

Table 5.3: Autocorrelation Functions for 24 month futures

The autocorrelation functions (ACF) show that the price series for all
maturities considered have high autocorrelation coefficients, suggesting a high
degree of persistence in the price data, both in level and logarithm formats.
Note that the autocorrelation is very high in a one-day lag, but it decreases
while we move to more distant points in time. One month futures have a
smaller degree of persistence than 12 or 24 months, suggesting that the short
term prices behavior is less driven by their historical behavior than the long
term ones. One of the reasons for this is that short-term prices are more
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Figure 5.1: Henry Hub futures prices plot

sensible to external shocks than longer ones. As long term contracts usually
reflect fundamentals, they respond less to momentary shocks.

Autocorrelation functions for return series and logarithm returns behave

51



differently from the price ones. They have very low autocorrelation estimates
across all lags and maturities.

Tables 5.4, 5.5 and 5.6 show that the data behaves like typical financial
time series. They obey some of the stylized facts of financial time series stated
in Tsay (2002). That is, there is excess kurtosis for all of the price returns
and logarithm returns and their mean is close to zero. The most volatile
series considered are the ones for the 1-month maturity contracts, followed by
the 12-month contracts and the 24-month ones, showing respectively 58.7%,
27% and 23% of annualized volatility for the logarithm returns. This suggests
that short term contracts are more susceptible to external shows and market
movements, which is an expected result.

Mean Median Std Deviation Skewness Kurtosis
Pt 4.852 4.635 2.567 0.925 3.808

Pt − Pt−1 0.002 0.002 0.214 0.601 18.095
log(Pt) 1.440 1.5336 0.532 0.037 1.818

log(Pt)− log(Pt−1) 0.000 0.000 0.037 0.346 7.568

Table 5.4: Descriptive Statistics for 1 month futures

Mean Median Std Deviation Skewness Kurtosis
Pt 5.020 4.368 2.712 0.645 2.179

Pt − Pt−1 0.002 0.002 0.111 -3.210 51.344
log(Pt) 1.461 1.474 0.546 0.118 1.624

log(Pt)− log(Pt−1) 0.000 0.000 0.017 -1.352 16.472

Table 5.5: Descriptive Statistics for 12 month futures

Mean Median Std Deviation Skewness Kurtosis
Pt 4.793 3.99 2.53 0.678 2.155

Pt − Pt−1 0.002 0.002 0.091 -6.42 136.047
log(Pt) 1.429 1.385 0.526 0.168 1.681

log(Pt)− log(Pt−1) 0.000 0.000 0.0148 -2.279 33.657

Table 5.6: Descriptive Statistics for 24 month futures

A first look to the prices plot reveals an erratic behavior to the futures
price. There is a clear upward trend in all of the maturities considered, be-
ginning in 2002 and going until the end of the sample. The most significant
hikes happen in the begining of 2001 and 2003 and at the end of 2005. Note
that these dates correspond to the winter season in the northern hemisphere,
when the demand for natural gas tends to be higher.
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Figure 5.2: Henry Hub data plot - 1 month futures

Figure 5.3: Henry Hub data plot - 12 month futures

We can conclude from the analysis of the descriptive statistics of the data
that a two-factor model like Schwartz and Smith (2000) is suited to model the
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Figure 5.4: Henry Hub data plot - 24 month futures

data. Note that the 24 month futures contract has an annualized standard
deviation of 23% for the logarithm returns. This suggests that the long end of
the price curve is not flat. Therefore, fitting a one-factor model like Schwartz
(1997) to this data set would yield results like the ones shown in figure 2.1,
where the long end of the curve is not modeled.

5.2 Estimation Results

In this section, we present the estimation results of our algorithm when applied
to the Henry Hub data. We initially analyze the factor decomposition of the
data, trying to infer how suitable a two-factor model would be.

As defined in Johnson and Wichern (1998), factor analysis is a method
which aims to describe, if possible, the covariance relationship among many
variables in terms of a few underlying but unobserved random quantities called
factors. A simple, but useful factor model is the Orthogonal Factor Model
(OFM).

Consider a random vector X with p components, mean µ and covari-
ance matrix Σ. The OFM postulates that X is linearly dependent upon a
few unobserved random variables F1, F2, . . . , Fm, called common factors, and
ε1, ε2, . . . , εp random shocks, or errors. We can write this model as
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X − µ = LF + ε (5.1)

where X−µ is a (p×1) matrix of demeaned variables, L (the loading matrix)
is a (p × m) matrix of li,j coefficients called loadings of the i-th variable on
the j-factor, and ε is a (p× 1) matrix of shocks.

We assume that E[F ] = 0(m×1), COV[F ] = E[FF ′] = I(m×m), E[ε] = 0(p×1)

and COV[ε] = E[εε′] = Ψ(p×p) where Ψ is a diagonal matrix.
Finally, COV[εF ] = E[εF ′] = 0(p×m).

There are many methods available for estimating the factor loadings. One
of the most used is Principal Components. The advantage of the method lies
on its simplicity. Principal components are easy to implement, can be readily
calculated even for large matrices and can be generalized to handle missing
values in the data. In spite of not having a direct interpretation, simple linear
regressions and correlation exercises can help identify the extracted factors.

The estimation of (5.1) relies on imposing restrictions on the covariance
matrix, Σ. As the population covariance matrix in unknown, we carry all
estimations on the sample covariance matrix S. Although we keep the notation
on Σ for practicity, we shall always be dealing with S.

In the principal components model we factor the matrix Σ in terms of its
eigenvalues λi, and eigenvectors ei, and order the eigenvalues so that λ1 ≥
λ2 ≥ . . . λp ≥ 0. Consequently, the principal components depend only on the
data’s covariance matrix Σ, without any assumption on the data’s distribution.

We use Matlab to extract the eigenvalues and eigenvectors of the data
matrix. The eigenvectors picture the factors’ behavior. As we can see in
Figure 5.5, the first and second eigenvectors behave in a similar path to the
ones generated with the Schwartz and Smith model, and shown in Figures 4.9
and 4.10.

However, the relative weight of the first factor is considerably higher to the
second one. Normalizing the factors to one, we can see that the first factor
corresponds to 23% of the data total explained variance, while the second one
accounts only for 0.32%. Even with a relative smaller influence of the second
factor, it should not be disconsidered. As mentioned in Chapter 1, factor
2 is responsible for providing a better fitting to the futures term structure.
Besides, Litterman and Scheinkman (1991) shows that even with 97% of the
total explained variance of the yield curve explained by the first factor, the
second and third factor play an important role in adding more variability to
the term structure of interest rates.

Since the two-factor model seems to be a reasonable choice to calibrate the
Henry Hub data, we proceed with the estimation process. In order to show the
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Figure 5.5: First two eigenvectors from the Henry Hub data

results of our estimation procedure, we follow the steps described in Chapter 4
and calculate estimates for κ, θ, σ, η and µ. The parameter ρ is calculated as
the correlation between the series X and Y .The results are displayed in Table
5.7.

We can see that our algorithm works well also with real data sets. The
error is sufficiently small to give us confidence that our procedure is able to
recover the parameters from the stochastic processes X and Y .

As there is an upward shift in natural gas prices beginning in 2002, we
also estimate the model’s parameters in two sub-samples besides the original
data set. We consider estimates from May 1996 to December 2001 and from
January 2002 to April 2008. The results are displayed in table 5.7.

For future research it would be interesting to compare the results obtained
with our procedure to the ones generated by a concurrent estimation method,
such as the Kalman Filter.

κ θ σ η µ ρ

1996-2008
Estimates 3.281 0.122 0.608 0.369 0.0009 -0.2857

Error -1.330e-07 -4.159e-07 -7.339e-08 2.443e-10 -4.620e-08
1996-2001

Parameter Estimates 4.638 0.168 0.770 0.429 -0.001 0.0021
Error -1.250e-07 -8.972e-07 -1.443e-07 2.055e-09 -1.024e-07

2002-2008
Parameter Estimates 4.781 0.053 0.368 0.302 0.002 -0.3218

Error -6.010e-08 -5.746e-07 -4.599e-08 -8.385e-10 -5.049e-08

Table 5.7: Estimation Results for the Henry Hub data
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Chapter 6

Conclusion

In this work we have built a robust methodology to calibrate a Schwartz-Smith
model for commodity prices. This methodology is a two stage process that
is related to a similar method in Hikspoors and Jaimungal (2007), and is an
alternative to Kalman Filter estimation.

Given the model parameters as an input, it first obtains the hidden pro-
cesses fitting the term structure of commodity prices via Non Linear Least
Squares (NLLS). In the second stage, we use the processes obtained via NLLS
to generate new guesses of the parameters via Maximum Likelihood Estima-
tion. The result is then iterated until convergence.

sting its parameters to the risk-neutral measure. We have also detailed the
estimation algorithm and the likelihood functions used.

The methodology was validated using synthetic data. We have first esti-
mated the parameters with known initial guesses, which were then recovered
by our algorithm. That way, we could measure accurately the estimation error
and therefore, the algorithm’s efficiency to recover the parameters. The esti-
mation results for synthetic data sets showed that the parameters estimates
are accurate, and that the convergence was achieved in very few iterations.
Figures 4.3 - 4.7 show the error patterns for the estimated values, which con-
verge to small values quickly. The only exception is the parameter κ. It
converges at a slower pace to a small estimation error, as the result of a highly
nonlinear optimization problem on its estimation.

The optimal tolerance level obtained for the iteration steps was 10−6. This
number was obtained after tests using starting values ranging from 10−2 to
10−12, and was the value we used in our optimization routines.

Next, we attested our methodology’s robustness by imposing different dis-
turbances on the initial values. This procedure tested whether the algorithm
still converged even if the starting values were not close to the final solution.
Not only we disturbed the parameters in one single direction, but we also cre-
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ated random shocks that made the initial guesses move in different directions.
It is important to mention that in all cases our algorithm converged to the
same parameter vector. The method shows here an advantage to the Kalman
Filter. While the latter depends on the quality of the initial guess given, our
algorithm converged even with very distressed starting values.

Finally, we tested our methodology in real market data. We used futures
prices of natural gas from the Henry Hub, from 1996 to 2008, considering
the 24 first maturities. After statistically describing the data, we ran our
algorithm and obtained very small iteration convergence errors. This was an
expected result, as the model proved to be robust to recover the true values
used to construct the synthetic data.

The robust convergence we obtained even with all the perturbations mo-
tivates suggests that the optimization problem we solve here has a global
maximum. That is why our future research shall focus on the formalization of
this problem and a proof of a global and unique solution. Besides, confidence
intervals could also be constructed for the parameters estimates in order to
allow further statistics investigations.

Another interesting topic for future research would be to compare our
estimates with ones generated by a concurrent model, such as the Kalman
Filter.
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Appendix A

Additional Figures
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N = 10,000

1% perturbations 20% perturbations

250% perturbations 1000% perturbations

N = 30,000

1% perturbations 20% perturbations

250% perturbations 1000% perturbations

Table A.1: Iteration errors plots - θ60



N = 10,000

1% perturbations 20% perturbations

250% perturbations 1000% perturbations

N = 30,000

1% perturbations 20% perturbations

250% perturbations 1000% perturbations

Table A.2: Iteration errors plots - σ61



N = 10,000

1% perturbations 20% perturbations

250% perturbations 1000% perturbations

N = 30,000

1% perturbations 20% perturbations

250% perturbations 1000% perturbations

Table A.3: Iteration errors plots - η62



N = 10,000

1% perturbations 20% perturbations

250% perturbations 1000% perturbations

N = 30,000

1% perturbations 20% perturbations

250% perturbations 1000% perturbations

Table A.4: Iteration errors plots - µ63



Appendix B

Computer Codes

B.1 Euler-Maruyama Discretization

%Y/EM Euler-Maruyama method on linear SDE

%. SDE is dX = lambda*X dt + mu*X dW, X(O) = Xzero,

% where lambda = 2, mu = 1 and Xzero = 1.

% Discretized Brownian path over [0,1] has dt = 2"(-8).

% Euler-Maruyama uses timestep R*dt.

randn(’state’,1000)

lambda = 2; mu = i; Xzero = 1; %

%problem parameters

T = 1; N = 2^8; dt = 1/N;

dW = sqrt(dt)*randn(1,N); % Brownian increments

W = cumsum(dW); %/ discretized Brownian

path

Xtrue = Xzero*exp((lambda-0.5*mu^2)*([dt:dt:T])+mu*W);

plot([0:dt:T],[Xzero,Xtrue],’k-’), hold on

R = 4; Dt = R*dt; L = N/R; % L EM

%steps of size Dt = R*dt

Xem = zeros(1,L); %/

%preallocate for efficiency

Xtemp = Xzero;

for j = 1:L

Winc = sum(dW(R*(j-1)+1:R*j));

Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc;

Xem(j) = Xtemp;

end

plot([0:Dt:T],[Xzero,Xem],’k--*’), hold off

xlabel(’t’,’FontSize’,12)
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ylabel(’X’, ’FontSize’ ,16, ’Rotation’ ,0,’HorizontalAlignment’, ’right’)

emerr = abs(Xem(end)-Xtrue(end))

B.2 Calibration Algorithms

function [Xb,Yb,tau,F_barra,brownX,brownY,X,Y] =

main_code(kappa,theta,sigma,eta,mu,muStar,rho,lambda_x,n)

load tau;

[Ma,M]=size(tau);

tau = tau(end-(n-1):end,:);

N=n;

deltaT=1/252;

varY=eta^2*deltaT;

brownX=randn(n,1);

brownY=randn(n,1);

theta = -lambda_x/kappa;

lambda_y = mu - muStar;

%% generating AR and RW

X=genAR(n,deltaT,kappa,theta,sigma,brownX);

Y=genRW(n,deltaT,eta,mu,rho,brownY,brownX);

rho_hat=corr(X,Y);

%%generating futures matrix

[logFut,F_barra,S,A]=genFUT(N,M,X,Y,mu,tau,sigma,kappa,eta,rho);

%% Recovering X and Y from the generated Futures Matrix

%% testing if the generated X and the estimated X are the same.
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[difference,Xa]=testeX(tau,F_barra,kappa,S,A,X);

if difference > 0.001 disp(’Attention! X differ too much’)

end

[Xb,Yb] = estXY(tau, F_barra,kappa,sigma, eta,rho,mu);

function X=genAR(n,deltaT,kappa,theta,sigma,brownX)

epsilon=sigma*sqrt(deltaT)*brownX;

X=zeros(n,1);

X(1)=theta;

for i = 2:n

X(i)=X(i-1)+kappa*(theta-X(i-1))*deltaT+epsilon(i); % Euler-Maruyama

end

function Y=genRW(n,deltaT,eta,mu,rho,brownY,brownX)

epsilonY=eta*sqrt(deltaT)*((rho^2)*brownX + sqrt(1-rho^2)*brownY);

Y=zeros(n,1);

Y(1)=mu;

for i = 2:n

Y(i)=mu*deltaT+Y(i-1)+epsilonY(i);

end

function [IterationError, estimationError, estimatedParameters,numiter] =

iterations(F_barra,tau,Xb,Yb,kappa,theta,sigma,eta,mu,muStar,rho,lambda_x,n,eps)

disp(’iterations...’)
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%tolerance

%eps = 1e-6;

numiter =0;

max_numiter =100;

deltaT=1/252;

N=n;

lambda_y=mu-muStar;

initial_kappa=kappa;

initial_theta=theta;

initial_sigma=sigma;

initial_eta = eta;

initial_mu=mu;

initial_lambda_y = lambda_y;

initial_rho=rho;

initial_lambda_x=lambda_x;

current_kappa=kappa;

current_theta=theta;

current_sigma=sigma;

current_etaY = eta;

current_mu=mu;

current_lambda_y = lambda_y;

current_rho=rho;

current_lambda_x=lambda_x;

IterationError = ones(1,8);

estimationError = ones(1,8);

while numiter < max_numiter && norm(IterationError)>eps

numiter= numiter +1;

if numiter == max_numiter

disp(’Maximum number of iterations reached without obtaining convergence’)

end

[Xb,Yb] = estXY(tau, F_barra,current_kappa,current_sigma,
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current_etaY,current_rho,current_mu);

[kappa,mLL]=fminbnd(@(x)V(x,n,deltaT,Xb),0.001,5);

theta=f(kappa,n,deltaT,Xb);

sigma=g(theta,kappa,n,deltaT,Xb);

lambda_xE = -kappa*theta;

[aY,bY,varY]=calibrateGARCH(Yb,n);

mu=aY;

lambda_y = mu - muStar;

etaY=sqrt(varY/deltaT);

IterationError=[(current_kappa-kappa),(current_theta-theta),

(current_sigma-sigma), (current_etaY-etaY),(current_mu-mu),

(current_rho-rho),(current_lambda_x-lambda_xE), (current_lambda_y-lambda_y)];

current_kappa = kappa;

current_theta = theta;

current_sigma = sigma;

current_etaY = etaY;

current_mu = mu;

current_rho=rho;

current_lambda_x=lambda_xE;

current_lambda_y=lambda_y;

end

estimatedParameters = [current_kappa,current_theta,current_sigma,

current_etaY, current_mu, current_rho, current_lambda_x, current_lambda_y];

estimationError = [(initial_kappa-current_kappa),(initial_theta-current_theta),

(initial_sigma-current_sigma),(initial_eta-current_etaY),(initial_mu-current_mu),

(initial_rho-current_rho), (initial_lambda_x-lambda_x), (initial_lambda_y-lambda_y)];
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Appendix C

Kalman Filter Estimation

The basic idea of the Kalman Filter is to express a dynamic system in a
particular form, called the state-space representation, and use an algorithm
for sequentially updating a linear projection of the system.

We start by defining the state-space representation of a dynamic system.
This section is based on Hamilton (1994) and Schwartz (1997).

Definition C.0.1. Let yt denote a (n×1) vector of observed variables at time
t, and ξt a (r × 1), possibly unobserved, vector called state vector. The state-
space representation of the dynamics of y is given by the following system of
equations:

ξt+1 = Fξt + vt+1 (C.1)

yt = A′xt + H′ξt + wt, (C.2)

where F, A′ and H′ are matrices of parameters, with dimension (r×r), (n×k),
and (n× r), respectively, and xt is a (k × 1) vector of exogenous or predeter-
mined variables1.

Equation (C.1) is called the state equation, and generates the unobserved
state variables, while equation (C.2) is called the observation equation, and
relates observed variables to an unobserved vector of state variables, the state
vector.

We also have that vt and wt are white noise (r × 1), and (n × 1) vectors
such that:

E(vt,v′τ ) =

Q for t = τ ,

0 otherwise
(C.3)

1The statement that xt is exogenous or predetermined means that xt provides no infor-
mation about ξt+s or wt+s, for s = 0, 1, 2, . . . beyond that contained in yt−1,yt−2, . . . ,yt.
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and

E(wt,w′τ ) =

R for t = τ

0 otherwise
(C.4)

where Q and R are (r×r) and (n×n) matrices and v′τ and w′τ are transposed
vectors. Also, we assume that

E(vt,w′τ ) = 0 for all t and τ , (C.5)

which means that the disturbances are uncorrelated at all lags.
The objective of the calibration procedure is to estimate the values of any

unknown parameters in the system based on the observations of y1,y2, . . . ,yT
and x1,x2, . . . ,xT .

We consider an algorithm using the Kalman Filter for calculating linear
least square forecasts of the state vector on the basis of data observed through
date t:

ξ̂t+1|t ≡ E(ξt+1|Yt). (C.6)

where Yt ≡ (y′t,y
′
t−1, . . . ,y

′
1,x
′
t,x
′
t−1, . . . ,x

′
1)′, with associated mean square

error (MSE) for each of the forecasts represented by the (r × r) matrix:

Pt+1|t ≡ E[(ξt+1 − ξ̂t+1|t)(ξt+1 − ξ̂t+1|t)
′]. (C.7)

The Kalman Filter estimations can be started with ξ̂1|0 = 0 and

P1|0 = E{[ξ1 − E(ξ1)][ξ1 − E(ξ1)]′}.

The next step is to perform the calculations for ξ̂2|1 and P̂2|1, and so on.
Then we iterate on:

ξ̂t+1|t = F ξ̂t|t−1 + FPt|t−1H(H′Pt|t−1H + R)−1(yt −A′xt −H′ξ̂t|t−1) (C.8)

We denote ξ̂t+1|t as the best forecast of ξt+1 based on an affine function of
y. The coefficient matrix in (C.8) is known as the Kalman Gain. That is:

Kt = FPt|t−1H(H′Pt|t−1H + R)−1, (C.9)

so (C.8) can be re-written as:

ξ̂t+1|t = F ξ̂t|t−1 + Kt(yt −A′xt −H′ξ̂t|t−1). (C.10)
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