impa 5

Instituto Nacional de Matematica Pura e Aplicada

A Hybrid Method for Computing
Apparent Ridges

Eric Jardim

Thesis Advisor: Luiz Henrique de Figueiredo

February 2010

Abstract

We propose a hybrid method for computing apparent ridges on triangle meshes.
Our method combines both object-space and image-space computations and
runs partially in the GPU, taking advantage of modern graphic cards pro-
cessing power and producing faster results in real time.

Resumo

Neste trabalho é proposto um método hibrido para extrair apparent ridges
em malhas triangulares. Este método combina operagoes tanto no espago
do objeto como no espago da imagem e é executado parcialmente na GPU,
aproveitando o poder de processamento das placas graficas modernas e pro-
duzindo resultados mais rdpidos em tempo real.

Dedication

This work is dedicated to my son.

Acknowledgments

I want to thank all people that somehow contributed to make this work
possible, in special my advisor Luiz Henrique, who was very patient and
supportive every time I needed.

Finally, I want to thank my parents for all the support they gave me along
my life. Thank you all!

Contents

6

Introduction

1.1 Realism vs. Expressiveness .
1.2 Line Drawings
1.3 Organization
Previous Work

2.1 Contours
2.2 Ridges and Valleys
2.3 Suggestive Contours
2.4 Apparent Ridges
Apparent Ridges

3.1 Curvature Basics
3.2 View-Dependent Curvature
3.3 Definition
34 Contours
Our Method

4.1 Motivation
4.2 Characterization
4.3 Why a Hybrid Method? . .
4.4 Overview of Our Method . .
4.5 Object-Space Stage
4.6 Image-Space Stage
Results

5.1 Parameter Variation
5.2 Image Comparison
5.3 Performance Comparison . .
Conclusions and Future Work

A Shader codes

12
12
13
15
16

18
18
18
19
20
20
21

24
25
27
35

37

40

Chapter 1

Introduction

Since the beginning of computer graphics, one of its main goals and major
efforts was to produce convincing and compelling machine-generated images
[7]. In that moment, like artists and illustrators, computers could also
produce pictures of arbitrary shapes and models. Naturally, the first attempts
produced coarse results (see figure 1.1).

Figure 1.1: Fetter’s “First Man” [1] used for cockpit simulations at Boeing
and a sample of DAC-1, one of the first CAD systems developed by General
Motors [2].

However, a few decades later, with new rendering techniques arising and
increasing processing power due to the technology evolution, the realism in
computer graphics image grew very fast and achieved a level so high in the
present days that sometimes it is difficult to tell whether an image is artificial
or not (try figure 1.2).

Figure 1.2: Can you tell which image is real or not? (extracted from [3])

1.1 Realism vs. Expressiveness

The quest for realism led to the widespread experience of new levels of virtual
perception in fields like entertainment and engineering, as realistic synthetic
images have become able to trick the human brain into seeing things that do
not exist or have not been built yet.

However, an issue arose: realism itself is not so efficient in communication.
A real picture or scene may contain more information than someone may
desire to convey. For example, an illustration of a heart surgery compared to
a real picture of that same scene, even with less details can be much more
effective for teaching purposes (see figure 1.3).

£ 2004 Shelley Wall

Figure 1.3: Photo vs. illustration (extracted from [4])

Ultimately, an image is a channel of communication and in some situations

4

Figure 1.4: Changes in image cues can highlight major details and hide minor
ones (extracted from an illustration web page [8])

realistic details may act as noise. Artists usually ignore realism when they
need expressiveness. To highlight relevant details, illustrators generally appeal
to specific techniques to remove excessive detail, manipulating image cues
like colors, texture and lighting (see figure 1.4).

Although realism remains a hot topic [5], expressiveness and artistic effects
have gained their own space in computer graphics. From this new kind of
interest, arose a new field of research called Non-Photorealistic Rendering [6, 7]
(briefly called NPR), which plays a complementary role to realism.

1.2 Line Drawings

A line drawing is perhaps the most basic type of artistic expression. It should
be the first choice for any simple illustration. With a few strokes, an artist or
illustrator can render a compelling image. The compact and clear aspect of a
good line drawing ensures the effectiveness in communication.

Although some artistic masterpieces have been created with the exclusive
use of lines (see the left drawing in figure 1.5), line drawings are often used
as a sketch or simplification of a complex drawing. That means that they are
useful to understand and design pictorial representations.

Expressive line drawing of 3D models is a classic artistic technique and
remains an important problem in NPR [6, 7]. A good line drawing can
convey the shape geometry without using other cues like shading, color, and
texture [17]. Frequently, a few good lines are enough to convey the main
geometric features [11].

There are several techniques for depicting shapes with lines. The most
significant lines have precise mathematical definitions and usually depend on

A\

Figure 1.5: An artistic line drawing (extracted from Flaxman’s Odyssey [9])
and an architectural drawing (from Koch [10])

the surface geometry and the viewing point.

Apparent ridges [12, 13] are lines defined on the surface of a 3D model.
These lines are quite interesting for two reasons: they have a relatively simple
mathematical definition and they capture most of the geometric features in a
perceptually pleasant way (see fig. 1.6).

Figure 1.6: Sample drawings of apparent riges extracted from 3D models
using our method

Apparent ridges were defined by Judd in her M. Sc. thesis [13] along with
an implementation for triangle meshes. We propose here a modified version
of that implementation, adapted to run mostly on the GPU. Our method

achieve results up to 8 times faster than Judd’s method without compromising
image quality.

1.3 Organization

The next chapter deals with previous works. There will be shown some feature
lines, their issues and how they relates with apparent ridges itself. Chapter
3 contains the mathematical definition of apparent ridges. In chapter 4 our
method is explained with all the implementation details. Our results are
evaluated in chapter 5, compared side-by-side with the those from the original
work done by Judd et al. [12, 13]. We conclude in chapter 6, proposing several
extension of this work. The codes for the GPU shaders are in Appendix A.

Chapter 2

Previous Work

In the literature, there are several works on line definitions and on methods
for extracting them. This chapter reviews the most important curves related
to our work and apparent ridges themselves. For comparison, these lines are
going to be extracted from two sample models: the cow model, which presents
many curvature variations and the rounded cube model, which is a typical
convex shape. Both can be seen below, rendered with a simple Lambertian
shading.

Figure 2.1: Shaded views of the cow and rounded cube models

2.1 Contours

Contours or silhouettes are probably the most basic kind of feature line.
These lines are known prior to computer graphics, but only recent work have
proposed how to extract them [14].

Given a 3D object and a viewpoint, the contours are the loci of points
on the surface of the object that separate its visible and invisible parts.

Figure 2.2: Contours are essential, but insufficient lines to depict a shape

Geometrically, it is any visible point p where the viewing vector v(p) is
perpendicular to its normal n(p), or simply, where (n(p),v(p)) = 0. This
definition makes contours view-dependent lines, that is, they depend on the
viewpoint, since v(p) is a vector from the viewpoint to p.

In general, contours alone are not enough to capture all perceptually
relevant features of an object (see figure 2.2). Comparing these images to the
shaded ones it is possible to see that many details were not captured.

On the other hand, many other lines, like ridges & valleys and suggestive
contours, must be combined with contours to present pleasant and perceptually
complete pictures. Although contours are not enough to depict a shape, they
are always present in traditional computer line drawings.

Moreover, contours are considered first-order curves, because they only
depend on the normal variation.

2.2 Ridges and Valleys

Ridges and valleys [15] are found by computing principal curvatures, prin-
cipal directions and their derivatives. They are considered second-order
curves, because they depend on the surface curvature, which is obtained by
differentiating the normal.

Ridges and valleys complement contour information because they add
second-order information capturing elliptic and hyperbolic maxima on the
surface. Since their definition only takes into account the geometry of the
model, ridges and valleys are not view-dependent lines. A downside of these
lines is that they often present sharp angles even when the model is smooth
(see the cow in figure 2.3). Also, some models have so many ridges and valleys
that the resulting image may not look like a clean drawing.

Although some still images showing ridges and valleys may look fine (like

Figure 2.3: Ridges & valleys extend contours, but angles are too sharp and
appear at rigid places due to their view independence (contours in green).

the cube in figure 2.3), animated drawings may frequently present motion
artifacts, since these features are rigid, independent of the viewing point.

2.3 Suggestive Contours

Suggestive contours [16] are view-dependent lines that naturally extend con-
tours at the joints. They are more visually pleasant than the previous lines
because they combine view dependency and second-order information. This
combination provides a cleaner drawing (see figure 2.4). Nevertheless, they
still need contours to be visually complete.

Intuitively, suggestive contours are contours in nearby views. More pre-
cisely, they are based on the zeros of the radial curvature in the viewing

Figure 2.4: Suggestive contours smoothly complement contours in a view-
dependent way. However, the cube has no suggestive contours as they do not
appear on convex regions (contours in green).

10

direction projected onto the tangent plane.

However, for the radial curvature to achieve the zero value in some
direction, the interval between the principal curvatures must contain zero.
So, due to their definition, suggestive contours can not appear where the
Gaussian curvature is positive. Thus, convex features cannot be depicted
with suggestive contours (see the cube in figure 2.4).

2.4 Apparent Ridges

Apparent ridges [12] are more recent than the previous lines and combine their
good properties producing nice results. With a single mathematical definition,
apparent ridges depict most features that ridges and valleys capture, but in a
clean and view-dependent way. They also capture features in convex regions,
which are missed by suggestive contours (see figure 2.5). Another advantage
is that contours are a special case of apparent ridges, which means that they
can be extracted together in the same computation.

Apparent ridges are based on a new geometric property: the view-
dependent curvature, which plays an analogue role for apparent ridges as
the principal curvatures do for ridges and valleys. In short, apparent ridges
combine second-order information with view-dependency, but also appear at
convex regions.

In the next chapter, we will define the view-dependent curvature and
apparent ridges.

Figure 2.5: Apparent ridges depict features in a smooth and clean view-
dependent way, with the advantage of appearing at convex regions. Contours
are apparent ridges too.

11

Chapter 3

Apparent Ridges

The secret ingredient of apparent ridges, which allows it to capture features
better than other lines, relies on its own definition. The view-dependent
curvature is a new geometric property that enables us to perceive curvature
in a different way. In this chapter we present the mathematical definitions of
the view-dependent curvature and the apparent ridges.

3.1 Curvature Basics

The intuitive notion of curvature is described by how an object bends itself. For
complex geometric objects like surfaces, which are the basis of 3D modeling,
this curvature notion is not only an intensity measure, but also a qualitative
way to describe how the surface bends. In differential geometry, this curvature
notion is defined precisely, giving us mathematical tools for calculating this
geometric property numerically.

Given a point p on a smooth surface M and a tangent vector r in T,M,
the tangent plane of M at p, it is possible to define the shape operator
S:T,M — T,M, as

S(r) = D,n

which is the derivative of the normal in the r direction projected onto the
tangent plane. This operator linearly maps each tangent vector of M to
another tangent vector:

Sy Ty b c Ty
where 7,,7, and s,, s, are the respective vector coordinates, fixed an appro-

priate basis for the tangent plane.

12

This operator is known in differential geometry to be the second order
derivative tensor of the surface [18] and it describes how the surface bends
at p. Since S is a self-adjoint operator, there are two appropriate directions
e; and e in T, M which simplify its matrix to

(k0
s=(% w)

where k; and ky are known to be the principal curvatures and e; and es
are called the principal directions of M at p. The principal curvatures give
bending intensities at the principal directions, while their product (also
known as the Gaussian curvature) gives qualitative information of the bend
type, which can vary from elliptic (convex-like) to hyperbolic (saddle-like),
depending on the sign of this product.

Along with the shape operator S, we define the normal curvature (also
known as the radial curvature). Given a unit direction r in the tangent plane
at p, the curvature k(r) is the scalar product of S(r) and r

which measures the curvature of the surface at p in the r direction. It can
be shown [18] that k(e1) = ki, k(e2) = ko and k(r) € [ke, ki] for every r,
supposing that k; > ks.

Ridges and valleys can be computed by finding the extrema of the principal
curvature k; along its principal direction e; (assuming |ki| > |k2|). These
lines mark important features on the surface, but they are not always visually
pleasant as they do not consider the viewing point.

Suggestive contours overcome this limitation by finding the zeros of k(w),
where w is the viewing vector projected to the tangent plane. Unfortunately,
due to what we stated before, suggestive contours cannot appear at convex
regions, where the product of k; and ks is positive, because 0 ¢ [ka, k1].

3.2 View-Dependent Curvature

The key idea of the view-dependent curvature is to measure how the surface
bends with respect to the viewpoint. This property takes into account the
projection transformation which maps points on the surface to the screen.
Given a surface point p € M, let S be the shape operator at p. Let II be
the parallel projection that maps p onto the screen and ¢ = II(p). If p is not a
contour point, then II is locally invertible and it is possible to define (locally)

13

an inverse function I1-! that takes points from the screen and maps to the
surface. Moreover, if n(p) is the normal at p, then the composite mapping

(q) =noll™ (q)

maps the corresponding normal of the surface at p from its projection q.
With this definition, given a screen vector s at ¢ it is possible to define
the view-dependent shape transform @)

Q(s) = Dy

which is a directional derivative similar to the shape operator, but the with res-
pect to a screen vector. This definition is very intuitive, but for computational
purposes we will derive an expression of () that depends on S.

On the tangent plane at p, the Jacobian J of the projection takes tangent
vectors to the screen at g (see figure 3.1).

— -
IT
projection

object screen

Figure 3.1: The projection setup

If p is not a contour point, Ji is invertible and we can write 7 = J'(s).
Noting that D,n = D,sn, we can deduce that

Q(s) =S(J'(s)) = Q=SoJy
Now we can derive a formula to calculate () numerically. Given a certain

basis s1, s9 at a projected point on the screen and taking eq, e5 as a basis for
the tangent plane, the Jacobian of II is

(v o)

14

and putting it all together we derive the formula

o= (4) (e)

As @ takes screen vectors and maps it to tangent vectors at M, @) is not
necessarily a self-adjoint operator. Thus, it is not guaranteed that it has two
eigenvalues like S. Instead, it does have a maximum singular value

1 = max [[Q(s)]]
llsl|=1
that will be defined as the mazimum view-dependent curvature. This value
can be computed as the square root of the maximum eigenvalue of Q7Q. It
is important to notice that ¢; is non-negative.

This singular value has an associated direction ¢; on the screen. When
s reaches t1, the norm of @(s) is maximum. Fixed a screen point, a unit circle
of screen vectors will be transformed into a elongated ellipsis on the tangent
plane (see figure 3.2). The t; direction is called mazimum view-dependent
principal direction.

As an intuitive notion, ¢; and ¢ play the analogue roles of e; and k;
(considering | k| > |k2|), but taking into account the perspective transform.

screen

P
V

Figure 3.2: A unit circle of tangent vectors at the screen is mapped to a
elongated ellipsis thru). The direction of maximum value is ¢; and the
maximum value is ¢;

3.3 Definition

Apparent ridges are the local maxima of ¢; in the t; direction, or

Dygy =0 and Dy (Dyq1) <0

15

This definition adds view dependency to ordinary ridges. As long as
the normal turns away from the screen plane (approaching a contour), the
projection affects the view-dependent curvature, shifting ordinary ridges
towards the viewing vector (see figure 3.3). This happens because near
contours the projection foreshortening makes ¢; value tend to infinity [13].

screen

Figure 3.3: Apparent ridges and ordinary ridges

3.4 Contours

As mentioned before, when a point moves towards a contour, ¢; will tend
to infinity due to projection (see figure 3.4). Although the view-dependent
curvature is not defined at contours, the limit of ¢; is well-behaved and it
achieves a maximum at infinity. This means that contours can be treated as
a special case of apparent ridges.

16

0

Maximum Maximum
curvature view-dependent curvature

= —
Maximum Maximum
curvature view-dependent curvature

Figure 3.4: Comparison of the curvature and view-dependent curvature
magnitudes (illustration extracted from [13]). View-dependent curvature
approaches infinity near contours due to projection

17

Chapter 4

Our Method

In this chapter we present the main idea of our method which is adapted from
the original one to take advantage of modern graphic cards. We explain the
necessary modifications in the previous approach and some implementation
details to achieve this goal.

4.1 Motivation

In the original work [12], Judd et al. presented an approach to find apparent
ridges on triangle meshes, along with a CPU-based sample implementation.
Since it was the first work about apparent ridges, performance was not a
major goal. Instead, the authors were mainly concerned about showing that
apparent ridges are good lines for expressive drawing of 3D models.

The main motivation of our method is to speed up the extraction of
apparent ridges without compromising image quality, making them more
competitive with other lines. For this, we use the GPU processing power.

4.2 Characterization

In the first place, Judd’s approach is considered an object-space method
because all the computations are performed over the 3D mesh. At the end of
the process, the output is a 3D apparent ridge line that lies over the mesh!.
After that, the apparent ridges are projected onto the screen (see the top
diagram in figure 4.1). In contrast, our method is not entirely object-space

! Actually, the line is an approximation, made of straight line segments over the triangle
faces of the mesh.

18

Extract the
Apparent Ridges .
lines on the mesh | i Project lines
(CPU) |) onto the screen

Compute vd-curvature
and its derivative
(CPU)

original implementation

Object Space

Compute

vd-curvature only 2 . Project color-coded Use edge detection
(GPU - vertex shader) vd-curvature d to find Apparent Ridges
onto the screen \ (GPU - fragment shader)

our method

Object Space Image Space

Figure 4.1: Methods work flow comparison

based: part of the process is performed in image-space, which is the 2D screen
space. For this reason, our approach can be considered a hybrid method.

4.3 Why a Hybrid Method?

As shown in chapter 3, apparent ridges are the local maxima of the view-
dependent curvature ¢; in the principal view-dependent maximum direction ;.

In Judd’s approach, the lines are extracted by estimating D ¢; at the
vertices of the mesh and finding its zero crossings between two mesh edges for
each triangle of the mesh. The estimation of D; ¢, at each vertex is done by
finite differences, using the ¢; values of the adjacent vertices. The derivative
computation is the method’s bottleneck, since it is expensive and is repeated
every time the viewpoint changes.

Our method works around this issue by using another way to extract
apparent ridges without computing the derivative. Instead, we extract them
in image-space.

This choice brings two important advantages. Since the extraction is done
in image-space, the performance of this stage does not depend on the mesh
size, providing an overall performance improvement. The other advantage
is that the image-space stage is modular and it can be combined with other
methods for estimating the view-dependent curvature. Particularly, it can be
used to extract apparent ridges from other sources like images, point clouds
and volumetric data.

19

4.4 Overview of Our Method

We present a method that runs major computations on the GPU. To achieve
this, we split the rendering process into two stages. The view-dependent
curvature data is estimated in an object-space stage and apparent ridges
are extracted in an image-space stage, using edge detection (see the bottom
diagram in figure 4.1).

This split will allow us to use vertex and pixel shaders to program each
stage in the GPU, exploiting its processing power and parallelism. These
changes provide significant speedups that will be discussed in chapter 5.

All the required 3D data, like the normal, the principal curvatures and
principal directions are estimated using a popular technique proposed by
Rusinkiewicz [19]. They are computed once as they do not change for a static
model.

Now we are going to see each stage in detail.

4.5 Object-Space Stage

In this first stage, ¢; and t; are estimated at each vertex of the mesh. This
is done using the same computations that are performed by Judd’s method,
except that it is implemented in a vertex shader. The required data (n, ki,
ks, e1 and ey) are passed to the vertex shader program as vertex information
like colors and texture coordinates.

After the computation, ¢; and ¢; are packed into the color output RGB
channels of the vertex shader. We use one channel to pack ¢; and two channels
to pack ¢, because it is a 2D screen vector (see figure 4.2).

As shown in chapter 3, ¢; is a non-negative value and achieves extremely
high values near the contours. Thus, we need to truncate the ¢, value to fit
the channel interval that is [0, 1]. Before this truncation, ¢; must be scaled
so that all the local maxima lie in [0, 1], but also preserving precision. This
means that this positive scaling factor cannot be too high or too low. This
factor is controlled by the user. We empirically derived a function to guess
an acceptable value, based on the feature size of the model. The user can
then fine-tune it by hand if needed. For easy manipulation, we introduced an
exponential parameter 7 so the user can rapidly switch from small to large
scales. The scaled curvature value ¢ is defined as

q=2"q

For tq, as it is a normalized 2-dimensional vector, its components ¢, and
t1y lie in the [—1, 1] range. We use a simple affine transform to pack it in the

20

qi t1
e N,

z.

q |t
R G B

QIatl — Qt7ty

Figure 4.2: Color coding of ¢; and ¢,

[0, 1] range:

ty = % + %tly

After that, the packed values of ¢; and t; are rasterized to the screen,
following the natural rendering pipeline. The packed values are interpolated
between the vertices by the GPU (see figure 4.3). This will pass the informa-
tion automatically to an off-screen buffer, and will be input to the fragment
shader in the second stage. This concludes the first stage.

screen

mesh

(¢®.12,17)

rasterization

('t ty) & s (%, 13,13)

bilerp(p1. p2, p3)

Figure 4.3: Rasterization of the packed values

4.6 Image-Space Stage

The main difference between our method and Judd’s is that the apparent
ridges are not extracted computing the zero-crossings of Dy, q;. Instead, we
use edge detection to find the maxima of ¢; in the ¢; direction. Since t; is a
screen vector by definition, our choice of finding the maxima in image-space
is reasonable.

In the previous stage, ¢; and t; were computed and rasterized to an off-
screen buffer. To find the apparent ridges, we perform a simple edge-detection

21

3w 3w ow 3w

7kj+7r]_ 9_

s1E T nelr-gatel = =7
L4+ A 1 1+A 1 1+ X 142\ 1+ X 1+2A 1+2A 1+ 2A 1+ A 1

1+2A 8 —8A| 14+ 2 1+A 8 —BA| 1+ A 1 8 — 8\ 1 1+ A B—8BA 1+4+A

L+ A 1 I+A L420 | 1+X 1 T+ [1420 | 142 1 L+A | 1424

Figure 4.4: Laplacian-like adaptive filter. Filter setup is chosen according to
the maximum view-dependent principal direction

in this buffer. We use a standard fragment shader technique for doing image
processing on the GPU [21].

The edge detection is done with a Laplacian-like adaptive filter that
considers the t; direction. This filter gives more weight to the pixels that are
more aligned with the ¢; direction. First, the ¢; direction is quantized into

one of four main directions
T m 37w
9 oo 0n
< {O’ 121 }

and then the filter setup is chosen based on one of these four directions (see
figure 4.4). The filter is weighted by a A parameter that controls how sensitive
the filter is to the # direction. Note that, when A\ = 0, the filter ignores the ¢,
direction and becomes a Laplacian filter.

At the end of the process, the filtered value of the curvature is used as
an apparent ridge intensity. We use this intensity as a gray-scale pixel value.
This produces a line fading effect, similar to the one used in object-space
methods of suggestive contours and apparent ridges. We invert the color
intensity to produce “black on white” effect, otherwise we would have “white
on black”. The fading effect could be avoided by setting the pixel value to
black when intensity is higher than a minimum threshold (see figure 4.5).
Low values are clamped to avoid noise artifacts produced by the filter. High
A values are more sensitive to noise and may require a higher clamping value.

22

Figure 4.5: Results with (left) and without (right) the fading effect

23

Chapter 5

Results

In this chapter we present some of our method’s results, observe the effects
of varying our method’s parameters (7 and \) and compare our results with
Judd’s in image quality and performance, side-by-side.

Figure 5.1: Our results (bottom) on some models along with shaded views
(top) for comparison

Our results exhibit nice line drawings that capture most of the geometric
features of the model. This can be seen comparing each drawing with its

24

Figure 5.2: Our results (bottom) on some models along with shaded views
(top) for comparison

respective shaded view (see figures 5.1 and 5.2).

A great visual property of apparent ridges is that they can depict relatively
complex models with very few lines in a clean way. Moreover, if the default
setup of our method is not pleasing enough, one can manipulate the parameters
7 and A to achieve maximum quality. These parameters variation will be
treated in the next section.

5.1 Parameter Variation

As shown in chapter 4, the 7 parameter is used to scale the view-dependent
curvature ¢;. In figure 5.3 we present results of our method on the top row
and the scaled view-dependent curvature g = 27¢; at the bottom row. Each
column has the a fixed 7 value, that linearly assumes values from —9.9 to
—2.4, from left to right.

As can be seen in figure 5.3, higher 7 values give more detailed apparent
ridges. However, too high 7 values promote loss of precision and the lower
maxima are rounded to zero (see the rightmost cow).

One interesting result is that the Laplacian filter detects most of the

25

Figure 5.3: Top row: ¢ in grayscale. Bottom row: apparent ridges. 7 parame-
ter assuming values —9.9, —7.4, —4.9 and —2.4, from left to right.

apparent ridges. The Laplacian filter is chosen by setting A = 0. As the
maxima estimation is achieved at pixel-level, some features may be harder to
catch when the projected faces of the mesh are much larger than the pixel.
Large faces produce large areas of interpolated curvature. To overcome this
problem, higher values of A can be set. See the top-left tablecloth in figure
5.4, where the main top ridge is not captured by the Laplacian filter. Higher
values of A capture this feature and produce sharper apparent ridges.

Believing that apparent ridges produce quite pleasant images, we will not
compare our results with other lines like suggestive contours or ridges and
valleys. Instead, we will compare our results with Judd’s method results,
both in image quality and performance.

26

Figure 5.4: Results of the tablecloth with the A parameter assuming values
0.0, 1.5, 3.0 and 4.5, from left to right, top to bottom

5.2 Image Comparison

We shall compare some results of the Judd’s method and ours side-by-side.
The methodology used with the results is the following: given a model, an
appropriate threshold is set for the Judd’s method. Then, we set our method’s
parameters (7 and \) in a way the resulting image is visually as close as
possible to the Judd’s result. The parameter setting is done manually for
both methods. We have tested several models and the results can be seen
from figures 5.5 to 5.10.

As seen in the results, our method produces images that are quite similar

27

to the ones produced by Judd’s method; apparent ridge lines appear generally
in the same place. In some cases, it is very hard to notice the slight differences
with bare eyes (especially in a printed version); image closeups should reveal
pixel-level differences. The image differences occur due to the nature of the
estimation. In the original method, 3D lines are extracted on the mesh and
then rasterized with an arbitrary line size. Our method does an edge-detection
on the rasterized view-dependent curvature.

While the images produced by both methods are equally pleasant, we
believe that ours are a little more sharper due to the pixel-level estimation,
especially for more detailed models. However, for images where the projected
face size is much larger than the pixel size, the image quality is worse. In these
cases, the excessive interpolation of ¢; and t; may produce visual artifacts.
See the case of the roudedcube model (figure 5.9). In general, our method
works fine for larger models and these artifacts can be eliminated by mesh
subdivision.

28

Our Method

Judd’s Method

Figure 5.5: Comparison for the armadillo, brain and bunny models

29

Our Method

Judd’s Method

A
e T

S } - ———

Figure 5.6: Comparison for the column, cow and elephant models
30

Our Method

Judd’s Method

Figure 5.7: Comparison for the golfball, hippo and heptoroid models

31

Judd’s Method Our Method

Figure 5.8: Comparison for the horse, igea and planck models

32

Judd’s Method

Our Method

Figure 5.9: Comparison for the lucy model

33

Judd’s Method

Our Method

o -
RN —
\ AN — - {
| |

| |

\ | /
N

,/f' N
/ /» i ul\.
I |
I | \
‘Tl\ii'}' — ! N \‘\
el Y ™

L 4

<J " |/ ’
N N

Figure 5.10: Comparison for the roundedcube, tablecloth and torus models

34

5.3 Performance Comparison

A drawback of the Judd’s apparent ridges compared to other lines is that they
tend to be slower to compute as they rely on the view-dependent curvature
and its derivative information. Our method improves the performance of
apparent ridges, leading them to be competitive in speed with other feature
lines, with the all the advantages of apparent ridges.

The code was implemented in C++ language for the main application
using the trimesh2 library [20, 19]. Shaders were written in GLSL [21] and
the codes can be found in Appendix A. The original apparent ridges code
was incorporated and adapted to run inside our program for side-by-side and
performance comparisons. The 3D mesh models were collected from [22; 23].

We tested our method and Judd’s on two computers: an ordinary laptop
with a regular graphics card and a high-end workstation with a powerful
graphics card. The laptop has an AMD Turion X2 processor with a 512MB
NVidia GeForce 8200M card while the workstation has a dual AMD Opteron
processor with a 1.5GB NVidia Quadro FX 5600 card. All the cards have
GPU support for vertex and fragment shaders.

The results in tables 5.1 and 5.2 show that our method provides significant
speedups compared to Judd’s, except from the particular cases of the two
smaller models on the laptop. However, the frame rate for these cases is still
high (over 80 FPS).

In the laptop results, it is possible to see that our method performs better
for larger models. Indeed, it can be seen that the speedups between the
methods grow with the mesh size. Another way of interpreting this result is
that the impact of the mesh size is different for the methods, and our method
takes advantage of the graphics card to minimize this impact.

In the workstation results, our method performs better both in absolute
frame rate and relative speedup to Judd’s method. However, it is not possible
to see a clear tendency of speedup growth with the mesh size.

A very interesting result is that, since Judd’s method is CPU-based, it
is expected a speedup from its results when comparing the laptop to the
workstation results. Although it indeed occurs, the frame rates of the larger
models are almost the same. These results show that CPU-based solutions
may not take much advantage of expensive hardware.

In general, the results are very encouraging and show that GPU-based
solutions for line extraction may be a good choice when performance matters.

35

Model ‘ # Vertices | Judd’s (FPS) ‘ Ours (FPS) ‘ Speedup ‘

roundedcube 1538 202 90 0.5
torus 4800 148 84 0.6
tablecloth 22653 32 64 2.0
hippo 23105 41 66 1.6
CoOw 46433 24 58 2.4
horse 48484 22 52 2.4
maxplanck 49132 20 46 2.3
bunny 72027 15 42 2.8
elephant 78792 14 47 3.4
golfball 122882 9 30 3.3
igea 134345 8 29 3.6
armadillo 172974 5 18 3.6
column 262653 3 9 3.0
lucy 262909 4 13 3.3
heptoroid 286678 4 21 5.3
brain 294012 4 20 5.0

Table 5.1: Results for the laptop with a NVidia GeForce 8200M

’ Model ‘ # Vertices ‘ Judd’s (FPS) ‘ Ours (FPS) ‘ Speedup ‘
roundedcube 1538 600 1100 1.8
torus 4800 270 870 3.2
tablecloth 22653 32 160 5.0
hippo 23105 42 160 3.8
cow 46433 23 198 8.6
horse 48484 26 147 5.6
maxplanck 49132 22 90 4.1
bunny 72027 16 102 6.4
elephant 78792 15 113 7.5
golfball 122882 9 52 5.8
igea 134345 8 58 7.3
armadillo 172974 5 30 6.0
column 262653 3 15 5.0
lucy 262909 4 26 6.5
heptoroid 286678 5 19 3.8
brain 294012 4 34 8.5

Table 5.2: Results for the workstation with a NVidia Quadro FX 5600

36

Chapter 6

Conclusions and Future Work

Since their introduction, apparent ridges have shown to be perceptually
pleasant and also competitive with lines like suggestive contours by depicting
the same features in a clear and smooth way, but also depicting convex
features. However, as stated in Judd’s work [13], apparent ridges are slower to
compute since they depend on high-order derivatives of the view-dependent
curvature, which changes with the viewpoint.

We have presented a new method for computing apparent ridges that is
faster than the original, replacing the computation of the curvature derivative
with a simple edge detection, providing similar image quality. With this new
performance rates, apparent ridges become even more competitive.

As future work, we intend to experiment with some techniques to improve
image quality, like better filters and the use of a Phong-like shading of the
view-dependent curvature. This should improve the quality of image closeups
and small models.

Also, the image-space stage of our method could be used as part of a
pipeline to extract apparent ridges from volume data and implicit models.
To extract apparent ridges, one should just concentrate on the extraction
of the view-dependent curvature from the isosurfaces and rasterize it to an
off-screen buffer.

Our method could also be adapted to extract other lines, like suggestive
contours. Properties like the radial curvature and its derivative could be
rasterized to an off-screen buffer where appropriate screen operations can be
applied to find them.

The main contribution of Judd’s work is certainly the definition of the
view-dependent curvature. We would like to explore this property in different
contexts like shading, mesh evaluation and modeling.

37

Bibliography

[1]
2]

[9]

W. A. Fetter, Computer Graphics, Aircraft Applications Document No.
D3-424-1, Boeing Airplane Company, Wichita Division, 1961

Toward a Machine with Interactive Skills, Understanding Computers:
Computer Images, Time-Life Books, 1986
POV-Ray Hall of Fame Web Page, http://hof.povray.org, 2009

M. C. Sousa, Overview of NPR for Computerized Illustration, in [llustrative
Visualization for Medicine and Science, ACM SIGGRAPH 2006 Courses,
Boston, Massachusetts, 2006

M. Pharr and G. Humphreys, Physically Based Rendering: From Theory
to Implementation, Morgan Kaufmann, July 2004

B. Gooch and A. Gooch, Non-Photorealistic Rendering. A K Peters, 2001

T. Strothotte and S. Schlechtweg, Non-Photorealistic Computer Graphics:
Modeling, Rendering and Animation. Morgan Kaufmann, San Francisco,
2002

K. Hulsey, Technical Illustration Web Page, http://www.khulsey.com,
2009

Boston College’s Gallery of John Flaxman’s Odyssey (1835),
http://www.bc.edu/bc_org/avp/cas/ashp /flaxman_odyssey.html, 2009

[10] W. Koch, Baustilkunde. Mosaik-Verlag GmbH, Mnchen, 1991
[11] M. C. Sousa and P. Prusinkiewicz, A Few Good Lines: Suggestive Drawing

of 3D Models, Computer Graphics Forum, vol. 22, no. 3, pp. 327-340,
2003

[12] T. Judd, F. Durand, and E. Adelson, Apparent Ridges for Line Drawing,

ACM Transactions on Graphics, vol. 26, no. 3, article 19, July 2007

[13] T. Judd, Apparent Ridges for Line Drawing. Master’s Thesis, Computer

Science, MIT, Jan 2007

38

[14] A. Hertzmann, Introduction to 3D Non-Photorealistic Rendering, in
Non-Photorealistic Rendering (SIGGRAPH’99 Course Notes), 1999

[15] K. Na, M. Jung, J. Lee, and C. G. Song, Redeeming Valleys and Ridges
for Line-Drawing, in Advances in Multimedia Information Processing,
Lecture Notes in Computer Science, vol. 3767, pp. 327-338, 2005

[16] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella, Suggestive
Contours for Conveying Shape, ACM Transactions on Graphics, vol. 22,
no. 3, pp. 848-855, 2003

[17] J. J. Koenderink, A. J. van Doorn, C. Christou, J. S. Lappin, Shape
Constancy in Pictorial Relief. Perception vol. 25 no. 2, pp. 155-164, 1996

[18] M. P. do Carmo, Differential Geometry of Curves and Surfaces. Prentice-
Hall, 1976

[19] S. Rusinkiewicz, Estimating Curvatures and Their Derivatives on Trian-
gle Meshes. Proceedings of the 3D Data Processing, Visualization, and
Transmission, 2nd International Symposium, pp. 486-493, September 2004

[20] The trimesh2 Library, http://www.cs.princeton.edu/gfx/proj/trimesh2,
2009

[21] R. Wright, B. Lipchak and N. Haemel, OpenGL Superbible: Comprehen-
siwe Tutorial and Reference, Addison-Wesley, 4th Edition

[22] Suggestive Contour Gallery, http://www.cs.princeton.edu/gfx /proj/sugcon/models,
2009

[23] Apparent Ridges for Line Drawings,
http://people.csail.mit.edu/tjudd/apparentridges.html, 2009

39

Appendix A
Shader codes

The GLSL codes for the vertex and fragment shaders (see listings A.1 and
A2).

40

0O Uik W=

Listing A.1: Vertex shader in GLSL

void main(void)

{

gl_Position = gl_-ModelViewProjectionMatrix x gl_Vertex;
vec3 N = normalize (gl_-NormalMatrix * gl _Normal);
vec3d el = gl -NormalMatrix * gl_SecondaryColor.rgb;
vecd e2 = gl_-NormalMatrix * gl-MultiTexCoord0.rgb;
float k1 = gl_Color.r, k2 = gl_Color.g;

vecd V = gl_-ModelViewMatrix * gl_Vertex;

vec3 viewdir = normalize(—V.xyz);

float ndotv = dot(viewdir, N);

float u = dot(viewdir, el), v = dot(viewdir, e2);
float u2 = uxu, v2 = vxv, uv = u*v;

float csc2theta = 1.0 / (u2 + v2);

u2 x= csc2theta;

uv *= csc2theta;

v2 *= csc2theta;

float sectheta_minusl = 1.0 / abs(ndotv) — 1.0;
float Q11 = k1 * (1.0 + sectheta_minusl * u2);
float QI2 = k1 = (sectheta_minusl * uv);
float Q21 = k2 * (sectheta_minusl * uv);
float Q22 = k2 x (1.0 + sectheta_minusl * v2);
float QTQl = Q11xQ1l1 + Q21xQ21;
float QTQI2 = Q11xQ12 + Q21xQ22:
float QTQ2 = Q12xQ12 + Q22xQ22;

float a = QTQI2*QTQI2, b = QTQ2-QTQL;
float gl = 0.5 * (QTQl + QTQ2);
if (ql > 0.0)
ql += sqrt(a + 0.25%bxb);
else
ql —= sqrt(a + 0.25%bx*b);
vec2 sl = normalize(vec2(QTQ2-ql, —QTQI12));
vec3 wl = s1[0]*el 4+ sl[1]xe2;
vec2 t1;

// ql1 and t1 packing
float q = pow (2.0, tau)=*ql;
if (wl.z >= 0.0)
t1 = normalize (vec2(—wl.x, —wl.y));
else
t1 = normalize(vec2(wl.x, wl.y));

gl_FrontColor.rgh = vec3(q, 0.54+0.5%xt1.x, 0.5+0.5%xtl.y);

41

© 00D Uk WN

Listing A.2: Fragment shader in GLSL

uniform sampler2D sampler0;
uniform vec2 tc_offset [9];
uniform float lambda;

void main(void)

{
bool border = false;
vec2 z = vec2(0.0, 0.0);
float v = 0.0, diff;
float a = 0.70710678118655; // sqrt(2)/2
float b = 0.92387953251080; // cos(pi/8)
float 11 = 1.04+lambda, 12 = 1.04+2.0xlambda;
vecd s[9];
for (int i = 0; i < 9; i++) {
s[i] = texture2D (sampler0, gl-TexCoord|[0].st + tc_offset[i]);
}
if (s[4].rgb = vec3 (1.0, 0.0, 0.0)) border = true;
vec2 t1 = vec2(2.0x(s[4].g—0.5), 2.0%(s[4].b—=0.5));
if (t1 !'= z) {
vec2 dl = vec2(1.0, 0.0),
d2 = vec2(a, a),
d3 = vec2(0.0, 1.0),
d4 = vec2(—a, a);
int d = —1;
if (abs(dot(tl, d1)) > b) d = 1;
else if (abs(dot(tl, d2)) > b) d = 2;
else if (abs(dot(tl, d3)) > b) d = 3;
else d = 4; // if (abs(dot(t1, d4)) > b)
v = (8.0+8.0xlambda)xs [4].r
if (d=1) {
v—=(11 % s[0].r + s[1].r + 11 % s[2].r +
12 = s[3].r + 12 % s[5].r +
11 % s[6].r + s[7].r + 11 % s[8].r
}
else if (d = 2)
v —= ([0].7r + 11 % s[1] + 12 % s[2].r +
11 % s[3 + 11 * s[5].
12 % s[6].r + 11 = s[7].r + s[8].
}
else if (d = 3) {
v—=(11 % s[0].r + 12 * s[1].r + 11 % s[2].r +
s[3].r + 5].r +
11 % s[6].r + 12 % s[7].r + 11 % s[8].r
else {
v—=(12 % s[0].r + 11 * s[1].r + s[2].r +
11 = s[3].r 4+ 11 % s[5].r +
s[6].r + 11 % s[7].r + 12 % s[8].r
}
// color invertion
if (v > 0.2) gl_FragColor = vec4(1.0—v);
else gl_FragColor = vec4 (1.0);
}

42

