
INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADA

Content-Based Projections for
Panoramic Images and Videos

Leonardo Koller Sacht

Advisor: Paulo Cezar Carvalho

Co-advisor: Luiz Velho

Rio de Janeiro, April 5, 2010.

Master thesis committee:

Paulo Cezar Pinto Carvalho (advisor) - IMPA

Luiz Carlos Pacheco Rodrigues Velho (co-advisor) - IMPA

Marcelo Gattass - PUC-Rio

Luiz Henrique de Figueiredo (substitute) - IMPA





Acknowledgements

First of all, I would like to thank my mother for always supporting me, encouraging

me and pushing me forward.

I would like to thank Professor Paulo Cezar Carvalho for guiding my studies during

the last years and for giving valuable suggestions and contributions to this work.

I am grateful to Professor Luiz Velho for receiving me very well in the Visgraf La-

boratory, for introducing me to the theme of this thesis, for giving great ideas for the

development of this work and for providing key discussions about the theme.

I would also like to thank Professor Marcelo Gattass for helping me on the Computer

Vision aspects of this work.

A more general acknowledgement to all Professors from IMPA and UFSC that contri-

buted to my academic growth.

I want to thank all my colleagues from the Visgraf Lab that somehow helped me in this

thesis: Thiago Pereira, Adriana Schulz, Djalma Lucio, Gabriel Duarte, Marcelo Cicconet,

Francisco Ganacim and Leandro Cruz. Also, I want to thank all friends at IMPA for

making the years of my masters studies not only constructive but also very pleasant.

I would like to thank all the people that work at IMPA and contribute to keeping it

a place of excellence to study Mathematics.

I am very grateful to the Brazilian Government for giving me conditions to focus on

my studies and CNPq for the financial support.





Resumo

Câmeras comuns geralmente capturam um campo de visão bastante limitado, por

volta de noventa graus. A razão para este fato é que quando o campo de visão se torna

maior, a projeção que estas câmeras usam começa a introduzir distorções não-naturais e

não-triviais. Esta dissertação estuda estas distorções com a finalidade de obter imagens

panorâmicas, isto é, imagens de grandes campos de visão.

Após modelar o campo de visão como uma esfera unitária, o problema passa a ser

achar uma projeção de um subconjunto da esfera unitária em um plano de imagem, com

propriedades desejáveis. Nós fazemos uma discussão aprofundada de Carroll et. al ([1]),

no qual preservação de linhas retas e formas de objetos são colocados como as propiedades

desejáveis principais e uma solução de otimização é proposta. A seguir, nós mostramos

imagens panorâmicas obtidas por este método e conclúımos que ele funciona bem numa

variedade de cenas.

Esta dissertação também faz um estudo inovador sobre v́ıdeos panorâmicos, isto é,

v́ıdeos nos quais cada quadro é constrúıdo a partir de um grande campo de visão. Nós in-

troduzimos um modelo matemático para o problema, discutimos propriedades de coerência

temporal desejáveis, formulamos equações que representam estas propriedades, propomos

uma solução de otimização para um caso particular e apontamos direções futuras.

Palavras-chave: Esfera viśıvel, imagens panorâmicas, v́ıdeos panorâmicos.





Abstract

Common cameras usually capture a very narrow field of view (FOV), around ninety

degrees. The reason for this fact is that when the field of view becomes wider, the

projection that these cameras use starts introducing unnatural and nontrivial distortions.

This thesis studies these distortions in order to obtain panoramic images, i.e., images of

wide fields of view.

After modeling the FOV as a unit sphere, the problem becomes finding a projection

from a subset of the unit sphere to the image plane, with desirable properties. We provide

an in-depth discussion of Carroll et. al ([1]), where preservation of straight lines and

object shapes are stated as the main desirable properties and an optimization solution is

proposed. Next, we show panoramic images obtained by this method and conclude that

it works well in a variety of scenes.

This thesis also provides a novel study about panoramic videos, i.e., videos where each

frame is constructed from a wide FOV. We introduce a mathematical model for this pro-

blem, discuss desirable temporal coherence properties, formulate equations that represent

this properties, propose an optimization solution for a particular case and point future

directions.

Keywords: Viewing sphere, panoramic images, panoramic videos.





Contents

Introduction 1

Motivation and Overview of the Problem . . . . . . . . . . . . . . . . . . . . . . 1

Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Original Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Structure of the thesis: a time line . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Panoramic images 6

1.1 The Viewing Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Standard Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Perspective Projection . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Stereographic Projection . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Mercator Projection . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Modified Standard Projections . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Perspereographic Projections . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 Perspective Projection Centered on Other Points . . . . . . . . . . 18

1.4.3 Recti-Perspective Projection . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Previous Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Correction of Geometric Perceptual Distortions in Pictures . . . . . 21

1.5.2 Artistic Multiprojection Rendering . . . . . . . . . . . . . . . . . . 23

1.5.3 Squaring the Circle in Panoramas . . . . . . . . . . . . . . . . . . . 25

1.5.4 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Optimizing Content-Preserving Projections for Wide-Angle Images 28

2.1 Desirable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Discretization of the Viewing Sphere . . . . . . . . . . . . . . . . . . . . . 35

2.4 Conformality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 Differential Geometry and the Cauchy-Riemann Equations . . . . . 36

2.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.3 Energy Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Straight Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9



2.5.1 Energy terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.2 Inverting Bilinear Interpolation . . . . . . . . . . . . . . . . . . . . 52

2.6 Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6.1 Energy Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.7 Spatially-Varying Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.8 Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8.1 Total Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8.2 Eigenvalue/Eigenvector Method . . . . . . . . . . . . . . . . . . . . 63

2.8.3 Linear System Method . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.8.4 Results in each iteration . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Results 73

3.1 Result 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Result 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Result 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Result 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Result 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Failure cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7 Result Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Panoramic Videos 97

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 The three cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Desirable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 The Temporal Viewing Sphere and Problem Statement . . . . . . . . . . . 100

4.5 Transition Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6 Case 1 - Stationary VP, Stationary FOV and Moving Objects . . . . . . . 104

4.6.1 Temporal Coherence Equations . . . . . . . . . . . . . . . . . . . . 104

4.6.2 Discretization of the temporal viewing sphere . . . . . . . . . . . . 106

4.6.3 Total energy, minimization and results . . . . . . . . . . . . . . . . 107

4.6.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6.5 Other Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7 Case 2 - Stationary VP, Moving FOV and Stationary Objects . . . . . . . 115

4.7.1 Temporal Coherence Equations . . . . . . . . . . . . . . . . . . . . 115

4.7.2 A solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A Application Software 118

A.1 Application and user’s manual . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2.1 Window 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10



A.2.2 Window 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.2.3 Matlab processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B Feature Detection in Equirectangular Images 128

B.1 Automatic Face Detection in Equirectangular

Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.1.1 Robust Real-time Face Detection . . . . . . . . . . . . . . . . . . . 129

B.1.2 Method and Implementation . . . . . . . . . . . . . . . . . . . . . . 133

B.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.1.4 Weight Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.2 Semiautomatic Line Detection in Equirectangular Images . . . . . . . . . . 137

B.2.1 The Hough Transform . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.2.2 Bilateral Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.2.3 Eigenvalue Processing . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.2.4 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Conclusion 151

Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Bibliography 155

i





Introduction

Motivation and Overview of the Problem

This thesis studies the problem of obtaining perceptually acceptable panoramic images,

which are images that represents wide fields of view.

One of the motivations for this problem is that common cameras capture just a limited

field of view (FOV), usually near 90 degree longitude and 90 degree longitude, while our

eyes see about 150 degree longitude and 120 degree latitude. When we see a photograph,

it is as if we were seeing the world through a limited window. This limitation in common

photographs happens because they are produced under a projection that approximates

the perspective projection, which stretches objects too much for wide FOVs.

The panoramic images can be used to extrapolate our perception, since they can

capture FOVs beyond the human eye. Also, a panoramic image allows us to better

represent an entire scene. There may be important parts in a scene that could not be

seen under a limited FOV.

The study of this topic became possible only recently with the development of stitching

software and equipment ([2], [3] and [4]). With these techniques, it is possible to create

an image of the entire viewing sphere centered at the viewpoint, an image that contains

the visual information that is seen from this viewpoint in all possible directions. In figure

1 one can see an example of such image, which we call equirectangular image.

Once we have an image that represents the viewing sphere, what is left to be done

is to find a projection from the sphere to the plane that results in a perceptually good

result. Some previous works as [5], [6], [7], [4] and [8] considered this problem. The main

difficulty that arises is to satisfy two important perceptual properties: preservation of

shapes, i.e., objects in the scene should not appear too stretched in the final panoramic

image, and preservation of straight lines, i.e., straight lines the scene should be mapped

to straight lines in the final panoramic image.

The paper studied in depth in this thesis, named Optimizing content-preserving projec-

tions for wide-angle images ([1]), addresses these two properties by formulating energies

that measure how a projection distorts shapes and bends lines. The user marks in an

interface the lines she wants to be preserved and the method detect regions where the

projection should preserve more shapes, as face regions for example. Based on this in-

1



Figure 1: Example of equirectangular image.

formation, the method formulates the energies and the minimizer of a weighted sum of

these energies is the panoramic image that most satisfy these properties. An extra term

for modeling the smoothness of the projection is necessary to avoid mappings that vary

too much to satisfy the constrains. An example of panoramic image produced by this

method is shown in figure 2.

Figure 2: Example of result produced by the method discussed in detail in this thesis.

This thesis is also concerned about the problem of obtaining perceptually acceptable

panoramic videos. This theme has the motivations we already mentioned for panoramic

images, but also it has more interesting practical applications. The development of ideas

in this field could lead to new ways of filming, which could be applicable for cinema and

sport broadcasting, for example.

2



Recently, capture devices that film a wide field of view were invented. An example of it

can be found in [9]. These cameras return a video where each frame is an equirectangular

image for the respective time. Again, what is left to be done is to project this set of

viewing spheres (which we call temporal viewing sphere) to a set of images.

Very little work has been done on this subject. The strategy adopted in this thesis is

to adapt the theory studied for images and include new desirable properties that model

temporal coherence, in order to produce a perceptually good panoramic video.

Goals

This thesis has the following goals:

• Study and understand the panoramic image problem: In our work, we do a

review of the methods proposed up to the moment, which is necessary to understand the

difficulties and challenges of the problem.

• Analyze in detail a reference on this topic: After doing the review, we elec-

ted [1] as the main reference of this thesis because it satisfies most of the properties we

state as desirable. All the details, even the ones that were omitted in the reference, are

explained in this thesis.

• Propose extensions to this reference: Beyond detailing [1], we propose two ex-

tensions for it: feature detection on equirectangular images and panoramic videos.

• Focus on mathematical aspects of the problem: All the mathematical tech-

niques related to the problem are discussed in details in this thesis. Perceptual aspects

are also discussed and implementation aspects are left as appendix.

Original Contributions

We believe that the two most important contributions of our work are:

• Statement, modeling and solutions for the panoramic video problem: As

far as we know, this thesis is the first work where the problem of obtaining a video where

each frame represents a wide FOV is considered. We consider desirable properties for

this problem, that depend on temporal coherence of the objects and of the entire scene,

we model the problem as the one of finding a projection and we propose an optimization

solution for a particular case. These contributions are all found in chapter 4.

3



• An in-depth conclusive analysis of [1]: As we already mentioned, [1] omits de-

tails of their method. This thesis makes a complete mathematical analysis of their work,

and also a conclusive analysis based on the results produced by their method. This ana-

lysis is in chapters 2 and 3.

Our work has other contributions of less impact, but also important in the context of

this thesis:

• Line detection on equirectangular images: We propose a method to semiauto-

matically detect straight lines of the world in equirectangular images. This detection

was pointed as future work in [1] and helps the user in the task of marking lines. This

contribution can be found in appendix B.

• Application software: We propose in this work an application software that has

some features that the interface proposed in [1] does not have, such as specification of

FOV, vertices and number of iteration. This application is explained in appendix A.

• Perspereographic Projections: We developed a set of projections that interpolates

conformality and preservation of straight lines in a very intuitive way. It has the same

purpose of the projection presented in [5], but is obtained in a much easier way. These

projections are in section 1.4.1.

Structure of the thesis: a time line

The thesis is structured according to figure 3.

Figure 3: Structure of the thesis.

Chapter 1 starts with the statement of the panoramic image problem and then reviews

many possibilities proposed to solve this problem until last year (2009). That is why we

associate it to past time. The first solutions considered are the standard projections, which

were developed centuries ago with other purposes but are applicable to the problem. Some

modifications of them are also considered. Then we analyze previous approaches proposed

in the last 15 years: [5], [6], [7], [4] and [8].

Motivated by chapter 1, we start chapter 2 by making a list of desirable properties

a method to produce panoramic images should have and explain why [1] satisfies most

4



of them. Since [1] is very recent (it was published in SIGGRAPH 2009) we associate it

to present time. Each section of this reference is discussed and theoretical details are

rigorously posed.

In chapter 3, we show the results produced by the method. Good results are shown,

each one illustrating some interesting feature of the method. Also, some failure cases are

discussed.

In order to complement the discussion about [1], we provide two appendices. In

appendix A, we show the application software we did to implement the method and give

implementation details. Appendix B shows the methods we developed to detect faces

and straight lines in equirectangular images. The Computer Vision and Image Processing

techniques we used are explained.

We finish the thesis by discussing what we consider to be the future of this theme:

panoramic videos. Chapter 4 is an initial step on this direction. We separate the problem

in 3 cases, discuss and model undesirable distortions in panoramic videos and state the

problem as finding a projection from the temporal viewing sphere to the 3-dimensional eu-

clidian space. An optimization solution is proposed for case 1 and other possible solutions

are discussed. Some initial results are provided.

5





Chapter 1

Panoramic images

A panoramic image or wide-angle image or panorama is an image constructed from a

wide field of view. The field of view (FOV) is the angular extent of the observable world

that is seen at any given moment.

In this chapter we model the field of view as a subset of a unit sphere centered at the

viewpoint. From this, we derive standard projections from this sphere to an image plane

and also show some modifications of them.

Motivated by the distortions that these mappings cause, we show some previous ap-

proaches that proposed methods to alleviate such problems.

This chapter can be seen as a detailed introduction to the panoramic image problem

and its main goals are:

• Present and explain the necessary formalism (section 1.1);

• Clearly state the panoramic image problem (section 1.2);

• Discuss known projections and previous approaches in order to understand what pro-

perties are desirable in wide-angle images (sections 1.3, 1.4 and 1.5).

1.1 The Viewing Sphere

In this work, any scene observed from a fixed viewpoint at a given moment will be

modeled as the unit sphere centered at the viewpoint (S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 =

1}) on which each point has an associated color, the color that is seen when one looks

toward this point. Here we assume that the viewpoint is the origin of R3 for convenience.

This sphere we will call the viewing sphere. Notice that the viewing sphere represents

the whole 360 degree longitude by 180 degree latitude field of view. Figure 1.1 shows an

example of viewing sphere.

6



Figure 1.1: A viewing sphere (looked from outside) that represents the visible information

of some scene.

A very known and useful representation of S2 is the one by longitude and latitude

coordinates1:

r : [−π, π]×
[
−π

2
, π

2

]
→ S2

(λ, φ) 7→ (cos(λ) cos(φ), sin(λ) cos(φ), sin(φ))

This representation is illustrated in figure 1.2.

Figure 1.2: Longitude/latitude representation r.

r gives us a way of representing all the information of a scene from a single viewpoint as

the longitude/latitude rectangle [−π, π]×
[
−π

2
, π

2

]
, which we will call the equirectangular

domain.

1Also known as yaw and pitch values or pan and tilt values.

7



Recent development of stitching techniques made it possible to take many pictures

of a scene and stitch them all together into an equirectangular domain that represents

such scene. More specifically, from a set of photographs (common photographs or images

obtained with fisheye lenses, for example) taken from the same viewpoint, it became

possible to create an image in which every pixel represents a point and its associated

color on the equirectangular domain.

The stitching process itself is a very detailed task and will not to be discussed in this

work. However, it is important to notice that without the development of such techniques,

it would not be possible to deal with projections from the viewing sphere to an image

plane, which is one of the main tasks of this thesis. For additional information about

stitching, we suggest references [2] and [3].

Such images of the equirectangular domain are called equirectangular images and will

be the input information for all the algorithms that we will develop. Examples of equi-

rectangular images are shown in figures 1.3, 1.4 and 1.5.

Figure 1.3: “San Marco Plaza”, by Flickr user Veneboer, taken from [10].

Figure 1.4: “Reboot 8.0: Ianus demos Cabinet to Thomas’ kid”, by Flickr user Aldo,

taken from [10].

8



Figure 1.5: “Cloud Gate”, by Flickr user Wcm777, taken from [10].

The bottom left corner of the images (with coordinates (x, y) = (m− 1, 0)) represents

the point
(
−π,−π

2

)
, the top right corner ((x, y) = (0, n− 1)) of the image represents the

point
(
π, π

2

)
and the center of the image ((x, y) = (m−1

2
, n−1

2
)) represents the point (0, 0)

on the equirectangular domain, as illustrated in figure 1.6.

Figure 1.6: Correspondence between the equirectangular domain and the equirectangular

image.

The correspondence between [−π, π]×
[
−π

2
, π

2

]
and the equirectangular image is very

simple:

(λ, φ) 7→ (x, y) =

(
(m− 1)−

(
φ+ π

2

π

)
(m− 1),

(
λ+ π

2π

)
(n− 1)

)
,

where m and n are the height and width of the equirectangular image and the image is

assumed to have coordinates in [0,m − 1] × [0, n − 1]. To keep the proportions of the

equirectangular domain we impose n− 1 = 2(m− 1).

The inverse correspondence between the equirectangular image and [−π, π]×
[
−π

2
, π

2

]
is immediate:

(x, y) 7→ (λ, φ) =

(
2πy

n− 1
− π, π

2
− πx

m− 1

)
.

The equirectangular image shows the strong distortions that are caused by the map-

ping r. For example, regions near φ = −π
2

and φ = π
2
, which correspond to regions

9



near the south and north poles on the sphere, are too stretched. That happens because

the sphere has a much smaller area near the poles, for some variation of φ, than near the

equator (φ = 0) for this same variation of φ. But these very different areas are represented

by the same number of pixels on the equirectangular image.

To finish this discussion about equirectangular images, it is important to emphasize

how popular this format of image became during the last years. Today it is possible to

find thousands of them on photo sharing sites. To illustrate this point, the reader may,

for example, access Flickr group on [10].

One can find there a great variety of equirectangular images: indoor or outdoor scenes,

with or without people, realistic or with artistic effects, from places all around the world,

in many different resolutions.

1.2 Problem Statement

With the formalism created in the last section we can formulate the panoramic image

problem as the one of finding a mapping

u : S ⊆ S2 → R2

(λ, φ) 7→ (u, v)
,

with desirable properties. Here S is a field of view which may not be the entire 360 by

180 degree entire field of view.

The set u(S) can be interpreted as a continuous image: each u(λ, φ) ∈ u(S) receives

the color that the viewing sphere has at (λ, φ).

Thus we have two ways of thinking of a panoramic image: as a mapping u or as

a continuous image u(S). This duality allows us to turn perceptual properties of the

continuous image into algebraic expressions, that depend on the function u.

1.3 Standard Projections

There are many known functions that project the viewing sphere (or a part of it) onto

a plane. Many of them were developed for cartography purposes, since Earth’s shape

can be approximated by a sphere. There are different classifications for these projections

(equal-area, conformal, cylindrical, etc.). For details about these classifications and many

examples of projections, we recommend [11].

In this section we study the best known projections (Perspective, Stereographic and

Mercator) and discuss their properties.

1.3.1 Perspective Projection

The result of a perspective projection is very well known because most of the pho-

tographs (taken with simple cameras) are captured by lenses that approximate linear

10



perspective, since this projection has many desirable properties that we are going to

discuss further.

The construction of this projection is quite simple: the viewing sphere is projected

onto a tangent plane (we are going to use the plane x = 1) through lines emanating form

the center of the sphere, as shown in figure 1.7.

Figure 1.7: Perspective projection.

Thus (x, y, z) ∈ S2 is mapped to
(

1,
y

x
,
z

x

)
'
(y
x
,
z

x

)
∈
∏

x=1, which consists in a

simple division by the x coordinate. Observe that the mapping stretches to infinity when

x → 0 and is not defined when x = 0. So we define the perspective only for points with

x > 0.

Since we want a mapping from the equirectangular domain to a plane, we have to

convert the formula above to latitude/longitude coordinates: given (x, y, z) ∈ S2, x > 0,

there is a (λ, θ) ∈
(
−π

2
, π

2

)
×
(
−π

2
, π

2

)
such that (x, y, z) = (cos(λ) cos(φ), sin(λ) cos(φ), sin(φ))

and the perspective projection is

(cos(λ) cos(φ), sin(λ) cos(φ), sin(φ)) 7→
(

1,
sin(λ) cos(φ)

cos(λ) cos(φ)
,

sin(λ)

cos(λ) cos(φ)

)
=

(
1, tan(λ),

tan(φ)

cos(λ)

)
.

Hence, the final formula for the perspective projection is:

P :
(
−π

2
,
π

2

)
×
(
−π

2
,
π

2

)
→ R2

(λ, φ) 7→ (u, v) =

(
tan(λ),

tan(φ)

cos(λ)

)
Figures 1.8 and 1.9 show some results of this projection with different fields of view.

11



Figure 1.8: Left: 90 degree long./90 degree lat.; Right: 120/120.

Figure 1.9: Left: 90 degree long./90 degree lat.; Right: 130/120.

The main advantages and disadvantages of the perspective projection are:

Advantages: • Straight lines in the scene appear straight on the final result;

•When the camera is held parallel to the ground the orientation constancy of the vertical

lines is maintained, i.e., they appear vertical in the resulting image.

Disadvantages: • As the field of view increases, the shape of the objects near the

periphery of the image starts to change considerably. This fact is noticeable even for

FOVs which are not too wide, such as 120 degrees (see the right images in figures 1.8 and

1.9). The cause of this effect is that the perspective projection is not conformal, concept

that we are going to formalize further. Informally, a mapping is conformal if it locally

12



preserves shapes of objects. The nonconformality of the perspective projection is the

reason why simple photographs have a small field of view, usually less than 90 degrees.

1.3.2 Stereographic Projection

The geometric construction of the stereographic projection is the following: the vie-

wing sphere is projected on the x = 1 plane (just as the perspective projection) through

lines emanating from the pole opposite to the point of tangency, (−1, 0, 0) in this case. So

it is essentially the perspective projection but with lines coming from (−1, 0, 0) instead

of coming from (0, 0, 0), as shown in figure 1.10.

Figure 1.10: Stereographic projection.

If (1, ŷ, ẑ) is the projection of (x, y, z) ∈ S2, by similarity of triangles we obtain the

following relations:
ŷ

2
=

y

x+ 1
,
ẑ

2
=

z

x+ 1
.

Thus (x, y, z) ∈ S2 is mapped to

(
1,

2y

x+ 1
,

2z

x+ 1

)
'
(

2y

x+ 1
,

2z

x+ 1

)
∈
∏

x=1. Ob-

serve that the mapping is not defined at (−1, 0, 0), the opposite pole to the tangent plane.

In longitude/latitude coordinates, we have:

(cos(λ) cos(φ), sin(λ) cos(φ), sin(φ)) 7→
(

1,
2 sin(λ) cos(φ)

cos(λ) cos(φ) + 1
,

2 sin(λ)

cos(λ) cos(φ) + 1

)
.

So the final formula for the stereographic projection is:

S : [−π, π)×
[
−π

2
,
π

2

]
\ {(−π, 0)} → R2

(λ, φ) 7→ (u, v) =

(
2 sin(λ) cos(φ)

cos(λ) cos(φ) + 1
,

2 sin(φ)

cos(λ) cos(φ) + 1

)
We show some results of this projection for different scenes in figure 1.11.

13



Figure 1.11: Left: 180 degree long./180 degree lat.; Right: 180/180.

The main advantages and disadvantages of the stereographic projection are:

Advantages: • Lines that pass through the center of the image are preserved;

• It is conformal, i.e., it preserves the shape of objects locally. Although the objects

near the periphery of wide fields of view are stretched, this stretching is the same in all

directions, which maintains the conformality of such mapping.

Disadvantages: • Most of the lines in the scene are bent on the final result.

1.3.3 Mercator Projection

This projection was presented by the flemish cartographer and geographer Gerardus

Mercator, in 1569, with only cartography purposes in mind.

It is a cylindrical projection, which means that the u coordinate varies linearly with the

longitude λ, and it is conformal. We are going to obtain its formula when we introduce the

Cauchy-Riemann equations on the next chapter, in order to formalize what is a conformal

mapping.

For the moment, it is just a cylindrical projection that preserve the shape of the

objects. Its formula is the following:

M : [−π, π)×
(
−π

2
,
π

2

)
→ R2

(λ, φ) 7→ (u, v) = (λ, log(sec(φ) + tan(φ)))

Observe that the mapping tends to infinity when φ→ ±π
2
.

Figures 1.12 and 2.8 show some results of this projection.

14



Figure 1.12: 360 degree longitude/150 degree latitude.

Figure 1.13: 360 degree longitude/150 degree latitude.

The main advantages and disadvantages of the Mercator projection are:

Advantages: • As in all cylindrical projections, meridians ({(λ, φ) ∈ S2 : λ = constant})
are mapped to vertical lines.

• It is conformal.

• It handles wide longitude fields of view, even 360 degree ones.

Disadvantages: • Just as the stereographic projection, most of the straight lines in the

scene are bent on the final result.

1.4 Modified Standard Projections

In the last section, we showed the three most known projections from the viewing

sphere to an image plane. In this section, we show how simple modifications of these

projections can generate better results.

15



1.4.1 Perspereographic Projections

As we mentioned before, perspective and stereographic projections have a lot in com-

mon. Actually, they are constructed in a very similar way, the only difference is that the

point from where the rays emanate in the first is (0, 0, 0) and in the second is (−1, 0, 0).

We generalize the geometrical construction of these both projections as follows: for

each K ∈ [0, 1] we define the perspereographic projection for K as being the one obtained

by projecting points from the sphere on the x = 1 plane through rays emanating from

(−K, 0, 0). Figure 1.14 illustrates this projection.

Figure 1.14: Perspereographic projection for K.

If (1, ŷ, ẑ) is the projection of (x, y, z) ∈ S2, by similarity of triangles we obtain:

ŷ

1 +K
=

y

x+K
,

ẑ

1 +K
=

z

x+K
⇒ ŷ =

(1 +K)y

x+K
, ẑ =

(1 +K)z

x+K
.

Obviously this projection is not defined for (x, y, z) ∈ S2 such that x = −K. To

simplify, we are going to consider just the points s.t. x > 0.

In longitude/latitude coordinates:

(cos(λ) cos(φ), sin(λ) cos(φ), sin(φ)) 7→
(

1,
(1 +K) sin(λ) cos(φ)

cos(λ) cos(φ) +K
,

(1 +K) sin(λ)

cos(λ) cos(φ) +K

)
.

And the final formula is:

PSK :
(
−π

2
,
π

2

)
×
(
−π

2
,
π

2

)
→ R2

(λ, φ) 7→ (u, v) =

(
(1 +K) sin(λ) cos(φ)

cos(λ) cos(φ) +K
,

(1 +K) sin(φ)

cos(λ) cos(φ) +K

)
Notice that when K = 0 we have the perspective projection and for K = 1 we have

the stereographic projection.

Some results are shown in figures 1.15 and 1.16.

16



Figure 1.15: Both with 150 degree long./150 degree lat. Left: K = 0; Right: K = 1
3
.

Figure 1.16: Both with 150 degree long./150 degree lat. Left: K = 2
3
; Right: K = 1.

The advantages of these new projections are the following:

• They give us an intuitive way to control the conformality and the preservation of straight

lines in the scene. The greater the K the better the shapes of objects are preserved, and

the extreme case, K = 1, leads to the stereographic projection, which is conformal. On the

other hand, when lower values for K are used, straight lines become less bent and objects

more stretched. The extreme case, K = 0, leads to perspective projection. Therefore the

parameter K can be adjusted according to the scene and FOV that is being projected.

• The value K could depend on the points on the sphere. Thus we would have K as a

function of (λ, φ), K(λ, φ). This idea allows the possibility of having a projection locally

17



adapted to the image content. Possibly K(λ, φ) should have some degree of smoothness

and such analysis and results for this approach are going to be left as future work.

1.4.2 Perspective Projection Centered on Other Points

The perspective projection shown on section 1.3.1 preserves well only the shape of

objects that are near the point with (λ, φ) = (0, 0), the center of such projection.

As we’ll see in further sections, one may want to use perspective projection but preserve

shapes of other objects that are not near (λ, φ) = (0, 0). That leads to constructing

perspective projections centered on (λ0, φ0) 6= (0, 0). The geometrical construction is

analogous to the one presented on section 1.3.1.

Let (x0, y0, z0) = (cos(λ0) cos(φ0), sin(λ0) cos(φ0), sin(λ0)),

(x, y, z) = (cos(λ) cos(φ), sin(λ) cos(φ), sin(λ)) ∈ S2. The tangent plane to S2 passing

through (x0, y0, z0) has the following equation:∏
: x0(x− x0) + y0(y − y0) + z0(z − z0) = 0

(∏
: x0x+ y0y + z0z = 1

)
since (x0, y0, z0) ⊥

∏
. We illustrate the projection in figure 1.17.

Figure 1.17: Perspective projection centered on (λ0, φ0).

We want to project (x, y, z) radially in
∏

, i.e., we want to find α s.t.
(x
α
,
y

α
,
z

α

)
∈
∏

,

which is equivalent to

x0

(x
α
− x0

)
+ y0

( y
α
− y0

)
+ z0

( z
α
− z0

)
= 0.

Solving the above equation leads to

α = (x0x+ y0y + z0z) = (cos(φ0) cos(φ) cos(λ0 − λ) + sin(φ0) sin(φ)).

18



So the projection (x, y, z) 7→
(x
α
,
y

α
,
z

α

)
has the following form in (λ, φ) coordinates:

(λ, φ) 7→
(

cos(λ) cos(φ)

cos(φ0) cos(φ) cos(λ0 − λ) + sin(φ0) sin(φ)
,

sin(λ) cos(φ)

cos(φ0) cos(φ) cos(λ0 − λ) + sin(φ0) sin(φ)
,

sin(λ)

cos(φ0) cos(φ) cos(λ0 − λ) + sin(φ0) sin(φ)

)
.

Observe that the projection is not well defined for (x, y, z) ∈ S2 s.t. x0x+y0y+z0z = 0,

the plane that is parallel to
∏

and passes through zero. This also happened for the simple

perspective projection: the points s.t. x = 0 could not be projected in
∏

x=1.

The final projection is in R3 and we would like it to have a 2D coordinate system.

This is achieved by performing two rotations on
∏

in order to transform it in
∏

x=1, for

example. We will not expose the details of this process here.

We show in figure 1.18 a result where the center object (the tower) appears less

stretched than in the standard perspective projection (right image in figure 1.8).

Figure 1.18: Perspective centered on (λ, φ) = (−π
3
, π

9
).

1.4.3 Recti-Perspective Projection

This projection, also known as Pannini projection, is a modification of the perspective

projection that is designed to handle wider FOVs and preserve radial and vertical lines.

The other lines appear bent on the final result.

Let u and v be the coordinates of the standard perspective projection and u′ and v′

the coordinates of recti-perspective projection. The modification

u′ = α tan

(
λ

α

)
,

19



where alpha is a chosen parameter, allows this projection to handle wider FOVs and

preserves vertical lines (λ constant ⇒ u′ constant).

In order to preserve radial lines, the v coordinate of the perspective projection must

be scaled by a constant multiple of the factor used to scale the u axis, i.e.,

v′ = γv, γ = β

(
u′

u

)
,

where β is a chosen parameter. The above expressions lead to

v′ =

(
βα tan

(
λ
α

)
tan(φ)

)
sin(λ)

, if λ 6= 0,

and

v′ = β tan(φ), if λ = 0.

We show in figure 1.19 a good result obtained setting α = 2 and β = 3
4
:

Figure 1.19: 180 degree longitude/130 degree latitude.

1.5 Previous Approaches

As pointed in last sections, it is not an easy task to obtain an image from a wide field

of view. We showed some of the most known projections from the sphere to an image

plane and realized that all of them have their advantages and disadvantages.

This section is devoted to discuss previous approaches created during the last years

to deal with the problem of distortions in panoramic images. We do not intend to get

into too many details of each approach, but we intend to show their key ideas in order to

motivate the next chapter. Thus, this section is intended to be a review and a motivation.

20



We chose to discuss three papers that we understand to have the key ideas on the

development of this theme: [5], [6] and [7]. At the end of the section, we mention some

other important related work.

1.5.1 Correction of Geometric Perceptual Distortions in Pic-

tures

This work by Zorin and Barr ([5]) is surely one of the most referenced in this area. It

is probably the first work to apply perceptual principles to the analysis and construction

of planar images of the 3D world. Their theory is even more applicable for panoramic

images, where deviations of perception are more present.

The authors mention that the most important features that an image should have to

be representative are the structural features such as dimension (whether the image of an

object is an area, a curve or a point) and presence or absence of holes and self-intersections.

They make the following statement:

The retinal projections of an image of an object should not contain any structural

features that are not present in any retinal projection of the object itself.

Since most of the visual informations that we have are in the images formed on the retina,

this statement asks that when we look at an image the objects should not contain any

structural feature that we would not see if we looked directly at them.

They selected three structural requirements to develop their theory:

• The image of a surface should not be a point;

• The image of a part of a straight line either should not have self intersections (loops)

or else should be a point;

• The image of a plane should not have twists on it, i.e., either each point of the plane is

projected to a different point in the image, or the whole plane is projected to a curve.

Figure 1.20 illustrates the last two requirements:

Figure 1.20: Mappings forbidden by the last two requirements.

They also state desirable conditions. These are not as essential as the structural ones

because they can be changed with some intervals of tolerance. The desirable conditions

are the following:

• Zero-curvature condition: Images of all possible straight lines should be straight;

21



• Direct view condition: All possible objects in the image should look as if they were

viewed directly - as if they appeared in the middle of a photograph.

The authors obtain two functionals, K and D, that measure how much a mapping

Tsphere from the viewing sphere to a plane does not respect both conditions. So ideally

we should find a map such that:

K(Tsphere) = D(Tsphere) = 0;

After a theoretical development, it is shown that there is no Tsphere satisfying these

conditions and also the structural requirements. Then they suggest to minimize the

functional

F (Tsphere) = µK(Tsphere) + (1− µ)D(Tsphere),

where µ is the desired tradeoff between both desirable conditions.

An approximate minimizer for this functional is a perspective projection of the viewing

sphere followed by a one-to-one smooth transformation of the image plane given by:

ρ = λ
r

R
+ (1− λ)

R(
√
r2 + 1− 1)

r(
√
R2 + 1− 1)

; ψ = φ,

where (r, φ) is the polar coordinate system of the perspective image, (ρ, ψ) is the polar

coordinate system of the transformed image, λ is a parameter that depends on µ and R

depends on the FOV that is being projected.

Some results for different values of λ are shown in figures 1.21 and 1.22.

Figure 1.21: Both: 150 degree longitude/150 degree latitude. Left: λ = 0 (very similar

to stereographic projection); Right: λ = 1 (perspective projection).

22



Figure 1.22: Both: 150 degree longitude/150 degree latitude. Left: λ = 1
2
; Right: Pers-

pereographic projection for K = 1
2
. Both have the same purpose of controlling the

conformality and straight lines in the scene. Which one is better? The choices λ = 1
2

and

K = 1
2

are arbitrary.

The key ideas that we can take from this work are: a panoramic image should respect

the structural requirements; no panoramic image (mapping from the viewing sphere to

a plane) that satisfies the structural requirements can satisfy completely both desirable

properties at the same time; an optimization framework is an option for the task of

minimizing all the important distortions.

1.5.2 Artistic Multiprojection Rendering

As we have already mentioned, perspective projection causes too much distortion for

wide-angle fields of view. A simple and effective alternative to such problem is to render

the most distorted objects in a different way.

This alternative was already known and used by painters hundreds of years ago, for

example, in Raphael’s School of Athens (Figure 1.23). The humans in the foreground

would appear too distorted if rendered with the same perspective projection of the back-

ground. So Raphael altered the projections of the humans to give each one a more central

perspective projection. This choice did not take off (actually improved) the realism of the

painting.

This work by Agrawala, Zorin and Munzner ([6]) suggests using the same method for

computer-generated images and animations: a scene is rendered using a set of different

cameras. One of this cameras is elected to be the master camera, which is going to be

used to render the background, and the other ones are the local cameras, which are going

to be used to render the objects in the scene.

The visibility is not a well defined problem in this context. They use the visibility

23



Figure 1.23: Raphael’s School of Athens.

ordering of the master camera to solve this problem: a point will be rendered if it is visible

for the master camera.

The key idea that we have to take from this paper is that a special treatment can

be given to the objects in order to reduce their distortion in panoramic images. But the

multiprojection rendering has also other applications:

• Artistic Expression: The usage of different viewpoints was used by painters also to

express feelings, ideas and mood.

• Best Views: A good viewpoint for an object may not be the best viewpoint for other

objects. By choosing the best viewpoint for each object in the scene it’s possible to

improve the representation of the scene.

The author of this thesis, in a final course project, adapted the techniques described

in this article for real world scenes in the following way: a set of equirectangular images

(views) is given to the user so he can choose a different perspective (camera) for each

view, by setting the FOV and the center point of each perspective. A screenshot of the

first window of the user interface is shown in figure 1.24.

In the next windows, the user specifies which of the perspectives is the best view for

each object and the program tries to solve the visibility problem for the master camera.

An output of the program is the right image in figure 1.25, where I rendered myself with

a local camera (perspective projection centered on me), to correct my distortions on the

left image.

The reader may check the home page with more results and details of this project:

[12].

24



Figure 1.24: First window of the interface of the S3D project.

Figure 1.25: Both: 90 degree longitude/90 degree latitude. Left: Standard perspective

projection; Right: Me (black t-shirt) corrected with a different perspective.

1.5.3 Squaring the Circle in Panoramas

The key idea of this article by Zelnik-Manor, Peters and Perona ([7]) is the one of

constructing a projection that depends more on the structure of the entire scene, not only

where the objects are, like the previous approach we just presented.

They start by discussing global projections (the ones we have already discussed under

the name of standard projections), and suggest a multi-plane projection that is construc-

ted in the following way: multiple tangent planes are positioned around the sphere and

each region of the viewing sphere is projected via perspective projection onto its corres-

ponding tangent plane. This construction is illustrated in figure 1.26.

25



Figure 1.26: Top view of the multiplane projection.

To unfold this projection on a plane without distortions, one could think of the inter-

sections of the planes being fitted with hinges that allow flattening.

The advantages of this new projection are that it preserves the straight lines that are

mapped entirely in one single plane and it uses perspective projections only for limited

fields of view, which avoids distortions caused by the global perspective projection.

This process causes discontinuities of orientation along the seams (intersections bet-

ween tangent planes). This problem can be well hidden for scenes that naturally have such

discontinuities, like man-made environments. Then the tangent planes must be chosen in

a way that fits the geometry of the scene, usually so that vertical edges of a room project

onto the seams and each projection plane corresponds to a single wall. A result of the

multi-plane projection is shown in figure 1.27.

Figure 1.27: 180 degree longitude/90 degree longitude. Source image: “Posters”, by Flickr

user Simon S., taken from [10].

Under this projection the objects on the scene still may appear distorted on the final

result for two reasons: if an object falls on a seam, it will have a discontinuity of orientation

on it, which is very unnatural; or even for reduced FOVs, the perspective projection still

26



can distort objects..

The solution adopted for these two kinds of distortion is very similar to the one used

on [6]: the background is rendered using the multi-plane projection and the objects are

rendered each one using a local perspective projection centered on it.

The author of this thesis implemented most of the techniques contained in this article

in his Image Processing course final project. The reader can see the details in [13].

1.5.4 Other Approaches

In this section we expose very briefly three other approaches ([14], [4] and [8]) that

also deal with the problem of constructing panoramic images:

1) Photographing Long Scenes with Multi-Viewpoint Panoramas ([14]): This

work addresses the problem of making a single image of a long planar scene (the buildings

of one side of a street, for example) having as input a set of photographs taken from

different viewpoints. Although this problem is different from the one we are concerned

about in this thesis (here the input comes from a single viewpoint), it faces similar diffi-

culties, such as preserving shapes of objects and making the final result a comprehensive

representation for the scene.

2) Capturing and Viewing Gigapixel Images ([4]): This article presents a viewer

that interpolates between cylindrical and perspective projection as the FOV is increased

or decreased. The ability for zooming in and out panoramas is more useful when the input

has high resolution. We think that the perspereographic projection presented in section

1.4.1 is a simpler solution for this task and could also produce good results.

3) Locally Adapted Projections to Reduce Panorama Distortions ([8]): This

work starts with a cylindrical projection of a scene and allows the user to mark regions

where he or she wants the projection to be near-planar. Then the method computes

a deformation of the projection cylinder that fits such constraints and smoothly varies

between different regions and unfold the deformed cylinder on a plane. Although their

results are very good in many cases and produced quickly via optimization, their method

has limitations: if some marked region occupies a wide-angle FOV (up to 120 degrees) the

final result starts suffering with the same limitations as perspective projection (stretching

of objects); a good solution depends on the precision of the user in marking regions; even

inside the marked regions lines may appear slightly bent; and if two marked regions are

too close, orientation discontinuities may appear between these regions, similarly to the

method presented in section 1.5.3.

27



Chapter 2

Optimizing Content-Preserving

Projections for Wide-Angle Images

In this chapter we show and discuss in more depth the ideas presented in Carroll et

al. ([1]), which we believe to be the state-of-the-art reference for the panoramic image

problem. Many details that are going to be exposed here do not appear in the original

reference, which makes this chapter a good complement for it. We show in figure 2.1 a

result produced by this method.

Figure 2.1: A result produced by the method described in this chapter. FOV: 285 degree

longitude/170 degree latitude. Observe how most of the lines in the scene are straight

and the shape of the objects is well preserved.

Motivated by chapter 1, we start this chapter by making a list of desirable properties

in panoramic images and how this approach satisfies most of them.

Then we detail each section of the article in a mathematical way: all the necessary

definitions and theorems are going to be stated. The pre-requisites for understanding the

28



theory are going to be mentioned progressively. For the moment, we assume the reader

is familiar with multi-variable calculus and linear algebra.

The only parts of the article that are not explored in this chapter are the results

and implementation. The first topic is left to Chapter 3, where a discussion about it is

provided. We leave to Appendix A the details about how we implemented the method

we are going to describe here.

To summarize, the main goals of this chapter are:

• To list the main desirable properties in wide-angle images (section 2.1);

• To make an as complete as possible mathematical explanation for the techniques in [1]

(all the other sections of this chapter).

2.1 Desirable Properties

This section is devoted to argument why we consider [1] the best method for dealing

with panoramic images and why a study in depth about it is worthy.

We believe a method to produce wide-angle images should have the following charac-

teristics:

• Depend on the scene content: As we saw in sections 1.3 and 1.4, global pro-

jections produce distortions. One of the reasons for this fact is that they do not give a

special treatment for different regions of the panorama. Some previous approaches (sec-

tions 1.5.2 and 1.5.3) tried to do something like this, but they did it in a coarse way. This

approach constructs a wide-angle image adapted to the location of lines (sections 2.2, 2.5

and 2.7), faces (sections 2.7 and B.1) and importance of regions on the scene (section 2.7).

• Handle wide fields of view: Some standard projections and previous approaches

are only defined for fields of view up to 180 degree and some of them produce bad results

even for narrower FOVs. This approach does not have this problem and can handle arbi-

trary FOVs, as can be seen in chapter 3.

• Satisfy the structural requirements: In section 1.5.1 we stated requirements that

a wide-angle image should have in order to match our perception of the world, since they

are based on the retinal projections. We do not devote any special discussion to them

here but we will always be careful to weather the method satisfy them or not.

• Have a simple user interface: Although not emphasized in the last chapter, some

previous approaches (sections 1.5.2, 1.5.3 and 1.5.4(3)) needed a precise and/or tedious

interaction with the user in order to yield a good result. The interface proposed in this

approach requires the user only to click the endpoints of a lines in the real world and set

29



their orientation. Details are presented in sections 2.2 and A.1.

• Mathematically formalize distortions and use an optimization framework:

Many previous approaches used just intuitive and classical ideas for minimizing distor-

tions as, for example, centering projections on objects. A more precise solution would be

to mathematically formalize these distortions and try to minimize them all, in the way

we saw in section 1.5.1. All this chapter is devoted to develop such optimization solution.

• Preserve straight lines: It is very unnatural and noticeable if a line that is sup-

posed to be straight in the final result appears bent. That happens because we perceive

all straight lines in the real world as straight. This approach handles this task by allowing

the user to mark curves on the equirectangular image that should map to straight lines on

the final result (section 2.2), by obtaining an energy that measures how much a marked

curve is not straight in the final result (section 2.5) and then minimizing this energy with

other energies (section 2.8).

• Have orientation consistency: Another undesirable effect related to lines is when a

line that is supposed to have some orientation (like the corner between walls or a tower

are supposed to be vertical) appear with another orientation in the result. This approach

avoids this problem by allowing the user to specify the orientation of lines (section 2.2)

and by obtaining an energy that measures how much a line deviates from the assigned

direction (section 2.5.1).

• Preserve shape of objects: Object distortion is another very unpleasant effect that

may appear in wide-angle images. Previous approaches (sections 1.5.2 and 1.5.3) tried

to fix this problem by locally correcting the projection of objects. This approach forma-

lizes the concept of preservation of object shapes through the mathematical concept of

conformality. Section 2.4 is devoted to explain such concept and obtain an energy that

measures how conformal a panoramic image is. This energy is minimized together with

other energies in section 2.8.

• Vary scale and orientation smoothly: Discontinuities of scale and orientation may

be unpleasant. For example, when the approach in section 1.5.3 is applied to scenes that

do not have some natural discontinuity the result is not good (the unnatural discontinui-

ties can be noticed on the ceiling of the scene in figure 1.27, for example). In section 2.6

we describe an energy that measures how smooth a panoramic image is. This energy is

also minimized with other ones.

• Avoid restrictions to some particular structure of scene: The method should

30



produce good results in a variety of scenes and it should not be restricted to some special

kinds of scene. All previous approaches suffered from this problem in different degrees. As

we will see in chapter 3, this new approach succeeds in this task. That happens because

all the important distortions are considered and well modeled. Also, this method depends

on parameters, and it is not desirable when one has to find a set of parameters that work

well for different scenes. As we will see in in chapter 3, this approach works well with a

fixed set of parameters.

• Produce results fast: This is the only property listed here that is not satisfied by

this approach. It is the price we have to pay in order to obtain a really precise result.

In chapter 3 we show that each result took about one or two minutes to be computed.

Although one can see it as a problem, we think that it is an incentive to study the nume-

rical details and implementation of the method and develop tools and theory in order to

reduce computation time.

2.2 User Interface

The interface that will be shown here allows the user to identify linear structures in

the equirectangular image and mark them. Then the method will focus on making only

this specified linear structures to be straight in the final result, which is a more intelligent

solution than trying to make straight all possible lines, as the perspective projection.

A central question here is: given two points P
(w)
1 , P

(w)
2 ∈ R3 what is the projection

of the line segment (r(w)) connecting them on the viewing sphere? See the illustration in

figure 2.2.

Figure 2.2: Projection of lines from the scene to the viewing sphere. Points P
(w)
1 and

P
(w)
2 are projected to P

(s)
1 and P

(s)
2 on the sphere. We denote by r(s) the line segment

connecting P
(s)
1 to P

(s)
2 .

31



The key observation is that r(w) and r(s) project to the same points on the viewing

sphere (the arc connecting P
(s)
1 and P

(s)
2 on the sphere). So we can work just with the

points P
(s)
1 and P

(s)
2 ∈ S2, which will be corresponding points to the ones marked by the

user on the equirectangular image.

A very simple parametrization for r(s) is:

r(s) : [0, 1] → R3

t 7→ (1− t)P (s)
1 + tP

(s)
2

.

The projection of r(s) on S2 (say γ(s)) also has a simple parametrization:

γ(s) : [0, 1] → S2

t 7→ (1− t)P (s)
1 + tP

(s)
2

‖ (1− t)P (s)
1 + tP

(s)
2 ‖

.

We have to bring these calculations to the equirectangular domain: The user marks

two points

(λ1, φ1) and (λ2, φ2) ∈ [−π, π]×
[
−π

2
,
π

2

]
,

which have the following corresponding points on S2:

P
(s)
1 = (cos(λ1) cos(φ1), sin(λ1) cos(φ1), sin(φ1)) and

P
(s)
2 = (cos(λ2) cos(φ2), sin(λ2) cos(φ2), sin(φ2)).

Let γ(s) as above. For each γ(s)(t) = (x(t), y(t), z(t)) ∈ S2, t ∈ [0, 1], we have to find

the corresponding (λ(t), φ(t)) ∈ [−π, π]×
[
−π

2
,
π

2

]
.

Let t0 ∈ [0, 1] and γ(s)(t0) = (x, y, z) and (λ, φ) the corresponding longitude and

latitude on the equirectangular domain. Then we have the following relation

(x, y, z) = (cos(λ) cos(φ), sin(λ) cos(φ), sin(φ)).

Obviously

φ = arcsin(z).

To obtain λ we first consider x > 0: in this case we must have −π
2
< λ < π

2
and the

relation
y

x
=

sin(λ) cos(φ)

cos(λ) cos(φ)
= tan(λ)

implies λ = arctan
(
y
x

)
.

Now consider x < 0, y < 0: for such points on the sphere we must have −π < λ < −π
2

and λ = arctan
(
y
x

)
− π satisfies such inequality and the relations between x, y and λ.

Analogously, for x < 0 and y > 0 the solution is λ = arctan
(
y
x

)
+ π.

For points s.t. x = 0, y < 0 the correspondent longitude is λ = −π
2

and for x = 0,

y > 0 we have λ = π
2
. To summarize:

λ = arctan 2(y, x),

32



where

arctan 2(y, x) =



arctan
(
y
x

)
, x > 0

arctan
(
y
x

)
− π , x < 0, y < 0

arctan
(
y
x

)
+ π , x < 0, y > 0

−π
2

, x = 0, y > 0
π
2

, x = 0, y < 0

Beyond allowing the user to specify lines1 in the equirectangular domain, the interface

also allows her to set the orientation of the lines by typing ‘v’ (for vertical lines), ‘h’

(for horizontal lines) or ‘g’ (for lines with no specified orientation). As we mentioned in

section 2.1, it is important that the final result has orientation consistency. If it were not

possible to set line orientations, the final panoramic image would be like figure 2.3.

Figure 2.3: A result produced by the method if the user had only marked lines with no

specified orientation. It seems that the tower is falling, for example. In order to avoid

such problem, we give the user the possibility to specify the orientation of lines that she

wants to be vertical or horizontal on the final result.

To summarize, our interface works in the following way:

• Input: Equirectangular image;

• For each line the user identifies

• The user clicks the two endpoints (λ1, φ1), (λ2, φ2) on the equirectangular image;

• The program computes P
(s)
1 , P

(s)
2 , γ(s), (γ(t), φ(t)), t ∈ [0, 1], and draws in black the

curve (λ(t), φ(t)) on the equirectangular image;

1Here line stands for both r(s) and γ(s).

33



• The user types ‘v’, ‘h’ or ‘g’ for the orientation and the color of the curve changes.

• Output: Marked equirectangular image and a list of points2.

We show in figure 2.4 an image produced by the process just explained:

Figure 2.4: Equirectangular image with lines marked by the user. Red lines stands for

vertical lines, blue for horizontal ones and green for general orientation ones.

For such marked lines, the method produces the result shown in figure 2.5.

Figure 2.5: Observe that line orientation is correct now. For example, the tower appears

vertical on the result, because the user specified such behavior.

2The details of this list are left to section A.2.

34



The implementation details can be found in section A.2.

In our opinion, this interface satisfies the requirement of being simple and intuitive.

The tasks of clicking endpoints and setting orientations are simple and the procedure to

mark all the lines takes about one minute long.

We try to automate this procedure in section B.2 with the help of Computer Vision

techniques. It turns out that the obtained results are a good initial guess for lines, which

may help the user, avoiding her to have to mark all the lines.

One final remark is that the interface showed here is simpler than the one implemented

in [1]. Our input is an equirectangular image that represents the entire viewing sphere.

In [1] the input may have arbitrary FOVs and other formats, not only equirectangular.

Despite simpler, our interface serves our purposes well.

2.3 Discretization of the Viewing Sphere

For the rest of this chapter we assume S = S2, i.e., the field of view that will be

projected is the entire viewing sphere. All the development is analogous if restricted to

some narrower FOV, since such FOV corresponds to a rectangle on the equirectangular

domain.

In section 1.2 we stated the panoramic image problem as the one of finding

u : S2 → R2

(λ, φ) 7→ (u(λ, φ), v(λ, φ))
,

where (λ, φ) are in the equirectangular domain and (u, v) are cartesian coordinates that

represent position on the image plane.

Instead of finding a function defined in all equirectangular domain, we discretize it in

a uniform manner and look for the values of u at the vertices.

More precisely, the vertices of the discretization3 of the domain are

Λij = (λij, φij), j = 0, . . . , n, i = 0, . . . ,m,

where

λij = −π + j
2π

n
, φij = −π

2
+ i

π

m
, j = 0, . . . , n, i = 0, . . .m,

and the corresponding values of u at Λij are

uij = u(λij, φij) = (uij, vij), j = 0, . . . , n, i = 0, . . .m.

Figure 2.6 illustrates what was just explained.

The image of each rectangle by the function r on the sphere is called quad.

In the next sections, we are going to formulate energy terms that depend on the values

uij and vij and measure how much a panoramic image contains undesirable distortions.

3This discretization does not have to be the pixel discretization of the equirectangular image.

35



Figure 2.6: The discretization of the equirectangular domain induces a discretization of

the viewing sphere. The vertices of this discretization of the sphere (or, equivalently, the

vertices of the discretization of the equirectangular domain) are mapped to the image

plane by the function u.

2.4 Conformality

This section is devoted to mathematically model the concept of preservation of shapes

stated as a desirable property for wide-angle images in section 2.1.

The reader is assumed to have some notions of differential geometry of surfaces. Such

notions can be found in [15], sections 2.1 to 2.5.

Here a point (λ, φ) is an interior point in the equirectangular domain, i.e., λ 6= ±π and

φ 6= ±π
2
. This assumption allows us to consider differential properties of the mapping u

and turns r into an actual parametrization. Although now this parametrization does not

cover the entire sphere (it excludes one meridian and the poles), we identify r((−π, π)×
(−π

2
, π

2
)) as S2, for convenience.

2.4.1 Differential Geometry and the Cauchy-Riemann Equations

Definition 2.1 A dipheomorfism ϕ : S → S is a conformal mapping if for all p ∈ S
and for all v1, v2 ∈ TpS holds

〈dϕp(v1), dϕp(v2)〉 = Θ2(p)〈v1, v2〉,

where Θ2 is a differentiable function on S that never vanishes.

The above definition says that dϕp preserves inner products (except for the Θ2 factor).

The following statement proves that conformal mappings preserve angles:

Statement 2.1 Conformal mappings preserve angles.

Proof: Let ϕ : S → S be a conformal mapping. Let α : I → S and β : I → S two curves

in S that intersect in, say, t = 0. The angle θ between them at t = 0 is given by

cos(θ) =
〈α′(0), β′(0)〉
‖ α′(0) ‖‖ β′(0) ‖

, 0 < θ < π.

36



ϕ transform such curves in curves ϕ ◦ α : I → S, ϕ ◦ β : I → S that intersect at t = 0,

forming an angle given by:

cos(θ) =
〈dϕα(0)(α

′(0)), dϕβ(0)(β
′(0))〉

‖ dϕα(0)(α′(0)) ‖‖ dϕβ(0)(β′(0)) ‖
=

Θ2〈α′(0), β′(0)〉
Θ2 ‖ α′(0) ‖‖ β′(0) ‖

= cos(θ).

�

The definition of conformal mappings turns up to be appropriate for modeling pre-

servation of shapes: according to definition 2.1, locally, the objects can only be rotated

and/or scaled in an equal manner along all directions. As we saw in statement 2.1, this

also implies in the preservation of angles.

We bring the formal discussion into the panoramic image context by taking in the

definition of conformality S = S2, S = R2 and ϕ = u.

Let p ∈ (−π, π)×
(
−π

2
,
π

2

)
. The basis of TpS2 associated to r (the longitude/latitude

parametrization) is

{
∂r

∂λ
(p),

∂r

∂φ
(p)

}
, where

∂r

∂λ
(p) =


− sin(λ) cos(φ)

cos(λ) cos(φ)

0

 and
∂r

∂φ
(p)


− cos(λ) sin(φ)

− sin(λ) sin(φ)

cos(φ)

 .

Assuming u to be a dipheomorfism dup : TpS2 → Tu(p)R2 = R2 has the following

form4:

dup(w) =


∂u

∂λ
(p)

∂u

∂φ
(p)

∂v

∂λ
(p)

∂v

∂φ
(p)

w{ ∂r∂λ (p), ∂r
∂φ

(p)},

where w{ ∂r∂λ (p), ∂r
∂φ

(p)} is a vector in TpS2 written in the basis

{
∂r

∂λ
(p),

∂r

∂φ
(p)

}
.

It’s clear that
∂r

∂λ
(p) and

∂r

∂φ
(p) are orthogonal, but they are not unitary, since∥∥∥∥ ∂r

∂λ
(p)

∥∥∥∥ = | cos(φ)| = cos(φ).

Thus we define the following orthonormal basis for TpS2:

∂̂r

∂φ
(p) =

∂r

∂φ
(p) =

(
0

1

)
{ ∂r∂λ (p), ∂r

∂φ
(p)}

and

∂̂r

∂λ
(p) =

1

cos(φ)

∂r

∂λ
(p) =

 1

cos(φ)

0


{ ∂r∂λ (p), ∂r

∂φ
(p)}

.

Lemma 2.1 u : S2 → R2 is conformal if and only if dup

(
∂̂r

∂φ
(p)

)
= R±90·dup

(
∂̂r

∂λ
(p)

)
,

∀p ∈ (−π, π) ×
(
−π

2
,
π

2

)
, where R90 =

(
0 −1

1 0

)
, R−90 =

(
0 1

−1 0

)
= −R90 are 90

degree rotations.

4Details in [15], pages 84 and 85.

37



Proof: (⇐) We want to prove that u is conformal. Let p ∈ (−π, π) ×
(
−π

2
,
π

2

)
and

v1, v2 ∈ TpS2. Suppose v1 = α1
∂̂r

∂φ
(p) + β1

∂̂r

∂λ
(p) and v2 = α2

∂̂r

∂φ
(p) + β2

∂̂r

∂λ
(p). It’s clear

that

〈v1, v2〉 = α1α2 + β1β2,

since
∂̂r

∂φ
(p) and

∂̂r

∂λ
(p) are orthonormal. Now consider

〈dup(v1), dup(v2)〉 = 〈α1dup

(
∂̂r
∂φ

(p)
)

+ β1dup

(
∂̂r
∂λ

(p)
)
, α2dup

(
∂̂r
∂φ

(p)
)

+ β2dup

(
∂̂r
∂λ

(p)
)
〉

= α1α2

∥∥∥dup ( ∂̂r∂φ(p)
)∥∥∥2

+ α1β2〈dup
(
∂̂r
∂φ

(p)
)
, dup

(
∂̂r
∂λ

(p)
)
〉+

+β1α2〈dup
(
∂̂r
∂λ

(p)
)
, dup

(
∂̂r
∂φ

(p)
)
〉+ β1β2

∥∥∥dup ( ∂̂r∂λ(p)
)∥∥∥2

.

Applying the hypothesis, we have

〈dup
(
∂̂r
∂φ

(p)
)
, dup

(
∂̂r
∂λ

(p)
)
〉 = 〈dup

(
∂̂r
∂λ

(p)
)
, dup

(
∂̂r
∂φ

(p)
)
〉 = 0

and ∥∥∥dup ( ∂̂r∂φ(p)
)∥∥∥ =

∥∥∥dup ( ∂̂r∂λ(p)
)∥∥∥

and we obtain

〈dup(v1), dup(v2)〉 =
∥∥∥dup ( ∂̂r∂φ(p)

)∥∥∥2

(α1α2 + β1β2) =
∥∥∥dup ( ∂̂r∂φ(p)

)∥∥∥2

〈v1, v2〉.

Taking Θ(p) =
∥∥∥dup ( ∂̂r∂φ(p)

)∥∥∥ in the definition of conformality, we conclude that u is

conformal.

(⇒) Now suppose that u is conformal, i.e.,

〈dup(v1), dup(v2)〉 = Θ(p)2〈v1, v2〉, ∀v1, v2 ∈ TpS2.

• Taking v1 = ∂̂r
∂φ

(p) and v2 = ∂̂r
∂λ

(p) leads to 〈dup
(
∂̂r
∂φ

(p)
)
, dup

(
∂̂r
∂λ

(p)
)
〉 = 0, i.e.,

dup

(
∂̂r
∂φ

(p)
)

and dup

(
∂̂r
∂λ

(p)
)

are orthogonal.

• Taking v1 = v2 = ∂̂r
∂φ

(p) we obtain
∥∥∥dup ( ∂̂r∂φ(p)

)∥∥∥ = |Θ(p)|. Taking v1 = v2 = ∂̂r
∂λ

(p)

leads to
∥∥∥dup ( ∂̂r∂λ(p)

)∥∥∥ = |Θ(p)|. Thus
∥∥∥dup ( ∂̂r∂φ(p)

)∥∥∥ =
∥∥∥dup ( ∂̂r∂λ(p)

)∥∥∥.

The two above considerations, dup

(
∂̂r
∂φ

(p)
)

and dup

(
∂̂r
∂λ

(p)
)

are orthogonal and have

the same length in R2, allows only two possibilities: dup

(
∂̂r
∂φ

(p)
)

= R90 · dup
(
∂̂r
∂λ

(p)
)

or

dup

(
∂̂r
∂φ

(p)
)

= R−90 · dup
(
∂̂r
∂λ

(p)
)

.

�

38



We call

h = dup

(
∂̂r

∂φ
(p)

)
=


∂u

∂λ
(p)

∂u

∂φ
(p)

∂v

∂λ
(p)

∂v

∂φ
(p)

( 0

1

)
=


∂u

∂φ
(p)

∂v

∂φ
(p)


the differential north vector and

k = dup

(
∂̂r

∂λ
(p)

)
=


∂u

∂λ
(p)

∂u

∂φ
(p)

∂v

∂λ
(p)

∂v

∂φ
(p)


 1

cos(φ)

0

 =
1

cos(φ)

 ∂u

∂λ
(p)

∂v

∂λ
(p)


the differential east vector.

The lemma tells us that u conformal is equivalent to h = R90k or h = R−90k. Both

possibilities are shown in figure 2.7.

Figure 2.7: We exclude the second possibility above.

We ask u to preserve the orientation of the orthonormal basis of the tangent plane,

i.e., we forbid h = R−90k.

This choice avoids a mirroring effect that could appear on the final result.

With these new considerations we restate the lemma:

Theorem 2.1 (Cauchy-Riemann Equations) Let p = (λ, φ) ∈ (−π, π) ×
(
−π

2
, π

2

)
. u :

S2 → R2 is a conformal mapping that preserves the orientation of the orthonormal basis

of TpS2 if and only if

∂u

∂φ
(p) = − 1

cos(φ)

∂v

∂λ
(p) and

∂v

∂φ
(p) =

1

cos(φ)

∂u

∂λ
(p).

Proof: u conformal mapping that preserves orientation ⇔ h = R90k ⇔

(
∂u
∂φ

(p)
∂v
∂φ

(p)

)
=

=

(
0 −1

1 0

)(
1

cos(φ)
∂u
∂λ

(p)
1

cos(φ)
∂v
∂λ

(p)

)
⇔

{
∂u
∂φ

(p) = − 1
cos(φ)

∂v
∂λ

(p)
∂v
∂φ

(p) = 1
cos(φ)

∂u
∂λ

(p)
.

�

Despite of being a little abuse of nomenclature, from now on we consider the fact of

u : S2 → R2 being conformal equivalent to u satisfying the Cauchy-Riemann Equations.

The C-R equations are an analytical and practical way of checking conformality.

39



2.4.2 Examples

This section illustrates the theory that we just developed with two mappings u already

discussed in chapter 1: there we just used intuition and perception to argument that

Mercator (section 1.3.3) and Stereographic (section 1.3.2) projections are conformal. Here

we argument it analytically.

The Mercator projection is a cylindrical projection designed to maintain conformality.

The imposition u = λ makes it cylindrical because u is proportional to λ.

To impose conformality, we use the C-R equations and determine the expression for

the v coordinate: from the second equation

∂v

∂φ
=

1

cos(φ)
· ∂u
∂λ︸︷︷︸

1

=
1

cos(φ)
.

From basic calculus, we know that one possible solution for the above differential

equations is

v = log(sec(φ) + tan(φ)).

Such v also satisfies the first C-R equation:

∂u

∂φ
= 0 = − 1

cos(φ)
· 0 = − 1

cos(φ)

∂v

∂λ

Thus the projection (λ, φ) → (u = λ, v = log(sec(φ) + tan(φ))) is cylindrical and

conformal. We show in fugure 2.8 an example of wide-angle image generated by the

Mecator projection, where we can see that, in fact, shapes of objects are well-preserved:

Figure 2.8: Example of Mercator projection.

Now we consider the stereographic projection:

Statement 2.2 The stereographic projection is conformal.

40



Proof: As we saw in section 1.3.2, the coordinates of the stereographic projection are

u =
2 sin(λ) cos(φ)

cos(λ) cos(φ) + 1
and v =

2 sin(φ)

cos(λ) cos(φ) + 1
.

It’s enough to check the two C-R equations in order to prove conformality, but here we

check only the first one, since the second is analogous:

• ∂u
∂φ

=
[ ∂
∂φ

(2 sinλ cosφ)][cosλ cosφ+ 1]− [ ∂
∂φ

(cosλ cosφ+ 1)][2 sinλ cosφ]

(cosλ cosφ+ 1)2

=
[−2 sinλ sinφ][cosλ cosφ+ 1]− [− cosλ sinφ][2 sinλ cosφ]

(cosλ cosφ+ 1)2

=
−2 sinλ cosλ sinφ cosφ− 2 sinλ sinφ+ 2 sinλ cosλ sinφ cosφ

(cosλ cosφ+ 1)2

=
−2 sinλ sinφ

(cosλ cosφ+ 1)2
.

• ∂v
∂λ

=
[ ∂
∂λ

(2 sinφ)][cosλ cosφ+ 1]− [ ∂
∂λ

(cosλ cosφ+ 1)][2 sinφ]

(cosλ cosφ+ 1)2

=
−[− sinλ cosφ][2 sinφ]

(cosλ cosφ+ 1)2
=

2 sinλ sinφ cosφ

(cosλ cosφ+ 1)2
.

Thus
∂u

∂φ
(λ, φ) = − 1

cosφ

∂v

∂λ
(λ, φ), ∀(λ, φ) ∈ (−π, π)×

(
−π

2
,
π

2

)
.

�

We show in figure 2.9 an example of panoramic image produced by the stereographic

projection, where the shapes of the objects are well preserved:

Figure 2.9: 285 degree longitude/180 degree latitude.

41



2.4.3 Energy Term

We now focus on measuring how conformal a mapping from the discretized viewing

sphere (section 2.3) to the plane is.

For this task, we use the C-R equations obtained in section 2.4.1 among with a standard

numerical technique for discretizing PDEs, named finite differences. We approximate the

partial derivatives at the vertices of the discretized viewing sphere in the following way:

∂u

∂φ
(λij, φij) ≈

(
ui+1,j − uij

∆φ

)
,
∂v

∂λ
(λij, φij) ≈

(
vi,j+1 − vij

∆λ

)
,

∂v

∂φ
(λij, φij) ≈

(
vi+1,j − vij

∆φ

)
,
∂u

∂λ
(λij, φij) ≈

(
ui,j+1 − uij

∆λ

)
,

where ∆φ =
π

m
and ∆λ =

2π

n
.

Replacing the derivatives by their approximations in both C-R equations,

∂u

∂φ
= − 1

cosφ

∂v

∂λ
,
∂v

∂φ
=

1

cosφ

∂u

∂λ
,

we obtain(
ui+1,j − uij

∆φ

)
= − 1

cos(φij)

(
vi,j+1 − vij

∆λ

)
, j = 0, . . . , n− 1, i = 0, . . . ,m− 1

and (
vi+1,j − vij

∆φ

)
=

1

cos(φij)

(
ui,j+1 − uij

∆λ

)
, j = 0, . . . , n− 1, i = 0, . . . ,m− 1.

Thus a discretized mapping should satisfy the following equations:

ui+1,j − uij
∆φ

+
1

cosφij

vi,j+1 − vij
∆λ

= 0

and
1

cosφij

ui,j+1 − uij
∆λ

− vi+1,j − vij
∆φ

= 0.

If we take the left sides of both equations to measure the deviation of conformality, we

will obtain similar values of deviations for quads with very different areas on the viewing

sphere. This would cause an effect of biasing conformality in regions of the sphere with

high quad densities and trying to minimize these conformality deviations would favor such

regions.

We fix this problem by multiplying both equations by a fixed multiple of the area of

each quad on the sphere.

The definition of area of a part of a surface can be found in ([15], page 98).

In our case, we want to know the area of r([λij, λi,j+1] × [φij, φi+1,j]) = r([λij, λij +

∆λ]× [φij, φij + ∆φ]) on the viewing sphere, which is given by the following:

Areaij =

∫ φij+∆φ

φij

∫ λij+∆λ

λij

∥∥∥∥ ∂r

∂λ
(λ, φ)× ∂r

∂φ
(λ, φ)

∥∥∥∥ dλdφ.
42



Straightforward calculations give us:

∂r

∂λ
× ∂r

∂φ
=


cosλ cos2 φ

sinλ cos2 φ

sinφ cosφ


and ∥∥∥∥ ∂r

∂λ
× ∂r

∂φ

∥∥∥∥ = cosφ.

Thus

Areaij =

∫ φij+∆φ

φij

∫ λij+∆λ

λij

cosφdλdφ = ∆λ

∫ φij+∆φ

φij

cosφdφ =

= ∆λ∆φ cos φ̃ ≈ ∆λ∆φ cosφij,

where φ̃ is some value in [φij, φij + ∆φ].

Since ∆λ∆φ is constant, we conclude that Areaij is proportional to cos(φij), and the

discretized equations become

vi,j+1 − vij
∆λ

+ cos(φij)
ui+1,j − uij

∆φ
= 0,

ui,j+1 − uij
∆λ

− cos(φij)
vi+1,j − vij

∆φ
= 0.

We define the conformality energy of u to be a weighted sum of the quadratic errors

of both equations:

Ec =
m−1∑
i=0

n−1∑
j=0

w2
ij

(
vi,j+1 − vij

∆λ
+ cosφij

ui+1,j − uij
∆φ

)2

+

+
m−1∑
i=0

n−1∑
j=0

w2
ij

(
ui,j+1 − uij

∆λ
− cosφij

vi+1,j − vij
∆φ

)2

.

wij are spatially varying weights that depend on the content of the image and will be

defined in section 2.7.

The definition of Ec is necessary because we need a way of measuring how much

conformal a discretized mapping is. In order to produce the final result, we will join this

energy to other ones and the task of looking for a conformal mapping will be replaced by

looking for a mapping that minimizes a weighted sum of these energies.

Ec can be rewritten as Ec =‖ Cx ‖2, where C is a matrix and x is a vector, since Ec

is a sum of squares of linear terms.

Let x ∈ R2(m+1)(n+1), where

x2(j+i(n+1)) = uij and x2(j+i(n+1))+1 = vij, i = 0, . . . ,m, j = 0, . . . , n.

Each entry of Cx must correspond to the term that is in each double summation of

Ec. So each line of C must correspond to a double summation and C must have 2mn

lines.

43



Let C ∈ R2mn×2(m+1)(n+1). The equality Ec =‖ Cx ‖2 is achieved by defining:

C2(j+in),2((j+1)+i(n+1))+1 =
wij
∆λ

, C2(j+in),2(j+i(n+1))+1 = −wij
∆λ

,

C2(j+in),2(j+(i+1)(n+1)) =
wij cosφij

∆φ
, C2(j+in),2(j+i(n+1)) = −wij cosφij

∆φ
,

C2(j+in)+1,2((j+1)+i(n+1)) =
wij
∆λ

, C2(j+in)+1,2(j+i(n+1)) = −wij
∆λ

,

C2(j+in)+1,2(j+(i+1)(n+1))+1 = −wij cosφij
∆φ

, C2(j+in)+1,2(j+i(n+1))+1 =
wij cosφij

∆φ
,

i = 0, . . . ,m− 1, j = 0, . . . , n− 1. The other entries of C are defined as 0.

We call C the conformality matrix and observe that it is sparse: only 4 nonzero entries

per row.

We do not discuss the minimization of Ec =‖ Cx ‖2 here, since Ec will be minimized

with other energies in section 2.8. But in figure 2.10 we show a panoramic image that

one obtains when minimizes such energy alone. As we can see, the object shapes are well

preserved but lines that should be straight are too curved. We deal with this problem in

next section.

Figure 2.10: A panoramic image obtained by minimizing Ec. Observe that it is the

stereographic projection, which we already know to be conformal. It will be more clear in

section 2.8.3 why between all possible conformal mappings, the stereographic one is the

result for minimizing Ec using the method proposed in this section.

2.5 Straight Lines

In this section, we approach another important aspect in panoramic images mentioned

on section 2.1: the preservation of straight lines.

In contrast to other energies, we do not model straightness of lines in a continuous

manner and then discretize it. We directly use the discretization of the sphere to formulate

44



straight line energies.

Here we use the information given by the user (section 2.2) and constrain the curves

marked by her to be lines in the final result. Figure 2.11 shows another example of a

marked equirectangular image.

Figure 2.11: An image produced by the interface presented in section 2.2.

We consider three sets of lines5:

L = {All marked lines},

Lf = {Lines with fixed orientation},

L\Lf = {Lines with general orientation}.

Thus L is the set of green, red and blue lines, Lf is the set of red and blue lines and

L\Lf is the set of green lines.

Let l ∈ L. In general, the vertices Λij of the discretization of the equirectangular

domain do not belong to l.

We thus define a virtual vertex for each quad on the sphere that is intersected by l in

the following way: Let qij ∈ Vl = {Quads intersected by l except the first and the last}.
Let r(Λ0), r(Λ1) be the endpoints of qij ∩ l (see figure 2.12).

We define the virtual vertex P as:

P =
1
2
r(Λ0) + 1

2
r(Λ1)

‖ 1
2
r(Λ0) + 1

2
r(Λ1) ‖

,

which is approximately the midpoint of qij ∩ l. We use the midpoints because they are

evenly spaced along l.

For the first and last quads that l intersects, say qstart and qend, the virtual vertices

are the endpoints of l themselves, regardless of their positions (see figure 2.13).

5Here line stands for marked curves on the equirectangular domain.

45



Figure 2.12: Intersection of qij and l and the virtual vertex P .

Figure 2.13: Virtual vertices for start and end quads.

Now, for each virtual vertex, we define an output virtual vertex in the following way:

let A = r(Λij), B = r(Λi,j+1), C = r(Λi+1,j), D = r(Λi+1,j+1). We project these four

points orthogonally on the plane tangent to the sphere passing through P and obtain Ã,

B̃, C̃, D̃. The result of this projection is shown in figure 2.14.

Figure 2.14: Projection of qij on TPS2 and corresponding vertices.

We then obtain the bilinear coefficients a, b, c, d that express P as convex combination

of Ã, B̃, C̃, D̃: P = aÃ+ bB̃ + cC̃ + dD̃. The details of this process are given in section

2.5.2 (Inverting bilinear interpolation).

We use these coefficients to define the output virtual vertex

ulij = auij + bui,j+1 + cui+1,j + dui+1,j+1, qij ∈ Vl.

46



The same is done to define ulstart and ulend, the virtual vertices corresponding to the

endpoints of l.

We define our straight line energies as a function of the position of the output virtual

vertices, that are linear combinations of actual output vertices uij. Thus, in the end, the

energies will depend only on the uij’s.

In order to have all ulij’s collinear, we should have the distance from each ulij to the

line connecting ulstart to ulend to be zero, ∀qij ∈ Vl (see figure 2.15).

Figure 2.15: The distance should be zero.

One way of expressing this distance is as the coefficient of the orthogonal projection

of ulij − ulstart on the normal direction to ulend − ulstart, which is given by

(ulij − ulstart)
Tn(ulstart,u

l
end),

where

n(ulstart,u
l
end) = R90

ulend − ulstart
‖ ulend − ulstart ‖

.

Using such distance to measure how the ulij’s are not collinear leads to the following

energy for line l:

El =
∑
qij∈Vl

(
(ulij − ulstart)

Tn(ulstart,u
l
end)
)2
.

This expression is not convenient because it involves cross products of variables. As

a consequence, El becomes a sum of nonlinear squares. We want it to be a sum of linear

squares, since the other energies have such form.

We now turn to an alternative way of expressing the distance from ulij to the line

connecting ulstart to ulend: as the norm of the difference between ulij − ulstart and its

orthogonal projection on the line connecting ulstart − ulend:

‖ (ulij − ulstart)− s(ulij,ulstart,ulend)(ulend − ulstart) ‖,

where

s(ulij,u
l
start,u

l
end) =

(ulij − ulstart)
T (ulend − ulstart)

‖ ulend − ulstart ‖
.

El can be rewritten in the following form:

El =
∑
qij∈Vl

‖ (ulij − ulstart)− s(ulij,ulstart,ulend)(ulend − ulstart) ‖2 .

47



It turns out that this way of expressing El is also a sum of nonlinear squares.

We simplify the two expressions for El by fixing the normal vector n on the first

expression, which leads to

Elo =
∑
qij∈Vl

(
(ulij − ulstart)

Tn
)2
,

and by fixing the projection sij on the second expression, which leads to

Eld =
∑
qij∈Vl

‖ (ulij − ulstart)− sij(ulend − ulstart) ‖2 .

Both these energies are now sums of linear squares.

They have a geometric interpretation: Elo allows points to slide freely along the line,

while fixing line’s orientation (defined by the normal vector) and Eld allows the line to

change its direction while fixing the relative positions of the points, defined by the sij’s.

If l ∈ Lf , i.e., l has a specified orientation, the vector n is known and fixed, so we just

minimize Elo in this case.

If l ∈ L\Lf , we use both Elo and Eld in an interactive minimization. The steps are

described below:

• Initialize each sij using the arc length between r(Λij) and r(Λstart) on the viewing

sphere;

• Minimize Eld to obtain new values for uij (and thus obtain new values for ulij, ustart

and uend);

• From the new values ustart and uend, calculate the normal vector

n = R90
ulend − ulstart
‖ ulend − ulstart ‖

;

• Minimize Elo to obtain new values for uij (and thus obtain new values for ulij, ustart

and uend);

• From these new values, calculate

sij =
(ulij − ulstart)

T (ulend − ulstart)

‖ ulend − ulstart ‖

2

, ∀qij ∈ Vl;

• Return to the 2nd step and repeat the process until convergence6.

2.5.1 Energy terms

In the last section, we analyzed one single line and obtained straight line energies

associated to it.

6Although we do not have a theoretical proof of convergence, in practice the results always converged

visually after repeating the steps above 4 times at most.

48



We now turn such energies into a matrix form and develop the straight line energies

for the whole mapping u.

We start by considering l ∈ Lf , which is the simplest case. Let n = (n1, n2)T the

normal vector (n = (1, 0)T for vertical lines and n = (0, 1)T for horizontal ones).

Developing the energy term we obtain:

Elo
∣∣
l

=
∑
qij∈Vl

(
(ulij − ulstart)

T

(
n1

n2

))2

=
∑
qij∈Vl

(
(aijuij + bi,j+1ui,j+1 + ci+1,jui+1,j + di+1,j+1ui+1,j+1 − astartuistart,jstart−

−bstartuistart,jstart+1 − cstartuistart+1,jstart − dstartuistart+1,jstart+1)T

(
n1

n2

))2

=
∑
qij∈Vl

(n1aijuij + n1bi,j+1ui,j+1 + n1ci+1,jui+1,j + n1di+1,j+1ui+1,j+1−

−n1astartuistart,jstart − n1bstartuistart,jstart+1 − n1cstartuistart+1,jstart−
−n1dstartuistart+1,jstart+1 + n2aijvij + n2bi,j+1vi,j+1 + n2ci+1,jvi+1,j+

+n2di+1,j+1vi+1,j+1 − n2astartvistart,jstart − n2bstartvistart,jstart+1−
−n2cstartvistart+1,jstart − n2dstartvistart+1,jstart+1)2,

where aij, bi,j+1, ci+1,j, di+1,j+1, astart, bstart, cstart, dstart are the bilinear coefficients used to

define the output virtual vertices.

We can rewrite Elo
∣∣
l

as Elo
∣∣
l

=‖ LO(l)x ‖2, making each quad qij ∈ Vl corresponds to

a line in LO(l), say the q-th line 7:

LO
(l)
q,2(j+i(n+1)) = n1aij, LO

(l)
q,2((j+1)+i(n+1)) = n1bi,j+1,

LO
(l)
q,2(j+(i+1)(n+1)) = n1ci+1,j, LO

(l)
q,2((j+1)+(i+1)(n+1)) = n1di+1,j+1,

LO
(l)
q,2(jstart+istart(n+1)) = −n1astart, LO

(l)
q,2((jstart+1)+istart(n+1)) = −n1bstart,

LO
(l)
q,2(jstart+(istart+1)(n+1)) = −n1cstart, LO

(l)
q,2((jstart+1)+(istart+1)(n+1)) = −n1dstart,

LO
(l)
q,2(j+i(n+1))+1 = n2aij, LO

(l)
q,2((j+1)+i(n+1))+1 = n2bi,j+1,

LO
(l)
q,2(j+(i+1)(n+1))+1 = n2ci+1,j, LO

(l)
q,2((j+1)+(i+1)(n+1))+1 = n2di+1,j+1,

LO
(l)
q,2(jstart+istart(n+1))+1 = −n2astart, LO

(l)
q,2((jstart+1)+istart(n+1))+1 = −n2bstart,

LO
(l)
q,2(jstart+(istart+1)(n+1))+1 = −n2cstart, LO

(l)
q,2((jstart+1)+(istart+1)(n+1))+1 = −n2dstart.

The other entries of LO(l) are set to be zero.

We want the energy for all lines in Lf = {l(f)
0 , . . . , l

(f)
k1−1}, i.e.,

Elo =
∑
l∈Lf

Elo
∣∣
l
=
∑
l∈Lf

∑
qij∈Vl

(
(ulij − ulstart)

T

(
n1

n2

))2

.

The above construction is made for each line, leading to matrices

LO(l
(f)
0 ), LO(l

(f)
1 ), . . . , LO(l

(f)
k1−1)

7We use here the notation of section 2.4.3 to construct LO(l) and x.

49



that correspond to the inner sums and define

LO =


LO(l

(f)
0 )

...

LO(l
(f)
k1−1)

 .

We call LO the fixed orientation line matrix. Observing that each line of LO has at

most 8 nonzero entries per line (since n1 = 0 or n2 = 0, in this case), we conclude that

LO is sparse.

The conclusion Elo =‖ LOx ‖2 is straightforward:

‖ LOx ‖2 =

∥∥∥∥∥∥∥∥


LO(l
(f)
0 )

...

LO(l
(f)
k1−1)

x

∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥


LO(l
(f)
0 )x
...

LO(l
(f)
k1−1)x


∥∥∥∥∥∥∥∥

2

= ‖ LO(l
(f)
0 )x ‖2 + . . .+ ‖ LO(l

(f)
k1−1)x ‖2

= Elo
∣∣
l
(f)
0

+ . . .+ Elo
∣∣
l
(f)
k1−1

=
∑
l∈Lf

Elo
∣∣
l
= Elo.

We now focus on the lines that have no specified orientation, i.e., the set L\Lf =

{l(g)0 , . . . l
(g)
k2−1}. As we explained, we alternate between minimizing Elo and Eld for such

lines.

To turn Elo into a matrix form, we do the same way we did for lines with fixed

orientation: for each l
(g)
k ∈ L\Lf , k = 0, . . . , k2− 1, we construct the matrix LOl

(g)
k in the

same way we did before and define

LOA =


LO(l

(g)
0 )

...

LO(l
(g)
k2−1)

 .

We call LOA the alternate fixed orientation line matrix. Since now we can have n1 6= 0

and n2 6= 0, each line of LOA has at most 16 nonzero entries. So it is still sparse8.

Let l ∈ L\Lf . Developing the expression for Eld
∣∣
l

we obtain:

Eld
∣∣
l

=
∑
qij∈Vl

∥∥aijuij + bi,j+1ui,j+1 + ci+1,jui+1,j + di+1,j+1ui+1,j+1+

+(−1 + sij)astartuistart,jstart + (−1 + sij)bstartuistart,jstart+1+

+(−1 + sij)cstartuistart+1,jstart + (−1 + sij)dstartuistart+1,jstart+1−
−sijaenduiend,jend − sijbenduiend,jend+1 − sijcenduiend+1,jend − sijdenduiend+1,jend+1

∥∥2

=
∑
qij∈Vl

[(aijuij + bi,j+1ui,j+1 + . . .− sijcenduiend+1,jend − sijdenduiend+1,jend+1)2+

+(aijvij + bi,j+1vi,j+1 + . . .− sijcendviend+1,jend − sijdendviend+1,jend+1)2],

8The system usually has thousands of variables (the number of variables is two times the number of

vertices).

50



where ‘. . .’ corresponds to the middle 8 terms that are being omitted by convenience.

To obtain Eld
∣∣
l

=‖ LD(l)x ‖2 we associate 2 lines of LD(l) to each quad qij ∈ Vl, say

q1-th and (q1 + 1)-th lines, and define its entries as:

LD
(l)
q1,2(j+i(n+1)) = aij, LD

(l)
q1,2((j+1)+i(n+1)) = bij,

...
...

LD
(l)
q1,2(jend+(iend+1)(n+1)) = −sijcend, LD

(l)
q1,2((jend+1)+(iend+1)(n+1)) = −sijdend,

LD
(l)
q1+1,2(j+i(n+1))+1 = aij, LD

(l)
q1+1,2((j+1)+i(n+1))+1 = bij,

...
...

LD
(l)
q1+1,2(jend+(iend+1)(n+1))+1 = −sijcend, LD

(l)
q1+1,2((jend+1)+(iend+1)(n+1))+1 = −sijdend.

The other entries of LD(l) are zero.

If we do the above process for each line in L\Lf we obtain the matrices

LD(l
(g)
0 ), LD(l

(g)
1 ), . . . , LD(l

(g)
k2−1).

We define the alternate fixed projection line matrix to be

LDA =


LD(l

(g)
0 )

...

LD(l
(g)
k2−1)

 .

LDA is also sparse, since it has at most 12 nonzero entries per row.

It turns out that

Eld =
∑

l∈L\Lf

Eld
∣∣
l

which can be written as

Eld =‖ LDAx ‖2 .

This conclusion is obtained in the same manner we did before to obtain Elo =‖ LOx ‖2.

We now have both energies in a matrix form. The minimization for all lines (the set

L) is performed by first minimizing∑
l∈Lf

Elo
∣∣
l
+
∑

l∈L\Lf

Eld
∣∣
l
=‖ LOx ‖2 + ‖ LDAx ‖2

and then plugging the obtained values into
∑

l∈L\Lf

Elo
∣∣
l

and minimizing

∑
l∈Lf

Elo
∣∣
l
+
∑

l∈L\Lf

Elo
∣∣
l
=‖ LOx ‖2 + ‖ LOAx ‖2 .

The obtained values are plugged into
∑

l∈L\Lf

Eld
∣∣
l

and the process continues until conver-

gence is reached.

More details of such minimization are left to section 2.8, where such energies are

minimized with other ones.

An example that one would obtain when minimizing only line energies is shown in

figure 2.16.

51



Figure 2.16: The method tries to straighten the specified lines, but due to the disconti-

nuous nature of the straight line constrains, the result becomes very unpleasant.

2.5.2 Inverting Bilinear Interpolation

This section is devoted to obtain the bilinear coefficients a, b, c, d used to define the

output virtual vertices.

As we explained, such coefficients are obtained in the following way:

• Given A,B,C,D ∈ S2, project them orthogonally on the plane tangent to S2 passing

through P = (P1, P2, P3), say
∏

, and obtain Ã, B̃, C̃, D̃;

• Obtain a, b, c, d such that P = aÃ+ bB̃ + cC̃ + dD̃.

The first step is quite simple: the equation of
∏

is∏
: P1(x− P1) + P2(y − P2) + P3(z − P3) = 0

which can be rewritten as ∏
: P1x+ P2y + P3z = 1.

If Ã is the orthogonal projection of A (see figure 2.17), it satisfies

Ã− A = λP, 〈P, Ã〉 = 1,

for some λ. Solving the above equations leads to

Ã = A+ λP, where λ = 1− 〈P,A〉.

The same holds for B̃, C̃ and D̃. Now we have the situation illustrated in figure 2.18.

Let n be the unit vector normal to
∏

(we know that in our case n = P , but we ignore

this for a while in order to obtain a general result).

52



Figure 2.17: Orthogonal projection of A.

Figure 2.18: Projected vertices on tangent plane.

We first look for β such that s1,β = (1− β)Ã+ βC̃, s2,β = (1− β)B̃ + βD̃, and P are

collinear (figure 2.19).

Figure 2.19: P , s1,β and s2,β must be collinear.

Since n is orthogonal to
−−−→
s1,βP = P − s1,β and −−−−→s1,βs2,β = s2,β − s1,β, this is equivalent

to the volume defined by n,
−−−→
s1,βP and −−−−→s1,βs2,β to be zero, i.e.,

n · ((P − s1,β)× (s2,β − s1,β)) = 0,

where · denotes the usual inner product and × denotes the cross product in R3.

53



Developing the above expression we obtain

0 = n · ((P − s1,β)× (s2,β − s1,β))

= n · (P × s2,β − P × s1,β − s1,β × s2,β + s1,β × s1,β︸ ︷︷ ︸
0

)

= n · [P × ((1− β)B̃ + βD̃)− P × ((1− β)Ã+ βC̃)−
−((1− β)Ã+ βC̃)× ((1− β)B̃ + βD̃)]

= n · [(1− β)(P × B̃) + β(P × D̃)− (1− β)(P × Ã)− β(P × C̃)−
−(1− β)2(Ã× B̃)− (1− β)β(Ã× D̃)− β(1− β)(C̃ × D̃)− β2(C̃ × D̃)]

= n · [(P × B̃)− (P × Ã)− (Ã× B̃)] + βn · [(P × B̃) + (P × D̃)+

+(P × Ã)− (P × C̃) + 2(Ã× B̃)− (×A××D)− (C̃ × B̃)]+

+β2n[−(Ã× B̃) + (Ã× D̃) + (C̃ × B̃)− (C̃ × D̃)]

⇔ 0 = [n · ((C̃ × Ã)× (D̃ − B̃))]β2 + [n · ((D̃ − B̃)× (P − Ã)−
−(C̃ − Ã)× (P − B̃))]β + [n · ((P − Ã)× (P − B̃))].

Defining

a1 = 〈n, (C̃ − Ã)× (D̃ − B̃)〉, a2 = 〈n, (D̃ − B̃)× (P − Ã)− (C̃ − Ã)× (P − B̃)〉,

a3 = 〈n, (P − Ã)× (P − B̃),

the equation becomes

a1β
2 + a2β + a3 = 0,

which has solutions

β =
−a2 ±

√
a2

2 − 4a1a3

2a1

.

We choose the root by analyzing the sign of a1 = 〈n, (C̃ − Ã)× (D̃ − B̃)〉.
First we observe that a1 = 0 is not possible: n is parallel to (C̃ − Ã)× (D̃− B̃). Since

n 6= 0, a1 = 0 would imply (C̃ − Ã)× (D̃ − B̃) = 0, which means (C̃ − Ã) and (D̃ − B̃)

are collinear and this does not happen by construction.

Now suppose a1 < 0. This means that n, (C̃ − Ã) and (D̃ − B̃) have a negative

orientation and thus (C̃ − Ã) and (D̃ − B̃) are diverging on
∏

, as shown in figure 2.20.

Figure 2.20: (C̃ − Ã) and (D̃ − B̃) diverging on
∏

.

54



Figure 2.20 shows us the two possibilities for collinearity between P , s1,β and s2,β. We

do not want the smallest root β2, because β2 < 0 and 0 6 β1 6 1. Since a1 < 0, the

largest (and desired) root is

β1 =
−a2 −

√
a2

2 − 4a1a3

2a1

.

For a1 > 0 we have the situation illustrated in figure 2.21.

Figure 2.21: (C̃ − Ã) and (D̃ − B̃) converging on
∏

.

Now the desired root β1 is the smallest one. Since a1 > 0, we have

β1 =
−a2 −

√
a2

2 − 4a1a3

2a1

.

Thus we conclude that the desired root is always obtained by taking the negative sign

in the expression for β.

Now we want to find α such that

P = (1− α)s1,β + αs2,β,

as shown in figure 2.22.

Figure 2.22: P as convex combination of s1,β and s2,β.

This is achieved by defining α as the length of the projection of
−−−→
s1,βP on the vector

−−−−→s1,βs2,β, i.e.,

α =
〈P − s1,β, s2,β − s1,β〉
‖ s2,β − s1,β ‖2

.

55



Thus
P = (1− α)s1,β + αs2,β = (1− α)((1− β)Ã+ βC̃)+

+α((1− β)B̃ + βD̃) = aÃ+ bB̃ + cC̃ + dD̃,

where

a = (1− α)(1− β), b = α(1− β), c = (1− α)β, d = αβ.

2.6 Smoothness

Joining conformality and straight line energies and minimizing them leads to a result

like in figure 2.23.

Figure 2.23: The mapping changes too much to satisfy the line constrains. We want the

solution to be smoother.

We can observe huge changes of scale and orientation over the image, especially near

line segments.

This behavior has an explanation: conformality imposes that the differential north

vector h is a 90-degree rotation of the differential east vector k, i.e., h = R90k. Such

imposition turns the mapping u locally into a rotation composed with a uniform scale.

But this rotation and scale can be very different even for two points (λ1, φ1), (λ2, φ2) that

are very close in the equirectangular domain. Figure 2.24 illustrates what was just said.

We avoid such behavior by imposing small variations for both h and k. If we have

∂h

∂λ
(λ, φ) =

∂h

∂φ
(λ, φ) = 0, ∀(λ, φ) ∈

(
−π

2
,
π

2

)
× (−π, π),

56



Figure 2.24: Vectors h and k varying too much for small variations of (λ, φ).

it follows that

∂k

∂λ
(λ, φ) =

∂k

∂φ
(λ, φ) = 0, ∀(λ, φ) ∈

(
−π

2
,
π

2

)
× (−π, π),

since k = R−90h (here we are assuming that u is conformal). Thus, it is enough to impose

the constrains only on h.

Hence, ideally we should have

∂h

∂(λ, φ)
=

(
∂h

∂λ

∂h

∂φ

)
=

(
∂2u
∂φ∂λ

∂2u
∂φ2

∂2v
∂φ∂λ

∂2v
∂φ2

)
=

(
0 0

0 0

)
,

i.e.,

∂2u

∂φ2
(λ, φ) = 0,

∂2v

∂φ2
(λ, φ) = 0,

∂2u

∂φ∂λ
(λ, φ) = 0,

∂2v

∂φ∂λ
(λ, φ) = 0, ∀(λ, φ).

2.6.1 Energy Term

We impose the last equations on the vertices (λij, φij), i = 1, . . . ,m−1, j = 0, . . . , n−1,

of the discretization of the viewing sphere and approximate the second derivatives using

second-order finite differences:

∂2u

∂φ2
(λij, φij) ≈

ui+1,j − 2uij + ui−1,j

(∆φ)2
,
∂2v

∂φ2
(λij, φij) ≈

vi+1,j − 2vij + vi−1,j

(∆φ)2
,

∂2u

∂λ∂φ
≈ ui+1,j+1 − ui,j+1 − ui+1,j + ui,j

∆λ∆φ
,

∂2v

∂λ∂φ
≈ vi+1,j+1 − vi,j+1 − vi+1,j + vi,j

∆λ∆φ
.

To obtain the smoothness energy, we also multiply the equations by spatially varying

weights (section 2.7) that control the strength of such energy on different areas of the

panorama, and again by cos(φij) to make the energy depend on the area of the quad:

Es =
m−1∑
i=1

n−1∑
j=0

w2
ij cos2(φij)

(
ui+1,j − 2uij + ui−1,j

(∆φ)2

)2

+

+
m−1∑
i=1

n−1∑
j=0

w2
ij cos2(φij)

(
vi+1,j − 2vij + vi−1,j

(∆φ)2

)2

+

+
m−1∑
i=1

n−1∑
j=0

w2
ij cos2(φij)

(
ui+1,j+1 − ui,j+1 − ui+1,j + ui,j

∆λ∆φ

)2

+

+
m−1∑
i=1

n−1∑
j=0

w2
ij cos2(φij)

(
vi+1,j+1 − vi,j+1 − vi+1,j + vi,j

∆λ∆φ

)2

.

57



As the other energies, we turn Es into a matrix form: Es =‖ Sx ‖2. Each double

summation of the energy must correspond to a line in S. Thus S has 4(m− 1)(n) lines.

The entries of S are:

S4(j+(i−1)n),2(j+(i+1)(n+1)) =
wij cosφij

(∆φ)2
, S4(j+(i−1)n),2(j+i(n+1)) = −2wij cosφij

(∆φ)2
,

S4(j+(i−1)n),2(j+(i−1)(n+1)) =
wij cosφij

(∆φ)2
, S4(j+(i−1)n)+1,2(j+(i+1)(n+1))+1 =

wij cosφij
(∆φ)2

,

S4(j+(i−1)n)+1,2(j+i(n+1))+1 = −2wij cosφij
(∆φ)2

, S4(j+(i−1)n)+1,2(j+(i−1)(n+1))+1 =
wij cosφij

(∆φ)2
,

S4(j+(i−1)n)+2,2((j+1)+(i+1)(n+1)) =
wij cosφij

∆λ∆φ
, S4(j+(i−1)n)+2,2((j+1)+i(n+1)) = −wij cosφij

∆λ∆φ
,

S4(j+(i−1)n)+2,2(j+(i+1)(n+1)) = −wij cosφij
∆λ∆φ

, S4(j+(i−1)n)+2,2(j+i(n+1)) =
wij cosφij

∆λ∆φ
,

S4(j+(i−1)n)+3,2((j+1)+(i+1)(n+1))+1 =
wij cosφij

∆λ∆φ
, S4(j+(i−1)n)+3,2((j+1)+i(n+1))+1 = −wij cosφij

∆λ∆φ
,

S4(j+(i−1)n)+3,2(j+(i+1)(n+1))+1 = −wij cosφij
∆λ∆φ

, S4(j+(i−1)n)+3,2(j+i(n+1))+1 =
wij cosφij

∆λ∆φ
,

i = 1, . . . ,m − 1, j = 0, . . . , n − 1. The other entries are defined as zero. S is called the

smoothness matrix. S has at most 4 nonzero entries per row, so it is sparse.

Minimizing only the smoothness energy leads to results like the one in figure 2.25.

Figure 2.25: The solution for minimizing only Es.

Joining the smoothness energy to conformality and straight line energies causes the

expected result on the image in the beginning if this section, as shown in figure 2.26.

2.7 Spatially-Varying Weighting

In this section we present the weights wij used to define conformality and smoothness

energies. Each wij is associated to a vertex on the viewing sphere Λij. They control shape

distortions and variation of the projection in different regions of the panoramic image.

58



Figure 2.26: Joining all the energies together leads to a smoother solution. Observe that

the undesirable artifacts in figure 2.23 are corrected.

These weights strongly depend on the image content, which was pointed out as a

desirable property in section 2.1.

We construct the weighting function based on three quantities: proximity to a line

endpoint, a local image salience measure and proximity to a face.

• Line endpoint weights: The straight line constrains are very discontinuous along

the projection: while a vertex may have no such constrain, another one very close to it

may be the beginning of a line, where a strong constrain is imposed. This behavior leads

to more distorted quads near line endpoints.

We thus define weights wLij that are stronger near line endpoints, to make conformality

and smoothness energies correct this problem.

Let p = (λ, φ) be an endpoint. Suppose p ∈ [λip,jp , λip,jp+1] × [φip,jp , φip+1,jp ] (figure

2.27).

For each i = 0, . . . ,m, j = 0, . . . , n we calculate the value of a gaussian function

centered on (ip, jp) with deviation σ = n
100

and height equal to 1:

w
(p)
ij = e

(i−ip)2+(j−jp)2

2σ2 .

To define the final weight wLij for the vertex Λij, we just sum over all endpoints:

wLij =
∑

p endpoint

w
(p)
ij =

∑
p endpoint

e
(i−ip)2+(j−jp)2

2σ2 .

59



Figure 2.27: p and its corresponding quad.

In figure 2.28 we compare a result without and with such weights.

Figure 2.28: Left: Without line endpoint weights. Right: With them. Two close line

segments in the left image (highlighted in red and green) have too different orientations,

problem corrected in the right image. Also, the face highlighted in yellow in the left image

is near a line segment and becomes too stretched, fact less noticeable in the right image.

• Salience weights: These weights wSij are constructed based on the observation that in

areas of the image with many details the projection should be smoother and in other ares

like skies or walls the projection could have a worse behavior that it wouldn’t be noticed.

We construct wSij as follows: suppose 1 6 i 6 m − 1, 1 6 j 6 n − 19. We take the

mean value of luminance on the 3 by 3 window centered on Λij:

meanij =
Li−1,j−1 + Li−1,j + Li−1,j+1 + Li,j−1 + Li,j + Li.j+1 + Li+1,j−1 + Li+1,j + Li+1,j+1

9
,

where Lij is the luminance of the corresponding pixel to Λij on the equirectangular image.

9For boundary vertices the construction is similar.

60



Then we obtain the standard deviation of luminance on the window:

devij =

√√√√√
∑
k,l

(Lk,l −meanij)2

9
.

Finally we define wSij by normalizing the deviations to be between 0 and 1:

wSij =
devij −minij devij

maxij devij −minij devij

In figure 2.29 we show a result without and with these weights:

Figure 2.29: Left: Without salience weights. Right: With them. The difference is very

subtle.

• Face detection weights: Even little distortions in human faces are very noticeable.

Thus we would like shapes of faces to be especially preserved. This is achieved by increa-

sing conformality in face regions.

To do that, we should be able to detect faces in equirectangular images. This process

is detailed in section 2.8, where we discuss theory and implementation of a standard face

detector ([16]) and describe a way of applying it to equirectangular images. From this

face detection process, a weight field wFij is obtained. Such field has higher values in face

regions.

In figure 2.30 we compare a result without and with the face weights wFij .

• Total weights: We use the combination of the 3 kinds of weights suggested in [1] in

order to define the total weights:

wij = 2wLij + 2wSij + 4wFij + 1.

61



Figure 2.30: Result without and with face weights. Such weights are the most effective

ones, as can be seen in the woman’s face, that looks less distorted in the bottom image.

2.8 Minimization

Up to now in this chpater, we modeled some kinds of distortion in panoramic images

and derived some energies (conformality, straight line and smoothness energies) that mea-

sure how distorted an image is.

Thus, ideally, we would like to find mappings u with null energies. We already discus-

sed the difficulties of finding distortion-free mappings in Chapter 1. Also, in the result

discussion in section 3.7, we prove an additional statement that says the only mappings

that satisfy both conformality and smoothness conditions are the constant ones. There-

fore, a more reasonable solution is to minimize all the energies in some sense.

In this section, we formulate an energy that is a sum of all energies obtained up to

62



here. Such quantity takes into account all types of distortions.

We then study two ways to minimize it: one that is exact but slow, and another that

provides an approximate solution fast.

2.8.1 Total Energy

In order to formulate the total energy, we use weights wc, ws and wl that control the

relative importance of the conformality, smoothness and line energies. The total energy

will be a weighted sum of such energies. The (fixed) values for such weights are defined

in section 2.8.4.

If the values of the projections sij (section 2.5) are set, the energy to be minimized is:

Ed = w2
cEc + w2

sEs + w2
l

∑
l∈Lf

Elo + w2
l

∑
l∈L\Lf

Eld.

If the normal vectors n (section 2.5) are set, the energy is:

Eo = w2
cEc + w2

sEs + w2
l

∑
l∈Lf

Elo + w2
l

∑
l∈L\Lf

Elo.

We thus alternate between minimizing these two energies in the same way described in

section 2.5.

By defining

Ad =


wcC

wsS

wlLO

wlLDA

 and Ao =


wcC

wsS

wlLO

wlLOA

 ,

where C, S, LO,LDA and LOA are the conformality, smoothness and straight line ma-

trices, we can rewrite both energies as

Ed = ‖Adx‖2 and Eo = ‖Aox‖2.

We use here again the notation established in section 2.4.3:

x2(j+i(n+1)) = uij and x2(j+i(n+1))+1 = vij.

2.8.2 Eigenvalue/Eigenvector Method

For this section and the next one, we drop off the indices of Ed and Eo and study two

different ways of minimizing

E(x) = ‖Ax‖2.

Let x 6= 010. The equality

E(x) = E

(
‖x‖ x

‖x‖

)
=

∥∥∥∥A‖x‖ x

‖x‖

∥∥∥∥2

= ‖x‖2E

(
x

‖x‖

)
10x = 0 is a minimizer for E but it’s an undesirable solution since corresponds to mapping all the

viewing sphere to the origin.

63



shows us that E is unbounded and has no minimum or maximum for x 6= 0.

Since E(x) is proportional to E

(
x

‖x‖

)
, it turns out that the set {x : ‖x‖ = 1} is a

good place to look for a minimizer. The result of

min
‖x‖=1

E(x)

tells us the direction of minimal increase for E. For our purposes, the direction is the

only thing that matters, since scaling the final mapping will not change its final shape.

Statement 2.3 The solution of min
‖x‖=1

‖Ax‖2 is e1, the eigenvector of ATA associated to

its smallest eigenvalue λ1. In addition, E(e1) = λ2
1.

Proof: Since ATA is symmetric and positive semidefinite (xTATAx > 0, ∀x) it has an

orthonormal basis of eigenvectors ei (i = 1, . . . , q) with eigenvalues 0 6 λ1 6 λ2 6 . . . 6

λq. Thus any unit vector can be written as

x = µ1e1 + . . . µqeq,

where µ2
1 + . . . µ2

q = 1.

The first conclusion of the statement comes from

E(x)− E(e1) = xT (ATA)x− eT1 (ATA)e1

= λ2
1µ

2
1 + . . .+ λ2

qµ
2
q − λ2

1

> λ2
1µ

2
1 + . . . λ2

1µ
2
q − λ2

1

= λ2
1(µ2

1 + . . . µ2
q)− λ2

1 = 0

⇒ E(x) > E(e1),∀x s.t. ‖x‖ = 1.

The other conclusion is straightforward.

�

One could think that the above statement solves our problem: it would be enough to

find the smallest eigenvalue of ATA and its associated eigenvector.

But a problem arises:

Statement 2.4 The vectors x such that uij = ku and vij = kv, ∀i, j are eigenvectors of

ATA with corresponding eigenvalues equal to 0.

Proof: We consider A = Ad. The case A = Ao is analogous.

All energies Ec, Es, Elo and Eld vanish if we plug into them constant values for uij’s and

vij’s (this fact is straightforward from the expression for each energy).

Thus, for uij = ku and vij = kv we have

Ed = w2
cEc + w2

sEs + w2
l

∑
l∈Lf

Elo + w2
l

∑
l∈L\Lf

Eld = w2
c0 + w2

s0 + w2
l

∑
l∈Lf

0 + w2
l

∑
l∈L\Lf

0 = 0

which implies ‖Ax‖2 = ‖Adx‖2 = 0 and obviously Ax = 0. Then we have

ATAx = AT · 0 = 0 = 0 · x

and this proves the statement.

64



�

We do not want constant mapping as solutions because they do not satisfy the per-

ceptual requirements that we discussed in the first chapter.

The subspace of constant mappings K = {x : uij = ku, vij = kv} has dimension 2,

since K = span{vu,vv}, where vu has entries vij = 0 and uij = 1√
(m+1)(n+1)

and vv has

entries uij = 0 and vij = 1√
(m+1)(n+1)

.

If we look for minE(x) in {x : ‖x‖ = 1,x 6= vu,x 6= vv} it may happen that E has

no minimizer, since such set is not compact anymore.

Thus we restrict our minimization to {x : ‖x = 1‖} ∩ K⊥. Assuming e1 = vu,

e2 = vv11 in the proof of Statement 2.3, we have

{x : ‖x = 1‖} ∩K⊥ = {µ3e3 + . . . µqeq : µ2
3 + . . .+ µ2

q = 1}.

In the same way we did in the proof of such statement, we conclude that the minimizer

is e3 and E(e3) = λ2
3. So it is enough that we look for the eigenvector of ATA associated

to the third smallest eigenvalue.

Although we found an exact solution for our problem, finding eigenvectors numerically

is never an easy task. There are some reasons for this fact:

• The problem Ax = λx is nonlinear itself;

• The methods usually find faster the eigenvector associated to the smallest eigenvalue.

To find the third one takes longer;

• Our problem involves thousands of variables, and the problems above become more

critical.

Next section presents a modification to the problem of minimizing E(x) that provides

a good quality approximate solution and is faster.

2.8.3 Linear System Method

We replace E(x) by other energy Ẽ(x) that is E(x) plus a small perturbation that

tells how much the mapping x deviates from some known mapping y:

Ẽ(x) = E(x) + ε‖x− y‖2 = ‖Ax‖2 + ε‖x− y‖2,

where ε > 0 is a chosen (small) value. We use the stereographic mapping (section 1.3.2)

for y.

The advantages of using such perturbed energy are discussed further. Before that,

consider the following statement:

Statement 2.5 The minimizer of Ẽ in Rn is

x = (ATA+ εI)−1(εy).

11It turns out that in practice λ3 > 0. Then this requirement is always satisfied.

65



Proof: First we look for critic points of Ẽ, i.e., we look for x ∈ Rn such that ∇Ẽ(x) = 0.

Rewriting the expression for Ẽ leads to

Ẽ(x) = xTATAx + ε(x− y)T (x− y).

Thus

∇Ẽ(x) = ∇(xTATAx) + ε∇[(xT − yT )(x− y)]

= ∇(xTATAx) + ε[∇(xTx)−∇(xTy)−∇(yTx) +∇(yTy)]

We know from multivariable Calculus that ∇(xTATAx) = 2ATAx (since ATA is symme-

tric), ∇(xTx) = ∇(xT Ix) = 2Ix = 2x, ∇(xTy) = ∇(yTx) = y and ∇(yTy) = 0.

Then we have

∇Ẽ(x) = 2ATAx + 2εx− 2εy

and

∇Ẽ(x) = 0⇒ (ATA+ εI)x = εy.

Observe that ATA+ εI is positive definite:

xT (ATA+ εI)x = xTATAx + εxTx = xTATAx︸ ︷︷ ︸
>0

+ ε‖x‖2︸ ︷︷ ︸
>0

> 0, ∀x 6= 0.

We know that every positive definite matrix is invertible: in fact, if it were not, there

would be a w 6= 0 s.t. (ATA + εI)w = 0 and wT (ATA + εI)w = wT · 0 = 0, what

contradicts the fact that ATA+ εI is positive definite.

Thus the unique critic point for Ẽ is

x̂ = (ATA+ εI)−1(εy).

It remains to prove that x̂ is a minimizer. In fact,

∇Ẽ(x) = 2ATAx + 2εx− 2εy⇒ HẼ(x) = 2(ATA+ εI), ∀x ∈ Rn.

Since ATA+εI is positive definite, we conclude that the hessian HẼ(x) is positive definite,

∀x ∈ Rn, and then Ẽ is a convex function. Also, the positiveness of HẼ(x̂) implies x̂ is a

local minimizer of Ẽ. Since for convex functions all local minimizers are global minimizers,

we conclude that x̂ is the global minimizer for Ẽ.

�

The main advantage of minimizing Ẽ instead of E is that we replace an eigenvalue

problem by solving a linear system.

Furthermore, ATA+ εI is sparse (since A is sparse), symmetric and positive definite.

For example, Matlab (software that we used to perform the optimizations) has specific

routines to solve sparse linear systems and produces results much faster.

66



One point that remains open is what value we choose for ε. On one hand, ε ≈ 0 ⇒
Ẽ(x) = E(x) and the minimizer for Ẽ would be very close to the minimizer for E. On

the other hand, ε too small leads to instability problems when solving (ATA+ εI)x = εy.

Since we are dealing with a perceptual problem, we can say that a good choice for ε

is a value that produces visually identical results when comparing the minimizers for E

and Ẽ and does not causes instability problems.

We show with an example in figure 2.31 that ε = 10−6 is a good choice. We used a

coarse grid (only 1,369 vertices) for the viewing sphere, because a finer one would turn

the minimization of E (eigenvalue/eigenvector method) impractical.

Figure 2.31: Left: final result minimizing in each iteration energy E with the eigenva-

lue/eigenvector method. Right: final result minimizing in each iteration energy Ẽ with

the linear system method, ε = 10−6.

While the eigenvalue/eigenvector method took some minutes long to perform all ite-

rations and produce a final result, the linear system method took just some seconds.

For all reasons discussed in this section, from now on we only use the linear system

method to produce the results, i.e., the function to be minimized in each iteration will be

Ẽ.

Now we can understand why minimizing only Ec in section 2.4.3 led to the stereogra-

phic projection: to do such minimization, we set ws = wl = 0, wc 6= 0 in Ed:

Ed = w2
cEc + w2

s︸︷︷︸
0

Es + w2
l︸︷︷︸

0

∑
l∈Lf

Elo + w2
l︸︷︷︸

0

∑
l∈L\Lf

Eld = w2
cEc,

67



in this case.

Among all possible mappings that vanish Ec (the conformal ones), the linear system

method chose the stereographic one because it also minimizes the term ε‖x − y‖2, i.e.,

the stereographic projection minimizes

Ẽ(x) = Ed(x) + ε‖x− y‖2 = wcEc(x) + ε‖x− y‖2.

2.8.4 Results in each iteration

In the last section, we showed how to minimize Eo and Ed separately. But, as men-

tioned in section 2.8.1, in order to produce a final result, we have to alternate between

minimizing each one at a time. Such alternation is detailed in this section, where we also

show the intermediate results produced by each iteration.

This process is necessary to to straighten the lines marked by the user with no specified

orientation (the green ones in figure 2.32).

Figure 2.32: Alternating between minimizing Eo and Ed straighten the general orientation

lines.

The initial iteration consists in minimizing

Ed = w2
cEc + w2

sEs + w2
l

∑
l∈Lf

Elo + w2
l

∑
l∈L\Lf

Eld = ‖Adx‖2,

where Ad is defined in section 2.8.1.

As explained in section 2.5.1, in this initial iteration we define the coefficients sij

(which are necessary to define Eld) as the arc length between r(Λij) and r(Λstart) in the

viewing sphere. Since this choice may be imprecise in terms of expected final result, we

set a lower value for wl in this iteration: wl = 10. The other weights are ws = 0.05 and

wc = 0.4.

68



The minimization process explained in last section produces x̂ ∈ R2(m+1)(n+1) that

contains the positions (uij, vij) where each vertex Λij of the viewing sphere is mapped to.

In other words, (uij, vij) = u(Λij), i = 0, 1, . . . ,m, j = 0, 1, . . . , n.

Since E is multiplicative (E(Kx) = KE(x),∀K > 0), what matters is the direction of

x̂ and not its norm. We chose each iteration to return a unitary vector. Thus we return

x =
x̂

‖x̂‖
.

From this vector x we produce a function defined on the entire sphere (or on the

specified field of view S ⊆ S2) that is a bilinear interpolation of both uij’s and vij’s

values. This process is detailed in section A.2.3.

Now that we have a continuous function defined in the equirectangular domain, we

just map the texture in the equirectangular image according to such function.

The result for this initial iteration is shown in figure 2.33. This partial result and

the other ones shown in this section were produced with 62,000 vertices and field of view

180/180.

Figure 2.33: The initial result is not very good because the initialization of the sij’s is

imprecise. For this result, the value of the energy is E = Ed = 0.0832.

From the vector x returned by the initial iteration, we compute the normal vectors n

for each line as described in section 2.5 and minimize

Eo = w2
cEc + w2

sEs + w2
l

∑
l∈Lf

Elo + w2
l

∑
l∈L\Lf

Elo = ‖Aox‖2.

For this iteration and all following iterations we always use wc = 0.4, ws = 0.05 and

wl = 1000. The only iteration that used different weights was the initial one.

69



After obtaining x̂ from the optimization, we again normalize and obtain x =
x̂

‖x̂‖
.

From this new solution vector, we calculate the projections sij as described in section

2.5 and minimize

Ed = w2
cEc + w2

sEs + w2
l

∑
l∈Lf

Elo + w2
l

∑
l∈L\Lf

Eld = ‖Adx‖2,

where wc = 0.4, ws = 0.05 and wl = 1000.

Again, we normalize the solution of the optimization x̂ and obtain x =
x̂

‖x̂‖
.

This process of first minimizing Eo and then minimizing Eo we call a double iteration.

The results for the first, second and third double iterations are shown in figures 2.34,

2.35 and 2.36, respectively.

Figure 2.34: Left: The minimizer of Eo. Energy value Eo = 0.0740. Right: The minimizer

of Ed. Energy value Ed = 0.0531.

As can be seen, minimizing Eo produces perceptually better intermediate results.

Thus, we chose to use as final iteration the minimization of just Eo. Figure 2.37 shows

the final result for this example.

The number of double iterations needed to obtain convergence varies from case to

case, but usually three double iterations are enough.

The weights wc, ws and wl were empirically determined. The main criterion used was

to set parameters such that the results were very similar to the ones obtained in Carroll et

al. ([1]). We tried to use the same parameters presented in that article (wc = 1, ws = 12,

wl = 1000) but they did not work well in our case. One explanation for that is that the

70



Figure 2.35: Left: The minimizer of Eo. Energy value Eo = 0.0609. Right: The minimizer

of Ed. Energy value Ed = 0.0518.

Figure 2.36: Left: The minimizer of Eo. Energy value Eo = 0.0609. Right: The minimizer

of Ed. Energy value Ed = 0.0518.

71



Figure 2.37: Result for the final iteration. Comparing with figure 2.36 (left) we see that

the visual convergence was already reached. Energy value Eo = 0.0609.

authors do not consider the terms ∆λ and ∆φ used to discretize the partial derivatives

in energies Es and Ec. This choice can become a problem if ∆λ 6= ∆φ, thus we decided

to use such terms to have more general discretized partial derivatives.

Other explanation for this difference of weights is that the authors of [1] do not pro-

vide implementation details of their system. Thus, slight differences with respect to our

implementation may exist.

But the most important thing about the weights we chose is that all results in this

thesis were generated with a fixed set of weights : wc = 0.4, ws = 0.05 and wl = 1000.

72



Chapter 3

Results

This chapter is devoted to show and explain many results produced by the method

described in this chapter and in the previous one. All results were produced using the

application software explained in Appendix A.

We first show four examples for which we consider the method was successful. We

compare each one to the three standard projections presented in section 1.3 and to the

perspereographic and recti-perspective projections, presented in section 1.4. For both

these projections, we chose parameters such that the result was the best possible.

We give the following information about each example:

• Field of View: The field of view S ⊆ S2 chosen by the user to be projected. It is

always a rectangular subset of the equirectangular domain.

• Number of vertices: The number of vertices used to discretize S ⊆ S2, according to

the discretization explained in section 2.3.

• Number of double iterations: Number of double iterations necessary to reach visual

convergence, as explained in section 2.8.4.

• Final energy: Energy obtained after the final iteration (section 2.8.4).

• Time to construct the matrices: Time necessary to construct the matrices C and

S (sections 2.4 and 2.6) in a Intel Core 2 Quad Q8400 2.66 Ghz, using Matlab Version

7.6.0.324 (R2008a). All times in this section were obtained in the same computer.

• Time to perform the optimizations: Time required to perform all the iterations

detailed in section 2.8.4.

• Time to generate the final result: After a final solution x is obtained, we turn it

into an image, using bilinear interpolation. Details are given in section A.2.

In addition, for each example, we make specific comments emphasizing what properties

the example illustrates. We also show an example comparing the result of this method

with the result produced by [7], method that was explained in section 1.5.3.

To finish this chapter, we show some results produced by the method that are not as

desired. For each example, we explain why the result showed an unpleasant behavior. We

also provide a qualitative discussion about the results.

73



3.1 Result 1

• Source image: “Britomart in 360”, by Flickr user Craigsydnz;

• Field of view: 220 degree longitude/ 140 degree latitude;

• Number of vertices: 58,479 vertices;

• Number of double iterations: 4;

• Final energy: Eo = 9.9924 · 10−5;

• Time to construct the matrices: 4 seconds;

• Time to perform the optimizations: 58 seconds;

• Time to generate the final result: 10 seconds.

Input image and marked lines

74



Standard projections: perspective, stereographic and Mercator

75



Modified standard projections: perspereographic (for K = 0.5) and recti-

perspective (α = 2.5, β = 0.9)

Result of the method (uncropped)

76



Result of the method (cropped)

• Comments for this example: The method took about one minute long to produce

the result, which is average for the method. As expected, the step that took longer was

the optimizations and alternations between energies.

All the marked lines are straight, according to the orientation specified by the user: for

example the side buildings are all vertical and the front building is horizontal. In addition,

all the shapes are well preserved: no stretching is evident. All these properties make the

result produced by the method better than all standard and modified projections.

One problem of the final result is the highly detailed floor. Since the user did not

mark any straight lines on it, it looked curved in the final result. This will be a common

problem: the user usually does not mark lines on the ground and, if she does, it will take

too long to mark all the lines.

77



3.2 Result 2

• Source image: “Saint-Guénolé Church of Batz-Surmer Equirectangular 360o”, by

Flickr user Vincent Montibus;

• Field of view: 210 degree longitude/ 140 degree latitude;

• Number of vertices: 55,970 vertices;

• Number of double iterations: 6;

• Final energy: Eo = 4.9531 · 10−5;

• Time to construct the matrices: 17 seconds;

• Time to perform the optimizations: 124 seconds;

• Time to generate the final result: 10 seconds.

Input image and marked lines

78



Standard projections: perspective, stereographic and Mercator

79



Modified standard projections: perspereographic (for K = 0.6) and recti-

perspective (α = 2, β = 0.6)

Result of the method (uncropped)

80



Result of the method (cropped)

• Comments for this example: This example illustrates that, even if many lines are

marked on the input image, the method returns a good result. Sixty-nine lines were

marked and covered a good part of the field of view that would be projected, and this

fact was well handled.

Because of the quantity of green lines, more double iterations were needed to reach

visual convergence. Thus, the method took longer than two minutes to obtain visual

convergence.

81



3.3 Result 3

• Source image: “La Caverne Aux Livre”, by Flickr user Gadl;

• Field of view: 150 degree longitude/ 140 degree latitude;

• Number of vertices: 39,758 vertices;

• Number of double iterations: 3;

• Final energy: Eo = 2.8807 · 10−4;

• Time to construct the matrices: 4 seconds;

• Time to perform the optimizations: 38 seconds;

• Time to generate the final result: 4 seconds.

Input image and marked lines

82



Detected faces

Standard projections: perspective, stereographic and Mercator

83



Modified standard projections: perspereographic (for K = 0.4) and recti-

perspective (α = 1.7, β = 0.8)

Result of the method (uncropped)

84



Result of the method (cropped)

• Comments for this example: This example shows that the face detection process

works well. All the frontal faces were detected by the method that will be explained in

section B.1.

The face detection helped to preserve the shapes of the faces of the man in the center

and of the woman in the left of the result. Their faces would be more stretched without

the face detection, since many lines are passing near them.

85



3.4 Result 4

• Source image: “Entrée du Parc Floral de Paris”, by Flickr user Gadl;

• Field of view: 360 degree longitude/ 180 degree latitude;

• Number of vertices: 78,804 vertices;

• Number of double iterations: 3;

• Final energy: Eo = 0.0553;

• Time to construct the matrices: 3 seconds;

• Time to perform the optimizations: 51 seconds;

• Time to generate the final result: 14 seconds.

Input image and marked lines

86



Standard projections: perspective, stereographic and Mercator

87



Modified standard projections: perspereographic (for K = 1) and recti-perspective

(α = 50, β = 0.7)

Result of the method (uncropped)

88



Result of the method (cropped)

• Comments for this example: This example shows that the method is applicable for

wide fields of view, even the entire viewing sphere. The standard and modified projections

have the problem of not being defined for such FOVs or infinity stretching. For example,

the Mercator projection for this example was obtained by projecting a subset of the

viewing sphere, actually 160 degree latitude, since the projection stretches to infinity

when φ→ ±π
2
.

The possibility of projecting the entire viewing sphere allows the construction of a

viewer of panoramas based on the method approached on this thesis. The method would

return the solution vector x and the user would specify what FOV of the sphere she wants

to see. Thus, the viewer would collect only the positions of the vertices of the chosen FOV,

construct an image and display on the screen. Some topological problems could appear,

since the borders of the final result are irregular. There would not be the possibility of

looking all around the viewing sphere, for example.

89



3.5 Result 5

• Source image: “Posters”, by Flickr user Simon S.;

• Field of view: 180 degree longitude/ 100 degree latitude;

• Number of vertices: 44,431 vertices;

• Number of double iterations: 3;

• Final energy: Eo = 4.0658 · 10−5;

• Time to construct the matrices: 4 seconds;

• Time to perform the optimizations: 43 seconds;

• Time to generate the final result: 4 seconds.

Input image and marked lines

90



Result of the method described in [7] (cropped)

Result of the method described in this thesis (cropped)

• Comments for this example: The method in [7] breaks the lines on the ceiling. This

is not a problem for the method described in this thesis, as can be seen above.

91



3.6 Failure cases

The first failure case we show is when a scene is covered by multiple parallel lines that

cover near 180o. An example of such scene is shown in figure 3.1, where long horizontal

lines are present in the scene. Straightening such lines unavoidably causes distortions in

the region that is between them. In figure 3.2 we show the final result where the train is

distorted.

Figure 3.1: A scene with two horizontal lines covering near 180o of the equirectangular

image. Source image: “Express Shirasagi”, by Flickr user Vitroid.

Figure 3.2: Final result. Observe how the train is distorted.

92



Another failure case happens when the user forgets to mark important lines in the

scene and/or forgets to specify some important orientation. We show in figure 3.3 the

same example shown in result 5, but with other lines marked. As can be seen in figure

3.4 the result produced by the method is very undesirable.

Figure 3.3: The same example as in result 5, but with other lines specified.

Figure 3.4: Final undesirable result.

The method shows to be user dependent in some situations. It requires precision of

the user to specify lines. The semiautomatic detection of lines described in section B.2

may help the user in this task.

93



3.7 Result Discussion

The results shown in the last section prove the precision of the method studied in this

thesis. In all the cases where the user marked correctly the important lines in the scene,

the method returned a perceptually great result.

In this section, we finish the discussion about the results presenting some properties

that all of them share.

The first one is that the projection is very uniform far from the lines. We plot in figure

3.5 results 2 and 3 together with a base mesh (which is not the same mesh used to obtain

the result, it is a coarser one).

Figure 3.5: The projection is more distorted near the line segments.

Another property that all the results share is that the final result never has null energy.

Since we want a mapping with as least distortions as possible, mappings with null energy

would be the ideal ones.

Such behavior has a clear explanation: the smoothness, conformality and line constraints

can not be satisfied at the same time. We show, in particular, that the smoothness and

conformality energy can not be null at the same time in the continuous context.

Remember from section 2.4 that a mapping u : S2 → R2 is conformal if

∂u

∂φ
= − 1

cosφ

∂v

∂λ
,
∂v

∂φ
=

1

cosφ

∂u

∂λ
,

and, from section 2.6, u is smooth if

∂2u

∂φ2
= 0,

∂2v

∂φ2
= 0,

∂2u

∂φ∂λ
= 0,

∂2v

∂φ∂λ
= 0.

The following statement shows that the only mapping that satisfy the above six equa-

tions are the constant mappings:

94



Statement 3.1 u : S2 → R2 is conformal and smooth ⇔ u(λ, φ) = (u0, v0), ∀(λ, φ).

Proof: (⇐) Constant mappings have all derivatives equal to zero and the above six

equations are trivially verified.

(⇒) We use the above six equations to obtain expressions for u and v:

• ∂2u

∂φ∂λ
= 0⇒ ∂u

∂φ
= F1(φ)⇒ u =

∫
F1(φ)dφ+ F2(λ), for some functions F1 and F2.

• ∂
2u

∂φ2
= 0 ⇒ ∂2

∂φ2

[∫
F1(φ)dφ+ F2(λ)

]
= 0 ⇒ ∂

∂φ

[
∂

∂φ

∫
F1(φ)dφ+

∂

∂φ
F2(λ)

]
= 0 ⇒

F ′1(φ) = 0⇒ F1(φ) = K1 ⇒ u =

∫
K1dφ+F2(λ)⇒ u = K1φ+F2(λ), for some constant

K1. Thus, we have the following expression for u:

u = K1φ+ F2(λ).

Analogously, using the equations
∂2v

∂φ2
= 0 and

∂2v

∂φ∂λ
, one obtains the following expression

for v:

v = K2φ+ F4(λ),

for some constant K2 and some function F4.

Now, considering the Cauchy-Riemann equations, we have:

• ∂u
∂φ

= −∂v
∂λ

1

cosφ
⇒ K1 = −F

′
4(λ)

cosφ
⇒ K1 cosφ = −F ′4(λ). Since cos(φ) only depends

on φ and −F ′4(λ) depends only on λ, the last equation implies K1 = F ′4(λ) = 0. Hence,

K1 = 0, F4 = K3 and u = F2(λ) and v = K2φ+K3, for some constant K3.

• ∂v
∂φ

=
∂u

∂λ

1

cosφ
⇒ K2 =

F ′2(λ)

cosφ
⇒ F ′2(λ) = K2 cos(φ) ⇒ K2 = 0, F2 = K4, for some

constant K4.

Thus, u = K4 and v = K3, which proves that u = (u, v) is a constant mapping.

�

We have proved that the only mappings that are smooth and conformal in the conti-

nuous case are the constant ones. We extend this result for the discrete case assuming

that the discretization is fine enough such that the result holds.

Since our optimization method returns a nonconstant solution (which is a desirable

property), we conclude that such solution must have nonzero energy, since the total energy

ia a sum of conformality, smoothness and line energies.

To finish the discussion about the results, we argue about the time of computation

of them. We used Matlab implementations that will be discussed in A.2.3 to compute

the results. Despite of being very practical, Matlab tends to be slower than using Linear

Algebra Routines in C or C++. A future work would be to convert our implementation

to C++.

But even in the Matlab context, we think the result could be produced faster. It

is taking longer than desired to alternate between energies, i.e., to compute the normal

95



vectors n and the projections sij as described in section 2.8.4. Also, in order to produce

the final result with bilinear interpolation, it is taking longer than expected and we think

this procedure could be improved. We leave these both tasks to future work.

Despite of these procedures that have to be improved, we think that about one minute

to produce the results is a satisfactory time.

96



Chapter 4

Panoramic Videos

In this chapter we study the problem of producing perceptually good panoramic videos.

A panoramic video is a video where each frame is a panoramic image. In order to produce

these videos, we join the theory developed in previous chapters to novel ideas that model

temporal coherence in wide-angle videos.

It is important to emphasize that this chapter is the beginning of a research that

probably will last some years. In this chapter, we model the panoramic video problem,

discuss cases and desirable properties, suggest a solution for one of the cases and point

directions to solve the other cases.

As far as we know, the problem that we address in this chapter was not solved yet.

Previous works as [17], [18], [19] and [20] produce from a temporally variable viewing

sphere (which we call in this chapter temporal viewing sphere) a video in which each

frame has a narrow FOV, for immersion purposes.

The work that has closest goals to the ones we have is [21]. They produce a video with

wide-angle frames from a set of common photographs, by transferring textures between

frames in a coherent way. Our method takes as input a temporal viewing sphere that

represents much better an entire scene, since it is not limited to some field of view. Also,

we consider geometric distortions in wide-angle videos, which are not considered in [21].

Furthermore, their method is very restricted to scenes with particular structures. We

develop a more general method.

4.1 Overview

We start the study of the panoramic video problem by separating it in three cases.

This separation is done in section 4.2 and considers if viewpoint, field of view and objects

are stationary or moving through time.

In section 4.3 we discuss perceptual properties that we believe to be the most important

in wide-angle videos. Our discussion is not based on any perceptual study, it takes into

account only intuitive ideas.

97



Sections 4.4 and 4.5 are devoted to model the general case, through the mathematical

definition of temporal viewing sphere, panoramic videos and transition functions.

In section 4.6 we suggest a solution for the first case of panoramic videos, when the

viewpoint and the FOV are stationary and there are moving objects in the scene. Some

first results are shown.

We finish the chapter by briefly discussing solutions for the other cases and making

some concluding remarks.

4.2 The three cases

We separate the panoramic video in three categories, according to the movement of

the viewpoint (VP), the field of view and the objects in the scene. The general case is a

combination of theses three cases. This separation was done because we think it is easier

to solve first simpler cases in order to get the general solution. We list below the three

cases:

• Case 1 - Stationary VP, stationary FOV and moving objects: In this case,

the viewpoint and the field of view (the rectangle [α1, α2] × [β1, β2] ⊆ [−π, π] × [−π
2
, π

2
])

that will be projected do not change across time. Only objects are moving. For this

case, it is expected that the background is always the same and the objects move in a

temporally coherent way. This coherence will be explained further.

• Case 2 - Stationary VP, moving FOV and stationary objects: In this case,

the viewpoint and all the scene are stationary. The only thing that is different through

time is the rectangle [α1, α2]× [β1, β2]. This case may be seen as panoramic visualizer of

scenes, where one could navigate through a scene with panoramic views of it.

• Case 3 - Moving VP: This case is the most difficult, since everything in the scene is

changing through time, even still objects. The separation between scene and objects is

harder in this case and so is the modeling of temporal coherence.

Table 4.1 illustrates the separation we just did.

4.3 Desirable Properties

We divide the requirements for a perceptually good panoramic video in two categories:

per frame requirements and temporal requirements.

98



Stationary VP

Stationary objects Moving objects

Stationary FOV Trivial case Case 1

Moving FOV Case 2 Cases 1 + 2

Moving VP

Case 3

Table 4.1: Separation of the panoramic video problem.

The per frame requirements are the properties that each frame must satisfy, inde-

pendent of the other frames. We propose the following two requirements:

1) Each frame must be a good panoramic image: Undesirable distortions in indivi-

dual frames would be noticeable in videos, especially if these distortions were transported

to other frames using temporal coherence. A state-of-the-art method for computing pa-

noramic images turns out to be necessary, and we use the method discussed in chapters

2 and 3.

2) Moving objects must be well preserved: The regions of a video to which one most

pay attention when watching are the moving objects. Thus, conformality and smoothness

should be increased in such regions, when there are moving objects in the scene.

The temporal requirements impose that objects and scene change in a temporally

coherent manner. Thus, they are requirement to be satisfied by the frames depending on

other frames. We make two temporal requirements:

3) Temporal coherence of the scene: This is an imposition made for all points that

are being projected. It depends on the movement of the viewpoint. For example, if the

VP and the FOV are stationary, the background should be the same through time.

4) Temporal coherence of the objects: This imposition is made over moving object

regions. It tells us that size and orientation of objects should only change if such properties

change in the temporal viewing sphere. For example, if an object becomes twice larger

from on time to another on the temporal viewing sphere, it should be twice larger from

one frame to another in the panoramic video. An important observation is that the object

should not have the same size and orientation through all panoramic video. If an object

is moving away from the viewpoint its size should not be preserved, it should be smaller

from one time to another. That is the reason why me model this property depending on

the temporal viewing sphere.

The mathematical modeling of requirements 3 and 4 is made with definition of tran-

sition functions, definition that will be stated in section 4.5.

99



4.4 The Temporal Viewing Sphere and Problem Sta-

tement

In this section, we mathematically define the concept of temporal viewing sphere.

Temporal viewing spheres will be the input for our methods and contains the information

of a scene that varies through time. We also state the panoramic video problem. All

this section is an immediate extension of the definitions we gave for the panoramic image

problem.

Let [0, t0] be a time interval and consider the function

R : [−π, π]×
[
−π

2
, π

2

]
× [0, t0] → R4

(λ, φ, t) 7→ (cos(λ) cos(φ), sin(λ) cos(φ), sin(φ), t)

We call the image of R the temporal viewing sphere. It is just a set of viewing spheres

with one more coordinate (t) that tells which time they are representing. We denote the

temporal viewing sphere by TS2. We give in figure 4.1 an illustration of the concept we

have just defined:

Figure 4.1: An illustration of the temporal viewing sphere. The variation of the fourth

coordinate is represented by the variation of position of the center of each sphere.

We represent the temporal viewing sphere by its corresponding equirectangular video.

For each t ∈ [0, t0] we associate a frame in the equirectangular video containing the

equirectangular image for this time. Thus, the equirectangular video is just a set of

equirectangular images representing the set [−π, π]×
[
−π

2
, π

2

]
× {t}, for each t ∈ [0, t0].

There are some special devices that capture equirectangular videos. The one we used

was Ladybug2. For more information about this and other cameras, one can see [9].

In figures 4.2 and 4.3 we show some frames of the equirectangular video we captured

using this camera.

With the definition of temporal viewing sphere, we now can state the panoramic video

problem. We look for a function

U : S ⊆ TS2 → R3

(λ, φ, t) 7→ (U(λ, φ, t), V (λ, φ, t), t)
,

with desirable properties.

100



Figure 4.2: First frame of the video we use in this chapter. The camera we used does not

capture the lower part of the entire field of view, i.e., the points with latitude near to −π
2
.

Figure 4.3: Last frame of the video we use in this chapter.

We now consider tangent vectors in TS2 and in U(TS2). Let p = (λ, φ, t) ∈ (−π, π)×
(−π

2
, π

2
)× (0, t0). A tangent basis for TpTS2 is:

• Rλ =
∂R

∂λ
(λ, φ, t) = (− sin(λ) cos(φ), cos(λ) cos(φ), 0, 0)T ;

• Rφ =
∂R

∂φ
(λ, φ, t) = (− cos(λ) sin(φ), sin(λ) sin(φ), 0, 0)T ;

• Rt =
∂R

∂t
(λ, φ, t) = (0, 0, 0, 1)T .

The basis above is already orthogonal, but Rλ is not unitary. An orthonormal tangent

basis for TpTS2 is:

R̂λ =
1

cosφ
, R̂φ = Rφ and R̂t = Rt.

Given a panoramic video function U, its derivative dUp written in the basis {Rλ,Rφ,Rt}

101



is represented by the following matrix:

(dUp){Rλ,Rφ,Rt} =


∂U
∂λ

(λ, φ, t) ∂U
∂φ

(λ, φ, t) ∂U
∂t

(λ, φ, t)
∂V
∂λ

(λ, φ, t) ∂V
∂φ

(λ, φ, t) ∂V
∂t

(λ, φ, t)
∂t
∂λ

(λ, φ, t) ∂t
∂φ

(λ, φ, t) ∂t
∂t

(λ, φ, t)

 =


∂U
∂λ

∂U
∂φ

∂U
∂t

∂V
∂λ

∂V
∂φ

∂V
∂t

0 0 1

 .

We define the differential north, east and time vectors (respectively H, K and T) as

the image of dUp in the vectors R̂φ, R̂λ and R̂t:

H = dUp(R̂φ) = (dUp){Rλ,Rφ,Rt}


0

1

0

⇒ H(λ, φ, t) =


∂U

∂φ
(λ, φ, t)

∂V

∂φ
(λ, φ, t)

0

 ,

K = dUp(R̂λ) = (dUp){Rλ,Rφ,Rt}


1

cosφ

0

0

⇒ K(λ, φ, t) =
1

cosφ


∂U

∂λ
(λ, φ, t)

∂V

∂λ
(λ, φ, t)

0

 ,

T = dUp(R̂t) = (dUp){Rλ,Rφ,Rt}


0

0

1

⇒ T(λ, φ, t) =


∂U

∂t
(λ, φ, t)

∂V

∂t
(λ, φ, t)

1

 .

The three vectors we just defined tell the variation of the projection U considering all

coordinates λ, φ and t. We illustrate in figure 4.4 the panoramic video projection U and

the tangent vectors in TpTS2 and in U(TS2).

4.5 Transition Functions

In order to model temporal coherence, we define transition functions between points

in different times on the temporal viewing sphere.

In other words, given t1, t2 ∈ [0, t0], a a transition function between t1 and t2 is given

by

ϕt1,t2 : S2 × {t1} → S2 × {t2}
(λ, φ, t1) 7→ (λt1,t2(λ, φ, t1), φt1,t2(λ, φ, t1), t2)

.

We illustrate the transition function concept in figure 4.5.

We make some comments on the definition above:

• A transition function defined on time t1 may not be defined in the entire S2 × t1. The

definition above may be extended to subsets S × t1 ⊆ S2 × t1.

• Given (λ, φ, t0), if for all t ∈ [0, t0] there is a transition function ϕt0,t defined on (λ, φ, t0),

the set {ϕt0,t(λ, φ, t0)}t∈[0,t0] is the orbit of (λ, φ, t0). Other dynamical properties could be

derived from the definition of transition functions but they are not important now.

102



Figure 4.4: Projection U, tangent basis of the temporal viewing sphere and tangent basis

of the final panoramic video.

Figure 4.5: Transition function from time t1 to time t2.

• The transition functions consider occlusions: if a point (λ, φ, t) of an object is occluded

in time t+ ∆t then ϕt,t+∆t is not defined at (λ, φ, t).

We consider two kinds of transition functions: the scene transition function (denoted

by ϕsct1,t2) and the object transition functions (denoted by ϕobt1,t2).

ϕsct1,t2 is defined in the entire S2×{t1} and model the temporal coherence of all points

that are being projected. It must depend on the movement of the viewpoint. For example,

if the VP is stationary, we have

ϕsct1,t2(λ, φ, t1) = (λ, φ, t2), ∀(λ, φ, t1) ∈ S2 × {t1},

since all points in S2 × {t1} are stationary (except for the moving objects).

103



ϕobt1,t2 is defined only in object regions and tells the correspondence of points of an

object between different times. For example, if an object is translated by (λ0, φ0) in the

equirectangular domain, the transition function for it will be

ϕobt1,t2(λ, φ, t1) = (λ+ λ0, φ+ φ0, t2), ∀(λ, φ, t1) ∈ object at time t1.

4.6 Case 1 - Stationary VP, Stationary FOV and Mo-

ving Objects

In this section, we propose a solution for the 1st case of panoramic videos. This

solution is strongly based on the solution we studied for images: we derive equations for

temporal coherence, discretize the domain, obtain energy terms for the temporal coherence

equations and compute a panoramic video using an optimization framework.

We simplify this case by assuming there is only one moving object in the scene, but

our solution is easily extendable for n objects. Since the FOV is stationary, the part of the

temporal viewing sphere that will be projected is a cube of the form [α1, α2]× [β1, β2]×
[0, t0].

4.6.1 Temporal Coherence Equations

In this section, we obtain partial differential equations that model temporal coherence

for case 1 of panoramic videos. We obtain these equations for the object in the scene

(using the transition functions ϕobt1,t2) and extend them for the entire scene, using the

transition functions ϕobt1,t2 .

Let S×{t1} ⊆ S2×{t1} be the moving object in the scene at time t1 and assume ϕobt1,t2
to be defined in S × {t1}. Let (λ1, φ1, t1) ∈ S × {t1} and (λ2, φ2, t2) = ϕt1,t2(λ1, φ1, t1).

The perceptual requirement that we make (property 4 in section 4.3) is that the object

changes size and orientation according to such changes in the temporal viewing sphere.

Consider a ball of radius ε > 0 around (λ1, φ1, t1) in S × {t1} and assume, with no loss

of generality, that B((λ1, φ1, t1), ε) is projected on a ball with radius δ > 0 in U(TS2):

U(B((λ1, φ1, t1), ε)) = B(U(λ1, φ1, t1), δ). We illustrate what was just said in figure 4.6.

Figure 4.6: For our analysis, we suppose a ball in the domain is projected on a ball on

the final panoramic video.

Suppose, for example, that ϕt1,t2 scales B((λ1, φ1, t1), ε) twice and changes its position

104



(from (λ1, φ1, t1) to (λ2, φ2, t2)). We illustrate this transformation in both tangent planes

T(λ1,φ1,t1)TS2 and T(λ2,φ2,t2)TS2 in figure 4.7.

Figure 4.7: The action of the transition function for this example: it doubles the ball and

changes its position.

Observe that ϕt1,t2 only transforms textures from one viewing sphere to another, it

does not change the geometry of any of the spheres.

In order to transport the scaling for the final panoramic video we have to preserve the

tangent vectors H and K and the change of texture between the equirectangular domains

will cause the expected result. Figure 4.8 shows what we just explained.

Figure 4.8: The ball in the panoramic video will be doubled from one time to another if

H(ϕt1,t2(λ, φ, t1)) = H(λ, φ, t1) and K(ϕt1,t2(λ, φ, t1)) = K(λ, φ, t1).

The construction we just did holds for any transition function. Thus we obtain the

following temporal coherence equations for object movement:{
H(ϕobt1,t2(λ, φ, t1)) = H(λ, φ, t1)

K(ϕobt1,t2(λ, φ, t1)) = K(λ, φ, t1)
.

Assuming conformality for each time (H(λ, φ, t) = R90K(λ, φ, t)), we use only the equation

involving the differential north vector, the first one.

105



If ϕobt1,t2(λ, φ, t1) = (λobt1,t2(λ, φ, t1), φobt1,t2(λ, φ, t1), t2), the equation can be rewritten as
∂U

∂φ
(λobt1,t2(λ, φ, t1), φobt1,t2(λ, φ, t1), t2) =

∂U

∂φ
(λ, φ, t1)

∂V

∂φ
(λobt1,t2(λ, φ, t1), φobt1,t2(λ, φ, t1), t2) =

∂V

∂φ
(λ, φ, t1)

,

∀(λ, φ, t1) ∈ Sobt1 × {t1}, ∀t1, t2 ∈ [0, t0], where Sobt1 × {t1} is the region that the object

occupies at time t1 in the equirectangular domain. These are the temporal coherence

equations for moving objects in the scene.

An analogous development lead to temporal coherence equations for the entire scene:
∂U

∂φ
(λsct1,t2(λ, φ, t1), φsct1,t2(λ, φ, t1), t2) =

∂U

∂φ
(λ, φ, t1)

∂V

∂φ
(λsct1,t2(λ, φ, t1), φsct1,t2(λ, φ, t1), t2) =

∂V

∂φ
(λ, φ, t1)

,

∀(λ, φ, t1) ∈ Ssct1 ×{t1}, ∀t1, t2 ∈ [0, t0], where Ssct1 ×{t1} is the set of all points in the scene

at time t1 that will be projected.

In the particular case we are considering (case 1), λsct1,t2(λ, φ, t1) = λ and φsct1,t2(λ, φ, t1) =

φ, since the viewpoint is stationary. Thus, in this case, the equations are the following:
∂U

∂φ
(λ, φ, t2) =

∂U

∂φ
(λ, φ, t1)

∂V

∂φ
(λ, φ, t2) =

∂V

∂φ
(λ, φ, t1)

,

∀(λ, φ, t1) ∈ [α1, α2]× [β1, β2]× {t1}, ∀t1, t2 ∈ [0, t0].

4.6.2 Discretization of the temporal viewing sphere

In this section, we discretize the temporal viewing sphere in an analogous manner

we did to discretize the viewing sphere (section 2.3). We discretize the entire temporal

viewing sphere S2 × [0, t0] = TS2, but all the development is analogous if we use a cube

of the form [α1, α2]× [β1, β2]× [0, t0], which is the domain of projection for case 1.

We stated the panoramic video problem as the one of finding a function

U : TS2 → R3

(λ, φ, t) 7→ (U(λ, φ, t), V (λ, φ, t), t)
.

We replace this continuous problem by finding U on a discrete mesh ((Λijk) = (λj, φi, tk)),

where

λj = −π + j
2π

n
, j = 0, . . . , n,

φi = −π
2

+ i
π

m
, i = 0, . . . ,m,

tk = 0 + k
t0
l
, k = 0, . . . , l.

The parameters m and n can be chosen (as we did for panoramic images) and the para-

meter l is the number of frames in the input equirectangular video.

The values of U at Λijk will be denoted by

Uijk = (Uijk, Vijk, tk), j = 0, . . . , n, i = 0, . . . ,m, k = 0, . . . , l.

106



4.6.3 Total energy, minimization and results

In this section, we produce a panoramic video using all the theory developed in this

chapter.

We use as input equirectangular video the video shown in figures 4.2 and 4.3 with 16

frames. We mark the lines for the first frame. Since the viewpoint is stationary, they do

not move across time, so it is enough to mark them only in the first frame. The marked

lines are shown in figure 4.9.

Figure 4.9: Marked lines for the example video.

The first step is to obtain an optimal panoramic image for the first frame. Since the

background is stationary, we use the orientations of lines obtained from this frame to use

in all frames in the video. This avoids the alternation between minimizing Eld and Elo

which may be a computational time problem for videos.

We now introduce some notation. The solution vector X will be composed by solution

vectors for each frame with the notation of last chapters. For example, the first entries of

X will correspond to entries of the solution of frame k = 0, using the order of the previous

chapters:

X =
(
U000 V000 · · · Umn0 Vmn0 · · · · · · U00l V00l · · · Umnl Vmnl

)T
.

We also construct a vector Y which is the stereographic mapping y for each instant:

Y =


y
...

y

 .

We start to determine a panoramic video by satisfying the first desirable property:

each frame should be a good panoramic image. The sum of (image) energies for each

107



frame can be written in matrix form as

E =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Ao

. . .

Ao





U000

...

Vmn0

...

U00l

...

Vmnl



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

.

We minimize this energy in the same way we did for images:

X = (ATA+ εI)−1(εY).

The solution, as it is expected, is always the same projection, the only thing that

changes is the texture that is being projected. This solution leads to temporal incoherence

for the objects in the scene. In figures 4.10 and 4.11, we see that the man walking starts

with an orientation and finishes with another, which is undesirable since this behavior

does not happen in the input video.

Figure 4.10: 8th frame for the video produced using only image energies. The man has a

well defined vertical orientation in this frame. FOV: 180 longitude/120 latitude.

To correct this problem, we use the temporal coherence equations for the object. Doing

that, we also satisfy desirable property 4. Rewriting the equations, we have:
∂U

∂φ
(λobt1,t2(λ, φ, t1), φobt1,t2(λ, φ, t1), t2)− ∂U

∂φ
(λ, φ, t1) = 0

∂V

∂φ
(λobt1,t2(λ, φ, t1), φobt1,t2(λ, φ, t1), t2)− ∂V

∂φ
(λ, φ, t1) = 0

,

108



Figure 4.11: 16th frame for the video produced using only image energies. Due to the

lines near the man, he is very curved in this frame. This fact demonstrates temporal

incoherence, since he remains vertical in the input video.

∀(λ, φ, t1) ∈ Sobt1 × {t1}, ∀t1, t2 ∈ [0, t0]. In the discretized version of the equations, we

only use the transition functions from one frame to the next, i.e., we take t1 = tk and

t2 = tk+1.

We denote (λobt1,t2(λ, φ, t1), φobt1,t2(λ, φ, t1)) by (jk,k+1(i,j,k), ik,k+1(i,j,k)). We always map

vertices to vertices on the discretization. If that does not happen, we map to the closest

vertex. The discretization of the equations is:
Uik,k+1(i,j,k)+1,jk,k+1(i,j,k),k+1 − Uik,k+1(i,j,k),jk,k+1(i,j,k),k+1

∆φ
−
(
Ui+1,j,k − Uijk

∆φ

)
= 0

Vik,k+1(i,j,k)+1,jk,k+1(i,j,k),k+1 − Vik,k+1(i,j,k),jk,k+1(i,j,k),k+1

∆φ
−
(
Vi+1,j,k − Vijk

∆φ

)
= 0

,

∀(λj, φi, tk) ∈ Sobtk × {tk}.
We use the last equations to formulate the object temporal coherence energy:

Eob =
l−1∑
k=0

∑
(i,j)∈Sobtk

cos2(φi)

(
Uik,k+1(i,j,k)+1,jk,k+1(i,j,k),k+1 − Uik,k+1(i,j,k),jk,k+1(i,j,k),k+1 − Ui+1,j,k + Uijk

∆φ

)2

+
l−1∑
k=0

∑
(i,j)∈Sobtk

cos2(φi)

(
Vik,k+1(i,j,k)+1,jk,k+1(i,j,k),k+1 − Vik,k+1(i,j,k),jk,k+1(i,j,k),k+1 − Vi+1,j,k + Vijk

∆φ

)2

It is not difficult to rewrite Eob in the matrix form Eob = ‖OBX‖2, but we do not

detail this part here. We join this new energy to the previous one and obtain

E = ‖AX‖2 ,

109



where

A =



Ao

. . .

Ao

wobOB


.

wob is a weight that controls the strength of this new energy. Using wob = 4 in our

example corrects the problem of too much orientation change in the object. We show the

new result in figures 4.12 and 4.13.

Figure 4.12: 8th frame for the video produced using image energies and object energy.

Now the scene starts to change in order to preserve shape and orientation of the object.

Thus, it becomes necessary to impose temporal coherence for the scene, which was stated

as desirable property 3 in section 4.3.

We rewrite the temporal coherence equations for this case:
∂U

∂φ
(λ, φ, t2)− ∂U

∂φ
(λ, φ, t1) = 0

∂V

∂φ
(λ, φ, t2)− ∂V

∂φ
(λ, φ, t1) = 0

,

∀(λ, φ, t1) ∈ [α1, α2] × [β1, β2] × {t1}, ∀t1, t2 ∈ [0, t0]. Using the discretization of the

temporal viewing sphere and only transitions between tk and tk+1, we obtain the following

110



Figure 4.13: 16th frame for the video produced using image energies and object energy.

Comparing to figure 4.11 the man is less curved, as expected. Now other problem arises:

the projection for the entire scene changes too much to satisfy object constrains. One

can observe, for example, that the borders of the projection from 8th frame to 16th frame

change.

discretized equations:
Ui+1,j,k+1 − Ui,j,k+1

∆φ
−
(
Ui+1,j,k − Ui,j,k

∆φ

)
= 0

Vi+1,j,k+1 − Vi,j,k+1

∆φ
−
(
Vi+1,j,k − Vi,j,k

∆φ

)
= 0

,

i = 0, . . . ,m − 1, j = 0, . . . , n, k = 0, . . . , l − 1. The above equations lead to the scene

temporal coherence energy :

Esc =
m−1∑
i=0

n∑
j=0

l−1∑
k=0

cos2(φi)

(
Ui+1,j,k+1 − Ui,j,k+1 − Ui+1,j,k + Uijk

∆φ

)2

+
m−1∑
i=0

n∑
j=0

l−1∑
k=0

cos2(φi)

(
Vi+1,j,k+1 − Vi,j,k+1 − Vi+1,j,k + Vijk

∆φ

)2
.

We rewrite Esc in matrix form Esc = ‖SCX‖2. The new total energy is

E = ‖AX‖2 ,

111



where

A =



Ao

. . .

Ao

wobOB

wscSC



.

We set wsc = 12 and corrected the problem of the background “shaking” to preserve

the object. We show some frames of the new result in figures 4.14 and 4.15.

Figure 4.14: 8th frame for the video produced using image, object and scene energies.

We observe now that the object regions lose conformality and smoothness due to the

extra constrains imposed on them. For example, see figure 4.15.

In order to correct this problem (and also to satisfy desirable property 2) we increase

conformality and smoothness in object regions using spatially-temporally-varying weights.

For each time tk, the image weights (wi,j in section 2.7) will be replaced by

wi,j,k = 2wLi,j + 2wSi,j + 4wFi,j + 1 + wobi,j,k = wi,j + wobi,j,k.

The weights wobi,j,k are defined in the following way: Let (λc, φc, tk) be the center of the

object and σk the radius of the object at time tk. We define

wobi,j,k = e
−
‖(λj,φi,tk)−(λj,φi,tk)‖2

2σ2
k ,

112



Figure 4.15: 16th frame for the video produced using image, object and scene energies.

a gaussian centered at (λc, φc, tk) with radius σk and height 1. Since we have only one

object, we do not need to sum over all objects to determine the final weights.

To plug this weight into our energy, we have to change the matrices C and S in Ao,

leading to different matrices A
(k)
o for different times. The new matrix will be

A =



A0
o

. . .

Alo

wobOB

wscSC



.

The effect of these new weights is shown in figure 4.16.

We make available all partial results (with and without energies and weights) that we

discussed in this section in [22].

4.6.4 Implementation Details

All results in last section were generated using a discretization of the temporal viewing

sphere of 60,000 vertices, 3,705 vertices per frame. The time to compute the final video

was about 8 minutes. The part of the method that is the most time consuming is solving

113



Figure 4.16: 16th frame for the video produced using image, object and scene energies

and object weights. The man is less stretched if compared to 4.15.

the final linear system

(ATA+ εI)X = εY.

We did a very simple implementation to determine the transition functions for the

object in the scene. For each frame, we drew a box around the object. We identified the

box as the object and assumed it to have same size for all frames, thus the transition

functions were only translations. We show in figure 4.17 a frame illustrating what was

just said.

Figure 4.17: For each frame, a box around the object was drawn.

114



4.6.5 Other Solutions

In this section, we discuss other possible solutions for case 1.

One other solution, which is actually an extension to the one we proposed is to in-

volve more precise object extraction and transition functions. Since the background is

stationary, background subtraction could be used to this end. Also, the way we modeled

object constrains introduce many constrain discontinuities in the equirectangular video.

A way of making such constrains smoother becomes necessary.

Other possible solution is to solve separately the projection for the background and

foreground and combine them after. This separation would lead to two simpler problems.

The final combination could be achieved by combining the projections or composting the

resulting images. Some problems like incoherence between background and foreground

could appear. Also, interactions between background and foreground would be difficult

to model.

We intend to implement these different solution soon and compare them to the one

we proposed in this thesis.

4.7 Case 2 - Stationary VP, Moving FOV and Sta-

tionary Objects

We propose in this section a solution for case 2. For each time t ∈ [0, t0], we project

the set [α
(t)
1 , α

(t)
2 ] × [β

(t)
1 , β

(t)
2 ] × {t} = S(t) × {t}, i.e., the FOV that will be projected

depends on time.

This case may be seen as a viewer of panoramas where each view is a panoramic image.

4.7.1 Temporal Coherence Equations

For case 2, we do not have moving objects in the scene. Thus, there is no transition

function ϕobt1,t2 .

Since all the scene is stationary on the temporal viewing sphere, the transition function

for the scene is

ϕt1,t2 : S(t1) ∩ S(t2) × {t1} → S(t1) ∩ S(t2) × {t2}
(λ, φ, t1) 7→ (λ, φ, t2)

.

Again, imposing the preservation of the differential north vector, we obtain the scene

temporal coherence equations for this case:
∂U

∂φ
(λ, φ, t2) =

∂U

∂φ
(λ, φ, t1)

∂V

∂φ
(λ, φ, t2) =

∂V

∂φ
(λ, φ, t1)

,

∀(λ, φ, t1) ∈ S(t1) ∩ S(t2) × {t1}, ∀t1, t2 ∈ [0, t0].

115



4.7.2 A solution

A naive solution for case 2 would be, for each tk in the discretization of the tempo-

ral viewing sphere, to obtain the optimal panoramic image for projecting [α
(tk)
1 , α

(tk)
2 ] ×

[β
(tk)
1 , β

(tk)
2 ] × {tk}. As the FOV moves, marked lines in the scene come in and out the

FOV, what leads to different constrains from one time to another and leads to problems of

size and orientation in the scene. An example of temporally incoherent video constructed

in this way is available in [22].

Another solution, which considers temporal coherence, would be to discretize the scene

temporal coherence equations, obtain an energy term and compute a panoramic video by

optimizing an energy that joins panoramic image energies and this new term, just as we

did for case 1. Due to time constrains, we have not implemented this solution and we

leave it to future work.

We propose a simpler solution for case 1. We obtain an optimal panoramic image for

a FOV that contains all FOVs [α
(tk)
1 , α

(tk)
2 ]× [β

(tk)
1 , β

(tk)
2 ]. We take

S =
l⋃

k=0

[α
(tk)
1 , α

(tk)
2 ]× [β

(tk)
1 , β

(tk)
2 ]

we calculate the optimal panoramic image function

u : S → R2

(λ, φ) 7→ (u(λ, φ), v(λ, φ))

and, for each tk we define

U : [α
(tk)
1 , α

(tk)
2 ]× [β

(tk)
1 , β

(tk)
2 ]× {tk} → R3

(λ, φ, tk) 7→ (u(λ, φ), v(λ, φ), tk)
,

i.e., each frame of the panoramic video will be the region of the panoramic image corres-

ponding to the FOV that is being projected.

It is not difficult to see that this construction satisfies the temporal coherence equa-

tions: since the projections are the same for different times, the derivatives will also be

the same. The final video is not an optimal panoramic video because each frame of the

video may not be an optimal panoramic image for the FOV that is being projected (it is

optimal only for S).

We make available in [22] an example of panoramic video constructed in the way we

just explained. This example may be compared to the temporally incoherent solution.

We think the optimization framework would lead to similar results, and this compari-

son is also left to future work.

4.8 Concluding Remarks

As we mentioned in the beginning of this chapter, what we developed here was just

first step in our research on panoramic videos. But even here we could see how important

116



temporal aspects are in modeling panoramic videos.

We left aside in this chapter case 3 of panoramic videos. This case is the most difficult

one, since all the scene is moving, not only moving objects. Separation between moving

objects and scene is less trivial, and also it will be more difficult to model the transition

functions. Maybe a way of modeling them is with the help of perspective projections,

since the geometry of such projections is well understood. For narrow fields of view, the

perspective projection could be used to determine transition functions on neighborhoods

of points and also determine if the point is a part of a moving object.

Many things in this chapter were pointed as future work. We make a summary of

future work related to panoramic videos in the conclusion of this thesis.

117



Appendix A

Application Software

This chapter intends to complement the theory developed in chapters 2 and 3, through

the exposition of an application that implements everything that was discussed in such

chapters and is user friendly. We provide a manual of how to use such application and

give implementation details.

In section A.1, we show our application working. It consists in two windows where

the user interacts, and a processing step performed in Matlab that computes the final

panoramic based on the information passed by the user into the two windows. We also

explain how to use the program, thus the reader of this thesis can try it and produce her

own results.

Section A.2 is devoted to explain how the application was implemented. Although

we do not show many source codes, the details we consider most essential for the overall

process will be provided. We assume the reader is familiarized to programming in C/C++

and Matlab languages for a complete understanding of this section.

A.1 Application and user’s manual

We developed a software application that implements all the theory of chapters 2 and

3 but isolates it from the user, i.e., even people who do not know the theoretical details

of the method can use the application.

We made a video of our interface working, which can be found in the home page of this

thesis ([22]). For a better understanding of what will be explained here we recommend

the reader to download such video and watch it together with the explanation.

The reader that is interested on having our application can contact us through the

e-mail that is also in [22]. The application will be sent as a compressed folder containing

the binary files corresponding to compiled programs in C++ and Matlab programs (.m

files).

To run our program, the system must have installed Matlab and OpenCV and FLTK

libraries.

118



The input is an equirectangular image in the PPM format. It is recommended that it

has a good resolution, 4000 by 2000 pixels for example. It will be more clear further why

we make this requirement. The input image for our example is shown in figure A.1.

Figure A.1: Source image: “Musée du Louvre”, by Flickr user Gadl.

On the terminal the user goes to the directory corresponding to the application (we

named it as panorama). There she just types

./run.sh images/test_image

In this example, the input image must be in the directory ‘images ’ with the name

‘test image.ppm’.

This command will open window 1, which is shown in figure A.2.

Figure A.2: Window 1 loads the input image and allows the user to mark lines on it.

This window corresponds to the user interface explained in section 2.2, where the user

mark the lines that she expects to be straight in the final result. Clicking on the two

119



endpoints of the line will plot the corresponding curve in black. Then the user types ‘v’,

‘h’ or ‘g’ to specify if the line should be vertical, horizontal or with general orientation on

the final result. After marking such lines, window 1 is as shown in figure A.3.

Figure A.3: Window 1 after the process of marking lines.

Clicking on “go to next window” button takes the user to window 2, which is shown

in figure A.4.

Figure A.4: Window 2 shows and allows to specify the field of view that is going to be

projected.

This second window was not done in [1], it is a new feature from our implementation.

It allows the user to choose the field of view that is going to be projected, the number of

vertices for the discretization of the viewing sphere and the number of double iterations.

The buttons “alpha 1 -”, “alpha 1 +”, “alpha 2 -”, “alpha 2 +”, “beta 1 -”, “beta 1

+”, “beta 2 -” and “beta 2 +” allows the user to choose the FOV [α1, α2] × [β1, β2] ⊆

120



[−π, π] × [−π
2
, π

2
] that is going to be projected. When the user clicks these buttons, the

image changes in order to show the FOV in the rectangle determined by the four green

lines.

If the buttons “iterations -”, “iterations +” or “vertices -”, “vertices +” are clicked,

the user sees in the command line the number of iterations or number of vertices that she

is specifying (figure A.5).

Figure A.5: The user sees the number of vertices she is specifying, for example.

When the user clicks “go to optimization”, Matlab is run to perform the optimizations.

Each time that an iteration is finished, the user sees the energy value in the terminal, as

shown in figure A.6.

Figure A.6: The energy value is displayed at the end of each iteration.

After the optimization, the result is saved as “result.ppm” in the folder of the applica-

tion (panorama, in our case). The result for the example in this section is shown in figure

A.7.

121



Figure A.7: The final result obtained for this example. Field of view: 220 degree longi-

tude/ 90 degree latitude.

A.2 Implementation Details

This section is devoted to explain how we developed the application presented in the

last section. We try not to get too deep into all details, but show the most essential ones

for the understanding of our implementation.

Figure A.8 shows the structure of our application software.

Figure A.8: Structure of our application software.

We developed a shell script to perform all these steps in an integrated way. When

the user runs the script, it seems that is only one program running, but actually all the

steps described in figure A.8 are performed each one at a time. This script is run by the

command ‘./run.sh’, as explained in the previous section.

In this section, we explain implementation details of windows 1 and 2 and Matlab

processing, which is the most important module, since it implements most of the theory

explained in chapters 2 and 3.

Face detection module is detailed in the next section. We placed it in a different

section to emphasize the face detection process in equirectangular images, which is a

method itself.

122



A.2.1 Window 1

Window 1 was implemented in C++ language, using FLTK (Fast Light Toolkit) API

(application programming interface). Window 1 was shown in figures A.2 and A.3. It

consists basically in a box that shows the marked equirectangular image and a close

button.

We developed a class Box that inherits the properties of the class Fl box. The dif-

ference of this new class is that it handles mouse click events and typing ‘h’, ‘v’ or ‘g’

events. When two points are clicked and one of the keys ‘h’, ‘v’ or ‘g’ are pressed, the

class calls a function named draw arc that draws the corresponding arc connecting these

two points. Finally, the image on the Box is reloaded.

The curve drawn is only useful for interaction purposes. The draw arc function also

saves in a text file the coordinates of the endpoints, an index for the line and the specified

orientation1.

After the process of marking lines is finished, the user clicks on the “close window”

button, which has a callback to close the window. Then another function is called to

separate the points in the generated text file into points corresponding to lines with

specified orientation and points corresponding to lines with general orientation. These

files are saved as L endpoints and L2 endpoints. Such files will be loaded by Matlab into

a matrix form.

We show below an example of an L endpoints file:

-0.80423999 -0.01256000 1 2

0.36442399 -0.01256000 1 2

0.19477800 0.18849500 2 1

0.19477800 -0.02513000 2 1

0.45867199 0.38327399 3 1

0.45867199 -0.01256000 3 1

0.76654798 0.30159199 4 1

0.78539801 -0.01256000 4 1

1.18752205 0.49637100 5 1

1.18123806 -0.02513000 5 1

1.69017601 0.33929199 6 1

1.68389297 -0.03769000 6 1

-0.54663002 0.18221200 7 1

-0.54035002 -0.01256000 7 1

-0.79795998 0.36442399 8 1

-0.77911001 -0.01256000 8 1

-1.15610003 0.31415901 9 1

-1.14981997 -0.03141000 9 1

11 stands for vertical lines, 2 for horizontal lines and three for general orientation lines.

123



-1.57079005 0.49637100 10 1

-1.55193996 -0.03141000 10 1

-1.99804997 0.33929199 11 1

-2.01061010 -0.03141000 11 1

A.2.2 Window 2

Window 2 was also developed with C++ language using FLTK API. Window 2 was

shown in figures A.4 and A.5. It consists in a box, some buttons that regulate the

parameters that will be passed to the optimization and a close button.

A class with the parameters for the optimization was developed. This class was named

alg parameters :

class alg_parameters{

public:

float alpha_1;

float alpha_2;

float beta_1;

float beta_2;

int iterations;

int factor;

char input_image[100];

char output_image[100];

int m;

char work_image_name[100];

public:

alg_parameters(char* input_image2, char* output_image2, int m2); //constructor

alg_parameters(); //empty constructor

void print();

};

alpha 1, alpha 2, beta 1, and beta 2 determine what field of view [α1, α2]× [β1, β2] ⊆
[−π, π] × [−π

2
, π

2
] will be projected. The buttons “alpha 1 -”, “alpha 1 +”, “alpha 2 -”,

“alpha 2 +”, “beta 1 -”, “beta 1 +”, “beta 2 -” and “beta 2 +” update these values and the

image inside the box is also updated. For this window, the box with the image only has

function of loading an updated image, whenever the parameters alpha 1, alpha 2, beta 1,

and beta 2 are updated.

The parameter iterations stands for the number of double iterations (section 3.3). The

buttons “iterations -”, “iterations +” update these values.

factor controls the number of vertices in the following way: if the size in the equirec-

tangular image of the field of view that will be projected is m× n pixels, the number of

124



vertices of the discretization of [α1, α2]× [β1, β2] will be m
factor

× n
factor

.

The output of this window is a text file containing the parameters alpha 1, alpha 2,

beta 1, beta 2, factor and iterations. The name of this file is matlab data.txt. We show

below an example of such file:

-1.9199 1.9199 -0.5236 1.0472 9 3

A.2.3 Matlab processing

This module consists in four submodules as illustrated in figure A.9.

Figure A.9: The steps performed in Matlab.

Next, we explain each of the submodules briefly.

• Loading data: Files L endpoints.txt, L2 endpoints.txt, matlab data.txt and face matrix.txt

are loaded using command load from Matlab. Each text archive is transformed in a matrix

with the same structure of the text file. For example, for matlab data.txt like below

-1.9199 1.9199 -0.5236 1.0472 9 3

the command returns the following matrix

matlab_data =

[-1.9199 1.9199 -0.5236 1.0472 9 3]

• Matrices construction: This step constructs the conformality and smoothness ma-

trices C and S (sections 2.4 and 2.6) and the stereographic mapping y, that will be used

to minimize Ẽ as explained in section 2.8.3.

At this point, it is important to construct the matrices having in mind their sparse

structure and how a sparse matrix is stored in Matlab. A naive way of constructing them

leads this step to take longer than the optimization. We fixed this problem but we do not

discuss it here.

• Optimization: This step starts by calculating the midpoint of each quad-line inter-

section (as described in section 2.5) and then obtaining the bilinear coefficients for each

virtual output vertex (section 2.5.2).

With these values, the matrix LO is constructed. Also, the matrix LDA for the initial

iteration is defined. Then the initial iteration (section 2.8.4) is performed using the code

below:

125



function f = all_energies_initial_forsyth_minimization_2(L,L2,

C,S,LO,LDinit,m2,n2,alpha_1,alpha_2,beta_1,beta_2,y)

A = [0.4*C;0.05*S;10*LO;10*LDinit];

epsilon = 10^(-6);

B = sparse(2*m2*n2,2*m2*n2);

B = A’*A;

for i=1:2*m2*n2

B(i,i) = B(i,i) + epsilon;

end

x = B\(epsilon*y);

f = x/norm(x);

To solve the linear system we used just the backslash tool (x = B\(epsilon ∗ y)) provided

by Matlab, that uses the proper numerical method to solve such linear system.

The next step is to perform the number of double iterations specified by the user in

Window 2 and the final iteration. The code is almost the same as the one used for the

initial iteration.

• Generation of the final result: As we already mentioned, our discretization of

[α1, α2]× [β1, β2] depends on the value factor returned by Window 2. This dependence is

illustrated in figure A.10.

Figure A.10: The portion of the equirectangular image corresponding to [α1, α2]× [β1, β2]

has 2 times more pixels (represented with dashed lines) than the number of vertices of

the discretization of [α1, α2] × [β1, β2] (represented with solid lines). For this example,

factor = 2.

As mentioned before, we do not have any control on the positions that the solution x

of the optimization will return. Let

umin = min
i,j

uij, umax = max
i,j

uij, vmin = min
i,j

vij, vmax = max
i,j

vij.

126



We map all values (uij, vij) to (ũij, ṽij) such that (ũij, ṽij) ∈ [0, ratio ∗ res] × [0, res],

according to the following transformation:

ũij =
uij − umin
umax − umin

∗ ratio ∗ res, ṽij =
vij − vmin
vmax − vmin

∗ res,

where ratio =
umax − umin
vmax − vmin

and res is a specified parameter that determines the height

of the result image.

Each pixel on the equirectangular image (for example, pixel P in figure A.10) has

known surrounding vertices on the discretization of [α1, α2]× [β1, β2] and known bilinear

coefficients, say

P = aijΛij + ai+1,jΛi+1,j + ai,j+1Λi,j+1 + ai+1,j+1Λi+1,j+1,

aij + ai+1,j + ai,j+1 + ai+1,j+1 = 1. We simply define that P is mapped to (ũ(P ), ṽ(P )) on

the final image, where

ũ(P ) = aijũij + ai+1,j ˜ui+1,j + ai,j+1 ˜ui,j+1 + ai+1,j+1 ˜ui+1,j+1,

ṽ(P ) = aij ṽij + ai+1,j ˜vi+1,j + ai,j+1 ˜vi,j+1 + ai+1,j+1 ˜vi+1,j+1.

Thus, the final image is just a bilinear interpolation the positions of the vertices on the

discretization of the viewing sphere.

A problem in this approach is that if the final image has a higher resolution than the

input image, holes on the final image may appear. A more appropriate approach would be

to use inverted bilinear interpolation (section 2.5.2). We leave this alternative as future

work, and assume that the relation between input and output image is such that the

output image has no holes.

• Saving image: If the result is stored in the matrix variable result, we use the command

imwrite(result, ’result.ppm’, ’PPM’)

to save it as result.ppm.

127



Appendix B

Feature Detection in

Equirectangular Images

In this appendix, we explain the methods we have used to detect faces and lines in

equirectangular images. For these both detections, we adapt standard Computer Vision

techniques for the equirectangular image context. Such techniques will also be detailed.

In section B.1, we expose in details the method we used to detect faces, which is used

to define the face detection weights we mentioned in section 2.7. We apply the standard

face detector ([16]) by Viola et al. on the Mercator projection (section 1.3.3) of the

equirectangular image. Implementation details of this process are also provided.

Section B.2 shows the method we propose to semiautomatically detect lines on equi-

rectangular images. This method will try to replace the task of the user of marking lines,

which is performed in window 1 of our application (section A.1). We apply the Hough

transform on perspective projections (section 1.3.1) of the equirectangular image to de-

tect lines. It turns out that the results obtained by doing only that are not satisfactory

and preprocessing steps will be necessary. We also show implementation details for this

method and a final panoramic image produced when one uses such detection of lines,

instead of marking them on the equirectangular image.

B.1 Automatic Face Detection in Equirectangular

Images

In this section we explain how we find the weight field wFij exposed in section 2.7,

that depends on the localization of faces on the equirectangular image. In a more general

context, we show a method for face detection in equirectangular images.

Beyond our motivation of using such detection for correcting shape distortion in face

regions on panoramic images, there are other motivations for the face detection problem.

For more information, we recommend the presentation available in [23].

We start by explaining the main details of the standard face detector by Viola and

128



Jones ([16]), which is the key ingredient for our method. Then we show how we joined

this detector to other steps to produce a method that automatically detects faces in

equirectangular images. It is important to mention that this method was already proposed

very briefly in [1] and this section intends to give more details about it.

Next, we show some results and finish explaining how we compute the weight field wFi,j

based on the faces detected by the method.

B.1.1 Robust Real-time Face Detection

In this section we explain [16], which is one of the main methods to detect faces in

images known in the Computer Vision literature. It is applicable to detect frontal faces.

We do not intend to expose technical details about implementation, time of detection and

comparisons with previous methods. We focus only on explaining the main ideas of the

method. For details, we recommend the user to read [16].

The method is based in three key ingredients, which are the three main contributions

of [16]:

• Integral image: use an integral graph for fast feature evaluation.

• Feature selection: select important features, using a learning method;

• Focus of attention: focus on potential sub-windows of the image. These sub-windows

are selected by a cascade of classifiers.

We assume that the detection is going to be performed in a gray scale image with

equalized histogram.

The features that are going to be used to detect faces are the rectangular features,

which are illustrated in figure B.1

Figure B.1: The sum of pixels that lie within white rectangles are subtracted from the

sum of pixels in the gray rectangles.

Observe that the set of rectangular features is over complete: for the base resolution1

1The detector is constructed assuming such base resolution. The detection is performed by scaling

129



of the detector that is 24× 24 pixels there are 160,000 different rectangular features.

The main advantage of the rectangular features is that they are easy to evaluate using

the integral image model. The integral image at pixel (x, y) is given by

ii(x, y) =
∑

x′6x,y′6y

i(x′, y′),

where i is the original image. The value of the integral image is illustrated in figure B.2.

Figure B.2: Value of the integral image at (x, y).

The integral image can be calculated for the entire image in just one pass. In fact,

using the cumulative sum in row x,

s(x, y) = s(x, y − 1) + i(x, y),

we have the relation

ii(x, y) = ii(x− 1, y) + s(x, y)

and this relation permits that the integral image is evaluated in just one pass. Here we

assume s(x,−1) = 0 and ii(−1, y) = 0.

Now it is easy to evaluate a sum inside a rectangle. For example, in figure B.3, the

sum within D is easy to obtain using the values of the integral image.

Figure B.3: The sum within D can be computed as 4 + 1− 2− 3.

the obtained detector in different resolutions. More details in [16].

130



With the rectangular features, we can start defining the classifiers. A weak classifier

is a function h(x, f, p, θ) which depends on a feature f , a threshold θ and a polarity p:

h(x, f, p, θ) =

{
1 , if pf(x) < pθ

0 , otherwise,

where x is a 24× 24 sub-window of the image.

Now it is necessary to choose which classifiers characterize better face features. This

selection is done using a training process based on face and non-face examples (some

face examples used for training are shown in figure B.4) as described below. After such

classifiers are chosen, a strong classifier is constructed. This process is explained below.

Figure B.4: Example of frontal upright face images used for training.

Adaboost - Inicialization

• Given examples (x1, y1), . . . , (xn, yn), where yi = 0; 1 for negative and positive examples.

• Initialize weights w1,i = 1
2m
, 1

2l
, for yi = 0, 1 respectively where m and l are the number

of negatives and positives.

Adaboost - Loop: for t = 1, . . . , T :2

• Normalize weights: wt,i ←
wt,i∑n
j=1wt,j

;

• Select the weak classifier that minimizes

εt = min
f,p,θ

∑
i

wt,i|h(xi, f, p, θ)− yi|.

Obs. 1: εt ∈ [0, 1].

Obs. 2: There is a way of efficiently minimize εt, described in [16];

2T stands for the number of weak classifiers that will compose the strong classifier. It is a chosen

parameter.

131



• Define

ht(x) = h(x, ft, pt, θt),

where ft, pt, θt are the minimizers of εt;

• Update the weights:

wt+1,i = wt,iβ
1−ei
t ,

where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and βt =
εt

1− εt
.

Obs.: This update means that if the error εt is low, the examples that were classified

correctly will be less considered for the next weak classifier selection.

Adaboost - Final strong classifier

• After the T weak classifiers are chosen, the final strong classifier is defined as:

C(x) =


1 , if

T∑
t=1

αtht(x) >
1

2

T∑
t=1

αt

0 , otherwise

,

where αt = log 1
βt

.

Obs.: If the error εt is low, αt is higher.

To illustrate the learning process, we show in figure B.5 the features associated to the

first two weak classifiers selected by the method.

Figure B.5: The first two features: The first one measures the difference in intensity

between the region of the eyes and a region across the upper cheeks. The feature capitalizes

on the observation that the eye region is often darker than the cheeks. The second feature

compares the intensities in the eye regions to the intensity across the bridge of the nose.

It turns out that a 200-feature strong classifier is fast, the results are good but not

enough for many real tasks. Adding more features increases too much the computational

time. The solution for this problem is to develop a attentional cascade classifier, that we

explain briefly below:

132



• Simpler strong classifiers are used in the first stages of the cascade to reject non-face

windows, leaving just a few windows to be evaluated by the more complicated strong

classifiers in next stages.

• The illustration of this process is shown in figure B.6.

Figure B.6: The windows that are rejected by the simpler classifiers are no longer evalua-

ted, leaving to the more complicated classifier a reduced number of windows to evaluate.

• The training process to obtain a good cascade classifier is based on detection and

performance goals. We do not explain this process here, for more details see [16].

The most computationally expensive part of this method is the training process. But

once training is completed, the detector is ready to be applied to any image and the

detection time is very fast. The discussion about time of training and detection can be

found in [16].

Another important point to emphasize is that this the training and detection processes

are applicable for detection of other kinds of objects, not only faces.

B.1.2 Method and Implementation

In this section, we show and explain each step of our method for detecting faces in

equirectangular images. The method starts by projecting the equirectangular image using

the Mercator projection (section 1.3.3) and obtaining its corresponding Mercator image.

Next, the face detection process explained in previous section is applied to the Mercator

image and the coordinates of the detected faces are mapped back to the equirectangular

domain.

We also show implementation details of some steps. We used the OpenCV library

([24]) and C++ language to implement this method.

Step 1: Obtain the Mercator Image

This step is necessary because the faces in the input equirectangular image may be too

133



distorted due to the longitude/latitude parametrization distortions. Beyond, the Mer-

cator projection preserves the vertical orientation of the faces that are vertical in the

equirectangular domain. Also, the Mercator projection is conformal, i.e., it will preserve

well the shape of the faces. These two observations make the face detector explained in

the previous section applicable for the Mercator image.

Step 2: Process the Mercator image

Obtain its corresponding gray scale image and equalize its histogram. We show below the

code that performs this 2 steps:

cvCvtColor( mercator_image, gray, CV_BGR2GRAY );

cvResize( gray, img2, CV_INTER_LINEAR );

cvEqualizeHist( img2, img2 );

The processed image is saved as img2.

Step 3: Detect faces on the Mercator image

This step is performed using OpenCV’s function cvHaarDetectObjects :

CvSeq* cvHaarDetectObjects(

const CvArr* image,

CvHaarClassifierCascade* cascade,

CvMemStorage* storage,

double scale_factor,

int min_neighbors,

int flags,

CvSize min_size

);

This function implements a variation of the method explained in section B.1.1. It includes

diagonal features to the rectangular ones, but the rest of the process is identical to what

we explained.

• image stands for the input image, the Mercator image in our case.

• cascade stands for a cascade classifier: OpenCV makes available classifiers for front face

detection. The command

CvHaarClassifierCascade *cascade = (CvHaarClassifierCascade*)cvLoad( "C:/Program

Files/OpenCV/data/haarcascades/haarcascade_frontalface_alt.xml",NULL,NULL,NULL);

loads such a classifier, for example.

• storage is a memory space where the detected faces will be stored.

• scale factor is the jump between resolutions where the detector will look for faces. For

134



example, we used scale factor = 1.05, which means that each scale is 5% larger than the

previous scale.

• min neighbors stands for the number of neighbor windows that has to be detected to a

window be reported as a face. This parameter uses the observation that usually when a

window is detected as a face, some other windows near it will be reported as a face too.

Thus the parameter prevents that false face results happen. We used min neighbors = 4.

• min size is the minimum size of window where the detector looks for faces. We used

1× 1 pixel window as minimum.

Step 4: Loop on detected faces

For each detected face:

• Map the coordinates of its center and corners (in the Mercator image) back to the

equirectangular domain;

• Draw a rectangle around the face on the equirectangular domain;

• Write in a text file (the file face matrix.txt mentioned in section A.2) the (λ, φ) coordi-

nates of the center of the face and σ = radius
3

, where radius is the radius of the face on

the Mercator domain. Example and details about this file we give in section B.1.4.

We made the source code of the method available in [23].

B.1.3 Results

We show in this section some result images (figures B.7, B.8 and B.9) of the method

described in last section.

Figure B.7: 4 faces correctly detected, 1 missing and 1 false detection. Source image:

“Sziget 2008: Solving a maze”, by Flickr user Aldo.

135



Figure B.8: 7 faces correctly detected, 1 missing and 2 false detections. Source image:

“eppoi3”, by Flickr user pop?.

The detection in figure B.9 was already used in a result shown in chapter 3. We discuss

more this example in next section, where we illustrate how to obtain the weights wFij (face

weights introduced in section 2.7).

Figure B.9: 6 faces correctly detected and 1 false detection.

B.1.4 Weight Field

We show below the output file (face matrix.txt) for the result shown in figure B.9:

1.8316 0.1564 0.0237

-0.8419 -0.0408 0.0259

0.8734 0.1502 0.0244

2.3374 0.0816 0.0259

-0.0346 0.1035 0.0326

136



-1.7247 -0.1502 0.0467

1.1058 -0.3801 0.0541

Each line corresponds to a detected face, say fk. The first two numbers are the coordi-

nates (λk, φk) of the center of the face in the equirectangular image and the last number,

say σk, corresponds to one third of the radius of the face in the Mercator projection.

For each (λij, φij) in the discretization of [α1, α2]× [β1, β2] we define

w
(k)
ij = e

−
‖M(λij ,φij)−M(λk,φk)‖2

2σ2
k ,

where M is the Mercator projection. To define the face weights wFij we just sum the

weights over all faces:

wFij =
∑

fk face

w
(k)
ij .

B.2 Semiautomatic Line Detection in Equirectangu-

lar Images

As we saw in Appendix A, the task for marking lines in equirectangular images may

be quite long, depending on the scene. Also, straight lines in the world are curved in the

image, and identify which arcs correspond to lines in the world may be difficult in some

cases. For these reasons, we propose in this section a method to semiautomatically detect

lines in equirectangular images. This detection can substitute or abbreviate the task of

marking lines performed by the user in window 1 (section A.2.1).

The detection is semiautomatic because it depends on parameters. This set of para-

meters may vary from case to case and we did not find a good fixed set. Such parameters

are detailed in the end of this section.

We start this section by explaining the Hough transform, the bilateral filter and a pro-

cess that we called eigenvalue processing. These three topics will not be explained in the

equirectangular image context because such operations will be performed in perspective

images.

Next, we detail our method that is based on obtaining six different perspective pro-

jections from the equirectangular image and searching for lines in each of them.

To finish, we show some results of our method and panoramic images that one would

obtain if used the detected lines instead of marking them in window 1. We also make

some concluding remarks.

B.2.1 The Hough Transform

In this section we show a standard technique for detecting lines in images, named

Hough transform. The example image that we will use in this and in next two sections is

shown in figure B.10.

137



Figure B.10: Example image: a perspective projection taken from an equirectangular

image.

The Hough transform is applied to a binary image. We apply the Canny filter to the

previous image and obtain the edge image shown in figure B.11.

Figure B.11: Binary image obtained with Canny edge detector.

The function cvCanny in OpenCV implements Canny edge detector. Its syntax is the

following:

void cvCanny(const CvArr* img,CvArr* edges,double lowThresh,

double highThresh,int apertureSize = 3)

138



For theoretical details about the detector and information about the parameters of the

above function, we recommend [24] (pages 151 to 153). We do not explain here which

parameters we used to obtain the result in figure B.11.

To find straight lines in the image, we analyze each white point (x0, y0) in the binary

image. Passing through (x0, y0) there are infinite lines of the form

y0 = ax0 + b.

Thus, there is an infinity of pairs (a, b) corresponding to lines passing through (x0, y0).

Each pair (a, b) receives a vote and the most voted pairs correspond to the lines with

more points in the image. It turns out that this representation is not convenient for

implementation purposes since a and b are in the range [−∞,+∞]. For this reason, each

line passing through (x0, y0) is written in polar coordinates

ρ = x0 cos θ + y0 sin θ

and represented by (ρ, θ). The set of all (ρ, θ) representing lines passing through (x0, y0)

form a sinusoidal curve in the (ρ, θ) plane (called Hough plane) as illustrated in figure

B.12. figure B.11.

Figure B.12: 4 lines passing through (x0, y0) are shown in b). Each one of these lines are

represented by a point (ρ, θ) in the Hough plane (c). All possible lines through (x0, y0)

form a sinusoidal curve in the Hough plane. Figure taken from [24].

The most voted pairs (ρ, θ) represent lines with more points in the edge image and

are elected as lines.

OpenCV implements this process through the function cvHoughLines2 :

CvSeq* cvHoughLines2(CvArr* image, void* line storage, int method, double rho,

double theta, int threshold, double param1 = 0, double param2 = 0);

For details about the parameters, we refer to [24] (pages 156 to 158). We used for method

the value CV HOUGH PROBABILISTIC, which returns lines with endpoints, a very

139



convenient feature for our application. We do not discuss what values we used for the

other parameters here.

In figure B.13, we show the detected lines for our example.

Figure B.13: The detected lines are shown in green.

As one can see, many nonexisting lines were detected. This happened because, in

highly textured regions, as the ground between the rails, the edge detector detected many

points that voted too much for nonexisting lines in such regions. A naive solution would

be to change the parameters of the edge detector to detect less lines, but this would cause

in missing many lines. In next sections, we present methods that try to alleviate such

problem.

B.2.2 Bilateral Filter

Our first attempt to remove undesirable texture from an image was to use bilateral

filtering. Simple blurring would handle this task but would also blur lines and the edge

detector would not detect them.

The bilateral filter only blurs pixels on the image that have similar neighbors because

it considers the difference of colors between pixels: this is appropriate to remove textures

that do not have great disparity of colors and preserves the most important edges.

More formally, for some pixel p, the filtered result is:

[BF (I)]p =
1

kp

∑
q∈Ω

IqGσs(‖ p− q ‖)Gσr(‖ Ip − Iq ‖),

where Gσs is a gaussian filter centered on p with deviation σs and Gσr is a gaussian filter

centered on Ip with deviation σr, kp is a normalizing factor, the sum of the Gσs ·Gσr filter

weights and Ω is the spatial support of Gσs .

140



OpenCV has the following function:

cvSmooth(const CvArr* src, CvArr* dst, int smoothtype=CV_GAUSSIAN,

int param1=3, int param2=0, double param3=0, double param4=0).

The parameters mean the following:

• src, dst : Source and destiny images;

• smoothtype: Set CV BILATERAL;

• param1=param2: Size of spatial support Ω (it has to be square);

• param3: Color sigma (σr);

• param4: Space sigma (σs);

For our example the result of bilateral filtering is shown in figure B.14:

Figure B.14: Bilateral filtering using σs = 15 and σr = 31.

A good way of removing more texture of the image is to reapply the bilateral filter.

We show in figure B.15 the result of applying bilateral filter six times on the example

image, with the same parameters (σs = 15 and σr = 31).

For the method proposed in section B.2.4, the number of applications of the filter is

always six. The parameters σs and σr are passed on the command line.

B.2.3 Eigenvalue Processing

After bilateral filtering, Canny edge detector is applied to the image. In some cases,

undesirable textures still remain (see figure B.16).

We applied a method suggested in [25]. It consists in spliting the binary images in

windows of the same size and perform a local analysis of the position of the points in each

window.

141



Figure B.15: Result applying six times the bilateral filter. Notice how almost all the

texture is gone and the important lines still remain.

Figure B.16: Result of the edge detector applied after bilateral filtering. Some textures

still remain and blurring more the image would blur too much the important lines.

If the points lie in the same direction, they possibly must belong to a line. Otherwise,

if the points are too spread in the cell, they must be discarded because they do not belong

to a line.

For each window, a covariance matrix is constructed:

A =

(
a b

b c

)
,

142



where

a =

n∑
i=1

(ui − u)2

n
,

b =

n∑
i=1

(ui − u)(vi − v)

n
,

c =

n∑
i=1

(vi − v)2

n
,

(u, v) =

n∑
i=1

(ui, vi)

n
,

where n is the number of white points in the window and ui and vi are the cartesian

coordinates of each white point.

The eigenvalues of A are:

λ1 =
a+ c+

√
(a− c)2 + 4b2

2
, and λ2 =

a+ c−
√

(a− c)2 + 4b2

2

It is clear that λ1 > λ2 and both are positive. If the ratio between λ1 and λ2 is too

large, the white points lie close to the direction of vλ1 , the eigenvector associated to λ1.

If λ1 and λ2 are too close then there is no predominant direction and the points are too

spread in the window.

These ideas give us a way of discarding points:

• Given a binary image, a window size and a threshold value τ ;

• For each window, if
λ1

λ2

< τ , discard all the white points of this window.

For the example in figure B.16, we obtain the result in figure B.17.

To implement this step we programmed a function named eig preprocess :

IplImage* eig_preprocess(IplImage* grayscale, float tau, int window_size)

B.2.4 The Method

In this section we explain how we integrate the techniques exposed up to here to detect

straight lines in equirectangular images. We explain the steps of the method and illustrate

them with an example. We used OpenCV library and C++ language to implement this

method.

• Input: An equirectangular image that represents a scene (figure B.18).

• Step 1: Obtain six perspective projections from the equirectangular images centered on

six different points (section 1.4.1). The choice for perspective projections is quite obvious:

143



Figure B.17: Result obtained with window size = 5 and τ = 1.5. The eigenvalue proces-

sing helps to eliminate some textures.

Figure B.18: Equirectangular input image: “Kasuza-Ushiku Station, Kominato Railway,

Chiba, Japan”, by Flickr user Soosuke.

since we want to detect straight lines in the real world, we have to look for straight lines

on an image where the lines are preserved. As we already know, the perspective projection

satisfies this requirement. The perspective images for our example are shown in figures

B.19, B.20 and B.21.

• Step 2: Filter each perspective image with the bilateral filter applied six times. This

step depends on two parameters of the bilateral filter and produces results as in figure

B.22 (showing just two of the six results).

144



Figure B.19: Perspective projections centered on (λ, φ) = (0, 0) and (λ, φ) = (π
2
, 0).

Figure B.20: Perspective projections centered on (λ, φ) = (π, 0) and (λ, φ) = (−π
2
, 0).

Figure B.21: Perspective projections centered on (λ, φ) = (0,−π
2
) and (λ, φ) = (0, π

2
).

• Step 3: Obtain the edges of the filtered images using Canny edge detector. This step

depends on a parameter to set the thresholds for the filter. The greater this parameter,

the smaller the number of detected edges. The results for this step are shown in figure

B.23.

145



Figure B.22: Results after applying bilateral filtering.

Figure B.23: Edge images obtained with Canny filter.

• Step 4: Process these edge images with eigenvalue processing. This step depends on

two parameters to discard points. The results for this step are shown in figure B.24.

Figure B.24: Results after applying eigenvalue processing.

• Step 5: Detect lines from the binary images obtained in step 4 using OpenCV’s Hough

146



Probabilistic Transform. Figure B.25 shows the results for this step.

Figure B.25: Detected lines are indicated in green.

• Step 6: For each line in each perspective image, obtain its endpoints, map them to the

original equirectangular image and plot the geodesic curve connecting these endpoints on

the equirectangular domain. The output is shown in figure B.26.

Figure B.26: Final result. 110 line segments detected.

Besides the final image, the method also produces two files L endpoints and L2 endpoints

(as in section A.2.1) with coordinates of the endpoints, orientation and index for each line.

As we mentioned before, our method depends on parameters, which are passed in

command line. Below we explain what each parameter means:

• argv[1] : Input equirectangular image;

147



• argv[2] : Output image;

• argv[3] : Parameter used by the filter Canny (step 3 described in the 1st section of

this report);

• argv[4] : σs (space sigma for bilateral filter). The greater this parameter, the smal-

ler the number of detected lines because the image is more blurred;

• argv[5] : σr (range sigma for bilateral filter). The greater this parameter is the stronger

the edge has to be to not be blurred, i.e., the greater this parameters the smaller the

number of detected lines too;

• argv[6] : Window size for eigenvalue processing. It decides the locality of the eigen-

value analysis;

• argv[7],argv[8],argv[9],argv[10],argv[11],argv[12] : τ value for eigenvalue processing for

the six different perspectives. Since all the steps are performed separated in each pers-

pective, the user may want to discard more points (and thus detect less lines in the final

result) in a different way for the different perspective images.

B.2.5 Results

Figures B.27, B.28 and B.29 show some more results obtained with our method.

Figure B.27: 161 line segments detected. Input image: “Kitahiroshima Station”, by Flickr

user Vitorid.

148



Figure B.28: 93 line segments detected. Input image: “Microsoft Vodafone Viaduct”, by

Flickr user Craigsydnz.

Figure B.29: 226 line segments detected. Input image: “Nagoya University”, by Flickr

user Vitorid.

In figure B.30 we show a final panoramic image produced using the lines returned by

our method, shown in figure B.26.

B.2.6 Concluding remarks

As can be seen in figures B.26, B.27, B.28 and B.29 many important lines were detected

by our method, but some other lines were missing. Another problem is that there are

regions (as the rails in figure B.26) where too many lines were detected, which leads to

too many constrains for our optimization. Other point to be mentioned is that, when the

149



Figure B.30: Panoramic image produced using lines shown in figure B.26. FOV: 140

degree longitude/160 degree latitude. Vertices: 31,000.

user marks lines, she has the possibility of marking lines that are not clearly represented

in the image as a horizon that she wants to be horizontal in final image.

All the reasons mentioned above show us that our detection should be integrated to

window 1, as a preprocessing step. The user could remove, include or extend the detected

lines, which is easier than looking for all possible lines and marking them. Also, the user

could control the parameters of our line detector in the interface, which is more intuitive.

We leave the integration of our line detector to the interface as future work.

150



Conclusion

Review

In this section, we review the main aspects of our work and reinforce which of them

are original contributions.

• Modeling of concepts related to the problem: We modeled some concepts that

are part of the physical world as mathematical entities. For example, field of view was

modeled as a part of a sphere, panoramic images as functions and so on.

• Bibliographic review: We provided a bibliographic review of the panoramic image

problem, giving details of the main references on this topic and discussing pros and cons

of each approach. We also obtained conclusions on perceptual properties that are desired

in panoramic images, such as conformality and preservation of straight lines. This review

can be seen as a small contribution of our work.

• Deep and conclusive analysis of [1]: We discussed this reference in a formal and

detailed way, making our work a good complement for it. For example, the perturbed

optimization, which we called linear system method, was mentioned very briefly and no

details were provided in [1]. In our work, we wrote explicitly the perturbed energy Ẽ

and proved some statements in order to obtain its minimizer. Other example is how

to turn the quadratic energies into matrix form and what matrices are obtained in this

process. The discussion of the results was richer in our work and we could conclude that

the method is applicable for a good variety of scenes. All this analysis is one of the main

contributions of our work.

• Development of the application software: We developed a software that imple-

ments all the theory discussed about [1]. New features such as specification of FOV,

number of iterations and vertices were added to the interface in [1] which turns our soft-

ware a small contribution of our work.

• Methods to detect features in equirectangular images: We applied Compu-

151



ter Vision techniques to develop methods for detecting faces and lines in equirectangular

images, which are important for the main reference we discussed in the thesis. The line

detection method is an original contribution of our work.

• Panoramic videos: We separated the problem in 3 cases, stated desirable proper-

ties in panoramic videos, defined the temporal viewing sphere and studied some of its

properties, mathematically modeled the panoramic video problem, turned the desirable

properties into mathematical equations, obtained energies that measure how temporally

incoherent a panoramic video is and suggested an optimization solution for one of the

cases. This is the main original contribution of this thesis, since almost no material on

this topic is known on the literature.

Discussion

At the end of this thesis, we can make some qualitative concluding remarks that reflect

the main ideas one can get from our work.

The first one is that the panoramic image problem is now very mature. The need

for obtaining images of wide fields of view finds its roots centuries ago in paintings and

the limitation of perspective projection was already in the Renaissance. But only with

the development of technology and methods as, for example, stitching equipment and

methods, it was possible to bring this theme to a different level. In recent years, many

publications on the theme were published and now it is clear what properties we expect

in panoramic image.

Among all these references, we decided to study and implement Carroll et al. ([1]).

We think we proved the applicability of the method by showing a variety of situations

where it produces good results. The explanation for the quality of the method is that it

models precisely the undesirable distortions through the mathematical formalization of

them. Equations and energy terms were used to model the distortions.

At this point, it is valuable to observe how a concrete theme such as producing pa-

noramic images and videos can amalgamate very different areas of pure and applied ma-

thematics. In this work, we used theories and techniques related to the following areas:

Differential Geometry, Linear Algebra (both theoretical and numerical), Optimization,

Numerical Analysis, Analytic Geometry, Multivariable Analysis, Statistics, Computer

Vision, Image and Video Processing.

Interesting extensions arose from our study of panoramic images. In this work, we

suggested methods to detect lines and faces in equirectangular images and opened a novel

discussion about panoramic videos. This work left open many possibilities for future work

and we point them in next section.

152



Future Work

We think the most important future work for the panoramic image problem are:

• Migrate all the Matlab code to C/C++: We implemented the optimization and

the interface in different languages. It would be interesting for future applications to

integrate both parts to the same language.

• Integration of line detection to the interface: This integration would allow the

user to specify the parameters for line detection in a window where she also could include

or remove lines.

• Apply the method to gigapixel images: After finding a discretized projection

using the method described in chapters 2 and 3, the final panoramic image is produced

using bilinear interpolation and this process can be done for any resolution of the input

equirectangular image, even gigapixel ones. High quality results would be produced using

these input images.

For the panoramic video problem, the next steps we intend to pursue are the following:

• Finish case 1: We intend to implement the other solutions discussed for this case and

compare them to the one implemented in this thesis.

• Case 2: Implement the optimization solution and compare it to the solution presented

in this thesis.

• Integrate cases 1 and 2: Use the solutions of these cases to solve the panoramic

video problem with stationary viewpoint.

• Case 3: Generalize for this case what was developed for the first 2 cases.

• Investigate numerical methods for the problem: The solution we proposed in

this thesis took too long to be computed. We intend to investigate numerical and com-

putational methods for the problem in order to produce results faster.

The development of the panoramic video theme may cause impact for different areas

of art and entertainment, since it leads to a different way of filming and visualizing scenes.

We mention below some areas of application:

• Cinema: If a scene is filmed with a spherical camera that produces an equirectangular

video, there is no need to choose in which direction to point the camera. The scene will

be much better represented by the equirectangular video and specification of FOVs could

be done as a post processing step. An interesting future work is to develop an interface

where the input is an equirectangular video and the user can specify different FOVs for

different times. Also, the possibility of filming and visualizing wide FOVs can add inter-

esting new possibilities on narratives. Special display devices that cover a wider FOV can

be developed to explore better this new way of filming and displaying.

• Sport broadcasting: There is a huge difference between watching a soccer game in the

stadium or at home in the TV. One of the reasons for this fact is that in the stadium we

153



perceive much better the details of all the field, while at home we only see a limited FOV

(usually a window around the position of the ball). Since the structure of the soccer game

scene is very simple (some lines in the field and a set of known moving objects), one of the

first applications of panoramic videos could be for sports filming. These considerations

are extendable for other sports such as basketball, baseball, volleyball and so on.

• Vigilance: Spherical cameras can replace common cameras for vigilance since they

“see” much more information. Analysis of spherical videos (as, for example, people de-

tection) become necessary and informative ways of displaying the video (i.e., the choice

of the appropriate projection) may be analyzed.

We intend to work with these (and possibly other) practical applications as soon as

we develop more the theoretical ideas on the theme.

154



Bibliography

[1] R. Carroll, M. Agrawal, and A. Agarwala, “Optimizing content-preserving projec-

tions for wide-angle images,” ACM Trans. Graph., vol. 28, no. 3, pp. 1–9, 2009.

[2] R. Szeliski and H.-Y. Shum, “Creating full view panoramic image mosaics and en-

vironment maps,” in SIGGRAPH ’97: Proceedings of the 24th annual conference on

Computer graphics and interactive techniques, (New York, NY, USA), pp. 251–258,

ACM Press/Addison-Wesley Publishing Co., 1997.

[3] M. Brown and D. G. Lowe, “Recognising panoramas,” in ICCV ’03: Proceedings of

the Ninth IEEE International Conference on Computer Vision, (Washington, DC,

USA), p. 1218, IEEE Computer Society, 2003.

[4] J. Kopf, M. Uyttendaele, O. Deussen, and M. F. Cohen, “Capturing and viewing

gigapixel images,” ACM Trans. Graph., vol. 26, no. 3, p. 93, 2007.

[5] D. Zorin and A. H. Barr, “Correction of geometric perceptual distortions in pictures,”

in SIGGRAPH ’95: Proceedings of the 22nd annual conference on Computer graphics

and interactive techniques, (New York, NY, USA), pp. 257–264, ACM, 1995.

[6] M. Agrawala, D. Zorin, and T. Munzner, “Artistic multiprojection rendering,” in

Proceedings of the Eurographics Workshop on Rendering Techniques 2000, (London,

UK), pp. 125–136, Springer-Verlag, 2000.

[7] L. Zelnik-Manor, G. Peters, and P. Perona, “Squaring the circles in panoramas,” in

ICCV ’05: Proceedings of the Tenth IEEE International Conference on Computer

Vision, (Washington, DC, USA), pp. 1292–1299, IEEE Computer Society, 2005.

[8] J. Kopf, D. Lischinski, O. Deussen, D. Cohen-Or, and M. Cohen, “Locally adapted

projections to reduce panorama distortions,” Computer Graphics Forum (Proceedings

of EGSR 2009), vol. 28, no. 4, p. to appear, 2009.

[9] “Point grey ccd and cmos digital cameras for industrial, machine, and computer

vision.” URL: http://www.ptgrey.com.

[10] “Flickr: Equirectangular.” URL: http://www.flickr.com/groups/equirectangular/.

[11] J. P. Snyder, Map projections–a working manual. Supt. of Docs., 1987.

155



[12] L. K. Sacht, “Multiperspective images from real world scenes.” URL:

http://w3.impa.br/˜leo-ks/s3d.

[13] L. K. Sacht, “Multi-view multi-plane approach to project the viewing sphere.” URL:

http://w3.impa.br/˜leo-ks/image processing.

[14] A. Agarwala, M. Agrawala, M. Cohen, D. Salesin, and R. Szeliski, “Photographing

long scenes with multi-viewpoint panoramas,” ACM Trans. Graph., vol. 25, no. 3,

pp. 853–861, 2006.

[15] M. P. Do Carmo, Differential Geometry of Curves and Surfaces. New Jersey:

Prentice-Hall, Inc., 1976.

[16] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vision,

vol. 57, no. 2, pp. 137–154, 2004.

[17] U. Neumann, T. Pintaric, and A. Rizzo, “Immersive panoramic video,” in MULTI-

MEDIA ’00: Proceedings of the eighth ACM international conference on Multimedia,

(New York, NY, USA), pp. 493–494, ACM, 2000.

[18] D. Kimber, J. Foote, and S. Lertsithichai, “Flyabout: spatially indexed panoramic vi-

deo,” in MULTIMEDIA ’01: Proceedings of the ninth ACM international conference

on Multimedia, (New York, NY, USA), pp. 339–347, ACM, 2001.

[19] M. Uyttendaele, A. Criminisi, S. B. Kang, S. Winder, R. Szeliski, and R. Hartley,

“Image-based interactive exploration of real-world environments,” IEEE Comput.

Graph. Appl., vol. 24, no. 3, pp. 52–63, 2004.

[20] A. M. d. Matos, “Visualizacao de panoramas virtuais,” Master’s thesis, PUC-Rio,

1998.

[21] A. Agarwala, K. C. Zheng, C. Pal, M. Agrawala, M. Cohen, B. Curless, D. Salesin,

and R. Szeliski, “Panoramic video textures,” in SIGGRAPH ’05: ACM SIGGRAPH

2005 Papers, (New York, NY, USA), pp. 821–827, ACM, 2005.

[22] L. K. Sacht, “Content-based projections for panoramic images and videos.” URL:

http://w3.impa.br/˜leo-ks/msc thesis.

[23] L. K. Sacht, “Face detection.” URL: http://w3.impa.br/ ˜ leo-

ks/cv2009/face detection.

[24] D. G. R. Bradski and A. Kaehler, Learning opencv, 1st edition. O’Reilly Media, Inc.,

2008.

[25] F. Szenberg, Acompanhamento de Cenas com Calibracao Automatica de Cameras.

PhD thesis, PUC-Rio, 2001.

156


