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To my family and my little king.



Abstract

When using the finite element method based on domain dependent grids to
solve numerically elliptic partial differential equations with Dirichlet boundary
condition, we have to consider that constructing and refining appropriate grids
and triangulations are not an easy task, specially in dimensions m > 2. This
difficulty can be overcame by using domain independent uniform grids, B-splines
and related objects, such as finite element basis functions. In this monography,
we present the main properties of uniform B-splines, uniform weighted B-splines
and uniform weighted extended B-splines when used as finite element spaces to
solve elliptic partial equation with Dirichlet boundary conditions. We include
the error analysis using best approximation estimates.

Keywords: Finite elements method, uniform B-splines, approximation.



Resumo

Ao usar o método dos elementos finitos baseado em malhas dependentes
do dominio para resolver numericamente equagoes diferenciais parciais elipticas
com condi¢do de fronteira de Dirichlet, temos que considerar que construir e
refinar malhas e triangulacdes apropriadamente nfo sdo tarefas faceis, especial-
mente para dimensGes m > 2. Esta dificuldade pode ser contornada usando
malhas uniformes independentes do dominio, B-splines e outros conceitos rela-
cionados, como fungoes bases de elementos finitos. Nesta dissetacdo, apresenta-
mos as propriedades principais dos B-splines em malhas uniformes, dos B-splines
com pesos em malhas uniformes e dos B-splines estendidos com pesos em malhas
uniformes quando s&o usados como espacos de elementos finitos para resolver
equagoes diferenciais parciais elipticas com condigoes de fronteira de Dirichlet.
Inclui-se a andlise de erro usando estimativas de melhor aproximacao.

Palavras chaves: Método de elementos finitos, B-splines em malhas uni-
formes, aproximacao.
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Introduction

When speaking of numerical approximation of partial differential equation the
Finite Element Method is one of the most employed numerical schemes, espe-
cially for elliptic equations.

Consider the following elliptic partial differential equation with Dirichlet
boundary conditions:
Lu = in Q
{r =] (1)

u =0 ond,
where Lu = —V - (aVu) + cu with a(z) > ag > 0 in Q and ¢(z) > 0 in Q.

The Finite Element Method for solving (1) consists basically of two steps.
Step 1: Construct a weak formulation of (1), i.e., to pose the problem in an
appropriate Hilbert space H. In general the new problem has the form:

Find v € H such that:
(2)

A(u,v) = F(v) Yv € H,

where A is a continuous and elliptic bilinear form (See Definition 4.1 and the
example after it) and F' is a linear functional on H.

Step 2: Given a weak formulation (2) posed in H, replace H (infinite dimen-
sional) by a finite dimensional space V;, C H, and we obtain a discrete problem
of the form:

3)

Find uj € V}, such that:
A(Uh,Uh) = F(Uh) Yy, € Vy,

with solution up, known as the Galerkin approximation of u (solution of (1)).
Once an appropriated basis for V}, is chosen, (3) becomes a well behaved linear
system.

How to choose V7 In general there are two ways of defining V}. V}, can
depend on or be independent of a grid or a triangulation. In the case of a mesh

dependence choice of V}, the mesh can itself depend on the domain €2 or not.

When using domain dependent grids we have to consider that constructing
and refining appropriate grids and triangulations are not easy tasks especially

ix



X INTRODUCTION

in dimensions m > 2. See [1] for a precise definition of “appropriated triangu-
lation”. On the other hand in dimension m = 3 or more, the data structure
needed to handle triangulation information becomes complicated.

This difficulty can be overcame by using domain independent uniform grids, but
in this case it is difficult to represent of the domain boundary information.

After choosing a uniform grid independent of the domain Q2 we have several
alternative choices for V}, and its basis. One of this choices is B-splines or related

objects as basis functions and V}, the finite dimensional spaces spanned by them.

The advantages of using B-splines are that we have:

Simple basis functions.

No domain dependent grid is required.

Accurate approximations are possible with relatively low dimensional sub-
spaces.

e Smoothness of the Galerkin approximation can be chosen arbitrarily.
e Approximation can be chosen arbitrarily.

Moreover, even though it is not studied here, we mention that this approach is
suitable for parallelization and multi-grid techniques.

In this monograph we organize the material from simpler one dimensional
results to higher dimensional situations and then present the application to Fi-
nite Element Method for elliptic partial differential equation.

We introduce Sobolev spaces, Hausdorff metric and the weight functions in
Chapter 1. In Chapter 2 we present all the material about B-splines in one
dimension that we are going to use on the rest of work. All definitions are based
in uniform grids, that is, with uniform B-splines. See e.g., [4] for definition of
non-uniform B-spines. Working with uniform grids will permit us to use tensor
product in order to extend the definition to higher dimension which is done
in Chapter 3. Later on, in Chapter 3, we introduce three finite dimensional
spaces: the space of B-spline B} () with support in €, the space of weighted
B-spline wB}(2) with support in , and the space of weighted extended B-
spline webB} () with support in Q. In principle all of these three spaces can
serve as a Finite Element Space V. We also are going to show that w8} ()
and webB} () are the ones really useful as V. In Chapter 4 we show that
webBT () has the stability and approximation properties required for Finite
Element Spaces.



Chapter 1

Preliminaries

In this short chapter we present the notation used throughout this thesis and
some basic ideas about Sobolev spaces, Hausdorff metric and signed weight
functions.

1.1 Notation

If f is a function defined on R™ that depends on parameters ay, ...,a, we write
fla,...,ap; x), for its value at z = (z1, ...,z ) € R™.
The dependence of constants on parameters a1, ..., a, is written as

const (a1, ...,ap).

Dependency on parameters are not always indicated if it is clear from the
context.

Multi-indexing is a collection of notational devices, whose main goal is to
avoid drowning in a sea of indices. A single multi-index is used to denote
dependence on several indices: a = (aq, ..., Q).

Given an indexing set S (typically S = Z), a multi-index is an element of S™.
Thus a multi-index in R™ is a m-tuple a = (a4, ..., &y, ) With positive numbers
a, €L, v=1,..m.

The order of a multi-index is the number |a| := Y 1" | .

Given multi-index «, § we define:

a+ﬂ: (al +/Bla"';am+/6m)a
a<fB <<= a,<B, YWw=12..m,

al = alas! - ol

In particular when n € R, we write @ < n to indicate a, < n,v =1,...,m.



| A Lipschitz domain. |

A Non Lipschitz domain.
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If x = (21,....,2m) € R™ and « is a multi-index, the monomial x* is
x® =g ed? - glm,

A polynomial in R™ is a function of the form:

p(x) = Z coxX®  with ¢, € R.

la|<n

Given a multi-index o € Z™ we define the differential operator 9%, as:

m
0 \a
[0 2. (637 [6 27— v
9% = HB,, , where 8% = (633,,) .
v=1
When n; = ny = ... = n,,, =n we use the same symbol n for the integer nq

and the multi-index (n1,ni,...n1).

1.2 Sobolev Spaces

We use 2 to denote a bounded and open set.

Definition 1.1 (Lipschitz Domain). Given Q@ C R™, we say that Q is a
Lipschitz domain if 0Q is locally the graph of a Lipschitz continuous function
and Q lies on one side of this graph.

Given 2 C R™, a Lipschitz domain, let L?(Q) be the space of square
Lebesgue integrable functions:

p@={siar: [ pp<ool

1
2

with the usual norm given by [[¢||r20) = ([ [|*)* which is obtained from

the inner product:

(6 )1o@ = [ o0,
We denote by LZ(Q) the subspace of L?() of the functions of zero average.

The space L2(2) := L?(2)™ is the cartesian product of L?(Q) m times with
the norm

1£1R20) = D N fill72(0)-
1

Let C§°(€) be the space of infinitely differentiable functions having compact
support in 2.
We denote by 0u, Vu or grad u the m-tuple of functions (01u,...,0mu).
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Let D(2) be the space C§°(Q) with the following sense of convergence: {f}
converges if there exist a function f € C§°(Q) such that the supports of {f,}
are all contained in a compact subset of 2 and their derivatives {0 f,} converge
uniformly to 0% f for all multi-index a.

Let D'(2) be the dual space of D(Q), i.e., the space of distributions, which
is the space of linear functionals on D(Q) that are continuous with respect to
the notion of convergence defined above.

In this section the notation (-, -) is used for the duality pairing between D(Q)
and its dual, i.e., we write:

(f,9), ¢eD), feD(Q).

If f is a distribution and « is a multi-index it is possible to define its deriva-
tive (in the sense of distributions) 0% f by:

(@ f,0) = (=Dl f,0°9), ¥ € D).

Now we define a very important family of subspaces of L?(Q2), the Sobolev
Spaces. By definition, a function f € L2(Q2) belongs to HY(Q), £ € N, if |a| < ¢
implies 8% f € L2(f)), or more precisely:

HY(Q) := {f € L2(Q) : Ya,|a| <€, 3 f, € L2(Q),
.t 0°1.9) = [ fub W eD@).

In H*(Q) we consider the following inner product:

(f, 9 ue) = Z (0%f,0%9) L2(02)»

laf<e

which gives the norm:
17 Breey = (s Dy = 3 10wy = 3 [ 10711

lal <t la<e”®

A very important functional on H¢(Q2) is the seminorm, given by:
ey = 3 10y = X [ 10741
la|=¢ la|=¢7
For other definitions of Sobolev spaces (and related spaces) see [1] and [7].
Given I' C 09 with non-vanishing (m — 1)-dimensional measure and rela-

tively open with respect to 9, we denote by H}(Q2,T') the subspace of H'()
consisting of functions that vanish on I'. When T' = Q we denote this by H(Q).

Next lemma is very useful in order to look for equivalent norms in Sobolev
spaces.
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Lemma 1.1 (Poincaré Inequality). Let u € H'(2). Then there ezist con-
stants, depending only on ), such that

2
ey < Ciluliey +Co ([ )

In particular, the seminorm | - |g1(q) is equivalent to the norm || - || g1(q) in
H'(Q) N L3(Q). We can obtain similar results by integrating over a subset of
or even in a part of the boundary by using the Trace Theorem (see [1], [7]).

Lemma 1.2 (Friedrichs Inequality). LetT' C 0Q with non-vanishing (m—1)-
dimensional measure and relatively open with respect to 2. Then there exist
constants, depending only on Q and T, such that for u € H'(Q),

lullFzqy < Cilulfn gy + Collullzary-
In particular, if v € H,(Q,T) the H'(Q)-seminorm is equivalent to the
H'(2)-norm.

1.3 A Note on Hausdorff Metric

Now we present a brief review of Hausdorff metric. This is going to be needed
in Section 3.4.

Let (M,d) be a metric space. The distance between a point z € M and a
set A€ M is:
d(z,A) = inf d(z,y), (1.1)
yeA

where d is the metric of M, i.e., the distance between a point and a set is the

minimum distance between the point and every element in the set.

Definition 1.2 (Hausdorff metric). Let (M,d) be a metric space. Let

N o= {A CM: A is bounded, not empty, and such that }

d(a, A) = 0 if and only if a € A.

Given A, B€ N, let

p(A,B) := max{ sup d(z, A), sup d(z, B)}
z€EB z€A

Then p defines a metric in N, called the Hausdorff metric.

We see that if A and B are within a Hausdorff distance r of each other then
every point of A is within distance r of some point of B, and every point of B
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is within distance r of some point of A.

An alternative way of defining the Hausdorff metric uses the r-neighborhood,
p(A,B) := inf{r >0:ACB,(B) and BC BT(A)}

where, for A € N and r > 0, B,(A) = {y : d(z,y) < r for some z € A} is an
open r-neighborhood of A and by convention the infimum is co for empty sets.

Example 1.1. Consider M = (Z2%]| - ||«), and the sets A = {0,1,2}? and
B ={(-1,-1)} = {b}. The Hausdorff distance between sets A and B is

p(A, B) = max{1,3} = 3.

1.4 Signed Weight Functions

R-functions were created by Vladimir Logvinovich Rvachev in Ukranie. The
name “R-functions” was given after his father.

In general a real valued function, ¢ : R™ — R, is an R-function if it has a
property that is completely determined by the corresponding property of its
arguments, or, equivalently, completely determined by a finite partition of R™.
One of the most useful examples of such a property is the function sign. Define
the function sign : R — {0, 1} such that

. 0, ifz<0
sign (@) =01 e so

An R-function works as a Boolean switching function, changing its sign only
when any of its arguments change their signs (see [9], [10]).

This definition is useful because sign (x,) can be regarded as a in - out or on -
off boolean variable. Then we can interpret an R-function as a rule saying, for
instance, when ¢ is in - out depending on the state of all z,’s.

Example 1.2. Consider the functionr : R2 = R, r(z,y) = z+y—+/22 + 2.
Observe that:

1. If z and y are positive then
(z+y)?=2+y* +2zy >2* +y* = ra(z,y) >0.
2. If x or y is negative then

z+y <max{|z|,|y]} < V22 +y2 = ra(z,y) <O0.

e Set A
A Set B
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From 1 and 2 we have that

sign rn(z,y) = min{sign (), sign (y)}.

This implies that
[rn>0]=[z>0]N[y > 0] (1.2)

We can use R-functions to describe geometric objects. For instance, suppose
that we have the implicit representation

Q=[w, >0, w,:R*" >R v=1,2.

According to Example 1.2 we can represent 2 := Q1 N Qs by rn (w1, ws) > 0.
We have the following

Lemma 1.3. Let Q, C R™ be represented by Q, = [w, > 0], with functions
w, : R™ = R, v=1,2. If we define:

re(wy) == —wy

ra(wi, ws) = w1 +we — /w? + w3 (1.3)
ru(wr,ws) == wy + w2 + \/UJf + w2

[rc(wl) > 0] = Qi‘
[ra(w1,w2) > 0] = Q1 N Qs
[ru (w1, w2) > 0] = Q1 U Qs.

we have that

In other to match certain boundary conditions we need weight functions.

Definition 1.3. A weight function w of order v € N on  CR™ is a function
w: Q= R continuous on Q such that, there exist constants ¢, Cy such that

cw d(z,T)" <w(z) < Cy d(z,T)?, VzeQ,
where I' C 0 has positive measure with respect to 0N2.

The weight function w of order « is /-regular for some £ € N, if the partial
derivatives up to order £ are bounded and

0%w(z)| < Cy d(z,T)71%,  |a| < min{y,}.

If w is defined on R™, it is continuous, Q = [w > 0] and Q° = [w < 0] we
say that w is a signed weight function.
Observe that w =0 on I'.

If w, is a signed weight function for 2, v = 1,2 then, from Lemma 1.3,
w=rc(w); w=ra(w,we); w=ry(w,ws)

are signed weight functions for 2f; Q1 N Qy; Q1 U Qs.



Chapter 2

One Dimensional B-splines

In this chapter we introduce some background about splines that we will need
in the rest of this monograph.

In Section 2.1 we define uniform B-splines and present some basic results. We
extend these results for scaled and translated B-splines in Section 2.2. We show
how to generate polynomials in terms of B-spline functions, the formulas are
called Marsden’s identity, which is proved in Section 2.3. In particular the
family of scaled and translated B-splines are partitions of unity, Section 2.4.

2.1 Uniform B-splines

There are several ways to introduce and define B-splines and related concepts
(see [2],[3],[8]). Here we follow the presentation in [6], which is a fast and simple
way to do it.

Definition 2.1. Let

1, 0<z<1

_ (2.1)
0, otherwise;

B(O;x) =1 (z) = {
then the uniform B-splines I;(n, D), n>1,n€ZT, are defined inductively by
b(n;z) := / b(n—1;t)dt, Yz eR, n>1.

z—1

An easy consequence of Definition 2.1 is that

%I;(n;x) =b(n-1;2) —bn-1;2—1), VzeR (2.2)
Note that (2.1) and (2.2) together with b(n;0) = 0, n # 0, characterize the
uniform B-splines.

0 1
B-spline 5(0; -) given by (2.1)



0 1 2 3
B-spline b(2;-) given by (2.4)
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Example 2.1. For n =1 and n = 2, b(n;-) have the form

T, 0<z<1,
b(1;2) ={2—-2, 1<2<2, (2.3)
0, otherwise.
7?2, 0<z<1,
. —x? -3/2, 1<z<2
bosg) = % T3/ lsz<2 (2.4)
z?/2-3x-9/2, 2<z<3,
0, otherwise.

In Figure 2.1 we can observe uniform B-splines b(n;-), for n = 0,1, ..., 10.

8
bbg 10

L L
5 6 7 8 9 10 11

Figure 2.1: B-splines of degree n= 0,...,10, where b/ = I;(j; ), j =1,..,10.

A uniform B-spline of degree n has the following properties.

Lemma 2.1 (Positivity and local support). A B-spline of degree n is pos-
itive on (0,n + 1) and vanishes outside this interval.

Proof. This fact follows by induction directly from Definition 2.1, because we
are taking an integral over an interval of width one centered at z — 1/2 of a
positive function supported in (0,n). O

Lemma 2.2 (Piecewise polynomial structure). b(n;-) is a polynomial of
degree n on each interval [k, k + 1], k=0,...,n.
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Lemma 2.3 (Smoothness). b(n;-) is (n—1)-times continuously differentiable.

Proof. From Example 2.1, 13(1; -) is continuous. Also note that
z 1 .
b(n: ) :/ b(n—l;t)dt:/ bn—135 47— 1)ds,
z—1 0

hence, the continuous differentiability of B(n, -) up to order n — 1 follows from
the continuous differentiability of b(n — 1;-) up to order n — 2. O

Lemma 2.4. B(n, Nik,k+1), = 0,1,...,n, is n times continuously differentiable
with constant n-th derivatives.

Proof. This is true for n = 1, see Example 2.1.
If this holds for n — 1, then from (2.2) it holds also for n. O

Corollary 2.1. Let Q C R, be an interval such that supp E(n, ) C Q, then
b(n;-) € H™(Q), where H™() is the Sobolev space of order n.

Lemma 2.5 (Convolution). The convolution of B-splines b(m;-) and b(n;-),
is a B-spline of degree m +n +1, i.e.,

b(m;-) % b(n; ) (z) = b(m+n+1;2), VreR

Proof. This fact is easily proved by induction on m.

x

b(0; ) * b(n; ) () = / b(0; 2 — y)b(n;y)dy = / b(ns y)dy = b(n+ 1;).

Suppose that the lemma holds for m — 1, and by using (2.2) it follows that

d - - -
%b(m-l-n—kl;;v) =b(m+n;.’1f) —b(m—|—n;.’1§—1)

Remark 2.1. Lemma 2.5 tells us that uniform B-splines b(n;-), n > 1, could
be defined by the recursion formula:

b(n;-) 1= b(n —15-) xb(0;-), Vn>1.
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Lemma 2.6 (Symmetry). A B-spline of degree n is symmetric with respect
tox=(n+1)/2, ie.,

b(n;z) =b(n;n+1—2), VzeR (2.5)

Proof. We proceed by induction on n. Observe that for n = 1, (2.5) holds at
z = 0,1 and z = 1/2. Then since b(1;-) is piecewise linear we have that (2.5)
holds for all z € [0,2]. For z ¢ [0,2], 2—z ¢ [0, 2], then b(1;2) = b(1;2 — ) = 0.

If (2.5) holds for n — 1, i.e., b(n — 1;2) = b(n — 1;1 — x), we have that

n+l—z T .
bln;n+1—2x)= / b(n —1;t)dt = / b(n —1;8)ds = b(n; x)
n—zr z—1
this ends the proof. O
For f, g € L*(R) define (f,g) := [ f(

We denote as §(n,k — 1) the scalar product of B(n, — k) and b(n;- — 1), and
by d(n,k —1), the scalar product of their derivatives, i.e.,

3(n,k —1) /bna:— n;x — 1)dz = (b(n; - — k), b(n; - — 1))

d(n,k—1) : <d—b( k),%i)(n;-—l)>.

Lemma 2.7. Given k,l € Z we have
(k-1 =blen+n+1+k—1),
d(nk—1) = —8(n—1,k—1—1) +28(n— L,k —1) — 8(n — 1,k — L+ 1).

Proof. Using the symmetry (Lemma 2.6) and the convolution (Lemma 2.5) we
have

3(n,k—1) /bnm— nx—ldx—/bny—i-l—k)i)(n;y)dy

:/b(n;(n+1—l+k)—y)i)(n;y)dy:B(zn+1;n+1+k—z).
R

To prove the second statement we note that

%i)(n;w—k):I;(nfl;x—k)—i)(nfl;x—k—l)

hence,

/—b n-1;1 — k)%i)(n—l;a:—l)da:

=blen—1;n— 1+ k) —bln—-1;n— (1 +1)+k)

—bn-1;n -1+ (k+1)+b2n-1;n— (1 +1)+ (k+1))
=2(n-1n—Il+k)=ben—1n—1—14k) —ben—1;n -1+ k+1)
=28n-1,k-0) —8(n—1,k—1-1)—3(n-1,k+1-1). O
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Lemma 2.8 (Monotonicity). A B-spline of degree n > 0 is strictly monotone
on [0,(n+1)/2] and [(n +1)/2,n + 1].

Proof. For n = 1, it is obvious, see (2.3). Suppose that the lemma holds for
n — 1. Take z € [0,(n + 1)/2]. Observe that since b(n —1;-) is increasing in
[0,n/2] we have that for all z € [0,n/2]

%B(n,w) =8(n—1;$)—i)(n—1;$—1) > 0.

Then b(n; -) is increasing in [0,n/2].

Ifz €[n/2,(n+1)/2] we have that n—z, 2 —1 € [0,n/2],andz—1 <n—=z,
then using the symmetry (Lemma 2.6) we have that

ai)(n;w) =bn-132) —b(n-1;2—1)=bln—13n — ) —b(n—1;2 —1) > 0,

which proves that b(n;-) is increasing in [0, (n 4+ 1)/2]. By symmetry b(n;-) is
decreasing in [(n +1)/2,n + 1]. O

Lemma 2.9 (Recurrence Relation). A B-spline of degree n is a linear com-
bination of B-splines of degree n — 1, more precisely,

~ N 1—x~
bns ) = Zb(n 12) + ’”T‘”b(n _1z—1), VzeR (26

Proof. For the case n = 1, see the figure in the margin. Assuming that the
recurrence relation is valid up to degree n — 1, i.e.,

b(n—1;2) = nflé(n_Q;m)+%B(n_z;x—1),
bn 132 —1) = ::18(7172;3;—1)+"%1+18(n72;x—2),
then,
”_1(5(n_1;x) —B(n_l;x—n) - f(@(n_z;x)—é(n_z;x—n)
n n
+%l_m(i)(n2;x—l)—i)(n2;x—2)>.

>

,\
2
8

) b(0;z — 1)3

——— e — — —

? 2

(2.6) with n. = 1.

S
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%b(n;x) =bn—-1;2) —b(n—1;2 —1)

=" (s =b52-1) + 2 (601520~ 132-)
= %B(n—l;w)+%(5(71—2;37)—5("—2;33—1))

1. 1-— - “
—Eb(n—l;m—l)—l—mix(b(n—%m—l)—b(n—2;m—2)>

d (x- d (n+1l—z-
= %<Eb(n—1,$)) +£(Tb(n—l,$—1)>

It is enough to check that (2.6) holds at some point and we know that both
sides vanish at z = 0. O

Figure 2.2: Recurrence relation for n = 3.

The recurrence relation is an easy way to compute (low order) B-splines. (see
Figure 2.2). We have used the formula (2.6) to obtain Figure 2.1 in MatLab by
using BS.m (see Figure 2.3).

As noted before, b(n; -) is a polynomial of degree n when restricted to interval
[k,k+1], k=0,1,...,n. Then we can write,

b(n;z) = ao +a1(x — k) + az(@ — k)2 + ... + an(z — k)"

To indicate the dependence on n and k we write a;(n, k) instead of q;.
With this notation we have for t =z — k € [0, 1]

b(n; ) = ao(n, k) + ar(n, k)t + as(n, k)t + ... + an(n, k)t™. (2.7)
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BS.m
function y=BS(x,n)
if n==0
y=(x>=0) .*(x<1) ;
else
y=(x/n) .*BS(x,n-1)+((n+1-x) /n) .*BS(x-1,n-1) ;
end

Figure 2.3: Program for calculating low degree B-splines.

Lemma 2.10 (Taylor Coeflicients). The coefficients in (2.7) can be computed
with the following recursion formula:

k 1
ai(n, k) = Eal(n -1,k)+ Eal_l(n —1,k)

1-— 1
TR k- ) - -1k 1),
n n
for k,1 € {0, ...,n} starting with ag(0,0) = 1.

Proof. By restricting x = k + t at the interval [k, k + 1], and by using the
recurrence relation (2.6) we have

5 k
%b(n —1z) = %t (ao(n —Lk)+a(n—1Lkt+..+a,(n— 1,k')t">

1
=..+ (Eal(n - Lk)+—ai_1(n — 1,k)>tl + ...
n n

and also
1—2x-
ub(n -1z —1)
n
1—k—t
- % (ao(n —Lk) +ai(n—1,k)t+ ...+ an(n — 1,k)t”)
1-k 1
=..+ (Lal(n —1,k)— —aj_1(n— 1,k)>tl + ..
n n
if we add up these, we obtain the result. O

Example 2.2. From Example 2.1 the Taylor coefficients of the B-splines of
degree n = 2 on the intervals [1,2] are ag(2,1) = %, a1(2,1) =1, a2(2,1) = -1,
hence

1
b(2;z) = 5-1—(.77—1)—(.2:—1)2 :—%+3$—$2, for z € [1,2].
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2.2 Scaled and Translated B-splines

Now we introduce a family of B-splines associated with a uniform grid on R.
This family consists of translations and scalings of our uniform B-splines intro-
duced in Section 2.1.

Definition 2.2. Given h € R, h > 0 and k € Z, the B-spline of degree n scaled
by h and translated kh to the right is called the k-th B-spline of degree n on the
grid hZ. It is given by

b(n,k, h; ) := b(n; g—k), VreR

Note that the parameters are degree, translation factor and grid size, in this
order.

0.9

— b(2.00.2:)
- - b21021)

0.8

Figure 2.4: b(2,%,0.2;-), k=0, 1.
The properties of a scaled translated B-spline of degree n are generalizations
of the properties of the uniform B-spline.

Lemma 2.11 (Positivity and local support). The B-spline b(n,k,h;-) is
positive on [0,n + 1]h + kh and vanishes outside this interval.

Lemma 2.12. [[b(n, k,h;-)||z2 = h'/2||b(n; )| 12, for all k € Z, h € R.

Lemma 2.13 (Piecewise polynomial structure). b(n,k,k;-) is a polynomial
of degree n in each interval [k, k + 1]h.

Lemma 2.14 (Smoothness). b(n,k,h;-) is of class C"~1.

Note that

ib(n,lc,h; z) =

. (b(n — 1L,k h;z) — b(n—1,k,h;x — 1)) (2.8)

>l
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We denote as s(n,k —1) the scalar product of b(n,k,h;-) and b(n,i, h;-), and
by d(n,k — 1), the scalar product of their derivatives, i.e.,

s(n,k—1) : = (b(n,k,h;),b(n,1,h; "))
d d
d(n,k—1): = <£b(n,k,h, ), %b(n,l,h, -)>.
Lemma 2.15. Given k,l € Z we have
s(nk—1) =hbn+1;n+ 14+ k —1)

d(n,k-1) :%<—s(n—1,k—l—1)+28(n—1,k—l) —8(n—1,k—l+1)>.

Proof. This proof is the analogous that of the Lemma 2.7. By symmetry and
convolution properties of the B-splines we have

s(nk—1) = / b(n; £ — k)b(n; & — l)dz
R
=h/13(n; (4 14k —1) — p)b(nsy)dy
R
=hb(en+1;n+1+k—1).

To prove the second statement we note that
d d
ﬁb(n,k‘,h; Z’)@b(n,l,h; ,7;-)
1
=3 <b(n —1,k,h;x) — b(n — 1,k + 1,h; :z:)) (b(n 10k @)b(n, L L R x)>

then,

dz
=2s8(n—1L,k—1)—s(n—1,k—1—1) —s(n—1,k+1-1),

d d
h/p %b(n —1,k,h; ) ——b(n — 1,1,h; 7)dx

this ends the proof. O

2.3 Marsden’s Identity in One Dimension

In this section we study the spaces spanned by the scaled and translated B-
splines. We prove Marsden’s identity, which plays a central role when studying
independence, stability and error estimates.

Definition 2.3. A cardinal spline of degree less than or equal to n with grid
width h is a linear combination of scaled translated B-splines, ), 5 ckb(n, k,h;-).



/

$2:

0
> (K 4 3k + 2)b(2, k, 1; 7)
kez
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Example 2.3. Set h =1, we have
z—t=> (k—t+1)b(1k12) = (k—t+1)b(1;z— k).
kEZ kEZ
For t = 0 see the figure at the margin.

The next result implies that any polynomial can be represented by cardinal
splines. It plays an important role when studying error estimates.

Lemma 2.16 (Marsden’s Identity in R). Given z,t real numbers, we define

. t
vt (t) :=h" i+ k—— ). 2.
b =1 1 (44 ) (2.9)
Then, we have
(z —t)" Zwkh (n, k,h; ). (2.10)
kEZ

Proof. By considering the change of variables

x=hy, t=hs and &"(s):= H(z + s), with s € R,

i=1

the formula (2.10) is transformed into

= &"(k - s)b(n;y — k).

kEZ

Thus proving Marsden’s Identity is equivalent to proving the following lemma.
O

Lemma 2.17. For any x,t € R,

n

(@—t)" =Y &"(k—t)b(n;z —k), with &"(t):=[[G+1).

kEZ i=1

Proof. For case n = 1, see Example 2.3. Suppose that the lemma holds for
n—1,1ie.,
@—t)" =" &" (k- t)b(n—1;2 — k), (2.11)
kez

by using recurrence relation it follows that
"k — _ z—k YR
PR ACEDICEEIESY —"(k — t)b(n ~ ;2 — k)
kEZ kEZ

+Z —etks "(k—1—=t)bn— 1;2 — k).

kEZ
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From the fact that for any k € Z,t € R, #"(k —1—t) = (k — t)®" '(k — 1)
holds, and from equation (2.11) we have that

> 8" (k — t)b(n; z — k)

kEZ
=3 (k= t)b(n - 1;x—k)<x_k(n+k—t) + w(k—t))
kez n
=> 6" (k= t)b(n - 1,2 — k)(z — t)
kEZ
=@-t)"z—t)=(z-t)",
this ends the proof. O

From (2.9) we have that ¥}, (¢) it is a polynomial of degree n in ¢ and k.
Denote ¥}, (t) by q(k,t); in this way Marsden’s Identity can by written as

(@—1)"=>_ q(k,t)b(n,k,h;z), Vz,teR (2.12)
kEZ

By taking ¢t = 0 in (2.12) we obtain:
Corollary 2.2. For any polynomial p, there exists a polynomial §, independent
of h such that
p(@) =Y W"q(k)b(n, k, b ).

kEZ

Lemma 2.18. Given a grid cell Q = kh+ (0,n+ 1)h there exist exactly (n+1)
non vanishing B-splines of degree n on this interval, these are

T T

b(n,k,h;-), k= bJ _n, EJ —n+1,.., hJ (2.13)

where |z| denotes the integer part of z.

Since each z € R belongs to exactly n+1 intervals of the form kh+(0,n+1)h,
then there is exactly (n + 1) non vanishing B-splines (of degree n) at x.
These are given in (2.13).

Lemma 2.19 (Linear Independence). B-splines given in (2.13) are linearly
independent.

2.4 B-splines as Partitions of Unity

In this section we introduce partitions of unity and we prove, using the Marsden
identity, that the scaled and translated B-splines form a partition of unity. In
particular we prove the constant function 1 belongs to the span of the scaled
and translated B-splines.
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Definition 2.4. Let {K)}acr a family of subsets of R (or R™), we say that
this family is locally finite if any © € R belongs only to finite numbers of Ky ’s,
i.e., if for each x € R there is a finite subset F' of L such that

x ¢ K,, VIeL \ F.
Definition 2.5. A family of functions {fa}acr is called locally finite if the
family of their supports {supp fa}rer is locally finite.

Definition 2.6 (Partition of Unity). A partition of unity of class C* is a
collection of functions {fa}xer of class C* such that:

1. Forany A€ L and z € R, fy(z) >0,
2. The family {supp fr}xrer is locally finite in R (or R™ ),

8. Yoner alx) =1 for any x € R.

Note that the sum appearing in item 3 in Definition 2.6 is finite for each
zeR

Lemma 2.20. The scaled and translated B-splines b(n,k,h;-) form a partition
of unity.

Proof. Ttems 1 and 2 of the Definition 2.6 follow from Lemma 2.11. Therefore
we only have to prove item 3. Given z,t € R and k € Z we have

q(k,t) = @7, (t) :== h" ﬁ (’ +h- %)

i=1

=h" (k — %) + polynomial of degree < n — 1.

Hence
I

d—q(k, t)

= (~1)"nl
o (=1)"n

t=0

By taking derivatives n-times the equation (2.12) with respect to ¢ and setting

t = 0 we have that
(—1)"™n! = Z(—l)"n!b(n,k,h;m)
kez

i.e.

1= b(nkhz). O

kEZ



Chapter 3

Higher Dimensional
B-splines and Bounded
Domains

In the previous chapter, we worked in the one dimensional euclidean space, now
in this chapter we will extend all the theory of Chapter 2 to the m-dimensional
euclidean space.

Later we will restrict the collection of all B-splines in R™ to a subfamily of
B-splines supported in a bounded subdomain. This will be used in Chapter
4 when studying finite element with B-splines. The way we shall restrict the
support of a B-spline to a bounded domain is via multiplication by a weight
function (see Section 1.4 for the definition of weight function). This choice
has some peculiarities, in special we have to pay attention to small support B-
splines because we want to express general polynomials restricted to a bounded
subdomain as a linear combination of B-splines with support in this subdomain.
To avoid this we introduce the weighted B-splines, the extended B-splines and
the weighted extended B-splines.

3.1 B-splines in R™

As in the one dimensional case there are different ways of defining B-splines.
We want a definition that preserves most of the results already mentioned. Here
the tensor product appears naturally.

Definition 3.1 (Tensor Product of B-splines). Let n = (ng,na,...,Nm),
n e NU{0h™, k = (k1,k2,....km) € Z™, and z = (z1,22,....,Tm) € R™.
The m-variate tensor product B-spline of coordinate degree n,, grid width h, is
defined as

m

b(n, k,h; ) := H b(ny,ku, h; Ty).

v=1

19
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Figure 3.1: B-spline of degree (6,3).

In Figure 3.1 we can see the B-spline b((6,3),(0,0),1;-) obtained from the
tensor product of the B-splines b(6,0,1;-) and b(3,0,1;-).

When n; = ny = ... = n,;, = n we use the same symbol n for the integer ng
and the multi-index (nq,n1,...n1).

Lemma 3.1 (Positivity and local support). The B-spline b(n,k,h;-) is pos-
itive on (0,n 4+ 1)"h+ (k1, k2, ..., km)h and vanishes outside this m-dimensional
cube.

Proof. This follows from the analogous properties of one dimensional B-splines.
See Lemma 2.1. O

Lemma 3.2. ||b(n,k,h;-)||2 = B™/2||b(n; )| 12, for all k € Z™.

Proof. Let Ty, : R™ — R™ be defined by Ty (x) = hx + kh; then det (T}) = h™.
In order to simplify the notation we denote Q¢ = supp b(n;-) = (0,n+ 1)™ and
Qr = supp b(n,k,h;-) = (0,n + 1)™h + kh.

Then we have that T (Qo) = Q, and using the change of variables formulas we

have
o 2 . 2
sy @w——m)M=/'@w——m)m
U 0, UM

2
=L(W@)W@=WWWWLD
0

Lemma 3.3 (Piecewise polynomial structure). The B-spline b(n,k,h;-) is
a polynomial of degree n in the variables xi,xs, ..., Tm on each grid cell

Q=[0,1]"h+1h, k<I<k+n,
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i.e., the B-splines can be written as

Z Caxaa C(n,n,...,n) 7é 07 S Ql-

ay,<n
According to Lemma 2.18, we have

Lemma 3.4. There exists exactly (n + 1)™ B-splines of degree n which are
nonzero on each grid cell Q).

Let us recall that the derivative of uniform B-splines is given in (2.2) and for
scaled translated B-splines is given in (2.8). Now we calculate the first partial
derivatives of a B-spline of two variables

b(n, k, h; ©) = b((n1,m2), (k1,k2), h; T1,T2) = b(n1, k1, h; 21)b(n2, ka2, h; T2).
ib( kh;x) = ﬂb( k1,h;21) ) b(na; ko, h)(22)
81'1 K,y - 8271 ni, k1, N, L1 na2, h2, 2

1

= E (b(nl — l,kl,h;flfl) — b(nl —1,k1 + 1,h;a:1)> b(ng,kz,h;.’ﬂg)
1

= E <b(n1 - l,kl,h;ml)b(nz,k2,h;1'2) — b(n1 —1,k1 + l,h;.’L'l)b(ng,lcg,h;:EQ))
1

= E <b((n1 - 15n2)5(k15k2)5h;$17$2) - b((nl —1,n2), (k1 + 1’k2)7h;$17$2))7

taking o = (1,0) we have:

0

1
a—xlb(n,k,h,m) = E (b(n— a,k,h,m) — b(n —a,lc—l—oe,h,:lf)),

with the help of multi-index notation we can compute all the first order partial
derivatives:

Lemma 3.5. The first order partial derivatives of the B-spline b(n, (k1, -, km), h; )

is the difference of two B-splines of lower degree, i.e.,

0°b(n, kyh;-) = % (b(n —a,k,h; ) — b(n— o,k + o, by -)) (3.1)

for the unit vectors a = (1,0, ..,0),(0,1,...,0), ..., (0,0,..,1).

Corollary 3.1 (Smoothness). b(n,k,h;-) is of class C"~' with respect to each
variable.

Corollary 3.2. b(n,k,h;)|0,1]mhttk, kK < 1 < k+n, is n times continuously
differentiable with constant O™* derivatives, and b(n,k,h;-) € H™(Y), where
H™(RQ) is the Sobolev space of order n.
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3.2 Splines on Bounded Domains

Up to here we have been working in the whole euclidean space. Since we are
interested in applications to elliptic partial differential equations in bounded do-
mains, we now study the properties of B-splines when restricted to a bounded
domain. This very important since one of the main advantages of using B-splines
to define a finite element space is that we do not need a mesh that depends on
the domain.

Consider 2 C R™, an open Lipschitz domain.
Definition 3.2. The set of relevant indices of B-splines for € is
K ={ke€Z™: supp b(n,k,h;-) N Q has positive Lebesgue measure }.
For a bounded domain Q C R™,
B}, () := span {b(n,k,h;-)}
kek

denotes the linear span of all B-splines which have some non zero measure sup-
port in Q.

From now on we will write b(k;-) instead of b(n,k,h; ), since n and h will be
fixed in the rest of this work.

Lemma 3.6 (Marsden’s Identity in R™). Let p(z,t) be a n degree polynomial
on x andt. We have

p(z,t) = Z q(k,t)b(k;2) Vr,teR", keZ™.
kezZm™

Proof. We only need to prove the lemma, for polynomials of the form

m

pla,t) = [[ (@ —t)™

v=1

From Marsden’s Identity in R and (2.12), given z, t € R™, we have

(x, —t,)" = Z q(ky,t,)b(ky; 2,).

kyEZ

Forming the tensor product we have!

p(.’]?,t) = H(xl/ - tV)n = Z q(k7t) H b(kV;xV)a
v=1 kezm v=1
where .
q(k,t) = H g(kv,t,). O
v=1

1Recall that the sum is locally finite.
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Considering t := 0; g(k) := ¢(k,0); p(z) := p(z,0) and z € Q in Marsden
identity we have:
Corollary 3.3 (Representation of Polynomials). Any multivariate poly-
nomial p(z) = >, ., cax® can be represented in the domain () as a linear

combination
pz) =Y q(k)b(k;z), Ve,
kex
where q is a multivariate polynomial of degree < n in each of the variables k, .

Example 3.1. Let h =1, n = 1, we want to find the expression of p(z) = x1z>.
Choose | = (0,0), then we have

q(0,0) =¥;,(0)=1-1=1, q(0,1)=1-2=2,
q(1,00=2-1=2, q(1,1)=2-2=4
Since q(k) = a + bky + cka + dki k2, we have
a=q(0,0)=1; b=¢q(0,1)—a=1; c=1; d=1;
ie., q(k) = kiks + ki + k2 + 1= (k1 + 1)(k2 + 1), therefore
z1my = Y (k1 + 1) (ks + 1)b(k; ).

kez?
Corollary 3.4. Any array of coefficients
q(k), kel+{0,1,...,n}™
determines all other B-spline coefficients uniquely.

Proof. This follows from the fact that ¢ is a polynomial of degree less than or
equal to n in each variable. O

This is a very important result for doing stabilization. See Section 3.4.

Corollary 3.5 (Local Linear Independence). For any open subset Q C (Q,
the set

{b(k;-) : k€ K and supp b(k;-) N Q has positive measure }

is linearly independent.

In order to match certain boundary conditions we need weight functions.
See Section 1.4.

Fix a positive weight function w, then w(-)b(k;-) is known as a weighted
B-spline.
Definition 3.3. For a bounded and open Lipschitz domain Q C R™,

wBL(N) := span {wb(k;-)}
kex

denotes the linear span of weighted B-splines.
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3.3 Classification of B-splines
Fix h > 0, and Q@ C R™. A grid cell @ =[0,1]™h + lh is said to be

interior if Q C Q.
boundary if int Q N9 # empty
exterior if QN Q) = empty.

See Figure 3.2.

Figure 3.2: We can observe the exterior grid cells (white), the boundary grid
cells (gray) and the interior grid cells (yellow); which are classified relative to
(left).

Define
7 :={i € K : there exists an interior grid cell @ C supp b(i;-)} and J := K/ZI.

A B-spline b(k;-) is called inner B-spline if k + 1 € Z, for some [ € {0,1,...,n}™
and is called outer B-spline otherwise.

In other words, an inner B-spline b(s; ) has at least an interior grid cell con-

tained in its support; and outer B-spline support consists entirely of boundary
and exterior cells. See Figure 3.3.

3.4 Extended B-splines
We start with an illustrative one dimensional example.

Example 3.2. Consider

1
0= (2—5,3); p(z) =2z, Vre.
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[T
S
"

N /
5/ B -
N N | /

Figure 3.3: We can observe the inner B-splines (left), and outer B-splines (right)
for a domain ). For each b(k;-) we have marked with “o” the point k € K C R?
which is the lower left corner of its support (green squares). In this case the
support of b(k;-) is k + [0, 3]2.

! b(0; )

1

Figure 3.4: Q= (2— 1,3)

Given x € ) we have the representation

p(z) =q(0)b(0; ) + q(1)b(1; %) + ¢(2)b(2; 7)
=1b(0; ) + 2b(1; ) + 3b(2; x), 2

We want to modify this expression to exclude small support B-splines restricted |

to (, in this case is b(0;-). See Figure 3.4.
Observe that q(1) = 2, q(2) = 3 determine the polynomial of coefficients q:

)
[
[
[
[
|

0
k—2 k-1 b(1;-) +2b(05-)

qa(k) = Q(l)m + Q(Z)ﬁ-

In particular q(0) = 2¢(1) + q(2)(—1). Hence

/
(2
fr-r
Figure 3.5: Equation (3.2) for z € Q.

) = 4(1) (152) + 260:)) + 4(2)(b0zs0) - b0i0) ). (32)
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Note that b(1;-) + 2b(0;-) and b(2;-) — b(0;-) does not have small support when
restricted to 2.

Now we discuss the general case. Let p be the restriction to 2 of a polynomial
of degree at most n. We know that

p(r) =Y q(k)b(k;z), =z €D, degree(q) <n

ke
= a(db(i2) + Y a(j)b(j; 2)- (3:3)
i€T JjET

Definition 3.4. For each j € J, choose any array of (n + 1)™ inner indices
Z(5) = L) +{0,1,...,n}™ C T,
i.e., 1 € Z(j) if and only if i = £(j)+i' € Z, i' = (1,35, ...,100,), 1, € {0,1,...,n}.

Q)
T ll

5-4-3-2-1012 3 45

G AONAPrORNM®WROG

Figure 3.6: For m = n = 2 and j = (0,0), the indices of Remark 3.1 are marked
with e in black. For (); the domain on the left of I'; in red. We can choose
for £(j) any of the indices marked with o in red. For £(j) = (—2,—3) we have
marked £(j) + {0,1,2}? with dotted circles in red.

Let |0€?| the measure of 99).

Remark 3.1. If h <« |09|, 90 looks locally as a hyperplane, then one of the
indices in (the boundary of) the cube j — {—1,0,1,...,n + 1}™, can be chosen
as £(j). See Figures 3.6 and 3.7 for the case m =n = 2.

Remark 3.2. If £(j) € j—{-1,0,1,...,n+1}™ is one of the indices from Remark
3.1, then the Hausdorff distance (based on the maximun norm) between {j} and
0G) +{0,1,...,n}™ is

p({j},ﬁ(j) +1{0,1, n}’”) —n+1,

See Section 1.3 for definition of Hausdorff distance.



3.4. EXTENDED B-SPLINES 27

G ANONAORNM®WROG

5-4-3-2-1012 3 45

Figure 3.7: For m =n = 2 and j = (0,0), the indices of Remark 3.1 are marked
with e in black. For 25 the domain to the right of I'; in blue. We can choose for
£(j) any of the indices marked with o in blue. For £(j) = (1,1) we have marked
2(5) + {0,1,2}? with dotted circles in blue.

Remark 3.3. For each j € 7 we can choose Z(j) as the (n + 1)™ dimensional
array which is closest to j with respect to the Hausdorff metric based on the
maximum norm in Z™.

Remark 3.4. In the case of h < |0Q|, we can assume that if £(j) is such that
p({7},€(j) + {0,1,...,n}™) > n + 1 then the B-spline b(¢;-) is not modified.

Since ¢ is a polynomial of degree at most n in each coordinate variable, it is
completely determined by its values at indexes in Z(j) (see Corollary 3.4).
Then, the value of ¢ at ¥ € Z™ can be computed by the following Lagrange
interpolation formula:

g(k) = > q(i)Li(k) (3.4)
i€Z(j)
where
m n k‘y—i:,
L =11 I 7=~ (3.5)
v=liez(j) Y
ii,#’iu

Note that (3.4) can be written as

i€Z(j)

where § is defined in Corollary 2.2. Then L;(k) does not depend on h.
Observe that L;(¢) = 9, ;, for © € Z(j).

1,12

Since Z(j) = £(j) + {0,1, ...,n}™ we have i}, = £, + p with p € {0,1,...,n},
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then (3.5) can be written as:

n =11 T Pl it @)= @),

ej:=1L H H JV:E _N (3.6)

v=1 p=0
Ly +pFiy

and for simplicity set e; ; = 0 for i ¢ Z(j), then

q(j) = Z ei,jq(i),
i€Z(5)
and reordering the terms in (3.3) and defining
J@)={jeJ:ieI()}

we get

pla) = 3 qli zm+z(z)emq )b(j;w)

i€L JET MEI(j
= Z q(7) (b(i; x) + Z e;,;b(3; a:)) (3.7
i€l JET(3)

Note that J(7) may be empty (and it would be so for most inner B-splines).
Observe also that coefficients e; ; do not depend on h.

Lemma 3.7 (Extension coefficients). There ezists constants c and C, inde-
pendent of h, such that

ei; =0, if [li—jll=ec
leij| < C  otherwise.

Moreover, only < h'~™ B-splines near the boundary need to be modified.

Proof. The set of indexes Z(j) is an (n + 1)™-array of integers in Z which is
closest to j with respect to the Hausdorff metric based on the maximum norm
in Z™. See Remark 3.3. Accordingly, the lattice points Z(j) are close to the
point j. We note that, for h sufficiently small, the smooth boundary of € is
locally close to a hyperplane. Hence, the Hausdorff distance between j and
Z(j) can be bounded asymptotically by n + 1. See Remark 3.1, and 3.2. This
yields e; ; = 0 for p({j},€(j) + {0,1,...,n}™) > n + 1, see Remark 3.4. On
the other hand by definition, the coefficients e; ; are the products of univariate
Lagrange polynomials, and by scaling, they are independent of h. This yields
the “otherwise” part.

For the second affirmation, it is enough to see Remark 3.4. O
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From (3.7) we have

where
B(i;z) := b(4;z) + Z eijb(j;x), = €. (3.8)
jeIg(@)
B(i;-) is known an extended B-spline.

Note that
supp b(i;-) C supp B(s;-).

3.5 Web-Splines

Definition 3.5. Consider the extended B-splines
B(i;-) =b(i;-) + > eib(s;-)-
JET (i)
Since supp b(s;-) = ih + [0,n + 1]™h, we can always find an interior grid cell
Qi,7(:) such that
@i,](i) C supp b(i;-),
Q\ii\y(z’) N supp b(j;-) does not have positive measure for j € J, (3.9
where J is the set of outer indices.
Let z; = xi(Q\i,J(i)) denote the center of Q\i,J(i)
Then, if we multiply the previous extended B-spline B(i;x) by the factor

w(z)/w(x;) where w is a positive weight function (see Section 1.4) and z; is the
center of the interior grid cell of the previous definition, we obtain

4 w() o
B(i;-) := w(a:i)B(z’ ). (3.10)
We refer to it as weighted extended B-spline (web-splines).

The factor w(-) /w(x;) causes the weighted extended B-spline B(i; -) to vanish
at the boundary of 2 and also magnifies functions supported near the boundary
for scaling purposes, since w(-)/w(z;) is close to 1 near z;.

This fact will important for stability analysis.

Remark 3.5. Observe that supp B(i;-) = supp B(i;-) N Q and we have

supp B(i;-) C supp b(i;-)U | supp b(j;-).
€T
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Moreover, when h is small enough we can assume that supp B(s; ) is connected
and supp b(s; -) Nsupp b(j; -), contains at least one edge, Vj € J (i), see Remark
3.1.

Remark 3.6. When h is small enough we observe that

1. supp B(3;-) = supp b(i;-) C x; + [—(n + 1/2),(n + 1/2)]™h for inner B-
splines that are not modified. See Remark 3.4.

2. Since, from previous remark supp B(i; -) is connected, given x € supp B(i;-)
we have

l|Zi — z||oo < (n+1/24+n+1)h = (2n+3/2)h

then supp B(i;-) C z; + [—(2n + 3/2),(2n + 3/2)]™h.

Except for positivity, weighted extended B-splines inherit all essential prop-
erties from B-splines.

Lemma 3.8. For the majority of inner indices i, B(i;-) = "’('3 b(s;-), as h
become small.

Proof. For weighted extended B-splines with support sufficiently separated from
the boundary we have

B(i;z) = (w(z)/w(w:))b(i; x), Va € supp B ).
See Remark 3.4. O
Lemma 3.9 (Local support). The diameter of supp B(i;-) is of order h.
Proof. Clearly there exists ¢ > 0 such that
supp B(i;-) C @i + [—c,c|™h,

where x; is the center of interior the grid cell @, 7(i) in Definition 3.5, this can
be seen easily from Remark 3.6. O

Corollary 3.6. For h small enough we have #(J (1)) < 1.
Proof. Take jo € J (i) we have
supp b(jo; -) € supp B(i;-) € =i + [—¢, ™

where ¢ < 2n 4 3/2. In particular jo € {k € Z™ : k € z; + [—c,c]™h} but this
last set can have at most (4n + 3)™ grid points. O

Lemma 3.10. On each set Q N Q only < 1 web-splines are nonzero.
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Proof. Define
Z(Q) := {i : 3z € Q such that B(i;z) # 0}.
If @ is an interior grid cell we have
Z(Q) = {i € T : 3z € Q such that b(;; ) # 0},

because in this case B(i;-)|g = (w(-)/w(z;))b(i;-), since no outer B-splines
has an interior grid cell in this support. From Remark 3.4 we know that

#Z(Q)) < (n+1)™.

If @ is a boundary grid cell we have

I(Q)C{iel: Hxié%;;(ilghat }U{jej(i); Hwi&;?c;(t)hat }’

then we can bound

#(Z(Q) < (n+ 1™+ #(IT (@) (n+1)™.
and for Corollary 3.6 we have the result. O
Lemma 3.11. The collection {B(i;-)}icz is linearly independent.

Proof. The linear independence of B(i;-) follows from the fact that the local
linear independence for b(i;-), see Corollary 3.5, since B(i;-) restricted to an
interior grid cell is exactly w(-)/w(=z;)b(s;-). O

Definition 3.6. For a bounded and open Lipschitz domain Q C R™,

webBy () := span {B(i;-)}

i€z
denotes the linear span of weighted extended B-splines B(i; ).

This way, {B(i; ) }icz is also referred to as a web-basis of webB} ().
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Chapter 4

Finite Element Analysis
with B-splines

In this chapter we present a Galerkin discretization using B-splines applied to
elliptic problems with Dirichlet boundary condition. Recall from the previous
chapter the definition of w8} () (Definition 3.3) and web®B}(Q) (Definition
3.6) which are going to be our finite element spaces with basis functions being
the weighted B-splines and weighted extended B-splines, respectively.

We explain this in more detail in Section 4.1, at the end of which we explain
the organization of the rest of the chapter.

To avoid proliferation of constants, we will use the notation A < B to rep-
resent the inequality A < const B.

4.1 Finite Elements

Let V be a Hilbert space with inner product (-,-)y and norm

|ullv = \/m, forallu e V

Let V' denote the dual space of V, with the dual norm || - [|y-.
For a: V xV — R, continuous (or bounded) bilinear form define

llallv = sup  a(u,v).
llull=1,]lo]|=1

Note that for all u, v € V' we have |a(u,v)| < ||a||v||u]|v||v]]v-

Given f € V' consider the following problem

Find u € V such that:
a(u,v) = f(v) YveV

33
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i.e., find u such that the continuous linear functional v — a(u,v) is precisely f.

Definition 4.1. We say that o bilinear form a : V x V. — R is a-elliptic on V
if there exists a real number oo > 0 such that

a(v,v) > a|jv|3; YveV.

Note that if a is elliptic and continuous then ||v||, := y/a(v,v) is a norm on
V equivalent to || - ||v,

va [pollv <llvlla < Vllall [lollv Vv eV

To solve the problem (4.1) we use the following

Lemma 4.1 (Lax-Milgram). If a : V x V — R is continuous and elliptic
then for each f € V', the problem (4.1) has a unique solution u. Moreover, u
satisfies

a(u,v) = f(v), YveV
1
llully < ~[I£llv
As an example we have a test problem. Solve the equation

—Auy =g inQ
u =0 on 0f.

Consider V = H}(Q), and f € (H}(2))" defined by equation
(o) =10 = [ g0, Yoe Hi(@).

Since, under regular enough conditions we have from Green’s formula

—/Auv:—/ v@nu-l-/Vqu:/VuVU.
Q o) Q Q

Definea:V xV — R by

a(u,v) = / Vu V.
Q
Since u, v € H; (1), the integral is well defined and a is continuous,

la(u, )| < |la]| {[ul[vv]]v.

To apply Lax-Milgram lemma we need ellipticity of a bilinear from a, this is
consequence of Friedrichs Inequality (Lemma 1.2).

We consider approximation schemes for the variational problem just de-
fined. To approximate problem (4.1), we apply the so-called Ritz-Galerkin
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method based upon the variational principle. It consists of replacing the infinite-
dimensional space V by a finite-dimensional space V}, C V, dimV;, = N < oo.
In the case of these notes, this finite dimensional space is one generated by
weighted B-splines (see Section 3.2) or weighted extended B-splines (see Section

3.5).
The Hilbert space V}, is equipped with the same norm || - ||y. We assume the
following approximation property of V},
inf |[v—wvp|| >0 ash—0, YveV. (4.3)
vhEVA

The index h (which is the grid size) will refer to a mesh which our approxi-
mations are derived from. The Galerkin approximation to (4.1) is defined as
follows

{ Find uj € V} such that: (4.4)

a(up,v) = f(v) Yv e V.
Let u be a solution to (4.1), we have:

Lemma 4.2 (Céa’s Lemma). Under the assumptions of Laz-Milgram Lemma
there exists a unique solution up, to problem (4.4), with

1
[[un|lv < o [[£l]v (4.5)

llal|
— < f — . 4.6
llu —unlly < == inf |lu—ovallv (4.6)

Proof. Subtracting (4.4) form (4.1), we get
a(u —up,vp) =0 Yo, € V.
Thus
allu—upll} < alu—up,u—up)
= a(u —up,u —vp) + a(u — up, vy — up)

=a(u —up,u —vy)

IA

lall [lu—up|lv|lw—vally  Vop € Vi
Hence (4.6) follows. O

In our case V = Hy(Q), Vi, = wBE(Q) or V;, = webBR () and then a Ritz
Galerkin approximation is of the form

Find up, € wB3 () such that: (47
a(up,v) = f(v) Yv € wBF(Q). ’
where up = ), a;wb(i; -); or
Find up € webBE(02) such that: (48)
a(up,v) = f(v) Vv € webBR(Q). ’
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where up, = Y 7 aiB(i;-).

Céa’s lemma then becomes

i - 4.
||u uh”Hl(Q) = ) lnfh( ) ”u Uh”Hl(Q) ( 9)
or
U — Up < inf u— . 4.10
|| ||H1(Q) = o leb‘)S ©) ” 'Uh“Hl(Q) ( )

To estimate the right hand side of (4.9) or (4.10), as usual , we construct a
(quasi)interpolation operator with some approximation properties.
In order to construct this interpolation operator and derive the estimates cor-
responding to its approximation we introduce dual functions in Section 4.2.

After defining the quasi interpolator operator we present its approximations
properties, which depends on the regularity of u/w where u is the true solution
of our elliptic problem and w is the weight function, see Section 4.3.

4.2 Dual Basis Functions

We will construct dual basis functions for weighted extended B-splines. We first
construct a dual function related to b(0;-) on a cube contained in its support.

Lemma 4.3. Let h =1 and Q an m-dimensional cube with Q C supp b(0;-) =
[0,n + 1]™. There exists a function A such that:

supp A C Q
) _ _J1, if k=0
/Q/\(:c)b(k, z)dx = o = {07 i kA0,

Proof. Define
Iy ={k € Z™ : supp b(k;-) N Q has positive measure}.
Observe that 0 = (0,0, ...,0) € Iy and let V = span {b(k;-)|q : k € Ip}.
Consider pg : V' — R defined by po(_ ¢z, arb(k;-)) = ao, since {b(k; -)|q }rero

are linearly independents, pg is well defined.
Observe that

(b,c)g :/ b(z)e(z)dz, b,ceV,
Q
is an inner product on V. Then by Riesz representation theorem there exists

A €V with
(A b)g = polb) VbeV.

In particular

(A b(k;-))@ = po(blk; ) = Go,k- O
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Example 4.1. Consider m =1, h =1 and V = span {b(-1;-),b(0;-)}.
Let @ =[1/2,1]. There exists A € V such that
A0(=15-))@ =0, (A b(05-))g = 1.
Put A = a1b(-1;-) + a2b(0; ), we want to show that

a1{b(-1;-),b(-1;-))q + a2(b(0; ), b(-1; -
a1 (b(-1;-),b(0;-))@ + a2(b(0;-), b(0; -

1 (7 ) () = ()

We get ay = —4/45, ay = 14/45, i.e., A = (14 — 18z).

~—
~
Q
I
—

hence,

Next lemma says that the function A in Lemma 4.3 can be chosen with
bounded L2(f2) norm. See Section 1.2.

Lemma 4.4. Let h = 1 and Qf C supp b(0;-) = [0,n + 1]™. Qf an m-
dimensional cube of width § < n + 1. Then there exists a function Ao with

supp Ao C Qo (4.11)

/ No(@)b(k; 2)dz = Go.x, (4.12)
a

and ||Xollz2 < ¢, where ¢ is a constant depending only on m, n and 6.

21241
0 0 ’

the interval [0,n + 1] can be partitioned into (| 2|+ 1)(n + 1) intervals of length

Proof. Since

1 0
m < 3’ (413)
[4

where |z]| denote the integer part of z.

Then [0,n + 1]™ can be partitioned in N = ([%J +1)(n+ 1)) m-cubes of

width < 6/2.
Let @;, j =1,2,..,N be these cubes.
From Lemma 4.3 applied to Q; we get Aj, j =1,2,..., N such that

supp A; C @
(Aj; b(k;))q; = do,k-

If Qg has width 6, then from (4.13) there exists at least an index j € {1,2,..,N}
such that

Q; Cint Qq.

M-

0
0=14,n=2
Choose @),



i

i

0 1 2
n=2,6=009

Choose @;

3
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Take Ao = A; in ); and A9 = 0 in Q(/Q; then (4.11) and (4.12) holds.

We also have
IMollZ2 = (Ao, Xo)ey
=(Aj,A)q, from definition of Ag
< I3, volume (Q;)

2
< max [[Ajll volume (Q;)

and observe that the last term depends only on 6, m and n. (dependency on n
being because A; is a linear combinations of b(k;-)’s that have degree n). O

Previous lemma can be reformulated for arbitrary h and index i, according
to

Lemma 4.5. Let Q) be an m-dimensional cube with width 0h, and such that
Q! C supp b(i;-), i € Z™. There exists a function \; with:

supp Ai C Q; (4.14)
L if i—
Xi(z)b(k;z)de = 6 =< Zf Z k (4.15)
Q, 0, if i#k
Aillz2 < ch™™/2, (4.16)

where ¢ is a constant depending only m (dimension), n (degree of b(i;-)) and 0
(width factor).

Proof. Let T; : R™ — R™ defined by T;(x) = zh + ih.
We have det (T;) = h™, and

T;(supp b(0;-)) = T;((0,n + 1)™) = (0,n + 1)™h + ih = supp b(s; ).

Let Q} = T3(Qy), observe that Qf has width 6. From Lemma 4.4 there exists
Ao such that (4.11) and (4.12) holds.
Define

A(@) = - Ao(T(@))

Then (4.14) holds and
/ Ai(2)b(k; x)dx = / Ai(2)b(k; z)dx
Qi T:(Qb)

= [ N(T7 )b(k; Ta(y)) det (Ti)dy
Qb

= [ Ao(y)b(k; hy + hi)dy
Qb

= [ o)k —i,159)dy
Qo

= 00,k—i = Ok.i,



4.2. DUAL BASIS FUNCTIONS 39

where
b(k: hy + hi) = b(m, b, hs hy + hi) = b(m: "2 Z Mgy
=bln;y+i—k) =b(nk—i,1;y) and h=1.
Moreover
e = [ TN = [N = ol < epp
where ¢ depends only on m, n and 6. (See Lemma 4.4). O

The construction of \; related to b(s; -) in the previous lemma can be adapted
also for weighted extended B-splines. We have, by recalling the form of weighted
extended B-spline, that

B(i;z) = “’@ B(isz) = &) (b(z’;:c) + 3 ei,jb(j;a:)),

w(z;) 76

where w is a weight function of order «y (see Definition 1.3).

Lemma 4.6. For each weighted extended B-spline B(i;-) there exists a function
A; such that

supp A; C Q4
(Ai, B(i';- ), = biw 4,3’ €I,
lAillz2 < ch~™/2,

where ¢ is a constant depending only onn, w, Q and Q; = Q\i,J(i) is the interior
grid cell of Definition 3.5, i.e.,

Qi C supp b(i; ),
Qi N supp b(j;-) does not have positive measure for j € J. (4.17)

Proof. With z; the center of Q; = Q\z 7(i)- Apply Lemma 4.5 to the cube

1
' g+ ——[—h, B]™
Q1 T + 4\/5[ ’ ] ’
which has diameter § = ﬁ (see Figure 4.1).

We obtain \; such that

supp \; C @,
(A, b(G5 )@t = 6>

1
IAillz2 < CW
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Figure 4.1: @}, and @Q; from Lemma 4.6.

where c is a constant depending only on m, n and 6.

Define

Ai(z) == ——SNi(@), z€Q; (4.18)
and extended by zero outside Q.

We have for i, i’ € Z, and = € Q)

/ Ai(@)B(i; 2)dzx = / W)y o) “’(‘”,)) (b(i’;w)-i- 3 ei/,jb(j;:c))dx

JeT(i)

i

= ng; / Ai(z)b(i';x)dx  because Q; C Q;,and eq (4.17)
GG
= (a0

r ]
o \ For € supp A; C Q) we have
.Wmi Q'l ¢

L d(zi,z) < sup d(u,v) = Vim Oh = 2,
o Qi u,vEQ) 4
F-—-h---4H from (1.1) and triangle inequality we have that
A(e,T) > (o T) — d(zi,z) > (i ) ~

> d(z;,T) — %d(mi,l“) because Q; C int €, and d(z;,T) > h/2
1 1
= (1 - 3)d(zs,T) = Ld(ai,T).

Hence
d(il?z', F)

d(z,T)
Since w is a weighted function of order ~, from definition, we have

w(T; w T, 7 w
(@) C_@((%FFD < zvf_w. (4.19)

<.

w(z) Cw
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This implies

Then

o = 2e| = [ | (20) st oy

1
< 02/ N(@)dz = C2 ()| < e—. O
@

hm’
Lemma 4.7. If Q is convez, for any weight function w of order v there exists
a constant C' such that
2l
)

< C(l + 2\/ﬁ> Va € supp B(i;-),

where x; is the center of the interior grid cell Q\z 7(i) n Definition 3.5.
Proof. For all z in the support of B(s;-) we have

d(z,T) < d(z;,T) + [l — 2]| < d(2i,T) + hv/m < (14 2¢/m)d(z;,T)
because ||z — z;|| < diam Q\,-J(,-) = hy/m and d(z;,T") > h/2. Then,

d(z,T)

< .
A D) S 14+ 2vm

Since w is a weight function of order v there exists constants ¢,, and C,, such

that (@) Cu [ dz )\ C
< _w(d(a:;,I‘)> <, arzmy

In the same way that we did with (4.19) we can show that

’lU(:L'z) Cw

w(z) 1 ¢y
Z 9~ 0
w(z;) 7 Cu

then,

277¢ <

<C1l+2ym)". O

Lemma 4.8. For i € Z, the weighted extended B-spline B(i;-) is uniformly
bounded with respect to the grid h

1B ) llpe < ¢ B™2,

where ¢ is a constant depending only of n, w and €.
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Proof. From Lemma 3.7 there exists a constant C' independent of h such that
lei,j| < C, then there exists a real positive constant Cs independent of h such

that
Do oleilP < ) P =0 (4.20)
JET (1) JET(3)
From Lemma 4.7 we have that

w(’)
< T = . .
wizs) = C1+2ym)" =Cy (4.21)
From Lemma 3.2 we get for any k € K, [|b(k;-)[|2. = h™||b(n; |2

From (4.20), (4.21) and the previous statement we have that

B = [ (20 (s + 3 euptin) do
[ 0Garass 3 jes Pl ]

J€T (i)
<CP (1
JET(9)

76)
= 621+ £ ) [0 + €2 7505 |
@)

—c (1 F 6 ) L+ COR™ (s I

The from Corollary 3.6 i.e., || B(5;)||z2 < const (n,w, Q)h™/2. O

Lemma 4.9 (Stability). The web-basis {B(i;-)}icz is stable with respect to
the grid h,

c k™| 4] €

S|, <cimm
icT L2

where ¢ and C' are constants depending only of n, w, and Q, and A = {a;}icz,
AP = X ez af.

Proof. The triangle and the Cauchy-Schwarz inequality and previous lemma
imply

Z aiB(z
i€L

Note that

2 2
) <( X wwlo w2) <o wmp@@) 3 lo
L2(QNQ)

1€L(Q) 1€Z(Q)

i €Z(Q) & Q € Q(i), where Q(i) == {Q:i € Z(Q)},

then by summing the above inequality over all grid cells () and interchanging
sums we obtain
2

<SCRmY T N el
L2

i€L QeQ(i)

Z aiB(i;-)

i€l
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Since #(Q(i)) < 1, (see Lemma 3.10), the right-hand side is < h™||A||?, proving
the upper bound for || 37,7 a:B(i;-)|| L2+

The lower bound is derived with the aid of the weighted dual functions A;.
By Lemma 4.6 and the Cauchy-Schwarz inequality we have

2

Jail* = ‘<Ai’ ; axB(k; -)>L2(Q¢)
Z%B(k; )
k

Z arB(k; )
&

Summing this estimate over i € Z, at most maxg #(Z(Q)) =< 1 repetitions can
occur on the right-hand side. Hence,

2
< AdllZ2 (g

L2(Qs)

<ch™™

L2(Q:)

147 = laif® <eh™™

2
. O
ieT L2

> arB(k;-)
k

Lemma 4.10 (Bernstein Inequality). If w is a {-regular weight function of
order vy we have

> aib(s)|

i€T

< const (n,w, Q™2 7"||A||, v<L<n.
HY (@)

Proof. Since the web-splines have local support (see Lemma 3.9) it is enough to
estimate the norm of the basis functions.

Let = € supp B(i;-). From Leibniz’s rule we have

o al 1 o ) )
0°B(i;x) = Z maﬁw(m)w(mi)a B(b(z;m) + Z ei,jb(g;m))

BLla JET(3)

From the definition of /-regularity, it follows that there exists C' depending
of w such that

10°w(z)| < Cd(z,T)"" P, |8 < min{y, ¢},

and from estimations obtained in Lemma 4.7 we have that

1 C(1 + 2y/m)7=Pld(z;, T)7~ 17
¢ d(z;,T)Y — ¢ d(z;,T)Y
< C1+2ym) 181 1 < C(1+2ym) Pl 281
= c d(z,T)I8l = c hiBl"

‘aﬁw(:ﬂ) < Cd(z, 1)1l

w(z;)
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If |3] > v, let M = maxgq |0%w(z)|; then

0Pw(x)

w(z;)

M 27
— ¢ hY’

max
Q

Therefore,

0Pw(x)

max
zEsupp B(%;-) ‘ /U)(.'L'Z)

y—18] min{|3|,7}
Smax{c(1+2\/E) %}(g) .

c e h

On the other hand we recall from Lemma 3.2 and Lemma 3.7 that for any
k€ K, ||b(k;)||52 = h™||b(n; -)||32, and there are only < 1 non zero coefficients
€;;- Then

2

a— : ; 7hm
o (b5 + Y i) <Oy
ieg (i) L
and follows that
. h™
aRri:. \||2
||6 B(Z; )||L2 < h2lal”

Now, by summing all derivatives of order |a| < v, we obtain a bound for the
norm H* () the B(s;-). O

4.3 Quasi-Interpolation and Error Estimates

With the aid of the dual functions A; defined in (4.18) we can define the canon-
ical projector

P L2(Q) = webBR(Q), Pru:= Y (Ai,uhrz()B(). (4.22)
i€

Lemma 4.11 (Weighted polynomial precision). For any polynomial p of
coordinate degree < n
Pr(wp) = wp.

In particular, the spline space webBR(Q) contains all weighted polynomials of
degree < n on (.

Proof.
Pr(wp) = Z(Az’; wp) 12 (0)B(4; )
€T

= Z(Az’,’wp)Lz(Q)b(i;m) + Z( Z ei,j<A,~,wp)Lz(Q))b(j; :E)

i€ JET NMeZ(F)
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On the other hand

w(z)p(@) = Y aB(kiz), z€Q,

kek
then, from Lemma 4.6
(Ai,wp)r2() = <Aialgcak6(k§ -)>L2(Q) = ag dix = ;.

Then
Pr(wp) = wp. O

Lemma 4.12. If w is a £-reqular weight function of order vy, then for any grid
cell Q

[[Prull v (@na) < const (n,w, Q)h™"||u||r2(gy v < min(¢,n),

where Q' is the union of the supports of all web-splines which are nonzero on
QNAQ.

Proof.

Prellrenoy < D2 i)y | 118G Ml supp 565:)-
i€2(Q)

From Lemma 4.6 we have that

lullr2(qs) < e(n,w, QR ™ ||ullr2(q),

[(Ai, w)r2@i)| < [Aillz2(qi

and also from the estimates in the Bernstein Inequality

||B(Z, ')”H"’(Supp B(;+)) < ch™?h ",

Then
[(Ass u)p2y| 1B )l v supp BGsy) < ch™ " llullpz(q,)-
Define
Q= [J supp BG).
1€Z(Q)
From Lemma 3.10 we know that #(Z(Q)) is < 1, then summing over Z(Q)
we get the result. O

The error of web-approximations depends on the regularity of the quotient

u
vi=—.
w
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Lemma 4.13. If w is a weight function of order v =1 and u = wv, then for
any subdomain QU C Q with distance § to the boundary,

loll ey < const (w,0) 5" (Jlullaeceny + Iolle-rca))-
Proof. Since u = vw, from Leibniz’s rule we have

a!l
o —

O%u(x) = ﬂsza Waﬁv(x)aa_ﬁw(m)

then for |a| = s

0%v(z) = (6°‘u(a:) - z ﬂ!(aaiiﬁ)!ﬁﬁv(x)aaﬁw(x)).

w(z) =
Let Q; C Q such that
dlz,T)=6 VzreQy, whereI C00.

Since w is of order 1, there exists a constant ¢ depending of w such that for all
z € 7, we have

111 11
w(z) ~ cd(z,T) ~ ¢é
Then
(vl @) < const (w,5) 37" (Julsrsa) + l[ollm1a) )
< const (w,s) 67! (|u He (1) T ||v||He_1(Ql)).
Hence,

J4

ey = Y- oleca) < const (w,0) 5 (lullaea,) + 010y
s=0

O

Lemma 4.14 (Regularity of Univariate Quotients). If p(0) = 0, and
q(t) :==p(t)/t, t € R, p € H((0,1)) then

) 2
1 llzqony < 57 1P le=qo-

Proof.
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By differentiating £ — 1 times we have that

e ! ' -1y
(t) = Zamra(t) = P (tz)2" dz.

Then, from Minkowsky’s inequality
1
lg“ Dllzaoap < /0 I (#2)2"" 210, 13,0002

1
- / 25O (t2)]| 20 11,00y
0

Note that
16O (t2) 3 o,11,00) = / 1 (t2) Pt = / o0 ()P

4 2 _ £)112
< [ O P =1 1O,
Then

1
i . 2
g1z o,y < IIP“)IILZ'([o,ﬂ)/ 7z = = P leaqo-
0
0

Corollary 4.1. If p is a function in R™, p(0,...,0) = 0 and q(z) := p(z)/z1
we have
R™
lallze—qogm = Y 110%allz2q0,1m) < const(m, £) ||pll e o, |
la|<e—1 Tangential  deriva-
tives do not affect
the estimate in

Lemma 4.15 (Regularity of Quotients). If w is a weight function of order Corollary 4.1
v =1 and u = wv, we have | gy
x1
l[v]| fre-1(0) < const (w, £, Q) ||ul| ge(o).- (4.23)

Proof. Let {fx}rcr be a smooth partition of unity. Since u = ), fau, it is
enough to show (4.23) for each of the functions fyu. To see this observe that if
(4.23) holds for each one of these functions, i.e., if

lfrv||e-1(q) < const (w, £, Q) || frullgee) VA€ L,
we have

ol ze-1(0) < D 1Fxvllme-10) 2 Y IHullaee
A A

= Z lullze oy = ullae@)-
)\
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Consider uy = fyu. Observe that supp uy C supp fa.

If d(supp ux,0Q) = & > 0 then w~! and its derivative are bounded, then we
can easily bound derivative of v = uy/w.

If d(supp ux, Q) = 0 we have to work more. Choosing appropriated coordi-
nates we way assume that the support of uy is contained in [0, 1] ! x [—¢,1/2]
and also is contained in

M ={z=(1):0<G<T P(Q) <t<1+4((),}CQ,
with ¢(0) =0, V¢(0) =0, ||V¢(¢)|| < €/m and e small. See Figure 4.2.

~
I
<
—~
)
~
f———————

Figure 4.2: Support of 2y

If » = 0 and w(zx) =t we can use the Corollary 4.1.

The general case of 1) Z 0 can be reduced to the case ) = 0 by a change of
variables.

We map Q) to the cube @ = [0,1]™ using the transformation 7' : R™ — R™
given for
T(x)=T(,t)=T(,s) =y wheres=t—1((). (4.24)

See Figure 4.3.

Observe that T'(Q2x) = [0,1]™ and
—1 U(C, t) U(C, s+ w(C))
T =0 =40 = wiCs + Q)
8 u(¢, 8 +9(Q))
w((, s + () 5
s ux o T~ (y)
w(C, s + () 8
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P -

—— = — — —_—_———

Figure 4.3: The transformation T defined in (4.24) maps Q, to [0, 1]™.

where the coefficient
s

w(C, s +4(C))

We have for vy = uy/w that

=<1, since w(-) < d(-,00).

loallzze-1(0) = lloalle-1(ay) < const(T) |lux o T~ | ge=1(7(ay))
uyoT 1

< const(T) .

H=1([0,1]™)
< const(T) const(£,m) [[ux o T || ge(po,1m)

< const(T, £, m) [Jurllaea,y. O

Lemma 4.16. Let f € HY(Q), and w a weight function of order v = 1. For
any subdomain Q' of Q we have

lw fllaeoy = (nba,.xw) I erecory + 11f lEe-1 o)

Proof. By Leibniz’s rule we have
Mw f) = Z (g) OPf OFPw = (0*f) w+ Z (g) P f o Puw.
BLp B<p
For ' C Q

I I B
0" (wf) < (maxw) 0" f + M Y 8°F,
B<p
where M depends on the maximum of derivatives of w up order |3| which are

finite because w is order v = 1. Then

|w f|HP(Q') = Z otw f < (rrquw) |f|HP(Q’) + ”f”HP—l(Q’);

lul=p
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and
¢
lw fllzey =D [w flae@) =2 (maxw) || fllmery + 1 fllme-1(e)-

p=0
o

Lemma 4.17 (Jackson Inequality). If w is a weight function of order v =1,
for any function u € H*(Q) which vanish on 0, we have

lu — Prul| ey < const (n,w, Q) Rkt [lull ey, €<k <n+1.

Proof. Define

Q' = |J supp B(;-) C Q.
1€Z(Q)
Let m,v be a polynomial of degree n such that !

lv = mnollms @y 27 Jollan@y s<p<n+l (4.25)

Recall that if wp is a weighted polynomial then Pp(wp) = wp, see Lemma
4.11. We have

llu — Prullav @ne)y = lwv — Prwol|lgv gne)

< lwv — wrpvl| e (o) + lwrv — Prwol|gv (gno)

< lwv — wmpv||5e (@na) + [[Ph(wv — wmpv)|| me (@ney

=2 wv — wrpol| gr o) + 77 |lw(v — m0)|| L2y (4.26)

From Lemma 4.16 we have
o — w0ty 3 (masw) o~ matilaeorey
+ llv — mpoll Bv-1(@na) (4.27)
and

(v = m0)lz2(@) < (maxw) o = mwvll = @n-
From the equation (4.26) we have
o= Pl ey = | (g w) o = vl cany + 10 = Taollr— ooy |
+h7 (rrg,}xw) llv — mnollL2(qn
<(agecw) [l = maoll ooy + 1 o — mavllocen |
+ [|[v = Tl Er-1(Qne) - (4.28)

Let ¢ = dist(Q', 09).

1We can use the orthogonal projection or other interpolations. See [1], [6].
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1. 0 < h. Since diam(Q') < h and w < d(-,09), we have that

maxw = h.
QI
From (4.25)
llo = mnoll e @y 2 B ol Ee-1(gn (n=k-1,5=v)
||U — 7l'n’l)||L2(Ql) j hk71||v||Hk—1(Ql) (/J =k— 1, § = O)

||'U - 7TnU||Hu—1(QI) j hk_l_y+1||'l}||Hk—1(Ql) (/J/ =k- 1,8 =V - ].)
Then from (4.28) we deduce that

lu — Prull v (@nay 2h hk_l_VHUHHk—l(Q') + h_yhk_lllv”H’“—l(Q’)

+ R ol - )
< B ol -1 g

2. h < 4. In this case, Q' C 2, and since diam(Q’') <X h and w =< d(-,090), we
have that

nngwj(5+hj(5, and gjl.

Then from (4.25) we have

lv = mvllEv @y < R0l oy (w="k,s=v)
o — mnollL2(@ry 2 R* Il e (n=Fk,5=0)
lo = mpollge-1(0ry 2 R H ol e (n=k,s=v-1).

Then from (4.28) we deduce that
lv — Prullgv(gna) =6 [hk_"”U”Hk(Q') + hk”U”H’“(Q’)] + hk_V—HH'UHH’“(Q’)

< [hk"”’UHHk(Q') + th”””H’e(Q')] + hkiy—H”v”H’c(Q’)

<8 B ol e gy + RET T ol
24 hki””U”H‘“(Q') + hk*"5||v||Hk(Q/), because h < §

<H (6 lolleon )

< Bhv 561 (HUHH’“(Q’) + ||U||Hk—1(Q’)) from Lemma 4.13

< pk—v (Hu”Hk(Q:) + ||’U||Hk—1(Ql)).
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Summarizing we have that

llu — Prullere(@roy < B <||U||Hk—1(Q') + ||U||Hk(Q')> < B |ull e

by Lemma 4.15. Summing on each Q N Q) we get the result. O
Using the Céa’s lemma, (4.9) or (4.10) we can prove

Lemma 4.18. Let u € H*(Q) be the solution of the Dirichlet problem (4.2)
and up, a finite element approximation obtained by solving the Galerkin system
(4.7) or (4.8). Then

llu — unllm @) < Bl g (o)-



Chapter 5

Numerical Examples and
Finals Comments

5.1 Numerical Examples

numericalexamples Consider the problem:

{—Au =f inQ

u =0 ond (5.1)

with Q = [w > 0], where
w(z,y) = 0.09 — (z — 0.5)> — (y — 0.5)*

and the right-hand side f = 4 so that u(z,y) = w(z,y) solves the problem (5.1).

In figure 5.1 we show the exact solution and its B-spline approximation using
wBR(Q) when h = 1/64.

In Figure 5.2 we show the approximation quotient u/w for webB} ().

The sparsity patter of the matrix A using wB} () and G using webB} ()
are showm in Figure 5.3.

The ratio of conditions numbers in this case is % =1.7%.

Observe that G is less sparse that A but we note that A is more ill condi-
tioned that G.

We summarize the numerical experiments in Table 5.1.

5.2 Finals Comments

We proved that the span of weighted B-splines and the span of weighted ex-
tended B-splines satisfy the requirements of a finite element space to solve nu-

53
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i

i

Figure 5.1: Exact solution (left) of problem (5.1) and its B-spline approximation
(right) using wB} ().

h 1/64 1/128 1/256
#7 1232 4792 18820
#J 164 316 620
#U; Z(j) 444 900 1812
wBL(Q) eITor max 0.0011 499 x107* [ 2.5 x 101
error L | 3.25x107* | 1.69 x 10~* | 1.7 x 10~°
webBY(Q) | error max 0.0021 9.45x 107* | 4.8 x10*
:Eég 1.7% 1.5% 1.7%

Table 5.1: Summary of numericall results

merically a elliptic problem with Dirichlet condition.

We recall that the advantages of using these spaces are

Simple basis functions.

No domain dependence grid is required.

Accurate approximations are possible with relatively low dimensional sub-

spaces.

Smoothness of the Galerkin approximation can be chosen arbitrary.

Approximation can be chosen arbitrary.



5.2. FINALS COMMENTS

umh ” Hnlnn ’;'l‘l“ “l i W‘l\“”‘

Figure 5.2: Approximation u/w using web®B} (12).

0 T 0
500 '
200+ x)
10001
400+
15001
600
20001
800
25001
3000 NG 4 1000}
35001
L L L L L L L 12000 L L L L L d
0 500 1000 1500 2000 2500 3000 3500 0 200 400 600 800 1000 1200

nz = 34741 nz = 37122

Figure 5.3: Using wB} () (left) and webB () (right)
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