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Abstract

We develop a two-level splitting method for the numerical solution of parabolic partial di�eren-

tial equations (PDE). Instead of using the backward Euler method, we use an operator splitting

scheme to advance the system of equations obtained from the spatial discretization of the PDE.

The split operators are derived from a domain decomposition technique based on a partition

of unity of the spatial domain. The analysis and numerical results show that the discretization

error is of second order in space and of �rst order in time, however, it deteriorates when the

number of subdomains increases and when the overlap between the subdomains decreases. To

overcome this drawback we introduce a coarse grid correction scheme at each time step. The

numerical results obtained with the coarse grid correction show that the discretization errors

are smaller than the ones obtained from the one-level operator splitting method.



Resumo

Nós desenvolvemos um método de splitting de dois níveis para a solução numérica de equações

diferenciais parciais parabólicas (EDP). Ao invés de usarmos o método de backward Euler,

nós usamos um esquema de divisão de operador para avançar o sistema de equações obtido

da discretização da EDP no espaço. Os operadores são obtidos por uma técnica de decom-

posição de domínio baseada numa partição da unidade do espaço. A análise e os resultados

numéricos mostram que o erro de discretização é de primeira ordem em relação ao tempo e

de segunda ordem em relação ao espaço, contudo, ele se deteriora com o aumento do número

de subdomínios e a diminuição do tamanho da sobreposição entre esses subdomínios. Para

resolver este problema, introduzimos um esquema de correção de malha grossa em cada passo

de tempo. Os resultados numéricos obtidos pela correção da malha grossa mostram que os

erros de discretização são menores que aqueles obtidos pelo método de splitting de operador de

um nível.
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Notation

Ω spatial domain of the problem contained in Rd

Ω̄ the union of Ω and its boundary ∂Ω

u(x, t) exact solution of the parabolic partial di�erential equation (2.1)

g(x) initial condition of problem (2.1)

L operator ∂xx

P operator (∂t − ∂xx)

m̂ number of spatial subintervals

h spatial mesh size

m index of the spatial nodes

Ωh set of interior nodes in Ω

gh pointwise evaluation of the initial condition g(x) on Ωh

A spatial discretization of the operator L with mesh size h

n̂ number of time subintervals

k time discretization step

n index of time step

φn
m φ(mh, nk)

Ph,k discretization of P with the backward-time central-space scheme (BTCS)

vn discrete solution of (2.1) using the BTCS scheme at time nk

I identity matrix

O matrix with all elements equal to zero

‖y‖2 Euclidean norm of the vector y

‖y‖h norm of the vector y as de�ned in (2.11)

|||B|||h spectral norm of the matrix B as de�ned in (2.12)

`n+1
be (φ) local truncation error for the smooth function φ of the BTCS scheme at time (n+ 1)k

q̂ number of operators used in the splitting method

q index of the operators used in the splitting method

wn �rst-order splitting discrete solution of the problem (2.1) at time nk

2β overlap between two neighboring subdomains composing an open covering of Ω

ŝ number of overlapping subdomains {Ω∗
s}s=1,...,ŝ

s index of the partition of unity {χs}s=1,...,ŝ and the overlapping subdomains {Ω∗
s}s=1,...,ŝ



{χs}s=1,...,ŝ partition of unity used to derive the overlapping subdomainsΩ∗
s

χ̃q partition of unity used to derive operator Lq

Lq operator ∂x(χ̃q∂xu)

Aq spatial discretization of the operator Lq

`n+1
sp (φ) local truncation error for the smooth function φ of the �rst-order splitting method

at time (n+ 1)k

H coarse grid spatial size

ΩH {x ∈ R : x = xs = sH, s = 1, . . . , ŝ− 1, H = 1/ŝ}
vH a vector v in the coarse grid ΩH

vh a vector v in the �ne grid Ωh

zn the two-level discrete solution of problem (2.1) at time nk
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Chapter 1

Introduction

Let us consider the parabolic equation for u(x, t) on a domain Ω ⊂ Rd [7]:
∂tu(x, t) = ∇ · (D(x)∇u(x, t))− c(x)u(x, t) + f(x, t) in Ω× (0, T )

u(x, 0) = g(x) on Ω× 0

u(x, t) = 0 in ∂Ω× (0, T ),

(1.1)

whereD(x) is a symmetric positive de�nite d×dmatrix function with C2q̂−1(Ω̄) entries, c(x) ≥ 0

is a scalar function in C2q̂(Ω̄), f(x, t) is the forcing term in C2q̂(Ω̄× [0, T ]) and g(x) ∈ C2q̂(Ω̄) is

the initial condition. It can be shown that the exact solution u(x, t) of (1.1) is in C2q̂(Ω̄×[0, T ]).

The regularity parameter q̂ represents also the number of operators used in the operator splitting

method presented in Chapter 3.

The numerical solution of the parabolic partial di�erential equation (1.1), using an implicit

numerical scheme, requires the solution of a relatively large linear system of equations. This

linear system can be solved inexactly provided that the inexact solutions preserve the stability

and local truncation error of the original scheme [7]. We consider non-iterative inexact solvers

at each time step. Such solvers include the alternating direction method (ADI) of Douglas and

Gunn [3], and Peaceman and Rachford [8] (for two-dimensional problems), and the fractional

step methods (FS) of Bagrinovskii and Godunov [1], Yanenko [13] and Strang [10]. In this

thesis, we consider FS methods only.

The method proposed here uses the same framework as the classical FS method for solving

parabolic equations of the form (1.1) [1, 13, 10, 4]. However, instead of using the approach of

splitting the operator L in the coordinate axes, we use a splitting based on domain decompo-

sition, as in [7]. The domain decomposition is obtained from a smooth partition of unity that
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decomposes the domain in overlapping subdomains. As a result, the elliptic operator L can be

split as the sum of simpler operators represented as:

L = L1 + ...+ Lq̂.

The advantage of splitting methods is that the operators Li and associated equations

∂tu+ Lqu = fq, ∀q = 1, . . . , q̂, (1.2)

are cheaper to solve than the equation (1.1). By using a splitting based domain decomposition

on the operator L, we replace the problem (1.1) by solving in parallel equations of the form

(1.2).

Although the splitting based on domain decomposition is easy to implement, the method

shows a severe deterioration of the accuracy of the error when the number of subdomains in-

creases since no global communication among the subdomains of Ω is inherited in the algorithm.

Hence, the method does not resolve the low frequencies. To overcome the lack of global com-

munication, we introduce a two-level approach by considering a coarse grid to resolve the low

frequencies and improve the accuracy of the method.

In Chapter 2, we present the simpli�cation of problem (1.1), which we use to demonstrate

the theory. We introduce the discrete problem and the concepts of stability, local truncation

error, consistency and global error.

In Chapter 3, we introduce the construction of the partition of unity used to derive the

operator splitting based on domain decomposition. The �rst-order operator splitting is im-

plemented with two operators (i.e., q̂ = 2). We analyze the error, consistency and stability

of the splitting method, establishing an estimate of the error of the method in terms of the

number of subdomains and the overlap between these subdomains. Our error estimate is more

general than the estimate in [7] since it includes the dependence on the number of subdomains.

Numerical results are presented to corroborate the results presented in the theory.

In Chapter 4, we introduce a coarse grid to accelerate the convergence of the splitting

method. The numerical results show that the two-level schemes are more accurate than one-

level operator splitting when the number of subdomains increases. The analysis of the coarse

grid correction is not presented in this thesis. Conclusions are presented in Chapter 5.
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Chapter 2

The parabolic PDE discretization

2.1 Model simpli�cation

We are interested in developing a numerical method for the solution of (1.1). To simplify

our work, we consider the one-dimensional case and use q̂ = 2. We take D(x) = 1 and c(x) = 0,

obtaining the following equation:
∂tu(x, t) = Lu(x, t) + f(x, t) in Ω× (0, T )

u(x, 0) = g(x) on Ω× 0

u(x, t) = 0 on ∂Ω× (0, T ),

(2.1)

where Lu = ∂xxu and Ω = (0, L). The results in this thesis can be easily extended to the

d-dimensional case of (1.1).

The problem (2.1) can be interpreted physically as the model for the time evolution of a

temperature distribution over a one-dimensional bar of size L, where g(x) is the temperature

distribution at time t = 0 and f(x, t) is the heat source. The values of the temperature at the

boundary of Ω are set to zero, ∀t ∈ [0, T ]. This problem is well-posed.

2.2 Problem discretization

First we use the following notation to de�ne our problem:

Pu = (∂t − L)u = (∂t − ∂xx)u = f. (2.2)

We subdivide Ω = (0, L) in m̂-spatial subintervals of length h = L/m̂, where the interior

nodes are xm = mh, for m = 1, . . . , m̂−1. Ωh denotes this set of the interior spatial nodes. We
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also denote x0 = 0 and xm̂ = L in order to impose the zero Dirichlet boundary condition. In

time, we make a subdivision of the interval [0, T ] in n̂ subintervals of size k = T/n̂, obtaining

time intervals [tn, tn+1], where tn = nk, n = 0, 1, . . . , n̂.

Applying the second-order central �nite di�erence scheme on the elliptic operator L, we
obtain:

Lφ(mh, (n+ 1)k) =
φn+1

m+1 − 2φn+1
m + φn+1

m−1

h2
+O(h2), (2.3)

where φn+1
m := φ(mh, (n+ 1)k) and φ is a smooth function.

Applying the �rst order backward di�erence scheme, we obtain:

∂tφ(mh, (n+ 1)k) =
φn+1

m − φn
m

k
+O(k). (2.4)

Discretizing the operator P in time and in space using the backward-time central-space

(BTCS) �nite di�erence scheme [11] we obtain:

Pk,hφ =
φn+1

m − φn
m

k
−
φn+1

m+1 − 2φn+1
m + φn+1

m−1

h2
. (2.5)

For the function f(x, t) in (2.1), we use the following operator:

Rk,hf = fn+1
m , (2.6)

where fn+1
m := f(mh, (n+ 1)k).

So, applying BTCS in (2.1) gives us the �nite di�erence scheme:{
(I − kA)vn+1 = vn + kfn+1,

v0 = gh,
(2.7)

where A is a symmetric negative de�nite (m̂ − 1) × (m̂ − 1) matrix, vn ∈ Rm̂−1 is the BTCS

discrete solution at time nk, gh is the pointwise evaluation of the initial condition g(x) on Ωh

and fn+1 is the pointwise evaluation of the forcing term f(x, t) on Ωh at time (n + 1)k. For

notation simpli�cation, we make B := I − kA.

Remark 2.1. The matrix A is symmetric negative de�nite with eigenvalues λm given by [2]:

λm(A) = − 4

h2
sin2

(mπ
2m̂

)
, (2.8)

where m = 1, ..., m̂ − 1 and h = L/m̂. The largest eigenvalue of A satis�es λmax(A) ≈ −h−2

and the smaller one λmin(A) ≈ −1. It follows that the condition number of (I−kA) is bounded

by 1 + ckh−2, for some positive constant c independent of k and h.
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2.3 Consistency, stability and convergence

The most important property that a numerical scheme must have is that its numerical

solution must approximate the solution of the corresponding partial di�erential equation. The

approximation must improve as the grid sizes, h and k, go to 0. We call such scheme convergent

and it is de�ned as:

De�nition 2.2. A one-step di�erence scheme approximating a partial di�erential equation is a

convergent scheme if for any solution to the partial di�erential equation, u(x, t), and solutions

to the di�erence scheme vn
m, such that v0

m converges to g(x) as mh converges to x, then vn
m

converges to u(x, t) as (mh, nk) converges to (x, t) as h, k converge to 0.

It is not easy in general to prove the convergence of a given scheme. So, we use the Lax-

Richtmyer Equivalence Theorem to prove the convergence of the numerical scheme.

Theorem 2.3 (Lax-Richtmyer Equivalence Theorem). A consistent �nite di�erence scheme

accurate of order (p, q) for a partial di�erential equation for which the initial value problem is

well posed is convergent if and only if it is stable.

To use Theorem 2.3, we must de�ne the concepts of consistency, order of accuracy and

stability. We start with the de�nition of consistency:

De�nition 2.4. Given a partial di�erential equation, Pu = (∂t − ∂xx)u = f , and a �nite

di�erence scheme, Pk,hv = Rk,hf , we say that the �nite di�erence scheme is consistent with the

partial di�erential equation if for any smooth function φ(x, t)

Pφ− Pk,hφ → 0 as k, h → 0

the convergence being pointwise convergence at each point (x, t).

For the scheme BTCS, by using (2.3)-(2.5), we have the following result:

Pφ− Pk,hφ = O(k) +O(h2). (2.9)

Since the right hand side of (2.9) tends to 0 when k, h→ 0, we have that the scheme BTCS is

consistent.

Di�erence schemes may di�er considerably in how well their solutions approximate the

solution of the di�erential equation. The �measure� of how well these schemes approximate the

solution is called order of accuracy and it is de�ned as:
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De�nition 2.5. A scheme Pk,hv = Rk,hf that is consistent with the di�erential equation Pu = f

is accurate of order p in time and order q in space if for any smooth function φ(x, t)

Pk,hφ−Rk,hPφ = O(kp) +O(hq). (2.10)

We say that this scheme is accurate of order (p, q).

From (2.3)-(2.6), the BTCS scheme is accurate of order (1,2).

Now, we de�ne the norms used in this thesis. For a vector y ∈ Rm̂−1, we have:

‖y‖2
h =

m̂−1∑
m=1

ym
2h. (2.11)

For a matrix B ∈ R(m̂−1)×(m̂−1), we de�ne the spectral norm as:

|||B|||h = sup
y

‖By‖h

‖y‖h

. (2.12)

We use the norms de�ned in (2.11) in this thesis unless it is otherwise stated.

Next, we de�ne the concept of local truncation error, which we will use in this thesis to

obtain the order of accuracy of the scheme presented in Chapter 3. When we multiply the left

member of (2.10) by the time step k, we can write the local truncation error of a scheme as:

De�nition 2.6. Given the discretization (2.7), we de�ne its local truncation error `be as:

`n+1
be (φ) = (I − kA)φn+1 − φn − k(Pφ)n+1

for any smooth function φ, where φn+1 and (Pφ)n+1 correspond to the evaluation of φ and

Pφ in Ωh at time (n+ 1)k and `n+1
be (φ) is a Rm̂−1 vector. From (2.3)-(2.6), we have that each

component of the vector `n+1
be (φ) is accurate of order O(k2) +O(kh2). Taking the norm (2.11),

we obtain for the BTCS scheme:

‖`n+1
be (φ)‖h = O(k2) +O(kh2). (2.13)

We can easily see from De�nition 2.5 and De�nition 2.6 that the order of accuracy of a

scheme is the order of the norm of the local truncation error divided by the time mesh size k.

In studying the convergence of the di�erence schemes, it is also important to de�ne the

concept of stability. We wish to include the zero boundary conditions [5], then we use the

matrix method to examine the di�erence scheme (2.7).

In this work, we adopt the following de�nition of stability:
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De�nition 2.7. We shall say that the scheme (2.7) is stable if and only if there is a constant

C (independent of k and h) and some positive grid spaces k0 and h0 such that

|||B|||h ≤ 1 + Ck, (2.14)

for all 0 ≤ k ≤ k0 and 0 ≤ h ≤ h0. If |||B|||h is independent of h and k, the stability condition

can be replaced with

|||B|||h ≤ 1.

Using the de�nition above, a su�cient condition for the stability of equation (2.7) is

|||B|||h ≤ 1. The stability of the backward Euler method results from:

‖By‖2
h

‖y‖2
h

=
‖(I − kA)−1y‖2

h

‖y‖2
h

=
‖ỹ‖2

h

‖(I − kA)ỹ‖2
h

=
‖ỹ‖2

h

‖ỹ‖2
h − 2k(Aỹ, ỹ) + k2‖Aỹ‖2

h

,

(2.15)

where we have used that ỹ = (I − kA)−1y. Since the matrix A, for the BTCS scheme, is

symmetric negative de�nite, i.e., (Aỹ, ỹ) < 0, we obtain:

‖By‖2
h

‖y‖2
h

≤ 1, (2.16)

and from (2.12) this implies that |||B|||h ≤ 1.

Following [9], the problem (2.1) is properly posed. We have obtained that the scheme (2.7)

is accurate of order (1,2), stable and consistent. Therefore, it is convergent of order (1,2) by

the Lax-Richtmyer's equivalence theorem.
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Chapter 3

The operator splitting method

3.1 Introduction

Given a discrete problem of the form:{
(I − kA)vn+1 = vn + kfn+1

v0 = gh,
(3.1)

where n = 0, 1, . . . , n̂− 1, the basic idea of the operator splitting method is to solve it approx-

imately using an operator splitting of the form: A = A1 +A2. Therefore, the splitting method

solves approximately the systems of the form (3.1) by solving simpler equations of the form

(I − kAq)zq = zq−1 + kfn+1
q , q = 1, 2. Hence, Aq and fq must be suitable chosen so that the

latter systems are easier to solve than the original system.

Since A is a symmetric negative de�nite matrix, we consider Aq, q = 1, 2, to be symmetric

negative semide�nite and to have a simpler structure than A, and such that:

A = A1 + A2, where Aq ≤ 0.

We also chose fn+1
q , q = 1, 2, such that fn+1 = fn+1

1 + fn+1
2 .

In this chapter, we introduce the operator splitting and its analysis. The splitting of the

matrix A is performed using a domain decomposition technique. This technique subdivides

the domain into several overlapping subdomains decoupling the solution associated to each

subdomain except in the overlapping regions. We use a partition of unity to split the matrix

A.
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3.2 Operator splitting

These methods were originally conceived by Braginovskii and Godunov [1] and Yanenko

[13], and further developed by Strang [10] and other authors [6, 4]. Given a matrix splitting

A = A1 + A2, the operator splitting method approximates the matrix (I − kA) by a product

of several matrices of the form (I − kAq). The �rst-order operator splitting method (which is

known as sequential splitting) replaces (I − kA) by:

(I − kA) = (I − kA1)(I − kA2) +O(k2),

since A1 and A2 have derivatives and we have that

(I − kA1)(I − kA2) = I − k(A1 + A2) + k2A1A2 = (I − kA) +O(k2) (3.2)

is true when applied to a function with the double of derivatives than A1 and A2. We solve the

following problem

(I − kA1)z
n = wn + kfn+1

1 and (I − kA2)w
n+1 = zn + kfn+1

2 , (3.3)

where zn is an auxiliary variable and fn+1 = fn+1
1 + fn+1

2 , for all 0 ≤ n ≤ n̂− 1.

Hence, using elementary algebra, the �rst-order operator splitting solution associated to the

BTCS scheme is given by:{
(I − kA1)(I − kA2)w

n+1 = wn + kfn+1 + k2A1f
n+1
2

w0 = gh.
(3.4)

We prove later in this chapter that the solution w above is an approximation to u that is

�rst order in time and second order in space. We will see in Remark 3.4 that Aq is symmetric

negative semide�nite, therefore, the stability of the scheme (3.4) is proven in the next theorem.

Theorem 3.1. For symmetric negative semide�nite Aq, the scheme (3.4) is stable.

Proof: It is su�cient to verify, see inequality (2.16), that:

|||(I − kA1)
−1(I − kA2)

−1|||h ≤ 1. (3.5)

Since we have |||(I − kAq)
−1|||h ≤ 1, we obtain:

|||(I − kA1)
−1(I − kA2)

−1|||h ≤ |||(I − kA1)
−1|||h|||(I − kA2)

−1|||h ≤ 1.

The proof is complete.�

In the next section, we construct a C3(Ω) partition of unity and show how to obtain the

operators Aq from it.
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3.3 Domain-decomposition of the operators

Let {Ωs}s=1,...,ŝ (where, for simplicity, ŝ = 2î and î is a positive integer) denotes a non

overlapping collection of subintervals of Ω. Each subinterval has length H = L/ŝ, and Ω =⋃ŝ
s=1 Ωs and Ωs1

⋂
Ωs2 = ∅ for s1 6= s2.

We extend the subdomains Ωs by a length β in each side to obtain Ω∗
s. Hence, Ωs ⊂ Ω∗

s and

two neighboring subdomains have an overlap of length 2β. Notice that the nodes Xs = sH, for

s = 1, ..., ŝ− 1, determine a grid of (0, L). {Ω∗
s}s=1,...,ŝ is an overlapping covering of Ω.

A C3(Ω) partition of unity subordinated to this covering is a family of ŝ nonnegative C3(Ω)

functions {χs(x)}s=1,...,ŝ whose sum is equal to one and such that χs(x) vanishes outside Ω∗
s.

We have:
a) 0 ≤ χs(x) ≤ 1

b)
∑ŝ

s=1 χs(x) = 1

c) supp(χs(x)) = Ω
∗
s.

(3.6)

We take the intervals Ω∗
s as an open covering for (0, L) such that:

Ω1 = (0, H)

Ω∗
1 = (0, H + β)

Ωs = (H(s− 1), Hs)

Ω∗
s = (H(s− 1)− β,Hs+ β)

Ωŝ = (L−H,L)

Ω∗
ŝ = (L−H − β, L),

(3.7)

where 2 ≤ s ≤ ŝ− 1.

Once the overlapping subdomains {Ω∗
s}s=1,...,ŝ are formed, a C3(Ω) partition of unity {χs}s=1,...ŝ
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Figure 3.1: Open covering of Ω.

can be constructed as follows:

χ1(x) =


1 if x ∈ (0, H − β]

h((x−H + β)/(2β)) if x ∈ (H − β,H + β)

0 otherwise

χs(x) =


1− h((x−H(s− 1) + β)/(2β)) if x ∈ (H(s− 1)− β,H(s− 1) + β)

1 if x ∈ [H(s− 1) + β,Hs− β]

h((x−Hs+ β)/(2β)) if x ∈ (Hs− β,Hs+ β)

0 otherwise

χŝ(x) =


1− h((x− L+H + β)/(2β)) if x ∈ (L−H − β, L−H + β)

1 if x ∈ [L−H + β, L)

0 otherwise,

where 2 ≤ s ≤ ŝ − 1. If we use a C3(Ω) partition of unity, it su�ces to use h(x) = 20x7 −
70x6 + 84x5 − 35x4 + 1, because h(0) = 1, h(1) = 0 and h(i)(0) = h(i)(1) = 0 for i = 1, . . . , 3.

It is easy to check that the functions χs(x) are in C
3(Ω) for this h(x).

Now, we consider a splitting A = A1 +A2 based on domain-decomposition of the discretiza-

tion of the operator L = ∂2

∂x2 . We are interested in providing an estimate on how the truncation

error depends on the overlap β between the subdomains. For related algorithms, see [7] and

references therein.

We obtain the partition of unity {χ̃q}q=1,2 from {χs}s=1,...,ŝ by constructing a new covering

{Ω̃q}q=1,2 for (0, L), derived from {Ω∗
s}s=1,...,ŝ, and de�ned as Ω̃1 =

⋃ŝ/2
s=1 Ω∗

2s−1 and Ω̃2 =⋃ŝ/2
s=1 Ω∗

2s. We assume that β < H/2 (see Figure 3.1). Summarizing, we split the domain into

two subdomains which can be painted with two di�erent colors. We make χ̃1 =
∑ŝ/2

s=1 χ2s−1

and χ̃2 =
∑ŝ/2

s=1 χ2s. We have that χ̃1 and χ̃2 are C3(Ω) as they inherit these properties from

the functions χs.
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Figure 3.2: Partition of unity {χ̃s}s=1,2.

We generate the matrices Aq using the C3(Ω) partition of unity {χ̃q}q=1,2 for two open

subdomains {Ω̃q}q=1,2 which cover (0, L). We split the operator L = ∂2

∂x2 into the following

sum:
Lu = ∂x(χ̃1∂xu) + ∂x(χ̃2∂xu)

= (L1 + L2)u,

where Lq = ∂x(χ̃q∂x), for q = 1, 2.

The matrices Aq are de�ned by:

(Aqu
n+1)m =

χ̃q,m+ 1
2
un+1

m+1 − (χ̃q,m+ 1
2

+ χ̃q,m− 1
2
)un+1

m + χ̃q,m− 1
2
un+1

m−1

h2
, (3.8)

where χ̃q,m+ 1
2

:= χ̃q(h(m+ 1/2)).

We implement the partition of unity in the function f , obtaining the functions fq = χ̃qf ,

for q = 1, 2.

After splitting the operator A and f and using f2 = χ̃2f in (3.4), we obtain the following

problem: {
(I − kA1)(I − kA2)w

n+1 = wn + kfn+1 + k2A1(χ̃2f)
n+1

w0 = gh.
(3.9)

This scheme allows the full parallelization in space of the problem. We solve in each Ω̃q the

continuous problem ∂tu = Lqu+kfq, where Lq = ∂x(χ̃q∂x) is the elliptic operator with Dirichlet

boundary conditions in ∂Ω̃q , and fq = χqf . From the discrete point of view, the Dirichlet

condition is given by wn and zn; see (3.3).

Before we proceed further, we de�ne the Hölder norms for integers j ≥ 0 as follows:

‖φ‖Cj(Ω) ≡ sup
α≤j

max
Ω

|∂
αφ

∂xα
|,

and we have the following result about a partition of unity; the main ideas of the proof can be

found in [7].
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Theorem 3.2. Given a suitable collection of overlapping subdomains {Ω∗
s}s=1,...,ŝ with overlap

2β, there exists a smooth partition of unity {χ̃s}j=1,...,ŝ satisfying

‖χ̃s‖Cj(Ω) ≤ c(2β)−j, (3.10)

where c > 0 is a constant independent of β.

Remark 3.3. We can use domain decomposition to split the operator in a d-dimensional

geometry. For example, in two dimensions, two possible open coverings of a domain Ω ∈ R2

can be seen in Figure 3.3. For the covering in the left of Figure 3.3, we can construct a partition

of unity in a similar way viewed in Section 3.3, with a higher degree of di�erentiability. For the

covering in the right of Figure 3.3, we split the operator L in four operators Lq, q = 1, . . . , 4,

each operator for one of the sets composing the open covering. For more than two dimensions,

the splitting of the operators is similar. We do not analyze the splitting of the operator L for

more than one dimension in this thesis.

Remark 3.4. The matrices Aq are symmetric by construction; see (3.8). They are symmetric

negative semide�nite because, in each line of Aq, the diagonal element is negative and its

absolute value is greater or equal to the sum of the absolute values of the o�-diagonal elements

in the line. The negative semide�niteness follows from the Gershgorin's Theorem.

3.4 Error analysis of the splitting scheme

As we mentioned before, given a partition of unity {χ̃q}q=1,2, we take the operator L =

∂xx = ∂x∂x and the function f(x, t), and obtain Lq = ∂x(χ̃q∂x) and fq(x, t) = χ̃qf(x, t). We

have that L = L1 + L2, and by construction, Lq are self-adjoint operators [7]. We take the

matrices Aq as the discretization of the operators Lq, hence, we have A = A1 + A2. The Rm̂−1

vectors fn+1
q , q = 1, 2, are the spatial evaluation of χ̃qf in Ωh at time (n+ 1)k.

We now provide an estimate for the order of accuracy of the �rst-order splitting method

using the concept of local truncation error for the scheme. Analogously to the BTCS scheme,

we de�ne the local truncation error for this method as:

De�nition 3.5. The local truncation error `n+1
sp (φ) for the �rst-order approximate splitting is:

`n+1
sp (φ) = (I − kA)φn+1 − φn − k(Pφ)n+1 + k2A1A2φ

n+1 − k2A1(χ̃2Pφ)n+1. (3.11)
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Figure 3.3: Two examples of coverings for two-dimensional domains. We use ŝ = 4 in this

examples.

for any smooth function φ. The Rm̂−1 vectors φn+1, (Pφ)n+1 and (χ̃2Pφ)n+1 correspond to

the evaluation of φ, (Pφ) and (χ̃2Pφ) in Ωh at time (n + 1)k. Using the De�nition 2.6, we

obtain the following relation between the local truncation error for the splitting method and for

the BTCS scheme:

`n+1
sp (φ) = `n+1

be (φ) + k2A1A2φ
n+1 − k2A1(χ̃2Pφ)n+1. (3.12)

From (3.12), the splitting method has the same order of accuracy of BTCS plus the terms

k2A1A2φ
n+1 and −k2A1(χ̃2Pφ)n+1. Since the BTCS scheme is accurate of order (1,2), the

splitting scheme is accurate of order (1,2) plus the contribution of the terms k2A1A2φ
n+1 and

−k2A1(χ̃2Pφ)n+1.

We now investigate the in�uence of the term k2A1A2φ
n+1 for the �rst-order splitting scheme.

To simplify the analysis we introduce the following notation:

Ix
hf(x) = h−1

∫ x+h

x

f(η)dη,

Ixx
h f(x) = h−2

∫ x

x−h

∫ ξ+h

ξ

f(η)dηdξ,

Ix
h,1/2f(x) = h−1

∫ x+h/2

x−h/2

f(η)dη,

∂αφ(x) =
∂αφ(x)

∂xα
.
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Theorem 3.6. If φ ∈ C4
0(Ω), the discretization (A1A2φ)m satis�es

|(A1A2φ)m| ≤ c1β
−3‖φ‖C4(Ω),

where (A1A2φ)m is the m-component of the vector (A1A2φ) and φ is the spatial interpolation

of the function φ.

Proof: First observe that the �nite di�erence approximation for (A2φ)m is:

(A2φ)m =

χ̃2(xm + h
2
)

(
φm+1−φm

h

)
− χ̃2(xm − h

2
)

(
φm−φm−1

h

)
h

.

Applying repeatedly the fundamental theorem of calculus and using the multi-index notation,

we have:

(A2φ)m =
(
Ixm

h,1/2∂xχ̃2

)
(Ixm

h ∂xφ)− χ̃2

(
xm − h

2

)
(Ixmxm

h ∂xxφ). (3.13)

We have an analogous expression for (A1φ)m. Using A2φ instead of φ in the expression for

(A1φ)m gives:

(A1A2φ)m =
(
Ixm

h,1/2∂xχ̃1

)
(Ixm

h ∂x(A2φ)m)− χ̃1

(
xm − h

2

)
(Ixmxm

h ∂xx(A2φ)m).

The resulting expression can be simpli�ed by the following observation. The partial deriva-

tive operator ∂α �commutes� with all the integral operators Ixm
h , Ixmxm

h , etc. The commutativity

of ∂x and Ixm
h can be seem by the following example:

∂xIxm
h F (x) = ∂x

(
h−1

∫ xm+h

xm
F (ξ)dξ

)
=

(
h−1

∫ xm+h

xm
∂ξF (ξ)dξ

)
= Ixm

h ∂xF (x).

Analogously, we have for Ixmxm
h and Ixm

h,1/2:

∂xIxmxm
h F (x) = Ixm

h ∂xF (x)

∂xIxm

h,1/2F (x) = Ixm

h,1/2∂xF (x).

Using the fact that ∂x commutes with Ix
h , Ixx

h and Ix
h,1/2 and performing elementary calculations

we obtain:

(A1A2φ)m =
(
Ixm

h,1/2∂xχ̃1

)(
Ixm

h

(
Ixm

h,1/2∂xxχ̃2

)
(Ixm

h ∂xφ) +
(
Ixm

h,1/2∂xχ̃2

)
(Ixm

h ∂xxφ)

−∂xχ̃2 (xm − h/2) (Ixmxm
h ∂xxφ)− χ̃2 (xm − h/2) (Ixmxm

h ∂xxxφ)) +

−χ̃1 (xm − h/2) Ixmxm
h

((
Ixm

h,1/2∂xxxχ̃2

)
(Ixm

h ∂xφ) +
(
Ixm

h,1/2∂xxχ̃2

)
(Ixm

h ∂xxφ) +

+
(
Ixm

h,1/2∂xxχ̃2

)
(Ixm

h ∂xxφ) +
(
Ixm

h,1/2∂xχ̃2

)
(Ixm

h ∂xxxφ) +

−∂xxχ̃2 (xm − h/2) (Ixmxm
h ∂xxφ)− ∂xχ̃2 (xm − h/2) (Ixmxm

h ∂xxxφ) +

−∂xχ̃2 (xm − h/2) (Ixmxm
h ∂xxxφ)− χ̃2 (xm − h/2) (Ixmxm

h ∂xxxxφ)) . (3.14)
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Now, we can obtain an estimate for |(A1A2φ)m| in terms of the value of the derivatives of

φ, χ̃1 and χ̃2.

From the mean value property of integrals, we have that |Ix
hφ(x)| ≤ maxξ∈[xm,xm+1] |φ(ξ)|.

Using that property and taking the absolute value of the expression (3.14), we can write:

|(A1A2φ)m| ≤
∑

(α1, α2, α3)

|α1| + |α2| + |α3| = 4

|α1| ≤ 1

cα1,α2,α3|∂α1χ̃1|C0(Ω)|∂α2χ̃2|C0(Ω)|∂α3φ|C0(Ω),

where cα1,α2,αq̂+1
= 0 or 1. Using the de�nition of the Hölder norm we obtain:

|(A1A2φ)m| ≤
∑

(α1, α2, α3)

|α1| + |α2| + |α3| = 4

|α1| ≤ 1

cα1,α2,α3‖χ̃1‖Cα1 (Ω)‖χ̃2‖Cα2 (Ω)‖φ‖Cα3 (Ω).

Applying the estimation obtained in Theorem 3.2, we have:

|(A1A2φ)m| ≤ c1β
−3‖φ‖C4(Ω),

which proves our assertion.�

Theorem 3.7. If φ ∈ C4
0(Ω) and ∂tφ ∈ C2

0(Ω), the discretization (A1χ̃2Pφ)m satis�es

|(A1(χ̃2Pφ))m| ≤ β−2(c2‖φ‖C4(Ω) + c3‖∂tφ‖C2(Ω)),

where (A1(χ̃2Pφ))m is the m-component of the vector (A1(χ̃2Pφ)), φ is the spatial interpola-

tion of the function φ, φt := ∂tφ and χ̃2Pφ is the spatial interpolation of χ̃2Pφ.

Proof: To simplify our notation we make ψ := Pφ = ∂tφ − ∂xxφ, consequently we have

ψ = Pφ. First observe that the �nite di�erence approximation of (A1(χ̃2ψ))m is:

(A1(χ̃2ψ))m =
χ̃1(xm + h

2
)
(

(χ̃2ψ)m+1−(χ̃2ψ)m

h

)
− χ̃1(xm − h

2
)
(

(χ̃2ψ)m−(χ̃2ψ)m−1

h

)
h

.

Applying repeatedly the fundamental theorem of calculus and using the multi-index nota-

tion, we have:

(A1(χ̃2ψ))m =
(
Ixm

h,1/2∂xχ̃1

)
(Ixm

h ∂x(χ̃2ψ))− χ̃1

(
xm − h

2

)
(Ixmxm

h ∂xx(χ̃2ψ)) ,

=
(
Ixm

h,1/2∂xχ̃1

)
(Ixm

h (∂xχ̃2 + ∂xψ))− χ̃1

(
xm − h

2

)
Ixmxm

h (ψ∂xxχ̃2 +

+∂xχ̃2∂xψ + ∂xψ∂xχ̃2 + χ̃2∂xxψ). (3.15)

21



Using the fact that ∂x commutes with Ix
h , Ixx

h and Ix
h,1/2 and the mean value property for

integrals and taking modulus of expression (3.15), we can obtain an estimate for |(A1χ̃2ψ)m|
in terms of the value of the derivatives of ψ, χ̃1 and χ̃2, given by:

|(A1(χ̃2ψ))m| ≤
∑

(α1, α2, α3)

|α1| + |α2| + |α3| = 2

|α1| ≤ 1

cα1,α2,α3|∂α1χ̃1|C0(Ω)|∂α2χ̃2|C0(Ω)|∂α3φ|C0(Ω),

where cα1,α2,αq̂+1
= 0 or 1. Using the de�nition of the Hölder norm we obtain:

|(A1(χ̃2ψ))m| ≤
∑

(α1, α2, α3)

|α1| + |α2| + |α3| = 2

|α1| ≤ 1

cα1,α2,α3‖χ̃1‖Cα1 (Ω)‖χ̃2‖Cα2 (Ω)‖ψ‖Cα3 (Ω).

Using the estimation derived in Theorem 3.2 we obtain:

|(A1(χ̃2ψ))m| ≤ cβ−2‖ψ‖C2(Ω). (3.16)

We know that ψ = Pφ = ∂tφ− ∂xxφ, so we have that

‖ψ‖C2(Ω) ≤ c2‖∂tφ‖C2(Ω) + c3‖∂xxφ‖C2(Ω)

≤ c2‖∂tφ‖C2(Ω) + c3‖φ‖C4(Ω), (3.17)

where c2 and c3 are constants.

Substituting (3.17) in (3.16) we obtain:

|(A1(χ̃2ψ))m| ≤ β−2(c2‖∂tφ‖C2(Ω) + c3‖φ‖C4(Ω)), (3.18)

which proves our assertion.�

Now, we can estimate the contribution of the terms k2A1A2φ and k2A1(χ̃2Pφ) to the local

truncation error.

Theorem 3.8. The local truncation error `n+1
sp (φ) of the splitting method with domain decom-

position satis�es

‖`n+1
sp (φ)‖h ≤ ‖`n+1

be (φ)‖h + c1k
2

(
H

β

)5/2(
1

H

)3

‖φ‖C4(Ω) +

+k2

(
H

β

)3/2(
1

H

)2

(c2‖∂tφ‖C2(Ω) + c3‖φ‖C4(Ω)) (3.19)
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for any smooth function φ, where `n+1
be (φ) is the local truncation error of the backward Euler

method at time (n+ 1)k, c1, c2 and c3 are constants. The order of accuracy of the method is

O(k) +O(h2) +O

(
k

(
H

β

)5/2(
1

H

)3
)

+O

(
k

(
H

β

)3/2(
1

H

)2
)
. (3.20)

Proof: We have from (3.11) that the local truncation error is:

`n+1
sp (φ) = `n+1

be (φ) + k2A1A2φ
n+1 − k2A1(χ̃2Pφ)n+1, (3.21)

where φn+1 corresponds to the evaluation of φ in Ωh at time (n + 1)k. The matrix A1A2 is of

the form: 

O

K

O

KT

O
. . .

O

K

O



(3.22)

where O is a matrix with all elements equal to zero. If we take the overlap 2β = δh < H,

where δ is a positive even integer, K is a (δ + 3)× (δ + 3) matrix. If we take ŝ = 1/H as the

number of subdomains that subdivides (0, L), then we have ŝ− 1 matrices of the form K and

KT . The matrix K comes from the product of χ̃1 in the right boundary of Ω∗
1 and χ̃2 in the

left boundary of Ω∗
2, while its transpose comes from the product of χ̃2 in the left boundary of

Ω∗
2 and χ̃1 in the right boundary of Ω∗

1. We have a total of (δ + 3)((1/H)− 1) terms di�erent

from zero in the vector (A1A2φ). In a similar way, we can see that the vector (A1(χ2Pφ))

has a total of O(δ/H) components di�erents from zero. Taking the Euclidean norm of (3.21),

which we denote by ‖ · ‖2, and using the estimates from Theorems 3.6 and 3.7, we obtain:

‖`n+1
sp (φ)‖2 ≤ ‖`n+1

be (φ)‖2 + k2‖A1A2φ‖2 + k2‖A1(χ̃2Pφ)n+1‖

≤ ‖`n+1
be (φ)‖2 + c1

√
(δ + 3)((1/H)− 1)k2(β)−3‖φ‖C4(Ω) +

+k2
√
δ/Hβ−2(c2‖∂tφ‖C2(Ω) + c3‖φ‖C4(Ω))

≤ ‖`n+1
be (φ)‖2 + c1

√
δ/Hk2(β)−3‖φ‖C4(Ω) +

+
√
δ/Hk2(β)−2(c2‖∂tφ‖C2(Ω) + c3‖φ‖C4(Ω)).
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Multiplying the whole expression by
√
h and using that

√
h‖.‖2 ≡ ‖.‖h, we have:

‖`n+1
sp (φ)‖h ≤ ‖`n+1

be (φ)‖h + c
√
β/Hk2(β)−3‖φ‖C4(Ω) +

+
√
β/Hk2(β)−2(c2‖∂tφ‖C2(Ω) + c3‖φ‖C4(Ω))

≤ ‖`n+1
be (φ)‖h + c1k

2

(
1

H

)3(
H

β

)5/2

‖φ‖C4(Ω) +

+k2

(
1

H

)2(
H

β

)3/2

(c2‖∂tφ‖C2(Ω) + c3‖φ‖C4(Ω)). (3.23)

The order of accuracy of the method is the order of the local truncation error divided by k. So,

using the Lax-Richtmyer Theorem, the splitting method converges and is accurate of order

O(k) +O(h2) +O

(
k

(
H

β

)5/2(
1

H

)3
)

+O

(
k

(
H

β

)3/2(
1

H

)2
)
. (3.24)

�

Remark 3.9. We can implement the splitting method using f1 = f and f2 = 0. With this

choice of splitting for the function f we have to solve the problem:
(I − kA1)z

n = wn + kfn+1

(I − kA2)w
n+1 = zn

w0 = gh,

(3.25)

which, after elementary calculations, becomes:{
(I − kA1)(I − kA2)w

n+1 = wn + kfn+1

w0 = gh,
(3.26)

The analysis of (3.26) is similar to the analysis of (3.4). This method is also stable and is

convergent of order:

O(k) +O(h2) +O

(
k

(
H

β

)5/2(
1

H

)3
)
, (3.27)

because there is no in�uence of the term k2A1χ̃2Pφ in the order of accuracy of the method

The choice (3.25) of the splitting of the function f(x, t) also permits some parallelization

of the scheme, but not as much as for the scheme (3.9). In the choice (3.25), the boundary

conditions for the operator Lq will be the same as for the problem (2.1), however, values of zn

need to be computed outside of Ω̃1.
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3.5 Numerical results

We solve the following problem in the domain (0, 1)× (0, 1):
∂tu = ∂xxu+ f(x, t) in (0, 1)× (0, 1)

u(x, 0) = x(1− x) exp(x) on (0, 1)× {0}
u(x, t) = 0 on {0, 1} × (0, 1),

(3.28)

where f(x, t) = x exp(x)[(x− 1)π sin(πt)+ (3+x) cos(πt)]. The function f(x, t) and u(x, 0) are

chosen such that the analytical solution of problem (3.28) is u(x, t) = x(1− x) exp(x) cos πt in

(0, 1)×(0, 1). The BTCS scheme and the Sequential Splitting solutions are denoted respectively

by BT and SS. We calculate the error of the methods at time T = 1 for all experiments. The

error is ‖un̂−wn̂‖h, where un̂
m = u(mh, n̂k), wn̂ is the numerical solution given by the splitting

method and ‖.‖h =
√
h‖.‖2.

Experiment 1 - In Tables 3.1-3.2, we keep constant the spatial discretization mesh size

h = 1/1024 and the time discretization step k = 1/2048. In each row of these tables, we keep

H/β constant, while in each column we keep constant the number of subdomains ŝ = 1/H. In

Table 3.1, we solve (3.9), while in Table 3.2, we solve (3.26). We examine the e�ect of H/β

on the error. The values presented in Table 3.1 are multiplied by 103. The error for BT is

0.0680× 10−3 when k = 1/2048 and h = 1/1024.

Table 3.1: We divide (0, 1) in ŝ subdomains of length H = 1/ŝ and overlap β and keep the

mesh parameters k = 1/2048 and h = 1/1024. We use the SS scheme (3.9). The values for the

error at T = 1 are multiplied by 103.

H 1/2 1/4 1/8 1/16 1/32

H/β = 4 0.3859 2.9652 17.8233 74.9567 238.3453

H/β = 8 0.7271 5.7262 31.9605 125.7292 334.9536

H/β = 16 1.3536 10.5073 55.3489 198.9055 412.0838

H/β = 32 2.4300 18.5890 92.8414 286.1308 451.2088

We see that the errors for the solution of (3.9) and (3.26) are very similar. So the imple-

mentation of full parallelization in space does not cause a deterioration on the error.

We verify that the error deteriorates when we increase the number of subdomains ŝ, and keep

the ratio H/β constant. This behavior was predicted in Theorem 3.8. The error deteriorates
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Table 3.2: We divide (0, 1) in ŝ subdomains of length H = 1/ŝ and overlap β and keep the

mesh parameters k = 1/2048 and h = 1/1024. We use the SS scheme (3.26). The values for

the error at T = 1 are multiplied by 103.

H 1/2 1/4 1/8 1/16 1/32

H/β = 4 0.2701 3.3550 18.2621 75.3914 238.6964

H/β = 8 0.5476 6.1325 32.4113 126.1702 335.3240

H/β = 16 1.1562 10.9227 55.8070 199.3570 412.7376

H/β = 32 2.2283 19.0108 93.3087 286.7788 451.9897

when we increase the quotientH/β, and keep the number of subdomains ŝ constant. This means

that when we increase H/β and keep ŝ constant, then β decreases, i.e., the overlap between the

subdomains decreases. When we decrease the overlap, we decrease the communication between

the neighbors subdomains, and this justi�es the error deterioration. Summarizing, the decrease

of the ratio H/β deteriorates the error for SS.

Experiment 2 - In this experiment, we obtain four tables using the SS scheme (3.9). For

each table, we keep H/β constant. In each row, we vary the number of subdomains, and keep

constant the time and spatial discretization mesh sizes such that k = h. In each column, we

vary the time and spatial discretizations mesh sizes such that k = h and keep constant the

number of subdomains. We examine the e�ect of H/β in the error when we vary the mesh

discretization sizes. The values for the error at time T = 1 presented are multiplied by 103.

Table 3.3: We divide (0, 1) in ŝ subdomains of length H = 1/ŝ and overlap β and make

H/β = 32. In the column labeled BT, the error for the BTCS scheme is presented. The other

columns have the error for the SS scheme for di�erent values of H. The values for the error are

multiplied by 103.

H 1/2 1/4 1/8 1/16 BT

h = k = 1/512 8.1564 61.6603 247.8635 432.1676 0.2718

h = k = 1/1024 4.5175 34.7734 165.2721 388.1498 0.1359

h = k = 1/2048 2.4357 18.9688 96.9683 305.8543 0.0679
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Table 3.4: We divide (0, 1) in ŝ subdomains of length H = 1/ŝ and overlap β and make

H/β = 16. The values for the error are multiplied by 103.

H 1/2 1/4 1/8 1/16

h = k = 1/512 4.7515 36.0040 168.6354 392.0056

h = k = 1/1024 2.5566 19.7149 100.6397 310.0240

h = k = 1/2048 1.3526 10.5565 56.4390 206.3469

Table 3.5: We divide (0, 1) in ŝ subdomains of length H = 1/ŝ and overlap β and make

H/β = 8. The values are multiplied by 103.

H 1/2 1/4 1/8 1/16

h = k = 1/512 2.6738 20.3071 105.0133 314.5113

h = k = 1/1024 1.4042 10.8733 59.1623 213.0031

h = k = 1/2048 0.7261 5.7347 32.1099 128.0164

In the Tables (3.3)-(3.6), as predicted in our analysis, we verify that the error is almost

linearly dependent with respect to the size of the time discretization step. This linear relation

is less clear for higher values of ŝ, since the term O
(
k
(

1
H

)3(H
β

)5/2
)

dominates the error with

respect to the BTCS scheme.

We also can see from these tables, by keeping ŝ, k and h constant, that the same conclusion

as above follows, that is, the error decreases almost linearly when we decrease the ratio H/β.

However, from these results, we also see that our estimate (3.24) of the error is not sharp.

It is more complete and accurate than the estimate of the error obtained in [7].

Remark 3.10. A second-order splitting method (Strang-Marchuk) was also implemented dur-

ing our research, however the results for this method were worse than for SS and are not

presented in this thesis.
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Table 3.6: We divide (0, 1) in ŝ subdomains of length H = 1/ŝ and overlap β and make

H/β = 4. The values are multiplied by 103.

H 1/2 1/4 1/8 1/16

h = k = 1/512 1.4746 10.9644 62.0467 220.9803

h = k = 1/1024 0.7580 5.7481 33.6596 133.8819

h = k = 1/2048 0.3853 2.9676 17.8515 75.2981
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Chapter 4

Two-grid scheme for the solution of the

parabolic PDE's

4.1 Introduction

In the preceding chapters, we have studied numerical methods to approximate the solution

of a parabolic PDE on a spatial grid with mesh size h and time step size k. These methods

consist of solving, in each time step, equations of the type:

Bz = b, (4.1)

where B, z and b depend on the scheme used for the discretization of the problem. For instance,

in BTCS we have B := Bbe = (I − kA), z = vn+1 and b = vn + kfn+1, which give us:

(I − kA)vn+1 = vn + kfn+1, (4.2)

while in the splitting method B := Bsp = (I − kA1)(I − kA2), z = wn+1 and b = wn + kfn+1−
k2A1f

n+1
2 , and we have:

(I − kA1)(I − kA2)w
n+1 = wn + kfn+1 − k2A1f

n+1
2 . (4.3)

When we use an operator splitting based on a spatial partition of unity of the domain, we

have concluded in the preceding chapter that the accuracy of the discrete solution deteriorates

as the number of subdomains increases. To deal with this latter drawback, in this chapter, we

implement a coarse grid correction at each time step.
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Figure 4.1: Interpolation of a vector on coarse grid Ω2i+1h to �ne grid Ω2ih.

4.2 Intergrid operators

Let Ω = I ⊂ R be a �nite interval with I = (0, L). Let the �ne grid on Ω be given by

Ωh = {x ∈ R : x = xm = mh,m = 1, . . . , m̂ − 1, h = L/m̂} and the coarse grid given by

ΩH = {x ∈ R : x = xs = sH, s = 1, . . . , ŝ − 1}, where ŝ = 1/H = 2−îm̂, and î is a positive

integer measuring the coarsening of h, i.e., i = 0 refers to h while i = î refers to H. On Ωh,

we de�ne the grids Ω2ih by Ω2ih = {x ∈ R : x = xj = j2ih, j = 1, . . . , m̂/2i − 1, h = L/m̂}.
To transfer data from the coarse grid Ω2i+1h to the �ne grid Ω2ih, we de�ne the prolongation

operator P 2ih
2i+1h ∈ R(m̂/2i−1)×(m̂/2i+1−1), in stencil notation, as:

P 2ih
2i+1h =

1

2

[
1 2 1

]
.

Composing the intergrid data transfers for all grids from Ωh to ΩH , we obtain the prolon-

gation operator P h
H from ΩH to Ωh as:

P h
H =

î−1∏
i=0

P 2ih
2i+1h.

The next step consists in de�ning the restriction operator RH
h . This operator restricts values

from Ωh to ΩH . We will proceed as above and de�ne the operator R2i+1h
2ih ∈ R(m̂/2i+1−1)×(m̂/2i−1).

There are di�erent forms to construct this operator. One is by direct injection, where the

values at the coarse grid vector are equal to the values at the �ne grid. Another choice is a

full-weighting restriction, where the elements of the coarse grid vector are given by averages

of the values of the neighbor points on the �ne grid. We choose a full-weighting restriction

proportional to the transpose of the prolongation operator. We have:

R2i+1h
2ih =

1

2

(
P 2ih

2i+1h

)T

.
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Figure 4.2: Restriction by full weighting of a �ne-grid vector to the coarse grid.

So, similarly to the prolongation operator, the restriction operator RH
h that transfer values

from Ωh to ΩH is given by:

RH
h =

1

2î−1

(
P h

H

)T
. (4.4)

4.3 Coarse grid correction

To de�ne the discrete solution zn+1
h of (4.3) in Ωh with coarse grid correction, we �rst solve

at each time step the splitting scheme (4.3). We have:

(I − kA1)(I − kA2)z̃
n+1
h = zn

h + kfn+1 − k2A1f
n+1
2 . (4.5)

From the intermediate solution z̃n+1
h we obtain in Ωh the residue:

rn+1
h = zn

h + kfn+1 −Bhz̃
n+1
h , (4.6)

where Bh = Bbe = (I − kA). The residue rn+1
h measures how far from the BTCS discrete

solution is our approximation z̃n+1
h given by sequential splitting at each time step. We now

restrict the residue to the grid ΩH , obtaining:

rn+1
H = RH

h rn+1
h . (4.7)

We next solve a coarse problem with right-hand side rn+1
H to update the solution z̃n+1

h . Note

that the solution error for (4.3) at time step (n+ 1) in the �ne mesh is given by

en+1
h = vn+1

h − z̃n+1
h , (4.8)
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where vn+1
h is the BTCS solution of (4.3) at time (n+ 1)k in the �ne mesh.

If we multiply (4.8) by Bh we obtain the residue equation:

Bhe
n+1
h = Bhv

n+1
h −Bhz̃

n+1
h = vn

h + kfn+1 −Bhz̃
n+1
h = rn+1

h . (4.9)

Instead of solving the equation (4.9) in the grid Ωh, we approximate en+1
h by the solution

in the grid ΩH .

To this objective, we need to approximate the operator Bh in ΩH , which we call BH . There

are two ways to do this. One is called the discretization coarse grid approximation(DCA),

and the other is called the Galerkin coarse grid approximation(GCA). The DCA consists in

discretizing the Equation (2.1) in the coarse grid, while the GCA is obtained by de�ning BH

as:

BH = RH
h BhP

h
H . (4.10)

We can �nd a comparison of these two discretizations in [12]. We will use GCA in our problem

because of its purely algebraic nature, and therefore, we do not need to discretize the di�erential

equation again in ΩH .

We obtain the error in the coarse grid by solving the equation BHen+1
H = rn+1

H in the grid

ΩH , where BH is de�ned in (4.10) and rn+1
H in (4.7).

We prolongate en+1
H on the �ne grid using the prolongation operator:

en+1
h = P h

Hen+1
H . (4.11)

Finally, we update the solution for time step (n+ 1) by the two-grid scheme:

z̄n+1
h = z̃n+1

h + en+1
h . (4.12)

Summarizing, the splitting scheme using coarse grid correction for the solution of problem

(1.1) is given as:

Two-Level (2L)

For each time step n = 1, . . . , n̂

• Solve (I − kA1)(I − kA2)z̃
n+1
h = zn

h + kfn+1 − k2A1f
n+1
2 in Ωh;

• Obtain the residue rn+1
h = zn

h + kfn+1 − (I − kA)z̃n+1
h ;

• Restrict the residue to the coarse grid rn+1
H = RH

h rn+1
h ;
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• Solve the equation (RH
h (I − kA)P h

H)en+1
H = rn+1

H ;

• Prolong the error to the �ne grid en+1
h = P h

Hen+1
H ;

• Update the approximate solution z̄n+1
h = z̃n+1

h + en+1
h ;

• Make zn+1
h = z̄n+1

h .

4.4 The symmetrized two-level method

We can improve the two-level method by applying another �ne grid correction. After we

obtain the approximate solution (4.12), we calculate the residue in the �ne grid due to z̄n+1
h

and obtain:

r̃n+1
h = zn

h + kfn+1 −Bhz̄
n+1
h .

From the residue r̃n+1
h , we use the �rst order operator splitting scheme to obtain:

(I − kA1)(I − kA2)ẽ
n+1
h = r̃n+1

h . (4.13)

Finally, we use the error (4.13) to obtain the approximate solution:

zn+1
h = z̄n+1

h + ẽn+1
h .

We call this scheme the symmetrized two-level method and it is summarized as:

Symmetrized Two-level (S2L)

For each time step n = 1, . . . , n̂

• Solve (I − kA1)(I − kA2)z̃
n+1
h = zn

h + kfn+1 − k2A1f
n+1
2 in Ωh;

• Obtain the residue rn+1
h = zn

h + kfn+1 − (I − kA)z̃n+1
h ;

• Restrict the residue to the coarse grid rn+1
H = RH

h rn+1
h ;

• Solve the equation (RH
h (I − kA)P h

H)en+1
H = rn+1

H ;

• Prolong the error to the �ne grid en+1
h = P h

Hen+1
H ;

• Update the approximate solution z̄n+1
h = z̃n+1

h + en+1
h ;

• Obtain the new residue r̃n+1
h = zn

h + kfn+1 − (I − kA)z̄n+1
h ;
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• Solve in the �ne grid (I − kA1)(I − kA2)ẽ
n+1
h = r̃n+1

h ;

• Update the solution zn+1
h = z̄n+1

h + ẽn+1
h ;

4.5 Numerical results

We solve problem (3.28), repeating the Experiments 1 and 2 from Chapter 3 for both

methods. We calculate the error for the two-level sequential splitting(2L) and the symmetrized

two-level sequential splitting(S2L) at time T = 1 using the norm ‖.‖h.

Experiment 1 - In Table 4.1, we keep constant the spatial discretization mesh size h =

1/1024 and the time discretization step k = 1/2048. In each line of this table, we keep constant

the relative overlap H/β, while for each column of this table we make constant the number of

subdomains ŝ and consequently the size of the subdomains is H = 1/ŝ. We examine the e�ect

of H/β in the global error. The values for the error presented in Table 4.1 are multiplied by

103. The results for 2L and S2L are displayed in this order separated by the symbol �\�.

Table 4.1: We divide (0, 1) in ŝ subdomains of length H = 1/ŝ, with overlap β, keeping the

mesh parameters k = 1/2048 and h = 1/1024. The values for the error are multiplied by 103.

The results for 2L and S2L are displayed in this order separated by the symbol �\�, i.e., 2L\S2L

H 1/2 1/4 1/8 1/16 1/32

H/β = 4 0.6433\0.0671 2.2298\0.0719 3.6847\1.2905 4.2604\6.0258 3.6352\6.3063
H/β = 8 1.2250\0.0693 4.4287\0.4872 7.2203\5.2070 8.4364\19.8011 6.8811\20.4576
H/β = 16 2.1914\0.1436 7.9984\1.8833 12.6752\14.4814 13.6547\43.3528 9.8914\39.7007
H/β = 32 3.7703\0.4558 13.8837\5.2082 20.9029\31.5017 19.6685\78.2567 12.7409\53.2530

As expected, in general, the results for 2L and S2L are much better than for SS for large

number of subdomains; see Tables 3.1 and 4.1. If we keep the ratio H/β constant and vary the

parameter ŝ, we can see that for the 2L method, the error remains roughly on the same size.

Experiment 2 - In this experiment, we obtain four tables. For each table, we keep H/β

constant and vary the number of subdomains and the mesh size h and keep k = h. We examine

the e�ect of H/β in the error when we vary the discretization mesh sizes. The values presented

are multiplied by 103. The results for 2L and S2L are displayed in this order separated by the

symbol �\�.
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Table 4.2: We divide (0, 1) in ŝ subdomains of length H = 1/ŝ, with overlap β, and make

H/β = 32. The values for the error are multiplied by 103.

H 1/2 1/4 1/8 1/16

h = k = 1/512 12.2936\2.4031 44.1046\22.0934 49.6599\78.6257 33.4156\62.3839
h = k = 1/1024 6.8947\1.0848 25.4412\11.4008 34.6324\57.4985 27.0295\82.2786
h = k = 1/2048 3.7810\0.4573 14.1638\5.3332 21.8186\33.9411 21.1568\85.5807

Table 4.3: We divide (0, 1) in ŝ subdomains of length H = 1/ŝ, with overlap β, and make

H/β = 16. The values for the error are multiplied by 103.

H 1/2 1/4 1/8 1/16

h = k = 1/512 7.3447\0.9359 25.9395\9.9907 32.0812\43.1580 23.9805\46.5872
h = k = 1/1024 4.0410\0.3802 14.6136\4.5243 21.1500\28.1137 19.0555\52.6627
h = k = 1/2048 2.1919\0.1436 8.0384\1.8945 12.9505\14.8266 14.1972\46.6185

From Tables 4.2-4.5, we conclude that the error decreases almost linearly with k for the 2L

and S2L methods. This is expected since SS is a �rst order method. This linear dependence

on k is more noticeable for small values of ŝ. For ŝ = 16, it is di�cult to predict the behavior

of the S2L method. A possible reason is because we apply the SS method twice in the �ne grid

and we know that SS method does not work well for high ŝ.

If we look the tables, and keeping �xed ŝ, k and h, we verify that the 2L and S2L methods,

the error decreases almost linearly when we increase H/β.

We obtain more accurate results for the 2L and S2L methods than for the SS method; see

Tables 3.3-3.6 and 4.2-4.5. This is expected due to the communications provided by the coarse

grid correction.
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Table 4.4: We divide (0, 1) in ŝ subdomains of length H = 1/ŝ, with overlap β, and make

H/β = 8. The values for the error are multiplied by 103.

H 1/2 1/4 1/8 1/16

h = k = 1/512 4.2852\0.3673 14.6586\3.5636 19.2037\19.9828 46.5872\25.0959
h = k = 1/1024 2.3123\0.1544 8.1377\1.4045 12.2111\11.1564 12.0869\26.1968
h = k = 1/2048 1.2249\0.0692 4.4376\0.4884 7.2705\5.2386 8.6670\20.2609

Table 4.5: We divide (0, 1) in ŝ subdomains of length H = 1/ŝ, with overlap β, and make

H/β = 4. The values are multiplied by 103.

H 1/2 1/4 1/8 1/16

h = k = 1/512 2.3731\0.2624 7.6628\0.9054 10.0427\6.6444 8.3484\9.3710
h = k = 1/1024 1.2465\0.1322 4.1867\0.2733 6.2642\3.2539 6.2640\8.5327
h = k = 1/2048 0.6433\0.0670 2.2328\0.0719 3.6990\1.2939 4.3153\6.0643
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Chapter 5

Conclusions

We develop a method to parallelize the solution of equation (2.1) (and more generally the

equation (1.1)). The numerical results from Chapter 3 are in accordance with our analysis.

The results for the sequential splitting (SS) method has the same �order� of accuracy with

respect to k as the BTCS scheme when the number of subdomains is small. However, when we

increase too much the number of subdomains, it is more di�cult to predict the behavior of the

order of accuracy with respect to k. Another fact to be mentioned is that the error decreases

when we increase the relative overlap between the subdomains, and keeping the number of

subdomains constant. This happens because when we increase the overlap, we increase the

low frequency communications between neighboring subdomains. We also introduced a new

splitting scheme which is better for parallel computing. A more complete error analysis than

in [7] was developed.

To overcome the drawback caused by the deterioration of the error when we increase the

number of subdomains, we implemented the coarse grid correction in Chapter 4 to obtain the

2L and S2L methods. Numerical results show that when we increase the number of subdomains,

the 2L and S2L methods are more accurate than the SS method.

We mention some possible extensions and future work. We should analyze the 2L and S2L

methods, taking into consideration the numerical results obtained in Chapter 4. These methods

use the simplicity of SS method and the correction of the coarse grid scheme. It is important

to analyze the in�uence on the global error with respect to the number of subdomains, the size

of the overlapping between the intervals, and the ratio H/β. Other kinds of splitting of the

domain should be tested.
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