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Abstract

We develop a two-level splitting method for the numerical solution of parabolic partial differen-
tial equations (PDE). Instead of using the backward Euler method, we use an operator splitting
scheme to advance the system of equations obtained from the spatial discretization of the PDE.
The split operators are derived from a domain decomposition technique based on a partition
of unity of the spatial domain. The analysis and numerical results show that the discretization
error is of second order in space and of first order in time, however, it deteriorates when the
number of subdomains increases and when the overlap between the subdomains decreases. To
overcome this drawback we introduce a coarse grid correction scheme at each time step. The
numerical results obtained with the coarse grid correction show that the discretization errors

are smaller than the ones obtained from the one-level operator splitting method.



Resumo

No6s desenvolvemos um método de splitting de dois niveis para a solucao numérica de equacoes
diferenciais parciais parabolicas (EDP). Ao invés de usarmos o método de backward Euler,
no6s usamos um esquema de divisao de operador para avancar o sistema de equagoes obtido
da discretizacao da EDP no espaco. Os operadores sao obtidos por uma técnica de decom-
posicao de dominio baseada numa particao da unidade do espaco. A andlise e os resultados
numeéricos mostram que o erro de discretizacao ¢ de primeira ordem em relacao ao tempo e
de segunda ordem em relacao ao espaco, contudo, ele se deteriora com o aumento do ntimero
de subdominios e a diminuicao do tamanho da sobreposicao entre esses subdominios. Para
resolver este problema, introduzimos um esquema de correcao de malha grossa em cada passo
de tempo. Os resultados numéricos obtidos pela correcao da malha grossa mostram que os
erros de discretizacao sao menores que aqueles obtidos pelo método de splitting de operador de

um nivel.
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Notation
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3 = 2

spatial domain of the problem contained in R?

the union of €2 and its boundary 0f2

exact solution of the parabolic partial differential equation (2.1)

initial condition of problem (2.1)

operator 0.,

operator (0; — Oyz)

number of spatial subintervals

spatial mesh size

index of the spatial nodes

set of interior nodes in (2

pointwise evaluation of the initial condition g(x) on €,

spatial discretization of the operator £ with mesh size h

number of time subintervals

time discretization step

index of time step

¢(mh,nk)

discretization of P with the backward-time central-space scheme (BTCS)
discrete solution of (2.1) using the BTCS scheme at time nk

identity matrix

matrix with all elements equal to zero

Euclidean norm of the vector y

norm of the vector y as defined in (2.11)

spectral norm of the matrix B as defined in (2.12)

local truncation error for the smooth function ¢ of the BTCS scheme at time (n + 1)k
number of operators used in the splitting method

index of the operators used in the splitting method

first-order splitting discrete solution of the problem (2.1) at time nk
overlap between two neighboring subdomains composing an open covering of {2
number of overlapping subdomains {2} s

index of the partition of unity {xs}s=1,. s and the overlapping subdomains {Q*},—;



{Xs}s=1..s  partition of unity used to derive the overlapping subdomainsQ*

Xq partition of unity used to derive operator £,

L, operator 0, (X,0:u)

A, spatial discretization of the operator £,

B;‘;l(qﬁ) local truncation error for the smooth function ¢ of the first-order splitting method

at time (n 4+ 1)k

H coarse grid spatial size

Qn {reR:z=2,=sH,s=1,...,§—1,H=1/5}
Vi a vector v in the coarse grid Qg

Vi, a vector v in the fine grid €2,

the two-level discrete solution of problem (2.1) at time nk
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Chapter 1
Introduction

Let us consider the parabolic equation for u(z,t) on a domain Q C R? [7]:

Owu(z,t) = V- (D(x)Vu(z,t)) — c(z)u(x,t) + f(x,t) in Qx (0,7
u(z,0) = g(z) on Q0 x 0 (1.1)
u(z,t) = 0 in 99 x (0,7),

where D(r) is a symmetric positive definite d x d matrix function with C24=1(Q) entries, c(z) > 0
is a scalar function in C%(Q), f(x,t) is the forcing term in C?4(Q x [0, 7)) and g(z) € C*(Q) is
the initial condition. It can be shown that the exact solution u(z,t) of (1.1) is in C?4(2x [0, T7).
The regularity parameter ¢ represents also the number of operators used in the operator splitting
method presented in Chapter 3.

The numerical solution of the parabolic partial differential equation (1.1), using an implicit
numerical scheme, requires the solution of a relatively large linear system of equations. This
linear system can be solved inexactly provided that the inexact solutions preserve the stability
and local truncation error of the original scheme |7]. We consider non-iterative inexact solvers
at each time step. Such solvers include the alternating direction method (ADI) of Douglas and
Gunn [3], and Peaceman and Rachford [8] (for two-dimensional problems), and the fractional
step methods (F'S) of Bagrinovskii and Godunov [1], Yanenko [13] and Strang [10]. In this
thesis, we consider F'S methods only.

The method proposed here uses the same framework as the classical FS method for solving
parabolic equations of the form (1.1) [1, 13, 10, 4]. However, instead of using the approach of
splitting the operator £ in the coordinate axes, we use a splitting based on domain decompo-

sition, as in [7]. The domain decomposition is obtained from a smooth partition of unity that



decomposes the domain in overlapping subdomains. As a result, the elliptic operator £ can be

split as the sum of simpler operators represented as:
L=L+..+L;
The advantage of splitting methods is that the operators £; and associated equations
ou+Lyu = f,, Vg=1,...,4, (1.2)

are cheaper to solve than the equation (1.1). By using a splitting based domain decomposition
on the operator £, we replace the problem (1.1) by solving in parallel equations of the form
(1.2).

Although the splitting based on domain decomposition is easy to implement, the method
shows a severe deterioration of the accuracy of the error when the number of subdomains in-
creases since no global communication among the subdomains of €2 is inherited in the algorithm.
Hence, the method does not resolve the low frequencies. To overcome the lack of global com-
munication, we introduce a two-level approach by considering a coarse grid to resolve the low
frequencies and improve the accuracy of the method.

In Chapter 2, we present the simplification of problem (1.1), which we use to demonstrate
the theory. We introduce the discrete problem and the concepts of stability, local truncation
error, consistency and global error.

In Chapter 3, we introduce the construction of the partition of unity used to derive the
operator splitting based on domain decomposition. The first-order operator splitting is im-
plemented with two operators (i.e., ¢ = 2). We analyze the error, consistency and stability
of the splitting method, establishing an estimate of the error of the method in terms of the
number of subdomains and the overlap between these subdomains. Our error estimate is more
general than the estimate in [7] since it includes the dependence on the number of subdomains.
Numerical results are presented to corroborate the results presented in the theory.

In Chapter 4, we introduce a coarse grid to accelerate the convergence of the splitting
method. The numerical results show that the two-level schemes are more accurate than one-
level operator splitting when the number of subdomains increases. The analysis of the coarse

grid correction is not presented in this thesis. Conclusions are presented in Chapter 5.



Chapter 2

The parabolic PDE discretization

2.1 Model simplification

We are interested in developing a numerical method for the solution of (1.1). To simplify
our work, we consider the one-dimensional case and use ¢ = 2. We take D(z) = 1 and ¢(z) = 0,
obtaining the following equation:

Owu(z,t) = Lu(z,t)+ f(z,t)  inQx(0,7T)
u(,0) = g(z) on €2 %0 (2.1)
u(z,t) = 0 on 092 x (0,7T),
where Lu = Oy,u and = (0,L). The results in this thesis can be easily extended to the
d-dimensional case of (1.1).

The problem (2.1) can be interpreted physically as the model for the time evolution of a
temperature distribution over a one-dimensional bar of size L, where g(z) is the temperature
distribution at time ¢ = 0 and f(x,t) is the heat source. The values of the temperature at the

boundary of €2 are set to zero, Vt € [0,T]. This problem is well-posed.

2.2 Problem discretization
First we use the following notation to define our problem:
Pu= (0, — L)u= (0 — Opz)u = f. (2.2)

We subdivide 2 = (0, L) in m-spatial subintervals of length h = L/m, where the interior

nodes are x,,, = mh, form =1,...,m — 1. € denotes this set of the interior spatial nodes. We
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also denote o = 0 and z; = L in order to impose the zero Dirichlet boundary condition. In
time, we make a subdivision of the interval [0, 7] in 7 subintervals of size k = T'/n, obtaining
time intervals [t,,t,.1], where ¢, = nk, n=0,1,... 7.
Applying the second-order central finite difference scheme on the elliptic operator L, we
obtain:
n+l 2¢n+1 _'_¢n+1
m+1 m m—1
Lo(mh, (n+1)k) = + 5 + O(h?), (2.3)
where ¢! := ¢(mh, (n + 1)k) and ¢ is a smooth function.
Applying the first order backward difference scheme, we obtain:

op(mh, (n+1)k) = WT_W” + O(k). (2.4)

Discretizing the operator P in time and in space using the backward-time central-space
(BTCS) finite difference scheme [11| we obtain:

Pt —gn Ot = 200 + o

P = 2.
k:,h¢ L h2 ( 5)
For the function f(z,t) in (2.1), we use the following operator:
Rinf = fi, (2.6)
where [t = f(mh, (n+ 1)k).
So, applying BTCS in (2.1) gives us the finite difference scheme:
[— kAW = v kgt
(O v v (2.7)
v = 8nm

where A is a symmetric negative definite (m — 1) x (1 — 1) matrix, v* € R™! is the BTCS
discrete solution at time nk, g, is the pointwise evaluation of the initial condition g(x) on €,
and f"*! is the pointwise evaluation of the forcing term f(z,t) on  at time (n + 1)k. For

notation simplification, we make B := [ — kKA.

Remark 2.1. The matrix A is symmetric negative definite with eigenvalues A, given by [2]:

4 . mm
Am(A) = —psuf(%), (2.8)

where m = 1,...,m — 1 and h = L/m. The largest eigenvalue of A satisfies \q0(A) &~ —h™2
and the smaller one \,;,(A) &~ —1. Tt follows that the condition number of (I —kA) is bounded

by 1+ ckh™2, for some positive constant ¢ independent of k and h.



2.3 Consistency, stability and convergence

The most important property that a numerical scheme must have is that its numerical
solution must approximate the solution of the corresponding partial differential equation. The
approximation must improve as the grid sizes, h and k, go to 0. We call such scheme convergent

and it is defined as:

Definition 2.2. A one-step difference scheme approximating a partial differential equation is a

convergent scheme if for any solution to the partial differential equation, u(x,t), and solutions

n
m?’

to the difference scheme v", such that v°, converges to g(x) as mh converges to x, then v

converges to u(x,t) as (mh,nk) converges to (x,t) as h,k converge to 0.

It is not easy in general to prove the convergence of a given scheme. So, we use the Lax-

Richtmyer Equivalence Theorem to prove the convergence of the numerical scheme.

Theorem 2.3 (Lax-Richtmyer Equivalence Theorem). A consistent finite difference scheme
accurate of order (p,q) for a partial differential equation for which the initial value problem is

well posed is convergent if and only if it is stable.

To use Theorem 2.3, we must define the concepts of consistency, order of accuracy and

stability. We start with the definition of consistency:

Definition 2.4. Given a partial differential equation, Pu = (0; — Opz)u = f, and a finite
difference scheme, Py v = Ry pf, we say that the finite difference scheme is consistent with the

partial differential equation if for any smooth function ¢(x,t)
Pp—FPinp — 0 as k,h — 0
the convergence being pointwise convergence at each point (x,t).
For the scheme BTCS, by using (2.3)-(2.5), we have the following result:
Pp — Popd = O(k)+ O(h?). (2.9)

Since the right hand side of (2.9) tends to 0 when k, h — 0, we have that the scheme BTCS is
consistent.

Difference schemes may differ considerably in how well their solutions approximate the
solution of the differential equation. The “measure” of how well these schemes approximate the

solution is called order of accuracy and it is defined as:

10



Definition 2.5. A scheme Py, ,v = Ry, 1, f that is consistent with the differential equation Pu = f

is accurate of order p in time and order q in space if for any smooth function ¢(x,t)
Pin¢ — RepnPop = O(KP) + O(h9). (2.10)
We say that this scheme is accurate of order (p,q).

From (2.3)-(2.6), the BTCS scheme is accurate of order (1,2).

Now, we define the norms used in this thesis. For a vector y € R™! we have:

m—1
Iyl = D ym’h. (2.11)
m=1

For a matrix B € R(»~1Dx07=1) e define the spectral norm as:

B
1B, = supw. (2.12)
vy ylla

We use the norms defined in (2.11) in this thesis unless it is otherwise stated.
Next, we define the concept of local truncation error, which we will use in this thesis to
obtain the order of accuracy of the scheme presented in Chapter 3. When we multiply the left

member of (2.10) by the time step k, we can write the local truncation error of a scheme as:

Definition 2.6. Given the discretization (2.7), we define its local truncation error Ly, as:
egjl(¢) = ([ — l{A)d)n+1 _ q’)” _ k(P(ﬁ)"—H

for any smooth function ¢, where ¢ and (qu)"Jrl correspond to the evaluation of ¢ and
Po in Q, at time (n + Dk and €57 (¢) is a R vector. From (2.3)-(2.6), we have that each
component of the vector £y (¢) is accurate of order O(k?) + O(kh?). Taking the norm (2.11),
we obtain for the BTCS scheme:

16 (@)l = O(k?) + O(kh?). (2.13)

We can easily see from Definition 2.5 and Definition 2.6 that the order of accuracy of a
scheme is the order of the norm of the local truncation error divided by the time mesh size k.

In studying the convergence of the difference schemes, it is also important to define the
concept of stability. We wish to include the zero boundary conditions [5], then we use the
matrix method to examine the difference scheme (2.7).

In this work, we adopt the following definition of stability:

11



Definition 2.7. We shall say that the scheme (2.7) is stable if and only if there is a constant
C (independent of k and h) and some positive grid spaces ko and hy such that

1[Bl[l» <1+ Ck, (2.14)

for all0 < k < ko and 0 < h < hg. If ||| B|||n is independent of h and k, the stability condition

can be replaced with
1Bl]n < 1.

Using the definition above, a sufficient condition for the stability of equation (2.7) is

||B]||n < 1. The stability of the backward Euler method results from:

IBylla _ I =kA) "yl
Iy II7 lyll7
13117
11 = EA)y[7
(M

I¥1% — 2k(Ay, y) + k2| Ay |3
(2.15)

where we have used that y = (I — kA)~'y. Since the matrix A, for the BTCS scheme, is

symmetric negative definite, i.e., (Ay,y) < 0, we obtain:

| Byl
ly[17

1, (2.16)

and from (2.12) this implies that ||| B]||, < 1.
Following [9], the problem (2.1) is properly posed. We have obtained that the scheme (2.7)

is accurate of order (1,2), stable and consistent. Therefore, it is convergent of order (1,2) by

the Lax-Richtmyer’s equivalence theorem.

12



Chapter 3

The operator splitting method

3.1 Introduction

Given a discrete problem of the form:

I — kA" = v 4 kfrtt
( ) (3.1)
VO = 8h;
where n = 0,1,...,7n — 1, the basic idea of the operator splitting method is to solve it approx-

imately using an operator splitting of the form: A = A; + Ay. Therefore, the splitting method
solves approximately the systems of the form (3.1) by solving simpler equations of the form
(I —kA)zy = 241 + kf(?“, ¢ = 1,2. Hence, A, and f, must be suitable chosen so that the
latter systems are easier to solve than the original system.

Since A is a symmetric negative definite matrix, we consider A,, ¢ = 1,2, to be symmetric

negative semidefinite and to have a simpler structure than A, and such that:
A = A1 + AQ, where Aq S 0.

We also chose £, ¢ = 1,2, such that f"™ = £/ + £+,

In this chapter, we introduce the operator splitting and its analysis. The splitting of the
matrix A is performed using a domain decomposition technique. This technique subdivides
the domain into several overlapping subdomains decoupling the solution associated to each

subdomain except in the overlapping regions. We use a partition of unity to split the matrix
A.

13



3.2 Operator splitting

These methods were originally conceived by Braginovskii and Godunov [1] and Yanenko
[13], and further developed by Strang [10] and other authors [6, 4]. Given a matrix splitting
A = Ay + Ay, the operator splitting method approximates the matrix (I — kA) by a product
of several matrices of the form (I — kA,). The first-order operator splitting method (which is
known as sequential splitting) replaces (I — kA) by:

(I —kA) = (I—FkA)I —kAy) + O(k?),
since A; and A, have derivatives and we have that
(I —kA)(I —kAy) = T—Fk(A + Ay) +k*A1 Ay = (I —EkA) + O(k?) (3.2)

is true when applied to a function with the double of derivatives than A; and A;. We solve the

following problem
(I —kA)z" = Wik and (I —kAy)w™™ = 2" 4+ ki, (3.3)

where z" is an auxiliary variable and f**! = fl”+1 + fQ”H, foral0<n<n-—1.
Hence, using elementary algebra, the first-order operator splitting solution associated to the

BTCS scheme is given by:

(I — kAN — kA)wnt! = w4 k" 4 k2 A £y (3.4)
w’ = g :

We prove later in this chapter that the solution w above is an approximation to u that is
first order in time and second order in space. We will see in Remark 3.4 that A, is symmetric

negative semidefinite, therefore, the stability of the scheme (3.4) is proven in the next theorem.
Theorem 3.1. For symmetric negative semidefinite A,, the scheme (3.4) is stable.
Proof: Tt is sufficient to verify, see inequality (2.16), that:
(I = kAN — kA) ][ < L (3.5)
Since we have |||(I — kA,) ||| < 1, we obtain:
(7 = kA)THT = kA) Il < (I = EA) TR — kA2) 7] < 1.

The proof is complete.[]
In the next section, we construct a C3(Q) partition of unity and show how to obtain the

operators A, from it.
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3.3 Domain-decomposition of the operators

Let {Q}s=1
overlapping collection of subintervals of €. Each subinterval has length H = L/5, and Q =
US_, Q and Q,, N2, = 0 for 51 # 5.

We extend the subdomains (25 by a length 3 in each side to obtain Q%. Hence, 2, C Q2 and

; (where, for simplicity, § = 2¢ and 7 is a positive integer) denotes a non

,,,,,

two neighboring subdomains have an overlap of length 23. Notice that the nodes X, = sH, for
s=1,...,5—1, determine a grid of (0, L). {0}y
A C?(Q) partition of unity subordinated to this covering is a family of § nonnegative C3(£2)

; 1s an overlapping covering of €.

,,,,,

functions {xs(x)}s=1,. s whose sum is equal to one and such that y,(z) vanishes outside Q.

We have:
a) 0 < xs(z) < 1

b) S ele) = 1 (3.

c) supp(xs(z)) = Q..

We take the intervals Q* as an open covering for (0, L) such that:

& = (0,H)

Q7 (0 H+5)

Q. (H(s—1),Hs) (3.7)
Qf (H(s—1)—p3,Hs+ )

O; = (L—H,1L)

Q; = (L-H-p1),

where 2 < s < §—1.

Once the overlapping subdomains {2}, are formed, a C3(Q) partition of unity {xs}s=1. 3

.....

15



i s intervals £

o s
e H=1/3
£y ' C e — W
5222 i | s=2,1eN
E : B=8h<H/2
Q| ¥ |
Figure 3.1: Open covering of (2.
can be constructed as follows:
( 1 ifz € (0,H—p
xi(x) = § Mz—H+p)/(20) ifz € (H-p H+Pp)
\ 0 otherwise
(1—h((x—H(s—1)+0)/(28)) ifz € (H(s—1)—g,H(s—1)+f)
1 ifee [H(s—1)+ 5,Hs — f]
x(e) = h((x — Hs + 5)/(25)) it o € (Hs— 6, Hs+ )
L 0 otherwise
(1 W@ —-L+H+B)/28) ife € (L—H-8,L—H+p)
Xs(z) = 1 ifr € [L—H+p3,1L)
\ 0 otherwise,

where 2 < s < §— 1. If we use a C3(f2) partition of unity, it suffices to use h(z) = 20z7 —
702° + 842° — 35x* + 1, because h(0) = 1, h(1) = 0 and hD(0) = RO (1) =0 fori = 1,...,3.
It is easy to check that the functions y,(z) are in C*(Q) for this h(z).

Now, we consider a splitting A = A; + A, based on domain-decomposition of the discretiza-
tion of the operator £ = aa_;. We are interested in providing an estimate on how the truncation
error depends on the overlap 3 between the subdomains. For related algorithms, see [7] and
references therein.

s by constructing a new covering

{Q4}q=12 for (0,L), derived from {Q},_; ; and defined as Q; = U§/=21 Q3,, and Q, =
Ui/jl Q.. We assume that 8 < H/2 (see Figure 3.1). Summarizing, we split the domain into
two subdomains which can be painted with two different colors. We make y; = Zi/: 21 X2s—1
and Yo = Zi/zzl X2s- We have that x; and Y, are C3(Q) as they inherit these properties from

the functions ys.
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Figure 3.2: Partition of unity {x;}s=12-

We generate the matrices A, using the C*(2) partition of unity {X,},=12 for two open
subdomains {€,},—1 5 which cover (0,L). We split the operator £ = 88—;2 into the following

surmn:

Lu = 0,(X10.:u) + 0. (X20:u)

= (£1 + ﬁg)u,
where £, = 0,(X40:), for ¢ =1,2.
The matrices A, are defined by:
>~<q,m+§“%++11 - ()Zq,qu% + )Zq,mf%)u?n—i_l + )Zq,mféu%tll

(Au™th),, = (3.8)

h? ’
where X, 1= Xq(h(m +1/2)).

We implement the partition of unity in the function f, obtaining the functions f;, = X, f,
forg=1,2.

After splitting the operator A and f and using f; = y2f in (3.4), we obtain the following

problem:

(3.9)
WO = &h-

{ (I — kAN — kA)w™l = wh 4 kfr ! 4 k2A, (Rof)"H
This scheme allows the full parallelization in space of the problem. We solve in each Qq the
continuous problem dyu = L u+kf,, where £, = 0,(X,0.) is the elliptic operator with Dirichlet
boundary conditions in GQQ , and f, = x,f. From the discrete point of view, the Dirichlet
condition is given by w” and z"; see (3.3).
Before we proceed further, we define the Holder norms for integers j > 0 as follows:

aa
j =S axX |[——
91l o) ;gjmﬁ}{'amah

and we have the following result about a partition of unity; the main ideas of the proof can be
found in [7].

17



Theorem 3.2. Given a suitable collection of overlapping subdomains {S¥:}s—1, s with overlap

20, there exists a smooth partition of unity {Xs}j=1. s satisfying

1Xsllcigy < e(28)77, (3.10)

where ¢ > 0 s a constant independent of (3.

Remark 3.3. We can use domain decomposition to split the operator in a d-dimensional
geometry. For example, in two dimensions, two possible open coverings of a domain Q € R?
can be seen in Figure 3.3. For the covering in the left of Figure 3.3, we can construct a partition
of unity in a similar way viewed in Section 3.3, with a higher degree of differentiability. For the
covering in the right of Figure 3.3, we split the operator £ in four operators £,,q¢ = 1,...,4,
each operator for one of the sets composing the open covering. For more than two dimensions,
the splitting of the operators is similar. We do not analyze the splitting of the operator £ for

more than one dimension in this thesis.

Remark 3.4. The matrices A, are symmetric by construction; see (3.8). They are symmetric
negative semidefinite because, in each line of A,, the diagonal element is negative and its
absolute value is greater or equal to the sum of the absolute values of the off-diagonal elements

in the line. The negative semidefiniteness follows from the Gershgorin’s Theorem.

3.4 Error analysis of the splitting scheme

As we mentioned before, given a partition of unity {x,},=12, we take the operator £ =
Ope = 0,0, and the function f(x,t), and obtain £, = 0,(X,0.) and f,(z,t) = Xf(z,t). We
have that £ = £, + Lo, and by construction, £, are self-adjoint operators [7]. We take the
matrices A, as the discretization of the operators £,, hence, we have A = A; + Ay. The R™!
vectors fg“, q = 1,2, are the spatial evaluation of Y, f in {2}, at time (n + 1)k.

We now provide an estimate for the order of accuracy of the first-order splitting method
using the concept of local truncation error for the scheme. Analogously to the BTCS scheme,

we define the local truncation error for this method as:

Definition 3.5. The local truncation error ngﬂ(gb) for the first-order approximate splitting is:
0 (0) = (I — kA" — @" — k(P@)"™ + kA1 Ay™ ! — K2 A1 (x2P )" . (3.11)
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Figure 3.3: Two examples of coverings for two-dimensional domains. We use § = 4 in this

examples.

for any smooth function ¢. The R™ ' vectors ¢™ ™, (Pg)"*' and (x2P@)"*' correspond to
the evaluation of ¢, (P¢) and (x2P¢) in Qy at time (n + 1)k. Using the Definition 2.6, we

obtain the following relation between the local truncation error for the splitting method and for
the BTCS scheme:

Lo51(0) = 6,71 (9) + K2 A1 Ag™ ™ — KAy (X2 Pp)" (3.12)

From (3.12), the splitting method has the same order of accuracy of BTCS plus the terms
k2A1 Ay@" ™ and —k%A; (X2 P¢)"t!. Since the BTCS scheme is accurate of order (1,2), the
splitting scheme is accurate of order (1,2) plus the contribution of the terms k24, A,¢™"" and
— k2 A, (X2 P

We now investigate the influence of the term k?A; Ay¢" ! for the first-order splitting scheme.

To simplify the analysis we introduce the following notation:
z+h
Tif@) = 0 [ fn
o E+h
Tirste) = it [ s

xz+h/2
Tt = 07 [ s
09(z)

o) = S

19



Theorem 3.6. If ¢ € CJ(), the discretization (A;As),, satisfies

(A1 A2) | < c187° 0l e,

where (A1 Asd)m is the m-component of the vector (A1 As) and ¢ is the spatial interpolation
of the function ¢.

Proof: First observe that the finite difference approximation for (As¢),, is:

Gl +4) (B8] — fafo - ) (o)

Applying repeatedly the fundamental theorem of calculus and using the multi-index notation,

we have:
X o X o h LT T
<A2¢)m = (Ih,?/zamXQ) (Ihmax¢> — X2 (xm - 5) (Ihm mazz¢) (3'13)

We have an analogous expression for (A;¢),,. Using Ay¢ instead of ¢ in the expression for
(A1), gives:

~ T ~ h Tm T
(A1A2¢)m - (IZ:iL/Qa;er) (Ih7"8$(142¢)m> — X1 (xm - 5) (th "Lam(qub)m).

The resulting expression can be simplified by the following observation. The partial deriva-
tive operator 0“ “commutes” with all the integral operators Z,™, Z;™*, etc. The commutativity

of 0, and Z,;™ can be seem by the following example:

oI () = 0, (W [ F©dg) = (W[ OeR(©)dg) = Tmo.F(a).
Analogously, we have for Z;*" and 7,7 /ot
O, Ly F(x) = I;m0,F(x)
8$IZE/2F(x) = Zfbjln/QﬁxF(x).
Using the fact that 0, commutes with Z7, 7 and I}f,l/z and performing elementary calculations

we obtain:
(Aidophn = (Tip0eic) (T (T peac) (T3 020) + (T o002 ) (T D1a0)
~0Xa (2 = h/2) (T 016) = Ko (2 = 1/2) (T 000)) +
X1 (o = B/ T ((T000a Xz ) (T 020) + (500X ) (T D20 ) +
+ (Tt 20002 ) (T 000) + (L7502 ) (T3 Oruas) +
—0OnaXa (X = h/2) (T 0pa) = OuXa (X — h/2) (T3 Orzad) +
—0pX2 (Tm = h/2) (T3 Opza®) = X2 (Tm = 1/2) (T Dunh)) - (3.14)
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Now, we can obtain an estimate for |(A;As@),,| in terms of the value of the derivatives of

Cb, >~<1 and 22-
From the mean value property of integrals, we have that |Zy¢(z)| < maxecps,,om+1) |0(§)]-

Using that property and taking the absolute value of the expression (3.14), we can write:

|(A1A20),| < Z Caranas |07 X1 | o) |07 Xa| o) [ 0™ @ o,

(a1, a2, az)
o] + [az| + [ag| =4
lag] <1

where Co; a,0,,, = 0 or 1. Using the definition of the Holder norm we obtain:

[(A1A2¢) | < > Caya,05 || X1l cor @) IXall ooz @) |0l cos o) -

(a1, a2, a3)
lor] + |az| + [ag| =4
o] <1

Applying the estimation obtained in Theorem 3.2, we have:

(A1 A20),| < Clﬁ_3||¢||04(§2)7
which proves our assertion.[]

Theorem 3.7. If ¢ € C5(Q) and 0,9 € CZ(Q), the discretization (A; X2 P ), satisfies

(A1 (X2P®))im| < B2 (c2|| @l e + c3llOidllc2 (),

where (A1 (X2 P®))m is the m-component of the vector (A1(xX2P@)), ¢ is the spatial interpola-
tion of the function ¢, ¢y := 0y and X2 P is the spatial interpolation of X2 Po.

Proof: To simplify our notation we make ¢ := P¢p = 0, — 0,.¢, consequently we have
1 = P¢. First observe that the finite difference approximation of (A;(x2%))m is:

K (@m + 1) <(Xz¢)m+}l—(><2¢)m) (= ) ((Xz%m—}gxm)m,l)

(Al(f(z?/)))m = n

Applying repeatedly the fundamental theorem of calculus and using the multi-index nota-

tion, we have:

h

(et = (F3a0et) Gr0u() = % (2~ § ) B0l

~ x ~ ~ h T ~
= < ZE/28$X1> (Ihm(8$X2 + 8$¢)) — X1 (xm - 5) Ihm m<waxxx2 +
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Using the fact that 0, commutes with Z7, 77 and 121/2 and the mean value property for
integrals and taking modulus of expression (3.15), we can obtain an estimate for |(A; X2 )|

in terms of the value of the derivatives of ¢, y; and Y2, given by:

(A1 (X2¥))m| < > Canaza5 07 X1l o) |07 Xl co@)| 0% Pl oo q),

(a1, @z, az)
loar| + [az| + [ag] =2
lag] <1

where Co; a,0,,, = 0 or 1. Using the definition of the Hélder norm we obtain:

(A1 (X2%))m| < > Car,az,03][X1loor @) X2l coz @ 19 ] cos 0)-

(a1, @z, a3)
lar] + |az| + |ag] =2
lar] <1

Using the estimation derived in Theorem 3.2 we obtain:

(A1 (X2%))m| < ¢B72]10]|c2(- (3.16)
We know that ¢ = P¢ = 0;¢p — 0.0, so we have that
[Ylle2) < 2| 0ibl|c2i0) + €3]] 022 c2(0)
< |0l o2 + eslldllora, (3.17)

where ¢y and c3 are constants.

Substituting (3.17) in (3.16) we obtain:

[(A1(X2%))m| < B2 (2|00l c20) + | Bl i), (3.18)

which proves our assertion.[]
Now, we can estimate the contribution of the terms k*A; Ay and k? A, (x2P¢) to the local

truncation error.

Theorem 3.8. The local truncation error é?;’l(gf)) of the splitting method with domain decom-

position satisfies

 (HN? (1Y
I @l < 18 @)+ eak® = ) léllosa) +

HN\Y2 /12
1 (5) (§) @odlom +aldlow)  @19)
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for any smooth function ¢, where Egjl(gb) 15 the local truncation error of the backward Euler

method at time (n + 1)k, ¢1, co and c3 are constants. The order of accuracy of the method is

O(k) + O(h) + O <k; <%>5/2 (%)7 L0 (k: (%)3/2 (%)j | (3.20)

Proof: We have from (3.11) that the local truncation error is:

o) = G1(0) + F A1 A" — B2 A (X2 Pp)" T, (3.21)
where ¢" 1! corresponds to the evaluation of ¢ in €, at time (n 4 1)k. The matrix A; A, is of
the form:

@)
K
@)
KT
9, (3.22)
@)
K
@)

where O is a matrix with all elements equal to zero. If we take the overlap 26 = éh < H,
where ¢ is a positive even integer, K is a (6 + 3) x (§ + 3) matrix. If we take § = 1/H as the
number of subdomains that subdivides (0, L), then we have § — 1 matrices of the form K and
KT. The matrix K comes from the product of y; in the right boundary of 2} and Y, in the
left boundary of €23, while its transpose comes from the product of x, in the left boundary of
2% and x; in the right boundary of Q. We have a total of (§ +3)((1/H) — 1) terms different
from zero in the vector (A;As¢). In a similar way, we can see that the vector (A;(x2P¢))
has a total of O(6/H) components differents from zero. Taking the Euclidean norm of (3.21),

which we denote by || - ||2, and using the estimates from Theorems 3.6 and 3.7, we obtain:
e @)z < 145 (0)ll2 + K[| A1 A2l + K[| AL (2P )" |
< 16 D)2+ ern/ (6 + 3)(1/H) = DE(B) 6]l cagey +
+kQ\/5/_]7@_2(02||at¢||c2(9) + csl|Pllcaay)
16571 (D)2 + 1/ HE(8) 2 @l ooy +
+V/6/HE(8)*(calldedll @y + eslldllose))-

IN
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Multiplying the whole expression by v/A and using that v/A|[.||2 = |||, we have:

1€ (D) < 16 (@) In + e/ B/HE(8) |9l cs oy +
+VB/HE(B) 2 (c2l|0d| c2(0) + cslldll )

B L[ 1 3/ H\ 5/
e @+ ek () (5) ol +

IN

g

IN2 7\ 32
+k° (E) (E) (c2l|Odllc2 @) + eslldllose)- (3.23)

The order of accuracy of the method is the order of the local truncation error divided by k. So,

using the Lax-Richtmyer Theorem, the splitting method converges and is accurate of order
H\%2 /1\? H\Y? /1\2
k h? El— — k| — — : 24
owsomyro(r(5)" (7)) ro(+(5) (7)) was

Remark 3.9. We can implement the splitting method using f; = f and fy, = 0. With this

O

choice of splitting for the function f we have to solve the problem:

(I —kA)z" = w"+ kf"H!
(I — kA)w"Tt = z" (3.25)
wlo= g,

which, after elementary calculations, becomes:

. (3.26)

w = 8h,

{ (I — kA — kA))wtl = wn + kfrt!

The analysis of (3.26) is similar to the analysis of (3.4). This method is also stable and is

O(k) + O + O (k (%)S/Q (é)j | (3.27)

because there is no influence of the term k?A;x2P¢ in the order of accuracy of the method

convergent of order:

The choice (3.25) of the splitting of the function f(x,t) also permits some parallelization
of the scheme, but not as much as for the scheme (3.9). In the choice (3.25), the boundary
conditions for the operator £, will be the same as for the problem (2.1), however, values of z"

need to be computed outside of Q.
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3.5 Numerical results

We solve the following problem in the domain (0,1) x (0, 1):

Ou = Opu+ f(z,t) in (0,1) x (0,1)
u(z,0) = z(l—x)exp(z) on (0,1) x {0} (3.28)
u(z,t) = 0 on {0,1} x (0,1),

where f(z,t) = zexp(z)[(z — 1)wsin(nt) + (3 + ) cos(nt)]. The function f(z,t) and u(z,0) are
chosen such that the analytical solution of problem (3.28) is u(z,t) = z(1 — x) exp(x) cos 7wt in
(0,1)x(0,1). The BTCS scheme and the Sequential Splitting solutions are denoted respectively
by BT and SS. We calculate the error of the methods at time 7' = 1 for all experiments. The
error is ||[u® —w?"||,, where u”, = u(mh, nk), w" is the numerical solution given by the splitting
method and |.||, = V& |-

Experiment 1 - In Tables 3.1-3.2, we keep constant the spatial discretization mesh size
h =1/1024 and the time discretization step k = 1/2048. In each row of these tables, we keep
H/( constant, while in each column we keep constant the number of subdomains § = 1/H. In
Table 3.1, we solve (3.9), while in Table 3.2, we solve (3.26). We examine the effect of H/3
on the error. The values presented in Table 3.1 are multiplied by 103. The error for BT is
0.0680 x 10~3 when k = 1/2048 and h = 1/1024.

Table 3.1: We divide (0,1) in § subdomains of length H = 1/§ and overlap § and keep the
mesh parameters k = 1/2048 and h = 1/1024. We use the SS scheme (3.9). The values for the
error at T = 1 are multiplied by 103.

I v [ oy | ya | s | 16 | 132 |
H/B=4 | 03859 | 2.9652 | 17.8233 | 74.9567 | 238.3453
H/B=8 | 0.7271 | 5.7262 | 31.9605 | 125.7292 | 334.9536
H/B =16 || 1.3536 | 10.5073 | 55.3480 | 198.9055 | 412.0838
H/B =32 || 24300 | 18.5800 | 92.8414 | 286.1308 | 451.2088

We see that the errors for the solution of (3.9) and (3.26) are very similar. So the imple-
mentation of full parallelization in space does not cause a deterioration on the error.
We verify that the error deteriorates when we increase the number of subdomains §, and keep

the ratio H/@ constant. This behavior was predicted in Theorem 3.8. The error deteriorates
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Table 3.2: We divide (0,1) in § subdomains of length H = 1/§ and overlap § and keep the
mesh parameters k£ = 1/2048 and h = 1/1024. We use the SS scheme (3.26). The values for

the error at 7' = 1 are multiplied by 103.

I v [y | ya | s | 16 | 132 |
H/B=4 | 02701 | 3.3550 | 18.2621 | 75.3914 | 238.6964
H/B=8 || 05476 | 6.1325 | 32.4113 | 126.1702 | 335.3240
H/B =16 || 1.1562 | 10.9227 | 55.8070 | 199.3570 | 412.7376
H/B =32 || 2.2283 | 19.0108 | 93.3087 | 286.7788 | 451.9897

when we increase the quotient H/3, and keep the number of subdomains § constant. This means
that when we increase H/(3 and keep § constant, then [ decreases, i.e., the overlap between the
subdomains decreases. When we decrease the overlap, we decrease the communication between
the neighbors subdomains, and this justifies the error deterioration. Summarizing, the decrease
of the ratio H/[3 deteriorates the error for SS.

Experiment 2 - In this experiment, we obtain four tables using the SS scheme (3.9). For
each table, we keep H/( constant. In each row, we vary the number of subdomains, and keep
constant the time and spatial discretization mesh sizes such that £ = h. In each column, we
vary the time and spatial discretizations mesh sizes such that & = h and keep constant the
number of subdomains. We examine the effect of H/3 in the error when we vary the mesh

discretization sizes. The values for the error at time 7" = 1 presented are multiplied by 103.

Table 3.3: We divide (0,1) in § subdomains of length H = 1/§ and overlap $ and make
H/( = 32. In the column labeled BT, the error for the BTCS scheme is presented. The other
columns have the error for the SS scheme for different values of H. The values for the error are
multiplied by 103.

[ H | 12 | 14 | s | 116 | BT |
h=Fk=1/512 | 8.1564 | 61.6603 | 247.8635 | 432.1676 | 0.2718
h=Fk=1/1024 | 4.5175 | 34.7734 | 165.2721 | 388.1498 | 0.1359
h=Fk=1/2048 | 2.4357 | 18.9688 | 96.9683 | 305.8543 | 0.0679
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Table 3.4: We divide (0,1) in § subdomains of length H = 1/5 and overlap § and make

H/3 = 16. The values for the error are multiplied by 103.

[ H | o2 | 14 | s | 16 |
h=Fk=1/512 || 47515 | 36.0040 | 168.6354 | 392.0056
h=k=1/1024 | 2.5566 | 19.7149 | 100.6397 | 310.0240
h=k=1/2048 | 1.3526 | 10.5565 | 56.4390 | 206.3469

Table 3.5: We divide (0,1) in § subdomains of length H = 1/§ and overlap $ and make

H/3 = 8. The values are multiplied by 103.

[ H | 12 | 14 | s | 116 |
h=k=1/512 | 2.6738 | 20.3071 | 105.0133 | 314.5113
h=k=1/1024 | 1.4042 | 10.8733 | 59.1623 | 213.0031
h=k=1/2048 | 0.7261 | 5.7347 | 32.1099 | 128.0164

In the Tables (3.3)-(3.6), as predicted in our analysis, we verify that the error is almost

linearly dependent with respect to the size of the time discretization step. This linear relation

is less clear for higher values of s, since the term O (k‘(%)g (%)5/2) dominates the error with
respect to the BTCS scheme.
We also can see from these tables, by keeping §, k£ and h constant, that the same conclusion
as above follows, that is, the error decreases almost linearly when we decrease the ratio H/[3.
However, from these results, we also see that our estimate (3.24) of the error is not sharp.

It is more complete and accurate than the estimate of the error obtained in [7].

Remark 3.10. A second-order splitting method (Strang-Marchuk) was also implemented dur-
ing our research, however the results for this method were worse than for SS and are not

presented in this thesis.
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Table 3.6: We divide (0,1) in § subdomains of length H = 1/5 and overlap § and make
H/f3 = 4. The values are multiplied by 103.

[ H | 12 | 14 | s | 116 |
h=Fk=1/512 || 1.4746 | 10.9644 | 62.0467 | 220.9803
h=Fk=1/1024 | 0.7580 | 5.7481 | 33.6596 | 133.8819
h=k=1/2048 || 0.3853 | 2.9676 | 17.8515 | 75.2081
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Chapter 4

Two-grid scheme for the solution of the
parabolic PDE’s

4.1 Introduction

In the preceding chapters, we have studied numerical methods to approximate the solution
of a parabolic PDE on a spatial grid with mesh size h and time step size k. These methods

consist of solving, in each time step, equations of the type:
Bz = b, (4.1)

where B, z and b depend on the scheme used for the discretization of the problem. For instance,
in BTCS we have B := By = (I — kA), z = v"™ and b = v" + kf""!, which give us:

(I — kAW = v 4 ffrtl (4.2)

while in the splitting method B := By, = (I — kA;)(I —kAy), z=w""" and b = w™ + kf" ™! —

E2A f5 and we have:
(I — kA1>(I — kAQ)Wn+1 = w" + kaH-l — ]{?2A1f;+1. (43)

When we use an operator splitting based on a spatial partition of unity of the domain, we
have concluded in the preceding chapter that the accuracy of the discrete solution deteriorates
as the number of subdomains increases. To deal with this latter drawback, in this chapter, we

implement a coarse grid correction at each time step.

29



Figure 4.1: Interpolation of a vector on coarse grid 29i+1; to fine grid €y,
4.2 Intergrid operators

Let Q = I C R be a finite interval with I = (0,L). Let the fine grid on Q be given by
Qp={zeR:z=uz,=mhm=1,...,m—1,h = L/m} and the coarse grid given by
Qp={reR:zx=2,=sH,s=1,...,5§— 1}, where § = 1/H = 2=, and i is a positive
integer measuring the coarsening of h, i.e., i = 0 refers to h while ¢ = ¢ refers to H. On Qy,
we define the grids Quij, by Quip, = {z € R: 2 = 2; = j2'h,j = 1,...,m/2" — 1,h = L/m}.
To transfer data from the coarse grid (2yi+1;, to the fine grid €2y, we define the prolongation

operator P27y, € ROW/2'=Dx(/21=1) Hin stencil notation, as:
‘ 1

Composing the intergrid data transfers for all grids from €2, to {25, we obtain the prolon-

gation operator P! from Qy to €, as:

i—1
ho 2¢h,
Py = TIPet.
1=0

The next step consists in defining the restriction operator RF. This operator restricts values
from €, to Qx. We will proceed as above and define the operator R%Zlh e RA/2H-1)x(h/2'-1)
There are different forms to construct this operator. One is by direct injection, where the
values at the coarse grid vector are equal to the values at the fine grid. Another choice is a
full-weighting restriction, where the elements of the coarse grid vector are given by averages
of the values of the neighbor points on the fine grid. We choose a full-weighting restriction
proportional to the transpose of the prolongation operator. We have:

) 1 ) T
2it1p 2th
B = (szh)
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Q

20k \

Figure 4.2: Restriction by full weighting of a fine-grid vector to the coarse grid.

So, similarly to the prolongation operator, the restriction operator R that transfer values

from €2, to Qpy is given by:

1
Rl = S (Ph)' (4.4)

4.3 Coarse grid correction

To define the discrete solution z} ™" of (4.3) in ), with coarse grid correction, we first solve

at each time step the splitting scheme (4.3). We have:

(I — kAT — kA)ZT = 20 + kT — AT (4.5)

From the intermediate solution ZZH we obtain in €2, the residue:

it = gl kT - Bzt (4.6)

where B, = By, = (I — kA). The residue rZ“ measures how far from the BTCS discrete
solution is our approximation ;™' given by sequential splitting at each time step. We now

restrict the residue to the grid €0y, obtaining:

vt = Rfep (4.7)

We next solve a coarse problem with right-hand side r?fl to update the solution ZZH. Note

that the solution error for (4.3) at time step (n + 1) in the fine mesh is given by

n+l _ . n+l ~n+1
e =v, " —Z", (4.8)
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where v} is the BTCS solution of (4.3) at time (n + 1)k in the fine mesh.
If we multiply (4.8) by By, we obtain the residue equation:

Buep™ = Byvit! — Bzt = vl + kET - Bzt =t (4.9)

Instead of solving the equation (4.9) in the grid €2, we approximate e} "'

in the grid Qp.

by the solution

To this objective, we need to approximate the operator By in 0y, which we call By. There
are two ways to do this. One is called the discretization coarse grid approximation(DCA),
and the other is called the Galerkin coarse grid approximation(GCA). The DCA consists in
discretizing the Equation (2.1) in the coarse grid, while the GCA is obtained by defining By

as:
By = R}IB,P. (4.10)

We can find a comparison of these two discretizations in [12]. We will use GCA in our problem
because of its purely algebraic nature, and therefore, we do not need to discretize the differential

equation again in .

We obtain the error in the coarse grid by solving the equation Bye’™" = r’;'! in the grid

Q7, where By is defined in (4.10) and r’;™" in (4.7).

We prolongate ;! on the fine grid using the prolongation operator:
el = Phen. (4.11)
Finally, we update the solution for time step (n + 1) by the two-grid scheme:
zp =zt el (4.12)

Summarizing, the splitting scheme using coarse grid correction for the solution of problem
(1.1) is given as:
Two-Level (2L)

For each time stepn=1,...,n
e Solve (I — kA (I — kAg)zy™ =zl + kf T — K2A 77 in Q;
e Obtain the residue rj™ =z + kf"™! — (I — KAz,

= RHpnL,

e Restrict the residue to the coarse grid v, = ;
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Solve the equation (R (I — kA)Pl)e’™ = vt

e Prolong the error to the fine grid e} ™ = Phet!;
e Update the approximate solution z; ™' =z} + e},

n+l _ =n+1
o Makez," =12z,"".

4.4 The symmetrized two-level method

We can improve the two-level method by applying another fine grid correction. After we

obtain the approximate solution (4.12), we calculate the residue in the fine grid due to Zn+1

and obtain:

f‘Z—H _ Zz—l—k‘fn—i_l B —n+1

+1

From the residue r;™", we use the first order operator splitting scheme to obtain:

(I — kA (I — kAy)eyt = 1+l (4.13)

Finally, we use the error (4.13) to obtain the approximate solution:

Z,—i—l — —n+1+en+l.

We call this scheme the symmetrized two-level method and it is summarized as:
Symmetrized Two-level (S2L)

~

For each time stepn=1,...,n
o Solve (I — kA)(I — kA)ZIH = 20 + kE™1 — K2A,£7%) in O
e Obtain the residue rj*! = 2z + kf*+! — (I — kA)Z) T,

e Restrict the residue to the coarse grid r™' = REr(™;

e Solve the equation (R (I — kA)Ph)el™ = vt

e Prolong the error to the fine grid e} ™' = Phe/t;

=n+1

e Update the approximate solution z; ™' =z} + e}*!;

e Obtain the new residue ¥} =z} + kf"+! — (I — kA)z}
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e Solve in the fine grid (I — kA;)(I — kAy)&p+t = Ft1

n+1

e Update the solution zj zntl 4 gntl.

= Zy ST

4.5 Numerical results

We solve problem (3.28), repeating the Experiments 1 and 2 from Chapter 3 for both
methods. We calculate the error for the two-level sequential splitting(2L) and the symmetrized
two-level sequential splitting(S2L) at time 7" = 1 using the norm ||.||5.

Experiment 1 - In Table 4.1, we keep constant the spatial discretization mesh size h =
1/1024 and the time discretization step & = 1/2048. In each line of this table, we keep constant
the relative overlap H/f3, while for each column of this table we make constant the number of
subdomains § and consequently the size of the subdomains is H = 1/5. We examine the effect
of H/[3 in the global error. The values for the error presented in Table 4.1 are multiplied by
103. The results for 2L and S2L are displayed in this order separated by the symbol “\”.

Table 4.1: We divide (0,1) in § subdomains of length H = 1/§, with overlap 3, keeping the
mesh parameters k = 1/2048 and h = 1/1024. The values for the error are multiplied by 103.
The results for 2L and S2L are displayed in this order separated by the symbol “\”, i.e., 2I.\S2L

I 1/2 | 1/4 | 1/8 | 1/16 | 1/32 |
H/B=4 || 0.6433\0.0671 | 2.2208\0.0719 | 3.6847\1.2005 | 4.2604\6.0258 | 3.6352\6.3063
H/B=8 | 1.2250\0.0693 | 4.4287\0.4872 | 7.2203\5.2070 | 8.4364\19.8011 | 6.8811\20.4576
H/B =16 || 2.1914\0.1436 | 7.9984\1.8833 | 12.6752\14.4814 | 13.6547\43.3528 | 9.8914\39.7007
H/B =32 || 3.7703\0.4558 | 13.8837\5.2082 | 20.9020\31.5017 | 19.6685\78.2567 | 12.7409\53.2530

As expected, in general, the results for 2L and S2L are much better than for SS for large
number of subdomains; see Tables 3.1 and 4.1. If we keep the ratio H// constant and vary the
parameter 5, we can see that for the 21, method, the error remains roughly on the same size.

Experiment 2 - In this experiment, we obtain four tables. For each table, we keep H/f3
constant and vary the number of subdomains and the mesh size h and keep k£ = h. We examine
the effect of H/[ in the error when we vary the discretization mesh sizes. The values presented
are multiplied by 10%. The results for 2L, and S2L are displayed in this order separated by the
symbol “\”.
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Table 4.2: We divide (0,1) in § subdomains of length H = 1/3, with overlap [, and make

H/3 = 32. The values for the error are multiplied by 103.

[ H [ 1/2 | 1/4 | 1/8 | 1/16 |
h=Fk=1/512 | 12.2936\2.4031 | 44.1046\22.0934 | 49.6599\78.6257 | 33.4156\62.3839
h=Fk=1/1024 | 6.8947\1.0848 | 25.4412\11.4008 | 34.6324\57.4985 | 27.0295\82.2786
h=k=1/2048 | 3.7810\0.4573 | 14.1638\5.3332 | 21.8186\33.9411 | 21.1568\85.5807

Table 4.3: We divide (0,1) in § subdomains of length H = 1/3, with overlap [, and make

H/(3 = 16. The values for the error are multiplied by 10.

[ H [ 1/2 | 1/4 | 1/8 | 1/16 |
h=Fk=1/512 | 7.3447\0.9359 | 25.9395\9.9907 | 32.0812\43.1580 | 23.9805\46.5872
h=Fk=1/1024 || 4.0410\0.3802 | 14.6136\4.5243 | 21.1500\28.1137 | 19.0555\52.6627
h=k=1/2048 | 2.1919\0.1436 | 8.0384\1.8945 | 12.9505\14.8266 | 14.1972\46.6185

From Tables 4.2-4.5, we conclude that the error decreases almost linearly with & for the 2L
and S2L methods. This is expected since SS is a first order method. This linear dependence
on k is more noticeable for small values of §. For s = 16, it is difficult to predict the behavior
of the S2L. method. A possible reason is because we apply the SS method twice in the fine grid
and we know that SS method does not work well for high s.

If we look the tables, and keeping fixed s, k and h, we verify that the 2L and S2L methods,
the error decreases almost linearly when we increase H /(.

We obtain more accurate results for the 2L, and S2L methods than for the SS method; see
Tables 3.3-3.6 and 4.2-4.5. This is expected due to the communications provided by the coarse

grid correction.
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Table 4.4: We divide (0,1) in § subdomains of length H = 1/3, with overlap [, and make

H/3 = 8. The values for the error are multiplied by 10

[ H [ 1/2 | 1/4 | 1/8 | 1/16 |
h=Fk=1/512 | 4.2852\0.3673 | 14.6586\3.5636 | 19.2037\19.9828 | 46.5872\25.0959
h=Fk=1/1024 || 2.3123\0.1544 | 8.1377\1.4045 | 12.2111\11.1564 | 12.0869\26.1968
h=k=1/2048 | 1.2249\0.0692 | 4.4376\0.4884 | 7.2705\5.2386 | 8.6670\20.2609

Table 4.5: We divide (0,1) in § subdomains of length H = 1/3, with overlap [, and make

H/f3 = 4. The values are multiplied by 103.

[ H | 1/2 | 1/4 | 1/8 | oy |
h=Fk=1/512 | 2.3731\0.2624 | 7.6628\0.9054 | 10.0427\6.6444 | 8.3484\9.3710
h=k=1/1024 || 1.2465\0.1322 | 4.1867\0.2733 | 6.2642\3.2539 | 6.2640\8.5327
h=k=1/2048 || 0.6433\0.0670 | 2.2328\0.0719 | 3.6990\1.2939 | 4.3153\6.0643
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Chapter 5
Conclusions

We develop a method to parallelize the solution of equation (2.1) (and more generally the
equation (1.1)). The numerical results from Chapter 3 are in accordance with our analysis.
The results for the sequential splitting (SS) method has the same “order” of accuracy with
respect to k as the BTCS scheme when the number of subdomains is small. However, when we
increase too much the number of subdomains, it is more difficult to predict the behavior of the
order of accuracy with respect to k. Another fact to be mentioned is that the error decreases
when we increase the relative overlap between the subdomains, and keeping the number of
subdomains constant. This happens because when we increase the overlap, we increase the
low frequency communications between neighboring subdomains. We also introduced a new
splitting scheme which is better for parallel computing. A more complete error analysis than
in [7] was developed.

To overcome the drawback caused by the deterioration of the error when we increase the
number of subdomains, we implemented the coarse grid correction in Chapter 4 to obtain the
2L and S2L methods. Numerical results show that when we increase the number of subdomains,
the 2L and S2L methods are more accurate than the SS method.

We mention some possible extensions and future work. We should analyze the 2L. and S2L
methods, taking into consideration the numerical results obtained in Chapter 4. These methods
use the simplicity of SS method and the correction of the coarse grid scheme. It is important
to analyze the influence on the global error with respect to the number of subdomains, the size
of the overlapping between the intervals, and the ratio H/(3. Other kinds of splitting of the

domain should be tested.
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