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Abstract

This work describes an authoring environment for dance shows
that can both be used as a mechanism to synthesize virtual
performances and as a tool to assist the planning of chore-
ographies, allowing design and visualization of full motion se-

quences.

To this end, we explore adaptations of techniques for leveraging
motion capture data to an application that makes extensive use
of musical references. We also discuss methods for controlling
the way dancers move on stage as a group, creating formations
and following trajectories. Finally, we propose an integrated
platform, which suggests a new form of collaboration between
artists, allowing the show to naturally evolve from iterative

contributions of dancers, musicians and choreographers.

In this way, we indicate how graphics technologies can be used
not only to facilitate creation but also to suggest new forms of

artistic expressions.






Resumo

Este trabalho descreve um programa de autoria para espetacu-
los de danca que pode ser usado tanto para a sintese de per-
formances virtuais como para auxiliar o planejamento de core-
ografias, possibilitando o design e a visualizacdo de sequéncias

completas de movimentos.

Para isso, exploramos adaptacdes de técnicas de aproveita-
mento de dados de captura de movimento para uma aplicacdo
que faz forte uso de referéncias musicais. Também discutimos
métodos para controlar a forma como os dancarinos se deslo-
cam no palco como um grupo, criando formacdes e seguindo
trajetérias. Finalmente, propomos uma plataforma integrada,
que sugere uma nova forma de colaborac3o entre artistas,
possibilitando que o espetaculo evolua naturalmente de con-

tribuicGes iterativas de dancarinos, musicos e coredgrafos.

Desta forma, indicamos como tecnologias de computacio gra-
fica podem ser usadas ndo apenas para facilitar a criacao, mas

também para sugerir novas formas de expressGes artisticas.
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Chapter 1

Introduction

1.1 Motivation

The availability of Motion Capture technologies has had a very significant impact on the area of
computer animation. Nowadays, fast and cheap MoCap setups have become widely available
and innumerable efficient techniques for leveraging motion capture data were and are being
published. These novel graphics technologies are being strongly used by the movie industry,
allowing the combination of real actors with virtual ones that are synthesized from captured
performances.

We observe, however, that these applications are still very naive, demanding a lot of work
from the actors and the artists who manually manipulate the data. In movies like James
Cameron's Avatar, for example, the performance of the actors are directly used to drive the
movements of the virtual characters with very little editing.

On the other hand, many recent papers have proposed efficient techniques for manipulating
MoCap data, allowing a large number of different motions to be generated from a relatively
small database and with very accurate control. These new methods for data driven animation
suggest a new paradigm for content creation, allowing the synthesis of sophisticated and
realistic human motion with very little effort from artists. However, in order for this revolution
to in fact take place it is essential to adapt these techniques to real scenarios and develop
authoring environments that serve as a bridge between artists and the emerging technologies.

Although applications of these resources are mostly observed in movies and have so far
been little explored in other media, recent trends indicate that artists will also begin to use
them creatively to produce new visual effects in dance shows, concerts, musicals and other
spectacles. In this context, we propose an adaptation of the existing methods for leveraging
MoCap data to the context of creating dance content from artistic input and propose an
authoring environment for dance shows. With this, we advocate how graphics technologies

can be used not only to facilitate creation but also to suggest new forms of artistic expressions.



1.2 Contributions

The contributions of our work are related to both the structuring of the authoring platform

and to the development and adaptation of techniques for motion synthesis.

1.2.1 The Authoring Environment

To the best of our knowledge, we are the first to propose an authoring and collaboration
platform for dance shows that integrates the creative elements that compose a choreography:
music, dance and group motion. In this work, we combine the contribution of the dancers
(whose performance creates the motion database), with the contribution of musicians (who
guide both the dancers’' rhythm and the choreography's high level control parameters), and the
contribution of choreographers (who design the dance show using a proposed interface that
merges all three inputs).

This platform can be used both as a mechanism to synthesize virtual performances and as
a tool to assist the planning of dance shows, allowing design and visualization of full motion
sequences. Though it is highly applicable in conventional shows, guiding the artists through
conception, production and execution, it also suggests a new paradigm for creation. In offering
an integrated platform, this work promotes a new form of collaboration between the artists,
allowing the show to naturally evolve from iterative specifications.

Taken to a real-time scenario, this framework bridges the gap between conception and
execution, suggesting a new paradigm for content creation. With this system, artists can
propose shows that combine real and virtual dancers whose movements are controlled by

instantaneous contributions from different presenters and even from spectators.

1.2.2 Dance Motion Synthesis

Dance is a very interesting type of motion because its structure is very hard to describe.
In this sense, it is very different from other types of motion, such as walking, lifting, or
sports movements, which can be easily associated with specific intentions. These motions are
much simpler to define and, therefore, to reproduce using physical models which optimize goal,
balance, and energy. Dance, on the other hand, cannot easily be interpreted as an optimization
of any kind, but is at the same time not at all random, since each nuance of the movement is
important to the resulting expression.

We have chosen to use a data driven system both because this allows the strong interaction
between dancers and choreographers proposed in this work, and because we believe that the
nature of the dance movements make this technique more efficient than physically based
animation methods.

One of our most significant contributions is that we approach the problem of analyzing

dance motion by exploring the fact that dance has a strong relation and synchronism with




music, which is a very structured signal. We take advantage of this for segmenting motion
into parts (or dance steps) and this segmentation is very useful not only for making these
movements available to the choreographer in the interface, but also because this structure can
be extensively explored for making editing tools simpler and more efficient.

Another aspect that we explore in this work is how we can take advantage of the platform
to make the database created by the dancer match the choreographer’'s desires as much as
possible. The drawback of several data driven approaches is that they are inefficient or limited
when the necessary amount of data is not available. Applications that use such approaches
often require a very large amount of data, or are restricted to very specific scenarios. We
get around this problem by proposing an environment that gives feedback to the artists and
not only informs the choreographers of the available dance movements based on the analysis
of the dancer's performance, but also suggests what the dancer can do in order to allow the
result to be consistent with what the choreographer is specifying. Since our platform suggests
iterative contribution of artists, we are able to have a very broad application (that can be used

for practically any dance style) without demanding large amounts of data.

1.2.3 Group Motion Synthesis

Another interesting aspect of dance shows is the visual effects generated by the combination
of the individual performances, i.e., the way the dancers move on stage as a group, interacting,
creating formations and following trajectories.

In this work, we study the different kinds of group motions that occur during dance shows
and propose an interface that allows choreographers to easily specify them. We explore declar-
ative ways of positioning the dancers on stage, creating transitions between formations and
specifying trajectories.

It is important to point out that the group motion can be regarded as the movement of
particles on the 2D plane and, therefore, is by itself a interesting animation problem, which
has some very interesting related work!. We stress that creating dance content using the
computer is interesting because it allows more efficient design (allowing fast specification and
visualization of the results), and also because it allows us to draw ideas from several other
resources. Thus, in this work, we also explore behavioral animation methods that allow the
dancers to follow attraction/repulsion forces and spread out on the stage avoiding neighbors
and obstacles.

With this, we suggest a new paradigm for content creation, allowing choreographers to

design new types of motions that would be impossible or very hard to specify by hand.

It is important to point out that many choreographies involve nontrivial interactions between the dancers

that cannot be modeled in this manner. In this work, however we do not explore such dance styles.




1.3 Thesis Structure

In the next chapters, we will present the work we have developed in detail and discuss some
applications and the achieved results. We also invite the reader to view the illustrative videos
available at www.impa.br/~aschulz/ChoreoGraphics/videos.

In Chapter 2, we describe the basic principles involved in the authoring tool, its function-
alities and applications. We also introduce some background on dance analysis and design in
order to justify the chosen framework and interface.

In Chapter 3, we investigate the mechanisms for character animation. Most specifically, we
describe MoCap data leveraging techniques, including motion graphs, interpolations, and other
signal processing editing tools. We propose variations and adaptations of these techniques to
allow synthesis of multiple dancers.

In Chapter 4, we approach the problem of creating group motions. We examine both
declarative and procedural methods and investigate the elements involved in specification as
well as mathematical and computational foundations necessary for motion synthesis.

In Chapter 5, we demonstrate the applications of our research with experiments that illus-
trate the different tools that were developed.

Finally, we revisit our contributions and point out future directions in Chapter 6.




Chapter 2
The Authoring Environment

In this chapter, we will present the basic principles underlying our authoring environment.
We will first discuss (Section 2.1) the applications of our platform and how it relates to the
state-of-the art in dance composition. In Section 2.2, we will study the fundamental aspects
involved in the process of creating choreographies in order to determine (Section 2.4) our

proposed platform.

2.1 Overview

Dance shows are becoming increasingly collaborative and the responsibilities of each artist
increasingly fuzzy. Choreographers, for example, used to control in almost every aspect of
the process of creation, being typically the only ones responsible for designing the dance.
Nowadays, however, they tend to assume the position of editor, instead of composer, and the
dancers’ role in the composition has become much more fundamental.

We observe that there are usually at least four types of artists involved in designing a dance
show: choreographers, dancers, musicians and set designers. Allowing them to interact easily
contributing to each other’'s work is becoming progressively more desirable. In this context,
we propose a platform for designing content of dance shows which covers all elements of the
creative process and promotes the communication between these different artists, allowing the
show to naturally evolve from iterative contributions.

Technology has been applied in many different ways to facilitate artistic works. Here, we
propose a creative tool that permits planning, editing and visualizing dances, thus guiding the
artists through conception, production and execution. This can improve the quality of the
results significantly, since, equipped with a system that allows easy input and instant feedback,
the artists can concentrate uniquely on their craft.

Still, once we transfer the creation process to the computer, we are offered a whole new
range of tools that can not only make dance composition easier and more efficient, but also

suggest innovative approaches. In this work we explore, for example, methods for simulating



behaviors of autonomous agents in order to control the locomotion of the performers on the
stage.

Though these contributions are significant in advancing the state-of-the-art in dance design,
they are still restricted to the same conventional steps involved in its production. There are,
however, some very unordinary ways with which these tools can be applied, suggesting a whole
new paradigm in dance composition.

An interesting application of our framework and its extensions are “on stage" productions
and improvisations, which would join efforts from choreographers, dancers and musicians in
real time. An example of this would be a performance that combines live and virtual dancers
projected on stage, whose movements are guided by the combination of different artistic inputs.
In such scenarios, the artists would be able to influence not only the virtual dancers’ movements,
but also one another through a framework of instant feedback.

Ultimately, we can use this system to mediate between performers and spectators. By
allowing real time collaborations, we bridge the gap between conception and execution, making
it possible for the performance to be produced and presented at the same time. Hence, we can
also allow the public to contribute to the dance show either controlling the dance, the music,

or the set design.

2.1.1 Artistic Input

In this work, we concentrated in exploring the contributions of dancers, musicians and choreog-
raphers. In terms of set design, we considered that all the dances are performed in a rectangular
empty stage. Of course, there are many interesting ways to explore set designs, considering
different types of stages and various elements that can be dynamically placed on the set.
However, we leave these ideas for future work.

We assume that the role of the dancers is to determine the steps that will be executed
during the performance, while the role of the choreographer is to plan how these steps will
be combined or sequenced, and how the multiple dancers will interact on stage (determining
what we refer to as group motions). The role of the musician is, of course, to compose the
show’s soundtrack.

A very important aspect that must be analyzed is how each of these artists should input
their creative abstractions into the computer. The most simple input is perhaps the musicians’,
whose music can be represented by a simple audio signal. Of course, there are several other
layers of information that could also be described and we could even suggest a method for
automatic composition of the songs based on high level specifications. Music composition,
however, is a problem on its own and the topic of several other works. Hence, we decided
not to explore such mechanisms during this research. Instead, we consider the musicians’
input to be a musical piece with several annotations. These annotations consist of the music's

segmentation into measures and also control signals that indicate musical events that can be
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synchronized with dance movements. These signals are essential for promoting the interchange
of ideas between choreographers and musicians, as will be discussed in the following sections.

Dance specification is somewhat more complex, since movements have many degrees of
freedom which cannot be easily determined by a standard notation. In this work, however,
we used a MoCap setup to capture the movement of the dancers, therefore allowing dance
steps to be fully determined by example. We also propose methods for storing the captured
clips based on annotations made by the dancers. This results in a structured data set that can
be used by the choreographer during dance design and also by the system’s motion synthesis
algorithms that allow visualization of animated dancers.

Finally, it is necessary to determine the choreographers’ input. Analogously to dance input,
this is also a very complex information with no existent standard notation that describes
it. In this case, however, there is no available set up that allows us to easily capture the
choreographer’s specifications and transform it into a signal, as is done with MoCap. We also
observe that the choreographers’ role is much more central to the dance, since they are the
ones who usually coordinate how the input of the other artists should be combined. Hence, we
decided to develop an interface for choreographers that permits them to specify group motions
and determine how the dance steps should be sequenced in a way that is consistent with the
musical reference.

The interface for choreographic input is a fundamental tool in the proposed platform. To
develop such a tool, it is very important to understand the choreographer’s process of creation
in order to translate it to a language the computer understands. In short, we need to specify
and classify the relevant components of a group dance and find a way of making them available
for use in our authoring environment. This is somewhat challenging, first because there is no
established list of all motion elements that may be present in a group dance and, second,
because there is no standard notation that choreographers use to determine the dance steps
and group motions. For these reasons, we have decided to approach the interface design

problem by first making a careful study of dance elements.

2.2 Dance Analysis

In this section, we will describe methods for characterizing dance and discuss how we classified

the essential dance elements.

2.2.1 Approach

The most important reference in dance analysis is the Laban Movement Analysis (LMA),
which is a method and language for interpreting, describing, visualizing and notating all forms
of movement, created by Rudolf Laban. LMA determines four basic elements of dance: body,

which refers to structural and physical characteristics of the human body while moving; effort,
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which refers to the strength, control and timing of the movement (would discriminate an angry
punch from a reaching motion); shape, which refers to the designing of the body as it exists in
space; and space, which involves motion in connection with the environment, spatial patterns
and pathways.

Though this formalization has had a great impact on the dance community and even been
used by computer graphics researchers [34], we decided not use the LMA in our work for
a couple of reasons. The first reason why this approach is not efficient for our application
is that it is mostly concentrated in analyzing movements of a single human while our main
interest consists in specifying group motions. The second and more important reason why
we abandoned the idea of using Laban is that it is a system built for human observers and
cannot be easily translated into a computer. Is it greatly important for our application to use
a language that not only describes dance efficiently but also one that can be used as a bridge
between choreographers and computers. The discussion about how much human-designed
knowledge should be used in a computational environment is not recent. A famous quote from
the speech scientist Fred Jelinek that dates back to the 1980’s states: "Every time | fire a
linguist, the performance of our speech recognition system goes up.” Though this quote can
definitely be interpreted as an overstatement, it indicates that one should be careful when
trying to apply formalizations from other fields to computer science.

Finally, it is important to mention that the LMA was developed in order to allow dance
movements to be recorded and repeated in the future. This is a big challenge because dance,
unlike music, does not have a simple standard notation and often choreographers have to mem-
orize whole dance sequences or use video recordings to register their compositions. Therefore
Labanotation came out as a very important innovation. Our application, however, requires a
language that allows creation and, hence, should not be based on the dance elements that
are needed for notation purposes, but on the elements that are required for dance design and
movement specifications.

Our approach, therefore, was to create a new vocabulary for describing dance. We started
by analyzing a series of dance performances while, at the same time, studying the previous
work on motion synthesis (see Chapters 3 and 4) and drew, from both sources, a classification
of dance group movements. It is our intention to validate, in the future, our approach with
feedback from dancers and choreographers.

Before describing our classification, it is important to emphasize that we are distinguishing
between two different motion levels: group motions and individual motions. Group motions
refer to the visual effects that result from the combination of individual movements, while
individual motions refer to the actual dance steps that are being performed. This distinction
is not only useful to help formalizing the problem, but also contributes to the construction of
our interface.

As previously mentioned, we are interested in allowing choreographers to fully specify group
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motions using high level commands. The individual movements, on the other hand, should be
designed only by determining how the dance steps will be sequenced, while the actual dance
steps are left to be specified by the dancers, using the MoCap setup described above. Hence,

we have concentrated in analyzing only the elements of group motions.

2.2.2 Group Motion Modeling

We propose the classification for group motion modeling illustrated in Figure 2.1. We base our

classification on the nature of specification, which can be: spatial, temporal or categorical.

shape | )
formation i/ density | -spatial
pattemn
group motion condition | )
modeling | [ evoluion — \ temporal

1 rule |

4

roupin

segmentation +categorical

dependancy| )

Fig. 2.1: Modeling elements.

The spatial elements of group motions refer to the way the dancers are positioned and
distributed in space at a given time, creating formations on the stage. A first aspect of
spatial specifications is determining the geometry of the overall shape formed by the dancers’
positions. Secondly, the choreographers should determine the density, i.e., the number of
dancers that should be positioned on the given shape. Finally, the choreographers should
define the distribution pattern, designating rules for arranging the dancers (e.g., maximizing
distances between them or following a grid).

Temporal elements refer to ways of specifying how the dancers’ positions evolve in time.
This is done by designating the evolution conditions and rules. We observe that evolutions can
be specified based on fixed, boundary, or initial conditions. Fixed conditions refer to selecting
a formation that the dancers should assume for a determined time period. The choreographers
can also specify an evolution where the only restrains are the initial and/or final conditions.
In these cases, the choreographers should also specify the evolution rules that will define the
trajectories that the dancers should follow from a given initial state or methods for evolving
between two boundary conditions.

The final kind of group motion element that we analyzed is categorical, referring to differ-
ent ways of rearranging the group of dancers into smaller subgroups and creating dependencies
between them. This way, the choreographers can specify different formations and evolutions to

different subgroups. The group motions associated to these subgroups of dances can be inde-
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pendent or have an intimate relation given by dependency rules (e.g., symmetric movements).

2.3 Extensions

In truth, authoring group motions involves not only modeling, but also visualization, i.e.,
determining projection and staging. This is very important for the design interface, since
choreographers’ input usually involves sketching and moving objects in different ways. Visual-
ization is even more important during presentation and therefore authoring tools should allow
choreographers to preview the resulting motion from different points of view.

Authoring dance shows, therefore, involves modeling and visualization of the different ele-
ments that compose the show: dance steps, group motions, music and set design. All of these
elements should be specified in parallel and, preferably, within a collaborative environment (see
Figure 2.2).

set design

modeling

group motions

modeling

modeling

| modeling | |visualization|

Fig. 2.2: Dance shows authoring.

As previously argued, we will not discriminate all the modeling and visualization aspects of
these other elements, since the previous discussion on modeling motion groups will suffice for

designing the authoring tool we propose in this work.

2.4 The Proposed Platform

In this section we will discuss the main functionalities of our framework. As mentioned before,
we have suggested a platform that integrates music, dance, and choreography. In what follows

we will discuss how each of these elements are explored in our authoring tool.
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2.4.1 Music

Songs are mostly very structured, organized in measures (or bars) that are sets of beats! and
dance steps usually have the same duration as an exact number of measures.

Typically, choreographers start to plan a dance show by first selecting a musical piece.
Then, they sit down with a blank sheet of paper and extract the rhythm of the song by making
a mark on the paper every time they count four (or eight) beats. After segmenting the song
into measures, they use this structure to design all aspects of the dance: steps, group motions,
etc.

In accordance with this, we make extensive use of the music's rhythmic structure in several
aspects of our work. We use a discretized timeline as the foundation of our interface, as shown
in Figure 2.3. This timeline allows choreographers to plan the elements of the dance show

using the musical structure described above.
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- 1 il

Y Y

Fig. 2.3: Musical reference. From top to bottom: representation of the music segmented by the
measures; control signals; the authoring timeline (i.e., a sequence of small boxes appear that correspond

to musical measures and are filled in with elements that indicate to the choreographers’ specifications).

We also use the music’s rhythm to guide the segmentation of the MoCap data into segments
that correspond to motion measures. Although the purpose of this segmentation is to facilitate
the combination of motion sequences in an application that makes extensive use of musical
references, this structure can also be explored for motion editing, as will be discussed in
Chapter 3.

In addition to the rhythm, we also explore the music's melody, which is used to determine
control signals that should be synchronized with motion events (see Figure 2.3). These signals
can either be extracted from the selected music and used as a reference to guide the dance, or
can be iteratively edited by both the musician and the choreographer in a scenario where the

show is designed in a collaborative effort of both artists.

2.4.2 Dance

As previously discussed, we use a motion capture system to acquire the dance motions. In
order to be able to synchronize the dance with the musical rhythm, we capture the movements
of the dancers while they perform to the music or a “tack-tack” audio signal that counts the

musical beats.

!Depending on the score, measures can have any fixed number of beats, specified in a musical score by the
time signature, which appears at the beginning of the piece, as stacked numerals. However, for the purpose
of this discussion we will consider songs that have four beats per measure, which are the most popular. The

arguments would follow in the same way, had we chosen to work with any other time signature.
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We can synchronize the music with the dance by having the artists perform some very
specific movements before starting to dance. In this work, we asked the dancers to clap to the
sound of the beats. This allows us to determine the exact musical reference in the acquired
motion signal, as shown in Figure 2.4. With an accurate synchronization, we can segment the

data into motion sequences that correspond to musical measures.

e 3 & b 3 . ] - Urnlabeleds =

Fig. 2.4: Synchronization with music while dancers clap their hands. Notice that we can determine the
beats of the song by finding the moments in time when the distance between the two hands reaches its

minimum (screen shot from Arena software).

In addition to this segmentation, we also have the dancer annotate the data, specifying
which motion step the sequence refers to. The final structure of our motion database is,
therefore, a set of annotated clips, where each clip has an integer number of measures and
corresponds to a specific dance step. Notice that steps can have an arbitrary number of
measures, since in many cases it may be useful to capture a combination of movements that
will be performed one or several times during the choreography, but always in the same order.

It is also important to point out that each dance step may be captured several times if the
dancers want to perform different variations (e.g. steps that perform trajectories, may need
to be performed facing several directions). These variations are also annotated and will be
used in many different ways during motion synthesis. We will discuss these aspects in detail

in Chapter 3.

2.4.3 Choreography

As discussed above, creating the choreography involves both designating which steps each
dancer will perform at any given time and the way the group will move along the stage
creating formations and following trajectories. By exploring the classification described in the
previous section, we propose an interface in which choreographers can specify both of these
elements.

Creating an interface for dance design is challenging because we want an environment that
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is natural for choreographers to use and, therefore, it should be similar to the language they use
to annotate compositions. Since there is no standard notation for group dance specification,
we decided to propose an interface that, to the best of our knowledge, approximates what we
have found to be natural for these artists.

In our discussions with choreographers and review of related work [5], we observed that
group motions are usually specified with images of an upper view of the stage, where the
dancers are represented as circles (often color coded) and lines or arrows indicate trajectories.
Typically, these images are staked together creating a storyboard that indicates the sequence
of motions.

In view of this, we created an interface for specifying group motion that has a window that
represents the stage and where the choreographers can position the dancers (represented as
circles with inner triangles that indicate orientation) and determine trajectories (represented
by gradient colored lines). This is illustrated in Figure 2.5. Right bellow this window we place
the musical reference with the authoring timeline. By clicking at any segment of the timeline,

the choreographers can view the formations and trajectories specified for this segment.

e .}
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(a) Representation of dancers. (b) Representation of trajectories.

Fig. 2.5: Window that represents the stage on the interface.

In terms of representing individual motions, we have found that there is no notation, except
full written descriptions or videos, that would be efficient for all dance forms. For this reason,
many choreographers have chosen to film the performance of the dance steps in order to
be able to reproduce them later on. Based on this idea, we have suggested presenting the
choreographer with a list of the names of the captured dance steps. By clicking on any one of
these names, the choreographer can preview an animation of the motion (see Figure 2.6) or
see information such as duration, available variations, etc.

Hence, our interface has two modes: group motion specification and dance movement
specifications (see Figure 2.7). In both of these modes, specifications are made using the
authoring timeline shown in Figure 2.3. In the dance motion mode, choreographers can specify
dances movement at each measure by filling the boxes on the authoring timeline using a drag-
and-drop motion from the list of the steps. In the group motion mode, the choreographers

also have to fill in these boxes, but with elements that correspond to evolutions. Notice that
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Spring Point

Fig. 2.6: Preview of dance steps. Notice the list of dance steps on the right hand side.

evolutions often depend on formations and, therefore, instead of a list of steps, the interface’s
mode for group motion specification presents a list of formations, which choreographers can
create by determining shapes, densities and patterns. We will discuss the methods for specifying

formations and evolutions in detail in Chapter 4.
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(a) Dance steps mode. (b) Group motions mode.

Fig. 2.7: The two modes of the interface

We explore the categorical aspects of group motions by allowing the dancers to be grouped
and regrouped in different ways throughout the dance. We developed a hierarchical structure
for storing these segmentations and make them visible on the interface by subdividing the

timeline, as show in Figure 2.8. We will also discuss the techniques involved in this process in

Chapter 4.
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Fig. 2.8: Visualizations of subgroups.

It is important to point out that choreographers should be able to specify dance steps to
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groups, subgroups or individual dancers. Hence, we use the same hierarchical structure to allow
them to divide and subdivide the group on the dance movement specification mode. Notice,
however, that these groupings do not have to be the same (i.e., choreographers can specify the
same dance step but different group motions to different parts of the group and vice-versa).
We also allow users to visualize the resulting 3D animation in a separate window and
to preview the group motion by playing an animation of the resulting 2D movement of the
circles, as shown in Figure 2.9. This way, we explore the visualization elements discussed in
Section 2.3. Notice that, although we chose a single (top) view for the 2D motion preview,

we allow choreographers to visualize the 3D motions from several different viewpoints.
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(a) 2D motions (b) 3D motions

Fig. 2.9: Two different motion previews.
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Chapter 3

Dance Motion

In this chapter we will discuss our approach for the synthesis of the individual dancers’ motion.
We will start with a brief discussion of character animation, describing the current techniques
for data-driven animation (Section 3.1.2), and most specifically Motion Graphs (Section 3.1.3),
which was the method we explored in this work. We will then propose an extension of this
technique that allows efficient synthesis of dance motions, in Section 3.2. Finally, we will discuss
the proposed motion editing tools (Section 3.3) and the proposed methods for combining

motion segments (Section 3.4).

3.1 Overview and Related Work

By definition, to animate is to bring to life, in this case, to make a lifeless object (a graphics
model) move. Realistic animation of human motion is a challenging task, firstly, because
human movements can be quite complex since joints have many degrees of freedom and,
secondly, because people are skilled at perceiving the subtle details of human motion. For
example, people are capable of recognizing friends at a distance purely from the way they
walk and can perceive personality and mood from body language. This implies that synthetic
human motion needs to be very accurate in order to appear real.

It is the opinion of many researchers in the area that synthesis of realistic human motion
can only be made possible by an approach that makes extensive use of data from the real
world [14]. In this context, it has been quite appealing for animators to use methods of
copying the movements of real life objects.

An early example of such a technique is Rotoscoping, in which animators trace over live-
action film movement, frame by frame, in order to create realistic motion. Though archives
show that most of Snow White's movements were traced from actors motions using this
technique, Walt Disney never admitted to it. In fact, this was considered not only “cheating”,
because it was not produced by the imagination of the artist, but also “cheep animation”

because animations were supposed to be “bigger than life”, not merely a “copy of life” [3].



Rotoscoping was, naturally, a precursor of MoCap and the controversy around it has the
same origin. On the one hand, there is the need for creating engaging and expressive characters
and, on the other hand, the need for synthesizing realistic motion efficiently and fast [10].

The techniques for motion creation are usually divided into three basic categories: manual
specification (key framing), motion capture and simulation [13].

Key framing borrows its name from traditional hand animation and is, in fact, very similar
to it in the sense that, while computers reduce some of the labor by automatically interpolating
between frames, the animator has to specify critical (or key) positions for the objects. This
requires great training and talent, since characters usually have many controls (e.g, each of
the main characters of the movie Toy Story, which were animated in this fashion, had more
than 700 controls). The advantage of this method is that the artist is able to control subtle
details of the motion. Nevertheless, it is very hard to make the characters look real.

Motion Capture, as we have mentioned above, is the process of recording movement and
transferring it to an animated object. Some of the advantages of motion capture over tradi-

tional computer animation are [1]:

more rapid, even real time results;

real, natural movement data;

extremely accurate 3-D data that permits the study of the essence of the movements;

and

data formats that require minimal storage and allow for easy manipulation and processing.

The physically based approach uses laws of physics to generate motion through simulation
and optimization. This technique is largely used, not only for human motion, but also to ani-
mate fluids, fire, explosions, face and hair. Simulation techniques supply physical realism, while
MoCap allows for natural looking motion. Currently, many applications merge both techniques
together in order to create models of human motion that are flexible and realistic [14].

In this work we make extensive use of MoCap techniques. For additional information on

MoCap system and the setup that we have used in the Visgraf lab, refer to Appendix A.

3.1.1 Representing Motion

The most standard way of representing human motion is using a hierarchical structure [11].
The human skeleton is thus described by a root node and a sequence of connecting joints,
while the pose is fully determined by the 3D position of the root node and the rotation of each
joint.

The BVH file format is one of the most popular formats for representing human motion

and is compatible with many programs, such as Arena, Blender and Maya, which were used
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during this project. It specifies first the human skeleton, i.e, the hierarchical node structure
and the distances between each node, and then the motion sequence, i.e, the pose at each

frame. For more details on the BVH file notation, see Appendix B.

3.1.2 Data-driven Animation

Though Motion Capture is very powerful in the sense that it allows rendering natural and
realistic motion, MoCap by itself is nothing more than a method for reproducing acquired
movements. Therefore, much effort has been and is currently being put into extending the
applications of MoCap data.

There are many reasons that make editing captured motion extremely important. Firstly, it
is usually necessary to eliminate artifacts generated during acquisition. Secondly, it is important
to match time and space of computer generated environments, overcome spatial constraints
of capture studios and allow for the existence of motions that would be extremely hard for an
actor to perform, such as the ones used in special effects. Finally, it is interesting to be able
to reuse motion data in different occasions. For example, given a walking scene, it should be
possible to generate a walk on an uneven terrain or stepping over an obstacle.

In addition to editing [37, 4], it is the interest of many researchers in the field to synthesize
new streams of motion from previously acquired data and, therefore, be able to create new
and more complex motions. Motion synthesis strategies include constructing models of human
motion [21, 2], interpolating motion to create new sequences [16] and reordering motion clips
employing a motion graph [17].

In the next section we describe the motion graph technique, which was the one we explored

during this work.

3.1.3 Motion Graphs

Motion graphs were introduced in [17], in order to encapsulate connections among a database.
In this graph, edges correspond to motion clips (sequence of frames) and nodes to choice
points (specific frames) connecting these clips. After selecting the similar frames, or windows
of frames, and creating the graph connections, a walk along the graph allows us to re-assemble
the captured clips, creating new motion.

Figure 3.1 illustrates the construction of a motion graph. Initially we have two clips of
motion from a MoCap database. The resulting graph is the one shown in Figure 3.1(a), which
is disconnected and quite simple. Notice that it is possible to add nodes to the graph, simply
by breaking the initial motion clips into two or more small clips, as shown in Figure 3.1(b).
Nevertheless, this graph is still disconnected.

To achieve greater connectivity, we introduce transition clips, as shown in Figure 3.1(c).

Notice that these new edges also represent clips of motion which have to be synthesized by
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Fig. 3.1: Construction of a motion graph.

the technique. Therefore, in order to create these new edges we first have to select the nodes
which can be effectively connected and then create the motion clips to which the transition
edges will correspond.

Following the ideas proposed in [17], we select the nodes which are sufficiently similar so
that straightforward blending is almost certain to provide valid transitions and use a similarity
norm that takes into account a sequence of frames and a point cloud driven by the skeleton.

As in the BVH file, a motion frame is fully described by the position and orientation of the
root node and the rotation of the other joints. However, an attempt to use this information
to calculate similarity between frames will be unsuccessful because some of these parameters
have a much greater overall effect on the character's position than others (for example, a knee
rotation is usually much more significant than a wrist rotation). In addition, it is quite hard to
set fixed weights that work well in all cases, since the effect of a joint rotation on the shape
of the body depends on the current configuration of the body.

To solve this problem, we use a point cloud, which describes the skeleton pose (ideally this
point cloud is a downsampling of the mesh defining the character), and a vector distance norm.
It is important to notice that a motion is fundamentally unchanged if we translate it along
the floor plane or rotate it about the vertical axis. Therefore, before comparing the distance
between two point clouds we apply a rigid 2D transform to the second point cloud that sets it
at the optimal position so that weighted sum of squared distances is minimal.

In addition, it is important to consider not only the current position but also derivative
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(¢) Resulting graph.

Fig. 3.2: Addition of a transition edge.

information, such as velocity and acceleration. We incorporate this information to the sim-
ilarity metric by using a window of frames, i.e, we take N frames from one clip (F3(n),
form = 1,...,N) and N frames from the other (Fa(n), for n = 1,...,N) and calculate

N |IF1(n) — Fa(n)|. This also helps the blending procedure. An example is shown in Fig-
ure 3.2. The similarity metric selects the two sequences of frames as shown in Figure 3.2(a).
Therefore we can add an edge that connects the beginning of the first sequence of frames to
the end of the second one, shown in Figure 3.2(b). The resulting motion associated to this

transition edge is created by blending the two sequences of frames:

Fresuit(n) = a(n)Fi(n) + (1 — a(n))Fa(n), forn=1,...,N,

where a(n) = 2=+

Finally, after the edges are created, we prune the graph by computing the strongly connected
components (SCCs). We use only the largest SCC so as to guarantee that there are no dead

ends, and therefore we can synthesize the motion indefinitely®.

3.2 Our Approach

As discussed in the previous chapter, one of the most essential aspects that distinguishes dance
from other types of motion is the rhythm and the synchronization with music. Since choreog-

raphers design dances based on this rhythmic structure, it is essential to incorporate this into

! Although some of the results presented in this work were acquired with this technique, towards the end of
this research we found that we were able to eliminate this step using a controlled graph search which we will

describe at the end of this chapter
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our model for motion synthesis. In this work we chose to explore the motion graph technique
for creating new motions from a collection of MoCap data. Although a straightforward use of
this technique to our problem would create a plausible motion, it would not create a plausible
dance, since it would combine pieces for motion of random duration which would not likely fit
into any rhythmic structure.

For this reason, we propose, an extension of a motion graph, which is structured and
measure-synchronous. As described in Section 2.4.2, we organize the captured data as a group
of clips that consist of sequences of measures (i.e, the duration of each clip corresponds to an
exact number of musical measures). Hence, we create a measure-synchronous motion graph
by, instead of creating nodes at any frame, only allowing nodes to be placed at the end of each
measure (see Figure 3.3(a) ). With this we guarantee that even a random walk on this graph

will result in a motion that is coherent with the music metric.
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(a) Graph Connections
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(b) Actual Trasitions

dance step 1

dance step 2
(C) Stored Clips

Fig. 3.3: The measure-synchronous motion graph.

It is important to mention that, as discussed in the previous section, the graph transitions
are created by interpolating a sequence of frames (typically we have used 20 frames), as shown
in Figure 3.3(b). This means that, in order to create a transition to a specific measure, we
need to store the frames that immediately precede it.

We create a structured motion graph by cropping the input motion stream so that each
stored clip corresponds only to a single step and by annotating each clip with the name of the
dance step and its variations. Notice that clips may have different sizes because, as discussed
in Section 2.4.2, the steps may last for any integer number of measures. Moreover, clips that
are annotated with the same step name always have the same size. The size of each clip is the

number of measures in the step plus one (the extra measure is the one necessary for creating
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the graph transitions to the initial measure, as shown in Figure 3.3(c)).

With this structure, we can represent the motion graph as a set of clusters, as shown
in Figure 3.4. Each cluster represents a set of instances of the same step. The instances
may be different in several ways. For example, a step that involves moving along the stage
may be performed in different directions. Since human body is symmetric, most steps can be
performed with (or start with) the right foot or left foot. Finally, the beginning and ending of
each step depends on the way it is being combined with other steps in the choreography. For
example, if a ballerina plans to do a Couru after an Echappé, she will conclude the step with a

Sous-sur (a step that rises up), if not, she will finish the step in a Plié (bending of the knees).

Step A Step B

< capture [ capture A1 | T’( capture I capture B1 | ¥ :
capture A2  »

Fig. 3.4: Clusters of dance steps.

Notice that these different step variations are very important to capture since they will be
essential for motion synthesis. Having multiple examples of the same step allows us to create
more complex movements, as for example making the dancers follow different trajectories on
stage while dancing. Also, as illustrated in Figure 3.4, the more instances of the same step we
have, the greater the connection between the graph clusters.

It is noteworthy that the effectiveness of our motion synthesis method is highly dependent
on the captured data. Instead of trying to get around this problem, by allowing some kind
of suboptimal synthesis, we have explored the fact that our platform is integrated and that
the choreographer can give feedback to the dancer while they are designing the choreography.
Therefore, we have suggested a system for informing the artists when a given specification
cannot be accurately synthesized and what kind of input they should provide to resolve the
problem.

In this way, we argue that our synthesis technique will always find a solution and that this
solution will be optimal in the sense that it will fit the exact specification. We will discuss this

in more detail in the following sections.

3.3 Motion Editing Tools

As we mentioned before, one of the advantages of the structure that we developed is that it
allows us to use very simple motion editing tools based on signal processing techniques and get
very realistic results. In this work, we have explored such methods for interpolating motions, for

inserting rotations, for combining upper and lower body motions, and for inserting amplitude
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variations and time warpings to make the group dance more natural.

3.3.1 Interpolations and Combination

The greatest challenge with interpolating and combining upper and lower body motions is that
the results will not be seamless unless there is a reasonable alignment between the two motion
segments and that may require nontrivial warpings. In this work, we argue that since we have
clips of the same dance step which have equal durations, we guarantee that they are trivially
aligned by construction.

For combining motions, this means that we can trivially replace the joint rotations of the
upper body part of a motion clip with that of another motion clip that corresponds to the same
dance step. This allows us, for example, to capture several iterations of a dance step with a
single arm motion and only one iteration of the same dance step with another arm motion,
but at the end have all the iterations we desire with both arm motions.

For interpolation, this means that simple blending yields very accurate results. Motions
are represented by a 3D position and a set of joint rotations. Therefore, to guarantee a
smooth interpolation, we use quaternion representations and the Spherical Linear Interpolation
(SLERP), which is a geodesic that connects the mapping of the two points in S3. For a
detailed discussion of rotations and interpolations, refer to [32].

It is important to mention that this is only done for clips of the same dance step that have
the same structural variation (it would not be possible, for example, to interpolate a sequence
that is performed with the right foot with one of the left foot). This technique is largely used
in our application to allow dancers to follow the group motion, i.e., to synthesize a step that
makes the character move in any direction from only a few captured instances. For example,
we can create an accurate diagonal walk by interpolating a side and a front walk. We can also

create any kind of intermediate step length by interpolating short and long steps.

3.3.2 Rotations

Although dancers usually face the public during the show, it is often necessary to allow them
to choose different orientations. Also, although interpolating allows us to synthesize dancers
moving in different directions while still facing forwards, it is often more natural to move while
facing the path. For these reasons, we have explored efficient tools for editing orientation.

One of the greatest challenges with making the characters rotate while performing a step is
maintaining floor contact. It is not uncommon that editing techniques produce the undesirable
“Michael Jackson” effect, known as foot-sliding. Although these artifacts do occur often and
methods for efficiently removing them have already been proposed, it is still very important to
try to minimize them when manipulating motion.

We observe that, in a walking step, rotations occur when only one foot is on the ground.
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Therefore our approach was to analyze the foot contact, select the segments in which there is
only one foot touching the floor and apply a rotation and translation transform to the motion

sequence that changes the orientation of the dancer while maintaining the foot contact.
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(c) Final selected regions.

Fig. 3.5: Selecting rotation regions. Graphs indicate the absolute value of the distance between the two

feet in centimeters along the number of frames.

Figure 3.5 illustrates this procedure. We first calculate the distance between the height
of the right and left foot and select the regions where this value is greater than 20% of
the maximum value (see Figure 3.5(b)). Notice that although this allows us to select the
regions where there is a significant distance between the two feet, errors do occur and a couple
of scattered frames that are only slightly above this threshold end up being selected. To get
around this problem, we explore the fact that steps tend to be smooth and therefore a significant
amount of time is required to take a foot off the ground and then place it back. Hence, we
ignore all the segments that we consider too small (we used 10 frames as a threshold) and are
therefore able to eliminate the small errors.

In our experiments, this technique has been very efficient to select the frames where rota-
tions can be inserted. Notice that we are editing the motions at each measure. This is very

important because if we had a very large motion clip we would have to select a certain moment
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or a certain movement to apply the transformations. However, since we know that a whole
sequence corresponds to a specific dance step, we can distribute the rotation angle uniformly
between all the selected frames.

Given a desired rotation angle # and N selected frames, we apply a rotation of §/N to
each frame. We then calculate, also at each frame, the distance between the position of the
contact foot before the transformation and after and calculate a translation that eliminates it.
The full transformation (rotation + translation) is then applied to the whole sequence starting
from the selected frame.

Finally we should mention that we do not take into account the last few frames, since they

are used during the interpolation process for the motion graph connections.

3.3.3 Variations

When replicating the movements of a single dancer to synthesize multiple characters performing
on the stage, it is essential to make some modifications on the data to make the group dance
look natural. In this work, we have explored time warping mechanism for desynchronizing the
data and amplitude variation methods for varying the upper body motion. We chose to apply
the latter tools only to the upper body part because they are less susceptible to undesirable
artifacts, since there are no floor contact restrictions. If we applied the same editing methods
to the lower body motion, we would probably get some undesirable foot-sliding effects and

could even have the dancer penetrate the floor or “fly” over it.

Time Warping

There are two ways of approaching the time warping problem: considering that editing is done
independently at each measure, or making an overall editing operation after the whole motion
is created. Editing at the measure level may be simpler to implement, as it can be done prior
to the graph search. However, we observe that the last few frames of each measure (which
we use to create the graph transitions) cannot be warped because the synchronization of the
measures is essential for making the blending smooth. Therefore, when time warping is done
at the measure level, the resulting motion is not as desynchronized, since at the end of each
measure there is a sequence of frames in which the motions match exactly.

A function that time warps the dance movements should randomly oscillate around the
identity function. These oscillations should be significantly small because accelerating and
decelerating the motion too much would make the dance look unnatural. We also want a
function that is monotonically increasing because this will guarantee that the sequence of
movements is done in the right order, i.e., that the motions are not played backwards at any
moment.

To guarantee causality, we suggest a warping function that is the sum of an identity and a
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sine function:

2n fx
N)’

where x is the frame number, N is the total number of frames, and A and f are a chosen

w(x) =z + Asin(

amplitude and frequency.

Notice that

2nf .

w'(z) =1+ AT Sln(Qfo

O

which is greater than zero if A% < 1. Hence, if we restrict the values of A and f, we can

guarantee that this function is monotonically increasing.
When working at the measure level, we choose A from a uniform distribution, such that
0 < A< Apaz and f from a uniform distribution, such that 0.5 < f < fia. (typically, we
used Apmaz = 7 and fiaz = 2, for N = 100). By restricting 0.5 < f, we guarantee that there
is at least one half sine cycle between frames 1 and N. Let Ny be the size of this cycle, i.e,
Ny = % and xp a random number between 0 and Ny. Then, the final warping function we
suggest is:
x if 0<az<ux
w(r) = x + S(y)Asin(W) if o<z <zo+ Ny
T if o+No<ax<N
where y is a random number between (—1,1) and S(y) returns the sign of y. Notice that
w(x) is continuous and monotonically increasing at every segment. Hence, we can conclude
that it is monotonically increasing.

Figure 3.6 illustrates the graph of this function when we apply it to a sequence of measures.

We observe that it fits the specification as it randomly oscillates around the identity function.
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(a) Subtracted from the identity function. (b) Final warping function.

Fig. 3.6: Graph of warping function when warping is done at the measure level.
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In the case where we consider that editing can be done after the whole dance sequence is
acquired, we make the function random by varying A and f. In this case, the final function is:

w(z) =z + A(x) sin(wa(m)%),

Proving that this modified function still is monotonically increasing is a little bit more
tricky and we will not do this here. However, we argue that if A(x) and f(x) are very smooth
functions and Amaxzﬂf% <& 1, then this is likely be the case. We are able to verify empirically
that this was true for our chosen values of A(z) and f(x).

We create A(x) and f(x), by randomly choosing values that they should assume at a very

sparse distribution and interpolating these values with a cubic spline. Figures 3.7 illustrate

these two function and Figure 3.8 illustrates the resulting warping function.
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(a) Graph of A(z). (b) Graph of f(x).

Fig. 3.7: Graphs of the auxiliary functions.
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(a) Subtracted from the identity function. (b) Final warping function.

Fig. 3.8: Graph of warping function when warping is done for the entire sequence.
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Amplitude Variation

In addition to desynchronizing the motion of the different characters, we also felt the need
for slightly altering the movements themselves. In truth, when we see a dance spectacle the
movement of the individual dancers differs not only because it is impossible for humans to
be precisely coordinated, but also because each performer have his/her own style. Ideally, we
should be able to understand style and movement as two different components. In this way,
we could segment MoCap data so that we could transfer the style from a captured database
to another while preserving the steps of the dance. Though efforts have been done in this
direction [15, 6], this is still a very difficult open problem and therefore we have not tried to
implement it here.

Instead, we took a simpler approach, which was, at the same time, quite effective. In our
work, we explore signal processing editing tools to alter the intensity of the movements. In
this way, we can have dancers lift their arms lower or higher and make gestures that are more
modest or more exaggerated.

Our first experiment was to use low-pass and sharpening filters on the MoCap data. Al-
though, based on previous work [36], we would expect this approach to be successful, using
filters proved to be quite unsuitable for our application. We observed, for instance, that low
pass filters would either have barely discernible results or would remove the details of the
movement, which are an essential part of the dance steps. This happens because our intention
is not to exaggerate or remove the details (high-frequency) of the movements, but to alter the
intensity of the movements themselves.

It follows from this analysis that the most effective mechanism is to simply alter the
amplitude of the signals. Analogous to the time warping function, the amplitude alteration
function should also be random and can be applied at the measure level or to the overall
resulting motion. Also analogous to the time warping function, this modification can be done
at the measure level or to the overall motion sequence.

In this work, we have proposed a rescaling function that oscillates between 1 — R4, and
14 Rynaz- We subtract the mean value of the segment from it and multiply the resulting signal
by the scaling function. Then, we add the mean value once again to the resulting motion.
Typically we have used R4, = 0.2.

Empirically, we found that, while observing this threshold was important (since greater
rescaling would make the dance look unnatural) intermediary rescaling values were barely
noticeable. Hence, we decided to use a function that would randomly assume one of the
three values: 1 — R4z, 1, and 1+ Rq.. We create this function by randomly selecting these
values from a uniform distribution and sparsely distributing them, making sure that they repeat
two by two. Then, we interpolate these points using a Piecewise Cubic Hermite Interpolating

Polynomial. Figure 3.9 illustrates the resulting rescaling function.
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Fig. 3.9: Rescaling function used when working with the full motion sequence.

Notice that to work at the measure level we can simply take each measure and rescale it
using a factor of 1 — R4z, 1, or Rypae. The interpolation that is part of the motion graph
connectivity method will naturally take care of smoothing out the artifacts created by using

different rescaling values for consecutive measures.

3.4 Combining Motion Segments

In this section, we will describe the mechanisms for searches in the motion graph. As previously
stated, we propose a structured measure-synchronous motion graph. By structured we mean
that each clip corresponds to a single step and is annotated with the name of this step and the
relevant variations. There are three types of variations: stylistic, structural and locomotion.

Stylistic variations refer to variations that significantly alter the motion in a way that it may
be appreciated by untrained spectators as a different dance step. Examples of this would be a
jump instead of a walk or changes in the upper body motion. Since their visual effects are very
significant, these variations should be specified by the choreographer and, therefore, to the
extent that graph search is concerned, they can be interpreted as completely different dance
steps. The only important motion synthesis technique that is related to stylistic variations is
then one discussed in Section 3.3.1.

The other two variations are thoroughly explored for the combining of motion segments.
Locomotion variations refer to changes in the path that the dancer follows while performing
a given motion and they are critical to allow group motions. Structural changes correspond
to modifications that are essential for graph connectivity. For example, when the same step is
performed with the left or right foot or when the beginning and finishing poses are changed to
allow different step sequences (see discussion is Section 3.2) .

In synthesizing motion, it is important to follow the two specifications set by the choreog-
raphers: the group motion and the sequence of dance steps. Hence, we can create a graph
search that guarantees that each dancer is able to follow a specified trajectory and that the

dance steps can be combined in the desired order. In what follows, we will discuss these two
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aspects individually.

3.4.1 Sequencing Dance Steps

To discuss the sequencing of dance steps, we will interpret the data as clusters of dance
components, in which each cluster corresponds to a specific dance step and each component
is a structural variation this dance step (see Figure 3.10). As previously argued, the only
variations that are relevant to this discussion are the structural changes. Notice that stylistic
variations can be described as new clusters and that locomotion variations can be interpreted

as iterations of a single dance component.

Echappé Spring Point

‘ left + sous-sur |right + Sous-sur

‘right + sous-sur

Sissonne
\ left + plié

‘ left + sous-sur

Fig. 3.10: Example of cluster representation.

Since each dance component is associated to a different structural variation, we can de-
termine connections between them and represent them as a graph, as shown in Figure 3.11.
Notice that this is a simplification of the actual motion graph, since each component may

correspond to several dance clips.

Echappé Couru
left foot (v1) >—? right foot(vs) %

right foot (v2)

Fig. 3.11: Example of connections between the dance components.

The choreographer determines the sequence of dance steps and our goal is to create a
path in the graph that matches this description (i.e., the order of the visited clusters should
correspond exactly to the specified order of dance steps). Our approach is to use an modified
depth-first search (DFS) algoritm, a widely known method for graph search which is complete,
i.e., if there is a solution, the search will find it regardless of the kind of graph [30].

Let d(n) be a discrete function, for 0 < n < N, where N is the number of dance steps
and d(n) is the nth specified dance step. We want to find a path that has exactly N nodes.
Let p be the resulting path, where p(n) is the dance step which the nth node of p corresponds
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to. The cost of the path is then the total number of nodes n, such that p(n) # d(n).

DFS algorithms exhaustively search the entire graph by expanding and examining each
node in the graph, producing a spanning tree of the nodes reached during the search. Since
our goal is not to reach a specific node , but to find a path, we use the spanning tree structure
to find the sequence of visited nodes that has zero cost. Hence, we stop expanding a node
when it's depth in the spanning tree is equal to V.

Notice that, since we are interested only in results that match exactly the choreographer’s
specification, we only want to find zero cost paths. This information is useful because it means
that we can abandon the search in a tree node, when we guarantee that the cost is greater
than zero for all the subsequent paths. Hence, if we reach a tree node? t; at the tree level n,
such that the dance step which correspond to ty is different from d(n), we know that any path
that contains this node has least one unmatched step. Since the cost of each path is the total
number of unmatched steps, we can guarantee that the total cost of any path that contained
this node will be greater or equal to one and, therefore, we do not need to expand this node.

Figure 3.12 illustrates the algorithm for the case where the data is as shown in Figure 3.11
and the desired steps are {Echappé; Echappé; Couru}.

In this work, we assume that the data was captured from a group of dancers that are working
together with the choreographers and, therefore, it should always be possible to combine the
captured clips in a way that matches the exact specification. However, it would be interesting
to be able to find the optimal solution in case the zero cost path did not exist. This is
definitely something that should be explored in future work, as this information can be used
to give feedback to the dancers, i.e., provide the dancers with a list of steps that should be

added to the database in order to allow the synthesis of the desired choreography.

3.4.2 Following Trajectories

One of the essential aspects of this work is to synthesize group motions, i.e., to synthesize the
way the dancers move on stage. In the next chapter we will discuss all the technical aspects
related to specifying the trajectories that each individual dancer should follow in the 2D plane
represented by the stage. However, as far as individual motion synthesis is concerned, we still
need to study how to make the dancers follow a given a path.

If we analyze this problem without the discussed framework, it does not seem at all trivial.
Basically what we are asking for is a mechanism that allows characters to follow trajectories
of different lengths and curvatures, while performing determined steps in synchronization and
reaching the objective position at the same time. However, since our data is structured and
measure-synchronous, we are able to find a very simple solution to this problem.

Notice that the choreographers’ specifications conform to a timeline that is discretized ac-

2A tree node is a node in a spanning tree.
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Fig. 3.12: In Step 1, we calculate the cost of starting at each of the nodes. Since the first specified
step is an Echappé and node vs corresponds to a Courru, its cost is 1 and we eliminate it. In Step 2 we
pick node v; and calculate the cost of the two possible subsequent nodes: v, and v3. Since the second
specified step is also an Echappé, we eliminate node v3. In Step 3 we observe that the only edge that
leaves vo goes to v1 and since its cost is 1, we eliminate this whole branch and go back to the node v5
on the first tree level. In Step 4 we notice that the only edge that leaves vy goes to vy and its cost is

0 and finally, in In Step 5 we are able to select the path {vs,v1,v3} that has zero cost.

cording to musical measures. Therefore, the specified durations of each path are also measure-
synchronous and we can create a list of positions and orientations for each individual dancer.

In Figure 3.13, we illustrate this process with an example. Let p(t) = (x,y) be a path
the choreographer specified and N = 3 the number of measures that the dancer should take
to perform it. Also, consider that in the beginning the character is facing the side (i.e. its
orientation is fhegin = 90°) and that we want it to be facing the public by the end of this
trajectory (feng = 0°). We approach this problem by segmenting the path into N segments of
the same length and annotating the (z,y) position at the end of each segment (Figure 3.13).
We also specify that each measure should have a rotation of 6 = (fend — Obegin)/N. The final
specification is therefore a discrete list S(n) = (2, Yn,0n), for n =1,..., N. Notice that in
a more complex scenario S(n) is formed by a concatenation of multiple path specifications.

With this information, and knowing the dance component each measure corresponds to
from the above discussion, we are able to synthesize each measure. We will do this exploring
the editing tools for interpolation and rotation discussed in the previous section.

It is important to emphasize that we use the desired final position at the end of each
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(w0, 90)

Fig. 3.13: Example of path segmentation.

measure and not the distance that the character should travel at each measure. This is done
because we cannot guarantee that the motion we synthesize will follow the exact path, since
small errors resulting from restrictions in the database do occur. Hence, if we use distances
instead of positions, these errors may add up and we may end up with a trajectory very different
from the one we started with. On the other hand if we focus on preserving the position, the
small errors will tend cancel each other as the dance grows longer.

For each measure n we have a group of clips that correspond to the dance component we
are interested in (each clip with a different locomotion variation). We also have the information
of the final position and orientation at the previous measure, S,ctuai(n—1), and the desired final
position and orientation of this measure, S(n). Hence, we can calculate the desired locomotion
and rotation for this measure.

Typically, we have only a few iterations of locomotion variation (e.g, one step with no
locomotion, a short step moving forward/sideways/backwards and a long step moving for-
ward /sideways/backwards). However, we can enlarge the database significantly by interpolat-
ing these different clips. We interpolate all the clips in which the directions are not opposite
(e.g., a step moving forward should not be interpolated with a step moving backwards). We
can also use infinitely different weights for the interpolation. In this work we found that the
weights (.25,.75), (.5,.5), (.75,.25), were sufficient, since changes produced by a finer scale
would be barely noticeable.

Finally, we take each of these clips and calculate their total stage locomotion when the
desired rotation is inserted and choose the one that best matches our solution.

We assume that if a dance step is to be performed while the characters are moving signifi-
cantly along the stage, then some of the clips in our database will have locomotion of different
lengths and in different directions. If this is not true and we are unable to find a suitable clip
at some point, we may still be able to render the desired motion if the errors at each measure
cancel themselves out, as previously mentioned. However, if we observe that the errors in
the stage position are increasing during the motion synthesis and surpass a certain threshold,
our system informs this to the choreographer, who will then ask the dancer to perform the

additional necessary motions.
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Chapter 4
Group Motion

In this chapter we will discuss the techniques involved in synthesizing group motions. After
reviewing the area and related work (Section 4.1), we will discuss our approach and aspects
regarding the implementation of the interface (Section 4.2). We then detail the declarative

(Section 4.3) and procedural (Section 4.4) techniques for group motion synthesis.

4.1 Overview and Related Work

When viewed together, a group of dancers moving on stage gives the impression of a dynamic,
complex object. Therefore, an important aspect of dance motion synthesis is determining how
the dancers move as a group, creating formations, following trajectories, interacting without
colliding, etc.

Several works have proposed methods for simulating the motion of a group of objects that
together assume an emergent behavior [24]. Particle system techniques are often used to
simulate clouds, water, fire or very large crowds. Typically, the particles have a finite life span,
being generated and terminated during the animation. These methods deal with a very large
number of objects and, therefore, make simplified assumptions for controlling motions (e.g.,
using physical models which include gravity, collision, and other local and global forces).

Other techniques for controlling group motions involve autonomous behavior models. Such
methods often account for and rely less on physics and more on artificial intelligence. These
models can be quite complex and applications range from few participants to single character
control. Typically, members have a limited “vision™ allowing them to perceive the environment
and the other members and, thus, plan reactions to their circumstances.

Control mechanisms for simulating small groups (as is the case of dancers on stage) can
be considered an intermediary level between the two previous strategies. In this scenario,
characters behave according to more sophisticated physics and only a restricted amount of
intelligence. Such mechanisms are often used to simulate groups of characters, such as herds

or flocks, allowing the synthesis of lifelike motion with very little input. Previous research in



this area is, however, somewhat more scarce than the other two.

These models are largely referred to as procedural animation, where the motions are cal-
culated at each state based on conditions of the previous state and updating rules. Although
these methods are very efficient for generating motions that are more natural or “organic”,
they allow less control over individual frames.

For this reason, we have explored both procedural and declarative methods. The declarative
methods involve direct specifications of movements and are therefore very much dependent
on the requirements of the specific application (in this case, dance). For this reason, related
research is fairly limited. In terms of procedural animation tools, the previous works resources
are much richer. In our approach for procedural group dance animation, we have widely

explored Craig Reynold's work on steering behaviors [29, 28].

4.1.1 Steering Behaviors

In [29, 28], the motion of autonomous characters, or agents, are divided into three layers: action
selection (considering goals and strategies and planning the motion), steering (determining the
path), and locomotion (actual animation).

In terms of locomotion, the agents (in this case, the dancers) are viewd as simple “vehicles”
that move in a manifold (in this case, a 2D manifold represented by the stage). These vehicles
are very simple structures that can only translate and rotate, therefore determining the position

of the individual dancers on stage and their orientation.

flee path

current

flee steering

desired

desired
velocity
(seek) target

velocity
(flee)

Fig. 4.1: Steering force: difference between the desired velocity and the current one (seek and flee

example extracted from [28]).

The steering behaviors are described in terms of a vector that represents the desired steering
force, as shown in Figure 4.1. There are several different types of forces that allow agents to
reach different goals. We will describe here the ones that were more significant during our
experiments with dance (see Figure 4.2):

Seek: adjusts the agent so that its velocity is radially aligned with a specific point (target).
Flee: the inverse of seek.
Obstacle avoidance: creates a fleeing behavior only when the obstacles are directly in the

path of the agent and both are sufficiently close.
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Wandering: creates a random walk by making small random displacements to the steering
direction at each frame.

Flow field following: steers the character to align its motion with the tangent of a vector
field.

Unaligned collision avoidance: calculates potential collisions of moving agents and steers
the characters to avoid the site of the nearest predicted collisions.

Separation: combines repulsion forces from other characters within a specific neighborhood

(usually used for flocking behavior animation together with cohesion and alignment steering.)

A 4

A

(a) Obstacle avoidance (b) Separation

Fig. 4.2: Examples of steering behaviors (extracted from [28]).

Finally, the action selection layer consists in combining the steering forces in order to allow
agents to reach higher level goals. The are two ways of combining behaviors: blending steering
forces together or switching between different behavior modes according to circumstances.
Both of them can be very efficient depending on the situation. For example, it may be
necessary to ignore a seeking force momentarily to control collision avoidance. On the other
hand, blending flow field following and separation behaviors may be quite effective. There are
several ways in which blending can be done, however simple weighted linear combinations have

been shown to work very well.

4.2 Our Approach

Since our goal is to propose a natural environment for dance design, it is important to develop
an interface that takes into account the standard specification methods that choreographers
use. Also, since we want to create not only a tool that makes dance specification simple, but
also one that allows novel creative expressions, we draw ideas from related work in procedural
animation to suggest different ways of specifying dance.

Hence, in this work, we propose a series of declarative and procedural methods for group
motion specification and we will describe both of these methods in the following sections.

The interface for choreographic input was developed in C++ using the Qt toolkit. The
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basic elements and usage of the interface have been described in Chapter 2. There are, however,
a couple of important implementation aspects related to group motion specifications that are

worth describing in further detail.

4.2.1 Interface Implementation Aspects
Abstraction Levels

We interpret group motion in three levels of abstraction!: motion intention, motion segment,
and locomotion.

Motion intention refers to the essential identity or objective of the motion. For example:
assuming a given formation, following a given trajectory, blending between formations using a
given optimization method, following a given flow fied with collision avoidance, etc. The motion
intention contains the essential specifications of the motion, but not its contextualization as
part of the overall dance.

We create a motion segment, by taking motion intention specifications and determining
how it fits in the dance timeline. For example, for how long the dancers assume a given position
or trajectory, what are the initial positions that should be blended, to which subgroup of dancers
these specifications are related to, etc. In our interface, this refers to dragging, positioning
and sizing the elements in the sequence of small boxes that are part of the authoring timeline
and correspond to the musical measures.

Finally, after the sequence of motion segment are combined, we can determine the actual

locomotion, i.e., the 2D stage position and orientation of each character at each frame.

Data Structure

Although the locomotion level contains all the necessary information for motion synthesis we
have chosen to create a data storage format that aggregates all the three abstraction levels.
This is very important because it allows us to distinguish between the different inputs and
therefore allow the data to be reused (e.g, a specific formation may occur several times during
the dance) as well as edited. In an application that suggests iterative contributions of different
artists, it is essential to permit editing.

The most essential element of our data structure is a list of motion segments. Notice
that each motion segment refers to an evolution (see characterization in Section 2.2.2) and
can, therefore, be of one of the three kinds: fixed formations, boundary conditions, and initial
conditions. The different types of motion segments correspond to different motion intentions
and have, therefore, different attributes.

Since motion intentions can be viewed as attributes of motions segments, they don’t have

to necessarily be stored separately. However, the advantage of creating a data representation

!Notice that we could draw a parallel of this division with Cray Reinold’s motion layers.
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of motions intentions is that, in this way, they can be referenced by more than one segment.
In our previous discussions of the group dance specifications (see Chapter 2), we verified that
formations are one of the essential elements that choreographers must design. For this reason,
we decided to store formations separately, allowing them to be repeated effortlessly during the
dance. This way, if the choreographer chooses to edit a formation latter on in the dance, all
the segments that refer to it will be altered automatically.

The locomotion information is stored as the list of 2D positions and orientations described
in Section 3.4.2. The latter is regenerated after the edited and guides the synthesis of the
articulated motion.

The final element of our data structure is the hierarchical representation of the different
groupings. We store this information by creating auxiliary motion segments every time a group
is subdivided, as shown in Figure 4.3. These segments indicate how the groups are connected
and where the divisions take place. This way, instead of having different fragments, we maintain
the format of sequenced motion sequences throughout the whole timeline simplifying the

implementation of auxiliary functions.

auxiliary split segment

L

merge segments

boundary
conditions —-
segment

:
d

fixed conditions segments initial conditions segments

(a) Original motion segments. (b) Auxiliary motion segments

Fig. 4.3: Examples of motion segments created for hierarchical representation.

4.3 Declarative Methods

In this section, we will discuss the declarative methods proposed for group motion synthe-
sis. We will use the formalism given in Chapter 2, considering formation and evolutions and

segmentations.

4.3.1 Formations

Formations refer to they way dancers occupy the stage and are maybe the most essential ele-
ment that choreographers explore for creating different group motions. Determining formations
involves positioning the characters on the stage and specifying relative distances between them.
Some interesting effects of editing formations include positioning the main dancer in a more
prominent place and designing shapes on the stage (e.g., ballerinas organized in concentric
circles forming the shape of a flower). We specify formations by determining shape, density,

and pattern.
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Shape refers to the geometry that the group of dancers assume on the floor. For input,
we allow the choreographer to draw lines or sketches on the canvas represented by the stage.
Examples of shapes are illustrated in Figure 4.4. Notice that it is also important to specify

whether the dancers will be placed on or inside the drawn lines.

= s

Fig. 4.4: Examples of different shapes.

Density refers to the number of dancers that will occupy a given stage area.

Pattern refers to the way the dancers are distributed on the designed shapes. For example,
the dancers could be equally distributed along the lines or more strongly concentrated in
different areas. In closed shapes the distribution of the dancers becomes even more interesting,
as not only different concentrations are plausible but also grid arrangements. Figure 4.5

illustrates different patterns within the same shape.

(a) Uniform grid (b) Diagonal grid (c) Concentric silhouettes (d) Poisson disk sampling

Fig. 4.5: Examples of different patterns on a circle.

Finally, we also observe that choreographers have typically explored symmetries in these
specifications. We allow the choreographer to specify them by drawing a symmetry line and

reflecting over it the elements that are drawn on either side (see Figure 4.6).

4.3.2 Evolutions

We consider three types of group motions: fixed conditions, boundary conditions and initial
conditions.
Each motion segment belongs to one of these three major categories and we distinguish

between them on the interface by representing formations as colored blocks, movements based
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Fig. 4.6: Symmetry example.

on boundary conditions as hexagons, and movements determined by an initial condition as

arrows (see Figure 4.7).
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Fig. 4.7: Example of motion segments. Notice that the colors distinguish between different formations.

Fixed Conditions

We determine a fixed condition by referencing one of the designed formations. Notice, however,
that a formation by itself is only a motion intention. Hence, we allow choreographers to specify

how this intention becomes a part of the dance by determining how it fits within the timeline.

Boundary Conditions

Choreographers usually determine initial and final sets of positions and orientations of the
dancers on stage and want to create a group motion that allows them to naturally evolve from
one to the other. These initial and final conditions can be specified formations or the final
setting that results from a different group motion.

There are three basic steps in creating a motion based on boundary conditions: matching
the two sets of positions, synthesizing a trajectory, and determining the orientations.

Although in many situations choreographers may want to declare the matching themselves
using the IDs of each performer, in most cases they are simply interested in determining the
positions of a group or subgroup. Hence, they choose which dancer goes where by somehow
optimizing the path that they should follow. The most typical method is choosing a matching

between the dancers that guarantees that the overall distances traveled will be minimum.
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We implement this idea using a bipartite graph matching algorithm [7]. A bipartite graph
is a graph whose vertices can be divided into two disjoint sets U and V such that every edge
connects a vertex in U to one in V (see Figure 4.8). Each vertex in our graph refers to an
individual position on stage, the ones in U referring to the initial and the ones in V' to the final
ones. Our graph is complete because we create an edge from every initial to every final position
and weighted, because we determine a value for each edge (namely, the cost associated to the
trajectory it determines). We can thus calculate the minimum edge weight matching using the
Hungarian Algorithm and, in this way, determine the optimal matching between the initial and

final positions.

==

Fig. 4.8: Example of a bipartite graph.

Of course, the cost function being optimized is determined by the weights of each edge.

We can set these weights to be equivalent to the distance between the two positions, i.e, :

Woverall minimal distance — HPZ - P]” )

where P; and P; are, respectively, the 2D positions of the initial and final points connected by
this edge. Notice that, in this case, the algorithm returns the matching that guarantees that,
if the dancers travel in a straight line, the sum of all the trajectories will be minimum.

In several cases, this is precisely what choreographers desire. However, in many circum-
stances this may result in a few dancers moving far along the stage while the others stay at the
same place. Hence, depending on the scenario, it may be more important to guarantee that
the distance traveled by the individual dancers are optimally equivalent. To implement this,
we should specify the weight of each edge as the norm of the difference between the distance

traveled with this matching and the average distance traveled by the dancers:

)

Wequal distances = HWoveraII minimal distance — D

where D is the average traveled distance.

Calculating the actual average distance is challenging since it naturally depends on the
chosen matching. However, we can approximate it by taking the average of the distances
traveled when we choose the matching that results from optimizing the overall minimal dis-
tance. Empirically, we have observed that this yields very interesting results, as can be seen in
Figure 4.9.
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Fig. 4.9: Examples of different patterns on a circle.

Notice that we could also have a cost function that results from adding the previous two

calculated weights:

Woptimizing both — Woverall minimal distance 1 Wequal distances

This would result in optimizing both the minimum distances and the equivalence between
the trajectories at the same time. Of course, we could also have a weighted average instead
of a sum. Empirically, however, we observed that, since we usually work with a small number
of dancers (usually not greater than 50), different weights do not produce very significantly
different results. For this reason, we choose to make the interface simpler and only allow

choreographers to choose between one of these three options (see Figure 4.10).

© @ Blend Formations
Matching Restriction:
o
Equal Distances
[l Optimizing Both

Fig. 4.10: Window for creating group motions based on boundary conditions.

After matching the initial and the final positions we have to create a path that connects
them. Although straight lines are the natural choice and the most efficient one in most cases,

they may result in collisions. Hence we implemented a simple method for collision avoidance
based on [25].
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The technique is based on a “divide and conquer” approach. For each pair of paths, we
check if there is a collision half way along the trajectory. If there is, we choose a random
direction and shift both paths according to it, as shown in Figure 4.11. We repeat this process

for the 1/4 and 3/4 positions, and so on. Afterwards, we smooth the resulting path.

(a) Initial paths. (b) Shift on random di- (c¢) Resulting smoothed

rection. path.

Fig. 4.11: Collision avoidance method.

Finally, we have to establish the orientation of the dancers during the path. This can be
done in several different ways and has a very strong impact on the overall result. In this work,
we have suggested two ways of automatically determining the orientations. Of course, we
could have any other results from declarative specifications.

The first method we suggested is a simple linear interpolation between the initial and final
orientations, allowing the dancers to smoothly rotate while translating on the stage. The other
standard rotation method we developed is to make the orientations tangent to the direction
lines. This usually results on the dancers rotating before the motion starts, then traveling
facing their paths and rotating again, at the end of the motion, to face the determined final

orientation.

Initial Conditions

The final type of group motion we explored is the one based on initial condition and evolution
rules. This allows choreographers to plan very complex movements based not on the final
positions, but on the actual motion effect that they desire.

In terms of declarative rules, we implemented pauses and trajectories. Pauses refer to
simply making the dancers maintain the initial condition formation (i.e., the formation that
resulted from the previous group motion) for a longer period of time. Although simple, creating
pauses is very useful. Trajectories are designed by allowing the choreographers to sketch a path
on the stage (see Figure 4.12). The orientations during these trajectories can be specified along
the path, or we can use one of the automatic methods described on the previous section.

Movements based on initial condition and evolution rules are perhaps the richest of all three

types of group motion specifications. This happens because we can have not only declarative

49



(a) Defining sketch. (b) Resulting trajectory.

Fig. 4.12: Example of a trajectory specification.

rules but also rules drawn from procedural animation methods as we will describe in Section 4.4.

4.3.3 Segmentation

In many cases, it may be desirable to divide the group of dancers into smaller subgroups and
specify different group motions for each one of those. This grouping may depend on the
identity of each performer, (e.g., groupings based on gender or height) or simply on position
(e.g., specifying symmetrically opposite motions for dancers who are on the left and right sides
of the stage).

Groups of dancers can be divided and subdivided in different ways through the dance. To
allow choreographers to easily specify these groupings we developed a hierarchical structure for
arranging and rearranging dancers into subgroups that are specified either based on individual
identities or positions on stage.

We have a list of dancers, each of which is annotated with a specific ID. The choreographers
specify subgroups of dancers by declaring different attributes, such as ability (e.g, a main dancer
versus the chorus), gender, costumes, etc. Hence, each dancer has a list of attributes, or groups
to which it belongs. Since these are general characteristics attributed to each dancer, we can
divide and redivide a subgroup based on any segmentation (e.g., take the main dancers and

divide it into two groups based on gender). An example of this structure is shown in Figure 4.13.

[ A
- e + - s + Jo

Fig. 4.13: Example of groupings along the timeline. Notice how we can create different segmentations

for the entire group, but also repeat groupings throughout the dance.
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4.4 Procedural Methods

In this work we explored behavioral animation methods for specifying evolution rules. As
discussed in Section 4.1.1, these methods regard each dancer as an autonomous agent that
travels along the 2D manifold represented by the stage according to combined steering forces.

There are, of course, innumerable evolution rules that could be designed based on these
behaviors. For the purpose of illustrating the applications of this method, we have implemented
the following group motions: following attraction/repulsion forces, spreading out on the stage,

and crossing over.

4.4.1 Following Attraction and Repulsion Forces

The choreographers specify attraction and repulsion forces by positioning attractors or repulsors
on stage and determining for how long their effects will last (i.e, setting the measures in which
they are active). Notice that the same hierarchical structure discussed previously is still valid

in this context, allowing different groups to be drawn to different attractors (see Figure 4.14).

(a) One attractor. (b) Two attractors.

Fig. 4.14: Example of attractors. In (a) the whole group is drawn to a single attractor, while in (b) two

sets of subgroups are drawn to two different attraction forces.

We use an exponentially decaying function, f(z), to control the repulsion forces, making
them more intense the closer the agents are to the source. Analogously, we use the function
1— f(x) for attractors, making the agents move faster towards the attractors when they are far
away and slow down as they approach the destination. We plot the graphs of these functions
in Figure 4.15. Empirically, we observed that this creates a more natural group motion.

It is important to point out that attractors and repulsors are single points on the stage.
However, we can create regional attraction/repulsion forces by combining these elements. For
example, we can draw dancers to a straight line by aligning a set of attraction forces, as
shown in Figure 4.16. We combine the forces of multiple attractors/repulsors by selecting
the one which is nearest to each autonomous agent. Notice that this is much more effective

than linearly interpolating the forces because such interpolation would be equivalent to a force
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(a) Repulsion control function. (b) Attraction control function.

Fig. 4.15: Functions that control repulsion (b) and attraction (a) forces.

directed toward the center of mass of all the elements.

Fig. 4.16: Example of a combination of attractors.

While following these forces, it is essential to control collisions with neighboring dancers
and obstacles (which are usually the edges of the stage, but could also be any other item in the
set). We also use separating behaviors which guarantee that the dancers will not be cramped
together during the dance.

To combine these steering forces we observe that, when a collision is imminent, avoiding
it should take precedence over all other behaviors, i.e., we should steer the characters to
avoid collisions and ignore the other driving forces momentarily. As discussed in Section 4.1.1,
collision avoidance forces are active only when the obstacles are “sufficiently close”. However,
determining this minimal distance is not trivial and highly influences the resulting motion. If
we choose a distance which is too small, there may not be enough time for the steering to
successfully prevent the collision. On the other hand, if we make this parameter too large,
we will lose the attraction/repulsion behaviors since their corresponding steering forces will be
inactive for too long.

To get around this problem, we suggest specifying two minimal distance parameters: a

small one, dg, and a larger one dy. If the distance between the colliding objects is smaller
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than dg, we ignore the other behaviors and steer the characters to avoid collisions. However, if
the distance is smaller than dy, but larger than d,, we combine all the steering forces allowing
the character to slowly move away from the obstacles, while continuing to follow the other
behaviors. We also suggest limiting the velocity of the agents when the distance is smaller
than ds, making the characters slow down when they get close to a potential collision. This
change of speed was very effective, because it allowed use to use a smaller value for ds while

still successfully avoid collision.

4.4.2 Spreading Out on the Stage

Having the characters spread out on the stage assuming random positions is a typical specifi-
cation used even in very classic dances, such as the ballet. This is also something that is hard
to be accomplished by an unexperienced group of dancers, since they tend to be crowded up
in certain areas leaving other regions of the stage empty?.

Our first approach in creating spreading motions using procedural methods was combining
separation and wandering behaviors with collision control. Though this had an effective result
in the sense that the characters assumed random positions without colliding, we ended up with
the same effect that results when real dancers occupy the stage with random motions: several

areas become overpopulated while others are empty.

Fig. 4.17: Example of characters spreading out on the stage.

To create a spending that guarantees at the same time randomness and a uniform dis-
tribution of the dancers, we propose a method based on segmenting the stage into a grid.
The idea is that each block of this grid should be occupied by an approximate number of
dancers. Hence, if it is overpopulated we place a repulsor in the center of the grid and if it is
underpopulated, we place an attractor (see Figure 4.17). We combine the attraction/repulsion
forces with wandering and separation behaviors. We also use the collision avoidance method

described in the previous section. We observed that this method was much more effective than

2We learned this from conversations with the dancer and choreographer Raquel Ledo, who enthusiastically

encouraged us to make experiments with spreading motions.
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the previous one.

4.4.3 Crossing Over

Crossing over refers to specifying a line that divides the stage into two parts and have the
dancers migrate from one of them to the other. We do this by defining two symmetrically
opposite flow fields, which are parallel to the specification line. Hence, dancers that are on
one side of the line are drawn to the other, and vice-versa (see Figure 4.18).

This behavior is also combined with the collision avoidance forces described above. It
should be emphasized that, in this scenario, the concept of distinguishing between potential
collisions which are closer or further away is very important. Since the characters have to move
facing each other, if potential collision forces made the characters steer in other directions,

they would never be able to complete this motion.

Fig. 4.18: Example of characters crossing over.
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Chapter 5
Experiments

In this section, we will discuss the experiments that were made during the course of this work
and that exemplify applications of our research. In each experiment, we have tried to explore
a different aspect of our authoring platform. The videos that illustrate them are available at

www.impa.br/~aschulz/ChoreoGraphics/videos.

5.1 Experiment 1: Motion Editing Tools

In the first experiment, we explored creating a measure-synchronous motion graph as well as
editing tools for altering MoCap data.

We used a samba style dance captured from Vanessa Simdes, who was asked to dance
to three songs with the same time signature composed by Marcello Cicconet. We created a
simple (not structured) measure-synchronous motion graph by segmenting the data according
to musical measures and observing segment boundary similarities. Hence, we were able to
synthesize new dance sequences by following a random walk on this graph. We found that,
since we connected the segments obeying the measure structure, the final dance motion could
be synchronized with a song that has this metric [31]. We thus validated the idea that
segmentation based on musical measures is efficient for designing dance shows.

With the resulting animation, we created a chorus line by replicating the motion and
inserting small alterations to make the group dance more natural. We used the amplitude
variation and time warping methods discussed in Section 3.3.3.

In addition, we observed that, since segments were randomly combined, the orientation of
the resulting motion was also random. This made the result seem somewhat unusual, for chorus
lines usually face the public. To resolve this problem, we calculated the average orientation
of the motion sequence and rotated the characters so that the average orientation became
zero. Though this significantly improved the results, the dancers still seemed to be staring at
strange directions. Therefore, we subsequently modified the rotation of the neck, to give the

impression that they where facing the public while dancing.



(left leg) « .- .« (right leg)

(left arm) -« « +«u (right arm)

Fig. 5.1: Hierarchical structure.

To do this, we first calculate the rotation 8 around the y-axis that should be applied to the
neck joint at each frame in order to guarantee that the character is facing the stage. Since
the motion is represented by the hierarchical structure shown in Figure 5.1, we know that the

overall rotation of the neck is:

Rhead = R4R3Ro Ry,

Therefore, we can calculate the orientation vector of the head (see Figure 5.2):

[z vy v;] = [1 0 0] Rhead

0 = —arctg <vz>
Uy

and the desired theta:

S ve vy vl
. y Uz

[1 0 0]
Fig. 5.2: Head orientation.

Notice that the character’s orientation varies significantly, since dancers turn and even spin
while dancing. Hence, we should be careful not to apply this transformation directly, so that
we do not generate impossible human movements. In this work, we chose to threshold @, so
that the final head rotation ranged between —60 and 60 degrees. Also, since we calculated
the 0 frame by frame, it is important to smooth the resulting 6(¢) function.

Hence, we processed the data by first eliminating the regions where 6(t) surpassed the
threshold and filling in the gaps with a liner interpolation. Then, we applied a Gaussian filter

to remove the high frequencies (see Figure 5.3).
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(a) Threshold. (b) Interpolations. (c) Smoothing.

Fig. 5.3: Steps in processing the additional rotation value (frames 40 to 140 refers to a spin movement).

Finally, after calculating € we had to alter the hierarchical representation of the motion by

determining a new value for R4. Since the new value for Rpead is R;ead = R4R3RsR1 Ry, then
/ / —1p—1p—1
Ry = Ry qBy Ry R3.

5.2 Experiment 2: Declarative Group Motions

In this experiment, we explored the use of declarative methods for specifying the group motions.
We synthesized the movement of the characters using the discussed techniques for combining
motion segments in order to allow the dancers to follow trajectories on stage.

We specified a very simple group motion inspired by the Irish dance group “Lord of the
Dance”. We created three formations shown in Figure 5.4 and interpolated them optimizing

the overall minimum distances (see Section 4.3.2).

Fig. 5.4: Specified formations.

We specified orientations by assuming that the dancers would face the public during a
formation and that they would face the trajectory while moving along the stage. Hence, we
specified the orientation as being zero if no locomotion was determined and tangent to the
directions lines, otherwise. As a result, the dancers rotate to face the path before starting the
trajectory and then rotate again at the end of the motion to face the stage once more.

We observed, however, that this specification made the dancer turn very abruptly at the
beginning and at end of each trajectory. To solve the problem, we suggested smoothing the

orientations values, with a weighted mean filter:
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O'(n) = 0.250(n — 1) 4+ 0.50(n) 4 0.250(n + 1),

where O(n) is the function that represented the specified orientation of the dancer at the
musical measure n

Notice that, to synthesize motions that observe these orientations specifications, we have
to apply a rotation at each measure n which is the difference between O(n) and O(n — 1).
Hence, this smoothing allows us to distribute the rotations between neighboring measures.

Figure 5.5 illustrates this with an example.

150 *oE & R 150 *

100 1 100
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5 10 15 z0 5 10 15 20

(a) Original values. (b) Filtered values.

Fig. 5.5: Filtering example. Notice that for the first five musical measures the dancer is facing the
public and, for the next five measures, he is facing sideways. In figure (a), we illustrate how these
original values would suggest an 80° rotation at the sixth frame. In figure (b), we show how we can
distribute this rotation using a mean filter. As a result, the character prepares the spinning move at
the fifth measure with a small rotation of 20°. Then, at the sixth measure, he performs the major part
of the spin by rotating 40°. Finally, at the seventh measure, he concludes the motion with another 20°

rotation.

We created a structured measure-synchronous motion graph from capturing a single tap
step called the time step, which was performed with the left and right foot (see Figure 5.6).

In this example, the dancer was the author of this thesis.

Time Step

left foot

right foot

Fig. 5.6: Graph representation

We chose a time signature for our composition, created a "tack-tack” audio signal that
counted the music beats, and used it to guide the MoCap session. We asked the dancer to

perform the step while moving in nine different directions/distances. Then, we interpolated
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these motions to allow the dancers to move in approximately any 2D direction, with the step

lengths that ranged from zero to the largest performed step (see Figure 5.7).

(a) Captured directions (b) Interpolated directions

Fig. 5.7: In (a) we show the nine different captured directions: one step with no locomotion, four
short and four long steps with different directions (forward, right side, left side, backwards). In (b) we
illustrate the approximate region of the stage where we are able to move the character with one single

step.

With the database created with both the captured and the interpolated motions, and using
the rotation mechanisms described in Section 3.3.2, we were able to synthesize the trajectories
on stage. Finally, we applied the amplitude variation and time warping methods discussed
above to make the group dance appear more natural.

An interesting aspect of this experiment is the relationship with music. Since we started out
only with the time signature, we could have a musician create any kind of music that matched
this dance. The final video was fashioned using a song called The Lark in the Morning, from
James Morrison, that Marcelo Cicconnet edited to fit the resulting dance. We also captured
the sound tap dance shoes made while the dancer performed the time step and used it to

create an interesting audio effect.

5.3 Experiment 3: Procedural Techniques

In this experiment, we explored procedural animation methods for synthesizing group motions.
Although we could combine declarative and procedural specifications, we chose to design the
entire dance only using behavioral animation methods.

This experiment was done in collaboration with the dancer and choreographer Raquel Ledo
and the musician Marcelo Cicconet. We started out by defining to the choreographer which
were the procedural elements she could use to create the group motions. We suggested four
elements: attractors (create attraction forces), repulsors (create repulsion forces), spreaders
(stimulate the dancers to spread out on the stage), and crossing-over bars (define a line that
divides the stage into two parts and forces which draw the dances to migrate from one side to

the other).
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The choreographer then suggested a first version of the group motion, designing a sto-
ryboard which contained these elements and their duration, i.e., for how many measures the

effects created by each of them should last. Figure 5.8 illustrates this first storyboard.
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Fig. 5.8: Simplified version of the first storyboard.

This information was then given to the musician, who analyzed the storyboard and the used
procedural elements. He suggested different musical instruments and effects that would go
well which each of these elements, chose a time signature for the composition, and synthesized
the first version of the music.

Having the time signature, we were able to start the MoCap sessions. To simplify the
experiment, we chose to use a single step for the whole choreography. The step was suggested
by the dancer, who proposed a motion that seemed fluid and expressive. The idea was to
explore the fact that procedural animation methods would go well with the contemporary
dance style, which suggest movements based on the natural, organic motion of the human
body.

During the MoCap sessions, the music's time signature was altered several times until the
dancer was comfortable with performing the step she had chosen for the exact duration of a
single measure.

To implement the effects of the different procedural elements on the group of autonomous
characters we used the OpenSteer [27] library which provides a toolkit of steering behaviors and
a plug-in framework, which allows a visualization of the resulting motions. While simulating
the effects of each element to the group of autonomous characters, the choreographer came
up with several other ideas that would make the group dance more interesting and therefore
iterative editing was made not only to insert new procedural elements on the storyboard but
also to change the duration of these elements.

After the final group motion was designed, the musician was asked to recompose the music,
so that it would match the new specifications. Finally, we synthesized the motion using the

mechanisms for combining segments and inserting variations described above.
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5.4 Experiment 4: Combining Dance Steps

In this experiment, we explored combining different dance steps during the choreography. For
simplification, we chose not to work with group motion specifications which were already
illustrated in the previous examples. Instead, we synthesized the dance for only a single
character.

We chose to work with Ballet movements and were assisted once again by Raquel Le3o,
who chose a classic music for the composition and selected four Ballet steps: Couru, Echappé,
Spring Point and a Sissone combination. We observed that each of these steps have very
different structures. For example, each of these steps has a different duration. The Couru and
the Spring Point are smaller steps that can be performed in the duration of a single musical
measure, while the Echappé lasts for two measures. The final step suggested by the dancer
is a combination for ballet movements in which the fundamental step is called Sissone. The
performed Sissone combination has the duration equivalent to four musical measures.

Another very important difference is that the Couru and the Spring Point allow different
movements along the stage and the other two steps can only be performed while the dancer rests
in a single position. This is very important to know when capturing the dance, since we can ask
the dancer to perform steps that allow locomotion several times and in different directions. In
view of the previous examples, we suggested the nine directions shown in Figure 5.7. However,
we learned that certain steps like the Couru can only be performed while moving to the left if
the leading foot is the right one, and vice-versa.

Finally, the Echappé and the Spring Point are weight transfer motions, while the other two
steps are not. Notice that, to sequence several recurrences of steps with weight transfer, it is
necessary to alter between instances that start with the right and ones that start with the left
foot. On the other hand, if weight transfer does not occur, the same instance can be repeated
sequentially since the step always finishes with the weight on the same foot it begins with.

Figure 5.9 illustrates how this attribute defines the connections in the motion graph.

Echappé Couru
left foot [ leftfoot  [D
right foot q right foot ‘

Fig. 5.9: Motion graphs for steps with (Echappé) and without (Couru) weight transfer.

We continued to analyze the structure of these steps by observing the motion at the
boundary of each segment. We noticed that the most common beginning/finishing poses for
ballet steps are the Sous-sur (rising up) and the Plié (bending of the knees) and these were
in fact the only two beginning/finishing poses that were present in the captured movements.

Since we can only have graph connections when the motion segment boundaries are similar,
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and since the Sous-sur and the Plié are very distinct, we conclude that we can only connect
two segments if the finishing pose of the first one is the same as the beginning pose of the
second one.

Hence, to increase the connectivity between the different steps we asked the dancer to
perform each motion four times varying the beginning and finishing poses. Of course, not
every step can be that easily altered (e.g., the Couru can be performed starting and finishing
with either pose; however, the Echappé must end on a Plié). Therefore, although we were able
to create a very connected motion graph, the possible combinations of steps was still limited.

Lastly, the choreographer suggested a dance for the chosen musical piece that only involved
these four ballet steps and we synthesize an animation of the resulting motion. To combine
the dance steps we run the A* algorithm described in Section 3.4.1. Figure 5.10 illustrates the
sequence of steps determined by the choreographer and Figure 5.11 shows the state machine

that represents the connections between the step clusters.

Fig. 5.10: Sequence of dance steps in the timeline.

Couru

right - plié/sous-sur
right - sous-sur
right - sous-sur/plié

left - plié/sous-sur

left - sous-sur

left - sous-sur/plié
Spring Point
Q right - plié

Q left - plié

Fig. 5.11: Connections between the step clusters.

We observed that, since we made every effort to capture all the different variation of
each motion, allowing the strongest possible graph connectivity, we were able to synthesize
any feasible combination of steps (i.e., any combination that can be performed by a human

dancer).




Chapter 6

Conclusions

In this work, we suggested an authoring and collaboration platform for dance shows, discussed
the relevance of this research to dance design, studied the technical aspects related to both
dance and choreography specification and synthesis, developed tools that were sufficient to
demonstrate the proposed concepts, and illustrated the applications of our method with ex-
periments performed with dancers and musicians.

To conclude, we will discuss the achieved results and future directions. We will make this
discussion for the three major aspects of our research: dance, group motion and the authoring

platform.

6.1 Dance

We suggested a structured measure-synchronous motion graph for dance synthesis. This tech-
nique proved to be very effective because it guarantees synchronism with music and, therefore,
allowed synthesis of motions that maintain the rhythmic structure of the songs. This method,
however, has the disadvantage of strongly limiting the connections in the graph.

A first consideration is that we only allow transitions to be made at exactly the last frame of
each measure. This is not very effective because, since transitions are made with interpolations
of two blocks of frames, it is possible that they would be smoother at different frames. Hence,
a simple modification that allows creating connections in an interval around the last measure
frame could highly improve the performance of our method while preserving the synchronism
we desire.

Another consideration related to graph connectivity is the number of structural variations
that are necessary to permit sequences of dance steps. Consider, for example, the ballet steps
described in Section 5.4. A ballerina can easily perform a Couru followed by a Sissone and
a Couru followed by an Echappé and, as far as she perceives it, the Couru motion does not
changed at all. However, if we analyze the two motions, we see that the first Couru finishes

in a Sous-sur, as the ballerina continues to perform a step on tip-toe, while the second one



ends with a Plié. Hence, we must ask the dancer to perform the Couru step twice and store
both motions as structural variations. This is undesirable, not only because it is extra work
for the dancers, but also because it is quite unnaturall. Synthesizing these variations without
capturing the motion twice is, of course, not a trivial problem and solutions can range from
data driven methods to physically based techniques.

An idea for solving this problem by exploring MoCap data is shown in Figure 6.1. Let steps
A and B, shown in Figure 6.1(a), be two segments we wish to connect, let d be the size of
the window of frames used to create transitions (see Section 3.1.3), and let M be such that
M < (N/2 — d), where N is the number of frames per measure. The idea is to search the
database for segments of size M 4 2d, such that the first and the last d frames are, respectively,
similar to segments sprey and Spext, illustrated in Figure 6.1(b). Notice that the only restriction
is that sprey belongs to step A and thatspey belongs to step B, see Figure 6.1(c). Therefore,
a search should be made for many different positions of syre, and sizes of M. We can see
that this is a very computationally expensive procedure, since we must test the entire database
several times. However, this fact may not come as a very strong disadvantage because, in
typical scenarios, these calculations can be executed a priori (i.e., as soon as the dancers add

new motions to the database and before the choreographer actually starts to design the dance).

Step A Step B
(a) Steps.

Sprev Snext

L 1 1 ]
I T 1

d M " d

(b) Segments.

M-

(c) Different possibilities.

Fig. 6.1: lllustration of method for creating new transitions.

In addition to allowing synthesis of motions that preserve the music’'s rhythmic structure,
segmenting the MoCap data into measures allowed us to explore several editing tools which
were fully described in Section 3.3. The results presented in Chapter 5, show that these

techniques were indeed effective for manipulating motion data.

'We actually had a very interesting experience with Raquel Le3o while we were capturing these two move-
ments, because she insisted that she was doing the same step and we had to show her that she was performing,

in fact, two different motions.
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An aspect that we believe deserves further investigation is motion variation. In this work,
we elaborated signal processing tools for altering dance, which in many ways can be related
to very early research in this area that involves adding noise [26]. More recent works use
statistical analysis and machine learning to create spatial and temporal variations of motions
data from a small collection of examples [19, 23]. A different, but also very popular approach,
is learning and transferring styles between motions [15, 6]. Variation and style are different
because in the first case the motions are quite similar, while, in the second, mood or behavior
can be modified creating very distinct movements. We believe that both style and variations
would be interesting to simulate in dance show scenarios, in which the movements are not only
different because of the natural asynchronism, but also because some dancers may be shyer or

more graceful than others.

6.2 Group Motions

In this work, we developed tools for specifying and synthesizing the motion of groups of
characters as they move on stage creating formations and following trajectories. Our discussions
on dance analysis allowed us to propose declarative specification methods, that proved to be
effective in our experiments. In the future, it would be interesting to improve these mechanisms
with additional feedback from dancers, musicians and choreographers.

We also argued that, since we are able to represent and specify groups of dancers on
the computer, we can create novel computational tools for dance design, taking advantage
of several related works in crowd planning and simulation. We illustrated this idea using
behavioral animation methods to control group motions on stage. Recently, we have learned
that experiments of flocking behavior for dance have also been carried out lately by other
researchers yielding interesting results [22].

There are, of course, several other computational techniques that can be easily applied
to our framework, but which we were unable to explore due to time limitations. In terms
of specifying formations, we proposed a sketch based method that allows choreographers to
determine shape, density and patterns. Extensions of this approach would include studying
different algorithms for distributing dancers inside shapes [12].

For motion based on boundary conditions, we believe that although our matching and
collision control methods were quite effective, it would also be valid to investigate different
mechanisms for transforming between two formations and compare them with our method.
Related work on this area includes methods based on spectral analysis of clusters of individuals,
which try to preserve adjacency relationships among the characters during transitions [33].

Finally, with regard to synthesizing new motions from initial conditions and evolution rules,
previous research is extremely rich. In addition to other methods based on autonomous agents,

recent approaches for crowd simulation propose modeling global flow [35] as well as extracting
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information from videos of real human crowds [20]. In addition to exploring procedural methods
for design, such mechanisms can also be used for editing group motions [18].

A final aspect of our platform that was very successful is the hierarchical structure used for
group segmentation. Further work on this area would involve analyzing dependencies between
dancers of different subgroups. Such mechanisms would allow, for example, formations to be

restructured and paths to be reshaped in order to avoid collisions.

6.3 The Authoring Platform

The main objective of this work is to propose a novel platform for dance design that integrates
the creative elements that compose dance shows and stimulates collaborations between dancers,
musicians and choreographers. To this end, it was necessary not only to explore computer
animation tools for individual and group motion synthesis, but also to study the artists’ process
of creation in order to suggest a natural authoring environment.

Understanding dance and dance design was quite challenging, first because it is a field
quite distant from ours, and second because the resources are somewhat limited. Dance
has no standard formalization or notation and there is no technical reference that formally
describes the process of dance content creation. In beginning this work, we made a strong
effort to investigate the artistic elements we would reference, but most of the material we
found came from web sites, observations made on existing shows, one-on-one conversations
with artists, or our personal experience in the field.

More towards the end of this work, we had a close interaction with the dancer and choreog-
rapher Raquel Ledo, who spent a month and a half with us discussing the environment, sharing
ideas, and participating in experiments. We believe that this was a very rich experience, which
truly allowed us to understand what artists are looking for in an authoring platform, and also to
validate our analysis of dance elements. Hence, future directions of this work should definitely
involve stronger interactions with different artists, as their feedback may allow us to refine and
extend these ideas in many different ways.

In order to demonstrate the applications of the proposed platform, we implemented the
essential functionalities which allowed us to validate the studied concepts and produce exper-
iments with artists. It is important to mention that it was not our intention to fully develop
a robust and integrated software. Hence, although we tried to polish the interface as much
as possible, the different functionalities were not integrated (e.g., we had different programs
for graph search, visualization, and behavioral animation techniques that used OpenSteer). In
addition, some algorithms and several pre-processing routines were implemented in Matlab or
manually.

We believe that this implementation was sufficient, since it has allowed us to demonstrate

the proposed methods with examples. However, if there were no time limitations, it would
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be interesting to develop a robust software which combines the various tools and runs in real
time. It would also be interesting to design interfaces for music and individual dance input.

Finally, the proposed ideas should be taken to the next level, being applied to live scenarios
in which conception and execution are done simultaneously, in a framework of instant feedback
that fully integrates the collaborations of dancers, choreographers and musicians. As discussed
in Chapter 2, we believe that this environment is much more than a tool to facilitate creation,
but in fact, suggests new forms of artistic expressions, bridging the gap between performers and
spectators. Expansions of the developed tools, additional experimentations, and contributions
from artists can made these ideas evolve in directions that we can only start to imagine.

In short, we have suggested a novel platform that, although is very much applicable to
traditional dance compositions, puts forward a whole new model for design that results from
combining art and technology. We believe that, as advances in graphics technologies become
increasingly robust and accessible, they will increasingly permeate different aspects of life and
society and will be exceptionally influential in art, permitting not only qualitative changes, but
also structural transformations of established paradigms.

We hope our work contributes to this revolution.
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Appendix A

Motion Capture

Motion Capture (MoCap) is a technology that allows us to record human motion with sensors
and to digitally map the motion to computer-generated creatures [3].

The applications of motion capture go far beyond animation and include biomedical analy-
sis, surveillance, sports performance analysis and input mechanism for human-computer inter-
action. Each application has its own particular set of singularities and challenges.

In this Appendix, we will discuss motion capture of full body motion for character animation.
We will introduce the basic concepts, detail the technique and describe how it was implemented
at the VISGRAF Laboratory.

A.1 The Technique

Motion Capture systems can be divided into three different categories [1]: inside-in (sensors
and sources located on the body), inside-out (sensors located on the body and sources outside)
and outside-in (sources located on the body and sensors outside).

An example of an inside-in system is an electromechanical suit, where sensors are attached
to to the performer’s body measuring the actual joints inside the body. The advantages of this
method are the absence of occlusions (all sensors are always “visible”) and the portability of
the suits. Nevertheless the actor's movement are constrained by the armature.

In electromagnetic (inside-out) systems, electromagnetic sensors, placed on joints of the
moving object, measure their orientation and position with respect to an electromagnetic field
generated by a transmitter. This method also directly collects positions and orientations of the
sensors and does not have to consider occlusion problems. The drawbacks of this technique
relate to the range and accuracy of the magnetic field as well as the constraint of movement
by cables.

Optical systems are inside-out systems which use data captured from image sensors to
triangulate the 3D position of a subject between one or more calibrated cameras. Data acqui-

sition is traditionally implemented using special retro-reflexive markers attached to an actor



and infrared cameras. However, more recent systems are able to generate accurate data by
tracking surface features identified dynamically for each particular subject. This is called the
marker-less approach.

Optical techniques are widely used since they allow large performance areas (depending on
the number of cameras) and performers are not seriously constrained by markers. Nevertheless,
orientation information is not directly generated and therefore extensive post-processing needs
to be done in order to reconstruct the three dimensional motion.

The three major tasks that need to be undertaken are [24]: markers have to be identified
and correlated in the 2D images, 3D locations have to be constructed from the 2D locations,
and 3D marker locations need to be constrained to the model being capture (e.g., human
skeleton).

The first step is to find the markers at each frame and track them over the video sequence.
The latter can be quite difficult because markers often overlap, change position relative to one
another and are occluded. In addition, noise can arise from the physical system (markers may
move relative to their initial positions) or the sampling process. Hence, three major problems
occur when tracking the markers and may need user interventions to be resolved: missing data
in the presence of occlusions, swapped paths between two markers that pass within a small

distance of each other, and noise.

Fig. A.1: Two-camera view of a point. Extracted from [24].

The second step is to reconstruct the 3D points from the 2D trajectories. For this purpose,
cameras need to calibrated , i.e., the position, orientation and intrinsic properties of the cameras
need to be known. This can be done by recording a number of image points whose locations
are known. With calibrated cameras, the three dimensional coordinates of each marker can be
reconstructed from at least two different views (the more orthogonal the views the better), as
shown in Figure A.1.

Finally, the 3D marker positions need to be transformed into the motion parameters of a
kinematic skeleton model. For this, it is crucial to place the markers in adequate positions. The

markers cannot be located exactly on the joint firstly because they are placed on the surface
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of the skin and second because they have to be set in positions where they will not move
according to the performance. This represents a problem because although distances between
consecutive joints are always the same, distances between markers may vary. Therefore, in
order to locate the joint relative to the marker, we need not only the position, but also the
orientation.

To solve these problems, most standard formats require placing three non-linear markers on
each rigid body part instead of one in each joint [9]. These locations are then used to determine
the position and orientation of each limb and the skeleton configuration is determined while
the tracked subject performs an initialization pose (T-pose). Since noise is usually added to the
data, directly using the calculated joint positions will probably result in varying bone lengths.
To get around this problem, many systems calculate joint rotations and use a skeletal hierarchy

to reconstruct the pose of the articulated body.

A.2 MoCap at Visgraf

There are currently several comercial MoCap System available. During the course of this
project, motion capture was done in the VISGRAF Laboratory using OPTITRACK, NaturalPoint's
optical MoCap System. The infrared cameras (see Figure A.2.b) are sensitive to the retrore-

flexive markers (see Figure A.2.b) which are placed in the performer’s body.

(a) OPTITRACK camera (b) Retroreflexive markers

Fig. A.2: MoCap setup.

As with traditional animation and many other arts, MoCap is actually composed of a

number of phases|[8]:
e studio set-up,
e calibration of capture area,

e performance and capture of movement,
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e clean-up of data, and
e post-processing of data.

The studio was set up with ten cameras, as shown in Figure A.3. Tracking a large number
of performers or expanding the capture area is accomplished by the addition of more cameras.
Since each marker must be"“seen" by at least two cameras, a greater number of cameras

diminishes the possibility of occlusions.

Fig. A.3: OPTITRACK cameras set up at the Visgraf Laboratory.

Camera calibration was done with the help of OPTITRACK's software, ARENA. This

software also specifies the position of the markers in the performer’s body (see Figure A.4).

Fig. A.4: Dancer performing at the VISGRAF Laboratory

The ARENA software (see Figure A.5) was also used to process the acquired data. The

first processing step is to trajectorize the data. This procedure takes the 2D data from each
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individual camera and changes it to a fully 3D path of each individual marker.

procedure the software allows for post capture editing (such as filling gaps, fixing swaps and

smoothing tracks) and exporting a file in a BVH or C3D format.
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Appendix B

BVH File Format

In this Appendix, we will describe the BVH file format by means of a simple example. Consider
the following BVH file:

HIERARCHY
ROOT A
{
OFFSET 0.000000 0.000000 0.000000
CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation
JOINT B
{
OFFSET 10.000000 0.000000 0.000000
CHANNELS 3 Zrotation Xrotation Yrotation

End Site
{
OFFSET 0.000000 -20.000000 0.000000
}
}

}
MOTION
Frames: 3
Frame Time: 0.040000
30.0 80.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0
30.0 80.0 20.0 60.0 0.0 0.0 0.0 0.0 0.0

30.0 80.0 20.0 60.0 0.0 0.0 -30.0 0.0 0.0

The first part of the file describes the skeleton, which has a root node A, a joint B and and

ending node C, as illustrated in Figure B.1. Notice that the the distance between the nodes



are given by the offsets described in the file. In this example O4 = [0 0 0], Op = [10 0 0],
and O¢c = [0 — 20 0].

A 0,00 B (10,00

C 20,0,-20)

Fig. B.1: Articulated body.

This part of the file also details the channels associated to each node and therefore indicates
the size of the motion data and what is the information of each entry of the motion vector. In
this case, node A has 6 channels and node B, 3 channels. This means that the motion data
(second part of the file) will be a series of vectors of size 9, each corresponding to a single
frame.

Consider, for example, the third frame (third line of the file after MOTION). The first three
components are the translation of node A (T4 = [30 80 20]), the second three are the rotations
associated to this node, R4, and the last three are the rotations associated to node B, Rp.
Notice that the order of rotations are given in the first part of the file. In this example we first
rotate 60° around the z axis, than 0° around the x axis, and, finally, the 0° around the y axis.
Therefore, R = R R, R..

Finally, we calculate the position of each node using the following equations:

A=0,4+Ty
B=A+0OyRa
C =B+ O.RgR4g

Figure B.2 illustrates the arm position in frames 2 and 3.

B (35,20,88.66) B (10,00
A (30,20,80) A (30,20,80)
C (52.32,20,78.66)

C (20,0,-20)

(a) Frame 2 (b) Frame 3

Fig. B.2: Articulated body motion.
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