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Abstract

A color image with an associated normal stored for each pixel is a useful datatype.

It improves on images since geometry information is also present while at the same

time it avoids all the complexity present in a 3D mesh. In this report, we investigate

editing these enhanced images. Local shape deformation operators are presented.

Global operators are developed using texture synthesis methods. We also propose a

new �ltering technique.
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Chapter 1

Introduction

The quest for realism has always been the grail of computer graphics. Generating

photoreal images requires a great knowledge of light and its interactions with objects

in the scene. It also requires very good descriptions of objects. Shapes in the real

world are very detailed, as such it is crucial to have computer models which can

represent well even the �nest turns in a surface. In this work we investigate the

editing of color and normals images.

1.1 Representing details

Rendering complex high resolution models is a very di�cult task. When represented

as polygonal meshes, these models include so many small triangles that it overloads

the graphics rendering pipeline, both in terms of time and space e�ciency. It is

common to view the modeled object in a multiresolution framework that allows

lowering or increasing the level of detail of the model. With such a continous mul-

tiscale representations, it is easy to obtain a very simple model for objects that are

far from the camera for example. Such objects will contribute to few screen pixels

and do not need to be rendered fully.

One problem with these multiscale schemes is that they treat all scale levels

equally, all scales are represented as meshes in the above example. Di�erent ge-

ometric scales contribute in di�erent ways. Lighting provides a good example to
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illustrate this concept. Coarse scale geometry (position) in�uences how light in-

tensity dampens while it goes from the light source to a lit model. Middle scale

(normals) are also geometric information, yet a surface point will be less lit if its

normal is away from the light direction, its exact position is less relevant. Fine scale

geometry (microfacets) will in�uences how incoming light and outgoing light are

related in the illumination hemisphere. The equations that govern each geometry

scale behaviour are di�erent and so are their storage requirements. A multiresolution

hierarchy which does not handle all scales the same way is thus necessary.

It is common to use three di�erent levels [4]. The Macrostructure level is the

coarsest one. It is usually represented as a triangle mesh or a spline surface. In this

level is the general shape of the model as would even be seen from a distance. The

�nest level is Microstructure. Elements in this level are so small that they cannot be

distinguished, such as microfacets. The Mesostructure level contains intermediate

geometric details that are still visible with a naked eye such as bumps and creases.

It remains an open question how to represent geometry mesostructure. The most

simple way is to use a triangle mesh. If the triangles are small enough, mesostructure

will be represented. Since a mesh does not assumes regular sampling, it must store

the connectivity of its vertices and not just the 3D position of each vertex. This

makes more storage necessary. On the other hand, texture maps do assume a regular

sampling pattern reducing storage requirements. Textures not only save space, but

also time. The more structured the information is the better optimized algorithms

can be, even to the point of exploiting memory coherency at the hardware level.

A texture map can store many di�erent color attributes like di�use and specu-

larity colors, but also geometric attributes. Storing geometry in textures has some

advantages over meshes. It is easy to leverage the power of multiresolution, as de-

scribed above, with the mipmapping technique. Most GPUs support this feature.

For very detailed objects a full mesh representation will include many vertices, usu-

ally more than the number of pixels in a rendered image. If there is information in

a texture it will only be consulted on a per-pixel basis and the rendering pipeline

will be faster.
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Figure 1.1: In Bump Mapping a deformation (below) is added to the straberry

surface in the normal direction. Images taken from [1].

The arguments above show that storing a texture is better than a full mesh. One

question remains: what geometric attribute should be stored? In what follows, we

will refer to the normal calculated from the base geometry as the base normal. We

are not interested in which way this normal was obtained. It could be a polygo-

nal face's normal, an interpolation of vertices normals or anything else. In Bump

Mapping [1], a height map is used. This means beyond the base geometry, texture

stores a displacement in the normal direction (Figure 1.1) . The normal of this

local height map is calculated and added to the base normal to obtain the �nal nor-

mal used for lighting purposes. Traditional bump mapping requires a well de�ned

tangent plane where the height map lives and derivatives will be taken. Instead of

taking derivatives, one can also store the �nal normal itself. One advantage is that

no tangent plane needs to be stored. This technique is called Normal Mapping and

is detailed in the next subsection.

Notice that in bump mapping (and normal mapping), only the normal is a�ected

and not the geometry itself. While shading will look perfect, the model's silhouette

is not a�ected [1]. In Displacement Mapping this is not a problem since the local
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Figure 1.2: Object-space normal maps (left) have range in the unit sphere. Tangent-

space maps (right) take values on a single hemisphere. Images taken from [2].

height map is used to change position itself.

1.2 Normal Maps

Normal mapping stores the normal in a texture map. During rendering, this map

will be consulted and used to calculate lighting. Since this normals will be stored at

a much higher resolution than the geometry itself, the model will look much more

detailed. These quality results bring an e�cieny penalty. Yet performace gains are

obtained over bump mapping which requires some calculations to get to the �nal

normal.

The normals can be represented in two di�erent ways [2]. In object-space normal

maps they are stored in an object coordinate system, assuming values in the entire

unit sphere. Tangent-space maps store normals in a tangent space, as such its range

is a single hemisphere. This tangent vector basis usually consists of interpolated

vectors assigned at vertices.

Usually a 3D unit lenght vector represents the normal. While it is possible to

use a �oating-point texture, normal maps are usually signed or unsigned integer

textures. The range of (x, y, z) coordinates in a unit normal are limited to [−1, 1]

and this interval is mapped to [0, 255] and stored in an unsigned byte. The map

can thus be opened is most image editors which will interpret each normal as a

4



color in RGB space. Since the vector (0, 0, 1) is mapped to the color (128, 128, 255),

a predominantly blue color, most tangent space normal maps look blue. Since we

used a uniform quantization of the unit cube to represent unit vectors, we are loosing

much of the resolution provided by 24-bit textures. In [2] other representations are

discussed.

Now that we know how to represent normal maps, we are left to answer how

do we get our hands on them? The authors of [5] after simplifying a large mesh,

store color and normals in textures in a way that preserves appearence (rendered

image). This means pixels on screen should deviate little from the original color.

After building a parametrization, the normals are obtained by rendering normals as

colors into parameter space (texture). In [6], attributes are transfered from the high-

resolution mesh, by sampling the faces of the low-resolution mesh and projecting

them onto the high-res mesh. The projection step is performed with point-to-face

distance calculations. The high-res mesh can be created with a modelling software,

followed by mesh simpli�cation producing the low-res mesh. This task is made easier

by using subdivision surfaces.

Capturing real-world objects is an alternative. By capturing the high-res mesh

with 3D scanning technology, the normals can be derived from position, but deriva-

tives will enhance noise. Photometric stereo that allows for capturing normals di-

rectly will be discussed in the next section. Normal maps can also be built with

procedural methods [7]. Texture synthesis is another approach which we discuss in

Section 1.6.

In most applications of normal mapping, there will also be a color texture avail-

able. If we think of the attributes themselves and abstract the mapping process, we

are left with images that contain color and normals. Editing these RGBN images

are the focus of this report. Editing normal maps in a regular image editing software

is di�cult. First because of the distortions introduced by parametrizations which

are hard to comprehend by the user. Second because normals are not colors.

To counter the �rst problem we assume a projective mapping from the surface

into texture space, a picture of a camera for example. This mapping has the ad-
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vantage that users are used to projective mappings and so editing is more intuitive.

Projective mappings also help solve the second problem. As will be seen in the next

sections, it makes many normal operations easier like �ltering.

One problem with projective mappings is that it is not possible to continuosly

map a closed 3D surface onto the plane. In future work, an atlas of projective normal

maps will allow editing any model. By now we assume we are editing an RGBN

image of a model taken from one �xed viewpoint.

1.3 RGBN

Toler-Franklin et al. coined the term RGBN to refer to an array of pixels with asso-

ciated color and normal channels. We illustrate below some applications of RGBNs,

but the power of this data type abstraction is being application independent.

1.3.1 Advantages of RGBNs

Obtaining quality 3D geometry (positions) of an object requires a 3D scanner, still a

very expensive device. Even the best of those, still lacks resolution being far behind

the much cheaper digital cameras. Noise is also a problem, leading to a trade o�

between low noise and higher resolution which further decreases the �nal quality.

On the other hand, capturing only a model's normals is easier using shape from

shading (SFS) techniques [8]. These methods take a shaded image as input and aim

at inverting the illumination equation to obtain shape. Since SFS works on regular

images, it allows very high resolution models to be obtained.

In some SFS methods, normals are �rst obtained from raw data and then un-

dergo an integration process to obtain positions. The integration step is unstable.

As Nehab et al [9] points out, reconstructing geometry from normals brings low fre-

quency errors. For RGBNs we are only interested in the normals, as such we pro�t

from SFS advantages without facing its drawbacks.

As detailed below, acquisition of normals is slightly more complex than usual

photography, yet the power and �exibility of 3D models can be attained. We next
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show some applications, that highlight the possibilities and limitations of working

with RGBNs. As described above, recovering positions from normals can be un-

stable. Some works avoid using positions by working only with normals. In image

relighting the normal map is used to �t a local lighting model [10] and rendering

is done per-pixel. Many NPR rendering algorithms have been shown to work even

if only a normal map is available [11]. These include toon shading, line drawing

methods, curvature shading and exaggerated shading. RGBNs are thus a very good

tool for understanding real models as they easy to capture and easy to analyse.

RGBNs are limited in that they do not allow for change of viewpoint or realistic

shadow calculations. Both these limitations are a consequence of having only a local

description of the model (normals) instead of a global one (positions). As described

above, a normal mapped 3D mesh with a projective atlas can counter these problems.

The lower resolution position information in the mesh vertices compensates these

RGBNs issues, while the high resolution normal map builds on its advantages.

1.3.2 Acquisition Detail

Shape from shading methods are the most common technique for acquiring high-

quality normal maps. In the simplest version of SFS, one looks for computing a 3D

surface from a grayscale shaded image (photograph). The problem was �rst posed in

[8] who formulated it as solving a non-linear PDE. We know today that SFS is not a

well posed problem. By varying albedo or lighting conditions, di�erent surfaces can

yield the same shaded image. For these reasons, it is common to assume uniform

albedo with Lambertian re�ectance and a known light source.

Photometric Stereo (PS) improves on simple SFS. It does not assume constant

albedo and to compensate for that, it requires multiple images from the same view

point as input, each illuminated with di�erent known light positions. For now,

let's assume a single color channel. PS solves for the normal vector at each pixel

p = (x, y) separately using a Lambertian lighting model:

Ip = ap < np, li >
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where Ip is the intensity, ap is the scalar albedo, np is the normal vector at pixel p.

Also li is the direction of a light source assumed far away in image i.

We can rewrite this equation as:

Ip =< (apnp), li >

There are 3 variables in the vector apnp, as such 3 images would lead to 3x3 linear

system having a single solution. Usually more than three images (and light sources)

will be used making the method more robust to noise and outliers. Specularities and

shadows for example bring outliers in the linear system since they are not predicted

by the Lambertian model. For these reasons, more images should be used leading

to a least squares solution of the system below for each pixel:


l1,x l1,y l1,z

l2,x l2,y l2,z

l3,x l3,y l3,z

...




anx

any

anz

 =


I1

I2

I3

...


Once this system is solved the lenght of the vector gives a while its direction

gives n. With the normals at hand, we can solve for the color albedos with another

least squares solution. In fact this solution has the following closed form:

kc =

∑
i Ii,c < li, n >∑
i (< li, n >)2

where i is the image and c stands for the color channel (r,g,b).

As noted above, capturing RGBNs comes down to taking photographs of an ob-

ject under varied lighting conditions and then solving a linear system. Even though

capture is simple, if RGBNs are to claim their place as �rst class geometry represen-

tation, there must be a variety of ways to process and edit them. Toler-Franklin et

al. adapted many Stylized Depiction algorithms for working with RGBNs. In this

process they also adapted signal processing and segmentation. In the next section

we review and extend their work on RGBN analysis and �ltering.
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1.4 Analysis and Filtering

RGBNs are extended images, since they include geometry information. As such very

e�cient geometry processing tools can be developed. These tools take advantage of

working with an image. Uniform sampling simpli�es neighbourhoods and provides

memory locality.

We begin this section by reviewing the work of [11] on gaussian and bilateral

�lters for RGBNs. Followed by a new method which allows us to use any kernel

for �ltering. The authors of [11] adapted segmentation methods and also developed

estimates for di�erential properties of the surface given by an RGBN.

1.4.1 Filtering

The simple way to �lter an RGBN would be to consider each channel of a 6D

(color + normal) image separately and convolve it with a kernel. Since the resulting

normals would not have unit norm, a normalization step would follow the �ltering.

The problem with naive �ltering is that due to foreshortening the area of each

pixel will be underestimated by cos θ. The angle θ being between the normal and

the viewing direction. Each pixel should be weighted by this factor. To simplify

the analysis we assume a constant viewing direction as in the case of a far away

viewer. In this case the viewing direction is the z direction and cos θ = nz. This

analysis means we should replace the normal vector (nx, ny, nz) by (nx/nz, ny/nz, 1),

which we call foresight corrected normal. Smoothing in this representation is now

a linear operation. Any �lter with no gain in the DC frequency will preserve the

z component as 1 and its true value can be recovered by normalization. Gaussian

�ltering in particular satis�es this property. Among other applications, smoothing

will be used to remove noise and for multiscale analysis.

1.4.2 Bilateral Filtering

A Gaussian �lter is an extremely useful tool, but it has one drawback: edges are not

preserved. The problem is although pixels near an edge are very close spatially their
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colors are not correlated. The idea of bilateral �ltering [12] is to take into account

not only domain weights (distance) but also range weights (color similarity). This

results in the following non-linear �lter:

C−1

∫
R2

f(ξ)kx(ξ − x)kc(f(ξ)− f(x))dξ

, where

C =

∫
R2

kx(ξ − x)kc(f(ξ)− f(x))dξ

is a normalization constant to preserve the DC component.

The kc kernel measures the color similarity (distance) between pixels. Most often,

the kx and kc kernels are Gaussian kernels with, respectively, σx and σc as standard

deviations. Small values of σc will better preserve edges.

In [11], bilateral �ltering was extended to RGBNs, range �ltering will be per-

formed not only in color but also in the normal channel. The �ltering equation

generalizes to the following:

C−1

∫
R2

f(ξ)kx(ξ − x)kc(f(ξ)− f(x))kn(n(ξ)− n(x))dξ

, where

C =

∫
R2

kx(ξ − x)kc(f(ξ)− f(x))kn(n(ξ)− n(x))dξ

f and n are vector valued functions, respectively, color and normal.

Large values of σc and σn will give kernel values close to 1, as such, the �ltering

will only be a�ected by the domain �lter with kernel kx. When σn is small normal

discontinuities (creases) will be well preserved. If both are small then normal edges

and color edges will enhance each other.

1.4.3 General Filtering

In subsection 1.4.1 we reviewed the work of [11] where �lters with zero gain in the

DC frequency were shown to work linearly in the foresight corrected normal repre-

sentation (nx/nz, ny/nz, 1). In this section we investigate the problem of �ltering

normals with any kernel.
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Figure 1.3: Bilateral �ltering preserves image edges.

Assumptions that lead to a height map

We are interested in establishing the equivalence between a �lter in a height

map representation of a surface and its normal representation. We do not want to

obtain a height map explicitly, but it is a good abstraction to develop �lters for

normals. Assume our surface is given by z = z(x, y). We can write the normal

�eld as a function of its derivatives zx(x, y), zy(x, y). We use the following sur-

face parametrization φ(x, y) = (x, y, z(x, y)) whose tangent vectors are φx(x, y) =

(1, 0, zx), φy(x, y) = (0, 1, zy). Since the normal is orthogonal to the tangent plane

we get:

N(x, y) =
φx × φy

|φx × φy|
=

(−zx,−zy, 1)√
z2

x + z2
y + 1

The above formula lets us convert from zx, zy to N(x, y). In fact the foresight

correction scheme proposed in subsection 1.4.1 is the reverse process. Given a unit

normal N(x, y) = (n1, n2, n3) we can use the above formula to show that:

−n1/n3 = −
−zx√

z2
x+z2

y+1

1√
z2
x+z2

y+1

= zx

and

−n2/n3 = −

−zy√
z2
x+z2

y+1

1√
z2
x+z2

y+1

= zy

This can be done as long as n3 6= 0 in which case there is no height map that

represents this surface. What we have shown is a one-to-one mapping between the
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N(x, y) and zx(x, y), zy(x, y), as such, we can work with one or the other indiscrim-

inately.

z
∗g−→ z ∗ g

↑ ↓

zx, zy
(1),∗g−−−→ (z ∗ g)x, (z ∗ g)y

↑ ↓

N z ?−→ N z∗g

So we are looking for a �ltering algorithm that takes the normals of a height

map N z and produces the normals of the �ltered height map N z∗g. Reconstructing

a surface from its normals is not a very stable process, but conceptually we can go

from N z to zx, zy and then to z itself. We proceed by convolving z with a kernel

g. With this new surface at hand, we can simply di�erentiate and take the vector

product to obtain N z∗g. The only �aw is that we would like to avoid reconstruction.

Fortunately, the arrow (1) above will provide a shortcut since:

(z ∗ g)x =
∂(z ∗ g)

∂x
=

∂z

∂x
∗ g = (zx ∗ g)

Equivalently for y,

(z ∗ g)y =
∂(z ∗ g)

∂y
=

∂z

∂y
∗ g = (zy ∗ g)

What this means is that when the normal is foresight corrected (−zx,−zy, 1) we

can convolve it with any kernel. Since we are only interested in �ltering zx, zy, we

can simply set the third component to 1, whether the kernel would preserve it or

not. After �ltering we simply normalize the vector to get a unit normal back.

This general �lter procedure is clearly equivalent to the �lter described in sub-

section 1.4.1 when a DC preserving kernel is used, even though we arrived at it

through an entirely di�erent argument.

Having developed this �ltering framework, we now discuss some applications.

Gaussian Filtering was discussed above, in fact, low-pass �ltering would have a

similar functionality. We are also interested in Sharpen Filters to enhance detail,
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that is an all-pass �lter + high-pass �lter. The problem with sharpening is that

by enhancing high-frequencies we also enhance noise. A simple solution is using an

Edge Enhancement Filter using all-pass + band-pass.

All of the above �lters preserve the DC frequency. Filters that do not have this

property can be useful for editing normals. For example we might be interested in

extracting a normal texture from an RGBN, in this case we look for eliminating

the low-frequencies related to shape and retaining the high-frequencies related to

texture. A Di�erence of Gaussians or a Laplacian of Gaussian provide simple band-

pass �lters. By themselves they would produce surfaces of no interest, yet they can

used for edge enhancement as described above. Another application is simply scaling

the surface represented by the normals generating shallow surfaces. Any �lter can

be regarded as a combination of scaling with a DC preserving �lter.

1.4.4 Derivative, Curvature Estimates

An RGBN extends an image because it also includes geometry information. As such,

a natural question to be posed is how can we estimate the di�erential geometry of

our surface. Since we already have the normal at hand, the only �rst order entity

we want to calculate are tangent vectors. To obtain them, we regard the RGBN

surface as being parametrized in the image cartesian plane:

φ(x, y) = (x, y, z(x, y))

u =
∂φ

∂x
= (1, 0, zx) = (1, 0,−nx

nz

)

v =
∂φ

∂y
= (0, 1, zy) = (0, 1,−ny

nz

)

The �rst fundamental tensor, which can be used to calculate lenght and areas

over the surface, is de�ned by:

I =

 u · u u · v

v · u v · v


The second fundamental tensor is de�ned to be:
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II =
(

Dun Dvn
)

=

 ∂n
∂u
· u ∂n

∂v
· u

∂n
∂u
· v ∂n

∂v
· v


Knowing the I and II, we can calculate the mean curvature, gaussian curvature,

principal curvatures and directions. Since u and v de�ned above project to unit or-

thogonal vectors (1, 0), (0, 1) in the image plane, we can use central �nite di�erences

to estimate the derivatives of the surface normal:

∂n(x, y)

∂u
=

1

2
(n(x + 1, y)− n(x− 1, y))

∂n(x, y)

∂v
=

1

2
(n(x, y + 1)− n(x, y − 1))

1.4.5 Segmentation

Segmenting RGBN produces better results than segmenting color images. The nor-

mal channel provides aditional information frequently uncorrelated with color. With

RGBNs it is also possible to segment objects based solely on geometry.

In [11], the authors adapted the graph-partitioning algorithm of Felzenszwalb

and Huttenlocher [13] to RGBNs. Their algorithm works bottom-up, each pixel is a

vertex in a graph and starts in each own region, while edges encode neighboorhood

similarity. The algorithm proceeds by merging similar regions. Although thy use a

greedy criteria for merging, the resulting segmentation satis�es some global proper-

ties. Their algorithm is fast O(m log n) and is suited to interactive applications.

To adapt this algorithm to RGBN segmentation, all that is needed is a measure

of neighbouring pixel similarity. We experimented with the following:

w(vi, vj) = g(|c(vi)− c(vj)|, |n(vi)− n(vj)|)

where g can be the min, max or a linear combination of parameter α of the

di�erences.

By using α = 0 or 1 we can segment using only color or normal information,

respectively. It should also be clear that among all these con�gurations, max pro-
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Figure 1.4: In between the white face of the cucumber and its surface the normal is

discontinous. This de�nes a crease line.

duces the �nest segmentation while min produces the coarsest. A bilateral �lter

should be used prior to segmentation to remove noise while preserving edges.

In Textureshop [14], an alternative RGBN segmentation method is proposed. It

uses only the information from the normal channel. First every pixel in put in its

own patch. Merging of adjacent patches proceeds when an energy functional falls

below a given threshold.

1.5 Local Operators

1.5.1 Creating Features

Before de�ning local operators, we must answer what kind of surface modi�cations

we are interested in. We begin by discussion di�erent features usually found in

surfaces and their mathematical descriptions. We usually work with continuous

surfaces (C0). These surfaces may or may not have continuous derivatives (C1).

We say a surface point belongs to a crease, if the surface's normal (derivative) is

discontinous at that point (Figure 1.4). Creases are �rst order features. We can

also de�ne second order features related to surface curvature. We say a surface point

belogs to a ridge, if it is a local maxima of the principal curvature in the direction

of its corresponding principal direction. Equivalently we de�ne valleys as the local

minima (Figure 1.5).

It is very important to distinguish features across scales. Very large features

related to low-frequencies should be edited by setting the model at a compatible
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Figure 1.5: The continuation of the stem (yellow) in the leaf is a valley since curva-

ture is a local minimum when searching perpendicular to the stem.

resolution. Very small details (high-frequency) should be edited on a high resolution

version of our model. While this would be the ideal way of editing we do not yet

have an RGBN multiresolution scheme suited for editing, which we leave as future

work. Currently we edit a �xed scale model as will be detailed in the next section.

Up to now, we have discussed isolated features. It is common to �nd many

features clustered together in a region forming a texture. For this type of editing,

we resort to texture synthesis techniques (Section 1.6).

1.5.2 Local Editing

All the tools developed in this section work on local features (small scale). To

support these operations, we �rst use bilateral �ltering on the normal image and

obtain a low resolution version of the normals (Figure 1.6). We refer to this smooth

normals as base normals. These normals are useful for de�ning a local tangent

space where normal editing will take place. The extension of this framework for

editing normal maps on arbitrary meshes should follow naturally by assuming the

base normals to be the mesh normals.

Since normals are mathematical objects living in S2, any normal operation can

be seen as a function f : S2 → S2. We chose to model this functions as rotations.

Using rotations it is easy to work on the local tangent plane as well as interpolate

operations. In what follows, we review some results regarding Rodrigues Formula,

more details can be found in [15].

Among the many ways of representing a rotation, the most intuitive is by de�ning
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Figure 1.6: The original normal image is smoothed with bilateral �ltering producing

the base normals, a coarse scale version of the surface.
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Figure 1.7: R(λa× b)a is a parametrization of the great arc connecting a and b.

an axis of rotation r (unit vector) and an angle of rotation α in radians. Both of

these quantities can be speci�ed by only one vector w = αr. The calculations

are more elegant by instead representing the rotation as w = sin(α)r. Rodrigues

Formula provides an easy way to convert between this representation and a 3D

rotation matrix:

R(w) = cI + (1− c)rrt + srΛ,

where s = (||w||2) 1
2 = sin α, c = (1− ||w||2) 1

2 = cos α, sr = w, and

rΛ =


0 −rz ry

rz 0 −rx

−ry rx 0


One important property of rodrigues formula is that given ni, nj unit vectors:

R(ni × nj)ni = nj

Interpolation is also simple since R(λa × b) and R(a × b) are both rotations

around the same axis , the only di�erence being the angle (Figure 1.7).

Our local operations are transformations in a local coordinate system de�ned by

the base normal vector n. We still have one degree of freedom for the basis of the

tangent plane which will be speci�ed by an orientation vector o. The unit vector o

is in the xy plane see Figure 1.8. We de�ne the tangent vector u = o − projn(o)
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and v = u× n. The �nal system is de�ned by u, v, n.

Figure 1.8: Local coordinate system on the surface.

Editing the normal starts by specifying a desired normal vector b, usually with

coordinates in the local system. We could simply replace the existing normal a with

b. We call this replace mode. Another option is to blend a and b, which we call

blend mode. Blending can be very useful for fading smoothly the e�ect of the new

normals as distance from the edited area increases (see subsection 1.5.4).

This strategy fails when b has a negative z value (Figure 1.9). In this case

we actually need to replace b by a saturated vector k, de�ned as the maximum

displacement along the great arc which has positive z values. As such we can either

replace a with k or blend them. Notice that since k is on a great arc it depends not

only on b but also on a.

A normal in the xy plane corresponds to a discontinous height �eld (zx →∞). To

correct this problem, we introduce a user-de�ned parameter ξ meaning the minimum

allowed angle a normal makes with the xy plane. By saturating whenever necessary,

we guarantee that the normals correspond to a coherent height �eld.

calculation of the saturated vector Why dont we simply interpolate vectors lin-

early and then normalize?

1.5.3 Stamp

The �rst local operator we propose is inserting a small RGBN (stamp) in a neigh-

bourhood of a point (Figure 1.10). The stamp can be an entire RGBN itself or
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Figure 1.9: Interpolation between the original normal a and the assigned normal

b might result in vectors with negative z values. To preserve RGBN coherency we

calculate a saturated vector k where interpolation must stop.

extracted from one. In the last case, we must eliminate the lower frequencies through

�ltering when creating the stamp.

Each normal of the stamp is interpreted as being in the tangent plane of our

surface while editing. So the new normal b is simply the stamp's normal transformed

from the local coordinate system. To de�ne this system, we simply take o = (1, 0, 0)

where o is the orientation vector de�ned above. Other vectors in the xy plane would

cause the stamp to be rotated.

1.5.4 Pen

The pen operator is used for creating line features. The normals will be transformed

to correspond to a custom height pro�le along the path drawn by the user. In Figure

1.11, some useful pro�les can be seen, which allow the user to create bumps, creases

or scratches on the surface. Custom pro�les can be speci�ed using grayscale height

images.

The �rst step is to establish coordinates in a tubular neighbourhood of the path

(Figure 1.13). This coordinates de�ne a mapping (s, t) = f(x, y) between a canon-

ical representation of the height pro�le and the tubular neighbourhood. The s(x, y)

coordinate can be regarded as a radial displacement from the path, while the t(x, y)
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Figure 1.10: The leaf was used as a stamp and added as detail to the soldier's skirt.

Notice how the results of each stamp are di�erent, depending on the base normals.

Figure 1.11: Custom height pro�les along a path are transfered to the normals with

the pen operator.
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Figure 1.12: This cucumber was edited using the four pro�les above. Can you match

them?

coordinate as a displacement along the path. In the pen operator the pro�le is in-

dependent of the t coordinate, which simpli�es the calculations. Formally s(x, y) is

taken as the distance from the path.

The sampling of the path drawn by the user is interpreted as a piecewise linear

continous curve (C0). To avoid slow distance �eld calculations, we use a geometrical

calculation using point to segment distance functions (Figure ??). The t coordi-

nate is not calculated explicitly but is interpreted as being an arc-length distance

from the beginning of the path up to the point of projection. This corresponds to

the exact distance �eld if we assume a small tubular neighbourhood and a path

with no self-intersections. Even when this hypothesis fails, intuitive results are still

obtained. The f(x, y) mapping de�ned using the distance �eld inherits properties

of the distance �eld itself (continuity). Its derivative is not continuos on the me-

dial axis of the path. This discontinous derivative will lead to discontinous normals

(creases) in the �nal surface, this characteristic might or not be desirable. Instead

of the distance �eld approach, one could de�ne the mapping f(x, y) by extracting

control points based on the input path and building a spline surface. This mapping

can be built C1 everywhere.

After editing the normals does the resulting normal �eld correspond to a surface?

If not, how should we reconstruct an approximate surface from its normals? We leave

the second question for future research. By now, we investigate conditions that will
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Figure 1.13: The orientation vector is determined in a tubular neighbourhood of the

user-drawn path. It is the gradient of a distance-�eld. Notice that this vector �eld

is discontinous over the path's medial axis (dotted line).

allow us to answer: yes, it is a surface. We refer to these �elds as integrable normal

�elds.

We begin by studying the action of the pen operator on a planar region.

Let h(u, v) be the applied deformation. In the case of the pen operator, h(u, v)

does not depend on v but the following proof is general. The di�erential 1-form

de�ned by:

ω = A(u, v)du + B(u, v)dv

where

A(u, v) =
∂h(u, v)

∂u
, B(u, v) =

∂h(u, v)

∂v

is trivially an exact form since dh = ω. We want to show that the integral of the

1-form induced by the deformation on the plane is "invariant".

In this simpler case of plane deformations, the original normal used for de�ning

a local frame is always n = (0, 0, 1). As such, our local coordinate system de�ned

by the gradient of the distance function is (∂U
∂x

, ∂U
∂y

), (∂V
∂x

, ∂V
∂y

).
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Figure 1.14:

The resulting derivatives (gradient) after the deformation is applied to the plane

will be:

A(φ(x, y))(
∂U

∂x
,
∂U

∂y
) + B(φ(x, y))(

∂V

∂x
,
∂V

∂y
)

= (A(φ(x, y))
∂U

∂x
+ B(φ(x, y))

∂V

∂x
, A(φ(x, y))

∂U

∂y
+ B(φ(x, y))

∂V

∂y
)

. We must now recognize this induced form as the pullback φ∗(w). This leads us to

an important result:

∫
λ

(A(φ(x, y))
∂U

∂x
+B(φ(x, y))

∂V

∂x
)dx+(A(φ(x, y))

∂U

∂y
+B(φ(x, y))

∂V

∂y
)dy =

∫
λ

φ∗(ω) =

∫
φ◦λ

ω

.

To show that φ∗(w) is an exact form, we may show that the integral of φ∗(w)

over a closed path λ is 0. This holds since w is an exact form:∫
λ

φ∗(ω) =

∫
φ◦λ

ω = 0

.

24



As demonstrated above, integrability will be preserved after an operation. This

means there is a height �eld f(x, y) with the given derivatives.

In fact, this is not enough to preserve integrability after many operations. To

support this claim, we give a counter-example inspired by this drawing of Escher

(Figure ??). In the image below, many deformations were made. The paths are

radial and the height pro�le was a step function as shown in Figure 1.15. Each

edit is a step up, just like in Escher's in�nite stair. This example shows how even

though the deformation was locally coherent, it might not be globally coherent. This

happens since not all closed paths λ above are contained in the edited area.

To �x this issue, we ask one more property of the derivatives of our deformation

function h(u, v):

∃R, |r1|, |r2| > R ⇒
∫ r2

r1

ω = 0

This implies that for "far away" points no height level change will be introduced.

This can also be seen as having a window of low-frequencies not allowed in these

derivatives. They must oscilate. By the invariance of the integral above, the edited

normals will also integrate to 0.

To extend this result to surfaces other than the plane, we argue that if the

base normals are su�ciently smooth, it can be locally considered a plane. This

is justi�able since the base normals only have low-frequencies and the deformation

only has higher frequencies. These information are in di�erent levels of detail. This

leads to a selection criteria for the parameter R above. The higher the value of R,

the smoother the base normals need to be.

There is still one other problem. The resulting normals could be away from

the camera or even making multiple turns along a path λ on the surface. Since

our deformation comes from a height pro�le that satis�es the frequency separation

criteria above, these problems will not happen. Yet, there are situations where the

above hipothesis are not properly satis�ed, for example if R is not chosen small

enough. In these cases, the normal saturation procedure de�ned in the subsection

1.5.2 will guarantee our results.
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Figure 1.15: On the left a sequence of small deformations were made on a planar

surface, each edit is a step up. There is no surface with this given normals. On

the right a surface bump is shown. It is interesting to notice how the shading of an

impossible object ressembles a rotated version of a real one.

1.5.5 Local Filtering

We have also developed a local �ltering operator. It behaves just like the general

�ltering procedure described above, but only normals in a small neighbourhood of

a pixel are edited. The shape and radius of this neighbourhood can vary. In Figure

1.16, we show an edited version of , both smoothing and enhancing the normals.

Notice how enhancing the signal also enhances noise.

1.5.6 Experiments with integrability error

A vector �eld f = (u(x, y), v(x, y)) that is the gradient of a height function is curl-

free. That is E(x, y) = |(∇× f)(x, y)| = | ∂v
∂x
− ∂u

∂y
| = 0. As such, this value can be

used to measure the deviation of an edited normal �eld from a true surface's normal.

The following �gures show E(x, y) plotted in a non-linear grayscale. Notice how

the pen operator actually reduces the integrability error, since the edited surface is

smoother than the original one.
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Figure 1.16: The detail of the image on the upper right was smoothed. The lower

left one was enhanced.
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Figure 1.17: The �rst image shows the integrability analysis before editing. The

second shows it after the editing session of Figure 1.12.
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1.6 Texture Synthesis

1.6.1 Region Editing

Editing regions by individually addressing local changes can be painstaking to

artists. For this reason this process needs to be made automatic. One has two

simple options: procedural methods and texture from example. Procedural meth-

ods are very powerful but are di�cult to control. Two algorithm classes are common.

In the �rst one, a material would be synthesized in a volume (marble in a cube, for

example) and then a surface would be cut from this volume. When working with

RGBNs we do not have positions, so we neither have a surface nor a volume. It

would be complex to adapt these algorithms. The second class does procedural syn-

thesis directly on the surface, usually with local decisions. These methods might be

adaptable to RGBNs, but we chose not to investigate this topic.

Texture from Example methods on the other hand are very intuitive. They take

as input only a small sample of the desired texture and then reproduce it in a large

region. As the input consists of a sample, it is very easy to gather in the real world

or design small arti�cial textures.

We chose to approach editing details in a large region as a texture from example

problem. The edited region can be de�ned using the segmentation tools described

previously. Editing a large region will never be as fast as real-time local editing.

Even though, as we are dealing with an interactive software it is a requirement to

synthesize texture fast.

The previous section described local editing. In all operators presented there

was the need to establish a coordinate system in the edited region. To extend this

approach to large regions we are faced with a parametrization problem but building

a good parametrization is a complicated problem by itself. So it is desirable that

the texture synthesis procedure requires no parametrization.

The trivial solution to the Texture from Example problem is to tile the sample

but this approach has two shortcomes. First seams (border between adjancent tiles)

will be easy to notice (Figure 1.18). Second, the result will be periodical. The

29



human mind is trained at �nding patterns and for most textures this periodicities

will not seam natural.

The trick to solve this problem is that if we acquire a good sample of our desired

texture, it should contain all necessary information for us to reproduce the original

synthesis process. This means whatever the synthesis process was, be it natural or

human-made, we can reproduce it from a sample. This argument is made formal by

regarding texture as a stationary stochastic process.

A stochastic process F(x,y) is a family of random variables taking values in a set

S. This family is indexed by a set X. In the case of 2D texture synthesis, S is

the set of colors while X = R2. This means for each (x1, y1) ∈ R2, F(x1,y1)(c) is a

random variable in the space of colors.

Since F(x1,y1)(c) is random variable, we can look at the joint probability density

function F(x1,y1),(x2,y2),...,(xk,yk)(c1, c2, ..., ck). In the case where k = 2 and (x1, y1), (x2, y2)

are neighbouring pixels, this function could answer how likely we are to �nd a black

and a white pixel side by side. A stochastic process is called stationary if:

F(x1,y1),(x2,y2),..,(xk,yk) = F(x1+Mx,y1+My),..,(xk+Mx,yk+My)

∀(M x, M y) ∈ R2

This means the joint probability function is space invariant, that is it depends

only on the relative position of the points being observed.

We also require independence:

∃d,∀|x1 − x2| > d → Fx1,x2(c1, c2) = Fx1(c1)Fx2(c2)

This means if we acquire a sample texture big enough from this process, we have

access to all its statistics, like its expected value, autocorrelation and moments.

This also implies that the quality of the sample will deeply in�uence the quality

of the results. Since many ocurring textures are stationary, texture from example

synthesis works well in practice.

In [16], the authors generalize the above restrictions on textures. They ask
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Figure 1.18: Even for simple examples tiling introduces seams and periodicities.
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for quasi-stationarity, meaning that while joint probability distribution is not in-

dependent of position, it changes slowly. The texture sample cannot answer how

it changes, which is usually left to the user to information extracted from the sur-

face (curvature). The authors show smooth morphings between di�erent texture

samples.

Texture from example synthesis can be classi�ed by two means: synthesis domain

and synthesis step. From the step point of view, there are pixel-based methods where

new pixels are generated one at a time. In [17], the authors search for a best match

between the neighbourhood of the already synthesized texture and neighbourhoods

in the texture sample. There are also patch-based methods [18] [14] where the

algorithm step consists of iteratively synthesizing small regions at a time. This

approach leads to a direct transfer of local statistics, but it has the drawback that

seams between patches need to be handled.

As to the domain classi�cation, texture synthesis can be parametric, volume-

based or manifold-based. Volume-based methods will synthesize texture in an Rn

domain, usually R2 or R3. Parametric synthesis will target more general manifolds

by working in the parametric domain (usually planar). There are also manifold

methods which are non-parametric [19] [20]. These methods work directly in the

manifold representation (usually a mesh) and being non-parametric usually means

only local decisions can be made.

We do not have an explicit surface, only its normals. For this reason, pixel-

based synthesis together with non-parametric manifold methods are a best �t with

RGBNs. In the next subsection, we review Jump maps based synthesis, our texture

engine choice for handling RGBN editing.

1.6.2 Jumpmaps

The �rst example-based synthesis [17], [18] would exhaustively search the input for

a best match. This search would be done for each pixel or patch being synthesized.

In this section we review [3] where Zelinka splits texture synthesis in two phases:

analysis and synthesis. Note that in previous methods analysis was being done online
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Figure 1.19: Similarities between neighborhoods are encoded into a Jump Map.

Figure taken from [3].

and would use an already synthesized neighborhood as a query. Zelinka's insight

is that while this neighborhood is only known at synthesis time it will resemble an

existing one in the texture example. As such we can precalculate the similarities

between all neighborhoods in the input texture. They store this information in the

Jump Map data structure, which holds for each example pixel a list of jumps to other

pixels that have similar neighborhoods (Figure 1.19). The Jump Maps synthesis is

pixel-based and runs in real-time, requirements of our system. It also generalizes to

surfaces in a non-parametric way as desired for RGBNs.

During synthesis, the output image is traversed and pixels are sequentially copied

from the example image. Eventually the input image border will be reached and

this simpe process is unable to continue. That is when the Jump maps come in

hand. As the border approaches a jump is randomly selected from the Jump Map.

As such, there is an in�nite amount of texture to be copied.

The analysis phase is cast as a nearest-neighbor problem in a neighborhood space.

Each pixel's MxM neighborhood is encoded in a M2 feature vector, using the L2

norm for comparisons. Since small masks won't represent the texture appropriately
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we are easily lead to a high dimensional NN problem which would be too slow to

handle directly. Instead, the authors use an approximate nearest neighbors (ANN)

data structure [21] that allows very fast queries with errors of 10%. Second, they

reduce the size of the feature vector using Principal Component Analysis, retaining

97% of the variation.

Another important optimization is to �rst build a multiresolution pyramid of the

example texture. The resulting feature vector will be concatenated from the feature

vectors of the same neighborhood in di�erent pyramid levels. This is unintuitive

since the new vector is bigger. Yet, PCA performs much better in this bigger vector

and the result after PCA compression is much smaller. It is interesting to notice, that

most textures are very tolerant to these approximations, meaning that synthesized

results are not very a�ected.

Synthesis is a little more complex than described. Each pixel is synthesized

receiving the color of a corresponding pixel in the example texture. When borders

are reached, jumps are taken leading to a di�erent location in the input image.

In fact, even far from borders, there is a probability p that a jump will be made

instead of proceeding synthesis to the neighbouring pixel. This p parameter controls

the expected number of pixels between jumps and thus controls the expected size of

texture patches fully copied from the example image. Note that this is a Bernoulli

process.

Nothing was said about the order in which pixels of the output image are syn-

thesized. This order is in fact very important leading to di�erente results. Scan-line

and serpentine traversals introduce much directionality in the �nal result. Zelinka

found that following Hilbert curves produces results without bias.

A generalization to surface was also proposed in [3]. Instead of iterating over

the output pixels, the new algorithm iterates over mesh vertices. There is now the

need to map a displacement on the mesh to a displacement in texture space. This

can be done using only a supplied orientation �eld and scale de�ned on the surface

[3]. With this mapping at hand, it is now simple to adapt the previous synthesis

algorithm: iterating over vertices induces a walk in texture space from which texture

34



Figure 1.20: Jump Map synthesis results.

can be copied. Note that synthesis order (vertices order) is still very relevant, we

refer the reader to the original work. In the previous subsection, we were looking

for a texture synthesis method that was non-parametric, pixel-based and very fast.

JumpMaps synthesis �ts all our requirements.

From here on, we present our observations.

As the authors notice, jump-map synthesis works best for stochastic textures and

weak structured textures. While some perfect results can be obtained with highly

structured textures (Figure 1.23), these are exceptions rather than rule. In Figure

1.27, we see very similar neighborhoods, but if a jump is taken between them o�sets

will be introduced in the synthesized bricks 1.24. This problem happened because

a small neighborhood mask was used for analysis. Notice how a bigger mask size

improves the results (Figure 1.27).

Another problem with structured textures is that sometimes structure is very

clear in our human eyes, while not so much in the example (Figure ??). One simple

way out is to tile the sample image few times creating a new sample (Figure ??)
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Figure 1.21: Jump Map synthesis results.
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Figure 1.22: Jump Map synthesis results.
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Figure 1.23: Synthesis of a highly structured texture.
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Figure 1.24: Results for a highly structured brick texture. Notice how a bigger mask

size in analysis improves the results.
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Figure 1.25: The three neighborhoods are very similar, but if a jump is taken between

them o�sets will be introduced in the synthesized bricks, as can be seen in Figure

1.24.

and then proceeding with synthesis. It would have been simple to tile the entire

output image in the �rst place, but this solution would not work for synthesis on

surfaces or RGBNs.

While increasing the mask size improves results, it also improves analysis time.

This means only samples of smaller resolution will be processed in a �xed time

budget. We notice that it is possible to use di�erent samples (di�erent resolutions)

for analysis and synthesis, virtually allowing larger masks. Small samples can be

used for fast analysis, while detailed samples can be used for quality synthesis (Figure

1.29). This is possible but requires �oating-point texture o�sets, that is relative

o�sets that are independent of resolution. This �oating-point o�sets are a natural

consequence of the Jump-maps on surface extension. Notice that a full analysis on

the 500x500 image would simply take too long (Figure 1.29). In a sense, you will be

telling the computer that the large scale structure features are more important than

the small scale texture. As the results show, quality results can still be obtained.
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Figure 1.26: Structure is not clear from the sample leading to disatreous results.

Figure 1.27: Structure is more evident from the sample leading to good results.
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Figure 1.28: In both images analysis was done with a 100x100 sample, but the

second was synthesized with a 500x500 higher resolution sample.
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1.6.3 Texture Synthesis on RGBNs

In Textureshop [14], the authors transfered normals between images. Poisson image

editing [22] was used to merge normals seamlessly (in each channel? followed by nor-

malization?), a process which does not lead to a resulting conservative normal �eld.

Our normal transfer builds on our framework of normal editing and LOD separation

(base normals) yielding approximately conservative �elds as detailed below. Since

Textureshop does not involve base normals in the process, their results appear to be

�oating, even though they are seamless. In simple scenarios, perspective corrections

would do the trick but not in more involved ones.

While the synthesis of normals on RGBNs has not been properly explored, in

[23] the authors adapted jumpmap-based color synthesis to normal images. Notice

the di�erence between the signal being synthesized and the domain on which it is

synthesized. Their work follows more directly from jumpmaps on surfaces where a

texture o�set is calculated based on the mesh displacement. As for normal images,

the intuition is that a unit pixel o�set in the output image induces a displacement

in the represented surface, which in turns induces an o�set in texture space. For

this purpose, a scale sp and an angle of orientation θp are assigned by the user.

This parameters may be global or may vary smoothly over the surface [16]. By

approximating the surface locally by a plane orthogonal to the normal n, we can

obtain the displacement dt in texture space as a function of the displacement di in

output image space:

dt =
sp|di|
|nz|

p

|p|
where

p = di− < n, di > n

is the projection of di onto the surface.

Since dt lies on the surface, all that is left is to represent dt in the texture space

basis. This basis is build by rotating by θp the tangent plane basis (see subsection

1.4.4).
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Figure 1.29: Texture o�sets can be calculated from pixel o�sets in the output image.

Now that we understand how to synthesize colors on normal images, we can

tackle the problem we were interested in the �rst place: how to synthesize normals

on normal images. We split this discussion in analysis and synthesis as we are using

JumpMaps.

In the analysis phase, we take a normal map sample representing our desired

texture and we are asked to build a jumpmap for it. The basic primitive in jumpmap

analysis is comparing neighborhoods. In the color setting, the L2 metric was used,

which is easily extended from comparison of individual pixels (RGB) to comparison

of big feature vectors representing neighborhoods. Remember that using L2 metric

for feature vectors was very important for subsequent optimizations like PCA and

ANN. So �rst we must settle on which metric to use for comparing normals, followed

by normal neighborhoods. Finally, how can this norm be optimized for the NN

problem?

Mathematically speaking, each feature vector is a collection of normals n ∈ S2.

As such the feature vector V :

v ∈ V = S2 × S2 × ...× S2

the cartesian product of a number of unit spheres.

This leads to the natural de�nition of a metric in V , inherited from any S2 metric

d:
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dV (v1, v2) =
∑

d(v1,k, v2,k), v1, v2 ∈ V

where v1,k, v2,k are the projections on the kth unit sphere.

We review three di�erent metrics that could be used as the S2 metric d above:

L2, geodesic and dot product based.

Since normals are mathematical objects in S2, it would be natural to use a

geodesic metric on the unit sphere to compare two normals n1, n2. This could be

achieved by calculating d1(n1, n2) = cos−1(< n1, n2 >). While it would be easy to

adapt the O(N2) solution to the NN problem, it is very hard to adapt either PCA or

ANN, the fundamental algorithms that allow building jump-maps in reasonable time.

We would either need an ANN solution in non-Euclidean spaces or use manifold

learning techniques to embed our neighborhoods in an euclidean space. Both of

these solutions would be complex as the cos−1 is a non-linear function.

The linear dot product based metric d2(n1, n2) = 1− < n1, n2 > would de�nitely

simplify the above matters with linearity. But d2 falls far from the geodesic metric

(Figure 1.30). While scaling would yield a good approximation to the geodesic

metric, it would still fail for small values. As we are interested in NN problems,

these small distances are the ones we are most interested in.

Figure 1.30 also shows that the L2 metric is a very good approximation for the

geodesic distance, being specially good for small distances since their derivatives

at zero agree. Since we already have good texture analysis methods for the L2

metric and it agrees with geodesic metric for most of the values we care about

in the NN problem, we understant this is the best solution for comparing normal

neighborhoods.

Note that previous arguments allows us to use plain Jump-maps to synthesize

normal maps.

We look for synthesis in subsets of RGBNs, these could be de�ned by user or

automated segmentation. Since this regions may have very complex shapes and

topologies, it would be more complicated to use a synthesis order based on Hilbert

curves. We used a depth-�rst search (DFS) using a 4-connected pixel neighborhood.
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Figure 1.30: Di�erent S2 metrics behaviour as function of the angle between the

normals.

The naive DFS algorithm produces unpleasant results with a directionality bias. A

simple alternative is to use a DFS and random shu�e each pixels neighborhoods.

This breaks directionality and generates results (Figure 1.34) almost as good as

Hilbert traversal ones, even in plane images.

We synthesize normals on RGBNs as described above. Usually the normal sample

encodes normal details of a planar surface, so the appropriate interpretation for the

synthesized normals is that they are in tangent space. To produce the �nal RGBN

these synthesized normals need to be mixed with the existing normals. The process

is analogous to what was done for local editing: a lower resolution version of the

normals (base normals) are used to de�ne a tangent plane allowing us to obtain the

�nal RGBN (Figures 1.35 and 1.37).
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Figure 1.31: The leaves were replicated generating a normal map. On the right, a

shaded version of the synthesized map.

Figure 1.32: Some structured normal maps can be generated.

47



Figure 1.33: The tree scales were synthesized on a normal map. On the right, shaded

normals.
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Figure 1.34: Depth-�rst traversal with random shu�ed pixel neighborhoods gener-

ates good results.

Figure 1.35: Automatic segmentation followed by texture synthesis is a powerful

tool for adding detail and material replacement. The vegetables were transformed

into rust metal.
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Figure 1.36: Di�erent textures synthesized on a shell.
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Figure 1.37: Rust normals synthesized on a shell.

1.7 Conclusions and Future Work

RGBNs are one of the simplest ways to enhance color images with geometric infor-

mation. They are very easy to capture requiring inexpesive hardware and achieve

much better resolution than 3D scans.

A greater number of users should be able to work with RGBNs and achieve some

e�ects that were only possible with the use of modelling tools like Maya.

While the authors of [11] have developed many analysis and rendering algorithms

for RGBN and we have proposed many editing operations, there is still much to be

developed.
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1.8 Software

1.8.1 User Interface

The software is composed of three basic windows: main window, toolbar window

and canvas window.

The main window contains two menu items: File and Window. In the File menu

basic functionality can be accessed like New, Open, Save and Preferences. The

Window menu lets the use toggle visibility of the auxiliary windows described in the

following subsection.

In the toolbar window the operations described in this report can be reached.

The user also selects whether editing normals or color (or both) is enabled.

The canvas window is where editing takes place just like a usual image editing

software. The main visualization is a shaded RGBN in which the albedo channel

is used for color and the normal channel introduces the shading. The user can also

con�gure the light position. The ability to change the light while editing is very

important since normals are usually perceived through shading.

Other visualizations are also possible (Figure 1.38). In the Window > Bu�ers

menu, the current visualization bu�er can be selected including: Shaded Image,

Albedo, Shaded Normals, Color-coded Normals, Segmentation, Base-level Normals,

Mean Curvature, Gaussian Curvature and Normals as Needles.

The following screenshots show the parameter window of each RGBN operation

in the system.

1.8.2 Architecture

Since our system supports real-time shading of the RGBN we could not simply use

OpenGL pixel operations to display the images. Instead we chose to render a tex-

tured mesh and leverage OpenGL shading capabilities. The mesh is a triangulation

of the plane with two triangles for each image pixel. This allows us to specify normal

and texture coordinates of each vertex at image resolution. The albedo channel is

loaded into a texture. By changing this texture we can also render the other visual-
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Figure 1.38: The system provides di�erente visualizations of an RGBN.
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Figure 1.39: The RGBN is represented as a triangulation of the plane with two

triangles for each pixel. Normals are assigned on a per-pixel basis

izations shown in the previous subsection. Notice that lighting and texturing need

to be turned on and o� appropriately for each bu�er.

Simple operations like panning and zooming are implemented by moving the

virtual camera.

This rendering architecture meets the real-time requirements of rendering high

resolution RGBN without using pixel shading in the GPU. As such, it works in a

broader range of graphics cards.

As described above this design has scalability issues. Current cameras can easily

generate 4Mpixel pictures. As such, we would be dealing with 8 million triangles.

Data transfer between the CPU and the GPU can easily become a bottleneck. To

avoid this constant transfer of triangles, we use display lists. A display list allows

objects to be transfered to the GPU and stored there. A simple use case would be to

load an RGBN and build a display list (DL) with its corresponding mesh. At every

rendered frame, we can pan or zoom and simply invoke this DL. No data transfer

will take place.

During pan, zoom, relighting and even editing colors, the mesh does not change.

The only color related information in the DL are the texture coordinates which are

constant. To support color editing we only need to update the texture itself. As

such, the DL is still valid and rendering will be very fast. The problem comes when
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Figure 1.40: The system operates in one of two rendering modes. In editing mode

the framebu�er is not cleared and only changes are rendered at each frame.

editing normals. The normals are recorded into the DL and so it is invalid if normals

change during an editing session. The user must be able to see his deformations at

real-time, so we just can't rebuild the DL at every change.

We chose to separate rendering into two di�erente modes: Viewing Mode and

Editing Mode (see Figure 1.40). During Viewing Mode the normals are assumed

not to change and so does the DL. We can pan, zoom and relight in Viewing Mode.

When the user start editing the system is transfered to Editing Mode. During

editing the DL is invalid, so no calls to render the DL are made. During any editing

operation, the changed pixels are rendered on top of the previous image. This means

we do not clear the frame bu�er, just draw on top of it. Rendering is fast since we

only render a small portion of the pixels at each time. Whenever the user pans,

zooms or relights the RGBN the system automatically rebuilds the DL and goes to

Viewing Mode.

All interactions required by editing operations nail down to a simple primitive

of picking. In general, picking refers to detecting which object the user has selected.

In our case, we are interested in which pixel was clicked.

To implement picking e�ciently, we use OpenGL to render two bu�ers. In the

framebu�er, the image seen by the user is rendered. An auxiliary bu�er is used to

hold the (x, y) coordinates of the RGBN pixel that was rendered into that bu�er

pixel. We encode this two integer values into an RGBA color value of 32 bits as

supported by OpenGL. As such there are 16 bits for each coordinate.

With this auxiliary bu�er at hand, picking is very simple. Screen coordinates
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provided by the mouse events are used to access the bu�er and the RGBA color is

decoded into 2D coordinates.
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