
NITRO
A parallel solver of nonlinear balance systems

Gustavo Hime

FLUID DYNAMICS LABORATORY
IMPA, RIO DE JANEIRO, BRAZIL

In this document we describe the modeling of certain classes of phenomena, using balance

or conservation equations, and the corresponding computer implementations. These models

describe the evolution of physical systems along time, where transport, diffusion and reaction

phenomena may or may not be present. In order to use these models in the effective study of

these phenomena, high quality numerical simulations must be performed. But increasing the

quality of a simulation invariably increases its computational cost. We do not wish to lessen

the quality of the numerical solution for performance sake: our primary goal (motivation) is

to perform the best possible simulations. The secondary goal (constraint) is to make optimal

use of the computational resources employed.

We draw the common denominator of the many models presented herein in order to

produce a single family of high performance simulators for all of them. The purpose of the

document is therefore threefold:

• Each model is discussed in its own right, with its assumptions and simplifications.

From this mathematical starting point, one or more numerical schemes are applied

to the model equations, and the resulting numerical problems and its solutions are

discussed.

• Each numerical scheme is formally derived. For each physical model there is at least

one particular variant of the general numerical method, and all these variants are

covered independently of which physical models will make use of it.

• The rationales of the actual computer program are presented. We provided cross-

referencing between the mathematical formulations and their implementation. Is-

sues that arise only at the point of computer implementation are discussed separately

from the mathematical issues in the previous two items.

The comprehensive understanding of these three intertwined aspects of numerical simula-

tion is required in order to properly engineer such computer software. The purpose of this

document is to provide sufficient insight from all three perspectives and blend them into

one seamless whole, enabling newcomers from any related background to understand the

complete picture. Doing so fulfills a third goal, that of protecting the further development

of the simulator from events such as changes in the group of people involved.

Index

Chapter 1. Balance Systems 1

1.1. Problem Statement 1

1.2. Classic Newton’s Method 5

1.3. A Note on Parallelism 7

1.4. Reaction–Convection–Diffusion Equation 7

1.5. Boundary Conditions for the Single Grid 10

1.6. General Reaction–Convection–Diffusion Equation for Compressible Flows 13

1.7. Boundary Conditions for the Staggered Grid 17

Chapter 2. Physical models 21

2.1. Three–Phase Flow Models 21

2.2. Dry Combustion Models 24

Chapter 3. Computer Implementation 31

3.1. Parallelism as an Option 32

3.2. Initialization 32

3.3. Time Evolution 39

3.4. Output 41

3.5. Physics Implementation 42

3.6. Using the program 50

3.7. Post–processing 52

Chapter 4. Parallel Implementation 55

4.1. Parallel Solution of Block Tridiagonal Systems 55

4.2. Parallel Iterative Newton Solver 58

4.3. Parallel Time Evolution 60

4.4. Delayed Output 61

Bibliography 63

Appendix A. Serial Solution of Block Tridiagonal Systems 65

3

CHAPTER 1

Balance Systems

Many physical phenomena are studied using models based on equations that describe

the conservation of mass and of other quantities along time. These are typical problems

in fluid mechanics: in particular, problems related to multi–phase flow in porous media

have been the object of intense investigation in the past few decades, as they are related to

economically and socially critical applications such as petroleum recovery, water supply and

soil decontamination. Efficient exploitation of these limited natural resources requires good

understanding of the effects the different exploitation approaches have.

Coherent and consistent models for these and other phenomena exist and have been

exhaustively studied with the techniques available up to now. In the early days of their

conception, when numerical computing was still unavailable or unaffordable, most studies

were done on purely theoretical ground. The analytical solutions, however, are more often

than not hard to obtain, if not impossible. Moreover, they do not always provide direct

insight to the behavior of the model in realistic situations, but only in highly idealized ones

with restrictive assumptions. The relaxation of these assumptions may render the analytical

solution unfeasible, and requires the model to be studied through numerical simulations.

In this chapter, we introduce the class of problems that we seek to solve. We introduce

notation that will be used in each particular problem, and which will map into the naming

conventions used in the computer code.

1.1. Problem Statement

We seek the numerical solution of a one–dimensional initial/boundary value problem

governed by a system of M partial differential equations in u(x, t) ∈ RM which we denote,

in its most general form, by

ẼEEEE(u) = 0, with ẼEEEE : RM → RM ; (1.1)

the state vector u contains the M model variables u(m), m = 1, . . . ,M , defined in the (x, t)

physical domain x ∈ [xa, xb] and t ≥ 0, governed by a nonlinear PDE ẼEEEE : RM → RM .

Similarly, we denote each of the M scalar equations in ẼEEEE as Ẽ(m), so Ẽ(m) : RM → R.

1

2 1. BALANCE SYSTEMS

If ẼEEEE contains a first order derivative in time (∂/∂t) it is a time evolution problem; if

only spatial derivatives are present, it is a steady state problem. Any other terms express-

ing spatial derivatives of up to second order are admissible. Clearly, the general reaction–

convection–diffusion equation for incompressible flows

∂h(u)

∂t
+

∂f(u)

∂x
=

∂

∂x

(
g(u)

∂u

∂x

)
+ q(u), with u ∈ RM , (1.2)

where f ,h,q : RM → RM and g : RM → RM×M are differentiable, is a particular example

of (1.1), and many — if not most — of the models we target are actually particular cases of

(1.2): these will be discussed in Chapter 2.

However, we wish to maintain a higher level of generality and use (1.1) as starting point,

because it can also represent the equation for compressible flows

∂h(u)

∂t
+

∂vf(u)

∂x
=

∂

∂x

(
g(u)

∂u

∂x

)
+ q(u), with u ∈ RM , (1.3)

where p ≡ u(M) denotes the pressure and v is the flow velocity, usually related to p through

Darcy’s Law

v = −k(u)
∂p

∂x
+ r(u), (1.4)

where r(u) is the gravity term. The continuity equation for the total flow is one of the M

scalar equations in (1.3): we denote it as the M -th equation. Usually it has the form

∂h(M)(u)

∂t
+

∂vf (M)(u)

∂x
= 0, (1.5)

i.e., g(M) ≡ 0 and q(M) ≡ 0.

Although v is not a parameter of the h, f , g and q functions, it is also a state variable.

The nonlinear PDE (1.1) becomes

ẼEEEE(u; v) = 0, with ẼEEEE : RM+1 → RM+1; (1.6)

the equations Ẽ(m), m = 1, . . . , M are taken from f ,h,q : RM → RM and g : RM → RM×M

like in the simpler version (1.2), and Ẽ(M+1) is obtained from (1.4).

Before we apply finite difference discretizations to (1.1), we must define how the physical

domain itself is discretized. In the following subsections, we present two different approaches

to best suit either equation (1.2) or (1.3). In both cases, the grid is uniformly spaced: the

use of a nonuniform grid would greatly encumber the following derivations, and is not of

primary interest.

1.1. PROBLEM STATEMENT 3

1.1.1. Simple uniform grid. For flow models where pressure and velocity are not state

variables, we use a simple grid in space, i.e., we discretize the x domain [xa, xb] into N − 1

subintervals of length δx = (xb − xa)/(N − 1), delimited by points xi, i = 1, · · · , N , with

x1 = xa and xN = xb. Boundary conditions are enforced through the equations related to

the boundary nodes, as will be explained in section 1.5. The total number of grid points is

N , including the boundaries.

As for the temporal dimension, we adopt discrete intervals of length δt for t, i.e., tn −
tn−1 = δt, and we index the times tn, n = 1, · · · , with t1 ≡ 0. Figure 1.1 depicts this simple

uniform grid.

For all purposes, state variables — e.g. saturations — are defined on each grid node as a

point value. For visualization purposes, we perform linear interpolation between grid nodes.

t

x

r rb b bb b

r rb b bb b

r rb b bb b

δx δxδxδx

δt

tn

t
n+1

x1

≡xa

x2 xN

≡xb

xN−1xixi−1 xi+1

u
n
1

≡u
n

a

u
n

2 u
n

N

≡u
n

b

u
n

N−1u
n

i
u

n

i−1 u
n

i+1

u
n+1

1

≡u
n+1
a

u
n+1

2 u
n+1

N

≡u
n+1

b

u
n+1

N−1
u

n+1

i
u

n+1

i−1
u

n+1

i+1

Figure 1.1. One–dimensional uniform grid. The boundary nodes are singled
out as squares, and the inner nodes are shown as circles.

1.1.2. Staggered uniform grid. For models where pressure and velocity are state

variables, a “double”, “dual” or “staggered” grid is required, shown in Figure 1.2. The x

domain [xa, xb] is divided into N − 2 subintervals of length δx = (xb − xa)/(N − 2), and the

“primary” grid points xi, i = 2, · · · , N − 1 correspond to the center of each such interval,

with x2 = xa + δx/2 and xN−1 = xb − δx/2. Each “secondary” grid point xı̂ is located at

xi + δx/2. All state variables are defined on the primary grid points except the velocity,

which is defined on the secondary grid. Boundary conditions are enforced through the nodes

x1 = xa − δx/2 and xN = xb + δx/2, outside the physical domain, usually referred to as

“ghost” nodes. The boundaries correspond to secondary grid locations x1̂ and x
N̂−1

.

4 1. BALANCE SYSTEMS

t

x

rs rsl lb bc b bbcbb bc b bc b

rs rsl lb bc b bbcbb bc b bc b

rs rsl lb bc b bbcbb bc b bc b

δx

2

δx

2

δx

2

δx

2

δx

2

δx

2

δx

2

δx

2

δx

2

δx

2

δx

2

δx

2

δt

tn

t
n+1

x1 x2 x3 xNxN−1xN−2xixi−1 xi+1
xa xb

u
n
1 u

n
2 u

n
3 u

n

N
u

n

N−1u
n

N−2u
n
i

u
n
i−1 u

n
i+1

u
n+1

1 u
n+1

2 u
n+1

3 u
n+1

N
u

n+1

N−1
u

n+1

N−2
u

n+1

i
u

n+1

i−1
u

n+1

i+1

vn

1̂

≡v
n

a
vn

2̂

vn

N̂−1

≡v
n

b

vn

N̂−2
v

n

ı̂−1
vn

ı̂

v
n+1

1̂

≡v
n+1
a

v
n+1

2̂

v
n+1

N̂−1

≡v
n+1

b

v
n+1

N̂−2
v

n+1

ı̂−1
v

n+1

ı̂

Figure 1.2. One–dimensional staggered grid. The primary locations are
filled, and the secondary locations are outlined. The circles are inside the
physical domain, the boundaries are represented by squares, the ghost nodes
are represented by diamonds. All primary state variables are defined at the
primary locations, and the velocity v is staggered midway between each two
primary grid nodes.

1.1.3. Discrete problem. To lighten the notation, we denote u(xi, t
n) ≡ un

i . The

discretization of the continuous ẼEEEE given by (1.2) on the simple grid yields an expression of

the form

EEEEE(un+1
i−1 ,un+1

i ,un+1
i+1 ;un

i−1,u
n
i ,u

n
i+1), (1.7)

using three spatial nodes and two time levels to represent all admissible derivatives that

may be present in ẼEEEE. The expression for the staggered grid would include the velocities at

positions ı̂− 1 and ı̂ as well.

In steady state problems, there is only one time level to be considered. In time evolution

problems, the values at time level n are known, whereas the unknowns are at time n + 1; we

consider initial conditions corresponding to the Cauchy problem

u(x, 0) = u0(x), xa ≤ x ≤ xb;

so the values at time tn in (1.7) are always known; thus, in both steady state and evolution

cases, the actual discrete operator to be taken into consideration has the form

EEEEE(ui−1,ui,ui+1), with EEEEE : R3M → RM .

The discrete problem in the simple grid can be written as a nonlinear system

Ξ(u) = 0 with Ξi ≡ EEEEE(ui−1,ui,ui+1), i = 2, . . . , N − 1, (1.8)

1.2. CLASSIC NEWTON’S METHOD 5

which is underdetermined, since it has N unknowns and N − 2 equations in RM . By the

preceeding apparent clash of nomenclature we mean that the (N − 2)M -sized system Ξ(u)

is the set of (N − 2) vector equations Ξi, each of size M .

The system (1.8) becomes fully determined by imposing boundary conditions, which may

vary. In the next section, we consider those corresponding to the Dirichlet problem:

u(xa, t) = γa(t), u(xb, t) = γb(t). (1.9)

We introduce the full solution procedure for this particular, simpler case. In Section 1.5 we

extend the solution procedure to allow for other types of boundary conditions.

Fixing the boundary values u1 = γa and uN = γb, we reduce the number of unknowns

to N − 2. Notice that the full equation Ξ2 is given by

EEEEE(un+1
1 ,un+1

2 ,un+1
3 ;un

1 ,u
n
2 ,u

n
3) = 0,

so the value of un
1 = γn

a may differ from un+1
1 = γn+1

a : still, they are both given in (1.9).

The same holds for the other boundary.

1.2. Classic Newton’s Method

We apply Newton’s method to find the root of Ξ(u), i.e., the value of u for which

Ξ(u) = 0: from an initial guess u(0), we proceed using Newton’s iteration

u(l+1) = u(l) + δu(l), where
∂Ξ

∂u
(u(l)) δu(l) = −Ξ(u(l)) (1.10)

until some convergence criteria are satisfied. At a given Newton l-iteration, the problem is

the construction and solution of a linear system. From the definition of Ξi, the Jacobian

matrix J =
∂Ξ

∂u
in (1.10) is block tridiagonal, with N − 2×N − 2 blocks of size M ×M . We

denote

Bi ≡ Ji,i−1 =
∂Ξi

∂ui−1

, Ai ≡ Ji,i =
∂Ξi

∂ui

, and Ci ≡ Ji,i+1 =
∂Ξi

∂ui+1

. (1.11)

The i subscripts corresponds to grid position in the expressions for derivatives, mapped into

matrix rows and columns of the jacobian J, mapped into block array indexes in A, B and

C.

These partial derivatives are known once ẼEEEE is defined: then the matrix coefficients given

in (1.11) and the right hand side Ξ(u) can be computed, and δu can be determined by

6 1. BALANCE SYSTEMS

solving the linear system



A2 C2 0 0 0 · · ·
B3 A3 C3 0 0 0 · · ·
0 B4 A4 C4 0 0 0 · · ·
0 0 B5 A5 C5 0 0 0 · · ·

.
· · · 0 0 0 BN−4 AN−4 CN−4 0 0

· · · 0 0 0 BN−3 AN−3 CN−3 0
· · · 0 0 0 BN−2 AN−2 CN−2

· · · 0 0 0 BN−1 AN−1







δu2

δu3

δu4

δu5
...

δuN−4

δuN−3

δuN−2

δuN−1




=




−Ξ2

−Ξ3

−Ξ4

−Ξ5
...

−ΞN−4

−ΞN−3

−ΞN−2

−ΞN−1




,

(1.12)

with both the system coefficient matrix and right hand sides evaluated at each Newton

iteration using u(l). The first approximation u(0) for the root un+1 may be the value un

from the previous time level, or the initial value u0 in the case of the first time step or of

stationary problems.

The sizes N − 2×N − 2 and M ×M are for this specific case, based on equation (1.8),

the simple grid and Dirichlet boundary conditions. In the general case, presented in Section

1.5, the Jacobian will have N ×N blocks.

1.2.1. Convergence Criteria. There is no universal convergence criterion for Newton’s

method, i.e., no single rule that guarantees solution accuracy while avoiding unnecessary

iterations. Convergence criteria are therefore tied to each particular problem and to the

discrete method applied to it. The most commonly found criterion is a threefold one. The

iteration proceeds until (i) max
i,m

|Ξ(m)
i (u(l))/Ξ

(m)
ref | < ε1 or (ii) max

i,m
|δu(m)

i /u
(m)
ref | < ε2, for some

appropriate values of ε and some reference values uref and Ξref. Notice the notation clashes in

the preceeding expressions: the parenthesised superscript index (m) over which the maxima

in (i) and (ii) are taken refers to the state component, not to the Newton iteration, which is

denoted by superscript index (l). Lastly, the algorithm halts if (iii) a maximum number of

iterations has been reached. This last criterion is actually a failsafe in case the method does

not converge.

The tolerances ε1 and ε2 are only meaningful in conjunction with the reference values Ξref

and uref. The first criterion is the most desirable one to satisfy, as it implies convergence to

a solution, i.e., the residual is very near zero. The second criterion means convergence only

in the sense that the update δu(l) = u(l+1)−u(l) is such that the method is not changing the

current guess anymore — however, if the method does converge, this implies that Ξ(u(l)) ≈ 0.

It is common practice to provide uref, but a useful value can be obtained from u
(m)
ref =

max
i
|u0,(m)

i |, i.e., from the maxima of each state component in the initial data. Likewise, the

value of Ξref can be obtained from Ξ
(m)
ref = max

i
|Ξ(m)

i (u0)|.

1.4. REACTION–CONVECTION–DIFFUSION EQUATION 7

1.3. A Note on Parallelism

Newton’s method, as presented in the previous section, solves a nonlinear system of

equations through consecutive linear approximations, i.e., it iteratively builds and solves

linear systems. The linear solver is usually where computer parallelism is exploited, since

linear solvers are relatively easy to parallelize. Parallel algorithms for the direct solution of

linear systems introduce redundant calculations that increase the workload by a factor of

about two, depending on the parallelization approach and the number of processors; on the

other hand, they produce the same results as serial solvers and scale well.

Linear systems Ax = y can be solved in either one or two stages. The one–stage approach

has both the matrix A and the right hand side y as input data, and provides the solution x

on output; if the system must be solved for a new y, then the whole process may have to be

repeated with both A and this new y. The two–stage approach takes only A as input in the

first stage, and produces a factorization that can be used later for any given y. The second

stage, which is computationally much cheaper, uses this factorization and y to determine

the solution. The application we have in view, i.e., the solution of nonlinear systems through

Newton’s method as given in equation (1.10) makes the one–stage approach the unequivocal

choice: each system will have its coefficient matrix and right hand side computed (i.e.,

available) at the same point of execution, and will be solved only once.

1.4. Reaction–Convection–Diffusion Equation

Many models of interest are governed by equations of the form (1.2)

∂h(u)

∂t
+

∂f(u)

∂x
=

∂

∂x

(
g(u)

∂u

∂x

)
+ q(u);

this is the general convection–diffusion–reaction equation for incompressible flows, where

u ∈ RM is the state vector, f ,h,q : RM → RM and g : RM → RM×M are differentiable, the

physical domain is x ∈ [xa, xb] and t ≥ 0. The differential operator ẼEEEE corresponding to (1.2)

is

ẼEEEE(u) ≡ ∂h(u)

∂t
+

∂f(u)

∂x
− ∂

∂x

(
g(u)

∂u

∂x

)
− q(u). (1.13)

The four terms of (1.2) correspond to accumulation, convection, diffusion and reaction, from

left to right; however, it is not the case that all four terms are present in every model. Notice

also that ẼEEEE : RM → RM , and therefore some terms of (1.2) may be present in some — but

not all — of the M scalar equations Ẽ represented by ẼEEEE. Because of that, it may be required

to provide different discretizations E for each equation Ẽ.

Models that do not include the pressure and the velocity in the state vector can be based

on this equation and discretized over the simple grid described in Subsection 1.1.1. There

are models for compressible flows based on this equation, but they employ simplifications so

8 1. BALANCE SYSTEMS

that the pressure or the velocity are not part of the state vector, and are therefore treated

as if the flow was incompressible.

1.4.1. Crank-Nicolson Scheme. We present a scheme which generalizes the first

Crank-Nicolson scheme [11]; it is sufficient for most cases and has advantages such as qua-

dratic convergence in time and space. This discretization is valid if g is non–zero, although

it may be constant. The other three functions h, f and q may be identically zero.

Following the previously introduced notation u(xi, t
n) ≡ un

i , we denote h(u(xi, t
n)) = hn

i ,

f(u(xi, t
n)) = fn

i , g(u(xi, t
n)) = gn

i and q(u(xi, t
n)) = qn

i . Using central differences and

averages in time, i.e,

∂

∂t
hn+1/2 =

hn+1 − hn

δt
+O(δt2) and fn+α = αfn+1+(1−α)fn+O

((
α−1

2

)
δt+δt2

)
, (1.14)

equation (1.2) is approximated in time by

hn+1 − hn

δt
+

[
α

(
∂f(u)

∂x

)n+1

+ (1− α)

(
∂f(u)

∂x

)n]
=

∂

∂x

[
α

(
g(u)

∂u

∂x

)n+1

+ (1− α)

(
g(u)

∂u

∂x

)n]
+ qn+α + O

((
α− 1

2

)
δt + δt2

)
.

(1.15)

If the weighing factor α ∈ [0, 1] is 1/2, we obtain the Crank-Nicolson scheme, which is of

second order in time. Other values α > 1/2 yield similar schemes which are more diffusive

and more stable, but of first order in time.

Applying the central differences operators for the first derivative in space, i.e.,

∂

∂x
fi =

fi+1 − fi−1

2δx
+ O(δx2)

to the time discrete equation (1.15) yields, for the left hand side,

hn+1
i − hn

i

δt
+

α
(
fn+1
i+1 − fn+1

i−1

)
+ (1− α)

(
fn
i+1 − fn

i−1

)

2δx
+ O(δx2); (1.16)

for the right hand side, we use virtual middle points of the discrete x grid, denoting their

indices by i± 1/2, and obtain

∂

∂x

(
g(u)

∂u

∂x

)
=

1

δx

(
gi+1/2

∂u

∂x

∣∣∣∣
x=xi+1/2

− gi−1/2
∂u

∂x

∣∣∣∣
x=xi−1/2

)
+ O(δx2)

=
1

δx

(
gi+1/2

ui+1 − ui

δx
− gi−1/2

ui − ui−1

δx

)
+ O(δx2),

(1.17)

where the value of gi±1/2 can be approximated by

gi±1/2 =
gi±1 + gi

2
+ O(δx2),

1.4. REACTION–CONVECTION–DIFFUSION EQUATION 9

so the final form of expression (1.17) is

∂

∂x

(
g(u)

∂u

∂x

)
=

1

δx2

(
gi+1 + gi

2
(ui+1 − ui)− gi−1 + gi

2
(ui − ui−1)

)
+ O(δx2)

=
1

2δx2

(
(gi+1 + gi)ui+1 − (gi+1 + 2gi + gi−1)ui + (gi + gi−1)ui−1

)
+ O(δx2).

(1.18)

Putting together expressions (1.14) through (1.18), we reach the fully discrete equation

hn+1
i − hn

i

δt
+

α
(
fn+1
i+1 − fn+1

i−1

)
+ (1− α)

(
fn
i+1 − fn

i−1

)

2δx
=

1

2δx2

(
α
(
(gn+1

i+1 + gn+1
i)un+1

i+1 − (gn+1
i+1 + 2gn+1

i + gn+1
i−1)un+1

i + (gn+1
i + gn+1

i−1)un+1
i−1

)
+

(1− α)
(
(gn

i+1 + gn
i)un

i+1 − (gn
i+1 + 2gn

i + gn
i−1)u

n
i + (gn

i + gn
i−1)u

n
i−1

))
+

+ αqn+1
i + (1− α)qn

i + O

((
α− 1

2

)
δt + δt2 + δx2

)
.

(1.19)

From equation (1.19) we obtain a numerical scheme for integrating in time: separating the

terms involving the unknowns at time n + 1 on the left hand side, we obtain

hn+1
i

δt
+ α

fn+1
i+1 − fn+1

i−1

2δx
−

α

(
(gn+1

i+1 + gn+1
i)un+1

i+1 − (gn+1
i+1 + 2gn+1

i + gn+1
i−1)un+1

i + (gn+1
i + gn+1

i−1)un+1
i−1

2δx2

)
− αqn+1

i =

(1.20)

hn
i

δt
− (1− α)

fn
i+1 − fn

i−1

2δx

+(1− α)

(
(gn

i+1 + gn
i)un

i+1 − (gn
i+1 + 2gn

i + gn
i−1)u

n
i + (gn

i + gn
i−1)u

n
i−1

2δx2

)
+ (1− α)qn

i ,

(1.21)

with an error of the order of O
(
(α−1/2)δt+δt2+δx2

)
. If we put the right hand side (1.21) to

the left, we obtain the complete discrete operator EEEEE corresponding to (1.13). Differentiation

of the left hand side (1.20) gives the formulæ for the expressions in (1.11):

Bi =
∂Ξi

∂ui−1

= −α

(
∂fi−1

2δx
+

∂gi−1(ui−1 − ui) + gi + gi−1

2δx2

)
;

Ai =
∂Ξi

∂ui

=
∂hi

δt
− α

(
∂gi(ui+1 − 2ui + ui−1)− gi+1 − 2gi − gi−1

2δx2
+ ∂qi

)
;

Ci =
∂Ξi

∂ui+1

= α

(
∂fi+1

2δx
− ∂gi+1(ui+1 − ui) + gi+1 + gi

2δx2

)
.

(1.22)

10 1. BALANCE SYSTEMS

1.4.2. Box Scheme. In the event of there being an equation in ẼEEEE for which g ≡ 0,

we apply the box scheme. It uses central differences in time in the same manner as Crank-

Nicolson, but instead of using central differences in space around xi, it does so around xi+1/2

— or, alternatively, uses forward differences. Whatever interpretation is given, the derivation

is simple. From the continuous equation

∂h

∂t
(u) +

∂f

∂x
(u) = q(u),

using the same time discretization as in (1.14) yields

hn+1 − hn

δt
+

[
α

(
∂f(u)

∂x

)n+1

+ (1− α)

(
∂f(u)

∂x

)n]
= qn+α + O

((
α− 1

2

)
δt + δt2

)
,

to which we apply

∂

∂x
fi =

fi+1 − fi
δx

+ O(δx2).

and averages in space analogous to (1.14). Separating the terms at n + 1 on the left hand

side, we arrive at

hn+1
i+1 + hn+1

i

2δt
+ α

(
fn+1
i+1 − fn+1

i

δx
− qn+1

i+1 + qn+1
i

2

)
=

hn
i+1 + hn

i

2δt
− (1− α)

(
fn
i+1 − fn

i

δx
− qn

i+1 + qn
i

2

)
,

(1.23)

with an error of the order of O
(
(α − 1/2)δt + δt2 + δx2

)
. Again, if we put all terms in

the left hand side, we obtain the complete discrete operator EEEEE corresponding to (1.13).

Differentiation of the left hand side of (1.23) gives the formulæ for the expressions in (1.11):

Bi =
∂Ξi

∂ui−1

= 0;

Ai =
∂Ξi

∂ui

=
∂hi

2δt
− α

(
∂fi
δx

+
∂qi

2

)
;

Ci =
∂Ξi

∂ui+1

=
∂hi+1

2δt
+ α

(
∂fi+1

δx
− ∂qi+1

2

)
.

(1.24)

1.5. Boundary Conditions for the Single Grid

In Section 1.2, we presented the complete solution procedure for the problem stated in

equations (1.8) and (1.9), assuming Dirichlet boundary conditions, i.e., that the values of

u1 = γa and uN = γb are given, so they can be excluded from the system presented in

equation (1.8), which we solve only for the N − 2 inner points of the physical domain.

1.5. BOUNDARY CONDITIONS FOR THE SINGLE GRID 11

Equation (1.8) was linearized as part of Newton’s method, i.e., the solution of the non-

linear system (1.8) is found solving several linear systems (1.12). In order to introduce other

boundary conditions, we first create an augmented version of (1.12). The system



I 0 0 0 0 · · ·
B2 A2 C2 0 0 0 · · ·
0 B3 A3 C3 0 0 0

.
0 0 0 BN−2 AN−2 CN−2 0
· · · 0 0 0 BN−1 AN−1 CN−1

· · · 0 0 0 0 I







δu1

δu2

δu3
...

δuN−2

δuN−1

δuN




=




0
−Ξ2

−Ξ3
...

−ΞN−2

−ΞN−1

0




(1.25)

is completely equivalent to the one in (1.12): the two unnecessary lines — I δui = 0 for

i ∈ {1, N} — imply δui = 0, i.e., the values of ui do not change at the boundaries. However,

adopting this formulation makes the solution procedure compatible with other boundary

conditions, for which u1 and uN do vary.

If the boundary conditions are given in terms of ∂u/∂x or by a nonlinear equation in

u, the values of the u1 and uN become unknowns. This increases the number of equations

and unknowns to N : equations Ξ1 ≡ EEEEE(u1,u2) and ΞN ≡ EEEEE(uN−1,uN) must be obtained

from the discretization of the expression for the boundary condition. The corresponding

modifications transform system (1.25) into




A1 C1 0 0 0 · · ·
B2 A2 C2 0 0 0 · · ·
0 B3 A3 C3 0 0 0

.
0 0 0 BN−2 AN−2 CN−2 0
· · · 0 0 0 BN−1 AN−1 CN−1

· · · 0 0 0 BN AN







δu1

δu2

δu3
...

δuN−2

δuN−1

δuN




=




−Ξ1

−Ξ2

−Ξ3
...

−ΞN−2

−ΞN−1

−ΞN




, (1.26)

where the expressions for lines i ∈ {1, N} are given in the subsections that follow for the

two other types of boundary conditions we consider, namely the Neumann condition and the

Robin condition.

So far we have assumed that the same type of boundary condition is imposed on all

M state variables at both boundaries, which was appropriate and sufficient since we were

considering only the Dirichlet condition. In general, one may impose a different type of

boundary condition on each of the M scalar equations in ẼEEEE : RM → RM (equation (1.1));

one may just as well impose a different condition for the same equation at either boundary.

This amounts to an implementation problem only: all the formulæ presented hold for the

scalar equations just as they hold for the block equations.

12 1. BALANCE SYSTEMS

1.5.1. Neumann Boundary Condition. Instead of prescribing the value of u1 ≡ ua

at the left end, we prescribe

∂u

∂x
(xa, t) = γa(t). (1.27)

If we apply forward differences, we obtain

u2 − u1

δx
= γa(t) ⇒ u2 = u1 + γa(t)δx, (1.28)

which gives an equation for Ξ1(u1,u2), namely

Ξ1(u1,u2) = u1 − u2 + γa(t
n+1)δx, (1.29)

so A1 = I and C1 = −I.

The expressions at the right end of the domain are analogous: backward differences

between xN−1 and xN are used to discretize the value of

∂u

∂x
(xb, t) = γb(t) ≈

uN − uN−1

δx
= γb(t

n+1) ⇒ uN = uN−1 + γb(t
n+1)δx (1.30)

yielding

ΞN(uN−1,uN) = uN − uN−1 − γb(t
n+1)δx (1.31)

and AN = I and BN = −I.

1.5.2. Robin Boundary Condition. The treatment of a prescribed value for a linear

combination ua and ∂ua/∂x, i.e, at the left end

αu(xa, t) + β
∂u

∂x
(xa, t) = γa(t), (1.32)

is very similar to the Neumann case. The use of forward differences gives an equation for

Ξ1(u1,u2), namely

αu1 + β
u2 − u1

δx
= γa(t) ⇒ Ξ1(u1,u2) = (αδx− β)u1 + βu2 − γa(t)δx, (1.33)

so A1 = (αδx− β)I and C1 = βI.

At the right end, the use of backward differences leads to an equation for ΞN(uN−1,uN):

αuN + β
uN − uN−1

δx
= γb(t) ⇒ ΞN(uN−1,uN) = (αδx + β)uN − βuN−1 − γb(t)δx, (1.34)

so AN = (αδx + β)I and BN = −βI

1.6. GENERAL REACTION–CONVECTION–DIFFUSION EQUATION FOR COMPRESSIBLE FLOWS 13

1.6. General Reaction–Convection–Diffusion Equation for Compressible Flows

At the time of this draft, this discretization was fully implemented, but not

tested.

Models in which the coupling of the p and v fields over x is taken into account are

governed by equations of the form (1.3)

∂h(u)

∂t
+

∂vf(u)

∂x
=

∂

∂x

(
g(u)

∂u

∂x

)
+ q(u),

where the pressure p ≡ u(M) is coupled to the velocity v through Darcy’s Law (1.4),

v = −k(u)
∂p

∂x
+ r(u).

Equation (1.3) is the general convection–diffusion–reaction equation for compressible

flows, where {u; v} with u ∈ RM is the state vector, f ,h,q : RM → RM and g : RM → RM×M

are differentiable, the physical domain is x ∈ [xa, xb] and t ≥ 0. The differential operator

ẼEEEE : RM+1 → RM+1 corresponding to (1.3) and Darcy’s Law is




Ẽ(m)(u; v) ≡ ∂h(m)(u)

∂t
+

∂v f (m)(u)

∂x
− ∂

∂x

(
g(m)(u)

∂u

∂x

)
− q(m)(u), m = 1, . . . , M

Ẽ(M+1)(u; v) ≡ v + k(u)
∂p

∂x
− r(u), with p ∈ u

,

(1.35)

and the observations made for the simplified version of the equation on page 2 still apply.

1.6.1. Control Volume Discretization. The scheme derived in 1.4.1 was obtained

using the traditional approach of substituting the continuous differential operators with

finite difference approximations centered on each point xi. The same scheme can be derived

integrating equation (1.2) in time and space over the control volume x ∈ [xi−1, xi+1], t ∈
[tn, tn+1], depicted in Figure 1.3a. That scheme is valid if g is not null: it becomes less

reliable the more the convection term dominantes the diffusive term.

In this section we derive the scheme using integration in the control volume shown in

Figure 1.3b for the convection term, and the control volume depicted in Figure 1.3c for

Darcy’s Law (1.4). Only the discretization of the convection term and Darcy’s Law are

derived in this subsection: the discrete versions of the other terms in equation (1.3) are

identical to the corresponding terms in (1.2). This scheme gives better results for problems

in which convection dominates diffusion: it is valid even if g is null. This is because the

discrete expression of the convection term, although centered and symmetric, takes all three

spatial nodes of the stencil for xi into account, whereas the expressions used in Section 1.4

used only two.

14 1. BALANCE SYSTEMS

t
n

t
n+1

xi−1 xi xi+1

(a)

t
n

t
n+1

xi−1

x
ı̂−1

xi

x
ı̂

xi+1

(b)

t
n

t
n+1

xi

x
ı̂

xi+1

(c)

Figure 1.3. Control volumes used for integrating terms of equation (1.3).
The control volume in (a) is used to integrate terms that do not involve the
velocity, the reduced control volume in (b) is used to integrate the convection
term, and the control volume in (c), centered at xı̂ instead of xi, is used for
Darcy’s law.

For the convection term, we wish to find the integral of ∂(vf)/∂x over the δx×δt volume

in Figure 1.3b,

∫ xı̂

x̂
ı−1

∫ tn+1

tn

∂(vf(u))

∂x
dt dx.

There is no time derivative involved, so we take a wheighted average just like in (1.14) and

(1.15); it remains to integrate

δt

∫ xı̂

x̂
ı−1

α
∂(vf(u))

∂x

∣∣∣∣
tn+1

+ (1− α)
∂(vf(u))

∂x

∣∣∣∣
tn

dx.

This integral represents the difference between the fluxes going through the two boundaries

of the volume depicted in Figure 1.3b, i.e.,

∫ xı̂

x̂
ı−1

∂(vf(u))

∂x
dx = vf(u)

∣∣∣∣
xı̂

− vf(u)

∣∣∣∣
x̂

ı−1

.

The values of v are defined at the secondary locations xı̂ and x̂ı−1, but the values of u (and

therefore of f(u)) are not, so we take averages:

vf(u)

∣∣∣∣
xı̂

= vı̂
fi + fi+1

2
.

1.6. GENERAL REACTION–CONVECTION–DIFFUSION EQUATION FOR COMPRESSIBLE FLOWS 15

Putting all the preceding expressions together, we derive

∫ xı̂

x̂
ı−1

∫ tn+1

tn

∂(vf(u))

∂x
dt dx = δt

∫ xı̂

x̂
ı−1

α
∂(vf(u))

∂x

∣∣∣∣
tn+1

+ (1− α)
∂(vf(u))

∂x

∣∣∣∣
tn

dx

=
δt

2

(
α
(
vn+1

ı̂ (fn+1
i + fn+1

i+1)− vn+1

ı̂−1
(fn+1

i−1 + fn+1
i)

)
+

(1− α)
(
vn

ı̂ (fn
i + fn

i+1)− vn
ı̂−1

(fn
i−1 + fn

i)
))

.

(1.36)

Dividing this by δx× δt — the area of the control volume in Figure 1.3b — we arrive at

the expression equivalent to (1.16) on the simple grid:

hn+1
i − hn

i

δt
+

1

2δx

(
α
(
vn+1

ı̂ (fn+1
i + fn+1

i+1)− vn+1

ı̂−1
(fn+1

i−1 + fn+1
i)

)
+

(1− α)
(
vn

ı̂ (fn
i + fn

i+1)− vn
ı̂−1

(fn
i−1 + fn

i)
))

+ O(δx2).

(1.37)

Using (1.37) instead of (1.16) gives the full expressions corresponding to (1.19) (see page

9), which we skip in this derivation for begin too lengthy. The equation used in the numerical

method, corresponding to the expression (1.20)–(1.21), is

hn+1
i

δt
+

α

2δx

(
vn+1

ı̂ (fn+1
i + fn+1

i+1)− vn+1

ı̂−1
(fn+1

i−1 + fn+1
i)

)−

α

(
(gn+1

i+1 + gn+1
i)un+1

i+1 − (gn+1
i+1 + 2gn+1

i + gn+1
i−1)un+1

i + (gn+1
i + gn+1

i−1)un+1
i−1

2δx2

)
− αqn+1

i =

(1.38)

hn
i

δt
− (1− α)

2δx

(
vn

ı̂ (fn
i + fn

i+1)− vn
ı̂−1

(fn
i−1 + fn

i)
)

+(1− α)

(
(gn

i+1 + gn
i)un

i+1 − (gn
i+1 + 2gn

i + gn
i−1)u

n
i + (gn

i + gn
i−1)u

n
i−1

2δx2

)
+ (1− α)qn

i .

(1.39)

Differentiation of the left hand side (1.38) produces the first M lines of each block of the

Jacobian of Ξ: the last line is obtained from the discretization of the operator Ξ(M+1) ≡
Ẽ(M+1) in (1.35). We discretize Darcy’s Law using the control volume depicted in Figure

1.3c, centered in space at xı̂. Taking averages in time and applying central differences in

space to p, we derive from E(M+1) = 0

α

(
vn+1

ı̂ − kn+1
ı̂

δx
(pn+1

i+1 − pn+1
i) + rn+1

ı̂

)
= −(1− α)

(
vn

ı̂ −
kn

ı̂

δx
(pn

i+1 − pn
i) + rn

ı̂

)
, (1.40)

16 1. BALANCE SYSTEMS

and averages in space for k and r yield

α

(
vn+1

ı̂ − (kn+1
i + kn+1

i+1)(pn+1
i+1 − pn+1

i)

2δx
+

rn+1
i + rn+1

i+1

2

)
=

− (1− α)

(
vn

ı̂ −
(kn

i + kn
i+1)(p

n
i+1 − pn

i)

2δx
+

rn
i + rn

i+1

2

)
.

(1.41)

In the preceeding expression, k is a function of u; because it appears multiplied by p ∈ u,

the differentiation of (1.41) with respect to the other components of u differs from the

differentiation with respect to p.

Before presenting the Jacobian of the Ξ(u; v) as given by the discrete version of operator

ẼEEEE (1.35) in page 13, equivalent to (1.22) for the simple grid, we recall the following: the

system

Ξ(u) = 0 with Ξi ≡ EEEEE(ui−1,ui,ui+1; v̂ı−1, vı̂) i = 2, . . . , N − 1,

is defined for the state vector (u; v) ∈ RM+1 with u ∈ RM ; for each xi, it comprises M scalar

equations Ξ
(m)
i of the form E : RM+1 → R — and we have taken ẼEEEE of the form (1.3) —

plus a discretization (1.41) of Darcy’s Law (1.4) as Ξ
(M+1)
i . For computational purposes, the

velocity at position xı̂ is compounded with the state vector ui, and the resulting Jacobian

matrix is still block tridiagonal. The M + 1 ×M + 1 blocks of J have themselves a block

structure: we denote the Jacobian blocks Ji,j as

Ji,j =
∂Ξi

∂(u; v)j

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Ξ
(1:M)
i

∂u
(1:M)
j

≡ Ji,j;1
∂Ξ

(1:M)
i

∂v̂

≡ Ji,j;2

∂Ξ
(M+1)
i /∂u

(1:M)
j ≡ Ji,j;3 ∂Ξ

(M+1)
i /∂v̂ ≡ Ji,j;4

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (1.42)

and Ai ≡ Ji,i, Bi ≡ Ji,i−1, and Ci ≡ Ji,i+1, as before.

The upper left blocks of (1.42) are M ×M , and correspond to those given in (1.22); but

with the different discretization of the convection term, they are given by

Bi;1 = −α

(
v̂ı−1∂fi−1

2δx
+

∂gi−1(ui−1 − ui) + gi + gi−1

2δx2

)
;

Ai;1 =
∂hi

δt
+ α

(
(vı̂ − v̂ı−1)∂fi

2δx
− ∂gi(ui+1 − 2ui + ui−1)− gi+1 − 2gi − gi−1

2δx2
− ∂qi

)
;

Ci;1 = α

(
vı̂∂fi+1

2δx
− ∂gi+1(ui+1 − ui) + gi+1 + gi

2δx2

)
.

(1.43)

1.7. BOUNDARY CONDITIONS FOR THE STAGGERED GRID 17

The upper right M×1 blocks are obtained from the same equations, now differentiated with

respect to v̂ instead:

Bi;2 = −α
(fi + fi−1)

2δx
;

Ai;2 = α
fi+1 + fi

2δx
;

Ci;2 = 0.

(1.44)

The last line of each block Ji,j is obtained from (1.41):

Bi;3 = 0,

A
(m)
i;3 = − α

δx

(
∂ki

∂u(m)
(pi+1 − pi)

)
+

α

2

∂ri

∂u(m)
, except

A
(M)
i;3 = − α

2δx

(
∂ki

∂u(m)
(pi+1 − pi)− ki − ki+1

)
+

α

2

∂ri

∂u(m)
,

C
(m)
i;3 = − α

δx

(
∂ki+1

∂u(m)
(pi+1 − pi)

)
+

α

2

∂ri+1

∂u(m)
, except

C
(M)
i;3 = − α

2δx

(
∂ki+1

∂u(m)
(pi+1 − pi) + ki + ki+1

)
+

α

2

∂ri+1

∂u(m)
,

Bi;4 = 0, Ai;4 = α, Ci;4 = 0.

(1.45)

1.7. Boundary Conditions for the Staggered Grid

At the time of this draft, these features were partially implemented, but not

tested.

In the staggered grid depicted in Figure 1.2, the boundary positions xa and xb lie in

secondary grid locations. Because of this, u1 and uN are unknowns regardless of the bound-

ary conditions imposed. Including the ghost points, we always have a system of N (vector)

unknowns on the primary grid. The secondary grid, where velocities are defined, contains

N − 1 (scalar) unknowns: the velocity vN̂ is beyond the ghost point, and does not appear in

any equation.

Boundary conditions for p and v cannot be independently specified, just like the initial

data p(x, 0) and v(x, 0) — or even the states p(x, t) and v(x, t) at any given time. The two

variables are coupled through Darcy’s Law (1.4). We first present expressions for the treat-

ment of boundary conditions imposed on variables defined on the primary grid, analogous

to those given in the previous section; then we address the specifics of pressure and velocity.

18 1. BALANCE SYSTEMS

1.7.1. Boundary Conditions for Variables on the Primary Grid. We assume

that the value of u varies linearly around the boundary, where some condition is prescribed,

towards the two nodes that enclose it — one being inside the physical domain and the other

being a ghost node. At the left end, this allows the definition of the equation Ξ1(u1,u2)

from a Dirichlet boundary condition as

u1 + u2

2
= γa(t) ⇒ Ξ1(u1,u2) = u1 + u2 − 2γa(t), (1.46)

so the coefficients for (1.26) are A1 = I and C1 = I. At the right end,

uN−1 + uN

2
= γb(t) ⇒ ΞN(uN−1,uN) = uN−1 + uN − 2γb(t), (1.47)

so AN = I and BN = I too.

For the Neumann case, since the boundary position xa is equidistant from the x2 and the

ghost point x1, the value of ∂u/∂x at xa can be written using central differences as

u2 − u1

δx
= γa(t),⇒ Ξ1(u1,u2) = u1 − u2 + δxγa(t

n+1), (1.48)

so the coefficients for (1.26) are A1 = I and C1 = −I. At the right end

uN − uN−1

δx
= γb(t),⇒ ΞN(uN−1,uN) = uN − uN−1 − δxγb(t

n+1), (1.49)

and the coefficients for (1.26) are AN = I and BN = −I as well.

The expression for Ξ1(u1,u2) in the Robin case is derived from the combination of (1.46)

and (1.48):

α
u1 + u2

2
+ β

u2 − u1

δx
= γa(t) yields

Ξ1(u1,u2) = (αδx− 2β)u1 + (αδx + 2β)u2 − 2δxγa(t),
(1.50)

so A1 = (αδx− 2β)I and C1 = (αδx + 2β)I. At the right end, from (1.47) and (1.49),

α
uN−1 + uN

2
+ β

uN − uN−1

δx
= γb(t) yields

ΞN(uN−1,uN) = (αδx− 2β)uN−1 + (αδx + 2β)uN − 2δxγb(t),
(1.51)

so AN = (αδx + 2β)I and BN = (αδx− 2β)I.

1.7.2. Boundary Conditions for the Velocity. The values for velocity and pressure

are not independent anywhere in the physical domain, including the boundaries. Therefore,

only two of the four values pa, pb, va and vb can (and must) be specified as boundary

conditions. These conditions are always of Dirichlet type. Specifing a Neumann condition

for the pressure is equivalent to specifing Dirichlet condition for the velocity (see (1.4)), and

specifing a Neumann condition for the velocity is of no physical interest.

1.7. BOUNDARY CONDITIONS FOR THE STAGGERED GRID 19

Because velocity and pressure must be compatible through Darcy’s Law, their initial

boundary conditions are not independent from the initial state inside the spatial domain.

Other state variables in u may be initialized with arbitrary non-smooth profiles and even

jumps at the boundaries, but the pressure and velocity profiles are initialized solely from

their boundary information and the initial state of the other variables in u.

This initialization is performed solving a steady state problem on the variables p ∈ u

and v, considering all other variables in u to be constant in time. The nonlinear system to

be solved is formed by equation (1.4) and the total flow equation Ẽ(M) : RM+1 → R stripped

from the accumulation term. This is a system of ordinary differential equations in x.

CHAPTER 2

Physical models

Each physical phenomenon is modeled through a different set of equations stemming

from general conservation laws and specific constitutive equations. We attempt to group

different phenomena into classes, both at the mathematical formulation and computer im-

plementation levels. In this chapter, we present the former, i.e., the mathematical models,

the implementations of which are described in Chapter 3.

2.1. Three–Phase Flow Models

Models for the study of three–phase flow of water, oil and gas in porous media arise in

the context of secondary oil recovery, and are presented in [9] and references therein. The

flow is described by a pressure equation, expressing Darcy’s law of force, coupled to two

saturation equations which generalize the classical Buckley–Leverett equation and express

the conservation of the three quantities, the masses of water, oil and gas. Darcy’s law

for incompressible one–dimensional flows implies that the total fluid velocity is position

independent, so if it is given as a time independent boundary condition then it is constant

in the whole domain, and the nondimensional system can be written as

∂sw

∂t
+

∂

∂x
fw(sw, sg) = Dw and

∂sg

∂t
+

∂

∂x
fg(sw, sg) = Dg, (2.1)

where sw and sg denote water and gas saturations, and the oil saturation is so = 1− sw− sg,

so the state of the fluid is defined by u = {sw, sg}. The generalization of the classical model

introduced by Buckley–Leverett in [4] adds the fractional flow functions fw and fg which are

given in terms of fixed fluid viscosities µw, µg and µo, and of relative permeability functions

kw, kg and ko, i.e.,

fw =
kw/µw

kw/µw + kg/µg + ko/µw

and fg =
kg/µg

kw/µw + kg/µg + ko/µw

. (2.2)

Following [3], the diffusive terms due to capillary pressure effects

Dw =
∂

∂x

(
Bww

∂sw

∂x

)
+

∂

∂x

(
Bwg

∂sg

∂x

)
and Dg =

∂

∂x

(
Bgw

∂sw

∂x

)
+

∂

∂x

(
Bgg

∂sg

∂x

)
(2.3)

21

22 2. PHYSICAL MODELS

represent the effect of capillary pressure differences among fluids, with the four B values

taken from the matrix

B =

[
Bww Bwg

Bgw Bgg

]
=




kw

µw

(1− fw) −kw

µw

fg

kg

µg

fw
kg

µg

(1− fg)







∂pc,wo

∂sw

∂pc,wo

∂sg

∂pc,go

∂sw

∂pc,go

∂sg




,

which depends also on the capillary pressures

pc,wo = pw − po and pc,go = pg − po.

The model is usually simplified ([7]) by assuming that the relative permeability functions

k depend on both fluid saturations and nothing else. The capillary pressure differences pc,wo

and pc,go depend only on sw and sg respectively. All in all, equation (2.1) can be written as

∂u

∂t
+

∂f(u)

∂x
=

∂

∂x

(
g(u)

∂u

∂x

)
, (2.4)

with the state vector u = {sw, sg}, the vector function f given by (2.2) and the diffusion

function g given by the matrix B in (2.3).

2.1.1. Quadratic Model. The simplest model we implement is derived from the three–

phase flow model just introduced. It is useful for the analysis of singularities in the phase

space of the solution, even if it does not capture as many features of the physical phenomenon

as the more detailed model given by equations (2.1)–(2.3). In this simplified quadratic model,

h(u) ≡ u, f(u) : R2 → R2 given in equation (2.2) is replaced by a quadratic homogeneous

function, i.e.,

fsw(sw, so) =
1

2
a1sw

2 + b1swso +
1

2
c1so

2 + d1sw + e1so

fso(sw, so) =
1

2
a2sw

2 + b2swso +
1

2
c2so

2 + d2sw + e2so,

(2.5)

the viscosity matrix g(u) : R2 → R2×2 is taken as a constant matrix M — often the identity

I — multiplied by a constant ε, i.e.,

g(u) = εM, (2.6)

and q(u) ≡ 0. For these particular forms of f and g, the expression for f ′ is

∂f

∂u
=




∂fsw

∂sw

∂fsw

∂so

∂fso

∂sw

∂fso

∂so


 =

[
a1sw + b1so + d1 b1sw + c1so + e1

a2sw + b2so + d2 b2sw + c2so + e2

]
, (2.7)

2.1. THREE–PHASE FLOW MODELS 23

and g′ = 0. Since h and g are constant and q ≡ 0, the numerical scheme given by expression

(1.20)–(1.21) simplifies to

un+1
i

k
+

fn+1
i+1 − fn+1

i−1

4h
− g

2h2
(un+1

i+1 − 2un+1
i + un+1

i−1) = (2.8)

un
i

k
− fn

i+1 − fn
i−1

4h
+

g

2h2
(un

i+1 − 2un
i + un

i−1), (2.9)

and the expressions for the iterative solution in (1.22) become

F(un+1
i) =

un+1
i

k
+

fn+1
i+1 − fn+1

i−1

4h
− g

2h2
(un+1

i+1 − 2un+1
i + un+1

i−1)

y(un
i) =

un
i

k
− fn

i+1 − fn
i−1

4h
+

g

2h2
(un

i+1 − 2un
i + un

i−1)

(2.10)

and

Ci =
1

4h

∂f

∂ui+1

− gi+1

2h2

Ai =
1

k
I +

gi

δx2

Bi = − 1

4h

∂f

∂ui−1

− gi−1

2h2
,

(2.11)

with f and ∂f/∂u given by (2.5) and (2.7).

2.1.2. Corey’s Model. At the time of this draft, this model was implemented

and compiled, but not validated.

This model differs from the previous one only in its flow functions. Following [7], the

permeabilities are defined as

kw = s2
w, kg = s2

g, and ko = s2
o; with so = 1− sw − sg; (2.12)

substituting the above in equation (2.2), we obtain the flow function

fw(sw, sg) =
s2

w/µw

s2
w

µw

+
s2

g

µg

+
(1− sw − sg)

2

µo

fg(sw, sg) =
s2

g/µg

s2
w

µw

+
s2

g

µg

+
(1− sw − sg)

2

µo

(2.13)

24 2. PHYSICAL MODELS

with derivatives

∂f

∂u
=




∂fw

∂sw

∂fw

∂sg

∂fg

∂sw

∂fg

∂sg




= 2(
s2

w

µw

+
s2

g

µg

+
(1− sw − sg)

2

µo

)2×




sw

µw

(
s2

g

µg

+
(1−sw−sg)

2

µo

+ sw
1−sw−sg

µo

)
s2

w

µw

(
1−sw−sg

µo

− sg

µg

)

s2
g

µg

(
1−sw−sg

µo

− sw

µw

)
sg

µg

(
s2

w

µw

+
(1−sw−sg)

2

µo

+ sg
1−sw−sg

µo

)




.

(2.14)

2.2. Dry Combustion Models

At the time of this draft, only the models in 2.2.3 and 2.2.4 were implemented

and tested.

The study of combustion waves has many applications in different areas. One of them

is in-situ combustion — a technique for heavy oil recovery. Models for this phenomenon

consist of balance equations for both mass and energy. We initially present a combustion

model from [2], and then present increasingly simplified versions of it [5, 6, 10]. The model

takes into account coal distribution, allows moving fronts and uses physical formulæ for

the combustion rate. The differences from the base formulation will be highlighted at the

beginning of each subsection.

2.2.1. Complete Akkutlu’s Model. The model comprises five dependent variables,

u = {θ, Y, η, p} and v: it requires the use of the staggered grid and the formulation from

Section 1.6.

In the following, tildes indicate dimensional values; subscripts o and i mean “original state

of the reservoir” and “state at the injection end”, respectively. The dimensional independent

variables x̃ and t̃ are scaled using reference values x∗ = as/vi and t∗ = as/v
2
i , where as is the

effective thermal diffusivity and vi is the injection velocity. The dimensionless temperature

θ is the temperature T̃ (x, t) divided by the reference/initial reservoir temperature T̃o; the

dimensionless oxygen fraction Y is the oxygen mass fraction distribution of the gas Ỹ (x, t)

divided by the oxygen mass fraction of the injected gas Ỹi, which is assumed to be constant

in time. The fuel conversion depth η = 1 − ρf/ρfo represents the consumption of the fuel:

the fuel mass distribution is ρf (x, t), and ρfo is the initial fuel distribution, which is assumed

to be spatially homogenous. The dimensionless gas pressure p is the pressure distribution

2.2. DRY COMBUSTION MODELS 25

p̃(x, t) divided by some reference pressure value p̃o, and v is the Darcy velocity, i.e., the

volumetric flow of gas per unit area.

The equation for ideal gases is given by

p̃Mg = ρ̃gRT̃ ,

where Mg and ρ̃g are the effective molecular weight and effective density of the gas, respec-

tively, and R is the universal constant of gases. The already introduced reference values

p̃o and T̃o satisfy this equation along with the gas density at the inlet ρ̃gi. Therefore, with

dimensionless p, ρ and θ, the equation for ideal gases becomes simply

ρ θ = p, (2.15)

and the non–dimensionalization just described is sumarized by

x =
vix̃

as

; t =
v2

i t̃

as

; θ =
T̃

T̃o

; Y =
Ỹ

Ỹi

; p =
p̃

p̃o

; ρ =
ρ̃g

ρ̃gi

. (2.16)

The model formulated in [2] considers a linear flow with heat losses, and gives a different

non–dimensionalization for the equation of ideal gases. Removing the heat loss term, the

system presented therein becomes

∂θ

∂t
+

∂(aρvθ)

∂x
=

∂2θ

∂x2
+ qΦ

φ
∂(ρY)

∂t
+

∂(ρvY)

∂x
=

1

Le

∂

∂x

(
ρ

∂Y

∂x

)
− µΦ

φ
∂ρ

∂t
+

∂(ρv)

∂x
= µgΦ

∂η

∂t
= Φ, and

∂p

∂x
= −κv;

(2.17)

The reaction rate Φ(θ, Y, η), based on the Arrhenius’ law, is given by

{
Φ = Y (1− η)Υ, with Υ = αe−

γ
θ , for θ > 1

Φ = 0, for θ ≤ 1.
(2.18)

26 2. PHYSICAL MODELS

We use (2.15) to remove ρ(θ, p), and write

∂θ

∂t
+

∂(apv)

∂x
=

∂2θ

∂x2
+ qΦ (2.19)

φ
∂

∂t

(
pY

θ

)
+

∂

∂x

(
pvY

θ

)
=

1

Le

∂

∂x

(
p

θ

∂Y

∂x

)
− µΦ (2.20)

φ
∂

∂t

(
p

θ

)
+

∂

∂x

(
pv

θ

)
= µgΦ (2.21)

∂η

∂t
= Φ, and (2.22)

∂p

∂x
= −κv. (2.23)

The dimensionless parameters used in the model, along with typical values [1], are given

in Table 2.2.1.

Physical quantity Symbol Value
Total heat content of the porous medium q 1.0121
Dimensionless stoichiometric coefficients for oxygen µ 205.8
Dimensionless stoichiometric coefficients for gaseous products µg 68.19
Lewis number (ratio of thermal and molecular diffusion) Le 0.214
Arrhenius number (dimensionless activation energy) γ 23.69
Dimensionless reaction coefficient α 0.027
Volumetric heat capacity ratio of the filtrating gas and matrix a 6.13 · 10−4

Porosity of the medium φ 0.3
Table 2.1. Typical values of dimensionless parameters.

The physical domains of the dependent variables are given by

θ ≥ 0, 0 ≤ Y ≤ 1, 0 ≤ η ≤ 1, p > 0 and v ∈ R. (2.24)

The reference temperature θ = 1 corresponds to initial reservoir temperature; the oxygen

values Y = 1 and Y = 0 correspond to the fraction in the injected gas (i.e. maximum

availability) and no remaining oxygen (i.e. complete consumption), respectively; similarly,

the values η = 0 and η = 1 correspond to no fuel consumption (initial state) and complete

consumption, respectively; pressure is non–negative, and v may have any value.

From the system (2.19)–(2.22) we have

u =




θ
Y
η
p


 , h =




θ
φpY/θ
φp/θ

η


 , f =




ap
pY/θ
p/θ
0


 , g =




1 0 0 0
0 p

Leθ
0 0

0 0 0 0
0 0 0 0


 , q =




q
−µ
µg

1


 Φ.

(2.25)

2.2. DRY COMBUSTION MODELS 27

with Φ given in (2.18). For simplicity, we assume g to be constant, taking g2,2 = L−1
e . The

derivatives of the other three functions are given by

h′ =




1 0 0 0
−φpY/θ2 φp/θ 0 φY/θ
−φp/θ2 0 0 φ/θ

0 0 1 0


 , f ′ =




0 0 0 a
−pY/θ2 p/θ 0 Y/θ
−p/θ2 0 0 1/θ

0 0 0 0


 (2.26)

and

q′ =




qγ(1− η)Y/θ2 q(1− η) −qY 0
−µγ(1− η)Y/θ2 −µ(1− η) µY 0
µgγ(1− η)Y/θ2 µg(1− η) −µgY 0
γ(1− η)Y/θ2 (1− η) −Y 0


 Υ. (2.27)

Finally, for Darcy’s Law as denoted in (1.4), we have k(u) = 1/κ and r(u) = 0.

2.2.2. Simplified Akkutlu’s Model. We use the simplified version for the nondimen-

sional gas equation of state as given in [10], i.e., we replace equation (2.15) with

ρ θ = 1, (2.28)

so the density ρ is a function of temperature θ alone; system (2.17) becomes

∂θ

∂t
+

∂(av)

∂x
=

∂2θ

∂x2
+ qΦ (2.29)

φ
∂

∂t

(
Y

θ

)
+

∂

∂x

(
vY

θ

)
=

1

Le

∂

∂x

(
1

θ

∂Y

∂x

)
− µΦ (2.30)

φ
∂

∂t

(
1

θ

)
+

∂

∂x

(
1

θ

)
= µgΦ (2.31)

∂η

∂t
= Φ, and (2.32)

∂p

∂x
= −κv. (2.33)

From the system (2.29)–(2.32) we have expressions similar to (2.25)–(2.27):

u =




θ
Y
η
p


 , h =




θ
φY/θ
φ/θ
η


 , f =




a
Y/θ
1/θ
0


 , g =




1 0 0 0
0 1

Leθ
0 0

0 0 0 0
0 0 0 0


 , q =




q
−µ
µg

1


 Φ;

(2.34)

h′ =




1 0 0 0
−φY/θ2 φ/θ 0 0
−φ/θ2 0 0 0

0 0 1 0


 , f ′ =




0 0 0 0
−Y/θ2 1/θ 0 0
−1/θ2 0 0 0

0 0 0 0


 (2.35)

28 2. PHYSICAL MODELS

and

q′ =




qγ(1− η)Y/θ2 q(1− η) −qY 0
−µγ(1− η)Y/θ2 −µ(1− η) µY 0
µgγ(1− η)Y/θ2 µg(1− η) −µgY 0
γ(1− η)Y/θ2 (1− η) −Y 0


 Υ. (2.36)

In the current implementation, the matrix g is assumed constant.

2.2.3. Box Akkutlu’s Model. We further simplify the model by removing Darcy’s

law and the pressure altogether, leaving v as a dependent variable in u and using the dis-

cretization over the simple grid from Section 1.4. System (2.17) becomes

∂θ

∂t
+

∂(av)

∂x
=

∂2θ

∂x2
+ qΦ (2.37)

φ
∂

∂t

(
Y

θ

)
+

∂

∂x

(
vY

θ

)
=

1

Le

∂

∂x

(
1

θ

∂Y

∂x

)
− µΦ (2.38)

∂η

∂t
= Φ, and (2.39)

φ
∂

∂t

(
1

θ

)
+

∂

∂x

(
v

θ

)
= µgΦ. (2.40)

We changed the order of the last two equations in the system above, because g(4)(u) ≡ 0

in equation (2.40) (corresponding to (2.31)). This equation cannot be solved using the

Crank–Nicolson discretization: we use the box scheme to solve it. As a side effect, in this

model we consider only the forward combustion wave with speed v > 0, i.e., combustion

advances from left to right. The physical domains of the dependent variables are given by

θ ≥ 0, 0 ≤ Y ≤ 1, 0 ≤ η ≤ 1, v > 0. (2.41)

From the system (2.37)-(2.40) we have

u =




θ
Y
η
v


 , h =




θ
φY/θ

η
φ/θ


 , f =




av
vY/θ

0
v/θ


 , g =




1 0 0 0
0 1

Leθ
0 0

0 0 0 0
0 0 0 0


 , q =




q
−µ
1
µg


 Φ,

(2.42)

and

h′ =




1 0 0 0
−φY/θ2 φ/θ 0 0

0 0 1 0
−φ/θ2 0 0 0


 , f ′ =




0 0 0 a
−vY/θ2 v/θ 0 Y/θ

0 0 0 0
−v/θ2 0 0 1/θ


 (2.43)

q′ =




qγ(1− η)Y/θ2 q(1− η) −qY 0
−µγ(1− η)Y/θ2 −µ(1− η) µY 0

γ(1− η)Y/θ2 (1− η) −Y 0
µgγ(1− η)Y/θ2 µg(1− η) −µgY 0


 Υ, (2.44)

with Υ = α exp(−γ/θ) so Φ = Y (1− η)Υ.

2.2. DRY COMBUSTION MODELS 29

Because there is no combustion ahead or behind this wave, the reaction rate Φ must

vanish, and therefore at least one of the following conditions must be satisfied: θ = 1, Y = 0

or η = 1. In [10, 6] it was shown that there is only one admissible possibility for this

to happen: the domain is fuel-deficient behind the wave, and is oxygen deficient ahead of

it. Denoting these burned and unburned states by the superscripts b and u, we write these

conditions as

θb > 0, Y b = 1, ηb = 1, vb > 0, (2.45)

θu = 1, Y u = 0, ηu = 0, vu > 0, (2.46)

2.2.4. Chapiro’s Model. ASK GRIGORI ABOUT REFERENCE BELOW

A greatly simplified version of the model in 2.2.3 was derived in [], taking the velocity

as a constant v instead of as dependent variable. Therefore, the variables in this model

are temperature θ, oxygen fraction Y and fuel η, but unlike in the previous model, η = 0

represents fuel deficiency (instead of η = 1), i.e., in this model η maps to what in the previous

model was 1− η. The simplified governing equations are

∂θ

∂t
+ a

∂θ

∂x
=

∂2θ

∂x2
+ qΦ (2.47)

∂Y

∂t
+ v

∂Y

∂x
= −µΦ (2.48)

∂η

∂t
= −Φ. (2.49)

The combustion rate is described by Arrhenius’ law

Φ = KY ηe−γ/θ,

and the boundary conditions for the Riemann problem are:

Left: TL, YL = 1, ηL = 0;

Right: TR, YR = 0, ηR = 1.

CHAPTER 3

Computer Implementation

In this chapter we describe the computer implementation of the models previously pre-

sented. It is not the goal of this document to repeat what is already written in the code (in

the form of code), but rather to provide the rationales and motivations behind it. Those not

interested in the internals may skip directly to 3.6, where the compilation, execution and

output visualization are described.

Computational efficiency is the second architectural constraint, the first one being of

course the mathematical validity and accuracy of the solution. In our attempt to satisfy

both simultaneously, we have chosen to employ various techniques that permeate the code,

in detriment of others which we deliberately avoided. The program is written in ANSI C,

and parallelism is implemented either through OpenMP or MPI. These choices are mainly

with portability in mind, although efficiency was a major factor as well. There is no enforced

encapsulation, i.e., globally used data is declared as globally visible static data. The code

uses compile–time resolution whenever possible, either through conditional compilation, code

inlining or other hard optimizations such as constant–based loop unrolling and condition

evaluation.

A third architectural constrain is that, in writing a source code where these optimization

opportunities are clear for the compiler’s optimizer, we must not hinder the code any less

clear for ourselves. The trade–offs between efficiency and readability are inevitable, however.

Thus is this document further justified.

For brevity, we do not reproduce the source code here. Instead, we provide refer-

ences to it, which can be looked for in the source files. Such references will take the form

[file]:DOC <mnemonic>. For instance, the reference sourcemain.c:DOC foobar means that

in the file sourcemain.c there is a comment containing the string DOC foobar to which the

current explanation is related. The file may be absent in consecutive references to a single

source file, or when otherwise implicit.

Data objects and functions will have their identifiers reproduced verbatim in this doc-

ument, but regular expression syntax will be use for brevity, e.g., variables u now, and

bc left now and bc right now may be referred to simply as * now, and variables u now and

u past may be referred to as u {now,past}. Functions will be distinguished from variables

by the () following the identifier. This does not imply anything about the parameters of a

31

32 3. COMPUTER IMPLEMENTATION

function: the formal parameter list is given in the source code where the function is declared,

and the actual parameters where it is called. An optional [file]: may be given for data

objects and functions as well.

3.1. Parallelism as an Option

The use of parallelism, either with OpenMP or MPI, is optional — not only at execution

as with any OpenMP/MPI parallel program, but at compile time as well, i.e., the program

can be compiled and linked in a development environment that does not provide these

parallelism facilities. This is achieved through rather extensive use of conditional compilation

in the source code for the solver itself, which renders it particularly complex.

All parallelism related constructs are isolated inside #if/#ifdef blocks conditioned by

the macros WITH MPI and WITH OPENMP, and all of these conditionally compiled statements

are found inside the main source file (solvermain.c). Compiling the program without

defining either of these macros does not require either parallel library. Some OpenMP specific

#pragma-directives are found in source files other than solvermain.c, but they should be

ignored by the compiler in the case of OpenMP–disabled compilation.

PARALLEL: In the following three sections, we describe initialization, computation and

output, focusing on the serial implementation. Parallelism details are provided as comple-

mentary notes in italic like this one, and should be skipped on a first reading or depending

on the information being sought.

3.2. Initialization

In describing the initialization of the simulator, we consider only the time evolution

problems. A steady state problem can be seen as a time evolution problem with one single

time step to be taken. The concept of time step should be clear from the previous chapter,

as well as the basic data objects that are required to perform all computations.

3.2.1. Data Objects. Data objects are static variables, usually in global scope. This

requires careful and judicious naming conventions and choice of where to declare and define

each variable. Some of these data objects are declared/defined in solvermain.c, lumped

under the following tags:

DOC file vars File descriptors for input and input echo (text files) and output

(binary file). See 3.2.2 and 3.4 for further information on input

and output, respectively.

DOC timing vars The program uses three wall–clock timers for the total running

time and the time spent in parallel and serial execution, named

3.2. INITIALIZATION 33

and enumerated accordingly. The distributed (MPI) parallel im-

plementation keeps one such timer on each process, thus the size

of the times array.

DOC step vars These variables store the current simulation time, the current

time step, control when the simulator stops and when it produces

output. Further explanations are given in 3.3.1 and 3.4.1.

DOC plot vars Preferred/initial visualization interval. These only bridge post–

processing information from the input file to the output, i.e., they

are not used by the simulator.

DOC ghost vars These variables store the ghost points for implementing boundary

conditions.

PARALLEL: The coupling lines between data blocks allocated to

different processes (see Chapter 4) are implemented as Dirichlet

boundary conditions, i.e., in parallel execution, they hold states

at inner (non–boundary) nodes which are “boundaries” between

regions allocated to separate processes.

DOC newton vars These variables store quantities related to Newton’s method stop-

ping criteria, see 1.2.1 and 3.3.1.

DOC proc vars These variables are set to 1 in serial compilation and/or execu-

tion. PARALLEL: In parallel execution, P holds the number of

processes and I holds the process identity (rank), so 0 ≤ I < P.

DOC state vars The state vectors at two time levels u now and u past, and a col-

lection time stats of physics–dependent values which are com-

puted in physics–dependent routines at each time step. Every

physics must provide at least the next time step size in this ar-

ray.

Physics provide an access routine that fills time stats, but have

private storage for these data. This encapsulation is required

in serial execution in order to keep the globally visible storage

constant while the private storage is updated: the former is as-

sociated to the data to be output, while the latter is required for

the next time step. PARALLEL: This double storage is further

required in the case of parallel execution, because the new values

are computed locally and synchronized at each Newton iteration.

DOC solver vars These variables store the many data objects used by the solver

described in 4.1. The nomenclature is in direct correspondence.

The IPIV* arrays are LAPACK–related.

34 3. COMPUTER IMPLEMENTATION

DOC parallel vars These auxiliary variables are necessary only in parallel execution

and are described in Chapter 4.

PARALLEL: The #pragma omp threadprivate directives indicate some variables are to

have one copy per thread in the OpenMP runtime. Without this directive, one single variable

is shared by all threads. These directives are ignored by the compiler in the alternative

compilations.

In the MPI compilation, processes have their own variable space and therefore one copy

of each variable. The problem of concurrency/synchronization manifests itself in other ways:

look in solvermain.c for identifiers containing mpi or MPI. Further explanations are given

in Chapter 4.

Other globally required/available variables and constants are declared elsewhere, such as

the physics–dependent ones. The most pervading of these is the number of state variables

M , defined as a physics–dependent macro M, and there are many physics–dependent variables

that are read from the input file. Being physics–specific, these are explained in 3.5.

In {grid,data}.h, under the tags DOC {grid,data} vars, the following data objects

map to the discretization definitions given in Chapter 1 as in Tables 3.1 and 3.2.

Variable(s) Corresponding object(s)
double *x, h A vector of size N containing the xi positions

of the grid points (boundaries included), i =
1, . . . , N , and the constant spacing value δx =
xi−xi−1. Note that arrays in C start at index
0.

double grid lim[2] The extremes of the physical domain, i.e.,
[xa, xb].

int N, n cells, K[MAXP], Ko[MAXP] Respectively N , N − 1, Kp ≈ N/P and
(roughly)

∑
Kp−1. Recall that P is nonunit

only in parallel execution, so K[0]=N and
Ko[0] = 0 in serial compilation and/or exe-
cution. See chapter 4 for further information
on Kp.

Table 3.1. Data objects associated with spatial grid, in grid.h.

PARALLEL: The variables K and Ko hold the information regarding how the N grid

points are distributed across the P processes. This will be explained in Chapter 4. For now,

it suffices to keep in mind the identities shown for the serial case in Table 3.1.

Boundary data may vary greatly, depending not only on the type of boundary condition

imposed but also on how the data associated with it is provided in the input file. Therefore,

most of the boundary–related data, either read from the input file or post–processed from

these, are private to the code in bc.c, and a few interface functions perform all required

3.2. INITIALIZATION 35

Variable(s) Corresponding object(s)
double *data The initial data u0(x) (see 3.2.2 below).

int n data, data type

enum {DATA UNKNOWN,

DATA PIECEWISE LINEAR,

DATA PIECEWISE CONSTANT}
Table 3.2. Data objects associated with initial values u0.

operations. The only two globally visible variables under bc.h:DOC bc vars are bc type and

bc data type, which represent, for each variable on each boundary, the type of boundary

condition imposed and the type of data provided for it, respectively.

3.2.2. Input Data Loading and Processing. All data objects are read from the input

file at the beginning of execution. The current implementation uses an input subsystem that

reads a text file containing variable declarations in standard MATLAB syntax and stores

them in variables with the same name. Array indexing in the input file is assumed to start

from 1, as in MATLAB: thus the components of any M -vector or matrix will be refered

by an index in the range {1,M}. This subsystem is fully contained in mfile.[hc], and is

peripheral to the simulator. We outline its interface here. The implementation of the

input subsystem is not documented.

3.2.2.1. Input File Parsing. The input file is read at solvermain.c:DOC input file.

Calls to macro / routines [mfile.h]:mfile * cause the name given as a parameter to be

stored and associated with the data object, i.e., the data object is registered for loading from

the input file. The calls to {grid,data,bc,phys} load(), localize this registration to the

files where the data objects are actually declared/defined.

The various mfile methods currently implemented allow for integers, doubles, and ar-

rays and matrices of doubles to be read: the alternatives available are those sufficient for the

current necessities, and can be readily added to.

As in MATLAB, N–vectors are 1×N matrices. Any matrix input data object may have

its size known beforehand or not. If the size of a matrix is known a priori, the pointer passed

as a parameter to mfile double fix mat() should be valid, and the matrix is read row–wise

from the file and stored column–wise in the memory. If the size of the matrix is not known,

the pointer passed to mfile double var mat() will be overwritten to point to dynamically

allocated storage, and the matrix will be read and stored row–wise in memory.

The actual reading and parsing of the input file is done with the call to mfile read().

It performs the following tasks:

• All registered variables are read from the input file, and stored in the data objects

with the corresponding identifier.

36 3. COMPUTER IMPLEMENTATION

• An echo of the input file is generated, with the same filename appended by .echo,

containing exactly the same text, including comments.

• If a registered variable is not found in the input file, but its mfile * statement

included a default value, the corresponding data object is initialized to that default.

A warning is issued on the terminal, and the missing variable is appended to the

echo file with a comment stating it was not found.

• If a registered variable is not found in the input file, and its mfile * statement

did not include a default value, an error message is issued to the terminal and the

program aborts.

• If there is some size inconsistency for a vector or matrix variable of fixed size, e.g.

wrong number of elements at some given row in the input file and/or wrong number

of rows, the corresponding pre-allocated buffer is filled up to the point where the

data was correctly provided: in the case of a statically allocated buffer, this means

the rest of the vector/matrix will be left at the compiler initialized status, i.e., with

zero values. A warning is issued to the terminal.

• If an unregistered variable is found in the input file, or in the case of a syntax error

from which the parser cannot recover, the program aborts.

3.2.2.2. Grid Initialization and Memory Allocation. The subsequent call to grid init()

at solvermain.c:DOC grid init initializes the x array and constants related to N presented

in Table 3.1. These determine the sizes of the memory blocks to be allocated: notice that

these sizes depend on the number of processes too.

Most storage and buffers are allocated to the required space in the following calls under

DOC memory allocation. The wrapper macros checkmalloc.h:*CHECKMALLOC and related

functions in checkmalloc.[hc] do basic bookkeeping of the amount of memory allocated,

which is displayed at runtime. This code is peripheral to the simulator, and mostly self–

explanatory.

Many of the variables allocated at this point of the source code are only used in par-

allel execution, and their relevance will be made clear in Chapter 4. In fact, from this

point on, most of the code in solvermain.c is not compiled into the serial program. The

next relevant point in the serial compilation is under DOC data init, where the calls to

{bc,data,phys} init() are found.

3.2.2.3. Boundary Data. The first call under DOC data init initializes the boundary

data. Boundary data varies greatly: for a model with M = 2, the simplest way to specify the

left boundary condition is with the line bc left = [0,1]; in the input file, which means

constant Dirichlet conditions are to be applied to both state variables, with values 0 and 1.

This is equivalent to bc left=[0,1; 0,0]; or bc left=[0,1; 0,0; 0,0];: the second row

3.2. INITIALIZATION 37

of the matrix bc left specifies boundary type Dirichlet, and the third specifies the data is

constant–in–time, as provided in the first row. The second and third rows default to zero.

Recall from Section 1.5 that boundary data is given as a γm
α (t) function, α ∈ {a, b},m =

1, . . . , M . The values in the first row of bc {left,right} are constant values for γ, which

is the most common case. If γ is not constant, a separate entry must be given in the input

file to provide the necessary data.

Summarizing, the boundary conditions imposed on each state variable are described by

three values given in each column of the matrices bc {left,right}. For m = 1, . . . ,M ,

these values have the following meaning.

• bc {left,right}(1,m) Constant value for γm
α .

This value is ignored if bc {left,right}(3,m) is non–zero, i.e., if the value of γm
α

varies in time.

• bc {left,right}(2,m) Boundary condition type.

Either 0 for Dirichlet, 1 for Neumann or 2 for Robin, respectively. Defaults to

Dirichlet. If set to Robin, extra data (the α and β coefficients of equation (1.32))

must be provided for this variable (see below).

• bc {left,right}(3,m) Boundary data type.

Either 0, 1 or 2 for constant–in–time, transient time series or periodic time series,

respectively. Defaults to constant–in–time. If non–constant data are selected, they

must be provided separately (see below).

Some extra information may be required, in addition to that contained in bc {left,right}:
if Robin conditions are imposed anywhere, the two coefficients must be given; and if the data

is non–constant anywhere, a time series must be given. If such extra information is required,

for example, for state variable m = 2 at the left boundary, then a two–column matrix

named bc left data 2 must be present in the input file, containing a series of (t, γ2
a(t))

pairs, with increasing t. If the boundary type is Robin, the first row of this matrix contains

α and β, and the following rows contain the data series. If the boundary type is Robin

with constant γ, then the matrix has only one row and γ is given by bc left(1,2). This is

MATLAB indexing: notice that the corresponding indexes inside the C program would be

bc left[0][1].

The increasing time values of a time series cover some range [tMIN , tMAX]. It is required

that tMIN = 0. Depending of the series being transient of periodic, evaluations for t >

tMAX will either yield the value of γ(tMAX), for the transient case, or wrap around to

γ
(
t− tMAX × bt/tMAXc

)
, for the periodic case.

38 3. COMPUTER IMPLEMENTATION

3.2.2.4. Initial Data. The routine data init() interpolates the state values in data into

the storage for the current (and now initial) state vector u now. Initial data is provided in

data as an array of size n data of (M + 1)-vectors, i.e., it contains (M+1)*n data floating

point values: the first component of each (M + 1)-vector is some x, and the next M com-

ponents are the state variables. The x values should be in increasing order. If two or more

consecutive (M + 1)-vectors are given for a same x position, the first is used as the value at

x− and the last is used as the value at x+: this allows discontinuities to be introduced in

linearly interpolated data.

How these data are interpreted depends on the value of data type. The size of data

(i.e., the value of n data) need not match N , just as the values of x stored in data need not

match actual grid points. The current implementation provides two mappings:

• data type = 1→ Piecewise Linear: Each (M +1)-vector corresponds to a nodal

value, and the values are linearly interpolated between the given x positions. The x

values in the array must cover the whole domain [xa, xb], unless Dirichlet conditions

are imposed. In this latter case, the boundary conditions suplement the initial data

(see below). On the other hand, if the minimum and/or maximum values of x in

data are outside the domain, the extra information is ignored.

• data type = 2 → Piecewise Constant: Each (M + 1)-vector corresponds to a

constant value over a segment, and the x value given in the (M + 1)-vector is the

right end of the segment to which that value corresponds. It is implicit that the

left end of each segment is the right end of the previous segment. From that, it is

implicit that the left end of the first segment is the left end xa of the domain. The

entries in data for which x < xa are ignored; the first entry for which x > xb has x

set to xb, and any others are ignored.

The preceding call to data make compatible() fills in missing initial piecewise linear

data using Dirichlet boundary conditions. If the initial data are missing at some boundary

for which Dirichlet conditions are given, these are applied. If initial data is still missing, the

program aborts. It is always the case that the boundary data take precedence.

PARALLEL: The ghost * now values are also filled in by data init(), but only in

parallel execution. See Chapter 4.

This completes the physics–independent data initialization: the call to phys init() sets

up physics–dependent variables, which are discussed in 3.5.

Last, statistics generated during each time step are gathered in the time stats array.

This first call to get local time stats() retrieves a suggested initial time step size that

was computed inside phys init(): how this is done is described in 3.5.

3.3. TIME EVOLUTION 39

3.3. Time Evolution

At the point solvermain.c:DOC time evolution, the initial/boundary value problem

presented in Chapter 1 is fully defined, i.e., all the required information has been read and

processed for the time evolution solution described in Section 1.2 to be carried out. The last

initializations concerning the simulation time and the time step counter are found under the

tag DOC time evolution, immediately preceding the core of the simulator. The wall–clock

timers and output file are also initialized at this point: the output format is described in 3.4.

Two nested iterative procedures are performed. The outermost is the time stepping algo-

rithm, which solves a nonlinear system; to do so, it has an embedded iterative Newton solver.

The outermost loop starts at DOC time loop start and ends at DOC time loop end, and in-

side it the Newton loop is marked by the tags DOC newton loop start and DOC newton loop end.

Of the approximately three hundred lines of code that make up this solver, less than one

quarter is included in the serial compilation. The other three quarters are parallelization

code. In this section we describe the serial implementation: it is futile effort to try to

understand the parallel implementation without first having a good grasp on the serial one.

The first action taken in the time evolution loop is to truncate the value of time step, as

in DOC truncate: the simulator may advance up to sim time+time step as long as this value

does not exceed the values of next print time, when output should be generated (see 3.4)

or stop time. Once the time step is defined, the call to phys set dt() initializes physics–

dependent variables that depend on the time step size (if any). The value of time step is

assumed constant until the beginning of the next time iteration.

In the process of truncating the time step size, the target time of the current time step

may be the requested stop time, in which case stop flag is set. This will cause the time

loop to break at the end of the current iteration. It may also happen that stop flag is set

if the number of time steps has reached the maximum allowed number stored in stop step.

Under DOC newton init, the current state variables stored in the * now arrays is copied

into the * past arrays, and used to compute the part of the Ξ(u) which is related to the

previous time level and therefore constant throughout each time step. Recall from equation

(1.8) that, in order to compute the state at time level n + 1 from the known state at time

level n, we seek the solution of Ξ(u) = 0: but u is actually un+1, and Ξ(u) is just a

shorthand notation for Ξ(un+1;un). If all additive terms that can be computed exclusively

from the previous time level are moved to a separate object, i.e., if we denote Ξ(u) ≡
Ξ̃(un+1;un) + y(un), we can at this point compute values of y, and then use them through

the whole Newton process. These two tasks are performed here, by the call to build y(),

and build tri(), which is called a bit further on.

At the beginning of each Newton iteration, first the buffers associated to time stats

private to the physics are reset. They will be written during each Newton iteration with

40 3. COMPUTER IMPLEMENTATION

tentative values: when some stopping criterion is reached, the values contained therein are

those to be used in the next time step. Next, the boundary ghost points are filled in, and the

block tridiagonal matrix is built with the call to build tri(), whose parameters up to and

including y are input, and the rest are output. The names of the routines and the parameters

are obvious — they build the block tridiagonal system from Equation (1.12). The code for

these build *() functions is in tridiag.[hc].

From this point until DOC newton loop end, most of the code is relevant only if paral-

lelism is used. We highlight the code segments which are executed in the serial compilation,

leaving the rest to be described in Chapter 4:

• At DOC residual reset, the local array for residuals is initialized to zero. At

DOC local residual Xi, its first half is filled with the norm values of the right

hand side.

• At DOC local tridiag, the linear system local to this process is solved: in the serial

case there is only one process. Computationally, this replaces the values of the right

hand side Ξ(u(l)) of (1.12) stored in Xi with the value of δu. The algorithm used is

a block version of standard LU factorization, described in Appendix A.

• At DOC newton update, the u now array is updated, completing the iteration as in

Equation (1.10), and the local residuals array second half is filled with the norms of

the solution for this Newton iteration.

• At DOC newton loop end, the iteration counter newton counter is incremented and

the stopping criteria for Newton’s method are checked, based on the current resid-

uals, perhaps ending this inner loop.

Finally, at DOC time loop end, the time step number step and the simulation time

sim time are incremented, output is generated if appropriate (see 3.4.1), and the time loop

breaks if stop flag is set. Under DOC wrapup, the simulators prints final diagnostics in-

formation to the terminal, regarding memory allocation and total runtime, and closes the

output file.

3.3.1. Stopping Criteria. At the end of each time loop, the function maybe stop newton()

in solvermain.c is called: it returns nonzero if the Newton convergence criteria in 1.2.1 are

satisfied by the residues of the last Newton iteration, stored in the 2M -array newton residues.

In maybe stop newton(), the the first M values in newton residues are tested against

newton tol Xi, and the latter M values are tested against newton tol u, corresponding to

the two convergence criteria in 1.2.1. The residual accumulation can be found in the Newton

loop, looking for the updates of these variables.

3.4. OUTPUT 41

3.4. Output

The simulator generates interactive text output to the terminal, and binary output to

a file. The output to the terminal consists of diagnostics information: it is generated at

constant real–time intervals, and includes the elapsed simulation time, predicted remaining

and total time, and some qualitative information about the current state of the simulation.

This work is performed by the * diagnostics() routines in solvermain.c, which in turn

call physics specific phys diagnostics().

Writing to the binary file is performed in the routine maybe print state(). The routine

is partly described in the following subsection, along with the file format, and partly in

section 4.4 because of MPI related delayed output issues.

The periodicity with which binary output is generated is controlled by the print by step,

print time interval and print step interval variables given in the input file. These

variables have default values 1, 0 and 1, respectively, indicating that output is to be generated

at the end of every time step.

Conceptually, output first is sent to the binary file just after initialization, i.e., the initial

data u0 corresponding to time level n = 0 and simulation time T = 0, stored respectively

in u now, step and sim time, is always the first record stored in the output file. The

output of subsequent records is generated at the end of each time step, with the call to

maybe print state() under DOC time loop end, according to the following rule:

• If the flag print by step is zero, output is generated at constant intervals in the

simulation time. If sim time is a multiple of print time interval, output is gener-

ated. Because these are floating point values, the truncation and tracking performed

under DOC truncate and in the function maybe print state() is required.

• If the flag print by step is nonzero, output is generated at constant intervals in

the time level. If step is a multiple of print step interval, output is generated.

These are integer values, and the tracking of when to generate output is done in

maybe print state().

The final state of the simulation is sent to the output file regardless of the two criteria

above.

3.4.1. Binary File Format. The first call to maybe print state(), after data ini-

tialization and before the first time step is taken, prints a header containing information

that is not related to the time level. The contents of this header are those dumped under

DOC output header, and are described in Table 3.3. It also dumps a binary version of the

input file, so that restart files can be generating solely from postprocessing the output.

Each subsequent record (including the initial data) is dumped under DOC output record,

and has the format described in Table 3.4. Last, the next simulation time when output

42 3. COMPUTER IMPLEMENTATION

should be generated is determined under DOC output tracking. The rest of the code in this

function is explained in 4.4.

Record type[size] Data
char[8] String identifying the simulator version, e.g.

"NITRO001".
char[64] String identifying the physics version, e.g. "QUAD001".
int32 Number of grid points N .
int32 Number of state variables M .
int32 Number Nts of values in time stats.

char[16*M] Strings identifying the components in the state vector.
char[8* Nts] Array of Nts strings identifying the values in

time stats.
double[2] Physical domain boundaries xa and xb.
double[N] Spatial grid x.
double[2] Initial visualization interval in physical domain.

double[M*2] Initial visualization interval for each state component.
Table 3.3. Output file header.

Record type[size] Data
double Simulation time
double Time level (saved as double, albeit integer).

double[Nts] The contents of time stats.
double[N*M] The contents of u now.

Table 3.4. Output file header.

3.5. Physics Implementation

A particular “physics” comprises one particular physical model and one particular dis-

cretization. These two define the specific case of the general problem solved by the procedure

presented so far in this chapter. In the implementation, we wish to maintain the same level

of abstraction we have kept so far, i.e., the code that performs the bulk work of initializa-

tion, time evolution and output is physics–independent. In this section, we first describe

the general (physics–independent) interface with the physics–dependent code, and then the

implementation of each physics that was presented in Chapter 2.

3.5.1. Public Interfaces. The actual physics to be compiled is determined in the

makefile, and physics–dependent routines are made visible in the physics–independent code

through declarations in phys.h and discrete.h. In the makefile, a macro that identifies

the physics is defined and added to the compilation flags. For example, the quadratic model

presented in 2.1.1 is labeled quad. If the makefile variable PHYS is set to quad, the macro

3.5. PHYSICS IMPLEMENTATION 43

QUAD is defined while the code is compiled, i.e., -DQUAD is added to the compilation flags,

and the files containing the implementation of this physics — meaning both the equations

in 2.1.1 and the discretization in 1.4.1 — are added to the list of objects to be linked: in

this case, the objects rcdphys.o and rcddiscrete.o.

The macro defining the physics — QUAD in the example — is used in the {phys,discrete}.h
files to include the proper physics–dependent headers. The physics–independent headers are

included in physics–independent sources {solvermain,grid,tridiag}.c.
3.5.1.1. The *phys.h files. First and foremost, each physics provides constants M, M2

and Nts, which are the size of the state vector and its square, i.e., M and M2, and the

number of objects made available through phys get local time stats(), i.e., the size of

the time stats vector. It is always the case that Nts > 0, and the first value of time stats

is a suggestion for the next time step size, based on the current state of the simulation.

Physics also provide some standardized descriptive information:

char phys version[64] The name and version of the physics, e.g. QUAD001.

char phys comp names[M][16] An array of strings of length sixteen, containing the names of

the M state variables.

char time stat names[Nts][8] An array of strings of length eight, describing the contents of

the Nts values in the time stats array.

The following functions account for all physics dependent operations:

phys load() This is called under solvermain.c:DOC input file. Physics

dependent parameters are registered for loading by this function.

phys init() Initializes physics private data, after the input file had been

loaded and the global data initialized, including the initial state

vector.

phys * time stats() The phys get local time stats() function fills in the time stats

vector passed by the main solver at the end of each time step; be-

cause the computation of the values returned by phys get local time stats

is cumulative in nature, i.e., maxima/minima over the state ar-

ray, phys reset local time stats() is called in solvermain.c

to reset the accumulation buffers at the beginning of each time

step. PARALLEL: The quantities stored in the time stats array

by phys get local time stats are, as suggested by the name,

local to the current process. In order to get globally valid quan-

tities, phys reduce time stats() takes the values generated at

each process, i.e., corresponding to each segment of the solution,

44 3. COMPUTER IMPLEMENTATION

and performs the applicable computations, e.g., maximize, mini-

mize or average. Put simply, it takes P sets as input, each rep-

resentative of a K sized segment of the state vector, and returns

one set as output, representative of the whole.

phys set dt() After the actual time step size is determined in solvermain.c

under DOC truncate, this function allows the physics to pre-

compute any temporaries it may have related to the value of

time step.

phys begin diagnostics() Outputs physics–dependent information to the terminal at the

beginning of a run.

phys f() This is where the equations that define the physics are computed.

It is heavily bound to the functions in the *discrete.c files,

which are discussed next.

3.5.1.2. The *discrete.h files. The two functions in this file, namely discrete {tri,y}(),
together with tridiag.h:build {tri,y}(), build the tridiagonal system (1.12). Some com-

plications arise in parallel execution, however: these are discussed in Chapter 4.

The functions in tridiag.c loop over the spatial grid and compute the values of the

operator EEEEE and its derivatives for each node, i.e., it loops over the lines of the system (1.12),

building them sequentially. Recall from equation (1.7) that we use three grid points and

two time levels to evaluate each block equation of the system. Some of this computation

is done per grid point, i.e., some functions of u are evaluated independently at each point

involved in the discretization. This is accomplished by the function phys f(). Next, the

values associated with each of the three grid points in the stencil for a given node, both

the M state components and the functions evaluated in phys f(), are given as input to

discrete {tri,y}(), which compute the block equation associated to that grid node.

The architecture implied by the interface of phys f() serves all three goals presented

in the beginning of this chapter, i.e., mathematical validity, computational efficiency, and

source code clarity. Even so, implementing all mathematical formulæ that are deemed nec-

essary, i.e, fully satisfying the requirement of mathematical validity, may render the code

cumbersome and the computation costly. The implementations of phys f() are therefore

the foremost object of scrutiny in writing light and fast code, so as to satisfy the requirement

of computational efficiency.

Further savings come from the buffering and reuse of all the values computed in phys f(),

which is called only once per grid node, without wasting either processor time (if, when

computing the blocks corresponding to a given node, phys f() was called for the said node

and its two neighbours, the amount of computation would be threefold) or memory (as it

would be if the buffers were not recycled).

3.5. PHYSICS IMPLEMENTATION 45

The key point in the implementation of each physics is the implementation of phys f()

and discrete {tri,y()}. The concepts behind these functions are:

• The three functions are expanded inline: they must be, because they are “called”

for each grid node, at each time step, at least once. The proper use of the constants

described in the following items ensures the code expansion is minimal, that all

loops can be fully unrolled and that all conditional statements are optimized out at

compile time.

• The first actual parameter u passed to phys f() is an array of size M, containing

the state vector, as indexed by enum State. The second actual parameter jet is

an array of size JETSIZE, defined as the last symbol of enum Jet. The symbols in

enum Jet identify the positions in jet with the functions of the state variables to

be computed in phys f().

• The third formal parameter is a binary mask with three relevant flags. The first

flag indicates whether the mathematical functions relevant for computing the right

hand side of system (1.12) must be computed, and is always true. The second flag

is analogous for the left hand side of (1.12), and is not always true. Another way

of interpreting these flags is that the first requests the zero–order derivatives, and

the second flag requests the first–order derivatives.

The third flag indicates whether phys f() must write values which are state

independent, e.g., whether a 4 × 4 matrix with only two nonzero values must be

fully written or only the nonzero (u–dependent) values must be written. Recall that

the buffers are reused, so these constant values need to be set only once.

• In the calls to phys f(), the third actual parameter is always a constant, so all

conditional statements in phys f() are resolved at compile–time by the optimizer.

• After buffers are passed to phys f(), they contain all information required by

discrete {tri,y}(). When passed to phys f(), the u buffer is input only, and the

jet buffer output, and the actual grid position associated with the state stored in u

and jet is not relevant. When the same buffers are passed to discrete {tri,y}(),
they are both input only, and the grid position is relevant.

• The symbols in enum State and enum Jet must be used consistently in all three

functions to access the values stored in these buffers.

This architecture provides maximum efficiency if the actual implementation of these three

methods is in full accordance with the concepts above. Nonoptimal or improper implemen-

tations will have correspondingly poor performance. Likewise, the referencing through enu-

merations, the separation of the computations into node–dependent (phys f()) and stencil–

dependent (discrete {tri,y}()), provide for good readability without degrading the ob-

ject code. Other points in coding style contribute as well: the members of the enumerations

46 3. COMPUTER IMPLEMENTATION

State, Jet and Stats are prepended by underscores, and hard typecasts are used to allow

for matrix notation access in portions of the jet vector corresponding to dfdu, dhdu and

dqdu.

3.5.2. RCD Physics. All the models in Chapter 2 use the discretization given in 1.4,

and are lumped into the sourcefiles rcd*.*. The code in rcddiscrete.c is largely shared

by all these physics, and the code in rcdphys.h is very similar between any two physics.

Because the models have so much in common, we discuss most implementation details using

the quadratic model from 2.1.1 as an example: the other models are discussed in comparison

to this one.

3.5.2.1. General macros and conventions. The physics described in Chapter 2 are iden-

tified by the following macros:

QUAD Quadratic model from 2.1.1.

COREY Corey’s model from 2.1.2.

SOLID AKKUTLU Combustion model from 2.2.3.

SOLID GRIGORI Combustion model from 2.2.4.

The variable PHYS, defined at the beginning of the makefile to the lower-case versions of

these strings, selects which physics should be compiled, by defining the appropriate macro

and compiling the appropriate files.

Below rcdphys.h:DOC phys vars, there are disjoint sections conditioned by these macros

for compilation. Each section defines the M and M2 constants, and the State, Jet and Stats

enumerations, along with the declarations of the physics dependent parameters. Some other

macros are defined only in some physics, as explained below:

• If a model has h(u) other than h(u) = u, then it must provide the implementation

of h(u) (see below), and define the macro NON LINEAR ACCUM.

• If a model has q(u) other than q(u) = 0, then it must define the macro HAS SOURCE

and provide the implementation of q(u) (see below).

• If the model contains an equation that must be discretized using the Box scheme

from 1.4.2, then it must define the macro NBOX with the number of equations to

be discretized differently. In this case, the first M-NBOX equations are discretized

using the Crank–Nicolson scheme, and the last NBOX of the total M equations are

discretized with the Box scheme.

At the time of this draft, no stationary problem was implemented, neither any

physics that uses the staggered grid. The latter are sketched in rcd2discrete.[hc].

Also, the discretizations in rcddiscrete.[hc] are for constant g (viscosity) matrices

only. Non-constant g would be implemented in the same lines of NON LINEAR ACCUM

3.5. PHYSICS IMPLEMENTATION 47

and HAS SOURCE. Some code has been marked by the macro VARIABLE G,

which is not defined anywhere.

If any or both of the functions h(u) and q(u) are nonzero in the model, the macros

NON LINEAR ACCUM and HAS SOURCE should be defined accordingly. The symbols in each

enum Jet are mnemonics for the values of the functions f , (which is present in all RCD

models), and h, q, if these should be defined. Compare the two declarations of enum Jet in

the QUAD and SOLID AKKUTLU sections of the code: the latter has symbols for both h and q,

in accordance with having the two associated macros defined.

After the definitions specific to each physics, come a number of variables used by all of

them, seen in Table 3.5.

Variable Corresponding object(s)
double visc[M2], visc mult The viscosity matrix and its multiplier, as in

equation (2.6).
double one k, one 2k, h2, one h,

one 2h, one h2

Temporaries for 1/δx, 1/2δx, δx2, 1/δt, 1/2δt
and 1/δt2.

double g[M2], g h2[M2] The matrices g as in (2.6) and g/δt2.
double max c rate, max r rate,

max d rate

Maxima of convection, reaction and diffu-
sion rate, reduced during the computation of
phys f() over the physical domain during the
last Newton iteration.

double alpha, onemalpha, onemalpha 2,

onemalpha h, onemalpha 2h,

onemalpha h2, alpha 2,

alpha h, alpha 2h, alpha h2,

twoalphag h2[M2]

The alpha variable can be present in the in-
put, but defaults to 0.5: it is the interpolation
weight between the two time levels, as given in
equation (1.15). The rest are temporaries sim-
ilar to those above, but including the weight
α.

double fixed dt, cfl, reaction,

diffusion, interp, reynolds

Most of these are legacy from the pre-
vious software: in particular, interp has
been replaced by alpha. fixed dt is used
in case the adaptive time step computation is
overridden (see below).

int use fixed, use parabolic,

visc is scalar times eye

The use parabolic parameter is
legacy from the previous software.
Nonnull use fixed overrides the adap-
tive adaptive time step computation.
visc is scalar times eye should be true if
the off–diagonal entries of g are zero.

Table 3.5. RCD physics variables.

TODO: The “legacy” parameters above should eventually be removed from

the input file, once the time adaptive time step calculation is properly formalized.

48 3. COMPUTER IMPLEMENTATION

PARALLEL:The variable max c rate is declared as threadprivate because only the

convection rate is actually computed along each Newton iteration. The adaptive time stepping

mechanism is incomplete. One would expect all three variables to be updated alongside, and

thus all three should be local to each thread.

3.5.2.2. The actual physics equations. Still in rcdphys.h, the definition of phys f() for

the quad physics illustrates syntax mapping to the equations in 2.1.1. Here, a few shorthands

are defined, namely f and dfdu, the latter with a hard typecast to allow for matrix notation

in the ensuing lines.

IMPORTANT: Notice that matrices in C are indexed contrary to Fortran and

Matlab, so the symbols / indexes used to index the typecasted dfdu correspont

to column and row, instead of the other way around.

TODO:

At the time of this draft, there is an implemented but only partially tested

feature, defined by macros STATS * FLUX. The idea is to gather along with the

time stats the values of the flux function at the boundaries.

Also, phys begin diagnostics() does not display any information particular to

any physics other than quad, and there is an ad-hoc implementation of velocity

initialization for the solid akkutlu model in phys init().

3.5.2.3. The discretization. The discretizations outlined in 1.4.1 and 1.4.2 are overlaped

in rcddiscrete.h, with most statements conditioned by the macros defined in rcdphys.h,

differently for each physics. Because of this, the code is syntatically fragile, and should be

modified with extreme caution. These functions are called for each grid point (i.e., for each

block equation) and the correspondence between their formal parameters and mathematical

objects is given at table 3.6: the mnemonics used are commonplace and should be self-

explanatory.

3.5.2.4. The system builders. The functions build {y,tri}() in tridiag.[hc] build the

whole system (1.12), calling discrete {y,tri} for each grid point successively. The func-

tion build tri() is struturally identical to build y(), therefore we describe the rationale

of the latter only.

PARALLEL: The function works over a partition of size K ≈ N/P , i.e., the workload

of this function is split in the case of parallel execution: in this section, we focus on the

behaviour of the serial case, for which the formal parameters described in table 3.7 have

unique values.

The function is straightforward with a couple of noteworthy quirks: under DOC time stat,

notice the call to zero out the buffer relative to the state at the ghost point. This is required

to ensure that the accumulations in phys post() will not be contaminated by data from the

previous time level during parallel execution.

3.5. PHYSICS IMPLEMENTATION 49

Parameter Corresponding object(s)
uim, ui, uip The state vector u at the positions xi−1, xi and xi+1, respectively.

In build y(), these are at time tn−1. In build tri(), these are
at time tn.

uim jet, ui jet,

uip jet

The jet vectors filled in by calls to phys f, corresponding to the
state vectors u* above.

upim, upi, upip The state vector u at the positions xi−1, xi and xi+1, at time tn−1

(only in build tri()).
upim jet, upi jet,

upip jet

The jet vectors filled in by calls to phys f, corresponding to the
state vectors u* above.

y Part of the right hand side Ξ(un
i ,u

n−1
i) = F(un

i)+y(un−1
i) of sys-

tem (1.12); it is output in build y(), and input in build tri().
A, B, C, Xi Right and left hand sides (Ai, Bi, Ci and Ξi of system (1.12).

Table 3.6. Formal parameters for the discretization functions.

ParameterCorresponding object(s)
int K, I, P Partition size, process rank and number of processes,

respectively. In serial execution, K = N, I = 0 and P =

1.
double sim time, time step Simulation time tn−1 and current time step δt — target

time is tn = tn−1 + δt.
const

double*

ghost left past,

u past,

ghost right past

Only u past is used in serial execution: it contains the
state vector un−1.

double* y In serial execution, the whole vector y corresponding
to part of the right hand side Ξ(un,un−1) = F(un) +
y(un−1).

Table 3.7. Formal parameters for the build y() function.

PARALLEL: In parallel execution, the ghost nodes for each partition are updated out of

sync with the rest of the state vector. The correct data cannot be retrieved from them until

the coupling system is solved.

Also, the loop structure appears broken, as can be seen from the for and if statements.

This is forced by the presence of (computational/index related) boundary conditions and

the buffer recycling.

The recycled buffers passed to phys f() are declared under DOC recycled, initialized

under DOC init, and rotated under DOC rotate; the next value for uip is determined under

DOC move as either a position inside the state vector, or the ghost point.

As previously stated, the function build tri() is structurally identical. The only rele-

vant difference is the TWOLEVEL macro, which conditions the compilation of statements that

implement the usage of the previous time level in the computation of the left hand side. At

50 3. COMPUTER IMPLEMENTATION

the time of this draft, no model implemented uses this feature. It implies the

computation of phys f() ONE EXTRA TIME for each grid point.

3.6. Using the program

Understanding the implementation, as described so far in this chapter, is not required

in order to run the program, although it does make it clearer by exposing all inner mecha-

nisms. In the following subsections, the compilation, execution and output visualization are

explained, with proper references to the internals previously detailed.

3.6.1. Compiling the program. The whole NITRO package, including source code

and documentation, should be installed on a GNU/GCC compatible platform: any UNIX

brand or clone should work, including the Cygwin environment for Win32. The root directory

contains a makefile, which is simple as far as makefiles go: it determines the host architecture

from the environement variable RPHOSTTYPE, which can be set to mingw32 for Cygwin - any

other value defaults to UNIX/GCC.

The first line of makefile defines the PHYS variable, which should be set to lower case

strings corresponding to the name of the physics to be compiled (e.g. quad or solid akkutlu).

The make command should be given with a target name parameter — typing simply

make with give an error message prompting for one such parameter. Valid targets are clean,

gdb, serial, mpi, openmp. The serial target generates a serial executable, whereas the mpi

and openmp targets generate the corresponding parallel versions. The gdb target is the same

as serial, but with debug information. All executables are built into the bin directory,

and object files are left in the NITRO root directory. The clean target removes temporary

objects, but does not remove any executables.

Non-experts should always run make clean before building an executable.

3.6.2. Running the program. The program takes one parameter from the command

line: the name of the input file. Sample input files for each implemented physics are given

in the test directory.

PHYS variable in makefile Macro in source code Input file in test directory
quad QUAD quadtest.m

solid akkutlu SOLID AKKUTLU satest.m

solid grigori SOLID GRIGORI sotest.m

Table 3.8. Compile and run information for the physics currently implemented.

For completion, the file quadtest.m is reproduced below and crossreferenced to previous

sections of this document.

3.6. USING THE PROGRAM 51

a1 = 3; b1 = 0; c1 = 1; d1 = 0; e1 = 2;

a2 = 0; b2 = 1; c2 = 0; d2 = 0; e2 = 0;

Coefficients of the flux functions (2.5) on page 22.

visc is scalar times eye = 1;

visc = [1 0 ; 0 1];

visc mult = 3;

Viscosity matrix (2.6) from page 22 as given on table 3.5 on page 47. Notice that visc and

visc is scalar times eye are consistent.

stop time = 500;

stop step = 10000;

print by step = 0;

print time interval = 10;

print step interval = 10;

Simulation advances to time t = 500; a maximum of 10000 time steps is allowed. Output

is generated at constant time intervals of δt = 10 (the value of print step interval is

ignored). See sections 3.3 and 3.4.

bc left = [0 -2];

bc right = [-.2 -2];

Boundary conditions are Dirichlet, constant in time, with ua = {0,−2} and ub = {−0.2,−2}.
See 3.2.2.3 on page 36.

grid lim = [-1000 1000];

n cells = 1000;

The physical domain is −1000 ≤ x ≤ 1000, discretized into 1000 cells. See subsection 3.2.2.2

on page 36.

data type = 1;

data = [20 0 -2; 20 -.2 -2];

Data is piecewise linear, with a jump point at x = 20: the inital state vector is u = {0, 2} for

x ≤ 20 and u = {−0.2,−2} for x > 20. The Dirichlet boundary conditions are used to fill

in, i.e., the data is linearly interpolated from the jump condition at x = 20 to the boundary

values. See subsection 3.2.2.4 on page 38, and table 3.2 on page 35.

use fixed = 0;

fixed dt = 0;

use parabolic = 0;

cfl = 0.8;

reaction = 0.1;

diffusion = 1;

52 3. COMPUTER IMPLEMENTATION

interp = 0.5;

Time step is adaptive (use fixed is zero), so fixed dt is ignored. See table 3.5 on page 47.

plot x = [-1000 1000];

plot lim = [-2 1; -5 0];

When visualizing the output (see next section), the initial ranges will be x ∈ [−1000, 1000],

sw ∈ [−2, 1] and so ∈ [−5, 0]. These do not affect the calculations, see subsection 3.2.1 on

page 32.

3.7. Post–processing

The binary output generated by the simulator is suitable for efficient loading by any

independent application. The result.m MATLAB script, located in the root of the NITRO

package, provides basic data visualization and comparison facilities.

The script runs on MATLAB 7.0 or higher. Its invocation creates an interface window

with the following contents:

• Load 1st Set... This button opens a dialog for choosing an output file from the

simulator, from which the data set is loaded. The rest of the interface is disabled

until one such data set is loaded. Using this button again discards the previously

loaded data set or sets (see below).

• Load 2nd Set... A second data set may be opened afterwards for comparison with

the first. (Re)using this function does NOT discard the primary data set, which

is used as reference for comparison. The second data set must match the previous

regarding physics and program version, but may differ in all other aspects.

• Tile views Tries to resize and position all open graphics windows to fill the screen.

• Limits Opens a dialog where the user can set the plot limits for x and each compo-

nent in u. The dialog also allows the user to automatically set these limits, based

on maxima and minima values of the actual data. The current x range is used when

generating restart files (see Save... below).

• Prompt Gives the user the MATLAB debug prompt, where he can inspect the data

using MATLAB commands. The data is available inside the D structure: the data

sets are stored in D.A and D.B. Most of the contents of these structures correspond to

those in tables 3.3 and 3.4, and some are postprocessed from those: all are described

in table 3.9.

• Save... Opens a dialog for choosing a file name (.m) for writing a new input

(restart) file, based on the input file of the primary data currently loaded, but

using the state for the currently visible time (see Time level below) as initial data,

and the currently visible x range for grid limits. At the time of this draft,

this feature was partially implemeted and tested, in particular regarding

non-constant / non-Dirichlet boundary conditions.

3.7. POST–PROCESSING 53

• Popup view for: This list the available data views, namely each state component

against x and against each other. Double clicking opens the figure window.

• Time level This slider controls for which time level the data is displayed, on the

graphical plots and on the text output below. The currently displayed data is used

when creating a restart file (see Save... above).

Record type[size] Data
version String identifying the simulator version, e.g.

"NITRO001".
phys version String identifying the physics version, e.g. "QUAD001".
N Number of grid points N .
M Number of state variables M .
Nts Number Nts of values in time stats.
phys comp names Strings identifying the components in the state vector.
time stat names Strings identifying the values in time stats.
grid lim Physical domain boundaries xa and xb.
x Spatial grid x.
orig plot x Initial visualization interval in physical domain.
orig plot lim Initial visualization interval for each state component.
plot x Current visualization interval in physical domain.
plot lim Current visualization interval for each state component.
input file The original input file, without comments.
T The simulation times.
step The corresponding time levels.
time stats The corresponding time stats for each time level.
nT The total number of time levels in this file.
u The state vectors for each position and time (M ×

N×nT).
lims The actual maxima and minima of the state compo-

nents over the domain, used for automatically fitting
the plot intervals to the data.

filename The file name from which this data structure was read.
Table 3.9. MATLAB data structure.

CHAPTER 4

Parallel Implementation

We now discuss how the operations previously described are implemented in a parallel

environment with P processing elements. Put simply, data parallelism is employied in the

Newton solver. The state vector is split over the processing elements, in equal or near equal

contiguous shares, i.e., the physical domain is partitioned in P shares of size Kp such that

Kp ≈ N/P . The computation of the coefficients of the linear system (1.12) at each Newton

iteration is distributed accordingly, and so is its solution.

The distribution of the computation of the coefficients of (1.12) is a natural consequence

of the distribution of the state vector, described in 4.2.1: each processing element computes

the block equations corresponding to its partition: some information must be duplicated at

the boundaries between partitions, i.e., the two equations at the boundary between neighbour

partitions both depend on the value of the state at the boundary node(s). On the other hand,

the solution of the linear system implies global exchange of information, and a completely

different approach to its solution is required.

Each Newton iteration consists of these two steps, i.e., computing the system’s coeffi-

cients and solving the system, so they are performed alternatingly in the Newton loop. The

two steps are comparable in terms of computational load. In the description of the serial

implementation, we deliberately overlooked the solution of each linear system, which is done

with the sequential algorithm presented in Appendix A. It is quite trivial to understand, and

fully encapsulated by two functions in block lu.h, namely block lu {decomp,solve}().
Performing an efficient parallel solution requires embedding the linear solver into the

Newton loop: in the next section 4.1, we present the parallel algorithm for the solution of

block tridiagonal systems that is implemented in solvermain.c. We introduce the algorithm

before we describe its implementation, as it poses constraints on many decisions in the

implementation of the simulator.

4.1. Parallel Solution of Block Tridiagonal Systems

The parallel algorithm for the solution of block tridiagonal systems is a two level con-

struct based on the sequential algorithm presented in Appendix A, i.e., we assume that the

sequential solution of a block linear system is known procedure.

55

56 4. PARALLEL IMPLEMENTATION

Consider the problem of solving (1.12) with N = KP + (P − 1). We can group the

equations into P blocks of size KM ×KM as follows:

A =




A1 C1

B2 A2 C2

.
BK−1 AK−1 CK−1

BK AK CK

BK+1 AK+1 CK+1

BK+2 AK+2 CK+2

.




; (4.1)

in the ensuing discussion, we write this partitioning as




A1

Θ1

Γ1 Λ1 Φ1

Ω1

A2

. . .
AP−1

ΘP−1

ΓP−1 ΛP−1 ΦP−1

ΩP−1

AP







x1

ξ1

x2
...

xP−1

ξP−1

xP




=




y1

ψ1

y2
...

yP−1

ψP−1

yP




,

(4.2)

with

Ap ∈ RKM×KM ,
xp, yp ∈ RKM ,
Λp, Θp, Γp, Φp, Ωp ∈ RM×M , and
ξp, ψp ∈ RM .

The full system given in equation (4.2) is solved in three stages: first, each of the P

systems of K block equations Apxp = yp is solved independently, and the solutions obtained

are functions of the unknowns ξp; second, we construct from these solutions a new, smaller

system of P − 1 block equations, and determine the ξp unknowns; finally, we assemble the

solutions of the two previous stages to find the solution of the full system.

We now formalize the first step: introducing the KM ×M matrices

U =




I
0
...
0


 and V =




0
...
0
I


 ,

4.1. PARALLEL SOLUTION OF BLOCK TRIDIAGONAL SYSTEMS 57

we write

A1x1 + ξ1Θ1V = y1 → x1 = A−1
1 (y1 − ξ1Θ1V),

ξp−1Ωp−1U + Apxp + ξpΘpV = yp → xp = A−1
p (yp − ξp−1Ωp−1U− ξpΘpV), p = 2, . . . , P − 1,

ξP−1ΩP−1U + APxP = yP → xP = A−1
P (yP − ξP−1ΩP−1U),

(4.3)

and define the objects yp, Up, Vp as

Apyp = yp, ApUp = UΩp−1 and ApVp = VΘp, (4.4)

so they can be computed using any method such as LU factorization of Ap and back sub-

stitution for each yp, U and V right hand side.

Now the solutions for xp in (4.3) can be written as functions of ξp, i.e.,

x1 = y1 −V1ξ1,
xp = yp −Upξp−1 −Vpξp, p = 2, . . . , P − 1,

xP = yP −UP ξP−1,

(4.5)

The second step is to use these solutions to determine the unknowns ξp. For each row of

(4.2) corresponding to a ψp, we use the xp defined in (4.5) to obtain an equation of the form

Γp(V
Txp) + Λpξp + Φp(U

Txp+1) = ψp, p = 1, ..., P − 1, (4.6)

Each solution xp is a function of ξp and ξp−1, except for x1 and xP . Applying the expressions

for xp from (4.5) to (4.6), we obtain

Γ1

[
VT(y1 −V1ξ1)

]
+ Λ1ξ1 + Φ1

[
UT(y2 −U2ξ1 −V2ξ2)

]
= ψ1,

Γp

[
VT(yp −Upξp−1 −Vpξp)

]
+ Λpξp

+Φp

[
UT(yp+1 −Up+1ξp −Vp+1ξp+1)

]
= ψp, p = 2, . . . , P − 2,

ΓP−1

[
VT(yP−1 −UP−1ξP−2 −VP−1ξP−1)

]
+ ΛP−1ξP−1

+ΦP−1

[
UT(yP −UP ξP−1)

]
= ψP−1.

(4.7)

from which we derive the coefficients of a new tridiagonal system of P − 1 equations



Λ1 Φ1

Γ2 Λ2 Φ2

.

ΓP−2 ΛP−2 ΦP−2

ΓP−1 ΛP−1







ξ1

ξ2
...

ξP−2

ξP−1




=




ψ1

ψ2
...

ψP−2

ψP−1




, (4.8)

where
Λp = Λp − Γp(V

TVp)−Φp(U
TUp+1), p = 1, . . . , P − 1,

Γp = −Γp(V
TUp), p = 2, . . . , P − 1,

Φp = −Φp(U
TVp+1), p = 1, . . . , P − 2,

ψp = ψp − Γp(V
Typ)−Φp(U

Typ+1), p = 1, . . . , P − 1.

(4.9)

The multiplications involving U and V in equation (4.9) are trivial: they only indicate that

the first or last block of the vectors Up or Vp must be isolated, respectively. The third step

58 4. PARALLEL IMPLEMENTATION

is trivial as well: once the system (4.8) is solved, the solution of the full system is computed

from the expressions in (4.5).

4.2. Parallel Iterative Newton Solver

In this section we fill in the gaps left in Chapter 3, regarding parallelism–specific data

structures and procedures: we replicate the layout previously employed.

The code can be compiled in two ways: one is using shared–memory/thread–based par-

allelism through OpenMP, the other is using distributed–memory/cluster–based parallelism

through MPI. This choice is controled by defining one of the two (mutually exclusive) macros

WITH OPENMP and WITH MPI. Large sections of the code in solvermain.c are conditioned by

these, and very little of the parallel specific code is shared by both models. It essence,

solvermain.c contains three different programs overlapped, one serial and two parallel.

They are, however, completely equivalent: all three generate the exact same results when

executed on a single processor, and the two parallel codes generate the exact same results

if executed on the same number of processors. As far as the operations in the algorithm

described in the previous section go, all are performed in the same sequence, on the same

data.

It is important to point out that the code included in the MPI version is executed on

all processes, so if a section of code must be executed only (or differently) by process I==0,

there is a if (I) {... or if (!I){... conditioning it. The code included in the OpenMP

version, on the other hand, is executed only by process I==0 unless there is a #pragma omp

parallel directive preceding a block–statement, in which case the program forks. The two

programming models are fundamentally different, and we have used each of them in the most

natural way, which happen to be diametrically opposite: in MPI, parallel execution takes

place unless otherwise enforced; in OpenMP, serial execution takes place unless otherwise

enforced.

4.2.1. Data Objects. In the case of parallel solution, each process solves a local linear

system with multiple right hand sides, as in equation (4.4). The next solution step is per-

formed by a single process, which uses the solutions obtained by every other processor to

solve the coupling system (4.8).

All the data objects used in the serial code are used in the parallel versions as well;

however, their size and contents differ as can be seen in the memory allocation statements

under DOC memory allocation. In particular, the objects declared under DOC state vars

and DOC solver vars have sizes involving M and N in the serial code, while in the parallel

versions the sizes are functions of M and K.

Many other data objects exist only in the parallel versions. The coupling system is

obviously common to the two parallel implementations, and the data objects associated

4.2. PARALLEL ITERATIVE NEWTON SOLVER 59

with it are in the first #if block under DOC parallel vars. These are required both in the

MPI and OpenMP versions. Other variables are specific to either programming model.

To setup systems (4.4) and make the solutions available to each process is trivial in the

OpenMP version, because all processes share the same memory space. In the MPI version,

the objects computed from (4.4) must be explicitly aggregated on one node, which builds

and solves system (4.8) and then broadcasts the solution to all other processes. To do so,

it uses the data structures and buffers declared in the MPI–specific #ifdef block, namely

mpi {bcast,agg} buf. Other MPI–specific variables are required by the output routine, and

are explained in 4.4.

There are two points of the Newton iteration where data must be reduced from all

processes. The first is after the whole Jacobian matrix has been evaluated, i.e., when the

global values time stats can be determined from those local to each process. The second

is at the end of each Newton iteration, when the norms of the residues are evaluated and

tested against the stopping criteria. Both implementations use the space in reduce buf for

these operations.

4.2.2. Input Data Loading and Processing. The allocation of the MPI–specific

objects in calls under DOC memory allocation is conditioned by the value of I, i.e., the

process I==0, which performs all serial operations, requires extra storage for aggregating

and reducing data, as well as managing comunication will all other processes. Some objects

are allocated with different size on worker processes, others are not allocated at all. The

OpenMP version is not executing in parallel at this point, so the memory is allocated by

process I==0.

The input file is parsed and loaded by all processes in the MPI version, so in both parallel

programs the raw input data is available to all processes. In 3.2.2 we singled out the lines

under the tag solvermain.c:DOC data init, responsible for initializing the simulation data

in the serial version. These calls are the ones included in the MPI version as well, only the

values of K and I will determine which part of the data to process (in the serial version, I==0

and K==N).

In the OpenMP version some extra initialization is necessary, which is perfomed by the

code in the #ifdef WITH OPENMP preceding tag DOC data init. For each thread, there is

one copy of each global data object declared as threadprivate, i.e., although global in

scope, they are not shared. These variables are pointers to (shared) memory, and their

initialization is done in two steps. The first was memory allocation, already described,

which is done by the master thread (I==0) before any parallel construct appears. The

second part of the initialization is at the first parallel fork, immediately after the call to

omp set dynamic(): this call is required for threadprivate static data to be coherent. The

60 4. PARALLEL IMPLEMENTATION

copyin clause initializes each thread’s copy to the value of the master thread, then offsets

are added based on I. Now the pointer in each thread points to the beginning of the local

section of the shared arrays.

The next calls are equivalent to those under DOC data init, with two small differences.

First, threads other than the master copy the value of ghost left now into the correct

positions of u now (recall that the pointers of all threads point to the same arrays, only

at different offsets). Second, while the MPI and serial versions use time stats directly

as buffer for phys get local time stats, OpenMP uses the reduction buffer and reduces

it. Likewise, the #ifdef WITH MPI block that follows performs aggregation, reduction and

broadcast of time stats. At this point, all processes have the same contents in time stats,

in both MPI and OpenMP versions.

4.3. Parallel Time Evolution

In the serial version, the system was fully solved by the two lines under DOC local tridiag.

Now, the mathematical objects and operations of the algorithm presented in 4.1 can be seen

in the lines before and after this tag.

The first step of the parallel solution, i.e., the computation of the objects in (4.4), is done

in both parallel versions; however, the MPI program copies the results into the mpi agg buf

for later aggregation. Notice that local time stats are collected for reduction in both

versions. This section executes in parallel.

The second step of the parallel solution is the serial step, i.e., setting up and solving the

system (4.8). This requires data from all processes to be available to the I==0 process. The

MPI code does this with explicitly, directly under DOC coupling sys.

After the ifdef WITH MPI conditioned aggregation, there is a serial section of code (no

#pragma parallel, but a if(!I) on top of it). The whole second step of the algorithm in

4.1 is performed between the calls to {start,end} timer(SERIAL).

Once (4.8) is solved, all grid points have been processed and the local values of time stats

can be reduced. This is done slightly differently in each of the three alternative compilations,

as seen in the code under DOC reduce. In the MPI version, these values and the solution in

psibar have to be broadcast to all processes, just like the data had to be aggregated before,

so this opportunity is used to broadcast the stop flag and (reduced) time stats. Once

time stats is updated, the local representations are reset for the next Newton iteration.

The current implementation sets stop flag consistently in each process, so this broad-

casting is redundant. It may become useful if one some stopping criterion based on local

data is adopted, or if interactive (but graceful) exit is implemented.

The values in psibar are the solution of the coupling lines of the full system, so these val-

ues contain the δu corresponding to the internal “ghost” points stored in ghost {left,right}.

4.4. DELAYED OUTPUT 61

The code following DOC residual reset initializes the residual accumulators, and applied

the Newton update for the coupling lines, which is replicated on neighbor processors. Next,

under DOC full solution, the local systems are solved; under DOC newton update the rest

of the state vector u now is updated, and then the Newton residues collected at each process

are aggregated, reduced and broadcast, so the call to maybe stop newton() is performed

by each process on consistent data, i.e., newton residues contains the same values for all

processes.

4.4. Delayed Output

Output is performed by process I==0 alone, which owns the output file. In the serial and

OpenMP versions, the state vector is fully available to process I==0 at any given moment,

so the code in maybe print state() included in these compilations is straightforward and

simple. However, in the MPI version, the variable u now does not contain the whole state

vector at any moment: it does not even have storage space to do so.

The MPI version performs delayed output: the first call to maybe print state() sets up

message passing to transfer the initial values of u now local to each process to the u gather

buffer of process I==0; it does NOT write a time record to the output file, only the header.

Subsequent calls to maybe print state() write the time record that was setup for output

in the PREVIOUS call, and sets up message passing to gather the current values of u now,

local to each process, into the u gather buffer.

This gathering and flushing can be seen clearly under the tags DOC output gather and

DOC delayed output, but one important point is rather obscure. At the end of the simula-

tion, the final state must be printed, and printed only once. The big clause of the if at the

function’s beginning ensures this condition in the serial and OpenMP versions, as explained

in 3.4. Notice that one term is dropped from the logical expression in the MPI compilation,

namely the one that checks whether the current step was the one printed in the last call.

This is because the function will be called twice at the end of the simulation recursively: the

call takes place at the end of the I==0 branch under DOC output gather. The call is done

with the actual argument stop flag set to two, to force the function to return at the point

under DOC force return.

Bibliography

[1] I. Y. Akkutlu and Y. C. Yortsos. The effect of heterogeneity on in-situ combustion: The propagation of
combustion fronts in layered porous media. J. Pet. Tech., 54(6):56–56, 2002.

[2] I.Y. Akkutlu and Y.C. Yortsos. The dynamics of in-situ combustion fronts in porous media. Combustion
and Flame, 134:229–247, 2003.

[3] A. Azevedo, D. Marchesin, B. J. Plohr, and K. Zumbrun. Capillary instability in models for three-phase
flow. Zeitschrift fur Angewandte Mathematik und Physik, 53:713–746, 2002.

[4] S. Buckley and M. Leverett. Mechanisms of fluid displacement in sands. Trans. AIME, 146:187–196,
1942.

[5] g. chapiro. Singular Perturbation Applied to Combustion Waves in Porous Media (in Portuguese). PhD
thesis, IMPA, 2005.

[6] g. chapiro, a. a. mailybaev, d. marchesin, and a.j. souza. Singular perturbation in combustion waves for
gaseous flow in porous media. In XXVI CILAMCE, 2005.

[7] A. Corey, C. Rathjens, J. Henderson, and M. Wyllie. Three–phase relative permeability. Trans. AIME,
207:349–351, 1956.

[8] E. Isaacson and H.B. Keller. Analysis of Numerical Methods. Dover Publications, 1994.
[9] D. Marchesin and B. J. Plohr. Wave structure in WAG recovery. SPE Journal, 6:209–219, 2001.

[10] a. j. souza, d. marchesin, and i. y. akkutlu. Wave sequences for solid fuel adiabatic in-situ combustion
in porous media. Comp. Applied Math, 25(1):27–54, 2006.

[11] J. C. Strikwerda. Finite difference schemes and partial differential equations. Wardsworth &
Brooks/Cole, 1989.

63

APPENDIX A

Serial Solution of Block Tridiagonal Systems

Consider a system of N block equations with coefficient matrix A, unknown vector x and

given right hand side y, where the Aij entries of A = [Aij] are M ×M matrices themselves,

so the total number of (scalar) equations in the system is NM , i.e.,

Ax = y, A ∈ RNM×NM , x,y ∈ RNM , (A.1)

Recall that the only non–zero entries of A are those of the main diagonal and its two

neighbors. Following the notation of [8], the matrix A is of the form

A =




A1 C1

B2 A2 C2

.
BN−1 AN−1 CN−1

BN AN




. (A.2)

The LU factorization, when applied to this type of matrix, is much simplified: it becomes a

linear algorithm, whereas it is quadratic for a general matrix. Trivially, one obtains

A = LU =




A1

B2 A2

.

BN−1 AN−1

BN AN







I C1

I C2

.

I CN−1

I




,

with
A1 = A1, C1 = A

−1

1 C1{
Ai = Ai −BiCi−1

Ci = A
−1

i Ci

, i = 2, . . . , N − 1,

AN = AN −BNCN−1.

(A.3)

The solution of system (A.1) can be computed through standard back substitution, solv-

ing

Lz = y and then Ux = z,

so
z1 = A

−1

1 y1

zi = A
−1

i (yi −Bizi−1), i = 2, . . . , N
and

xN = zN

xi = zi −Cixi+1, i = N − 1, . . . , 1,

(A.4)

65

66 A. SERIAL SOLUTION OF BLOCK TRIDIAGONAL SYSTEMS

where the xi, yi and zi, with i = 1, . . . , N , are M -vectors that correspond to each blocks

equation of the full system.

