
. SIMULATION OF SPONTANEOUS IGNITION IN POROUS MEDIAP. CASTAÑEDA, D. MARCHESIN, AND J. BRUININGAbstra
t. We study the stability of 
ombustion in a porous medium in a simpli�ed modelthat takes into a

ount the balan
e between heat generation and heat losses. The tem-perature dependen
e of heat generation is given by Arrhenius law. Heat losses are due to
ondu
tion to the ro
k formation. The system evolution is des
ribed by an in�nite numberof nonlinear modes. We show that its long time behavior is di
tated by the two dominantmodes, whose phase diagram 
ontains two attra
tors and a saddle, justifying the pi
ture in
lassi
al 
hemi
al engineering. 1. Introdu
tionCombustion in-situ is an important methodology to extra
t heavy oil from reservoirs, pro-vided ignition is sustained and 
ontrolled. The geometri
al setting of the rea
tion lo
ationand of 
ondu
tive heat losses is a very important matter. When heat losses be
ome equalto a small rea
tion heat rate, the system remains trapped in a slow rea
tion mode; su
ha mode is indistinguishable from extin
tion. On the other hand, if heat losses are smallerthan the heat generated by the rea
tion, the temperature and the heat losses will in
rease,so we expe
t that the system rea
hes an equilibrium in a fast rea
tion mode; this is ignition.Heat losses are strongly dependent on the geometry of the heat generating region. In thisarti
le we will only dis
uss the one-dimensional 
ase, however work in progress in
ludes othergeometries.In Se
. 2 we 
onstru
t the rea
tor model that we will study in this work and nondimen-sionalize it to enter, in Se
. 3, in linear analysis of its equilibria. These steady-state solutionswill guide some of the numeri
al analysis made in Se
. 4. Finally, in Se
. 5 we summarizeour results. 2. The rea
tor model for one dimensional heat flowWe derive a set of equations that des
ribe the 
onservation of energy in a porous mediumwhere thermal �ow o

urs. Fi
k's law des
ribes the transport of energy by 
ondu
tion,and Arrhenius' law des
ribes the rate of energy generated by the rea
tion between oxygenand 
oke. Then the variation of heat in the domain is equal to that rea
tion governed byArrhenius' law inside the domain plus Fi
k's law, whi
h involves the boundary. For a generaldomain Ω we have:
d

dt

∫

Ω

QdV =

∫

Ω

∆H co ccA exp

(

−
E

RT

)

dV +

∫

∂Ω

κ∇T · n̂ dS, (1)where Q = Q(x, t) is the thermal energy density, ∆H denotes the rea
tion enthalpy per unitmass of oxygen, co is the 
on
entration of oxygen in the inje
ted gas, cc is the 
on
entrationof 
arbon (the �fuel�) in the porous media, A is the pre-exponential fa
tor, E is the a
tivationenergy, and κ denotes the thermal 
ondu
tivity.Key words and phrases. 30o CILAMCE, Chemi
al rea
tor, Porous media, In-situ 
ombustion, Geometri
alsetting, Heat losses. 1



2 CASTAÑEDA, MARCHESIN, AND BRUININGIn the one dimensional 
ase, the domain in x stret
hes from 0 to L, and the rea
tion takespla
e is the subinterval from zero to a �xed a < L. We assume that the thermal 
ondu
tivityin the interval x ∈ [0, a) is mu
h larger than in the region x ∈ (a, L]. Thus we 
an taketemperatures uniform in spa
e for the rea
ting interval, and we 
an simplify the governingequation.Noti
e also, that in the interval x ∈ (a, L], there is no rea
tion taking pla
e, there is onlyheat 
ondu
tion, co = 0 there, so Eq. (1) leads to the 
lassi
al heat equation. In this way,the 1d equations are:
ρece

∂T

∂t
= κ

∂2T

∂x2
x ∈ (a, L)

ρici
∂T

∂t

∣

∣

∣

∣

x=a+

= ∆HcoA exp

(

−
E

RT

)∣

∣

∣

∣

x=a+

+
κ

a

∂T

∂x

∣

∣

∣

∣

x=a+

x ∈ [0, a].
(2)We nondimensionalize with

x := ax̃, t := tRt̃, θ := TR/E, L := aL̃, (3)obtaining
ρecea

2

κtR

∂θ

∂t̃
=

∂2θ

∂x̃2
x̃ ∈ (1, L̃)

ρicia
2

κtR

∂θ

∂t̃

∣

∣

∣

∣

x̃=1+

=
∆H coccAa

2R

κE
exp

(

−
1

θ

)∣

∣

∣

∣

x̃=1+

+
∂θ

∂x̃

∣

∣

∣

∣

x̃=1+

x̃ ∈ [0, 1].
(4)Introdu
ing

tR =
ρicia

2

κ
, E =

ρece
ρici

and γ =
∆HcoccAa

2R

κE
, (5)and dropping the tildes, we rewrite the system in the form:











































E
∂θ

∂t
=

∂2θ

∂x2
x ∈ (1, L), t > 0

∂θ

∂t

∣

∣

∣

∣

x=1

= γ exp

(

−
1

θ

)∣

∣

∣

∣

x=1

+
∂θ

∂x

∣

∣

∣

∣

x=1+

x = 1, t > 0

θ(L, t) = θL t > 0
θ(x, 0) = θi(x) x ∈ [0, L]
θ(x, t) = θ(1, t) x ∈ [0, 1].

(6)
Clearly, any solution of the PDE (6) is always 
onstant in x ∈ [0, 1]. Taking this fa
t intoa

ount, we 
an perform the analysis either in [0, L] or in [1, L].As we will see, there are two types of solutions for (6) as far as E is 
on
erned. The�rst one 
orresponds to E = 0 and the se
ond one to E > 0. The �rst one 
orrespondsto ρece ≪ ρici; in the se
ond one, the pre
ise value of E is irrelevant. Following data for
hemi
al 
ompounds in the work of Tyler (1985) and by Abu-Khamsin et al. (1988), we seethat γ = 7.0× 108.



SIMULATION OF SPONTANEOUS IGNITION IN POROUS MEDIA 33. Linear stability of equilibria in the rea
tor modelThe steady-states ̺ are solutions of system (6) that satisfy






















∂2̺

∂x2
= 0 x ∈ (1, L)

γ exp

(

−
1

̺

)∣

∣

∣

∣

x=1

+
∂̺

∂x

∣

∣

∣

∣

x=1+

= 0 x ≤ 1,

(7)with boundary 
ondition ̺(L) = θL at the right, where θL is a non-negative temperature.Then, we look for a similar boundary 
ondition at the left, say ̺(1) = θo, where even if θo isunknown, it represents a non-negative temperature.Clearly the solution of Eq. (7.a) for su
h Diri
hlet BCs is given by the 
ontinuous solution
̺(x) =

{

θo x < 1
(θo − θL)r(x) + θL x ∈ [1, L],

(8)with r(x) := (L− x)/d, x ∈ [1, L] and d := L− 1. (9)3.1. Finding the equilibria. Substituting the se
ond equation from (8) into the Eq. (7.b)leads to
γd = Ξ(θo), where Ξ(θ) :=

θ − θL
exp(−1/θ)

. (10)Therefore L, θo, θL and γ are intimately related in steady-states. Equation (10) is the sameexpressions found in (Bruining et al., 2008) and means that we are interested in values
θo > θL.Looking for the extrema of the fun
tion Ξ, we see that

Ξ′(θ) =
d

dθ

[

(θ − θL) exp

(

1

θ

)]

=
θ2 − θ + θL

θ2
exp

(

1

θ

)

. (11)Then Ξ′(θ) = 0 at
θM =

1

2
−

1

2

√

1− 4θL and θm =
1

2
+

1

2

√

1− 4θL, (12)where m stands for minimum and M for maximum, see Fig. 3.1.In Fig. 3.1 we have θL = 0.17 for the solid 
urve, θL = 0.15, 0.19, 0.21, 0.23 for the dotted
urves (from left to right), θL = 0.25 for the dotted-dashed 
urve. Noti
e that when θLis smaller, the peak be
omes larger. Noti
e that the interse
tion of ea
h 
urve with the θaxis is the respe
tive θL. Finally, noti
e that for the solid 
urve with θL = 0.17 we mark,at the left of verti
al axis, the regions where we have one or three solutions (with `1' or`3') of Ξ(θ) = γd. On the horizontal axis, we mark also the regions I, II, III where the
orresponding θI , θII , θIII would be. We noti
e that the �rst equation in (10) always hasat least one root, whi
h means that there is always a steady-state solution. In some 
ases,there are three di�erent roots, and three di�erent stationary solutions, related to the roots
θI , θII , θIII and noti
e that θL < θI < θM < θII < θm < θIII .



4 CASTAÑEDA, MARCHESIN, AND BRUINING

Figure 3.1. Some Ξ(θ) versus θ.3.2. Linear stability analysis of equilibria. We have found the stationary solutions forthe Diri
hlet 
ondition. We will study time dependent solutions that are 
lose to the sta-tionary solution (8) to determine under whi
h 
onditions ̺(x) is linearly stable.Noti
e that when θ ≈ ̺, using Taylor's formula, we 
an write
exp(−1/θ) ≈ exp(−1/̺)(1 + (θ − ̺)/̺2). (13)Now using (13) on the �rst term of the RHS of (6.b), adding and subtra
ting ̺x and ̺t,re
alling that ̺t = 0 and ̺(x = 1) satis�es Eq. (7.b), we have that (6.b) be
omes

∂(θ − ̺)

∂t

∣

∣

∣

∣

x=1

≈ γ exp(−1/̺)(θ − ̺)/̺2
∣

∣

x=1
+

∂(θ − ̺)

∂x

∣

∣

∣

∣

x=1+

. (14)We now examine how the solution of the evolution problem behaves when we perturb thestationary solution around the solution ̺. To do so, we de�ne
ϑ(x, t) :≈ θ(x, t)− ̺(x). (15)Sin
e we have assumed 
onstant reservoir temperatures at the right boundary, we write thelinear model for the perturbation, from Eqs. (14) and the heat equation, as

{

ϑt = ϑxx x ∈ (1, L), t > 0
ϑt

∣

∣

x=1
= σϑ

∣

∣

x=1
+ ϑx

∣

∣

x=1+
x ≤ 1, t > 0

(16)where
σ = σ(θo) := γ exp(−1/θo)/θ

2
o. (17)for ̺(1) = θo. The homogeneous Diri
hlet boundary and initial 
onditions are

ϑ(L, t) = 0 and ϑ(x, 0) = ϑo(x). (18)



SIMULATION OF SPONTANEOUS IGNITION IN POROUS MEDIA 53.3. Separation of variables. Equation (16) is the heat equation, and a 
lassi
al approa
hto �nd its solution is separation of variables. We substitute the expression
ϑ(x, t) := T (t)X(x), (19)into (16) to obtain for t > 0 and x in (1, L)

Ṫ

T
(t) =

X ′′

X
(x) = λ, or Ṫ − λT = 0 and X ′′ − λX = 0, (20)where λ is a 
onstant. So the temporal part has the form T (t) = exp(λt), and therefore, weneed to solve the following eigenvalue problem:















X(x) = X(1) x ∈ [0, 1)
λX(x) = X ′′(x) x ∈ (1, L)
λX(1) = σX(1) +X ′(1+)
X(L) = 0.

(21)The 
ase λ > 0. Take λ = β2, with β ∈ R
+. Solving Eq. (21.b), we have

X(x) = A exp(βx) +B exp(−βx), (22)where A and B depend on β. Substitution of X(x) from Eq. (22) into Eq. (21.d) shows that
B = −A exp(2βL), and by substituting again in Eq. (21.
), we noti
e that for su
h β ≥ 0to exist, we need that

F (β) :=
σ − β2

β

sinh(βd)

cosh(βd)
=

σ − β2

β
tanh(βd) = 1. (23)Using (17) and F ′(β) we noti
e that for (23) to be satis�ed, we need that

σ(θo)d = γ exp(−1/θo)d/θ
2
o > 1, so γd exp(−1/θo) > θ2o . (24)Manipulating (10) leads to γd exp(−1/θo) = θo − θL. Comparing the latter equation with(24), we see that a root of β exists only if 0 > θ2o − θo + θL is satis�ed. This requires that

θo ∈ (θM , θm), given in Eqs. (12). In the Ξ vs. θ plot from Eq. (10) in Fig. 3.1, we see thatwhen we have just one stationary solution, it lies out of (θM , θm) and therefore, we do nothave any unstable mode; the solution must be stable.We use the equality
exp(βx)− exp

(

β(2L− x)
)

= exp(βL)
[

exp
(

β(x− L)
)

− exp
(

β(L− x)
)

]

= −2 exp(βL) sinh
(

β(L− x)
)

, (25)in Eq. (22), to 
ompute the eigenfun
tion asso
iated with the eigenvalue β as
Xo(x) :=

{

Co sinh(βd), x ∈ [0, 1]

Co sinh
(

β(L− x)
)

, x ∈ (1, L],
(26)where Co :=

(

sinh2(βd) + sinh(2βd)/(2β)− d/2
)

−1 is a suitable 
onstant to normalize theeigenfun
tion in the L2[0, L] spa
e. A simple di�erentiation with respe
t to d shows that Cois an in
reasing fun
tion of d, and be
ause d = 0 implies Co = 0, we have that Co > 0 for
d > 0.



6 CASTAÑEDA, MARCHESIN, AND BRUININGThe 
ase λ < 0. We now look for negative eigenvalues. Take λ = −α2 and noti
e that αand −α give the same solution, so for 
onvenien
e take α ∈ R
−. From Eq. (21.b), we have

−α2X = X ′′, (27)it follows that X(x) is a linear 
ombination of sines and 
osines with argument αx. But fromEq. (21.d), we have X(L) = 0, so it is better to 
hoose
X(x) = A sin(α(L− x)), (28)where A = A(α) is a 
onstant. By substituting (28) into Eq. (21.
) we get that −α mustsatisfy −(σ + α2)A sin(αd) = −Aα cos(αd). Then, we are looking for α ∈ R

− su
h that
σ + α2

α
=

cos(αd)

sin(αd)
= cot(αd). (29)Comparing the plot of both sides of (29), we see that there is a root αn in ea
h interval

(−(n + 1)π/d, −nπ/d) with n ∈ N . The roots form a 
ountable de
reasing sequen
e ofeigenvalues for our model. Ea
h of these eigenvalues has an asso
iated eigenfun
tion
Xn(x) :=

{

Cn sin(αnd), x ∈ [0, 1]

Cn sin
(

αn(L− x)
)

, x ∈ (1, L],
(30)where Cn :=

(

sin2(αnd) − sin(2αnd)/(2αn) + d/2
)

−1 are suitable positive normalizing 
on-stants for the eigenfun
tions in the L2[0, L] spa
e.We have used the negative sign for α just for 
onvenien
e. In this way, we only emphasizethat the positive eigenvalue β 
orresponds to the unstable mode, while the negative eigen-values αn 
orresponds to the stable modes; if λ < 0 the solution (19) 
onverges exponentiallyto zero. This arrangement is also 
onvenient be
ause it allows us to plot all the 
onditionsin a single graph.We 
an rede�ne the fun
tion in (23) as F (y) below, using positive y for β and negative yfor α, in this way:
F (y) :=







(σ/y − y) tanh
(

yd
)

y > 0
σd y = 0
(σ/y + y) tan

(

yd
)

y < 0.
(31)Now the roots of F (y) = 1 are all the eigenvalues; negative values of y 
orrespond toeigenvalues λ = −y2, and positive values of y 
orrespond to eigenvalues λ = y2. The plot ofthis fun
tion is in Fig. 3.2. From the limits

lim
y→0−

(σ/y + y) tan
(

yd
)

= σd, and lim
y→0+

(σ/y − y) tanh
(

yd
)

= σd, (32)we see that F (y) is a 
ontinuous fun
tion at y = 0, for any σ or L. If we let σ and L move
ontinuously so that σd be
omes less than 1, then the positive eigenvalue no longer exists,be
ause it be
omes a negative eigenvalue. This is a very ni
e property.It is possible also to show even more, the fun
tion F (y) ∈ C∞(R) ex
ept for y = nπ/d,where is not de�ned. Although, its �rst derivative is 
ontinuous at y = 0.Noti
e that for the unstable mode to exist we need σd > 1, whi
h is false when γd is lessthat the 
riti
al value σ∗ := 4 exp(1/2); a bifur
ation o

urs right at this value! Be
ause theheight F (y = 0) in Fig. 3.2 
hanges 
ontinuously for 
ontinuous variation of σ and d, we
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Figure 3.2. Positive and negative eigenvalues, F (y) = 1. There exists atmost one positive eigenvalue.have that the bifur
ation from one stable solution to the three steady-state solutions (oneunstable and two stable) is 
ontinuous dependent in su
h parameters.3.4. Evolution of the linearized model. The solution ϑ(x, t) is obtained by superpositionof all modes given by Eq. (19). We saw that we have to pro
eed di�erently for eigenvalues
λ ≤ 0 and λ > 0. Therefore, with the superposition of the solutions in (26) and (30), wehave that the solution of the linearized model is

ϑ(x, t) = Ao exp(β
2t) sinh

(

β(L− x)
)

+
∑

n∈N

An exp(−α2
nt) sin

(

αn(L− x)
)

, (33)where the 
oe�
ients An := 〈ϑo, Xn〉, ∀n ∈ N are obtained by 
omparing (33) at time zerowith the initial 
ondition ϑo(x). This superposition is all that we need due the 
ompletenessand orthonormality of the eigenfun
tions in the region [0, L], the formal arguments are
ontained in the thesis (Castañeda, 2010).Remark: Noti
e that there exists one and only one positive eigenvalue when θo ∈ (θM , θm),with θM , θm given by (12). When 1 − 4θL < 0, there is no unstable equilibrium, and thetemperature of the reservoir goes to the (unique) stationary solution.4. Numeri
al methodIn this se
tion we dis
uss a �nite di�eren
e s
heme that we used for the nonlinear problem(6), with E = 1. We implement the Crank-Ni
olson method (CN). For the heat equation, inthe domain x ∈ [1, L] it would be:
−
µ

2
vn+1
m+1 + (1 + µ)vn+1

m −
µ

2
vn+1
m−1 =

µ

2
vnm+1 + (1− µ)vnm +

µ

2
vnm−1, (34)where vnm = v(mh+ 1, nk) is the dis
rete solution (then vno represents v(1, nk)), µ := k/h2,

h is the grid spa
ing and k is the time interval. The CN method is of order O(h2, k2), andit is un
onditionally stable.The right boundary 
ondition is governed by vn+1
M = vnM , where M := (L− 1)/h. In orderto dis
retize the left boundary, x = 1, where θt = γ exp

(

− 1/θ
)

+ θx, we re
all that one wayof deriving the dis
retization of CN method utilizes an auxiliary grid point between two step



8 CASTAÑEDA, MARCHESIN, AND BRUININGtimes, namely (

1 +mh, (n + 1
2
)k
). For the sake of 
onsisten
y we have to expand the timederivatives at the boundary around the auxiliary point (1, (n+ 1

2
)k
). Noti
e that

θ
(

1, (n + 1/2± 1/2)k
)

= θ
(

1, (n+ 1/2)k
)

± 1/2θt
(

1, (n+ 1/2)k
)

+(k2/8)θtt
(

1, (n + 1/2)k
)

+O(k3). (35)By subtra
ting the (+) equation from the (−) equation in (35), and dividing by k, we �nd
θt
(

1, (n+ 1/2)k
)

=
θ
(

1, (n+ 1)k
)

− θ(1, nk)

k
+O(k2). (36)We do something similar for the spatial derivative, but in this 
ase, we use spatial averageat two neighboring grid points by adding both Eqs. (35), the (−) and the (+), for θx insteadof θ. Noti
e that θx(1, · ) = [θ(1 + h, · )− θ(1, · )]/h+O(h), then

θx
(

1, (n+ 1/2)k
)

=
1

2

[

θ
(

1 + h, (n+ 1)k
)

− θ
(

1, (n + 1)k
)

h

+
θ(1 + h, nk)− θ(1, nk)

h

]

+ O(h, k2). (37)Finally we 
an write
exp

(

−1

θ
(

1, (n + 1/2)k
)

)

=
1

2

[

exp

(

−1

θ
(

1, (n + 1)k
)

)

+ exp

(

−1

θ(1, nk)

)]

+O(k2). (38)From these approximations, we get the �nal form for the boundary 
ondition
(

1 +
λ

2

)

vn+1
o −

λ

2
vn+1
1 −

kγ

2
exp

(

−1

vn+1
o

)

=

(

1−
λ

2

)

vno +
λ

2
vn1 +

kγ

2
exp

(

−1

vno

)

. (39)Although this boundary s
heme is of �rst order in spa
e in 
omparison to the former bases
heme of se
ond order, this is not a problem, be
ause the stability and 
onvergen
e of theoverall results are not impaired in the simulations. Moreover, the a

ura
y of the overalls
heme is not altered; it is se
ond order in spa
e and time.4.1. Implementation of the numeri
al method. Let h = (L − 1)/M be the size ofthe spatial grid and M + 1 the number of spatial nodes of the numeri
al domain. Let
vn := (vno , v

n
1 , . . . , v

n
M)T . We write the CN method as

Avn+1 − U(vn+1) = Bvn + U(vn), where U(vn) :=

(

kγ

2
exp

(

−
1

vno

)

, 0, . . . , 0

)T (40)and
A :=













1 + λ
2

−λ
2

0
−µ

2
1 + µ −µ

2. . . . . . . . .
−µ

2
1 + µ −µ

2
0 0 1













, B :=













1− λ
2

λ
2

0
µ

2
1− µ µ

2. . . . . . . . .
µ

2
1− µ µ

2
0 0 1













.We want to solve ea
h step of the implementation by Newton's method. Let be ωo := vnand we will iterate with ωl+1 := ωl + dl, where dl is a ve
tor that 
orre
ts the last predi
tion
ωl. In this way we see how vn+1 is obtained from ωl.



SIMULATION OF SPONTANEOUS IGNITION IN POROUS MEDIA 9We are looking for dl su
h that ωl+1 solves (40.a) instead of vn+1. Set K := Bvn +U(vn),that will remain �xed for a given n. Assuming dlo small, we use Taylor's formula to express
exp

(

−1

ωl+1
o

)

= exp

(

−1

ωl
o + dlo

)

= exp

(

−1

ωl
o

)(

1 +
dlo

(ωl
o)

2

)

+O
(

(dlo)
2
)

, (41)so, we have the iterative equation
Adl + U(ωl)

dlo
(ωl

o)
2
= K −Aωl + U(ωl). (42)To solve this equation, let Ml := −Aωl + U(ωl) and

Λ :=













αl −λ
2

0
−µ

2
1 + µ −µ

2. . . . . . . . .
−µ

2
1 + µ −µ

2
0 0 1













, (43)where αl = 1 + λ
2
− kγ

2(ωl
o)

2 exp
(

− 1
ωl
o

). Then, Eq. (42) is dl = Λ−1(K +Ml). At the start ofea
h iteration, we take ωl+1 = ωl + dl and update Ml and Λ at O(1) 
ost. However, we needto solve a linear system with Λ in ea
h iteration, whi
h is expensive.Noti
e that the matri
es A and Λ di�er only in the �rst diagonal entry, whi
h 
hangesat ea
h step of Newton's method. Note that making an UL fa
torization for the A matrixand the Λ matrix gives the same U matrix. However, the L matrix di�ers only in the �rstdiagonal entry, the αl of Eq. (43). In short
Λ(l) = UL(l), (44)whi
h means that Λ and L depend upon the iteration step. Then �nding the inverse of U ,on
e and for all, outside the iterative solver, improves the solver, and equation (42) be
omes

L(l)dl = U−1
(

K +Ml

)

. (45)Comparing (42) with (45), we see that we have repla
ed the resolution of a tridiagonalsystem, in ea
h step of the iterative solver, by the resolution of a lower bidiagonal system.This algorithm improves the ma
hine time by almost 50%.4.2. Numeri
al results. Re
all that in Se
. 2 we had γ = 7× 108. Using su
h large valuesof γ in the numeri
al method leads to slow 
onvergen
e: in the nonlinear part, Eq. (39), the
αl 
oe�
ient in the solver in
reases and the solver requires a small step time k in order toguarantee 
onvergen
e. Nevertheless, we are interested in simulating situations in the model
ontaining three steady-state solutions and see the qualitative behavior of its solutions. Wedo so for relatively small values of γ.Even using a 
oarse mesh, we obtain good 
onvergen
e to both stable stationary solutions.For k = 0.2 and h = 0.01 we get an error no larger than 10−2 in 
omparison to the a
tual θIand θIII values.A good example of this behavior is the following. We set γ = 1/4, the reservoir temperature
θL = 0.2 and L = 10. For these parameters, the stationary left temperatures are θI ≈
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0.22803135, θII ≈ 0.47920158 and θIII ≈ 1.12500985. Furthermore, we set the grid numbers
h = 0.05 and k = 0.2, and the initial 
ondition

uo(x) =
(θL − θi)x+ θiL− θL

L− 1
+ 0.4095 sin

(

0.6(L− x)
)

+ 0.5905 sin
(

0.4(L− x)
)

, (46)where θi = 0.4792015876. The results of simulation for the unstable stationary solutionagree with our intuition: the evolution of the numeri
al solution approa
hes the unstableequilibrium solution in a very short time, t ≈ 30. It remains 
lose to that solution forlong time: it diverges only for t > 800, and approa
hes a stable stationary solution around
t ≈ 1850. Noti
e that using a bise
tion method we 
an �nd initial 
onditions that remain
lose to the unstable solution for times as long as we please. This result is plotted at sometimes on Fig. 4.1 for CN. In this �gure we also show results for the Ba
kward Euler methodwith 
entral di�erentiation (BE). Re�ning the grid numbers will show that the 
onvergen
ehas to be, in both 
ases, to ̺I(x).

Figure 4.1. The initial 
ondition, for time t = 0, given in (46) is plotted onthe top left. We plot with dark 
ir
les the CN method and with light 
rossesthe BE method, the three �linear� plots are the three stationary solutions. Fortimes 
loser to t = 30 the solution obtained by both methods approximateasymptoti
ally the unstable solution. Both solutions remain 
lose to it until
t = 800. The bifur
ation starts leading CN to ̺I(x) at t = 1600 and BE to
̺III(x) at t = 1850.Several simulations show that the behavior of any solution of the nonlinear model alwayshas a fast 
onvergen
e to an almost linear pro�le, from whi
h the solution will be driven toone of the stable stationary solutions. Su
h separation between traje
tories that 
onverge to

̺I(x) from those 
onverging to ̺III(x) appears to o

ur at a value θ(1, t) 
omparable to θII .
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luding remarksThe numeri
al simulation showed that the stable modes, related to negative eigenvalue λ,de
rease very fast; therefore a model with linear pro�les is a good global approximation ofthe solution for the 
omplete model for large times. This model is analyzed in (Castañeda,2010).Furthermore, the resulting equilibrium θIII related with the ignition, is prevalent be
auseof the typi
ally large values of γ, whi
h has to be of order 7.0×108. If we re
all the 
onditiongiven in Eq. (10) we note that for the existen
e of stationary solution, we need θo to beof order of γ times d, a huge nondimensional temperature. By 
omparison we note that
E/R ≈ 2×104K, and then TIII , the temperature related to the nondimensional 
ombustionvalue θIII , is of order d × 1013 Kelvin's degrees! Certainly this range is unphysi
al; thisproblem arises from the limitations of this model, i.e., the heat loss is only one-dimensional.Other geometries will 
orre
t this limitation.The two ideal 
ases in order to get 
ombustion as a �nal state are: initial 
onditionswith large amounts of 
oke and oxygen in a single steady-state equilibrium model, whi
h isrelated to 
ombustion or, for the full three steady-state model, temperatures at the rea
tionregion higher than TII . Perhaps, the dissipation of heat will not extinguish the 
ombustionsin
e we have negle
ted the 
onsumption of 
oke and oxygen, it is 
lear that the rea
tionremains a
tive forever, generating heat all the time. However, in the physi
al situation the
on
entrations of the rea
tants will de
rease, but in order to maintain the 
ombustion rate,we need to maintain them with γd > Ξ(θ(1, t)) for θ(1, t) ≥ θM or Ξ(θ(1, t)) > Ξ(θm)otherwise, see Fig. 1.From the numeri
al simulation, we 
an see that the assumption of �eternal� fuel is notso extreme, be
ause for long times the rea
tion starts slowly far away from the equilibriumburning small quantities of 
oke and oxygen, and then ignition will o

ur for large initial
on
entrations of C and O2.Finally, based on this model we 
annot determine when or where a 
ombustion 
an exist,only when it 
annot. For small perturbations of a linear initial pro�le with θ(1, 0) < θII , weare in the extin
tion region. Here the 
on
lusions are valid.We have used some spe
ial values to estimate γ and 
ompared these results against othervalues; using di�erent a
tivation energies and prefa
tors given in (Rybak, 1988), we set theprefa
tor (Aco) = 2.22×106 s−1 that is in the range 1.97×105 s−1, 3.62×107 s−1. Thereforefor a reservoir temperature of 300K will �nd that TM = 309.24K and Tm = 1.8704× 104K,the temperatures related to θM , θm in Eq. (12). Thus the unstable temperature will existand vary between these values only when the reservoir has a size for the dimensional dfrom 3.82 × 10−8m to 1.9 × 1015m. An example is for a 10Km reservoir whi
h wouldgive TII = 560, 88K so the temperature at the boundary has to ex
eed this value TII inorder to ignite. For smaller reservoirs this temperature would be larger, and the domain ofextin
tion will grow until TII rea
h the Tm value, whi
h is the limit to the model with onlyone steady-state solution.
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