SIMULATION OF SPONTANEOUS IGNITION IN POROUS MEDIA
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ABSTRACT. We study the stability of combustion in a porous medium in a simplified model
that takes into account the balance between heat generation and heat losses. The tem-
perature dependence of heat generation is given by Arrhenius law. Heat losses are due to
conduction to the rock formation. The system evolution is described by an infinite number
of nonlinear modes. We show that its long time behavior is dictated by the two dominant
modes, whose phase diagram contains two attractors and a saddle, justifying the picture in
classical chemical engineering.

1. INTRODUCTION

Combustion in-situ is an important methodology to extract heavy oil from reservoirs, pro-
vided ignition is sustained and controlled. The geometrical setting of the reaction location
and of conductive heat losses is a very important matter. When heat losses become equal
to a small reaction heat rate, the system remains trapped in a slow reaction mode; such
a mode is indistinguishable from extinction. On the other hand, if heat losses are smaller
than the heat generated by the reaction, the temperature and the heat losses will increase,
so we expect that the system reaches an equilibrium in a fast reaction mode; this is ignition.
Heat losses are strongly dependent on the geometry of the heat generating region. In this
article we will only discuss the one-dimensional case, however work in progress includes other
geometries.

In Sec. 2 we construct the reactor model that we will study in this work and nondimen-
sionalize it to enter, in Sec. 3, in linear analysis of its equilibria. These steady-state solutions
will guide some of the numerical analysis made in Sec. 4. Finally, in Sec. 5 we summarize
our results.

2. THE REACTOR MODEL FOR ONE DIMENSIONAL HEAT FLOW

We derive a set of equations that describe the conservation of energy in a porous medium
where thermal flow occurs. Fick’s law describes the transport of energy by conduction,
and Arrhenius’ law describes the rate of energy generated by the reaction between oxygen
and coke. Then the variation of heat in the domain is equal to that reaction governed by
Arrhenius’ law inside the domain plus Fick’s law, which involves the boundary. For a general
domain €2 we have:

d E
L Qdv= | AHc e A ~ = av T-7dsS, 1
dt/QQ /Q Co C exp< RT) +/89/<;V ndS (1)

where Q = Q(x, t) is the thermal energy density, AH denotes the reaction enthalpy per unit
mass of oxygen, ¢, is the concentration of oxygen in the injected gas, c. is the concentration
of carbon (the “fuel”) in the porous media, A is the pre-exponential factor, F is the activation
energy, and s denotes the thermal conductivity.
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In the one dimensional case, the domain in x stretches from 0 to L, and the reaction takes
place is the subinterval from zero to a fixed a < L. We assume that the thermal conductivity
in the interval x € [0, a) is much larger than in the region x € (a, L]. Thus we can take
temperatures uniform in space for the reacting interval, and we can simplify the governing
equation.

Notice also, that in the interval x € (a, L], there is no reaction taking place, there is only
heat conduction, ¢, = 0 there, so Eq. (1) leads to the classical heat equation. In this way,
the 1D equations are:

oT o*T
eCe ™7, — a9 s L
ai;c o~ "o E ar e (2)
K
PiCi— = AHc,Aexp (— —) ’ - x €10, al.
o120 R RT)|,_.. a0dr|,_.
We nondimensionalize with
T = ax, t 1= tpt, 0.=TR/FE, L:=alL, (3)
obtaining
2 I 2& ~
pecea” 06 00 e, L)
ktrp Ot 012 4)
picia® 00 AH c,c,Ad’R 1 00 - (
— = —————————exp| — - + — z €0, 1]
Ktp Ot |;_q, kE 0) - 1+ or _—
Introducing
a2 AHc,c Aa’
ty = PiCi ’ c_ PeCe and . coc.Aa R’ (5)
K piCi kE
and dropping the tildes, we rewrite the system in the form:
( 00 00
- - 2 1, L), t
5875 92 re(l,L),t>0
% e ! + 2 r=1,t>0
—_— f— X _— = —_— p—
at r=1 ! P ‘9 r=1 83: =1+ ’ (6)
Q(L, t) = 0 t>0
O(z,0) = 6;i(x) z €0, L]
L Oz, t) = 0(1,1) x € [0, 1].

Clearly, any solution of the PDE (6) is always constant in x € [0, 1]. Taking this fact into
account, we can perform the analysis either in [0, L] or in [1, L].

As we will see, there are two types of solutions for (6) as far as & is concerned. The
first one corresponds to £ = 0 and the second one to £ > 0. The first one corresponds
to pece K pici; in the second one, the precise value of £ is irrelevant. Following data for
chemical compounds in the work of Tyler (1985) and by Abu-Khamsin et al. (1988), we see
that v = 7.0 x 108.
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3. LINEAR STABILITY OF EQUILIBRIA IN THE REACTOR MODEL

The steady-states g are solutions of system (6) that satisfy

0%o
@ =0 xr e (1, L)
(7)
1 do
yexp | — — + — =0 r <1,
0 r=1 83: r=1+

with boundary condition o(L) = 6, at the right, where 6, is a non-negative temperature.
Then, we look for a similar boundary condition at the left, say o(1) = 6,, where even if 0, is
unknown, it represents a non-negative temperature.

Clearly the solution of Eq. (7.a) for such Dirichlet BCs is given by the continuous solution

0o <1
olw) = { (= 0)r(e) + 6,z el 1) ®)
with r(z):= (L —x)/d, z€l, L] and d:=L-1. (9)

3.1. Finding the equilibria. Substituting the second equation from (8) into the Eq. (7.b)
leads to

0—0y
d=2=(0,), h =Z0) = ————.
d=E(0).  where  E(0):= it
Therefore L, 6,, 0, and ~ are intimately related in steady-states. Equation (10) is the same
expressions found in (Bruining et al., 2008) and means that we are interested in values
00 > 0.
Looking for the extrema of the function =, we see that

(10)

_ d 1 02— 0440, 1
Then ='(0) =0 at
1 1 1 1
0]\/[25—5\/1—40[, and Qm:§+§ 1—401,, (12)

where m stands for minimum and M for maximum, see Fig. 3.1.

In Fig. 3.1 we have 6, = 0.17 for the solid curve, 6, = 0.15, 0.19, 0.21, 0.23 for the dotted
curves (from left to right), 8, = 0.25 for the dotted-dashed curve. Notice that when 6
is smaller, the peak becomes larger. Notice that the intersection of each curve with the 6
axis is the respective #;. Finally, notice that for the solid curve with 6, = 0.17 we mark,
at the left of vertical axis, the regions where we have one or three solutions (with ‘1’ or
‘3’) of Z(f) = vd. On the horizontal axis, we mark also the regions I, II, TIT where the
corresponding 0, 0,7, 0;;; would be. We notice that the first equation in (10) always has
at least one root, which means that there is always a steady-state solution. In some cases,
there are three different roots, and three different stationary solutions, related to the roots
0[, 0[[, 0]]] and notice that 0L < 0[ < QM < 0[[ < 0m < 0]]].
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FIGURE 3.1. Some =(0) versus 6.

3.2. Linear stability analysis of equilibria. We have found the stationary solutions for
the Dirichlet condition. We will study time dependent solutions that are close to the sta-
tionary solution (8) to determine under which conditions p(x) is linearly stable.

Notice that when 6 ~ p, using Taylor’s formula, we can write

exp(—1/0) ~ exp(—1/0)(1 + (0 — 0)/0”). (13)

Now using (13) on the first term of the RHS of (6.b), adding and subtracting o, and o,
recalling that o, = 0 and p(x = 1) satisfies Eq. (7.b), we have that (6.b) becomes

(0 — o) a(0 — o)

ot O (14)

~ vexp(—1/0)(0 — 0)/?|,_, +

r=1 =1+

We now examine how the solution of the evolution problem behaves when we perturb the
stationary solution around the solution o. To do so, we define

Wz, t) = 0(x, t) — o(x). (15)

Since we have assumed constant reservoir temperatures at the right boundary, we write the
linear model for the perturbation, from Eqs. (14) and the heat equation, as

Ve = Va ve(1, L), >0 ;
Q9t’$:1 = Uﬁ}a}:l +Q9x}x:1+ T S 1, t>0 ( )

where
o=o0(0,) = WeXp(—l/Qo)/Hg, (17)

for o(1) = 0,. The homogeneous Dirichlet boundary and initial conditions are

(L, t) =0 and Yz, 0) = J,(x). (18)
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3.3. Separation of variables. Equation (16) is the heat equation, and a classical approach
to find its solution is separation of variables. We substitute the expression

W, t) :=T(t)X (), (19)
into (16) to obtain for ¢ > 0 and x in (1, L)
T XI/ .
T(t):y(x):)\, or T—XT=0 and X" —\X =0, (20)

where A is a constant. So the temporal part has the form 7'(t) = exp(At), and therefore, we
need to solve the following eigenvalue problem:

X(z) = X(1) zel0,1)

AX(z) = X"(x) z € (1, L) (21)
AX(1) = oX(1)+ X'(1+)

X(L) = o

The case A\ > 0. Take A = 3%, with 8 € R™. Solving Eq. (21.b), we have
X(x) = Aexp(Bz) + Bexp(—pz), (22)

where A and B depend on (. Substitution of X (x) from Eq. (22) into Eq. (21.d) shows that
B = —Aexp(25L), and by substituting again in Eq. (21.c), we notice that for such g > 0
to exist, we need that

— 32 sinh(Ad 2
F(g) =2 55 i:;h((gdg _— 55 tanh(Bd) = 1. (23)

Using (17) and F'(f) we notice that for (23) to be satisfied, we need that
0(0,)d = yexp(—1/0,)d/0? > 1, so ~dexp(—1/6,) > 02 (24)

Manipulating (10) leads to vdexp(—1/6,) = 0, — 6. Comparing the latter equation with
(24), we see that a root of 3 exists only if 0 > 6% — 6, + 0, is satisfied. This requires that
0, € (Orr, O.n), given in Egs. (12). In the = vs. 6 plot from Eq. (10) in Fig. 3.1, we see that
when we have just one stationary solution, it lies out of (0, 6,,) and therefore, we do not
have any unstable mode; the solution must be stable.

We use the equality

exp(Bz) — exp (B2L — 7)) = exp(AL) | exp (Blz — L)) — exp (B(L — o))

= —2exp(AL)sinh (B(L — z)), (25)
in Eq. (22), to compute the eigenfunction associated with the eigenvalue (3 as
inh 1
X, (2) = Cos%n (Bd), x € [0, 1] (26)
Cosinh (B(L — x)), =€ (1, L],

where C, := (sinh*(3d) + sinh(28d)/(28) — al/2)_1 is a suitable constant to normalize the
eigenfunction in the L?[0, L] space. A simple differentiation with respect to d shows that C,
is an increasing function of d, and because d = 0 implies C, = 0, we have that C, > 0 for
d > 0.
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The case A\ < 0. We now look for negative eigenvalues. Take A = —a? and notice that «
and —a give the same solution, so for convenience take a € R™. From Eq. (21.b), we have
—o’X = X", (27)

it follows that X (x) is a linear combination of sines and cosines with argument az. But from
Eq. (21.d), we have X (L) = 0, so it is better to choose

X(z) = Asin(a(L — x)), (28)

where A = A(«) is a constant. By substituting (28) into Eq. (21.c) we get that —a must
satisfy —(o + a?)Asin(ad) = —Aa cos(ad). Then, we are looking for o € R~ such that

o+a®  cos(ad)

a  sin(ad)

= cot(ad). (29)

Comparing the plot of both sides of (29), we see that there is a root «,, in each interval
(—(n + )/d, —nm/d) with n € N. The roots form a countable decreasing sequence of
eigenvalues for our model. Each of these eigenvalues has an associated eigenfunction

) Cysin(ayd), x € [0, 1]
Xn(@) = {C’n sin (o, (L — ), z € (1, L], (30)

where C,, := (sin®(a,d) — sin(20,d)/(2a,) + d/2)_1 are suitable positive normalizing con-
stants for the eigenfunctions in the L?[0, L] space.

We have used the negative sign for « just for convenience. In this way, we only emphasize
that the positive eigenvalue [ corresponds to the unstable mode, while the negative eigen-
values «, corresponds to the stable modes; if A < 0 the solution (19) converges exponentially
to zero. This arrangement is also convenient because it allows us to plot all the conditions
in a single graph.

We can redefine the function in (23) as F'(y) below, using positive y for 5 and negative y
for a, in this way:

(0/y —y) tanh (yd) y >0

F(y):=<{ od y=0 (31)
(o/y+y) tan (yd) y<0.
Now the roots of F'(y) = 1 are all the eigenvalues; negative values of y correspond to
eigenvalues A\ = —y?2, and positive values of y correspond to eigenvalues A = y2. The plot of
this function is in Fig. 3.2. From the limits
yl_lgl_(a/y +y)tan (yd) = od, and y1_1>r51+(a/y — y) tanh (yd) = od, (32)

we see that F'(y) is a continuous function at y = 0, for any o or L. If we let ¢ and L move
continuously so that od becomes less than 1, then the positive eigenvalue no longer exists,
because it becomes a negative eigenvalue. This is a very nice property.

It is possible also to show even more, the function F(y) € C*(R) except for y = nn/d,
where is not defined. Although, its first derivative is continuous at y = 0.

Notice that for the unstable mode to exist we need od > 1, which is false when ~d is less
that the critical value o* := 4 exp(1/2); a bifurcation occurs right at this value! Because the
height F'(y = 0) in Fig. 3.2 changes continuously for continuous variation of o and d, we
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FIGURE 3.2. Positive and negative eigenvalues, F'(y) = 1. There exists at
most one positive eigenvalue.

have that the bifurcation from one stable solution to the three steady-state solutions (one
unstable and two stable) is continuous dependent in such parameters.

3.4. Evolution of the linearized model. The solution ¥(z, t) is obtained by superposition
of all modes given by Eq. (19). We saw that we have to proceed differently for eigenvalues
A < 0and A > 0. Therefore, with the superposition of the solutions in (26) and (30), we
have that the solution of the linearized model is

Iz, t) = A, exp(8°t)sinh (B(L — z)) + Z A, exp(—ait) sin (o, (L — z)), (33)

neN

where the coefficients A,, := (J,, X,,), Vn € N are obtained by comparing (33) at time zero
with the initial condition ¥,(z). This superposition is all that we need due the completeness
and orthonormality of the eigenfunctions in the region [0, L], the formal arguments are
contained in the thesis (Castaneda, 2010).

Remark: Notice that there exists one and only one positive eigenvalue when 6, € (05, 6,,),
with @y, 0,, given by (12). When 1 — 460, < 0, there is no unstable equilibrium, and the
temperature of the reservoir goes to the (unique) stationary solution.

4. NUMERICAL METHOD

In this section we discuss a finite difference scheme that we used for the nonlinear problem
(6), with &€ = 1. We implement the Crank-Nicolson method (CN). For the heat equation, in
the domain z € [1, L] it would be:
B R (1 + ot — Byt = Byn (1= p)or + = (34)
2 m+1 m 2 m—1 2 m+1 m 2 m—1
where v = v(mh + 1, nk) is the discrete solution (then v represents v(1, nk)), u := k/h?
h is the grid spacing and k is the time interval. The CN method is of order O(h?, k?), and
it is unconditionally stable.
The right boundary condition is governed by v} ' = v%,, where M := (L —1)/h. In order
to discretize the left boundary, x = 1, where 6, = yexp (— 1/9) + 0,, we recall that one way
of deriving the discretization of CN method utilizes an auxiliary grid point between two step
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times, namely (1 +mh, (n+ %)k:) For the sake of consistency we have to expand the time
derivatives at the boundary around the auxiliary point (1, (n + 1)k). Notice that
0(1, (n+1/2+1/2)k) = 6(1, (n+1/2)k) +£1/26,(1, (n+ 1/2)k)
+(k*/8)0, (1, (n+ 1/2)k) + O(K?). (35)
By subtracting the (4) equation from the (—) equation in (35), and dividing by k, we find
(1, (n+1)k) — 6(1, nk)
k

We do something similar for the spatial derivative, but in this case, we use spatial average
at two neighboring grid points by adding both Eqs. (35), the (=) and the (+), for 6, instead
of 6. Notice that 6,(1, -) =[0(1+ h, -) —6(1, -)]/h+ O(h), then

0. (1, (n+1/2)k) = %{9(1 +h, (n+ 1)k})l—9(1, (n + 1)k)

O(1 + h, nk) — 0(1, nk)
" h

0:(1, (n+1/2)k) + O(k?). (36)

} + O(h, k?). (37)
Finally we can write

oD (9(1, <n_+11/2>k)) =5 <e(1, ot 1>k)) e (i) | £ OW) 69)

From these approximations, we get the final form for the boundary condition

AN 0 A kY —1 AN A ky ~1
(o)t =gt Geo(Ga) = (oa)re g B () @

o

Although this boundary scheme is of first order in space in comparison to the former base
scheme of second order, this is not a problem, because the stability and convergence of the
overall results are not impaired in the simulations. Moreover, the accuracy of the overall
scheme is not altered; it is second order in space and time.

4.1. Implementation of the numerical method. Let h = (L — 1)/M be the size of
the spatial grid and M + 1 the number of spatial nodes of the numerical domain. Let
v = (v, o7, .. o). We write the CN method as

1 T
Av"™ — U™ = Bv" + U(v"), where U(v") = (lﬁ exp ( - —), 0,..., 0) (40)

2 vy
and
A A A A
1+u§ 2 Ou 1;§ 2 9
-5 l4+u —3 2 l-np 5
A:: .. s B: t. .

—5 1+p —§ 51— §
0 0 1 0 0 1

We want to solve each step of the implementation by Newton’s method. Let be w?® := v"

and we will iterate with w'*! := w! 4+ d’, where d' is a vector that corrects the last prediction

w'. In this way we see how v"*! is obtained from w'.
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We are looking for d' such that w!'*! solves (40.a) instead of v"*1. Set K := Bv" + U(v"),
that will remain fixed for a given n. Assuming d! small, we use Taylor’s formula to express

e (i) <o () = () (1 i) +ot@n. an

so, we have the iterative equation

dl
! n_% _ ! l
Ad +U(w)(wé)2—K—Aw + U(w"). (42)
To solve this equation, let M; := —Aw' + U(w') and

(67 —% 0

—5 1+p —§
5 1+p -5
0 0 1

where oy = 1+ 24 — 2&# exp (— wig,) Then, Eq. (42) is d' = A"Y(K + M,). At the start of
each iteration, we take w'*! = w! + d' and update M; and A at O(1) cost. However, we need
to solve a linear system with A in each iteration, which is expensive.

Notice that the matrices A and A differ only in the first diagonal entry, which changes
at each step of Newton’s method. Note that making an UL factorization for the A matrix
and the A matrix gives the same U matrix. However, the L matrix differs only in the first
diagonal entry, the oy of Eq. (43). In short

Al) = UL(I), (44)

which means that A and L depend upon the iteration step. Then finding the inverse of U,
once and for all, outside the iterative solver, improves the solver, and equation (42) becomes

L()d = U (K + M,). (45)

Comparing (42) with (45), we see that we have replaced the resolution of a tridiagonal
system, in each step of the iterative solver, by the resolution of a lower bidiagonal system.
This algorithm improves the machine time by almost 50%.

4.2. Numerical results. Recall that in Sec. 2 we had v = 7 x 10%. Using such large values
of v in the numerical method leads to slow convergence: in the nonlinear part, Eq. (39), the
oy coefficient in the solver increases and the solver requires a small step time k& in order to
guarantee convergence. Nevertheless, we are interested in simulating situations in the model
containing three steady-state solutions and see the qualitative behavior of its solutions. We
do so for relatively small values of ~.

Even using a coarse mesh, we obtain good convergence to both stable stationary solutions.
For k = 0.2 and h = 0.01 we get an error no larger than 102 in comparison to the actual 6;
and 677 values.

A good example of this behavior is the following. We set v = 1/4, the reservoir temperature
O, = 0.2 and L = 10. For these parameters, the stationary left temperatures are 6; ~
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0.22803135, 077 ~ 0.47920158 and 6;;; ~ 1.12500985. Furthermore, we set the grid numbers
h = 0.05 and k = 0.2, and the initial condition

(HL — 192)1’+¢9@L—¢9L
L—-1

Uy(x) = +0.4095sin (0.6(L — z)) + 0.5905 sin (0.4(L — z)),  (46)

where 6; = 0.4792015876. The results of simulation for the unstable stationary solution
agree with our intuition: the evolution of the numerical solution approaches the unstable
equilibrium solution in a very short time, ¢ ~ 30. It remains close to that solution for
long time: it diverges only for ¢ > 800, and approaches a stable stationary solution around
t ~ 1850. Notice that using a bisection method we can find initial conditions that remain
close to the unstable solution for times as long as we please. This result is plotted at some
times on Fig. 4.1 for CN. In this figure we also show results for the Backward Euler method
with central differentiation (BE). Refining the grid numbers will show that the convergence
has to be, in both cases, to o;(x).

t=2800

0 f=

1
0.8
0.6
04
0.2

t=1200 t=1600

FIGURE 4.1. The initial condition, for time ¢ = 0, given in (46) is plotted on
the top left. We plot with dark circles the CN method and with light crosses
the BE method, the three “linear” plots are the three stationary solutions. For
times closer to ¢ = 30 the solution obtained by both methods approximate
asymptotically the unstable solution. Both solutions remain close to it until
t = 800. The bifurcation starts leading CN to o;(x) at t = 1600 and BE to
Q[[[(SL’) at t = 1850.

Several simulations show that the behavior of any solution of the nonlinear model always
has a fast convergence to an almost linear profile, from which the solution will be driven to
one of the stable stationary solutions. Such separation between trajectories that converge to
or(x) from those converging to g;;(x) appears to occur at a value 6(1, ¢) comparable to 6;;.
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5. CONCLUDING REMARKS

The numerical simulation showed that the stable modes, related to negative eigenvalue A,
decrease very fast; therefore a model with linear profiles is a good global approximation of
the solution for the complete model for large times. This model is analyzed in (Castaneda,
2010).

Furthermore, the resulting equilibrium 6;;; related with the ignition, is prevalent because
of the typically large values of vy, which has to be of order 7.0 x 10%. If we recall the condition
given in Eq. (10) we note that for the existence of stationary solution, we need 6, to be
of order of « times d, a huge nondimensional temperature. By comparison we note that
E/R ~ 2 x10*K, and then Ty;;, the temperature related to the nondimensional combustion
value 0;77, is of order d x 10'® Kelvin’s degrees! Certainly this range is unphysical; this
problem arises from the limitations of this model, ¢.e., the heat loss is only one-dimensional.
Other geometries will correct this limitation.

The two ideal cases in order to get combustion as a final state are: initial conditions
with large amounts of coke and oxygen in a single steady-state equilibrium model, which is
related to combustion or, for the full three steady-state model, temperatures at the reaction
region higher than 77;. Perhaps, the dissipation of heat will not extinguish the combustion
since we have neglected the consumption of coke and oxygen, it is clear that the reaction
remains active forever, generating heat all the time. However, in the physical situation the
concentrations of the reactants will decrease, but in order to maintain the combustion rate,
we need to maintain them with vd > Z(0(1, t)) for (1, t) > 6y or Z(0(1, t)) > Z(6,,)
otherwise, see Fig. 1.

From the numerical simulation, we can see that the assumption of “eternal” fuel is not
so extreme, because for long times the reaction starts slowly far away from the equilibrium
burning small quantities of coke and oxygen, and then ignition will occur for large initial
concentrations of C' and Os,.

Finally, based on this model we cannot determine when or where a combustion can exist,
only when it cannot. For small perturbations of a linear initial profile with 6(1, 0) < 07, we
are in the extinction region. Here the conclusions are valid.

We have used some special values to estimate v and compared these results against other
values; using different activation energies and prefactors given in (Rybak, 1988), we set the
prefactor (Ac,) = 2.22 x 10° s7! that is in the range 1.97 x 10° s71, 3.62 x 107 s~'. Therefore
for a reservoir temperature of 300 K will find that Ty, = 309.24K and T,, = 1.8704 x 10*K,
the temperatures related to 6y, 0,, in Eq. (12). Thus the unstable temperature will exist
and vary between these values only when the reservoir has a size for the dimensional d
from 3.82 x 107®m to 1.9 x 10 m. An example is for a 10 Km reservoir which would
give T = 560,88 K so the temperature at the boundary has to exceed this value 7j; in
order to ignite. For smaller reservoirs this temperature would be larger, and the domain of
extinction will grow until 77; reach the 7T, value, which is the limit to the model with only
one steady-state solution.
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