
. SIMULATION OF SPONTANEOUS IGNITION IN POROUS MEDIAP. CASTAÑEDA, D. MARCHESIN, AND J. BRUININGAbstrat. We study the stability of ombustion in a porous medium in a simpli�ed modelthat takes into aount the balane between heat generation and heat losses. The tem-perature dependene of heat generation is given by Arrhenius law. Heat losses are due toondution to the rok formation. The system evolution is desribed by an in�nite numberof nonlinear modes. We show that its long time behavior is ditated by the two dominantmodes, whose phase diagram ontains two attrators and a saddle, justifying the piture inlassial hemial engineering. 1. IntrodutionCombustion in-situ is an important methodology to extrat heavy oil from reservoirs, pro-vided ignition is sustained and ontrolled. The geometrial setting of the reation loationand of ondutive heat losses is a very important matter. When heat losses beome equalto a small reation heat rate, the system remains trapped in a slow reation mode; suha mode is indistinguishable from extintion. On the other hand, if heat losses are smallerthan the heat generated by the reation, the temperature and the heat losses will inrease,so we expet that the system reahes an equilibrium in a fast reation mode; this is ignition.Heat losses are strongly dependent on the geometry of the heat generating region. In thisartile we will only disuss the one-dimensional ase, however work in progress inludes othergeometries.In Se. 2 we onstrut the reator model that we will study in this work and nondimen-sionalize it to enter, in Se. 3, in linear analysis of its equilibria. These steady-state solutionswill guide some of the numerial analysis made in Se. 4. Finally, in Se. 5 we summarizeour results. 2. The reator model for one dimensional heat flowWe derive a set of equations that desribe the onservation of energy in a porous mediumwhere thermal �ow ours. Fik's law desribes the transport of energy by ondution,and Arrhenius' law desribes the rate of energy generated by the reation between oxygenand oke. Then the variation of heat in the domain is equal to that reation governed byArrhenius' law inside the domain plus Fik's law, whih involves the boundary. For a generaldomain Ω we have:
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κ∇T · n̂ dS, (1)where Q = Q(x, t) is the thermal energy density, ∆H denotes the reation enthalpy per unitmass of oxygen, co is the onentration of oxygen in the injeted gas, cc is the onentrationof arbon (the �fuel�) in the porous media, A is the pre-exponential fator, E is the ativationenergy, and κ denotes the thermal ondutivity.Key words and phrases. 30o CILAMCE, Chemial reator, Porous media, In-situ ombustion, Geometrialsetting, Heat losses. 1



2 CASTAÑEDA, MARCHESIN, AND BRUININGIn the one dimensional ase, the domain in x strethes from 0 to L, and the reation takesplae is the subinterval from zero to a �xed a < L. We assume that the thermal ondutivityin the interval x ∈ [0, a) is muh larger than in the region x ∈ (a, L]. Thus we an taketemperatures uniform in spae for the reating interval, and we an simplify the governingequation.Notie also, that in the interval x ∈ (a, L], there is no reation taking plae, there is onlyheat ondution, co = 0 there, so Eq. (1) leads to the lassial heat equation. In this way,the 1d equations are:
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(2)We nondimensionalize with

x := ax̃, t := tRt̃, θ := TR/E, L := aL̃, (3)obtaining
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κE
, (5)and dropping the tildes, we rewrite the system in the form:
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θ(L, t) = θL t > 0
θ(x, 0) = θi(x) x ∈ [0, L]
θ(x, t) = θ(1, t) x ∈ [0, 1].

(6)
Clearly, any solution of the PDE (6) is always onstant in x ∈ [0, 1]. Taking this fat intoaount, we an perform the analysis either in [0, L] or in [1, L].As we will see, there are two types of solutions for (6) as far as E is onerned. The�rst one orresponds to E = 0 and the seond one to E > 0. The �rst one orrespondsto ρece ≪ ρici; in the seond one, the preise value of E is irrelevant. Following data forhemial ompounds in the work of Tyler (1985) and by Abu-Khamsin et al. (1988), we seethat γ = 7.0× 108.



SIMULATION OF SPONTANEOUS IGNITION IN POROUS MEDIA 33. Linear stability of equilibria in the reator modelThe steady-states ̺ are solutions of system (6) that satisfy
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(7)with boundary ondition ̺(L) = θL at the right, where θL is a non-negative temperature.Then, we look for a similar boundary ondition at the left, say ̺(1) = θo, where even if θo isunknown, it represents a non-negative temperature.Clearly the solution of Eq. (7.a) for suh Dirihlet BCs is given by the ontinuous solution
̺(x) =

{

θo x < 1
(θo − θL)r(x) + θL x ∈ [1, L],

(8)with r(x) := (L− x)/d, x ∈ [1, L] and d := L− 1. (9)3.1. Finding the equilibria. Substituting the seond equation from (8) into the Eq. (7.b)leads to
γd = Ξ(θo), where Ξ(θ) :=

θ − θL
exp(−1/θ)

. (10)Therefore L, θo, θL and γ are intimately related in steady-states. Equation (10) is the sameexpressions found in (Bruining et al., 2008) and means that we are interested in values
θo > θL.Looking for the extrema of the funtion Ξ, we see that
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1− 4θL, (12)where m stands for minimum and M for maximum, see Fig. 3.1.In Fig. 3.1 we have θL = 0.17 for the solid urve, θL = 0.15, 0.19, 0.21, 0.23 for the dottedurves (from left to right), θL = 0.25 for the dotted-dashed urve. Notie that when θLis smaller, the peak beomes larger. Notie that the intersetion of eah urve with the θaxis is the respetive θL. Finally, notie that for the solid urve with θL = 0.17 we mark,at the left of vertial axis, the regions where we have one or three solutions (with `1' or`3') of Ξ(θ) = γd. On the horizontal axis, we mark also the regions I, II, III where theorresponding θI , θII , θIII would be. We notie that the �rst equation in (10) always hasat least one root, whih means that there is always a steady-state solution. In some ases,there are three di�erent roots, and three di�erent stationary solutions, related to the roots
θI , θII , θIII and notie that θL < θI < θM < θII < θm < θIII .
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Figure 3.1. Some Ξ(θ) versus θ.3.2. Linear stability analysis of equilibria. We have found the stationary solutions forthe Dirihlet ondition. We will study time dependent solutions that are lose to the sta-tionary solution (8) to determine under whih onditions ̺(x) is linearly stable.Notie that when θ ≈ ̺, using Taylor's formula, we an write
exp(−1/θ) ≈ exp(−1/̺)(1 + (θ − ̺)/̺2). (13)Now using (13) on the �rst term of the RHS of (6.b), adding and subtrating ̺x and ̺t,realling that ̺t = 0 and ̺(x = 1) satis�es Eq. (7.b), we have that (6.b) beomes
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. (14)We now examine how the solution of the evolution problem behaves when we perturb thestationary solution around the solution ̺. To do so, we de�ne
ϑ(x, t) :≈ θ(x, t)− ̺(x). (15)Sine we have assumed onstant reservoir temperatures at the right boundary, we write thelinear model for the perturbation, from Eqs. (14) and the heat equation, as
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(16)where
σ = σ(θo) := γ exp(−1/θo)/θ

2
o. (17)for ̺(1) = θo. The homogeneous Dirihlet boundary and initial onditions are

ϑ(L, t) = 0 and ϑ(x, 0) = ϑo(x). (18)



SIMULATION OF SPONTANEOUS IGNITION IN POROUS MEDIA 53.3. Separation of variables. Equation (16) is the heat equation, and a lassial approahto �nd its solution is separation of variables. We substitute the expression
ϑ(x, t) := T (t)X(x), (19)into (16) to obtain for t > 0 and x in (1, L)

Ṫ

T
(t) =

X ′′

X
(x) = λ, or Ṫ − λT = 0 and X ′′ − λX = 0, (20)where λ is a onstant. So the temporal part has the form T (t) = exp(λt), and therefore, weneed to solve the following eigenvalue problem:















X(x) = X(1) x ∈ [0, 1)
λX(x) = X ′′(x) x ∈ (1, L)
λX(1) = σX(1) +X ′(1+)
X(L) = 0.

(21)The ase λ > 0. Take λ = β2, with β ∈ R
+. Solving Eq. (21.b), we have

X(x) = A exp(βx) +B exp(−βx), (22)where A and B depend on β. Substitution of X(x) from Eq. (22) into Eq. (21.d) shows that
B = −A exp(2βL), and by substituting again in Eq. (21.), we notie that for suh β ≥ 0to exist, we need that

F (β) :=
σ − β2

β

sinh(βd)

cosh(βd)
=

σ − β2

β
tanh(βd) = 1. (23)Using (17) and F ′(β) we notie that for (23) to be satis�ed, we need that

σ(θo)d = γ exp(−1/θo)d/θ
2
o > 1, so γd exp(−1/θo) > θ2o . (24)Manipulating (10) leads to γd exp(−1/θo) = θo − θL. Comparing the latter equation with(24), we see that a root of β exists only if 0 > θ2o − θo + θL is satis�ed. This requires that

θo ∈ (θM , θm), given in Eqs. (12). In the Ξ vs. θ plot from Eq. (10) in Fig. 3.1, we see thatwhen we have just one stationary solution, it lies out of (θM , θm) and therefore, we do nothave any unstable mode; the solution must be stable.We use the equality
exp(βx)− exp
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, (25)in Eq. (22), to ompute the eigenfuntion assoiated with the eigenvalue β as
Xo(x) :=

{
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(26)where Co :=

(

sinh2(βd) + sinh(2βd)/(2β)− d/2
)

−1 is a suitable onstant to normalize theeigenfuntion in the L2[0, L] spae. A simple di�erentiation with respet to d shows that Cois an inreasing funtion of d, and beause d = 0 implies Co = 0, we have that Co > 0 for
d > 0.



6 CASTAÑEDA, MARCHESIN, AND BRUININGThe ase λ < 0. We now look for negative eigenvalues. Take λ = −α2 and notie that αand −α give the same solution, so for onveniene take α ∈ R
−. From Eq. (21.b), we have

−α2X = X ′′, (27)it follows that X(x) is a linear ombination of sines and osines with argument αx. But fromEq. (21.d), we have X(L) = 0, so it is better to hoose
X(x) = A sin(α(L− x)), (28)where A = A(α) is a onstant. By substituting (28) into Eq. (21.) we get that −α mustsatisfy −(σ + α2)A sin(αd) = −Aα cos(αd). Then, we are looking for α ∈ R

− suh that
σ + α2

α
=

cos(αd)

sin(αd)
= cot(αd). (29)Comparing the plot of both sides of (29), we see that there is a root αn in eah interval

(−(n + 1)π/d, −nπ/d) with n ∈ N . The roots form a ountable dereasing sequene ofeigenvalues for our model. Eah of these eigenvalues has an assoiated eigenfuntion
Xn(x) :=

{
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Cn sin
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)
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(30)where Cn :=

(

sin2(αnd) − sin(2αnd)/(2αn) + d/2
)

−1 are suitable positive normalizing on-stants for the eigenfuntions in the L2[0, L] spae.We have used the negative sign for α just for onveniene. In this way, we only emphasizethat the positive eigenvalue β orresponds to the unstable mode, while the negative eigen-values αn orresponds to the stable modes; if λ < 0 the solution (19) onverges exponentiallyto zero. This arrangement is also onvenient beause it allows us to plot all the onditionsin a single graph.We an rede�ne the funtion in (23) as F (y) below, using positive y for β and negative yfor α, in this way:
F (y) :=







(σ/y − y) tanh
(

yd
)

y > 0
σd y = 0
(σ/y + y) tan

(

yd
)

y < 0.
(31)Now the roots of F (y) = 1 are all the eigenvalues; negative values of y orrespond toeigenvalues λ = −y2, and positive values of y orrespond to eigenvalues λ = y2. The plot ofthis funtion is in Fig. 3.2. From the limits

lim
y→0−

(σ/y + y) tan
(

yd
)

= σd, and lim
y→0+

(σ/y − y) tanh
(

yd
)

= σd, (32)we see that F (y) is a ontinuous funtion at y = 0, for any σ or L. If we let σ and L moveontinuously so that σd beomes less than 1, then the positive eigenvalue no longer exists,beause it beomes a negative eigenvalue. This is a very nie property.It is possible also to show even more, the funtion F (y) ∈ C∞(R) exept for y = nπ/d,where is not de�ned. Although, its �rst derivative is ontinuous at y = 0.Notie that for the unstable mode to exist we need σd > 1, whih is false when γd is lessthat the ritial value σ∗ := 4 exp(1/2); a bifuration ours right at this value! Beause theheight F (y = 0) in Fig. 3.2 hanges ontinuously for ontinuous variation of σ and d, we
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Figure 3.2. Positive and negative eigenvalues, F (y) = 1. There exists atmost one positive eigenvalue.have that the bifuration from one stable solution to the three steady-state solutions (oneunstable and two stable) is ontinuous dependent in suh parameters.3.4. Evolution of the linearized model. The solution ϑ(x, t) is obtained by superpositionof all modes given by Eq. (19). We saw that we have to proeed di�erently for eigenvalues
λ ≤ 0 and λ > 0. Therefore, with the superposition of the solutions in (26) and (30), wehave that the solution of the linearized model is

ϑ(x, t) = Ao exp(β
2t) sinh

(

β(L− x)
)

+
∑

n∈N

An exp(−α2
nt) sin

(

αn(L− x)
)

, (33)where the oe�ients An := 〈ϑo, Xn〉, ∀n ∈ N are obtained by omparing (33) at time zerowith the initial ondition ϑo(x). This superposition is all that we need due the ompletenessand orthonormality of the eigenfuntions in the region [0, L], the formal arguments areontained in the thesis (Castañeda, 2010).Remark: Notie that there exists one and only one positive eigenvalue when θo ∈ (θM , θm),with θM , θm given by (12). When 1 − 4θL < 0, there is no unstable equilibrium, and thetemperature of the reservoir goes to the (unique) stationary solution.4. Numerial methodIn this setion we disuss a �nite di�erene sheme that we used for the nonlinear problem(6), with E = 1. We implement the Crank-Niolson method (CN). For the heat equation, inthe domain x ∈ [1, L] it would be:
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2
vnm−1, (34)where vnm = v(mh+ 1, nk) is the disrete solution (then vno represents v(1, nk)), µ := k/h2,

h is the grid spaing and k is the time interval. The CN method is of order O(h2, k2), andit is unonditionally stable.The right boundary ondition is governed by vn+1
M = vnM , where M := (L− 1)/h. In orderto disretize the left boundary, x = 1, where θt = γ exp

(

− 1/θ
)

+ θx, we reall that one wayof deriving the disretization of CN method utilizes an auxiliary grid point between two step
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2
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. (39)Although this boundary sheme is of �rst order in spae in omparison to the former basesheme of seond order, this is not a problem, beause the stability and onvergene of theoverall results are not impaired in the simulations. Moreover, the auray of the overallsheme is not altered; it is seond order in spae and time.4.1. Implementation of the numerial method. Let h = (L − 1)/M be the size ofthe spatial grid and M + 1 the number of spatial nodes of the numerial domain. Let
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.We want to solve eah step of the implementation by Newton's method. Let be ωo := vnand we will iterate with ωl+1 := ωl + dl, where dl is a vetor that orrets the last predition
ωl. In this way we see how vn+1 is obtained from ωl.



SIMULATION OF SPONTANEOUS IGNITION IN POROUS MEDIA 9We are looking for dl suh that ωl+1 solves (40.a) instead of vn+1. Set K := Bvn +U(vn),that will remain �xed for a given n. Assuming dlo small, we use Taylor's formula to express
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= K −Aωl + U(ωl). (42)To solve this equation, let Ml := −Aωl + U(ωl) and
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, (43)where αl = 1 + λ
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2(ωl
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(
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). Then, Eq. (42) is dl = Λ−1(K +Ml). At the start ofeah iteration, we take ωl+1 = ωl + dl and update Ml and Λ at O(1) ost. However, we needto solve a linear system with Λ in eah iteration, whih is expensive.Notie that the matries A and Λ di�er only in the �rst diagonal entry, whih hangesat eah step of Newton's method. Note that making an UL fatorization for the A matrixand the Λ matrix gives the same U matrix. However, the L matrix di�ers only in the �rstdiagonal entry, the αl of Eq. (43). In short
Λ(l) = UL(l), (44)whih means that Λ and L depend upon the iteration step. Then �nding the inverse of U ,one and for all, outside the iterative solver, improves the solver, and equation (42) beomes

L(l)dl = U−1
(

K +Ml

)

. (45)Comparing (42) with (45), we see that we have replaed the resolution of a tridiagonalsystem, in eah step of the iterative solver, by the resolution of a lower bidiagonal system.This algorithm improves the mahine time by almost 50%.4.2. Numerial results. Reall that in Se. 2 we had γ = 7× 108. Using suh large valuesof γ in the numerial method leads to slow onvergene: in the nonlinear part, Eq. (39), the
αl oe�ient in the solver inreases and the solver requires a small step time k in order toguarantee onvergene. Nevertheless, we are interested in simulating situations in the modelontaining three steady-state solutions and see the qualitative behavior of its solutions. Wedo so for relatively small values of γ.Even using a oarse mesh, we obtain good onvergene to both stable stationary solutions.For k = 0.2 and h = 0.01 we get an error no larger than 10−2 in omparison to the atual θIand θIII values.A good example of this behavior is the following. We set γ = 1/4, the reservoir temperature
θL = 0.2 and L = 10. For these parameters, the stationary left temperatures are θI ≈
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0.22803135, θII ≈ 0.47920158 and θIII ≈ 1.12500985. Furthermore, we set the grid numbers
h = 0.05 and k = 0.2, and the initial ondition

uo(x) =
(θL − θi)x+ θiL− θL

L− 1
+ 0.4095 sin

(

0.6(L− x)
)

+ 0.5905 sin
(

0.4(L− x)
)

, (46)where θi = 0.4792015876. The results of simulation for the unstable stationary solutionagree with our intuition: the evolution of the numerial solution approahes the unstableequilibrium solution in a very short time, t ≈ 30. It remains lose to that solution forlong time: it diverges only for t > 800, and approahes a stable stationary solution around
t ≈ 1850. Notie that using a bisetion method we an �nd initial onditions that remainlose to the unstable solution for times as long as we please. This result is plotted at sometimes on Fig. 4.1 for CN. In this �gure we also show results for the Bakward Euler methodwith entral di�erentiation (BE). Re�ning the grid numbers will show that the onvergenehas to be, in both ases, to ̺I(x).

Figure 4.1. The initial ondition, for time t = 0, given in (46) is plotted onthe top left. We plot with dark irles the CN method and with light rossesthe BE method, the three �linear� plots are the three stationary solutions. Fortimes loser to t = 30 the solution obtained by both methods approximateasymptotially the unstable solution. Both solutions remain lose to it until
t = 800. The bifuration starts leading CN to ̺I(x) at t = 1600 and BE to
̺III(x) at t = 1850.Several simulations show that the behavior of any solution of the nonlinear model alwayshas a fast onvergene to an almost linear pro�le, from whih the solution will be driven toone of the stable stationary solutions. Suh separation between trajetories that onverge to

̺I(x) from those onverging to ̺III(x) appears to our at a value θ(1, t) omparable to θII .



SIMULATION OF SPONTANEOUS IGNITION IN POROUS MEDIA 115. Conluding remarksThe numerial simulation showed that the stable modes, related to negative eigenvalue λ,derease very fast; therefore a model with linear pro�les is a good global approximation ofthe solution for the omplete model for large times. This model is analyzed in (Castañeda,2010).Furthermore, the resulting equilibrium θIII related with the ignition, is prevalent beauseof the typially large values of γ, whih has to be of order 7.0×108. If we reall the onditiongiven in Eq. (10) we note that for the existene of stationary solution, we need θo to beof order of γ times d, a huge nondimensional temperature. By omparison we note that
E/R ≈ 2×104K, and then TIII , the temperature related to the nondimensional ombustionvalue θIII , is of order d × 1013 Kelvin's degrees! Certainly this range is unphysial; thisproblem arises from the limitations of this model, i.e., the heat loss is only one-dimensional.Other geometries will orret this limitation.The two ideal ases in order to get ombustion as a �nal state are: initial onditionswith large amounts of oke and oxygen in a single steady-state equilibrium model, whih isrelated to ombustion or, for the full three steady-state model, temperatures at the reationregion higher than TII . Perhaps, the dissipation of heat will not extinguish the ombustionsine we have negleted the onsumption of oke and oxygen, it is lear that the reationremains ative forever, generating heat all the time. However, in the physial situation theonentrations of the reatants will derease, but in order to maintain the ombustion rate,we need to maintain them with γd > Ξ(θ(1, t)) for θ(1, t) ≥ θM or Ξ(θ(1, t)) > Ξ(θm)otherwise, see Fig. 1.From the numerial simulation, we an see that the assumption of �eternal� fuel is notso extreme, beause for long times the reation starts slowly far away from the equilibriumburning small quantities of oke and oxygen, and then ignition will our for large initialonentrations of C and O2.Finally, based on this model we annot determine when or where a ombustion an exist,only when it annot. For small perturbations of a linear initial pro�le with θ(1, 0) < θII , weare in the extintion region. Here the onlusions are valid.We have used some speial values to estimate γ and ompared these results against othervalues; using di�erent ativation energies and prefators given in (Rybak, 1988), we set theprefator (Aco) = 2.22×106 s−1 that is in the range 1.97×105 s−1, 3.62×107 s−1. Thereforefor a reservoir temperature of 300K will �nd that TM = 309.24K and Tm = 1.8704× 104K,the temperatures related to θM , θm in Eq. (12). Thus the unstable temperature will existand vary between these values only when the reservoir has a size for the dimensional dfrom 3.82 × 10−8m to 1.9 × 1015m. An example is for a 10Km reservoir whih wouldgive TII = 560, 88K so the temperature at the boundary has to exeed this value TII inorder to ignite. For smaller reservoirs this temperature would be larger, and the domain ofextintion will grow until TII reah the Tm value, whih is the limit to the model with onlyone steady-state solution.
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