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Abstract. In a recent paper, stable solutions were proved to arise
from small amplitude data for an example of conservation laws with
a parabolic term possessing the identity as viscosity matrix. The
initial data analyzed therein lies outside the elliptic region, and the
viscous solutions are related to a bifurcation of planar vector fields
with nilpotent singularities studied by Dumortier, Roussarie and So-
tomaior (DRS). For non–identity viscosity matrices, the DRS bifurca-
tion is located at the border of the Majda–Pego instability region. The
stability proof does not easily generalize for other viscosity matrices:
in this work, this issue is studied using numerical simulation. We use
a custom high–performance parallel Newton solver for the non–linear
system arising from the Crank–Nicolson finite difference discretiza-
tion. We present numerical evidence that the stable shocks do not
arise from arbitrary small Riemann data with non–identity viscous
matrices. However, some of the stable shocks arise from small data if
one initial state lies in the elliptic region. In some of these cases, the
solution seems to be unaffected by small perturbations.

1. Introduction

A famous theorem by Lax [L] states that, under certain hypotheses,
systems of n conservation laws with small data have Riemann solutions
consisting of n small waves, rarefactions or shocks, separated by constant
states.

Matos and Marchesin showed in [MM1] that, if the hypothesis of strictly
hyperbolicity is violated, large amplitude Lax shocks arise from small data
for an example of quadratic conservation laws; the second order terms in
the flux correspond to type IV in Schaeffer and Shearer’s classification
[SS]. In [MM2], the same model was studied for shocks that are the
limits of travelling waves, using the identity as viscosity matrix. It was
proved therein that the Riemann solution consists of two shocks with
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O(1) amplitude no matter how small the datum is, provided it is close to
a special point on the boundary of the elliptic region. In [MPa], it was
established that this point persists under C3 Whitney perturbations of
the flux functions.

The large amplitude solutions in [MM2] are related to a non–classical
kind of shock — known as over–compressive shock — that determines
regions of wave compatibility. Over–compressive shocks are related to
the bifurcation of one of the codimension-3 nilpotent singularities of pla-
nar ODEs studied by Dumortier, Roussarie and Sotomaior in [DRS]. In
[AMPZ], Azevedo, Marchesin, Plohr and Zumbrum proved that the DRS
bifurcation arises from the traveling wave ODE for systems of two conser-
vation laws, and classified them with respect to the viscosity matrix and
flux terms. The DRS bifurcation occurs at the border of an instability re-
gion studied by Majda and Pego in [MP]. The relationship between large
amplitude solutions and the DRS bifurcation leads to the question: will
the system studied in [MM2] present the same large amplitude solutions
if the viscosity matrix is definite positive? The goal of this work is to
answer this question.

The proof given in [MM2] cannot be easily extended to the case of
non–identity viscosity matrices, so in this work this issue is studied using
numerical simulation. For several viscosity matrices, we perform numeri-
cal simulations for Riemman problems (RPs for short) close to the point
where the DRS bifurcation occurs. We use the program [IMP] to lo-
cate those over–compressive shocks that play a fundamental role in the
large amplitude shocks (see [MM2]): knowing the location of the over–
compressive shocks we can determine the states of the RP which lead to
the large amplitude solutions. The small RPs we are interested in usu-
ally take very long to converge to the asymptotic solution. Therefore,
we developed and employed a high–performance parallel Newton solver
for the nonlinear system arising from the Crank–Nicolson finite difference
discretization (see [H1] and [H2]).

In our simulations, we observed that large amplitude solutions are
formed from small data. If one of the states of the initial data lies in the
elliptic region, we observe in some cases that the viscous profiles remain
unaltered, even after the introduction of small perturbations. However,
shrinking the initial data necessarily causes one state to lie inside the
Majda–Pego instability region, and the large amplitude profiles remain
just for a finite length of simulation time. This is strong numerical evi-
dence that large amplitude solutions for arbitrarily small data are unstable
if non–identity viscosity matrix are used.

In Section 2, we review some results for systems of two conservation
laws, including the recent results given in [MM2]. In Section 3, we present
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the quadratic model we in investigate in this work, which is a particular
case of those discussed in the works reviewed in Section 2. Section 4
summarizes the experimental results we obtained, and the conclusions
are given in Section 5.

2. Background

In this section we review some results for systems of two conservation
laws in one space dimension that are fundamental to our work. We are
concerned with systems of partial differential equations of the form:

Ut + F (U)x = ε(D·Ux)x, (2.1)

where U(x, t) = (u; v)T ∈ R
2 for x ∈ R and t ≥ 0, F ∈ C2(R2,R2), D is

a definite positive constant (viscosity) matrix and ε is a (viscosity) scalar
parameter.

Definition 2.1. The set of U in R
2 is called:

i) strictly hyperbolic region if DF (U) has two distinct real eigenvalues;
ii) elliptic region if DF (U) has two distinct complex conjugate eigen-

values;
iii) coincidence locus if DF (U) has one double real eigenvalue;

In the strictly hyperbolic region, we order the characteristic speeds
of DF (U) and denote the lower one as 1-speed λ1(U) and the higher
one as 2-speed λ2(U). The corresponding right and left eigenvectors are
r1(U), r2(U) and l1(U), l2(U), normalized such that lk(U) · rk(U) = 1, for
k ∈ {1, 2}.

Definition 2.2. The set of U in the strictly hyperbolic region where
∇λk · rk = 0, for k = 1 or k = 2, i.e., where the genuine nonlinearity is
lost, is called k-inflection locus. The union of the two sets is simply called
inflection [S].

A Riemann problem (RP) is an initial value problem in one dimension
with constant data on each side of the origin called UL and UR, that is

U(x, 0) = UL if x < 0 and U(x, 0) = UR if x > 0. (2.2)

Following Gel’fand [G] and Courant–Friedrichs [CF], it is required that
the shocks are limits of the traveling waves U(x, t) = Ū(η), η = (x−st)/ε
of the equation (2.1) with limη→±∞ Ū(η) = U± when ε → 0, i.e., we
impose that the associated ordinary differential equation

U̇ = D−1
(

F (U)− F (U−)− s(U − U−)
)

(2.3)

has an orbit “connecting” the equilibria U− and U+: the existence of such
an orbit implies that the famous Rankine-Hugoniot relation

F (U+)− F (U−)− s(U+ − U−) = 0 (2.4)
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is satisfied.
Following [MP], for 2×2 systems with definite positive viscosity matrix

D, we denote the (k-)Majda–Pego instability region by k-MPIR and its
border by k-BMPIR. We now present a synthetic version of the Majda–
Pego theorem [MP, Theo. 3.1], for which we first introduce some defini-
tions.

Definition 2.3. Let U be in the strictly hyperbolic region. The state U
is in k-MPIR if and only if lk(U)Drk(U) < 0. We define the Majda–Pego
instability region MPIR as 1-MPIR ∪ 2-MPIR.

Definition 2.4. Let U be in the strictly hyperbolic region. If
lk(U)Drk(U) = 0 we say that U is on the border k − BMPIR. We define
the border of the Majda–Pego instability region BMPIR as
1− BMPIR ∪ 2− BMPIR.

Remark 2.5. In the strictly hyperbolic region, we have l1(U)Dr1(U) > 0
or l2(U)Dr2(U) > 0. So, if U lies in the MPIR, then either
l1(U)Dr1(U) < 0 or l2(U)Dr2(U) < 0.

Theorem 2.6. Let UL be in the k-MPIR, k ∈ {1, 2}, outside the inflection
locus, and UR be in a neighborhood of UL such that (UL, UR) form a Lax

k-shock. Assuming that D satisfies the non–degeneracy condition

−ξ2D + iξ(DF (UL)− λ(UL)) is non singular for all ξ 6= 0, (2.5)

then there exists no trajectory “connecting” UL to UR, that is, the weak

Lax k-shock (UL, UR) does not possess a viscous profile.

This theorem implies that, if the existence of a viscous profile for shocks
is imposed, then the classical theorem of Lax is not valid when UL lies in
the MPIR. That is, near UL the solution of the RP does not contain the
classical sequence: weak 1-shock, weak 2-shock. This happens because
the stability of the equilibria of the ODE (2.3) is not given by λk(U±)−s,
where s is the shock speed, as would naturally arise from the identity
viscosity matrix and the theorem of Lax.

The codimension-3 bifurcation of planar vector fields with nilpotent
singularities studied in [DRS] by Dumortier, Roussarie and Sotomaior
is related to the the viscous solutions studied in [MM2]. In [AMPZ], it
was proved that the DRS bifurcations arise in systems with quadratic
flux function: these bifurcations were classified depending on the flux
and viscosity matrix. The location of the nilpotent singularity lies in the
following intersection:

Definition 2.7. The intersection of the k-BMPIR and the k-inflection,
for some k, is called the DRS point.
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In [AMPZ], it was also proved that for the flux function of Type IV (in
the classification given in [SS]), the over–compressive shocks arise near the
DRS point; in [MM2], it was proved that large amplitude solutions arise
for RPs near the DRS point. The authors were concerned with solutions
of (2.1) and (2.2) that are sequences of two shocks. That is, in the limit
as ε → 0, the solution becomes:

UL if x < s1t, UM if s1t < x < s2t and UR if s2t < x. (2.6)

Remark 2.8. Other kinds of large amplitude solutions may arise for RPs
near the DRS point, for instance, containing rarefactions.

The large amplitude solutions are related to the over–compressive shocks,
which are limits of wave compatibility. The structure of the solution de-
pends on which side of the over–compressive shocks the initial data lie.
If the right state lies on one side of the over–compressive shocks, the RP
has a small amplitude solution; if the right state lies on the other side, the
RP has a large amplitude solution (see Fig. 1); for further explanation
see [MM2].

R1

a) b)

R1

R2

R2

L LM

N

Figure 1. (a) The solution (L,M,R1) is compatible and
the solution (L,M,R2) is incompatible; (b) The solution
(L,N,R1) is incompatible and the solution (L,N,R2) is
compatible.

3. The system of quadratic conservation laws

We study a system (2.1) of type IV [SS] with flux function

F

(

u
v

)

=
1

2

(

3u2 + v2

2uv

)

+

(

cu+ 2v
cv

)

. (3.1)

The linear factor on the right hand side of Equation (3.1) could be
multiplied by any positive number, and the results would be similar ex-
cept for scaling. The parameter c produces a translation in the space
coordinate, i.e., all waves will move with an additional speed c: in each
simulation, we set c in order to trap the waves near the origin. The qua-
dratic term on the right hand side arises from setting a = 3 and b = 0
in the normal form given in [SS]. We expect other type IV models with
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parameters close to these to lead to similar results. The eigenvalues of
DF are λ1 = 2u−

√

u2 + (v + 1)2 − 1 and λ2 = 2u+
√

u2 + (v + 1)2 − 1:
notice that λ1 = λ2 along the circle u2 + (v + 1)2 = 1, the coincidence
locus. The interior of this circle is the elliptic region in this model. The
curve 12u2 + 9u2v + 25v + 30v2 + 9v3 = 0 is the inflection locus; if u > 0
a maximum of λ1 is reached, and if u < 0 a minimum of λ2 is reached.

We focus our attention on the simplest large amplitude solutions —
1-shock, 2-shock. We locate the over–compressive shocks using [IMP]:
we chose the left and right states of the RP, UL and UR, in such way
that they are close to the DRS point and the compatible solution has
large amplitude. In the numerical solution we observe that, for an over–
compressive shock to exist, either UL or UR lies outside of the MPIR. We
then use [H2] to integrate numerically the RP. The results are shown in
Section 4.

4. Simulations

We now present the results of our simulations for the viscosity matrices

(a) D1 =

[

0.6 0.2
0.2 0.8

]

and (b) D2 =

[

1.1 0.05
−0.1 0.85

]

.

We observed similar results with various other non–identity viscosity
matrices, and for brevity we present only these two, which suffice for
illustrative purposes.

In all simulations, we set the viscosity parameter to ε = 10, the CFL
number to zero, and the density of space grid to 2, i.e., grid spacing was
0.5.

4.1. Simulations with D = D1. For the viscosity matrix D1, straight-
forward calculations show that the BMPIR is the ellipse

u2 −
uv

12
−

2u

3
+

6337v2

576
+

793v

36
+

10

9
= 0.

The DRS point lies approximately at (0.617;−0.201), on the intersection
of the 1-BMPIR and the 1-inflection. The point (−0.919;−0.523), which
lies in the intersection between the 1-BMPIR and the 2-inflection, is not
a DRS point. The non–degeneracy condition (2.5) is satisfied except for
a segment on v = (7u− 2)/2; therefore Theorem 2.6 holds near the DRS
point.

We simulate the small RP near the DRS listed in the Table 4.1.

4.1.1. Riemann problem 1a. The state UL = (0.638;−0.183) lies inside
the strictly hyperbolic region but outside of the MPIR, and the state
UR = (0.407;−0.109) lies in the elliptic region. We set between c = −1
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Problem uL vL uR vR
1a 0.638 -0.183 0.407 -0.109
1b 0.729 -0.257 0.494 -0.167
1c 0.612 -0.187 0.546 -0.161

Table 1. The RPs simulated for the viscosity matrix D1

and c = −0.973 (see Equation 2.1), so the waves sometimes are moving
left and sometimes are moving right.

The simulation results for Problem 1a are shown in Figure 2. At simula-
tion time t = 1.5e5, the shocks are not completely formed; t = 1.5e5 is an
extremely long time in comparison to the typical convergence time, which
is of the order of t = 3e2. At t = 5.0e5, the shocks are clearly formed
and remain stable until t = 3.0e6. We conclude that this is probably the
asymptotic solution.
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Figure 2. The evolution of Problem 1a.

In order to test the stability of the solutions, we introduce at t = 1.5e6
a small perturbation on the constant state UR, which lies in the elliptic
region: the results of the simulation with UR perturbed are shown in
Figure 3, where we observe an intriguing phenomenon for which we have
no explanation: (i) at first, the small perturbation increases (t = 1.0e3);
(ii) next, the perturbation and the wave solution strongly interact (t =
3.4e); (iii) finally, the solution seems to “swallow” the perturbation; the
solution progresses as if no perturbation ever existed (t = 5.0e3).
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Figure 3. The evolution of Problem 1a with perturbation.

4.1.2. Riemann problem 1b. The state UL = (0.729;−0.257) lies in the
strictly hyperbolic region but outside of the MPIR, and the state
UR = (0.494;−0.167) lies inside the elliptic region. We set c = −1.146
(see Equation 2.1).

The simulation results for Problem 1b are shown in Figure 4. At sim-
ulation time t = 5.0e4, the shocks are not yet completely formed; at
t = 1.0e5, the shocks are clearly formed and remain stable until t = 1.5e6.
We conclude that this is probably the asymptotic solution.

4.1.3. Riemann problem 1c. The state UL = (0.612;−0.187) lies in the
strictly hyperbolic region but outside of the MPIR, and the state
UR = (0.546;−0.161) lies inside the 1-MPIR. We set c = −1.03 (see
Equation 2.1).

The simulation results for Problem 1c are shown in Figure 5. At sim-
ulation time t = 9.0e4, the shocks are beginning to be formed; suddenly,
the shocks increase them size and move faster than expected; oscillations
and a strange non constant intermediate state also arise (see t = 1.3e5).
This behavior is conserved till t = 5.0e5.
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Figure 4. The evolution Problem 1b.
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Figure 5. The evolution of Problem 1c.

4.2. Simulations with D = D2. For the viscosity matrix D2, straight-
forward calculations show that the BMPIR is the ellipse

u2 +
5uv

748
+

190v2

187
+

5u

187
+

1517v

748
−

2

187
= 0.

the DRS point lies approximately at (−0.771;−0.334) on the intersection
of the 2-BMPIR and the 2-inflection; the point (0.304;−0.045) lies in
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the intersection between the 2-BMPIR and the 1-inflection, and is not a
DRS point. The non–degeneracy condition (2.5) is satisfied except for a
segment on v = −39u− 4.

We simulate the small RP near the DRS listed in Table 2.

Problem uL vL uR vR
2a -0.608 -0.236 -1.086 -0.571
2b -0.785 -0.373 -0.992 -0.534

Table 2. The RP simulated for the viscosity matrix D2

4.2.1. Riemann problem 2a. The state UL = (−0.608;−0.236) lies in the
elliptic region; the state UR = (−1.086;−0.571) lies in the strictly hyper-
bolic region but outside of the MPIR. We set c = 1.422 (see Equation
2.1).

The simulation results for Problem 2a are shown in Figure 6. At sim-
ulation time t = 4.0e5, the shocks are not yet completely formed; at
t = 8.0e5, the shocks are clearly formed and remain stable until t = 1.0e7.
We conclude that this is probably the asymptotic solution.

t 
=

 4
0

0
,0

0
0

t 
=

 8
0

0
,0

0
0

t 
=

 1
0

,0
0

0
,0

0
0

x

x

x

x

x

x

u

u

u

v

v

v

v

v

v

u

u

u

Figure 6. The evolution Problem 2a.

4.2.2. Riemann problem 2b. The state UL = (−0.785;−0.373) lies in the
2-MPIR; the state UR = (−0.992;−0.534) lies in the strictly hyperbolic
region but outside of the MPIR. We set c = 1.44 (see Equation 2.1).
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The simulation results for Problem 2b are shown in Figure 7. At sim-
ulation time t = 5.0e4, the shocks are not yet completely formed; at
t = 1.0e5, the shocks are formed and a small instability appears. We
observe oscillations up until t = 1.5e5.
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Figure 7. The evolution of Problem 2b.

5. Conclusions

Large amplitude solution for certain small initial Riemann problem
data are observed numerically, even when one of the states lies in the
elliptic region. These solutions appear to be stable, even though some
instabilities that increase in time are “swallowed” by the large amplitude
solutions after a while. The solutions are unstable if one of the initial
states lies in the Majda-Pego instability region. Thus there are no ar-
bitrarily small initial data giving rise to stable large solution. In some
simulations, not presented in this work, long lasting solution with no os-
cillations are formed after the high oscillations appear. We do not believe
that they are asymptotic solutions. This fact may be explored in future
work.
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