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Abstract

This technical report presents a set of techniques for the production of music videos
using computer graphics and animation. Their practical application is illustrated

through examples developed for making the video “Dance to the Music / Play to the
Motion”.
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Chapter 1

Introduction

In this document we will present the making of “Dance to the Music / Play to the Motion”
music video. The main motivation to write this technical report is to introduce through
practical examples the basic set of computer graphics and animation techniques that are
commonly used to create special effects and produce artistic videos.

1.1 The Video

Overview

The Dance to the Music / Play to the Motion piece was produced as part of a research
project of the VISGRAF Laboratory on the areas of Computer Animation and Music.
Its purpose was to test various methods being developed in our current research and to
validate their effectiveness in the context of a real application.

The video combines novel aspects of automatic music composition with computer
generated animation and high quality rendering to investigate an authoring paradigm for
expressive audio-visual content creation.

Essentially the project tries to answer the following question: “Is it possible to use
dance in order to compose music” ? For this purpose, we employed motion analysis
techniques to drive a song synthesis probabilistic machine, such that the choreographed
movements of a real dancer create new music that is subsequently performed by a com-
puter animated character.

Storyboard

To demonstrate the results of the project a video was produced showing all the steps of
this process.

We wanted the video to be, at the same time, artistic and illustrative – an authoring
decision that posed great challenges to us.

The strategy adopted to fulfill our goal was to make the video more like a dance
performance in itself than a documentary explaining the inner workings of the research.
On the other hand, the video should also reveal the interplay of music and dance to
produce an integrated piece.

1



CHAPTER 1. INTRODUCTION 2

Consequently, the structure of the narrative consisted of a dancer performing a samba
song. This performance is divided in two parts: in the first part, she dances to an
automatic generated music; and in the second part, the real dancer becomes a virtual
dancer that, through her movements, create a new music. In other words, the paradigm:
Dance to The Music / Play to the Motion.

Hints of how some technical aspects of the method relate to the actual action are
provided by text explanations at both begining and end of the video, as well as, by
graphical elements, such diagrams that are superimposed on the images throughout the
video. The figure below shows the storyboard for this video:

Figure 1.1: Storyboard.
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1.2 The Techniques

To produce the video Dance to The Music / Play to the Motion we employed a plethora
of techniques that are commonly used in Digital Special Effects and Computer Animated
Films.

These techniques span a wide variety of domains, ranging from live action shooting to
CG character animation on the visual side, and from music scoring to soundtrack creation
on the audio side.

Pipeline

The complete video is generated by series of steps that combine in non-trivial ways the
various techniques mentioned above. These tasks form a pipeline of video production,
that begins with the argument, storyboard and pre-production planning, continues with
shooting and production, and ends with editing and post-production.

In the subsequent chapters of this technical report, we will present in detail each of
these techiniques and discuss how they are assembled to produce the video Dance to the
Music / Play to the Motion.

More specifically, we wil address the following topics:

• Cinematography

• Motion Capture

• Animation

• Modeling of 3D Characters

• Rendering and Illumination

• Camera Calibration

• Music and Soundtrack

• Motion Graphics

• Editing



Chapter 2

Cinematography

In thsi section we discuss the technical aspects of the live action cinematography.

2.1 Video Format

From the very beginning we decided to make the video in the most advanced standards.
This implied that we would use the format Full HD, which has an image resolution of
1920×1080 pixels and a frame rate of 60 fps. This choice also determined the wide aspect
ratio, 16 : 9, for the image.

Since the first part of the video shows the real dance performance, we had to shoot
live action in a studio where the motion capture took place.

Figure 2.1 shows the set for the dance performance. It is actually the main background
for the video, because we opted to use a fixed camera a wide shot of the action.

Figure 2.1: Background of HD Frame

The set, as can also be seen in Figure 2.1 was a studio with a dance floor and a dark
background. The dancer was wearing a black suit with retroreflective markers.

4
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2.2 Lighting

The lighting was designed to emphasize the motion of the dancer. It consisted mainly
of a backlight provided by two 600W Omni reflectors just outside the upper sides of the
image frame, as shown in Figure 2.2.

Figure 2.2: Base Illumination: Backlight

The purpose of this base illumination was to mark the silhouette of the dancer without
revealing too much of her figure.

The backlight was complemented by a frontal fill light, which consisted of a 200W
reflector placed next to the main camera, as can be seen in Figure 2.3. The intensity of
this source was carefully balanced to brighten the retro-reflective marker in the dancer’s
suit, while preserving a high contrast for the backlight effect from the base illumination.

Figure 2.3: Fill Light
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2.3 Cameras

The live action part of the video was shot with two cameras: a frontal main camera for
wide view coverage of the dance performance and a secondary side camera for close-ups
of the dancer. Figure 2.4 shows both cameras positioned at their location in the studio.

Figure 2.4: Cameras

The main camera was a 3-CCD Panasonic AVCHD video camera, while the second
camera was a 1-CCD Sony HDV camera. We used Manfrotto tripods for both cameras.
Figure 2.5 shows the capture setup during shooting.

Figure 2.5: Shooting a Scene.
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Motion Capture

Motion Capture (MoCap) is a technology that allows us to record human motion with
sensors and to digitally map the motion to computer-generated creatures[1].

The applications of motion capture go far beyond animation and include biomedi-
cal analysis, surveillance, sports performance analysis and input mechanism for human-
computer interaction. Each application has its own particular set of singularities and
challenges.

In this chapter, we will discuss motion capture of full body motion for character
animation. We will introduce the basic concepts, detail the technique and describe how
it was implemented at the VISGRAF Laboratory.

3.1 Introduction

By definition, to animate is to bring to life, in this case, to make a lifeless object (a graphics
model) move. Realistic animation of human motion is a challenging task, firstly, because
human movements can be quite complex since joints have many degrees of freedom and,
secondly, because people are skilled at perceiving the subtle details of human motion.
For example, people are capable of recognizing friends at a distance purely from the way
they walk and can perceive personality and mood from body language. This implies that
synthetic human motion needs to be very accurate in order to appear real.

It is the opinion of many researchers of the area that synthesis of realistic human
motion can only be made possible by an approach that makes extensive use of data from
the real world [2]. It this context, it has been quite appealing for animators to used
methods of copying the movements of real life objects.

An early example of such a technique is Rotoscoping, in which animators trace over
live-action film movement, frame by frame, in order to create realistic motion. Though
archives show that most of Snow White’s movements were traced from actors motions us-
ing this technique, Wald Disney never admired to it. In fact, this was consider “cheating”
because it was not produced by the imagination of the artist and also “cheep animation”
because animations were supposed to be “bigger than life” not merely a “copy of life” [1].

Rotoscoping was, naturally, a precursor of MoCap and the controversy around it has
the same origin. On the one hand, there is the need for creating engaging and expressive
characters and on the other hand the need of synthesizing realistic motion efficiently and

7
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fast. Therefore, withing the animation community, there is a historical tension between
animators and MoCap technicians [3].

The techniques for motion creation are usually divided into three basic categories:
manual specification (key framing), motion capture and simulation [4].

Key framing borrows its name from traditional hand animation and is, in fact, very
similar to it in the sense that, while computers reduce some of the labor by automatically
interpolating between frames, the animator has to specify critical (or key) positions for
the objects. This requires great training and talent, since a characters usually have many
controls (e.g, each of the main characters of the movie Toy Story, which were animated
in this fashion, had more than 700 controls). The advantage of this method is that the
artist is able to control subtle details of the motion. Nevertheless, it is very hard to make
the characters look real.

Motion Capture, as we have mentioned above, is a process that transfers recorded
movement to an animated object. Some of the advantages of motion capture over tradi-
tional computer animation are [5]:

• more rapid, even real time results;

• real, naturalistic movement data;

• extremely accurate 3-D data that permits the study of the essence of the movements;
and

• data formats that require minimal storage and allow for easy manipulation and
processing.

The physically based approach, uses laws of physics to generate motion through sim-
ulation and optimization. This technique is largely used, not only for human motion,
but also to animate fluids, fire, explosions, face and hair. Simulation techniques supply
physical realism, while MoCap allows for natural looking motion. Currently, many appli-
cations merge both techniques together in order to create models of human motion that
are flexible and realistic [2].

3.2 MoCap Technique

Motion Capture systems can be divided into three different categories [5]: inside-in (sen-
sors and sources located on the body), inside-out (sensors located on the body and sources
outside) and outside-in (sources located on the body and sensors outside).

An example of an inside-in system is an electromechanical suit, where sensors are
attached to to the performer’s body measuring the actual joints inside the body. The
advantages of this method are the absence of occlusions (all sensors are always “visible”)
and the portability of the suits. Nevertheless the actor’s movement are constrained by
the armature.

In electromagnetic (inside-out) systems, electromagnetic sensors, placed on joints of
the moving object, measure their orientation and position with respect to an electromag-
netic field generated by a transmitter. This method also directly collects positions and
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orientations of the sensors and does not have to consider occlusion problems. The draw-
backs of this technique relate to the range and accuracy of the magnetic field as well as
the constraint of movement by cables.

Optical systems are inside-out systems which use data captured from image sensors to
triangulate the 3D position of a subject between one or more calibrated cameras. Data
acquisition is traditionally implemented using special retro-reflexive markers attached to
an actor and infrared cameras. However, more recent systems are able to generate accurate
data by tracking surface features identified dynamically for each particular subject. This
is called the marker-less approach.

Optical techniques are widely used since they allow large performance areas (depending
on the number of cameras) and performers are not seriously constrained by markers.
Nevertheless, orientation information is not directly generated and therefore extensive
post-processing needs to be done in order to reconstruct the three dimensional motion.

The three major tasks that need to be undertaken are [6]: markers have to be iden-
tified and correlated in the 2D images, 3D locations have to be constructed from the 2D
locations, and 3D marker locations need to be constrained to the model being capture
(e.g., human skeleton).

The first step is to find the markers at each frame and track them over the video
sequence. The latter can be quite difficult because markers often overlap, change po-
sition relative to one another and are occluded. In addition, noise can arise from the
physical system (markers may move relative to their initial positions) or the sampling
process. Hence three major problems occur when tracking the markers and may need
user interventions to be resolved: missing data in the presence of occlusions, swapped
paths between two markers that pass within a small distance of each other, and noise.

Figure 3.1: Two-camera view of a point. Extracted from [6].

The second step is to reconstruct the 3D points from the 2D trajectories. For this
purpose, cameras need to calibrated , i.e., the position, orientation and intrinsic properties
of the cameras need to be known. This can be done by recording a number of image points
whose locations are known. With calibrated cameras, the three dimensional coordinates
of each marker can be recontructed from at least two different views (the more orthogonal
the views the better), as shown in Figure 3.1.

Finally, the 3D marker positions need to be transformed into the motion parameters
of a kinematic skeleton model. For this, it is crucial to place the markers in adequate
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positions. The markers cannot be located exactly on the joint firstly because they are
placed on the surface of the skin and second because they have to be set in positions where
they will not move according to the performance. This represents a problem because
although distances between consecutive joints are always the same, distances between
markers may vary. Therefore, in order to locate the joint relative to the marker, we need
not only the position, but also the orientation.

To solve these problems, most standard formats require placing three non-linear mark-
ers on each rigid body part instead of one in each joint [7]. These locations are then used
to determine the position and orientation of each limb and the skeleton configuration is
determined while the tracked subject performs an initialization pose (T-pose). Since noise
is usually added to the data, directly using the calculated joint positions will probably
result in varying bone lengths. To get around this problem, many systems calculate joint
rotations and use a skeletal hierarchy to reconstruct the pose of the articulated body.

3.3 MoCap at Visgraph

There are currently several comercial MoCap System available. During the course of this
project, motion capture was done in the VISGRAPH Laboratory using OPTITRACK,
NaturalPoint’s optical MoCap System. The infrared cameras (see Figure 3.2.b) are sen-
sitive to the retroreflexive markers (see Figure 3.2.b) which are placed in the performer’s
body.

(a) OPTITRACK camera (b) Retroreflexive markers

Figure 3.2: MoCap setup.

As with traditional animation and many other arts, MoCap is actually composed of a
number of phases[8]:

• studio set-up,

• calibration of capture area,

• performance and capture of movement,

• clean-up of data, and
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• post-processing of data.

The studio was set up with six cameras, as shown in Figure 3.3. Tracking a large
number of performers or expanding the capture area is accomplished by the addition
of more cameras. Since each marker must be“seen” by at least two cameras, a greater
number of cameras diminishes the possibility of occlusions.

Figure 3.3: OPTITRACK cameras set up at the Visgraf Laboratory.

Camera calibration was done with the help of OPTITRACK’s software, AREA. This
software also specifies the postion of the markers in the performer’s body (see Figure 3.4).

Figure 3.4: Dancer performing at the VISGRAPH Laboratory

The ARENA software (see Figure 3.5 ) was also used to process the acquired data.
The first processing step is to trajectorize the data. This procedure takes the 2D data
from each individual camera and changes it to a fully 3D path of each individual marker.
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Figure 3.5: The ARENA software.

After this procedure the software allows for post capture editing (such as filling gaps,
fixing swaps and smoothing tracks) and exporting a file in a BVH or C3D format.

In this project, we used the BVH file format, which was originally developed by Biovi-
sion, a motion capture services company, as a way to provide motion capture data to their
customers. Nowadays, it is widely used, and many applications support importing and
exporting files in this format. It consists of two parts, a header section which describes the
hierarchy and initial pose of the skeleton, and a data section which contains the motion
data. For a more detailed description of the BVH file format, see Appendix A.
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Animation

4.1 Introduction

In the previous chapter we discussed Motion Capture and its applications to character
animation. Though the technique is very powerful in the sense that it allows rendering
natural and realistic motion, MoCap by itself is nothing more than a method for repro-
ducing acquired movements. Therefore, much effort has been, and is currently being, put
into extending the applications of MoCap data.

There are many reasons that make editing captured motion extremely important.
Firstly, it is usually necessary to eliminate artifacts generated during acquisition. Sec-
ondly, it is important to match time and space of computer generated environments,
overcome spatial constraints of capture studios and allow for the existence of motions
that would be extremely hard for an actor to perform, such as the ones used in special
effects. Finally, it is interesting to be able to reuse motion data in different occasions. For
example, given a walking scene, it should be possible to generate a walk on an uneven
terrain or steeping over an obstacle.

In addition to editing [9, 10], it is the interest of many researches in the field to
synthesize new streams of motion from previously acquired data and, therefore, be able
to create new and more complex motions. Motion synthesis strategies include constructing
models of human motion [11, 12], interpolating motion to create new sequences [13] and
reordering motion clips employing a motion graph [14].

In this work, we use a motion graph to create a new motion stream from previously
acquired data. We introduced a couple of restricted to this graph, so it could used as a
tool to guide the concatenation of musical phrases for the composition of a new song.

In the next section we describe how a motion graph is built and in section 4.3 we
discuss the choreo.graph, a measure-synchronous motion graph which was implement for
the purpose of this project.

4.2 Motion Graphs

Motion graphs were introduced in [14], in order to encapsulate connections among a
database. In this graph, edges correspond to motion clips (sequence of frames) and nodes
to choice points (specific frames) connecting these clips. After selecting the similar frames,

13
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or windows of frames, and creating the graph connections, a walk along the graph allows
us to re-assemble the captured clips, creating new motion.

Figure 4.1 illustrates the construction of a motion graph. Initially we have two clips of
motion from a MoCap database. The resulting graph is the one shown in Figure 4.1(a),
which is disconnected and quite simple. Notice that it is possible to add nodes in the
graph, simply by breaking the initial motion clips into two or more small clips, as shown
in Figure 4.1(b). Nevertheless, this graph is still disconnected.

(a) Initial graph.

(b) Adding new nodes.

(c) Create greater connectivity.

Figure 4.1: Construction of a motion graph.

To create greater connectivity, we introduce transition clips, as shown in Figure 4.1(c).
Notice that these new edges also represent clips of motion which have to be synthesized
by the technique. Therefore in order to create these new edges we first have to select the
nodes which can be efficiently connected and then create the motion clips to which the
transition edges will correspond.

Following the ideas proposed in [14], we select the nodes which are sufficiently similar
so that straightforward blending is almost certain to provide valid transitions and use a
similarity norm that takes into account a sequence of frames and a point cloud driven by
the skeleton.

As in the BVH file, a motion frame is fully described by the position and orientation
of the root node and the rotation of the other joints. However, an attempt to use this
information to calculate similarity between frames will be highly unsuccessful because
some of these parameters have a much greater overall effect on the characters position
than others (for example, a knee rotation is usually much more significant than a wrist
rotation). In addition, it is quite hard to set fixed weights that work well in all cases, since



CHAPTER 4. ANIMATION 15

the effect of a joint rotation on the shape of the body depends on the current configuration
of the body.

(a) Similar sequence of frames.

(b) Added connection.

(c) Resulting graph.

Figure 4.2: Addition of a transition edge.

To solve this problem, we use a point cloud, which describe the skeleton pose (ideally
this point cloud is a downsampling of the mesh defining the character) and vector distance
norm. It is important to notice that a motion is fundamentally unchanged if we translate
it along the floor plane or rotate it about the vertical axis. Therefore, before comparing
the distance between two point clouds we apply a rigid 2D transform to the second point
cloud that sets it at the optimal position so that weighted sum of squared distances is
minimal.

In addition, it is important to consider not only the current position but also derivative
information, such as velocity and acceleration. We incorporate this information to the
similarity metric by using a window of frames. This also helps the blending procedure.
An example is shown in Figure 4.2. The similarity metric selects the two sequences
of frames as shown in Figure 4.2(a). Therefore we can add an edge that connects the
beginning of first sequence of frames to the end of the second one, shown in Figure 4.2(b).
The resulting motion associated to this transition edge is created by blending the two
sequences of frames.

Finally, after the edges are created, we prune the graph by computing the strongly
connected components (SCCs). We use only the largest SCC so as to guarantee that there
are no dead ends, and therefore we can synthesize the motion indefinitely.

4.3 The choreo.graph

Songs are metrically organized in measures, which determine the size of the melodic
phrases. Therefore, in order to preserve the size of the melodic phrases during composi-
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tion, it is important to build a measure-synchronous motion graph.
Since the performer is dancing according to a song we are able to relate melodic

phases to parts of the acquired motion (choreography phrase). Once both informations
are synchronized, we can use music metric information to segment the dancer’s movement.

A measure-synchronous motion graph is then built by observing segment boundaries
similarities. We used the similarity metric described in the previous section, but instead
of connecting the nodes which are sufficiently similar, we connect the end of each motion
phrase to the five nearest segments, creating a directional weighted graph.

A restricted random walk on this graph creates a new motion. We observed that
two restrictions are appropriate for the resulting music to resemble samba style pieces.
First, musical instruments should not vary too frequently. In our implementation, this
is guaranteed by dynamically varying the weights of the graph edges during the walk.
Second, it is important to observe intensity variations between large music blocks during
composition. We used three distinct blocks, and motion phrases were annotated accord-
ingly. During motion synthesis, the user can specify the number of phrases desired for
each block and the order in which they occur.

The choreo.graph is not restrict the to the strongly connected components. Instead,
the large number of connections in the graph is combined with a weighting system to
prevent the walk from reaching the last phrase of each clip, which would be a dead end.

Nevertheless, it would be interesting to reach the end of the clip, since usually dancers
perform a “finishing pose”. To this end, we use a restricted graph search that allows
quickly reaching the last phrase after the total number of phrases (specified by the user)
has been concatenated.

The user interface was developed in C++ using QT toolkit. We also implemented a
BVH file parser and a player that allows us to compare captured to rendered motion. As
shown in Figure 6.3, the interface shows where each part of the rendered motion comes
from. The graph transitions (blended motions) are represented in black and the original
motion clips in an increasing saturation scale of color.
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Figure 4.3: User interface that was implemented.
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Modeling 3D Characters

The animation produced as explained in the last chapter was transfered to a mannequin
and to a skeleton made of spheres and cylinders. This chapter explains how we did this
using Maya.

5.1 Introduction

We can split 3D Characters into two groups, which one demanding a different modeling
process:

Articulated Characters They are characters made of rigid bodies connected by joints.
The modeling process can be done by parenting nodes that represents these bodies to
theirs respective joints in a hierarchy. They are usually used to represent mechanical
objects.

Soft characters They consists on deformable surfaces attached to skeletons. The sur-
faces deforms depending on the skeletons configuration. In the modeling process
the user has to specify the influence of each joint over each point of the surface,
it is usually done by using painting interfaces. They are usually used to represent
organic characters.

On this project we only made use of articulated characters.
There are many good references about modeling characters in Maya. A good intro-

duction can be found in [15], and more detailed explanations are given by [16] and [17].

5.2 Building the character

The first step was importing the BVH animation. It was done by using the MEL script
bvhimport.mel written by Sergiy Migdalskiy and available in the site Highend3d.com.
After doing it, a skeleton appeared allowing us to check the animation by moving the
time line (see Figure 5.1).

It would be possible to map the animation of this skeleton to a 3D model previously
modeled. It could be done by using the Character Mapper Tool combined to the Trax
Editor. But, we adopted a different solution, we modeled the character directly over this
skeleton.

18
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Figure 5.1: The skeleton created after importing the BVH animation.

Accessing the Hypergraph Editor we could see the skeleton hierarchy exported by the
Arena software as shown in Figure 5.2.

Figure 5.2: The hierarchy of a character exported by Arena.

We moved the skeleton to a T-pose by setting the time line to a negative value. Then,
we created the spheres and cylinders and placed them over the bones (see Figure 5.3).
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Figure 5.3: The character made of cylinders and spheres.

After displacing the primitives over the bones, we attached them to theirs respective
joints using the Hypergraph Editor. The result after parenting all primitives is shown in
Figure 5.4.

Figure 5.4: The hierarchy of the character made of cylinders and spheres.

The mannequin was created by using a similar process. We made use of the pieces
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from the mannequin given by the book [18]. The result is presented in the pictures 5.5
and 5.6.

Figure 5.5: The geometry of the mannequin.

Figure 5.6: The hierarchy of the mannequin.

After modeling the geometry and parenting all primitives, we adjusted the surface
material. We chose a Blinn material, where we mapped the wood texture presented in
Figure 5.7 to the Color and Bump Mapping attributes.

After adjusting the attributes of the Blinn material we achieved the final look presented
in Figure 5.8.
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Figure 5.7: The texture used in the mannequin.

Figure 5.8: The final look of the mannequin.
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Rendering and Lighting

6.1 Introduction

Traditional cameras were set up to record the light so that it could be reproduced on
photographic paper, while digital cameras, on the other hand, were developed to repro-
duce the light captured on a monitor. Neither displays nor photo papers can represent
the entire dynamic range of illumination. However, if taken many photos with different
exposure times, these images can be combined so that the dynamic range is approximately
recovered. With this technique, a series of images can be combined into a single image
with high dynamic range (HDR), called radiance map.

Because HDR images store the full range of light reaching a point in space, they
contain information about the shape, color and intensity of direct light sources, as well as
the color and distribution of the indirect lighting surfaces from the rest of the scene. Using
appropriate rendering algorithms, and sampling techniques, we can efficiently use HDR
to accurately simulate how objects and environments would be if they were illuminated
by light from the real world. This process of using images as light sources is called
image-based lighting (IBL), and was introduced by Paul Debevec [19].

The first step in working with lighting by artificial lighting scenes taken from a real
environment, is to store the illumination of the real environment. One way of doing this
is by obtaining an omnidirectional, high dynamic range image that records the incident
illumination conditions at a particular point in space. An image with this features is
called of Light Probe.

6.2 Making a Light Probe

There are several techniques for mounting a Light Probe. In this paper we choose one of
these forms and further proceed to explain the process followed in the construction of the
Light Probe.

The selected method

One method for obtaining a Light Probe is to take a high-dynamic range image of a
mirrored ball. Assuming an orthogonal camera, then in theory a single photograph of the
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mirrored ball can see in all directions, such as in figure 6.1. That is, anything visible from
the viewpoint of the mirrored ball will be visible to the camera as a reflection in the ball.

(a)

Figure 6.1: How the rays of the world are reflected into mirrored ball assuming an ortho-
graphic camera. The blue rays are the reflections of the green scene rays.

Unfortunately, things that are reflected near the edge of the ball will become extremely
stretched and distorted, giving a poor image when it is unwarped. Additionally, in the
center of the ball will be a reflection of the camera used to take the photograph, which
will obscure some of the background.

To alleviate these problems, we can take two pictures of the mirrored sphere from
different angles and blend them together to remove the camera and the regions of poor
sampling.

Since the two bad spots in the mirrored ball are directly towards the camera, and
directly away from the camera, the two pictures should be taken from positions 90◦ apart
from each other. This way the regions of bad sampling and camera interference will be in
different locations in the two images. (Note that taking the images from opposite sides
of the ball will not work, as the region of bad sampling in one image will be the location
of the camera in the other image, and vice versa.)

In our case we use only one point of view to get the HDR image. The camera was placed
so that it does not obstruct any light source, the poor sampling region is a black curtain
and the map will be used only to illuminate an object that does not contain mirrored
reflections. The previous method is recommended in scenes containing several objects
with interreflections, where any problem on the map will be seen in these reflections.

Taking LDR Photos and assembling the HDR image

Since we need an HDR image of the mirrored ball, we should proceed according to Debevec
and Malik [20], building an HDR image from a series of LDR photos, by reconstructing
the response curve. The used camera is not orthogonal, but placing it at a distance about
1.5m and zooming it we can obtain an very small angle of view (fov) approaching an
orthogonal projection (figure 6.2). We took care to place the camera in a position that
does not obstruct the reflection of none light in mirrored ball and the lights stay in the
central area of the ball, where the sampling is better. In the peripheral zone of the ball
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was a reflection of the black curtain background. Thus it was only enough to take photos
with a single camera position.

(a)

Figure 6.2: The relative position of the camera an mirrored ball.

First, with the camera fixed on the tripod took several photos of the mirrored ball
using a fixed aperture ( F8.0 ) and varying the exposure time (doubling the time between
each exhibition from 1/500Sec to 15Sec). We used 14 photographs for construc the map.
(figure 6.4(b)).

After the photos were taken, the next step is construct an HDR image with them,
using Pfstools package. Opening the Qtpfsgui graphical interface and clicking on “New
Hdr...”it will open a window where we click it on “load images”and select the 14 images
of the pictures we took. The program will load the pictures and automatically fill in values
for the exhibition EV of each image (figure 6.3(a)). This still can be edited by the user if
he deems it necessary. Then we click on “next”and move to another screen (figure 6.3(b))
where it is possible to align the images to eliminate possible tripod and camera movements
during the series of photographs. Completed the alignment clicking on “next”to pass to
the next stage.

This is the last window (figure 6.4(a)), where we choose the function of weights, the
model of response curve and HDR model construction desired. Made the choice we click in
“finish”and return to the main window where will appear the HDR image resulting from
the process. Finally keep this file in .hdr format to continue editions in other software.

Crop the Mirrored Ball of the result HDR image

The next step is to crop the result HDR image to the very edge of the mirrored ball:
First make sure that the “Circle”option is checked. This can be found in the Select

menu under Draw Options. Checking this will draw an ellipse inscribed in your selection
rectangle, which can be useful for matching up the edge of the mirrored ball with your
selection.

If the mirrored ball goes off some of the edges in your photograph, make sure that the
“Restrict Selection to Image”option is unchecked. This can be found in the Select
menu under Select Options. Unchecking this will allow the selection tool to select regions
outside the bounds of the image.

Select the region around the mirrored ball, and adjust it until the circle borders the
edge of the ball (figure 6.5(a)). It should look something like the image below.
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(a) (b)

Figure 6.3: (a) Select the mirror ball with the circle option cheked in the crop tool,(a)
The panoramic transformation window, used to transform from the Mirrored Ball format
to Latitude/Longitude format.

(a) (b)

Figure 6.4: (a) Select the mirror ball with the circle option cheked in the crop tool,(b)The
HDR image of mirrored ball assembled with the 14 LDR photos of the left and right side.

When you have the circle lined up, crop the image using the Crop command in the
Image menu.

Apply the mirrored to latitude-longitude transform

Finally, when we have the crop of the mirrored ball, we transfomer it to latitude-longitude
format. We chose the menu “Image”→“Panorama”→“Panoramic Transformations”will
open a window like the figure 6.5(b) where we put the desired transformation, of “Mirrored
Ball”to “Latitude/Longitude”and clicking on “ok”. Thus we get a new image in the
desired format (Figure 6.6(b)).
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(a) (b)

Figure 6.5: (a) Select the mirror ball with the circle option cheked in the crop tool,(b)
The panoramic transformation window, used to transform from the Mirrored Ball format
to Latitude/Longitude format.

(a) (b)

Figure 6.6: (a) The Light Probe in mirrored format, (b) The Light Probe in Latitude-
Longitude format.

Calibrating Sphere reflectivity

We should note that the materials commomly used in mirrored spheres can’t reflect the
100% of incident illumination, so the ball used has a coefficient of reflection that we must
calculate to correct the obtained illumination map.

To calculate the reflection coefficient of the mirrored ball and fix the map we follow
these steps:

• We set a patch on a sheet of white diffuse paper and put it near the mirrored sphere.
So we took a picture that contains both the paper and the sphere (figure 6.7).

• We can thus divide the average pixel value of the patch in the reflection by the
average pixel value in the direct view to obtain the coefficient of reflection in each
color channel. In our case the result is (0.625460, 0.664949, 0.706071).
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• The map can be corrected to match the backgroud by dividing its channels by each
of these numbers.

(0.470099, 0.471122, 0.518013)

(0.294028, 0.313272, 0.365754)

Figure 6.7: The average colors of a white patch in real world and its reflection on the
mirrored ball. Dividing these two values you get the reflectivity coefficient of the mirrored
ball.

6.3 Rendering with Light Maps in Mental Ray

To open the ilumination map in MAYA and using it in rendering we should follow up this
steps:

1. Go to menu Window→Rendering Editor→Render Settings. Whitin the Ren-
der Settings window we do:

• Mark Render Using option as mental ray (figure 6.8(a));

• Uncheck Enable Default Light option in Rendering Options sections of
the Commom tab figure 6.8(a));

• Click in Create buton of the Image based Lightling option, inside Envi-
ronment section of mental ray tab figure 6.8(c)).

2. Inside mental ray tab, go to Rendering Features section and just check ray-
tracing item of Secondary Effects option (figure 6.8(b)). It’s possible add more
effects like caustics, global illumination and final gathering. However this resources
will require another scheme to set the illumination map correctly.

3. Go to Attribute Editor of the Image Based Lighting created before. To access it
just clik in the created sphere with the selection tool.

• In Image Based Lighting Attributes section, if you click in the icon besided
image name field you can explore other files and select the hdr illumination map
done in section before (red circle in figure 6.9(a)).
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(a) (b) (c)

Figure 6.8: The Render Settings menu.

(a) (b)

Figure 6.9: The Attribute Editor of the Image Based Lighting.

• If it’s necessary you can adjust the map Gain in Color Gain option. Clicking
in the white rectangle you will open the Chooser Color in wich we can choose
the color and the gain intesity (green X in figure 6.9(a)). Usually we will
maintain white color and just change it intensity, which can be done changing
the parameter V value (if the color chooser is set as HSV).

• In Light Emission section, check the Emit Light item (figure 6.9(b)). The Qual-
ity U and Quality V attributes set the size of a control texture that generates
the virtual lights. For each pixel of the ocntrol texture, one light is creted. To
make the render feasible, the Samples attribute places a cap of the number of
lights used. The first Samples field determines the minimum number of lights
generated. The second Samples field determines the maximum number of ad-
ditional lights that are randomly added to make the lighting less regular. To
set these parameters you must consider the desired quality and rendering time.
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Camera Calibration

Camera calibration techniques are methods used for finding the intrinsic and extrinsic
parameters of cameras. These methods are very important whenever we intend to su-
perimpose synthetic images over real ones in a realistic way. It holds because the effect
applied by the camera model used in the rendering process must correspond to the effect
applied by the real camera.

7.1 Introduction

There are two types of methods for calibrating cameras:

• Methods that use correspondences of 3D points to 2D points,

• Methods that use correspondences between 2D points.

The first type uses some kind of 3D pattern, which have markers placed in known
positions. Correspondences between these markers and theirs 2D projections over an
image are established. Then the method finds a camera model defined relatively to the
3D pattern.

This is a good choice if we want to superimpose a 3D model over a single frame. In
this case we take two pictures without moving the camera. One picture must show the
3D pattern in order to be used by the calibration method, the other one does not show
the pattern, this is the picture that is superimposed by the 3D model (see Figure 7.1).

Figure 7.1: (a) The picture of a scene showing a 3D planar pattern, (b) the scene after
removing the 3D pattern, (c) a 3D model superimposed to the scene.

30



CHAPTER 7. CAMERA CALIBRATION 31

The second type is more sophisticated. Correspondences are established between
projections of static points over many images using image processing techniques. Then
the method finds a camera model associated to each image. It is good because no pattern
is needed, but the absence of 3D markers implies that the correspondence of points can
easily fail. Thus, robust techniques must be added to the process. This process is called
Matchmove by 3d artists. We will not talk about them here, examples of algorithms that
do it can be found in [21] and [22].

7.2 Calibration Techniques

There are different algorithms for solving calibration problems based on 3D patterns. The
most important are:

Tsai’s Algorithm The Tsai’s algorithm makes use of a single planar pattern, usually
a checkerboard. It is the algorithm used in the Figure 7.1. It is a simple algorithm, but it
does not allow us to find all camera parameters. It cannot find the aspect ratio of pixels
neither the principal point. In general it is not a big trouble since we usually assume
that pixels are squared and the principal point is placed in the center of the image. An
implementation of it can be found in http://www.cs.cmu.edu/~rgw/TsaiCode.html.

DLT Algorithm The Direct Linear Transformation algorithm solves the problem of
calibrating cameras using correspondences of 3D known points to theirs respective pro-
jections. Compared to the previous algorithm it consider 3D points in a more unbiased
form, since they do not have to be placed over a plane. Another advantage is the fact
that it can find all the camera parameters. The disadvantage to Tsai’s algorithm is the
fact that it needs a non planar pattern, what is in general more difficult to be built with
good precision. Details of this algorithm can be found in [23].

Zhang’s Algorithm The Zhang’s algorithm makes use of a planar pattern that is
photographed from many different poses. Like Tsai’s algorithm checkerboards are usually
used. It combines two good properties from the previous methods. It uses a planar
pattern, what is easily built, and the 3D markers are not placed over a plane , what
makes the calibration unbiased. An implementation is available in http://www.vision.

caltech.edu/bouguetj/calib_doc/index.html.

7.3 Calibration and MoCap

In this project we faced a very specific calibration problem. We needed to superimpose
a 3D character over the image of a dancer whose movements were being used to animate
this character (see Fig 7.2). The solution for this problem is calibrating the camera in
the same reference used by the MoCap system.

The first idea that we had was placing markers over a checkerboard and combine the
values of rotation and translation given by the MoCap system with the camera parameters
estimated by Tsai’s or Zhang’s algorithm. It would have been complicated, and we were
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Figure 7.2: 3D characters superimposed to the the dancer.

not completely confident that we were able to interpret the information of translation and
rotation given by the Arena software exactly.

We decided to solve it in a more direct way. We took many pictures showing markers
used by the MoCap system (see Figure 7.3). For each pose we registered those 3D coor-
dinates given by the MoCap system. After that, we registered the 2D coordinates of each
marker using an ordinary image editor. Then we used the DLT algorithm to calibrate the
camera using the 3D-2D correspondences established.

Figure 7.3: Each picture shows three different markers used by the calibration algorithm.

After performing the DLT algorithm we found that the camera is K[R|t] where:

K =

 −2186 0 946
0 2191 501
0 0 1

 , (7.1)

R =

 −0.006 −0.028 0.999
−0.091 0.995 0.027
−0.995 −0.091 −0.009

 (7.2)

and
t =

(
−8.660 −79.719 403.274

)T
. (7.3)

The extrinsic parameters can be calculated by:

CameraCenter = −RT t =
(

394.214 115.940 14.594
)T

, (7.4)
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V iewDirection = RT (0, 0, 1)T =
(
−0.995 −0.091 −0.009

)T
(7.5)

and
V iewUp = RT (0, 1, 0)T =

(
−0.091 0.995 0.027

)T
. (7.6)

We can set all these parameters in Maya using the following MEL command:

viewPlace -eye 394.214 115.940 14.594 -viewDirection -0.995 -0.091 -0.009

-up -0.091 0.995 0.027;

After setting the position and orientation, we must set the intrinsic parameters. It can
be done by changing the attributes of cameraShape. We must adjust the Focal Length,
the Camera Aperture and the Film Translate parameters ( see Figure 7.4).

Figure 7.4: CameraShape attributes. Focal Length, Camera Aperture and Film Translate
are marked.

The Focal Length and the Camera Aperture are related, if we multiply both by the
same scalar factor the result is an equivalent camera. This fact is very important because
Maya only accepts focal lengths from 2.5” to 3500”. Thus we must choose a factor that
give us an acceptable value. Another issue is that the Focal Length is specified in inches,
but the Camera Aperture field is specified in mm. The expressions to calculate them are:

FocalLength = −25.4×K11 × ScaleFactor

HorizontalCameraAperture = ResX × ScaleFactor
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V erticalCameraAperture = ResY × ScaleFactor

,where K is the matrix of intrinsic parameters and ResX and ResY are the horizontal and
vertical image resolution respectively.

In our example we chose 0,01 as the scalar factor, what results in:

FocalLength = 555.41′′

HorizontalCameraAperture = 19.2mm

V erticalCameraAperture = 10.8mm.

Film Translate is the parameter that encodes the principal point coordinates. They
are the coordinates measured in pixels of the point where the view direction crosses the
image plane. Maya assumes, as default, that the principal point is placed in the middle
of the image, in the case of an image with resolution 1920× 1080 it would be (950, 540)T .
On the other hand, we can read the principal point associated to our camera reading the
two top right values of the matrix K in 7.1, which give us (946, 501)T . The difference
between the calibrated coordinates and the center of the image must be encoded in the
Film Translate parameter. The following expressions adjust the values to what Maya
expects:

HorizontalF ilmTranslate =
(ResX/2−K13)

ResX/2

V erticalF ilmTranslate =
(ResY/2−K23)

ResX/2

Considering our example it results in:

HorizontalF ilmTranslate = 0.014

V erticalF ilmTranslate = 0.040

After setting all the parameters we can check if the camera is correct. Looking throw
the camera, the projection of 3D points whose vertices had been used by the calibration
process must match the image of these points in a image plane assigned to the camera
(see Figure 7.5).

Figure 7.5: The 2D projections of 3D points match the projection in the picture used as
image plane.
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Music

In this chapter we will describe the motion scoring procedure, ie, the pipeline for music
composition. There are five steps:

1. Some songs are composed.

2. A dancer performs listening to the songs, and the dance is captured.

3. A graph of the dancer’s motion (coreo.graph) is built.

4. A new motion is synthesized by random-walking on the coreo.graph.

5. A new song, based on the walk on the graph, is composed.

8.1 Automatic Composition

We have chose to compose songs in the brazilian samba style, specially because of its
simplicity regarding the number os musical instruments to use and the complexity of
implementing tracks for them. Essentially, we need just an instrument for each one of
the percussion, harmony and melody categories. In samba, cavaquinho and pandeiro
(in english, tambourine) are classically used for harmony and percussion, respectively.
Regarding melody, there is the cavaquinho, the flute, the mandolin and other choices
(like the human voice, for instance).

As everything else in music, there is no rigorous rule for composing a samba song,
and in fact we are not experts in the subject. That said, given the human build-in
capability to produce music, some knowledge we have about music theory and a little
bit of previous experience we brought from other styles, it’s not too difficult to become
capable of composing samba songs after hearing a couple of samples, talking to a friend
which likes samba and, of course, taking some video lessons on YouTube.

We have composed three music pieces to be performed by the dancer. Each music is
organized in a 4-levels multi-resolution structure, consisting of cycles, bars (measures),
beats and clocks : 16 bars per cycle, 2 beats per bar and 12 clocks per beat.

For each song we have varied the melodic instrument, using the flute, the cavaquinho
and the clarinet. All songs were composed to have 3 cycles, the second (resp. first) being
the more (resp. the less) musically intense. “Intensity” of a song is a highly subjective
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concept, but we can simulate it reasonably by putting intensity in direct proportion with
the number of notes per bar which are played. The presence or not of a percussion
instrument affects music intensity as well.

Drum loops (ie, pandeiro loops) were composed manually, as well as cavaquinho loops.
We have chosen to use G, E7, Am, D7 as the chord progression. The melody is organized
in phrases, each phrase extending a bar (measure). Notes for each phrase are not picked
manually. Instead, we specify just the number of notes that must be played for each one
of the (two) beats of the phrase.

Beats can be filled with 0, 1, 2, 3, 4 or 6 equally spaced notes, what explains why
we are using 12 clocks as the resolution for the beat. This way, composing for a phrase
means calling a functions saying something like:

fill beat 1 with m notes,
fill beat 2 with n notes.

In fact sometimes another slightly different method is called:

fill beat j with m notes, the first note being of type x.

The type of the note has to do with the current chord being played, but we will not
get into the details (which are related to music theory concepts). This extra restriction
is usually observed in the first beat of the measure, because, in our implementation, that
is when the chord of the harmony is changing (there is a chord change every new bar).

In the particular implementation used for this project, for the

fill beat j with m notes

method the new note is simply one step above or bellow the chosen musical scale (which,
by the way, is the diatonic major), while for the method

fill beat j with m notes, the first note being of type x

the algorithm skips up or down the scale until a note which “sounds good” with the
current chord is reached.

If the algorithm will search for a note up or down the scale is a matter of

• a random sample taken from a uniform distribution in the interval [0, 1] being greater
or smaller than 1/2 and

• a note in the chosen direction being available.

Notes are confined in a 4 × 9 grid, as shown in Figure 8.1. The distribution of the
diatonic scale notes in the grid are described in [24].

Since in the grid the same musical note can be associated with more than one point,
the algorithm decides which point to use by, again, tossing a fair coin.
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Figure 8.1: Grid of notes for the automatic composition. Gray filled circles represent
scale-root notes.

8.2 Motion Scoring

After the songs are composed, the dancer performs listening to them. As mentioned
in Chapter 4, the captured motion of the dancer is segmented according to the length
of a musical phrase, which is equal to the length of a measure (bar), as described in the
previous section. That is why the motion graph so built is said to be measure-synchronous.
Once a new dance is obtained by random-walking on such a graph (the choreo.graph), the
next step is to compose the music score for it.

Let us suppose that we have constructed a new dance consisting of 4 segments,

(c1|s4), (c3|s12), (c3|s13), (c2|s10),

where (cI|sJ) means the segment J of clip (song) I. Now let us say that (c1|s4) was
composed using the high-level command:

fill beat 1 with 4 notes, the first note being of type x

fill beat 2 with 2 notes

and that the tambourine was omitted in that phrase. Then the first phrase of the score
for the re-synthesized dance will be composed the same way: the first beat will be filled
with 4 notes, the first of which being of type x, the second beat will be filled with 2 notes,
and the percussion will be omitted.

The chord progression can be set manually, or we can simply use the same sequence
of chords for the pre-dance songs and for the re-synthesized dance.
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Motion Graphics

The graphics in the video were created for the opening title sequence and to annotate the
live perfomance clip as well as the cg animation generated by the dance graph.

9.1 Opening Title

Figure 9.1: Opening Title

The opening title, shown in Figure 9.1, was produced using the Live Type software,
part of the Final Cut Studio, from Apple.

38



CHAPTER 9. MOTION GRAPHICS 39

9.2 Live Action Clip

The live action dance performance in the first part of the video was annotated with
superimposed graphical elements created with the program After Effects, from Adobe.
(See Figure 9.2)

Figure 9.2: Live Performance Annotations.

9.3 Dance Graph

The computer generated animation in the second part of the video was annotated with a
graphical layer that showed the progression of the dance graph. This effect was generated
by a custom program developed using the Apple Quartz graphics. (See Figure 9.3)

Figure 9.3: Dance Graph Annotations.
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BVH File Format

In this Appendix We will describe the BVH file format by means of a simple example.
Consider the following BVH file:

HIERARCHY

ROOT A

{

OFFSET 0.000000 0.000000 0.000000

CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

JOINT B

{

OFFSET 10.000000 0.000000 0.000000

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.000000 -20.000000 0.000000

}

}

}

MOTION

Frames: 3

Frame Time: 0.040000

30.0 80.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0

30.0 80.0 20.0 60.0 0.0 0.0 0.0 0.0 0.0

30.0 80.0 20.0 60.0 0.0 0.0 -30.0 0.0 0.0

The first part of the file describes the skeleton, which has a root node A, a joint B and
and ending node C, as illustrated in Figure A.1. Notice that the the distance between
the nodes are given by the offsets described in the file. In this example OA = [0 0 0],
OB = [10 0 0], and OC = [0 − 20 0].

This part of the file also details the channels associated to each node and therefore
indicates the size of the motion data and what is the information of each entry of the
motion vector. In this case, node A has 6 channels and node B, 3 channels. This means
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A  B  

C  

(0,0,0) (10,0,0)

(10,0,-20)

Figure A.1: Articulated body.

that the motion data (second part of the file) will be a series of vectors of size 9, each
corresponding to a single frame.

Consider, for example, the third frame (third line of the file after MOTION). The first
three components are the translation of node A (TA = [30 80 20]), the second three are
the rotations associated to this node, RA, and the last three are the rotations associated
to node B, RB. Notice that the order of rotations are given in the first part of the file. In
this example we first rotate 60o around the z axis, than 0o around the x axis, and, finally,
the 0o around the y axis. Therefore, R = RyRxRz.

Finally, we calculate the position of each node using the following equations:
A = OA + TA

B = A + ObRA

C = B + OcRBRA

Figure A.2 illustrates the arm position in frames 2 and 3.

B  (35,20,88.66)

C  (52.32,20,78.66)

A  (30,20,80)

(a) Frame 2

C  (10,0,-20)

B  (10,0,0)

A  (30,20,80)

(b) Frame 3

Figure A.2: Articulated body motion.
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