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Resumo  
 

Procuramos soluções analíticas para o processo de injeção de um fluido supercrítico composto por uma mistura de 

dióxido de carbono e água, em um meio poroso com água.  Após a injeção da mistura, uma complexa interação entre o 

transporte físico e a redistribuição das diversas componentes (i.e., água e CO2) ocorre ao longo das duas fases.  Esta 

redistribuição descreve-se usualmente em termos de equilíbrio termodinâmico local.  Levamos em conta efeitos 

térmicos relacionados com a injeção de fluido frio e a dissolução de CO2 em água. 

 

 

Abstract 

 
In this work we look for analytical solutions for the injection of a supercritical fluid mixture of carbon dioxide and 

water into porous rock filled with water.  After injection of the water/CO2 mixture a complex interaction between 

physical transport and the phase redistribution of the components, i.e., water and CO2, occurs. This redistribution is 

usually described in terms of local thermodynamic equilibrium.  We take into account the heat effects related to the cold 

fluid injection and to the dissolution of CO2.    

 

 

1. Introduction  
 

 Concern about global warming is generating interest in reducing the emissions of greenhouse gases such as 

CO2.  Injection of CO2 in deep saline aquifers has been proposed as a large-scale mitigation strategy for attaining this 

goal.  Examples of ongoing projects of CCS (Carbon Capture and Storage) in aquifers include the Sleipner Project in 

the North Sea (Utsira Formation) and the In-Salah Project in Algeria.     

 

In this work we look for a certain type of analytical solutions (i.e., Riemann Solutions) for the injection of a 

supercritical fluid mixture of carbon dioxide and water into porous rock filled with water.  Riemann solutions exhibit 

wave fronts found when studying piecewise initial value problems for material balance.  A famous example widely used 

in Petroleum engineering is the solution given by Buckley and Leverett for pure gas or water injection in sandstones 

filled with oil, as initially described by their famous work (1942).   

 

After injection of the water/CO2 mixture a complex interaction between physical transport and the phase 

redistribution of the components, i.e., water and CO2, occurs. This redistribution is usually described in terms of local 

thermodynamic equilibrium, which can be understood by the balancing effect of source/sink terms.  There are no 

published complete analytical solutions for 1-D problems involving complex thermodynamics that include CO2 and 

heat effects in the flow. In order to take into account the heat effects related to the cold fluid injection and related to the 

dissolution of CO2, we must understand the fluid-phase equilibrium of the different components among the different 

phases that appear in the flow.  A common sophisticated and effective approach for performing calculations for finding 

the thermodynamical properties of the flow, including mutual solubilities for carbon dioxide and water and their 

respective enthalpies, relies on the introduction of a “corrected pressure” term called the fugacity, which accounts for 

non ideal behavior.   Nevertheless, by relying on simplified relations derived for ideal fluid mixtures we can perform a 

coherent qualitative analysis of the properties to be studied.  Here we use this simplified approach, the Quick Thermo 

Calculation, described briefly in the Appendix. 

 



 2 

During the injection process, a supercritical fluid bank interacts with a region of cold water forming an 

intermediate region of multiphase flow composed of a CO2-rich supercritical fluid phase and a H2O-rich aqueous phase 

in thermodynamical equilibrium.  This complex transport process can be described by the evolution of interfaces 

between and inside flow configurations, e.g., abrupt changes in the mixture concentrations, conveniently represented as 

shock waves, and by continuous changes of physical variables such as the temperature, represented as rarefaction fans.  

The mechanisms of CO2 sequestration can be studied through the solution of Riemann problems associated to systems 

of balance laws governing the injection of water/CO2 mixtures.    

 
 

2.  The Model 
 

Our model captures the space-time evolution of the flow resulting from the co-injection of carbon dioxide and 

water into a thin linear horizontal porous core of constant porosity and permeability, initially filled with liquid water.  

We write a system of balance laws for the components of the flow, and for the conservation of energy, taking into 

account temperature effects. Due to high pressures and temperatures, the CO2-H2O mixture is found in supercritical 

state.  We consider longitudinal heat conduction, but we disregard conduction with the porous rock.  The pressure is 

assumed to be constant throughout the core; the fluids are considered incompressible.  Gravity segregation does not 

have an important role in the transport process, as the cylindrical core is thin and horizontal.  Variations of the physical 

properties of the fluids, e.g. viscosity and composition, can be important due to temperature changes; pressure changes 

are small along the core; therefore we assume it affects physical properties slightly.  We assume ideal volume mixing 

rules.  The 1D Darcy Law for multiphase flow relates the pressure gradient of each phase with its seepage speed 

 

     
    

  

   

  
                             (2.1)

           

 

where   is the constant absolute permeability of the porous rock and      is the relative permeability of phase  .  One 

of the phases is supercritical, denoted by  , and the other one is an aqueous phase, denoted by  .  The partial 

permeabilities are functions of their respective saturations,    and   .  The symbols,    and    stand for the viscosity 

and pressure of phase  .  

 

We write the equations for the conservation of total mass of carbon dioxide (appearing in the supercritical fluid 

phase, as well as dissolved in the liquid aqueous phase) and water (appearing in the aqueous phase and dissolved in the 

CO2-rich supercritical fluid phase) as 

 
 

  
               

 

  
                              (2.2)  

 

 

  
               

 

  
                               (2.3) 

 

 

where     denotes the concentration of component   in phase  .  The different components are carbon dioxide ( ) and 

water ( );    is the porosity of the porous media, assumed to be constant.  We include an additional equation for the 

conservation of energy using the enthalpy (per unit volume) formulation 

 
 

  
                 

 

  
                            (2.4) 

 

 

The term     represents the temperature dependent rock enthalpy per unit volume divided by the porosity  .  

The enthalpy of the supercritical fluid per unit volume is given approximately by                 .  The terms 

    and    are the temperature dependent specific enthalpies of pure supercritical CO2 and of pure cooled water given 

by experimental values and interpolated by cubic splines (higher order splines suit better the numerical methods, as the 

ones given by Reinsch (1967)).  We approximate the enthalpy of the aqueous phase by the enthalpy of pure liquid water 

         where    is the density of pure liquid water, taken as the constant 998 kg/m
3
. 

 

We can perform a practical modification of equations (2.2), (2.3) and (2.4), by performing a straightforward 

manipulation of expression (2.1) obtaining 
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                    (2.5)   

 

 

where    is the capillary pressure          , and          is the mobility of phase     is the sum of the Darcy 

velocities. Observe that        .  Replacing Eq. (2.5) in the balance laws (2.2), (2.3) and (2.4) we obtain a 

diffusive term related to the capillary pressure:  the effect of this term is to widen the evaporation front as well as other 

shock waves, while the convergence of the characteristic lines tries to sharpen this front.  The balance of these effects 

yields the front width, whose magnitude is negligible compared to the cylinder length.  Therefore we may disregard 

variations of capillary pressure along the core.  We may write then 

  

                                         (2.6) 

 

 

where    is the well known Buckely-Leverett flux given by    
  

     
  .   In the following analysis we will use the 

notation      .    

 

 

3.  Mathematical Classification of Wave-Patterns     
 

 Our main objective consists in understanding the wave pattern in the fluid transport, consisting of space-time 

variations of the different variables that characterize the flow.  Different approaches may provide equivalent outcomes 

for the flow evolution.  In fact, numerical simulations for systems of conservation laws may provide trustworthy results, 

even though they usually are computationally time-consuming, quality of the outcome may depend on the appropriate 

choice of the method to be used (e.g. Finite Volume Hyperbolic for systems of balance, as explained in detail by 

Leveque (2002) ) and their use may compromise the understanding of the core mechanisms of the system of partial 

differential equations corresponding to the physical model, as well as the classification of the different possible 

outcomes depending on the inputs of the simulator.  Fundamental improvements may be carried out for understanding 

the physical processes at the pore and reservoir scale through upscaling, as treated in many interesting examples; for 

instance see Salimi et. al. (2009).  In a different approach, a deep analysis of the structure of the hyperbolic system of 

conservation laws corresponding to the quantities transported by the flow can provide a bifurcation diagram for the 

injection problem:  inputs for the injection values belonging to the same region exhibit the same flow evolution pattern.  

This is the Wave-Curve Method, described in Azevedo et. al. (2009).  A comprehensive study of this method can be 

found in Isaacson et. al. (1992).  These inputs are the values of the Riemann problem, written as 

 

        
             

                   
                    (3.1)

  

 

where        is the starting value of the vector of unknown variables:  we want to predict its future       .  In this 

paper we will show the progress done for carrying out this classification for an example of two-phase mixed CO2/water 

injection into a saline aquifer containing carbonated water saturated by CO2.  In the analysis that follows we show how 

this wave-pattern classification is carried out by studying the different possible types of waves that can appear in the 

flow, and by finding important bifurcation loci where the solutions may change type in state space. 

 

 

3.1. Waves in the Two-Phase Configuration 

 

 As explained above we will concentrate our efforts in an injection problem where both the injected fluid and 

the fluid found initially in the reservoir are two-phase CO2-H2O mixtures (in particular carbon saturated water can be 

considered the limit case of a two-phase fluid where the vapor phase saturation tends to zero).  In this case, we say that 

the fluids are in the tp configuration: a mixture of two phases in thermodynamical equilibrium, one of liquid water with 

dissolved CO2, and the other one a CO2-rich supercritical fluid phase with dissolved H2O.  We assume ideal mixture 

throughout the flow.  We assume that the tp configuration is in local thermodynamical equilibrium, therefore satisfying 

Gibbs phase rule        , where   represents Gibbs number of degrees of freedom,   and   are the number of 

chemical species and phases, respectively.  In this case the pressure is fixed,      and     , therefore we obtain    = 

1.  Therefore, the component distribution along the phases is given by the system temperature.  In particular, the partial 

densities    , where        and      , are functions of temperature.  A concise method for finding these functions 
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is briefly described in the Appendix.  We conclude that the balance laws (2.2), (2.3) and (2.4) are governed in the tp 

configuration by   , T, and  .  We put         where          .  Following this notation, and taking into 

account the modification (2.6), the balance laws (2.2), (2.3) and (2.4) can be written as a system of the form, 

 

 
 

  
      

 

  
                         (3.1.1)

       

 

Assuming that are   and   are differentiable functions, we may write Eq. (3.1.1) as 

 

   
 

  
 
 
 
 
    

 

  
 
 
 
 
                    (3.1.2) 

 

 

where the letter   stands for   .    and   are the Jacobians of the accumulation term   and the flux term      
 

 We look for self-similar solutions of the Riemann problem for the system of PDE’s (3.1.2), i.e., solutions that 

satisfy              .  Therefore we want to analyze (3.1.2) under the change of variables      .  Applying the 

chain rule in (3.1.2) we obtain 

 

       
  

  
                     (3.1.3) 

 

 

 We conclude that a special type of solutions of (3.1.2) can be found by looking for solutions of the generalized 

eigenvalue-eigenvector problem 

 

                                   (3.1.4) 

 
where  

 

                          (3.1.5)

   

 
  

  
                      (3.1.6) 

 

                           (3.1.7) 
 

 

 Solutions for the problem stated by (3.1.4), (3.1.5), (3.1.6) and (3.1.7) are called rarefaction (fans) waves.  In 

the particular case we are studying, due to the absence of the unknown   in the system (3.1.1), the solution is given by 

two families of eigenvalues and eigenvectors 

 

     
 

 
 
  

  
   ,                             (3.1.8)                                                                                 

 

and 

 

    
 

 

    

    
 ,       

    
    

                         (3.1.9) 

 

 

where    and    are functions of temperature, and   ,    and    are functions of   and  .  We see immediately that the 

 -family (3.1.8) (  stands for saturation) corresponds to the Buckley-Leverett characteristic speed.  Rarefaction fans for 

this family are straight lines, See (4.9b).  Observe also that the eigenvalue    in (4.10a) has the form of a secant to the 

graph of the Buckley-Leverett fractional flow function.   
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 Condition (3.1.7) implies that we can connect points in the (     )-space using rarefaction fans whenever the 

eigenvalue increases along the integral curve.  Therefore we are interested in studying inflection locus for both families 

(3.1.8) and (3.1.9).  This locus is a rarefaction fan “stopping” site.  In our example, in order to find the rarefaction fans, 

we can restrict to looking for integral curves in the variables   and  .   

 

The inflection locus for the Buckley-Leverett family (3.1.8) can be found by looking for zeros of        .  

We denote this locus by   .    

 

The coincidence locus of  -family (3.1.9) (  stands for evaporation), denoted by      (i.e., where      ) is 

contained in its inflection locus, denoted by   .  The general theory for the bifurcation locus for this kind of multi-

component multiphase transport problems was studied by Lambert et. al. (2009).  It is easy to show that       =0, and 

   is parallel to    on the coincidence curve        Moreover, we can show that             =    , where       is given by 

the coincidence of    and    , where we have 

 

     
 

 

     

     
                  (3.1.10) 

 

  

where     and     are functions of temperature also.  

 

In Fig. 1 we can see the inflection locus for both families.  Above and below the coincidence curve    , the 

Buckley-Leverett characteristic speed is slower than the evaporation speed:  when connecting the different waves for 

finding the solution to the Riemann problem, we should construct the wave-curve corresponding to the solution of the 

Riemann problem starting with a slow family, exhausting slow-wave pieces and continue with the process with a fast 

family.  In Fig. 1 we also see the rarefaction fan curves together with the directions of increasing speed.  We detail also 

the natural orientation of the vector field   .   

 

Another kind of self-similar solutions are shock waves and contact discontinuities.  Shock waves are 

discontinuities in the solution        that satisfy the Rankine-Hugoniot condition:  even in the presence of a 

discontinuity an integral version of the system of conservation laws should be valid.  The RH condition can be 

expressed for the system (3.1.1) as 

 

                                 (3.1.11)   

 

 

where           is the difference between the limit values on the right and left of the shock curve, and   is the 

speed of the shock.  For this type of systems, the Rankine-Hugoniot Locus of a given starting value           , i.e., 

the set of points of the form            that satisfy relation (3.1.11) together with the starting point, is found by 

looking for the values of     that satisfy the RH condition.  Surprisingly,   and    can be found in terms of the 

remaining variables.  In fact, Eq. (3.1.11) can be written as a system of the form: 

 

  

       
   

 

       
   

 

       
   

 

  
 
  

  
  = 0                (3.1.12)
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Figure 1.  Rarefactions and inflection loci for the   and   families. 

 

   

 Under certain regularity assumptions, the RH Locus for systems of the type (3.1.1) is given by two curves, 

intersecting at the starting point    tangent to the rarefaction waves and possibly presenting auto-intersections.  Each 

one of these two curves belongs to a different family (slow and fast). Each point    in the RH Locus represents a shock 

wave between the states   and    with speed           .   

 

 Contact Discontinuities are abrupt changes in        that travel with characteristic speed.  They are 

represented in the space of variables         by integral curves of the system (3.1.5), (3.1.6) where the eigenvalue   
remains constant, i.e. where  

 

           =0                 (3.1.13) 

 

 

 Moreover, these curves satisfy the RH Condition.  In our case, inside of the tp configuration we don’t observe 

this kind of waves. 

 

 In order to build the wave-curve we must carefully study the compatibility between the speed of the rarefaction 

fans, shocks waves and contact discontinuities (always starting with slow waves followed by fast waves) and determine 

the admissibility of the shock waves to be considered.  A criterion for choosing physical shock waves comes from the 

viscous admissibility criterion (viscous or diffusion terms appear in the heat equation, viscous Burgers, Navier-Stokes, 

among others).  Viscosity smoothes discontinuous initial data immediately.  In the theory of hyperbolic conservation 

laws, e.g., of the type (3.1.1), in general this criterion reduces to the of study inequalities between the characteristic 

speeds of the system and the shock speed, inducing a classification of the different types of admissible shocks:  Slow 

and Fast Lax, Transitional (as treated in Isaacson et. al. (1990)) and Super-compressive.      

 

 In Fig. 2 we show the initial value data for the injection problem.  The left state       is a two-phase mixture 

of CO2 and H2O at the temperature of 360 [K].  The right state       is carbonated water saturated by CO2 at 320 

[K].  We show the RH Locus for different saturations at the temperature of 320 [K].  As explained above, in order to 

find a wave-curve linking the left and right states we need to build piece by piece a coherent sequence of waves 

satisfying the different admissibility criteria (this work is in current progress). 
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Figure 2.  Example: Injection problem and RH Locus. 

 

  

4.  Appendix:  Quick Thermo Calculations 

 
 In order to derive straightforward methods for calculating approximations for the thermodynamical 

equilibrium of the CO2-H2O system at supercritical conditions we can use basic thermodynamical principles such as 

Henry’s Law, Raoult’s Law, and Clausius-Clapeyron’s Law.  For calculating P-V-T values of the system, we choose the 

polar version of the Soave-Redlich-Kwong equation, proposed by Sandarusi et. al. (1986), which takes into account the 

binary interaction parameters between carbon dioxide and water, which is appropriate for supercritical conditions, even 

for two or more component mixtures.  Assumptions such as ideal mixing rules (i.e., volume conservation principles) 

may be used as simplifying assumptions.   

 

 The method described below provides the base-data for studying the structure of analytical solutions of mixed 

CO2-H2O injection in porous media.  Changes in the numerical values of high pressure phase equilibrium may affect 

quantitatively rather than qualitatively the Wave-Curve Method used in this paper for finding the dynamics of the 

compositional flow.   

 
4.1. Brief Description of the Method  

 

 Raoult’s Law is a relationship between the pure vapor pressure of water     [Pa], and its partial vapor 

pressure     in the gaseous phase 

               

                                                                                                                                                                   (4.1.1) 

 

 

where    denotes the molar fraction of water in the aqueous phase.  In order to find the value of the pure vapor pressure 

we use the well known Clausius-Clapeyron’s Law.  Henry’s Law is used for finding the concentration of a gas, (e.g. 

carbon dioxide), dissolved in the liquid in thermodynamical equilibrium, from its partial pressure in the gaseous phase 
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                                                                                                                         (4.1.2) 

 

 

where the terms            correspond to the concentration of carbon in the aqueous phase [kg/  ], and the molar 

weight of carbon, respectively.  Henry’s coefficient of carbon dioxide at reservoir temperature   
               , is 

temperature-dependent and has been corrected from its original value given at standard temperature 298.15 [K].  We 

assume ideal volume mixing rules for the aqueous phase 

               

              
   

   
 

   

  
                                                                                                                                           (4.1.3) 

               

                                                                                                                                                            (4.1.4) 

 

 

where      and     are the partial densities of CO2 and H2O respectively in the aqueous phase.  The empirically 

introduced variable       represents the density of pure dissolved carbon dioxide as present in a real aqueous mixture.  

The density of the aqueous phase   , can be found using the MSRK Equations of State EOS, proposed by Sandarusi, et. 

al. (1986), using the mixing assumption     .  Alternatively, we can find    by extrapolating experimental values 

found in the extense compilation of Gmelin (compiled from 1924 to 1998).  This is done via orthogonal regressions.  By 

simple physical proportions it is easy to verify that 

 

    
     

             
                    (4.1.5) 

 

 

where    is the molar fraction of carbon dioxide in the aqueous phase.  The sum of the partial vapor pressures in the 

supercritical fluid phase (which is treated as a gaseous phase)     and the aqueous phase     are equal to the reservoir 

pressure     .  At this point we stress the fact that we use as a poor approximation Henry’s Law as well for a 

supercritical fluid phase, i.e., in various instances we imply we approximate     with     where the subindex   

represents either carbon or water.  Using equations (4.1.3), (4.1.4) and (4.1.5), after some calculations we obtain the 

non-linear system for the unknowns     and      

 

     
                              (4.1.6) 

  

         
   

             
                  (4.1.7) 

  

    

where the coefficients of the quadratic equation (4.1.6) are given by 

 

    
  
    

  
                               (4.1.8) 

 

 b =              
                                        (4.1.9) 

 

 c =                                 (4.1.10) 

 

  

 We solve the system of nonlinear equations (4.1.6) and (4.1.7) using Matlab fsolve function, in the unknowns 

    and    .  Using equation (4.1.5) we find    and   .  From basic principles we proceed to calculate the remaining 

unknowns.  From the mixing rule (4.1.4) we calculate    .  We use Henry’s Law (4.1.2) to approximate    .   

 

 We calculate the concentrations of carbon dioxide and water in the supercritical fluid phase     and     in a 

three step procedure.  First, from (4.1.2) we can find the molar fractions of carbon dioxide and water in the aqueous 

phase    and   .  Second, from the MSRK EOS we can find the molar volume    [      ] of the supercritical fluid, 

and subsequently the phase density    .  Using basic physical relationships we can show that 
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                (4.1.11) 

 

  

 Using Eq. (4.1.11) we proceed to find     and using a mixing rule for the gaseous phase we find    .  The 

pure supercritical carbon density     can also be found using the MSRK EOS in order to find the corresponding molar 

volume     .  The mutual solubilities of  CO2 and H2O in the aqueous and supercritical fluid phase,    and    found by 

the means of the Quick Method for an overall pressure of         MPa., are compared in Fig. 3 with the 

experimental values given by King et. al. (1992)  (taken at         MPa) and Bamberger et.al. (2000) (taken at the 

same pressure of the QM ).  Unfortunately, the error is big at high pressures. 

 

             

 

 
 

Figure 3. Comparison of the Quick Method with experimental values.  
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