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1 Introduction

Recovery percentages from oil reservoirs range from 5% for difficult oil to 50% for light oil in
highly permeable sandstone reservoirs. Other reservoirs contain oil that is too difficult to produce
with conventional means. Part of this oil can be recovered using the methods of enhanced oil
recovery (EOR).

One of the methods to enhance the recovery uses air injection leading to oil combustion.
Conventional oil combustion can be considered as an in-situ heat generation process and its
purpose is lowering the viscosity of oil. Two major types of oxidation processes are identified.
The high temperature oxidation (HTO) process includes coke formation and its subsequent
oxidation at temperatures above 350℃. Due to a high reaction rate, the HTO reactions occur in
thin reaction zones. In the low temperature oxidation (LTO) process hydrocarbons are gradually
oxidized through the formation of ketones, alcohols, aldehydes and acids at temperatures less
than 300℃. As LTO only involves some 25 % [4] of the possible sites that can react with oxygen,
also the reaction heat per volume of fuel is roughly 25 % and consequently the temperature in
the LTO reaction zone is very low. The order of magnitude of the reaction rates is comparable
with the reaction rates found for HTO. However, since the oxygen concentration is much less
than the fuel concentration in terms of moles/m3, the oxygen consumption can occur within
meters at the highest temperatures (300℃).

In this work we examine a very simplified model for LTO, which is probably more suitable to
describe clean up of gasoline (represented as heptane) spilled in dry porous rock. In this model
a single pseudo-component liquid fuel is considered, which is characterized by an average boiling
temperature, density, viscosity etc. Application of this theory to in-situ combustion is limited
by the fact that oil contains heavy components which do not vaporize and lead to the change of
solution. Our theory, however, provides understanding of interaction of three physical processes:
LTO, vaporization and permeability effects. The main result is the resonance condition that
determines combustion wave parameters. This condition appears to be generic and can be used
in different models.
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2 Model

We consider flows possessing a combustion front when a gaseous oxidizer (air) is injected into
the porous medium, a rock cylinder thermally insulated preventing lateral heat losses and filled
with light or medium viscosity oil. When oxygen reacts with hydrocarbons at low temperatures,
a series of reactions occur that will convert a part of hydrocarbons to oxygenated hydrocarbons
and gaseous product (water, carbon dioxide etc.). The oxygenated hydrocarbons are compounds
like ketones, alcohols, aldehydes and acids. This low temperature oxidation (LTO) reaction is
modelled as

(oil) + O2 → (oxygenated oil) + νg (gaseous products), (1)

i.e., one mole of oxygen reacts with some amount of oil leaving oxygenated oil together with νg

moles of gaseous products.
Assuming that chains are not broken, we ignore any viscosity- and molar mass changes of the

oil. The boiling points will be elevated, but to keep the model tractable we will ignore this fact
and assume an average boiling point. As a consequence of this assumption, all oil upstream of
the combustion front will be vaporized as we will see in the analysis. We consider situations at
low temperatures (small reaction rates) so that only few carbons in each hydrocarbon molecule
get oxygenated, so we can disregard the difference between oxygenated and initial hydrocarbons
and consider a single oil pseudo-component. We assume that the original oil contains so little
heavy hydrocarbons that we can ignore coke formation, so that high temperature oxidation is
not possible. The concentration of water initially present in the reservoir or condensed from
the vapor generated in the LTO reaction is disregarded. Actually, our model could easily be
modified to deal with immobile (connate) water.

We study a simplified model, in which hydrocarbons act as a single pseudo-component that
can be both in the gas and in the liquid phase. The average oil molar weight is denoted by
Mo [kg/mole]. The saturation of the liquid oil will be denoted by S (a fraction of pore volume
occupied by liquid oil). The saturation of gas is, therefore, equal to 1− S. In the gas phase, we
distinguish between the molar fraction of gaseous oil X, of oxygen Y and of the remaining gas
fraction Z = 1−X − Y that consists of reaction products and inert components of the injected
gas. Neglecting gas mass diffusion and capillarity effects, the balance equations for liquid oil
and gas components (gaseous oil, oxygen, and remaining gaseous components) are

∂

∂t
ϕρoS +

∂

∂x
ρoufo = −Wv, (2)

∂

∂t
ϕρgX(1− S) +

∂

∂x
ρgufgX = Wv, (3)

∂

∂t
ϕρgY (1− S) +

∂

∂x
ρgufgY = −Wc, (4)

∂

∂t
ϕρgZ(1− S) +

∂

∂x
ρgufgZ = νgWc. (5)

The sum of (3)–(5) together with the relation X +Y +Z = 1 yield the total gaseous components
balance law

∂

∂t
ϕρg(1− S) +

∂

∂x
ρgufg = (νg − 1)Wc + Wv. (6)

In the equations, Wv [mole/m3s] is the vaporization rate of hydrocarbons, Wc [mole/m3s] is the
consumption rate of oxygen in the LTO reaction; according to (1) νgWc is the generation rate
of gaseous products. Also, ϕ is the rock porosity, ρo [mole/m3] is the molar density of the liquid
oil evaluated in terms of average molar weight Mo (the conventional mass density is, therefore,
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Moρo), u [m/s] is the total seepage velocity, and

ρg = Ptot/RT (7)

is the molar density of gas at the prevailing pressure Ptot [Pa] and temperature T [K]. Pressure
variations are assumed to be small, so we take Ptot = const. The fractional flow functions are

fo =
ko/µo

kg/µg + ko/µo
, fg =

kg/µg

kg/µg + ko/µo
, (8)

where µo(T ), µg(T ) [kg/m s] are the oil and gas phase viscosities. We assume that the relative
permeability functions ko(S) and kg(S) are positive with ko(0) = k′o(0) = 0 and kg(1) = k′g(1) =
0. For example, in the quadratic Corey model one can use ko = S2, kg = (1− S)2.

Assuming that the temperature of solid rock, liquid oil and gas are equal and neglecting heat
losses, we write the heat transport equation as

∂

∂t
(Cm + ϕcoρoS + ϕcgρg(1− S))∆T +

∂

∂x
(cgρgufg + coρoufo)∆T = QcWc −QvWv. (9)

Here ∆T = T − Tres with the reservoir temperature Tres, Cm [J/m3K] is constant the heat
capacity of the porous rock, co [J/moleK] is the heat capacity of liquid oil per average mole Mo

taken as a constant for simplicity, and cg ≈ 3.5R [J/moleK] is the approximate gas heat capacity,
ignoring small variations of heat capacity among different gas components. The positive heats
(enthalpies) Qc [J/mole of O2] and Qv [J/mole of oil] correspond to the LTO reaction and
vaporization of light oil evaluated at the reservoir temperature Tres, taken per mole of oxygen
and oil, respectively. We neglected heat losses and diffusion effects. Conditions justifying these
simplifications will be given in a separate section.

The vaporization rate Wv vanishes when liquid oil is in thermodynamic equilibrium with
its gaseous phase. The gaseous oil partial pressure equals Po = XPtot. In thermodynamic
equilibrium, we have

Xeq =
Po

Ptot
=

Patm

Ptot
exp

(
−Qv

R

(
1
T
− 1

Tbn

))
, (10)

where Tbn [K] is the normal boiling point. Taking Po = Ptot in (10), one recovers the actual
boiling temperature T = Tb at pressure Ptot. For the temperatures under consideration, which
do not exceed the boiling temperature, the vaporization process is much faster than the LTO
reaction, |Wv| À Wc. In this case, as we will see later, the specific forms of combustion rates Wc

and Wv are not important for determining macroscopic solution parameters. They affect only
the width of the LTO wave and its internal structure.

All the coefficients in the equations (Cm, cg, ρo, etc.) are assumed to be constant, if not
stated otherwise. The air injection data are characterized by the Darcy velocity uinj and oxygen
fraction Yinj .

2.1 Dimensionless equations

The governing equations are non-dimensionalized by introducing dimensionless dependent and
independent variables as ratios of dimensional quantities and reference quantities:

t̃ =
v∗t
x∗

, x̃ =
x

x∗
, θ =

T − Tres

T ∗
, m =

ρgufg

ρ∗guinj
, (11)

where

ρ∗g =
Ptot

RTres
, x∗ =

Yinjρ
∗
guinj

W ∗
c

, v∗ =
uinj

ϕ

(
µg

µo

)

T=Tres

, T ∗ = Tb − Tres, (12)
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and Tb is the boiling temperature at the pressure Ptot, and W ∗
c is the characteristic value of the

reaction rate at reservoir temperature (see Eq. (53)). The dimensionless quantities θ and m
describe the temperature and gas flux, respectively. The length scale x∗ is the ratio of oxygen
flux injected and oxygen consumption in the LTO reaction, and v∗ is the reference oil speed
when gas is injected. Thus, x∗ and v∗ are chosen as reference quantities for the length and speed
of the LTO wave. The following analysis is carried out under the assumption that x∗ is much
smaller than the overall problem scale, i.e., distance between injection and producing wells.

Using (8), (11), (12) and omitting the tildes in the dimensionless quantities, equations (9),
(2)–(4) and (6) are written in dimensionless form as

∂(1 + aS + εvT (1− S)θ0/(θ0 + θ))θ
∂t

+
∂(vT θm + aθF )

∂x
= q(wc − rwv), (13)

∂S

∂t
+

∂F

∂x
= −bwv, (14)

ε
∂

∂t

θ0(1− S)X
θ0 + θ

+
∂Xm

∂x
= wv, (15)

ε
∂

∂t

θ0(1− S)Y
θ0 + θ

+
∂Y m

∂x
= −wc, (16)

ε
∂

∂t

θ0(1− S)
θ0 + θ

+
∂m

∂x
= (νg − 1)wc + wv, (17)

with the dimensionless quantities

ε =
(

µg

µo

)

T=Tres

, a =
ϕcoρo

Cm
, b =

ρ∗g
ερo

, r =
Qv

Qc
, q =

ϕρ∗gQc

εCmT ∗
,

vT =
ϕcgρ

∗
g

εCm
, hv =

Qv

RT ∗
, θ0 =

Tres

T ∗

(18)

and functions
F (θ, S, m) = ηψm, η(θ) =

(θ0 + θ)µg

εθ0µo
, ψ(S) =

ko

kg
. (19)

Note that ε ∼ 10−2 ¿ 1, due to the small ratio between gas and oil viscosities. The quantities
η(θ) and ψ(S) are increasing functions of their arguments with the properties

η(0) = 1, ψ(0) = ψ′(0) = 0, ψ(1) = ∞. (20)

The dimensionless combustion and vaporization rates are wc,v = x∗Wc,v/(ρ∗guinj). Using (10),
we get

Xeq(θ) = exp
(

hv

θ0 + 1
− hv

θ0 + θ

)
. (21)

The condition at x = 0 (injection well) is m = 1, θ = S = X = 0, Y = Yinj . The initial reservoir
state is θ = 0, S = 1, X = Xeq(0), Y = 0.

3 Thermal and saturation waves

The LTO reaction with injected oxygen leads to complete removal of liquid oil. Behind the LTO
zone, there is no oil, S = X = 0, and the gas flux is constant and equal to its value m = 1 at the
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Figure 1: The oil flux function and saturation wave structure. Rarefaction wave for saturations
S < Sd followed by a shock from Sd to S = 1

injection point. In the absence of oil, the reaction and vaporization rates and the terms related
to the heat accumulated and transported by oil vanish and (13) becomes

∂θ

∂t
+ vT

∂θ

∂x
= 0, (22)

where we used F = 0 (zero oil flux) and neglected the small ε-term related to the heat accu-
mulated by the gas. This equation possesses a wave solution θ = θrH(vT t), where H(·) is the
unit step function. This wave moves with speed vT , and the temperature changes from θr ahead
of the wave to the temperature of the injected gas θ = 0. If thermal conduction is taken into
account, the wave profile becomes smooth and its width increases in time proportionally to

√
t,

see, e.g., [3].
Ahead of the LTO zone, the gas moves through the porous medium containing oil at the initial

reservoir temperature θ = 0. This gas contains the equilibrium oil vapor fraction X0 = Xeq(0)
and no oxygen Y = 0, so that the vaporization and reaction rates vanish, wv = wc = 0. The
change of oil saturation is governed by equation (14), which takes the standard fractional flow
form

∂S

∂t
+

∂ũfo

∂x
= 0, (23)

where ũ = u/uinj is the dimensionless total seepage velocity, which is constant, and the oil
fractional flow function fo is evaluated at the reservoir temperature θ = 0. The function fo(S)
has typically the S-shaped form, see Fig. 1. Using (8), (18), (19), one can check that fo(S) =
ψ(S)/(1 + εψ(S)). When ε is small, the inflection point is close to S = 1. For example, for the
quadratic model with ψ = S2/(1− S)2, the inflection point is found at S ≈ 1−

√
ε/3.

Equation (23) has a well-known self-similar solution S = S(x/t) representing a saturation
wave. It has a smooth part (rarefaction) satisfying the equation

x/t = ũf ′o(S) (24)

followed by a discontinuity (shock) from Sd to S = 1 propagating with speed x/t = vd, see
Fig. 1. The rarefaction wave corresponds to a concave part of fo(S), where f ′o(S) increases. The
shock wave state and speed are determined by the conditions

vd = ũf ′o(Sd) = ũ
fo(1)− fo(Sd)

1− Sd
. (25)

For the quadratic model with ψ = S2/(1 − S)2 and small ε, one obtains Sd ≈ 1 − √
ε and

vd ≈ (ũ/2)ε−3/2. When all states in the saturation wave belong to the convex region of fo(S)
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Figure 2: Wave sequence for the low-temperature combustion process.

(i.e., to the right of the inflection point), the wave is a single discontinuity from a point S0 to
S = 1 propagating with speed

vd = ũ
fo(1)− fo(S0)

1− S0
. (26)

The gas flux in the saturation wave can be found using (8), (11), (18), (19) as

m = ũfg =
ũ

1 + εψ(S)
. (27)

Thus, the total seepage velocity ũ can be found if one knows the gas flux m0 and oil saturation
S0 upstream of the saturation wave.

4 Low-temperature oxidation wave

The LTO wave is the wave where oxygen reacts with liquid oil. We make the assumption,
confirmed by the ensuing analysis, that the LTO wave is a traveling wave with speed v faster
than the thermal wave, but slower than the saturation wave, see Fig. 2. The temperature
upstream of the LTO wave is denoted by θr. The oil saturation and the gas flux downstream of
the LTO wave are denoted by S0 and m0. Thus, our assumptions about the wave sequence can
be summarized as

vT < v < min{(∂F/∂S)0, vd}. (28)

Here the derivative (∂F/∂S)0 is evaluated at θ = 0, S0, m0, so that the right-hand side of (28)
gives the minimal speed in the saturation wave, as shown in the previous section.

The LTO reaction stops behind the wave due to lack of oil, and the gas composition corre-
sponds to the injected gas. Thus, behind the LTO wave, we have a constant state with

θ = θr, S = 0, X = 0, Y = Yinj , m = 1. (29)

Ahead of the LTO wave, the reaction stops due to lack of oxygen, and the temperature is equal
to the reservoir temperature. The corresponding constant state is

θ = 0, S = S0, X = X0, Y = 0, m = m0. (30)
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4.1 LTO wave profile equations

In a traveling wave, all variables depend on a single traveling coordinate ξ = x− vt. To simplify
the formulae, we neglect small ε-terms on the left-hand sides (corresponding to heat capacity
and gas mass in accumulation terms), and write equations (13)–(17) as

−v
∂(1 + aS)θ

∂ξ
+

∂(vT θm + aθF )
∂ξ

= −q

(
∂Y m

∂ξ
+ r

∂Xm

∂ξ

)
, (31)

−v
∂S

∂ξ
+

∂F

∂ξ
= −b

∂Xm

∂ξ
, (32)

∂Xm

∂ξ
= wv, (33)

∂Y m

∂ξ
= −wc, (34)

∂m

∂ξ
= −(νg − 1)

∂Y m

∂ξ
+

∂Xm

∂ξ
, (35)

where the reaction rates in the first two and last equations were replaced using (33), (34). Using
the conditions (29) behind the wave and ψ(0) = 0 (see Eq. (19)), we integrate (31), (32), (35)
as

−v(1 + aS)θ + vT mθ + aθF = −q(Y + rX)m + qYinj + (vT − v)θr. (36)

−vS + F = −bXm. (37)

m =
1 + (νg − 1)Yinj

1 + (νg − 1)Y −X
. (38)

Expressing F from (37) and substituting into (36) yields

−vθ + vT mθ = −qY m− (qr − abθ)Xm + qYinj − (v − vT )θr. (39)

In order to facilitate the analysis of the LTO wave profile, additional simplifications can be
done. We neglect the small terms (νg − 1)Y ∼ 0.1 in (38) and all the terms with the factors
r ∼ 0.1, vT ∼ 0.1qYinj and ab ∼ 0.1q in (39). The latter simplifications use the fact that the
combustion heat Qc is much larger than the oil evaporation heat Qv or the oil and gas sensible
heats coT

∗ and cgT
∗, as one can see using (18). The resulting simplified equations obtained

from (37), (38) and (39) are

vS − F (θ, S, m)− bXm = 0, m = 1/(1−X), (40)

−vθ = −qY m + qYinj − vθr. (41)

Since ahead of the wave θ = Y = 0, equation (41) yields

θ = qY m/v, (42)

where we expressed
θr = qYinj/v. (43)

7



Figure 3: Structure of the low-temperature oxidation wave. Change in temperature θ, liquid
oil saturation S, oxygen fraction Y and oil fraction X in the gas. One region is dominated
by vaporization and the other by LTO reaction (with slow condensation). The spatial scale is
schematic, since the reaction region is usually several orders wider than the vaporization region.

4.2 LTO wave structure

Since we have assumed that vaporization is a much faster process than combustion, the LTO wave
can be subdivided into two regions corresponding to vaporization and LTO reaction processes.
The gas enters in contact with the liquid oil in a thin vaporization region upstream of the wave.
Here the gaseous oil fraction increases rapidly from X = 0 in the injected air to its equilibrium
value Xeq(θ), see Fig. 3. The second much wider reaction region is where the LTO reaction
occurs. In the analysis of these regions we will use the fact that F (θ, S, m) is an increasing
function of both θ and m, and ∂F/∂S = 0 for S = 0.

In the vaporization region, the reaction rate wc can be neglected. The oxygen flux determined
by (34) does not change and is equal to its value upstream Y m = Yinj . The temperature
θ = qYinj/v given by (42) is also constant. The gas flux m = 1/(1−X) is an increasing function
of X. The relation between S and X is determined by expression (40), whose differentiation
yields

dX

dS
=

(
v − ∂F

∂S

)(
∂F

∂m

dm

dX
+ bm + bX

dm

dX

)−1

. (44)

The denominator in the right-hand side is positive, since ∂F/∂m and dm/dX are both positive.
Thus, X increases with S when

v > ∂F/∂S. (45)

In particular, this condition is satisfied at the constant state behind the LTO wave, where S = 0
and ∂F/∂S = 0. The increase of X is bounded by a resonance point, where the derivative (44)
vanishes,

v = (∂F/∂S)r. (46)

The subscript r denotes the value at the resonance point θr, Sr, mr = 1/(1−Xr). Since X must
increase in the vaporization region, the solution cannot be continued through the resonance
point.

In the reaction region, the oil vapor fraction can be taken equal to its equilibrium value
X = Xeq(θ). Since the temperature decreases downstream, the gaseous oil condenses in this
region. Due to the LTO reaction, the oxygen flux mY := Y m governed by (34) decreases
monotonically from the value Yinj upstream to zero downstream. Using (42) one can see that
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θ, X = Xeq(θ) and m = 1/(1−X) are increasing functions of mY . The relation between S and
mY is determined by expression (40), whose differentiation yields

dmY

dS
=

(
v − ∂F

∂S

)(
∂F

∂θ

dθ

dmY
+

∂F

∂m

dm

dmY
+ b

d(Xeq(θ)m)
dmY

)−1

. (47)

The denominator on the right-hand side is positive. Thus, mY increases when S decreases
provided that

v < ∂F/∂S. (48)

In particular, this condition is satisfied at the constant state downstream as is assumed in (28).
The value of mY is bounded by a resonance point (46), where the derivative (47) vanishes.
Since the oxygen flux mY changes monotonically in the reaction region, the solution cannot be
continued through the resonance point in this region.

We see that the inequalities (45) and (48) have opposite signs in the vaporization and reac-
tion regions. Thus, these regions can be connected only at the resonance point determined by
equation (46). Substituting v from (46) with F = η(θ)ψ(S)m into (40), (42) we obtain extra
conditions at the resonance point as

Sr − ψ(Sr)
ψ′(Sr)

=
bθrXeq(θr)

qYinj(1−Xeq(θr))
, ψ′(Sr) =

qYinj(1−Xeq(θr))
θrη(θr)

, (49)

where we used the second expression on the right-hand side of the first expression together with
the relations Y m = Yinj in the vaporization region and Xr = Xeq(θr) in the reaction region
evaluated at the resonance point.

It is easy to see that equations (49) determine the resonance point uniquely in the case
when both ψ′(S) and S −ψ(S)/ψ′(S) are positive increasing functions of S vanishing at S = 0.
This follows from the observation that the left-hand sides of the first two equations in (49) are
increasing functions of Sr, while the right-hand sides are increasing and decreasing functions of
θr, respectively. In particular, this is the case for the quadratic permeability model, for which
ψ(S) = S2/(1− S)2.

With the LTO wave speed given by (46), the relation among all dependent variables θ, S,
X, Y , m in both regions are determined as described above. Recall that when solving the
first equation in (40) for S, one must choose the solution branch passing through the resonance
value Sr and satisfying condition (45) in the vaporization region and (48) in the reaction region.
The dependence of the variables on the spatial moving coordinate ξ can be found by numerical
integration of equation (33) in the vaporization region and equation (34) in the reaction region.

4.3 LTO wave parameters

We see that the speed (46) and the states ahead and behind the LTO wave are determined by
the resonance point of the wave profile. The temperatures θr behind the LTO wave and at the
resonance point are the same. The constant state ahead of the LTO wave is characterized by
θ = 0, X0 = Xeq(0) and m0 = 1/(1−X0). The equation for the corresponding oil saturation S0

is found by taking F = ψ(S0)m0 in (40) as

vS0 − ψ(S0)m0 = bX0m0, (50)

where one must chose S0 on the solution branch in the reaction region as described above.
One can see from (43), (49), (50) that the quantities in the LTO wave are determined by the

dimensionless parameters b, q, Yinj , and the function η(θ), ψ(S), Xeq(θ) defined in (18), (21).
These quantities are independent on the air injection velocity uinj . The latter influences only
the spatial and velocity scales in (12), which are proportional to uinj .
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Figure 4: Geometric explanation of the LTO wave resonance condition. (a) A fold singularity
of the S- surface and the feasible domain. (b) Integral curves on the plane of gaseous oil and
oxygen fluxes. Solid and dotted lines correspond to the upper and lower parts of the S-surface,
respectively. (c) Integral curves in the case of high vaporization rate.

Let us verify the initial assumptions (28). Using (43), we find v = qYinj/θr with θr < 1.
As was mentioned above, vT ∼ 0.1qYinj , so that the first condition in (28) is valid. The second
condition v < (∂F/∂S)0 is satisfied by construction of the LTO wave profile in the reaction
region, where (48) holds. The speed vd ∼ ε−3/2 is very large, so the last assumption v < vd

in (28) is unlikely to be violated. Note that the condition v < vd can be violated if the oil
saturation in the initial reservoir is lower than 1. If this happens, the saturation discontinuity
becomes a part of the LTO wave.

4.4 Geometrical interpretation

We see that the resonance point provides extra conditions needed to determine the LTO wave
parameters. To see that this is a generic phenomenon for systems of balance laws, we will provide
a geometric interpretation for the LTO wave equations. It is convenient to choose θ, S, m and
the fluxes of gaseous oil and oxygen denoted by mX = Xm and mY = Y m as independent
variables. The change of mX and mY in the LTO wave is governed by ordinary differential
equations (33), (34). The remaining variables θ, S, m are determined by equations (40), (42).
Here the dependence θ = qmY /v and m = 1 + mX is linear. Thus, the essential variables are
mX , mY and S. Fig. 4(a) shows schematically the surface determined by the first equation in
(40) relating S with mX , mY . This surface has a fold. The fold line is given by condition (46),
which corresponds to the vanishing derivative with respect to S taken from the left-hand side of
(40). The fold projection determines a boundary of the feasible domain on the (mX , mY )-plane,
Fig. 4(a).

The constant state behind the LTO wave corresponds to S = mX = 0, mY = Yinj , and
belongs to the lower part of the S-surface in Fig. 4(a). The constant state S0, mX = X0m0 and
mY = 0 ahead of the LTO wave belongs to the upper part of the S-surface. These two states
are denoted by L and R in Fig. 4. Thus, the LTO wave profile must be an integral curve that
passes from the lower to the upper part of the S-surface. When ξ varies, the typical integral
curve reaches the resonance line (fold) at some finite value of ξ as shown in Fig. 4. It cannot be
extended outside the feasible domain on the (mX ,mY )-plane, neither pass to the other side of
the S-surface. However, there can be special integral curves passing through a singular point r
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on the resonance line. This singular point corresponds to the intersection of integral curves on
the S-surface, i.e., their tangency at the point r on the (mX ,mY )-plane, Fig. 4(a,b). Thus, the
LTO wave profile can be constructed if the parameters are chosen to ensure that both constant
states of the LTO wave (L and R) lie on such a special curve, as shown in Fig. 4(b). This
provides an extra restriction on the wave parameters.

Let us see how this restriction gives the LTO wave solution under the assumption that the
vaporization rate wv in (33) is very high. In this case the integral curves on the (mX ,mY )-plane
are approximately parallel to the mX -axis and lead to the equilibrium points Xeq(θ), as shown
in Fig. 4(c) (the integral curves on both sides of the S-surface coincide when projected). The
set of equilibrium points is shown by the bold line. It is also an approximate integral curve with
direction corresponding to decreasing mY , as determined by (34). The unique way to construct
the LTO wave profile is presented in Fig. 4(c). The first part of the profile is parallel to the
mX -axis. Is starts at the point L and determines the vaporization region in Fig. 3. The second
part of the profile is the equilibrium curve determining the reaction region. It ends at the point
R. The two parts are connected at the resonance point on the fold line.

The general mathematical theory for traveling waves in systems of balance laws [6] predicts
the possibility of singularities in the wave profile. Singularities occur when the matrix of coef-
ficients of the derivative terms in system (31)–(35) becomes singular at some state inside the
wave. Our approach shows how this singularity can be resolved in order to find extra deter-
mining conditions. The following conditions for the resonance point separating the vaporization
and reaction regions are the main result

Xr = Xeq(θr), v = (∂F/∂S)r. (51)

The distinctive feature of our problem is that conditions (51) are independent on specific forms
of vaporization and reaction rates. All we need to know is that vaporization is much faster than
the LTO reaction. Also one can verify that condition (51) does not require the simplifications
made in the derivation of wave equations in the beginning of this section.

The resonance condition (51) has a simple physical explanation. The oil saturation un-
dergoes a finite change in a very thin vaporization region. Thus, this region must propagate
with characteristic speed ∂F/∂S (singularities propagate along characteristic lines in hyperbolic
systems of PDE’s). This characteristic speed can be evaluated at the boundary between the
vaporization and reaction regions, where X = Xeq(θ).

5 Effects of diffusion, capillary pressure and heat losses

The thermal conduction is described by a term λ∂2T/∂x2 added to the right-hand side of (9),
where λ [W/mK] is the thermal conductivity of the porous medium. One can see that taking into
account only thermal conductivity (without other diffusion terms) does not change LTO wave
parameters. The reason is that the heat conduction term has no influence on the form of the
S-surface in the (mX , mY , S) space and, thus, the resonance condition (51) remains unchanged.

The gas mass diffusion can be modelled by the term ∂
∂x

(
D(1− S)∂X

∂x

)
added to the right-

hand side of (3), where D [m2/s] is the diffusion coefficient. Similar terms appear in (4), (5). The
diffusion terms become important when the gas composition changes essentially in the distance
of order LD = Dϕ/uinj [m], where uinj/ϕ is the gas speed at injection point.

The dominant second order derivative term in the liquid oil balance equation (2) is re-
lated to capillary effects. The magnitude of this term is characterized by the quantity DS =√

κϕ(γ/µo) cos Θ [m2/s], where κ [m2] is the rock permeability, γ [N/m] is the liquid oil surface
tension and Θ is the contact angle (see, e.g., [1]). Capillary effects become important when the
oil saturation S changes essentially in the distance of order LS = DS/v [m], a formula that relies
on the fact that the oil speed is close to the LTO wave speed v.
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parameter meaning value
Qc LTO reaction enthalpy 390 kJ/mole of O2

Qv vaporization heat 34 kJ/mole of oil
R ideal gas constant 8.314 J/mol K

Cm heat capacity of porous medium 2× 106 J/m3K
cg heat capacity of gas 3.5R J/molK

co/Mo heat capacity of oil 2.1 kJ/kg K
Tres reservoir temperature 323K (50℃)
Tbn normal boiling temperature of oil 373K (100℃)
Yinj molar fraction of oxygen in air 0.21
Moρo oil density 900 kg/m3

Mo average molar mass of oil 0.1 kg/mole
ϕ porosity 0.3

Table 1: Nomenclature, units and typical values of reservoir parameters.

When diffusion terms are taken into account, the LTO wave solution will be changed in a
thin vaporization region and in the region near the resonance point, where the derivative ∂S/∂x
becomes infinite. However, the resonance condition (determining the LTO wave parameters)
remains approximately valid, if the diffusion terms are small in the reaction region. Recall that
this condition is related to impossibility of extending the wave solution through the resonance
point. The appropriate length scale in the reaction region is determined as L = Yinjρ

∗
guinj/Wmax

c

[m], where Yinjρ
∗
guinj is the injected oxygen flux and Wmax

c [mole/m3s] denotes the LTO reaction
rate at the highest temperature. Thus, the gas mass diffusion and capillary effects can be
neglected when L À max(LD, LS). One can check that L is proportional, and LD, LC are
inversely proportional to the injected gas speed uinj . Thus, diffusion effects are small when uinj

is high enough, as one could expect.
Our analysis of the LTO wave is valid when the lateral heat losses in the wave are much

smaller than the heat generated by LTO. Estimating the rate of lateral heat losses for a reservoir
of width h [m] as λ(∂T/∂y) ∼ λT ∗/h and the heat generation rate as T ∗Cmvh, we obtain the
condition

h2 À λ/(Cmv), (52)

where v [m/s] is the dimensional wave speed. Thus, heat losses in the LTO wave can be neglected
if the reservoir width is large. A typical value of the right-hand side in (52) is 1 m2. Heat losses
in the hot zone upstream of the LTO wave lead to slow temperature decrease to the reservoir
temperature, T → Tres. This process, however, has minor influence on the LTO wave parameters.

6 Analysis of LTO waves for typical reservoir parameters

Typical values of reservoir parameters are given in Table 1. The quadratic model ko = S2,
kg = (1−S)2 for relative permeabilities yields ψ(S) = S2/(1−S)2. We approximate the air and
oil viscosities as µg = 1.8× 10−5

√
T/293 [K] and µo = 4× 10−10ρo exp(3.8Tb/T ) [Pa s], see [2].

Consider the case with total pressure Ptot = 106 [Pa] (10 atm). Using (10), we compute the
boiling temperature Tb = 472 [K]. Then we use (12), (18) to compute the temperature scale
T ∗ = 149 [K] and the dimensionless parameters ε = 0.02, b = 2.04, q = 7.19, hv = 27.4. Solving
numerically system (49), we find Sr = 0.202, θr = 0.455. Thus, the temperature behind the
LTO wave equals Tr = Tres +T ∗θr = 391 [K]. Using (12), (43), we obtain the LTO wave speed as
v = 0.22uinj . The oil saturation downstream of the LTO wave is found using (50) as S0 = 0.576.

Fig. 5 shows the LTO wave parameters for the pressure Ptot changing between 1 and 50 [atm].
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Figure 5: The oil boiling temperature Tb, the temperature Tr upstream of the LTO wave, the
LTO wave speed v relative to the injection speed uinj , and the saturations S0 and Sr ahead of
the LTO wave and at the resonance point depending on the reservoir pressure Ptot.

The oil saturation S0 ahead of the wave increases rapidly up to the value 0.5 at the pressure
Ptot = 7 [atm], and then increases slower up to values over 0.8. The dependence of the LTO
wave speed on pressure is approximately linear. It reaches the value of one half of the gas Darcy
velocity at Ptot = 40 [atm]. Computations show that only a small part of oil vaporizes or reacts.
As a result, the oil velocity ufo/ϕ downstream of the LTO wave computed using (8) appears to
be close to the LTO wave speed v. Thus, the LTO wave represents a mechanism of complete oil
displacement by means of temperature increase inside the LTO wave, which leads to decrease of
oil viscosity and increase of gas flux in the wave.

The spatial distribution of dependent variables in the LTO wave is determined by the LTO
rate Wc. Experimental studies [4, 5] show large variation of LTO reaction rates that may differ
about hundred times for different types of oil. Let us consider the reaction rate Wc [moles of
O2/m3s] that agrees with the results of [5] as

Wc = 3.1× 106S exp
(
−7066

T [K]

)(
Y Ptot

Patm

)0.5

. (53)

Consider the same pressure as above, Ptot = 106 [Pa] (10 atm). The characteristic length of the
LTO wave is found from (12) as x∗ = 1.1 × 105uinj [m], where we used Y = Yinj , S = 0.5
and T = Tres in (53). The coefficient 1.1 × 105 [s] ∼ 1 day characterizes the time necessary for
self-ignition of the LTO wave.

The length L characterizing the LTO reaction at the highest temperature Tr = 390 [K] is
found similarly as L = 2.46× 103uinj [m]. Taking the typical values of gas diffusion coefficient
D = 2 × 10−5 [m2/s] and the capillary effect parameter as DS = 10−5 [m2/s], we estimate
the corresponding characteristic lengths as LD = Dϕ/uinj = 6 × 10−6/uinj [m] and LS =
DS/v = 4.5 × 10−5/uinj [m]. For the injection velocity uinj = 10−3 [m/s] (86 [m/day]) we
have L = 2.46 [m] À max{LD, LS} = 0.045 [m], so the diffusion effects are small. Note that
experimental results for a different type of oil [4] gave almost 100 times lower reaction rates and,
hence, for such oil diffusion effects can be neglected even for much lower injection speeds.
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