
ON SINGULAR POINTSFOR CONVEX PERMEABILITY MODELSP. CASTAÑEDA, F. FURTADO, AND D. MARCHESINAbstrat. We fous on a system of two onservation laws representing a large lass ofmodels relevant for petroleum engineering, the domain of whih possesses singular points.It has been onjetured that the struture of the Riemann solution in the saturation triangleis strongly in�uened by the nature of the umbili point. In the urrent work we show thatfeatures originally related to umbili points atually belong to a distint point, the newEqual-Speed Shoks point.Even though the loation of the umbili point is known, for the �rst time, we relate theumbili point to a physial property, namely, the minimum of the total mobility for anyCorey model. 1. IntrodutionWe are interested in the study of injetion problems for 2× 2 systems of onservation laws;a survey may be found in [3, 4, 6, 11℄ and referenes therein. The solution onstrution forthe injetion of water and gas is presented in [3℄ for the ase of quadrati Corey models.We disuss the loation of the umbili point in the interior of the triangle and the new�Equal-Speed Shoks� (ESS) point, whih arises in these more general non-symmetri models.Analyses on umbili points were made in the last few years [7, 8, 13℄. The speial ase ofquadrati Corey models is disussed in [1℄.We onsider models for reservoirs that may ontain three �uids, for onreteness, we allthem water, gas, and oil; although they ould be any three �uids that are immisible witheah other. For simpliity, we assume that the three phases are inompressible, that grav-itational segregation and apillary e�ets are negligible, and that there is no mass transferamong the phases. The �ow ours in one dimension at onstant injetion rate and �xedproportion of injeted �uids. The mobility of eah phase is assumed to be a onvex funtionof its own saturation and inversely proportional to the phase visosity. The mathemati-al model onsists of two onservation laws representing Dary's law ombined with massonservation for two of the phases. The �ow problem depends on two visosity ratios andthe preise hoie of mobilities. (The overall piture of solutions given in [3℄ is essentiallyunhanged in the more general lass of models treated in this work, see [5℄.)A Corey-type model loses strit hyperboliity at an umbili point. Models without umbilipoints have been onsidered for three-phase �ow; see [6℄. They yield simple solutions for theinjetion problem. However, they are unrealisti beause immisibility of the three phases1991 Mathematis Subjet Classi�ation. Primary: 35L65, 35L67; Seondary: 58J45, 76S05.Key words and phrases. Conservation laws, Riemann problem, umbili point, WAG injetion, petroleumengineering, �ow in porous media, Corey permeability model.This work was supported in part by: CAPES/FAPERJ Postdo Grant E-26/102.474/2010, DOE underGrant DE-FE0004832, Grant of the U. Wyoming WYDEQ49811FRTD, CNPq under Grants 472923/2010-2,301564/2009-4, and FAPERJ under Grants E-26/102.965/2011, E-26/111.416/2010, E-26/110.337/2010.1



2 CASTAÑEDA, FURTADO, AND MARCHESINseems to be related to loss of strit hyperboliity [2, 13, 15℄, i.e., either umbili points orellipti regions are present. Models with umbili points have ompliated solutions, but arestill well behaved mathematially; see [8, 11℄ for a review of their properties.This work is organized as follows. In Se. 2 the onvex permeability models are introdued;in Se. 2.1.1 we give a brief review of rarefation fans, shok waves and properties of quadratiCorey models. Setion 3 desribes ertain strutures in state spae; in Se. 3.1 we identifyfeatures of the umbili point and in Se. 3.2 we desribe urves with a ertain equal shokspeed property to the boundaries, the intersetion of whih is the ESS point. Finally, theonlusions are in Se. 4. 2. Mathematial modelConsider the �ow of a mixture of three �uid phases (whih, for onreteness, are alledwater, gas and oil) in a thin, horizontal ylinder of porous rok. Let sw(x, t), sg(x, t) and
so(x, t) denote the respetive saturations at distane x along the ylinder, at time t. Beause
sw+ sg+ so = 1 and 0 ≤ sw, sg, so ≤ 1, the state spae of the �uid mixture is the saturationtriangle ∆; see e.g. Fig. 2.1. In our analysis, we hoose sw and sg as the two independentvariables, thus S := (sw, sg); the verties of ∆ are W = (1, 0), G = (0, 1) and O = (0, 0).2.1. Conservation laws. Three-phase �ow in 1d at onstant injeted rate is governed bythe non-dimensionalized system ∂S/∂t + ∂F (S)/∂x = 0, or

∂sw
∂t

+
∂fw(sw, sg)

∂x
= 0, (1)

∂sg
∂t

+
∂fg(sw, sg)

∂x
= 0, (2)representing onservation of water and gas. The �ow funtions fw(sw, sg) and fg(sw, sg) aredetermined by the relative permeabilities of the three phases.Although eah �uid phase beomes immobile below an irreduible saturation, for simpliitywe assume that the relative permeabilities are stritly positive within the saturation triangle.(In Engineering language, sw, sg, and so are �redued saturations�.) From Dary's law the�uxes are

fα(S) =
mα(S)

m(S)
, for α = w, g, o, where m := mw +mg +mo (3)is the total mobility; mw, mg, mo represent the relative mobility of eah phase. Eah mobilityis a ratio between relative permeability and visosity of the �uid, it is desribed by theontinuous funtion:
mα(S) :=

kα(S)

µα

, α = w, g, o, (4)where µα is the given onstant visosity of eah phase α.A Corey type model is de�ned by a set of mobilities mα(sα) that are nondereasing on-tinuous funtions of their own saturation sα. In this work we fous on onvex Corey models,whih obey the following restritions.De�nition 1. A Corey model is said to be onvex when the mobilities are C2[0, 1] funtionssatisfying:(1) mα(sα) > 0 for sα ∈ (0, 1] and mα(0) = 0,(2) m′

α(sα) > 0 for sα ∈ (0, 1] and m′

α(0) = 0,



ON SINGULAR POINTS FOR CONVEX PERMEABILITY MODELS 3(3) m′′

α(sα) ≥ 0 for sα ∈ [0, 1],(4) no pair of the quantities m′′

w(sw), m
′′

g(sg), m
′′

o(so) vanish simultaneously for any pointin the interior of the saturation triangle (0 < sw, sg, so < 1).Remark 2. In the presene of nonzero irreduible saturations, one an easily formulate anappropriate extension of De�nition 1.Remark 3. In this work, for the purpose of illustrating fats with �gures, we use the followingmobilities:
mw(sw) = (sw)

3.2857/1, mg(sg) = (sg)
2.65/0.5, mo(so) = (so)

5.8357/2,based on a best �t for homogeneous porous media of the Corey-Brooks model, [4℄.2.1.1. Basi solutions. Equations (1)�(2) have solutions that propagate as waves. The Ja-obian matrix of the �uxes is the key for rarefation urves. The harateristi speeds arethe two eigenvalues of the Jaobian derivative matrix
J(S) :=

∂(fw(S), fg(S))

∂(sw, sg)
=

∂F (S)

∂S
, (5)provided that these eigenvalues are real, in whih ase the smaller one is alled the slow-family harateristi speed λ s(sw, sg) and the larger one is alled the fast-family harateristispeed λ f(sw, sg). For the Corey model, both eigenvalues are real and nonnegative for eahstate in the saturation triangle.The self-similarity of solutions of a Riemann problem implies that if u(x, t) is suh asolution at a given time t, then u(αx, αt) is also a solution for any α > 0. Centeredrarefation and shok waves are based on self-similarity.System (1)�(2) has ontinuous solutions alled slow- and fast-family rarefation waves.They arise by solving an ODE, namely,

{J(S)− ξ I}~r(S) = 0,
dS

dξ
= ~r(S),where S(ξ), for ξ = x/t, is the pro�le of the rarefation provided ξ is monotoni inreasing.Some integral urves appearing in the solution of Riemann problems are plotted in Fig. 2.1.This system also admits solutions that have jump disontinuities. The Hugoniot lous ofa point So, denoted as H(So), is given by all the points S that satisfy the Rankine-Hugoniot(RH) ondition:

F (S)− F (So) = σ(S − So), (6)where σ = σ(So, S) is the veloity of the disontinuity, and the �uxes F (S) and saturations
S are given as before. (Notie that S belongs to H(So) if and only if So belongs to H(S).)Admissibility of disontinuites for systems of onservation laws suh as (1)�(2) is disussedin [3℄.Notie that if the RH ondition between states Sa and So holds with a ertain speed σ,and it also holds for the same speed between states So and Sb, it is easy to see that the RHondition is satis�ed between states Sa and Sb with the same speed. This is the essene ofthe triple-shok rule [8℄. The de�nition of σij as the shok speed σ(Si, Sj) will be useful.Theorem 4 (Triple-shok rule). Let the states S1, S2 belong to H(S0). If σ01 = σ02 holds,then S1 belongs to H(S2) and the relations σ01 = σ02 = σ12 hold.
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O

WG

O

WGFigure 2.1. Integral urves; slow and fast families. The triple intersetion isthe umbili point. Dots on integral urves are in�etion, arrows point in theinreasing eigenvalue diretion. (The spei� mobilities are in Remark 3.)Proof. De�ne σ as σ01 = σ02. Subtrat versions of equation (6) written for (S0, S1) and for
(S0, S2), obtaining F (S2) − F (S1) = σ(S2 − S1), whih indiates that S1 belongs to H(S2)and σ12 is equal to σ. �The following variant of Theorem 4 has been used in several works appearing in thisonferene.Lemma 5. Let S0, S1, S2 be non-ollinear states suh that S1, S2 belong to H(S0) and S1belongs to H(S2). Then σ01 = σ02 = σ12 holds.Proof. Let us express the RH relations of the involved states; we have

F (S1)− F (S0) = σ01(S1 − S0), F (S2)− F (S0) = σ02(S2 − S0),

F (S1)− F (S2) = σ12(S1 − S2). (7)By subtrating (7.b) and (7.) from (7.a), we obtain
0 = σ01(S1 − S0)− σ02(S2 − S0)− σ12(S1 − S2).We subtrat the trivial relation 0 = σ12(S1 − S0) − σ12(S2 − S0) − σ12(S1 − S2) obtaining

0 = (σ01 − σ12)(S1 − S0)− (σ02 − σ12)(S2 − S0). Realling that the sates are non-ollinear,we notie that the latter relation holds if and only if σ01 − σ12 and σ02 − σ12 are zero, whihproves the lemma. �A system is alled stritly hyperboli if the harateristi speeds satisfy the inequality
λ s(S) < λ f(S) everywhere; they are well studied [9, 10℄. In three-phase �ow models thereare points where the harateristi speeds oinide, whih are alled oinidene points.Furthermore, in Corey models there are isolated oinidene points where the Jaobianmatrix is a multiple of the identity, i.e., umbili points.The quadrati Corey model is de�ned by the permeabilities kα(S) = s2α for α = w, g, o.Suh a model is well understood; in partiular, the loation and harateristis of umbili



ON SINGULAR POINTS FOR CONVEX PERMEABILITY MODELS 5points are well known. There is a unique umbili point U = (uw, ug) in the interior of ∆,with uo = 1− uw − ug, the oordinates of whih are
uα = µα/(µw + µg + µo), for α = w, g, o.Suh a point satis�es the following.Property 6. For the quadrati Corey model, the harateristi speeds are equal to 2 at theinterior umbili point.Three other umbili points lie on the verties of the saturation triangle.Property 7. For the quadrati Corey model, the shok speed from the interior umbili pointto verties of the triangle are equal to 1.3. Strutures in the saturation triangle for onvex Corey modelsWhen two of the permeabilities in (4) ease to be salar multiples of the same onvex funtion,the umbili point gives rise to two points: the �rst one is still an umbili point, and Property 6holds, and at the seond one, only Property 7 holds. It is beause of the shok speed equalitythat the latter point will be alled Equal-Speed Shoks to verties or ESS.3.1. The umbili point loation. Inmisible three-phase �ow models are typially non-stritly hyperboli, exept in the model in [6℄. Lemma 8 follows from results in [13℄ for thease where the gravity fore is not ative. (In [7, 14℄ there are shorter proofs.)Lemma 8. Consider a onvex Corey permeability model, see De�nition 1. There is alwaysa single point U in the interior of the saturation triangle satisfying

m′

w(uw) = m′

g(ug) = m′

o(uo), (8)whih is the unique umbili point in the interior of the triangle. It has harateristi speed
λ(U) = m′

w(uw)/m(U).An important feature of the models onsidered is the following: from properties (3) and(4) of De�nition 1, one an see that the Hessian for the total mobility:
(

m′′

w +m′′

o m′′

o

m′′

o m′′

g +m′′

o

) (9)is a positive de�nite matrix. Hene the motivation of the following result.Corollary 9. For a onvex Corey type model, the total mobility has a single extremum inthe interior of the triangle, whih ours at the umbili point. The extremum is a minimum.Proof. Equating to zero the partial derivatives of m in (3.b) relatively to sw and sg implies
m′

w = m′

o as well as m′

g = m′

o; then Lemma 8 guarantees that this extremum ours atthe single umbili point. Thus from the positive de�niteness of (9) we obtained that thisextremum is the minimum. �Remark 10. Dary's law says that the total �ow rate of a �uid mixture is proportional to thepressure gradient; the proportionality oe�ient is (minus) the total mobility. Corollary 9implies that maximum pressure gradient is needed to displae the �uid mixture at saturationsgiven by the umbili point, for a given total �ow rate. In other words the umbili point givesthe saturation proportion for whih eah of the three �uids hinders maximally the �ow of theother two. (Total �ow is minimal for a spei� pressure gradient.)



6 CASTAÑEDA, FURTADO, AND MARCHESINWe will all m′

w(sw) the sensitivity of the water mobility to water saturation. The �rstequality in (8), m′

w(sw) = m′

g(sg), de�nes the equal water-gas sensitivity urve, whih an beparametrized either as a funtion of sw or sg; it ontains U and O. Similarly we an de�neequal water-oil and gas-oil sensitivity urves. See the three dashed urves in Fig. 3.1. (Inthe absene of gravitational fore these urves were alled two-phase-like-�ow sets in [13℄.)Let us summarize properties of the equal sensitivity urves. First of all, reall that m′

w =
m′

g implies ∂m/∂sw = ∂m/∂sg, for brevity we all ∂m suh a value, thus the Jaobian matrixat any point of the equal water-gas sensitivity urve is
J(S) =

1

m2

(

m′

wm−mw∂m −mw∂m
−mg∂m m′

wm−mg∂m

)

.Along the urve one eigenvalue is λ = m′

w/m with eigenvetor (1, −1) (in Cartesian oordi-nates), whih is parallel to the side so = 0.Moreover, the total mobility is minimum on the equal sensitivity urve in the diretionof suh eigenvetor. Indeed, ∇m · (1, −1) = ∂m/∂sw − ∂m/∂sg is zero on the sensitivityurve, whih turns out to be at a minimum beause the Hessian in (9) is positive de�nite.(Analogous statements hold for other sensitivity urves.)
U

H

O

WG Hwg

Hwo

Hgo

Figure 3.1. Loation of umbili and ESS points. Solid urves are Hugoniotloi from pure saturations. The umbili loation is given from similar dashedurves.Remark 11. For non-onvex Corey models we have the following fats. A onverse toLemma 8 holds: an umbili point in the interior of the triangle satis�es (8). Instead ofCorollary 9, every extremum of the total mobility is a oinidene point; suh a point is um-bili provided that the seond derivatives of two of the mobilities do not vanish simultaneouslythere. (The extrema are not neessarily unique and do not need to be minima.)3.2. The equal-speed shoks urves. Let us onsider the vertex O = (0, 0), and look forpoints S = (sw, sg) in ∆ satisfying RH relation (6):
fw(S) = σsw, fg(S) = σsg; (10)where we used the fat that water and gas saturations for pure oil are zero, water and gaspermeabilities are also zero. For the same reason the sides sw = 0 and sg = 0 are part of theHugoniot lous of O. A third solution appears equating σ in Eqs. (10) leading to

σ(S, O) =
fw(S)

sw
=

fg(S)

sg
; (11)



ON SINGULAR POINTS FOR CONVEX PERMEABILITY MODELS 7points S satisfying the last equality in (11) form a urve inside ∆.We denote by Hint(O) the lous in ∆ that satis�es Eq. (11), i.e., the �interior Hugoniotlous� from O; the Hugoniot lous of the vertex O is given by Hint(O) and the sides WOand GO. Sine for any state S on Hint(O), H(S) intersets both sides WO and GO, see [5℄,from Lemma 5 we have the followingClaim 12. All points in the internal Hugoniot lous Hint(O) satisfy the triple-shok rulebetween O and points on the boundary WO; they also satisfy the triple-shok rule between Oand points on the boundary GO.We de�ne Hint(O), from equality (11), as the equal water-gas shok speed urve (as we willshow presently), whih an be parametrized either as a funtion of sw or sg. Atually, sineeah mα(sα) is an inreasing ontinuous funtion, its inverse is well de�ned and inreasing.With aid of the onstraint sw+sg+so = 1, it is easy to see that points (sw, sg) satisfying theseond equality in relation (11) an be parametrized by so, i.e., there exist smooth funtions
Hw, Hg : [0, 1] → [0, 1] s.t. (Hw(so), Hg(so)) ∈ Hint(O), (12)for all so ∈ [0, 1]; notie that H ′

w and H ′

g are negative beause when so inreases sw + sgdereases. Similarly we an de�ne equal water-oil and gas-oil shok speed urves; Hint(G)and Hint(W).The intersetion of Hint(W), Hint(G) and Hint(O), is denoted by H := (hw, hg), with
ho = 1− hw − hg, and satis�es

σ =
fw(H)

hw

=
fg(H)

hg

=
fo(H)

ho

. (13)This is the ESS point (Equal-Speed Shoks); the shok speeds from H to any vertex have thesame value σ. Notie from relations (13) that H satis�es σ = Σαfα(H)/Σαhα = 1. De�ning
Hwg, Hwo, Hgo as the intersetion of the internal Hugoniot Hint(O), Hint(G), Hint(W) withthe sides WG, WO, GO respetively (see Fig. 3.1), we notie that the triple-shok rule (seeTheorem 4) holds with speed one for seven points, namely,

σ(A, B) = 1, with A, B ∈ {H, W, G, O, Hwg, Hwo, Hgo},sine eah point belongs to the Hugoniot lous of the three verties.4. Conluding remarkThe internal Hugoniot loi of the verties give rise to the ESS point, while the equalsensitivity urves give rise to the umbili point.As in [14℄ one an follow the ordering of inreasing diretions of fast rarefation urves nearthe boundary, see Fig. 2.1, and notie that there is an orientation reversal, thus a quadratiexpansion of the �uxes about the umbili point shows that in our ase it must be lassi�edas Type I or II, see Fig. 4.1 and [12℄.AknowledgmentsThe authors are grateful to Prof. J. Bruining (TU-Delft) for many enlightening disussions.
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Type I Type II

Figure 4.1. In the saturation triangle there are two possible umbili pointtypes for Corey permeability models with di�erent visosities. We representthe two possibilities. The rarefation behavior around the umbili type isskethed in the small boxes. (Lighter urves represent slow family, darkerurves represent fast family.) Referenes[1℄ F. Asakura (2012) �Stone-Marhesin model equations of three-phase �ow in oil reservoir simulation�,Proeedings of HYP2012 (Padova, Italy).[2℄ A. V. Azevedo, D. Marhesin, B. Plohr and K. Zumbrun (2002) �Capillary instability in modelsfor three-phase �ow�, Z. Angew. Math. Phys. 53: 713�746.[3℄ A. V. Azevedo, A. de Souza, F. Furtado, D. Marhesin and B. Plohr (2010) �The solutionby the wave urve method of three-phase �ow in virgin reservoirs�, Transp. Porous Media 83: 99�125.[4℄ J. Bruining (2007) Muiltiphase Flow in Porous Media. TU-Delft, Leture notes.[5℄ P. Castañeda, F. Furtado and D. Marhesin �The Riemann problem for three-phase �ow in virginreservoirs for general permeabilities�. (In preparation.)[6℄ R. Juanes and T. Patzek (2004) �Relative permeabilities for stritly hyperboli models of three-phase�ow in porous media�, Transp. Porous Media 57: 125�152.[7℄ M. E. Gomes (1987) Singular Riemann Problem for a Fourth-order Model for Multi-Phase Flow, DSThesis, PUC-RJ. (In Portuguese.)[8℄ E. Isaason, D. Marhesin, B. Plohr and B. Temple (1992) �Multiphase �ow models withsingular Riemann problems�, Mat. Apl. Comput. 11: 147�166.[9℄ P. Lax (1957) �Hyperboli systems of onservation laws II�, Comm. Pure Appl. Math. 10: 537�566.[10℄ T.-P. Liu (1975) �The Riemann problem for general systems of onservation laws�, J. Di�erentialEquations 18: 218�234.[11℄ D. Marhesin and B. Plohr (2001) �Wave struture in WAG reovery�, SPEJ 6: 209�219.[12℄ V. Matos, P. Castañeda and D. Marhesin (2012) �Classi�ation of the umbili point in immisiblethree-phase �ow in porous media�, Proeedings of HYP2012 (Padova, Italy).[13℄ H. Medeiros (1992) �Stable hyperboli singularities for three-phase �ow models in oil reservoir simu-lation�, Ata Appl. Math. 28: 135�159[14℄ M. Shearer (1988) �Loss of strit hyperboliity for the Bukley-Leverett equations of three phase �owin a porous medium�, Numerial simulation in oil reovery IMA Math. Appl. 11: 263�283.[15℄ M. Shearer and J. Trangenstein (1989) �Loss of real harateristis for models of three-phase �owin a porous medium�, Transp. Porous Media 4: 499�525.
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