
ON SINGULAR POINTSFOR CONVEX PERMEABILITY MODELSP. CASTAÑEDA, F. FURTADO, AND D. MARCHESINAbstra
t. We fo
us on a system of two 
onservation laws representing a large 
lass ofmodels relevant for petroleum engineering, the domain of whi
h possesses singular points.It has been 
onje
tured that the stru
ture of the Riemann solution in the saturation triangleis strongly in�uen
ed by the nature of the umbili
 point. In the 
urrent work we show thatfeatures originally related to umbili
 points a
tually belong to a distin
t point, the newEqual-Speed Sho
ks point.Even though the lo
ation of the umbili
 point is known, for the �rst time, we relate theumbili
 point to a physi
al property, namely, the minimum of the total mobility for anyCorey model. 1. Introdu
tionWe are interested in the study of inje
tion problems for 2× 2 systems of 
onservation laws;a survey may be found in [3, 4, 6, 11℄ and referen
es therein. The solution 
onstru
tion forthe inje
tion of water and gas is presented in [3℄ for the 
ase of quadrati
 Corey models.We dis
uss the lo
ation of the umbili
 point in the interior of the triangle and the new�Equal-Speed Sho
ks� (ESS) point, whi
h arises in these more general non-symmetri
 models.Analyses on umbili
 points were made in the last few years [7, 8, 13℄. The spe
ial 
ase ofquadrati
 Corey models is dis
ussed in [1℄.We 
onsider models for reservoirs that may 
ontain three �uids, for 
on
reteness, we 
allthem water, gas, and oil; although they 
ould be any three �uids that are immis
ible withea
h other. For simpli
ity, we assume that the three phases are in
ompressible, that grav-itational segregation and 
apillary e�e
ts are negligible, and that there is no mass transferamong the phases. The �ow o

urs in one dimension at 
onstant inje
tion rate and �xedproportion of inje
ted �uids. The mobility of ea
h phase is assumed to be a 
onvex fun
tionof its own saturation and inversely proportional to the phase vis
osity. The mathemati-
al model 
onsists of two 
onservation laws representing Dar
y's law 
ombined with mass
onservation for two of the phases. The �ow problem depends on two vis
osity ratios andthe pre
ise 
hoi
e of mobilities. (The overall pi
ture of solutions given in [3℄ is essentiallyun
hanged in the more general 
lass of models treated in this work, see [5℄.)A Corey-type model loses stri
t hyperboli
ity at an umbili
 point. Models without umbili
points have been 
onsidered for three-phase �ow; see [6℄. They yield simple solutions for theinje
tion problem. However, they are unrealisti
 be
ause immis
ibility of the three phases1991 Mathemati
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2 CASTAÑEDA, FURTADO, AND MARCHESINseems to be related to loss of stri
t hyperboli
ity [2, 13, 15℄, i.e., either umbili
 points orellipti
 regions are present. Models with umbili
 points have 
ompli
ated solutions, but arestill well behaved mathemati
ally; see [8, 11℄ for a review of their properties.This work is organized as follows. In Se
. 2 the 
onvex permeability models are introdu
ed;in Se
. 2.1.1 we give a brief review of rarefa
tion fans, sho
k waves and properties of quadrati
Corey models. Se
tion 3 des
ribes 
ertain stru
tures in state spa
e; in Se
. 3.1 we identifyfeatures of the umbili
 point and in Se
. 3.2 we des
ribe 
urves with a 
ertain equal sho
kspeed property to the boundaries, the interse
tion of whi
h is the ESS point. Finally, the
on
lusions are in Se
. 4. 2. Mathemati
al modelConsider the �ow of a mixture of three �uid phases (whi
h, for 
on
reteness, are 
alledwater, gas and oil) in a thin, horizontal 
ylinder of porous ro
k. Let sw(x, t), sg(x, t) and
so(x, t) denote the respe
tive saturations at distan
e x along the 
ylinder, at time t. Be
ause
sw+ sg+ so = 1 and 0 ≤ sw, sg, so ≤ 1, the state spa
e of the �uid mixture is the saturationtriangle ∆; see e.g. Fig. 2.1. In our analysis, we 
hoose sw and sg as the two independentvariables, thus S := (sw, sg); the verti
es of ∆ are W = (1, 0), G = (0, 1) and O = (0, 0).2.1. Conservation laws. Three-phase �ow in 1d at 
onstant inje
ted rate is governed bythe non-dimensionalized system ∂S/∂t + ∂F (S)/∂x = 0, or

∂sw
∂t

+
∂fw(sw, sg)

∂x
= 0, (1)

∂sg
∂t

+
∂fg(sw, sg)

∂x
= 0, (2)representing 
onservation of water and gas. The �ow fun
tions fw(sw, sg) and fg(sw, sg) aredetermined by the relative permeabilities of the three phases.Although ea
h �uid phase be
omes immobile below an irredu
ible saturation, for simpli
itywe assume that the relative permeabilities are stri
tly positive within the saturation triangle.(In Engineering language, sw, sg, and so are �redu
ed saturations�.) From Dar
y's law the�uxes are

fα(S) =
mα(S)

m(S)
, for α = w, g, o, where m := mw +mg +mo (3)is the total mobility; mw, mg, mo represent the relative mobility of ea
h phase. Ea
h mobilityis a ratio between relative permeability and vis
osity of the �uid, it is des
ribed by the
ontinuous fun
tion:
mα(S) :=

kα(S)

µα

, α = w, g, o, (4)where µα is the given 
onstant vis
osity of ea
h phase α.A Corey type model is de�ned by a set of mobilities mα(sα) that are nonde
reasing 
on-tinuous fun
tions of their own saturation sα. In this work we fo
us on 
onvex Corey models,whi
h obey the following restri
tions.De�nition 1. A Corey model is said to be 
onvex when the mobilities are C2[0, 1] fun
tionssatisfying:(1) mα(sα) > 0 for sα ∈ (0, 1] and mα(0) = 0,(2) m′

α(sα) > 0 for sα ∈ (0, 1] and m′

α(0) = 0,



ON SINGULAR POINTS FOR CONVEX PERMEABILITY MODELS 3(3) m′′

α(sα) ≥ 0 for sα ∈ [0, 1],(4) no pair of the quantities m′′

w(sw), m
′′

g(sg), m
′′

o(so) vanish simultaneously for any pointin the interior of the saturation triangle (0 < sw, sg, so < 1).Remark 2. In the presen
e of nonzero irredu
ible saturations, one 
an easily formulate anappropriate extension of De�nition 1.Remark 3. In this work, for the purpose of illustrating fa
ts with �gures, we use the followingmobilities:
mw(sw) = (sw)

3.2857/1, mg(sg) = (sg)
2.65/0.5, mo(so) = (so)

5.8357/2,based on a best �t for homogeneous porous media of the Corey-Brooks model, [4℄.2.1.1. Basi
 solutions. Equations (1)�(2) have solutions that propagate as waves. The Ja-
obian matrix of the �uxes is the key for rarefa
tion 
urves. The 
hara
teristi
 speeds arethe two eigenvalues of the Ja
obian derivative matrix
J(S) :=

∂(fw(S), fg(S))

∂(sw, sg)
=

∂F (S)

∂S
, (5)provided that these eigenvalues are real, in whi
h 
ase the smaller one is 
alled the slow-family 
hara
teristi
 speed λ s(sw, sg) and the larger one is 
alled the fast-family 
hara
teristi
speed λ f(sw, sg). For the Corey model, both eigenvalues are real and nonnegative for ea
hstate in the saturation triangle.The self-similarity of solutions of a Riemann problem implies that if u(x, t) is su
h asolution at a given time t, then u(αx, αt) is also a solution for any α > 0. Centeredrarefa
tion and sho
k waves are based on self-similarity.System (1)�(2) has 
ontinuous solutions 
alled slow- and fast-family rarefa
tion waves.They arise by solving an ODE, namely,

{J(S)− ξ I}~r(S) = 0,
dS

dξ
= ~r(S),where S(ξ), for ξ = x/t, is the pro�le of the rarefa
tion provided ξ is monotoni
 in
reasing.Some integral 
urves appearing in the solution of Riemann problems are plotted in Fig. 2.1.This system also admits solutions that have jump dis
ontinuities. The Hugoniot lo
us ofa point So, denoted as H(So), is given by all the points S that satisfy the Rankine-Hugoniot(RH) 
ondition:

F (S)− F (So) = σ(S − So), (6)where σ = σ(So, S) is the velo
ity of the dis
ontinuity, and the �uxes F (S) and saturations
S are given as before. (Noti
e that S belongs to H(So) if and only if So belongs to H(S).)Admissibility of dis
ontinuites for systems of 
onservation laws su
h as (1)�(2) is dis
ussedin [3℄.Noti
e that if the RH 
ondition between states Sa and So holds with a 
ertain speed σ,and it also holds for the same speed between states So and Sb, it is easy to see that the RH
ondition is satis�ed between states Sa and Sb with the same speed. This is the essen
e ofthe triple-sho
k rule [8℄. The de�nition of σij as the sho
k speed σ(Si, Sj) will be useful.Theorem 4 (Triple-sho
k rule). Let the states S1, S2 belong to H(S0). If σ01 = σ02 holds,then S1 belongs to H(S2) and the relations σ01 = σ02 = σ12 hold.



4 CASTAÑEDA, FURTADO, AND MARCHESIN
O

WG

O

WGFigure 2.1. Integral 
urves; slow and fast families. The triple interse
tion isthe umbili
 point. Dots on integral 
urves are in�e
tion, arrows point in thein
reasing eigenvalue dire
tion. (The spe
i�
 mobilities are in Remark 3.)Proof. De�ne σ as σ01 = σ02. Subtra
t versions of equation (6) written for (S0, S1) and for
(S0, S2), obtaining F (S2) − F (S1) = σ(S2 − S1), whi
h indi
ates that S1 belongs to H(S2)and σ12 is equal to σ. �The following variant of Theorem 4 has been used in several works appearing in this
onferen
e.Lemma 5. Let S0, S1, S2 be non-
ollinear states su
h that S1, S2 belong to H(S0) and S1belongs to H(S2). Then σ01 = σ02 = σ12 holds.Proof. Let us express the RH relations of the involved states; we have

F (S1)− F (S0) = σ01(S1 − S0), F (S2)− F (S0) = σ02(S2 − S0),

F (S1)− F (S2) = σ12(S1 − S2). (7)By subtra
ting (7.b) and (7.
) from (7.a), we obtain
0 = σ01(S1 − S0)− σ02(S2 − S0)− σ12(S1 − S2).We subtra
t the trivial relation 0 = σ12(S1 − S0) − σ12(S2 − S0) − σ12(S1 − S2) obtaining

0 = (σ01 − σ12)(S1 − S0)− (σ02 − σ12)(S2 − S0). Re
alling that the sates are non-
ollinear,we noti
e that the latter relation holds if and only if σ01 − σ12 and σ02 − σ12 are zero, whi
hproves the lemma. �A system is 
alled stri
tly hyperboli
 if the 
hara
teristi
 speeds satisfy the inequality
λ s(S) < λ f(S) everywhere; they are well studied [9, 10℄. In three-phase �ow models thereare points where the 
hara
teristi
 speeds 
oin
ide, whi
h are 
alled 
oin
iden
e points.Furthermore, in Corey models there are isolated 
oin
iden
e points where the Ja
obianmatrix is a multiple of the identity, i.e., umbili
 points.The quadrati
 Corey model is de�ned by the permeabilities kα(S) = s2α for α = w, g, o.Su
h a model is well understood; in parti
ular, the lo
ation and 
hara
teristi
s of umbili




ON SINGULAR POINTS FOR CONVEX PERMEABILITY MODELS 5points are well known. There is a unique umbili
 point U = (uw, ug) in the interior of ∆,with uo = 1− uw − ug, the 
oordinates of whi
h are
uα = µα/(µw + µg + µo), for α = w, g, o.Su
h a point satis�es the following.Property 6. For the quadrati
 Corey model, the 
hara
teristi
 speeds are equal to 2 at theinterior umbili
 point.Three other umbili
 points lie on the verti
es of the saturation triangle.Property 7. For the quadrati
 Corey model, the sho
k speed from the interior umbili
 pointto verti
es of the triangle are equal to 1.3. Stru
tures in the saturation triangle for 
onvex Corey modelsWhen two of the permeabilities in (4) 
ease to be s
alar multiples of the same 
onvex fun
tion,the umbili
 point gives rise to two points: the �rst one is still an umbili
 point, and Property 6holds, and at the se
ond one, only Property 7 holds. It is be
ause of the sho
k speed equalitythat the latter point will be 
alled Equal-Speed Sho
ks to verti
es or ESS.3.1. The umbili
 point lo
ation. Inmis
ible three-phase �ow models are typi
ally non-stri
tly hyperboli
, ex
ept in the model in [6℄. Lemma 8 follows from results in [13℄ for the
ase where the gravity for
e is not a
tive. (In [7, 14℄ there are shorter proofs.)Lemma 8. Consider a 
onvex Corey permeability model, see De�nition 1. There is alwaysa single point U in the interior of the saturation triangle satisfying

m′

w(uw) = m′

g(ug) = m′

o(uo), (8)whi
h is the unique umbili
 point in the interior of the triangle. It has 
hara
teristi
 speed
λ(U) = m′

w(uw)/m(U).An important feature of the models 
onsidered is the following: from properties (3) and(4) of De�nition 1, one 
an see that the Hessian for the total mobility:
(

m′′

w +m′′

o m′′

o

m′′

o m′′

g +m′′

o

) (9)is a positive de�nite matrix. Hen
e the motivation of the following result.Corollary 9. For a 
onvex Corey type model, the total mobility has a single extremum inthe interior of the triangle, whi
h o

urs at the umbili
 point. The extremum is a minimum.Proof. Equating to zero the partial derivatives of m in (3.b) relatively to sw and sg implies
m′

w = m′

o as well as m′

g = m′

o; then Lemma 8 guarantees that this extremum o

urs atthe single umbili
 point. Thus from the positive de�niteness of (9) we obtained that thisextremum is the minimum. �Remark 10. Dar
y's law says that the total �ow rate of a �uid mixture is proportional to thepressure gradient; the proportionality 
oe�
ient is (minus) the total mobility. Corollary 9implies that maximum pressure gradient is needed to displa
e the �uid mixture at saturationsgiven by the umbili
 point, for a given total �ow rate. In other words the umbili
 point givesthe saturation proportion for whi
h ea
h of the three �uids hinders maximally the �ow of theother two. (Total �ow is minimal for a spe
i�
 pressure gradient.)



6 CASTAÑEDA, FURTADO, AND MARCHESINWe will 
all m′

w(sw) the sensitivity of the water mobility to water saturation. The �rstequality in (8), m′

w(sw) = m′

g(sg), de�nes the equal water-gas sensitivity 
urve, whi
h 
an beparametrized either as a fun
tion of sw or sg; it 
ontains U and O. Similarly we 
an de�neequal water-oil and gas-oil sensitivity 
urves. See the three dashed 
urves in Fig. 3.1. (Inthe absen
e of gravitational for
e these 
urves were 
alled two-phase-like-�ow sets in [13℄.)Let us summarize properties of the equal sensitivity 
urves. First of all, re
all that m′

w =
m′

g implies ∂m/∂sw = ∂m/∂sg, for brevity we 
all ∂m su
h a value, thus the Ja
obian matrixat any point of the equal water-gas sensitivity 
urve is
J(S) =

1

m2

(

m′

wm−mw∂m −mw∂m
−mg∂m m′

wm−mg∂m

)

.Along the 
urve one eigenvalue is λ = m′

w/m with eigenve
tor (1, −1) (in Cartesian 
oordi-nates), whi
h is parallel to the side so = 0.Moreover, the total mobility is minimum on the equal sensitivity 
urve in the dire
tionof su
h eigenve
tor. Indeed, ∇m · (1, −1) = ∂m/∂sw − ∂m/∂sg is zero on the sensitivity
urve, whi
h turns out to be at a minimum be
ause the Hessian in (9) is positive de�nite.(Analogous statements hold for other sensitivity 
urves.)
U

H

O

WG Hwg

Hwo

Hgo

Figure 3.1. Lo
ation of umbili
 and ESS points. Solid 
urves are Hugoniotlo
i from pure saturations. The umbili
 lo
ation is given from similar dashed
urves.Remark 11. For non-
onvex Corey models we have the following fa
ts. A 
onverse toLemma 8 holds: an umbili
 point in the interior of the triangle satis�es (8). Instead ofCorollary 9, every extremum of the total mobility is a 
oin
iden
e point; su
h a point is um-bili
 provided that the se
ond derivatives of two of the mobilities do not vanish simultaneouslythere. (The extrema are not ne
essarily unique and do not need to be minima.)3.2. The equal-speed sho
ks 
urves. Let us 
onsider the vertex O = (0, 0), and look forpoints S = (sw, sg) in ∆ satisfying RH relation (6):
fw(S) = σsw, fg(S) = σsg; (10)where we used the fa
t that water and gas saturations for pure oil are zero, water and gaspermeabilities are also zero. For the same reason the sides sw = 0 and sg = 0 are part of theHugoniot lo
us of O. A third solution appears equating σ in Eqs. (10) leading to

σ(S, O) =
fw(S)

sw
=

fg(S)

sg
; (11)



ON SINGULAR POINTS FOR CONVEX PERMEABILITY MODELS 7points S satisfying the last equality in (11) form a 
urve inside ∆.We denote by Hint(O) the lo
us in ∆ that satis�es Eq. (11), i.e., the �interior Hugoniotlo
us� from O; the Hugoniot lo
us of the vertex O is given by Hint(O) and the sides WOand GO. Sin
e for any state S on Hint(O), H(S) interse
ts both sides WO and GO, see [5℄,from Lemma 5 we have the followingClaim 12. All points in the internal Hugoniot lo
us Hint(O) satisfy the triple-sho
k rulebetween O and points on the boundary WO; they also satisfy the triple-sho
k rule between Oand points on the boundary GO.We de�ne Hint(O), from equality (11), as the equal water-gas sho
k speed 
urve (as we willshow presently), whi
h 
an be parametrized either as a fun
tion of sw or sg. A
tually, sin
eea
h mα(sα) is an in
reasing 
ontinuous fun
tion, its inverse is well de�ned and in
reasing.With aid of the 
onstraint sw+sg+so = 1, it is easy to see that points (sw, sg) satisfying these
ond equality in relation (11) 
an be parametrized by so, i.e., there exist smooth fun
tions
Hw, Hg : [0, 1] → [0, 1] s.t. (Hw(so), Hg(so)) ∈ Hint(O), (12)for all so ∈ [0, 1]; noti
e that H ′

w and H ′

g are negative be
ause when so in
reases sw + sgde
reases. Similarly we 
an de�ne equal water-oil and gas-oil sho
k speed 
urves; Hint(G)and Hint(W).The interse
tion of Hint(W), Hint(G) and Hint(O), is denoted by H := (hw, hg), with
ho = 1− hw − hg, and satis�es

σ =
fw(H)

hw

=
fg(H)

hg

=
fo(H)

ho

. (13)This is the ESS point (Equal-Speed Sho
ks); the sho
k speeds from H to any vertex have thesame value σ. Noti
e from relations (13) that H satis�es σ = Σαfα(H)/Σαhα = 1. De�ning
Hwg, Hwo, Hgo as the interse
tion of the internal Hugoniot Hint(O), Hint(G), Hint(W) withthe sides WG, WO, GO respe
tively (see Fig. 3.1), we noti
e that the triple-sho
k rule (seeTheorem 4) holds with speed one for seven points, namely,

σ(A, B) = 1, with A, B ∈ {H, W, G, O, Hwg, Hwo, Hgo},sin
e ea
h point belongs to the Hugoniot lo
us of the three verti
es.4. Con
luding remarkThe internal Hugoniot lo
i of the verti
es give rise to the ESS point, while the equalsensitivity 
urves give rise to the umbili
 point.As in [14℄ one 
an follow the ordering of in
reasing dire
tions of fast rarefa
tion 
urves nearthe boundary, see Fig. 2.1, and noti
e that there is an orientation reversal, thus a quadrati
expansion of the �uxes about the umbili
 point shows that in our 
ase it must be 
lassi�edas Type I or II, see Fig. 4.1 and [12℄.A
knowledgmentsThe authors are grateful to Prof. J. Bruining (TU-Delft) for many enlightening dis
ussions.
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Type I Type II

Figure 4.1. In the saturation triangle there are two possible umbili
 pointtypes for Corey permeability models with di�erent vis
osities. We representthe two possibilities. The rarefa
tion behavior around the umbili
 type issket
hed in the small boxes. (Lighter 
urves represent slow family, darker
urves represent fast family.) Referen
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