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Abstract. In secondary oil recovery, water is injected into the petroleum reservatory to
push out the oil. This procedure accounts for most of the oil a reservoir produces. The
efficiency of an injection well is measured in terms of its injectivity: the ratio between the
injection flow rate and the injection pressure required to maintain this rate. Injection of
unclean water causes the well injectivity to decline, because the porous medium acts as
a filter to the particles suspended in the water. The capture of suspended particles and
consequent loss of permeability characterize a phenomenon called deep bed filtration with
formation damage. Retention of particles on the surface of the porous medium, where
injection takes place, also causes injectivity decline, and is known as cake formation.

Models for deep bed filtration correlate the pressure drop to particle deposition through
an empirical permeability reduction function, which represents the macroscopic effect of
particle retention on the permeability.

Different laboratory experiments using rock samples from oil reservoirs can be performed
to determine this function. We describe a practical method for recovering the permeability
reduction function from experimental data consisting of deposition profiles and pressure
measurements during the injection of a suspension of solid particles in a linear rock core.

Inverse problem, Formation damage, Deep bed filtration, Convection-reaction equations

1. Introduction

Oil wells go through different production stages before they are abandoned. Primary oil
recovery is due to natural reservatory pressure, which causes the oil to rise to the surface
naturally through the production well. In secondary oil recovery, water is injected into the
reservatory to push out the oil through another well. This procedure accounts for most of
the oil a reservoir produces. The efficiency of an injection well is measured in terms of its
injectivity : the ratio between the injection flow rate and the injection pressure required to
maintain this rate. The injection rate is proportional to the recovery rate, and the injection
pressure represents operational cost.

The recovered oil is mixed with water, which has to be separated. This produced water
accounts for around three quarters of a production well output: even after separation it
contains solid particles and oil droplets, and must be disposed of in an environmentally
safe way. A common practice is to use the produced water itself for injection, hence the
engineering term produced water re-injection.

However, injection of unclean water causes the well injectivity to decline, because the
porous medium acts as a filter to the particles suspended in the water. The capture of sus-
pended particles inside the porous medium and consequent loss of permeability characterize
a phenomenon called deep bed formation damage. Experience shows that another phenome-
non takes place on the injection surface of the porous medium, called cake formation. The
“cake” is an aglomeration of particles outside the porous medium, and thus it is altogether
separate from the formation damage. It causes injectivity decline as well.
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Models for deep bed filtration correlate the pressure drop to particle deposition through an
empirical permeability reduction function, which represents the macroscopic effect of particle
retention on the permeability. Our work utilizes a model for deep bed filtration based on the
fundamental work of Hertzig et al. [5], which consists of equations expressing the particle
mass conservation and the particle retention process. Models for cake formation are still
incipient. However, experimental methodologies to separately measure the pressure drops
due to the cake and to the formation damage are available.

We describe a practical method for recovering the permeability reduction function from
experimental data consisting of deposition profiles and pressure measurements during the
injection of a suspension of solid particles in a linear rock core. We extend the method to
the case were cake formation occurs and is measured.

The paper is organized as follows. In Section 2 we present the relation between injectivity
decline and particle deposition. In Section 3, we present the inverse problem and the type
of solution we seek to obtain. In Section 4 the numerical results are shown, and in Section
5 a summary of our results is presented.

2. Global solution for the direct problem

We use a physical model for the phenomenon called deep bed filtration with formation
damage based on [5]. Such models, further detailed in Appendix A, can be used to predict
the deposition profile σ(x, t) along the core, where σ is a dimensionless quantity between 0
and 1, the fraction of the pore volume occupied by retained particles. The physical domain
is t > 0 and 0 ≤ x ≤ L, where L is the length of the core. This deposition information can
then be related to the pressure drop along the core by:

U = −k0 k(σ)

μ

∂p

∂x
. (2.1)

which is a form of Darcy’s law relating the flow rate U to the pressure p. Here, k0 is
the absolute rock permeability and k(σ) is the permeability reduction due to the retained
particles; when expressed as a function of σ, it is called the formation damage function. It
is normalized so that k(0) = 1, i.e. it is one for clean porous rock. In general, the water
viscosity μ can be considered constant for small particle concentrations.

We assume that permeability reduction k(σ) is a decreasing function of the retained con-
centration. For one-dimensional flow in a rock core, we multiply Eq. (2.1) by [k(σ(x, t))U ]−1,
and integrate the resulting equation in some interval [a, b] to obtain the following relationship
between deposited particle distribution and pressure drop:∫ b

a

dx

k(σ(x, t))
=

k0

μU
Δpσ[a,b](t), t ≥ 0, 0 ≤ a < b ≤ L. (2.2)

Notice that we have arbitrarily changed the sign of the pressure drop so as to compute
Δp[a,b] = p(a) − p(b) > 0 for b > a, and not the other way around. The pressure drop
computed in Eq. (2.2) represents formation damage due to retained particles, and so we
subscript it Δpσ. The pressure drop due to cake formation Δpcake can only be inferred
experimentally, since there are no good models for it.

Next, we transform the physical domain into dimensionless coordinates by the formulae

X =
x

L
and T =

U

φL
t, (2.3)
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so X is in the [0, 1] range; one unit of dimensionless time T is the time it takes to inject a
volume of fluid corresponding to the porous volume of the sample, hence the term porous
volume injected (PVI).

In the following sections, we assume the deposition profiles σ(X, T ) are given along with
the corresponding pressure drop measurements, i.e., Δpexp(T ) = pinlet(T )−poutlet(T ). If cake
formation is to be considered, a second pressure drop measurement Δpexp(T ) = pXmid

(T ) −
poutlet(T ) is required. Since deposition is most significant near the injection face, Xmid > 0
should be as close to 0 as experimentally possible without compromising the phenomena
under study. Previous experience in [6] with deposition data obtained by Al-Abduwani in
[1] suggests careful preprocessing of the profiles before attempting any parameter recovery
procedure.

3. The Recovery Method

We wish to determine a function k(σ) from input data consisting of σexp and Δpexp, either
synthetic or experimental, such that Eq. (2.2) holds. We assume that these data are a set of
numerical values 0 ≤ σexp(Xi, Tj) � 1 and Δpexp(Tj) > 0, for i = 1, . . . , m, X1 > 0, Xm = 1,
and j = 1, . . . , n. Where required, we use X0 = 0 and T0 = 0.

3.1. Case 1: One pressure drop measurement, no cake discrimination. If cake
formation is not taken into account during the experiments, i.e., Δpcake is assumed negligible,
then only Δpexp(T ) is available, i.e., the difference between the inlet and outlet pressures.
We assume Δpσ(Tj) = Δpexp(Tj).

First, we choose a parametrization k(σ; β) for the permeability reduction function, where
β = (β1, . . . , βp) is a set of p parameters that we will determine from the input data. From
physical properties of the permeability reduction function, e.g., it is a decreasing function of
σ, we select the following form for k(σ; β):

k(σ; β) =

(
1 +

p∑
�=1

β�σ
�

)−1

. (3.1)

Using the parametrization above and the change of variables (2.3), Eq. (2.2) can be rewrit-
ten in the interval [0, L] as:∫ 1

0

(
1 +

p∑
�=1

β�σ(X, T )�

)−1

dX =
k0

μU
Δpσ(T ), (3.2)

Applying the discrete input data we obtain:

p∑
�=1

M �
[0,1](Tj)β� =

k0

μU
Δpσ(Tj) − 1. (3.3)

where M �
[0,1](T ) are the integrals of the moments of σexp, which we be computed using any

given quadrature, such as trapezoidal rule:

M �
[0,1](Tj) =

∫ 1

0

(
σexp(X, Tj)

)�
dX ∼= 1

2

m−1∑
i=0

[(
σexp(Xi, Tj)

)�
+
(
σexp(Xi+1, Tj)

)�](
Xi+1 − Xi

)
.

(3.4)
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The expression above can clearly be improved to take advantage of an uniform partition of
the X interval:

M �
[0,1](Tj) ∼=

((
σexp(X0, Tj)

)�
+
(
σexp(Xm, Tj)

)�
2

+
m−1∑
i=1

(
σexp(Xi, Tj)

)�)
ΔX. (3.5)

Let A = (aji) =
(
M i

[0,1](Tj)
)

be a n × p matrix and γ =
(

k0

μU
Δp(Tj)

)
be a n-vector. This

reduces Eq. (3.3) to a n × p system of linear equations Aβ = γ that can be solved for the
p-vector β of unknowns using standard procedures for overdetermined linear systems.

For example, one can transform the n× p system into a p× p system of the form A�Aβ =
A�γ, where � denotes matrix transpose. These procedures are found in standard packages
such as Matlab.

3.2. Case 2: Two pressure drop measurements, cake discrimination. One way of
taking cake formation into account during experiments is to perform a separate pressure
drop measurement near the injection face. Given two pressure drop histories Δp1

exp(T ) and

Δp2
exp(T ) as in Figure 3.1, we know that Δpσ(T ) + Δpcake(T ) = Δp1

exp(T ) + Δp2
exp(T ), and

we assume that Δpcake(T ) is fully contained in Δp1
exp(T ).

� p
exp
1  � p

exp
2  

Injection Face and
Cake formation

X = 0 X = X
mid

 X = 1 

Core outlet 

Figure 3.1. Two pressure drop measurements obtained from inlet, outlet
and middle pressure taps.

Little change is required to the method described in the previous subsection in order
to recover the β coefficients and the values of Δpcake. The whole procedure in 3.1 can
be executed in the interval [Xmid, 1], instead of [0, 1], which amounts to simple changes in
Eqs. (3.3) and (3.4). The system (3.3) takes the form

p∑
�=1

M �
[Xmid,1](Tj)β� =

k0

μU
Δp2

exp(Tj) − (1 − Xmid), (3.6)

where M �
[Xmid,1](Tj) are computed as M �

[0,1](Tj) in Eq. (3.4), but in the [Xmid, 1] interval
instead.

Once the set of parameters β has been determined, it can be applied to Eq. (2.2) to
determine Δpcake(Tj) = Δp1

exp(T )+Δp2
exp(T )−Δpσ(Tj). In practice, we are solving the same

problem as before in the [Xmid, 1] interval, thus failing to take into account the deposition
data available in the [0, Xmid] interval. In the absence of a model for the cake, the amount of
pressure drop due to formation damage in this interval is unknown. A compromise is made
in this approach, since the deposition data is more reliable near the injection face.

The simplest way of taking into account the deposition data in the [0, Xmid] interval is
to expand the system to accomodate the pressure drops Δp1

exp(T ) as data and the values of
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Δpcake(Tj) as unknowns, obtaining another linear system of 2n equations and p+n unknowns.
The system (3.3) takes the form:

p∑
�=1

M �
[Xmid,1](Tj)β� =

k0

μU
Δp2

exp(Tj) − (1 − Xmid),

Δpcake(Tj) +

p∑
�=1

M �
[0,1](Tj)β� =

k0

μU

(
Δp1

exp(Tj) + Δp2
exp(Tj)

)− 1.

(3.7)

3.3. Case 3: Two experiments, two measurements, cake discrimination. Another
way of determining the permeability reduction function when cake forms is to perform two
“identical” experiments, with two cores of different lengths, as identical as possible in every
other aspect. Assuming that the two cores have lengths L1 > L2, we use L1 in Eq. (2.3)
so that σ in the second data set will be restricted to the [0, Xmax] interval. If we assume
that the second experiment is merely a truncation of the first, then cake formation and
deposition in the [0, Xmax] interval should be the same in both runs. Thus, Δp1

cake = Δp2
cake

and, in the [0, Xmax] interval, Δp1
σ = Δp2

σ. This assumption must be verified by comparing
the deposition profiles and other quantitative results from both experiments. It follows that
Δp1

exp − Δp2
exp is the pressure drop due to deposition in the [Xmid, 1] interval, which was

labeled Δp2
exp in the previous case. In a sense, this is a trick to measure the pressure value

at Xmid = Xmax in the first experiment, by repeating the experiment with a truncated core.
The shorter L2 is when compared to L1, the closer we are to the situation where Xmid was
close to 0 in the previous subsection.

4. Numerical examples

We present an experiment using synthetic data that includes cake formation. The data
were generated prescribing λ(σ) = max{0, 1 − 171σ} and k(σ) = [1 + 300σ + 105σ2]−1,
solving the direct problem using the methods described in Appendix A and Section 2, and
introducing random noise of relative magnitude of 10%.

The data mimics the experiment described in Section 3.2: we split the pressure drop
integral in two at X0 = 0.1, and added an arbitrary cake to the first part. Consistently with
empirical knowledge of cake formation, we chose a cake that grows linearly with time, as can
be seen in Figure 4.1b, but it could have any form as it is not relevant for the determination
of the parameters of k(σ).

Solving the system (3.6) yields k(σ) = [1 + 319σ + 8.27× 104σ2]−1, with errors of 6% and
18% for the first and second coefficient, respectively, for a 10% perturbation. The use of the
augmented system (3.7) recovered the parameters with similar accuracy.

Notice that we picked a value for β2 three orders of magnitude above that of β1. Since
max(σ) ∼= 10−3 in this experiment, a smaller coefficient would have made the quadratic term
negligible when compared to the linear one. However, this led to a unbalanced matrix A;
since this lack of balance did not seem to cause problems in the solution, we did not attempt
to balance it.

We can now use this filtration function to determine the fraction of the pressure drop that
is to be attributed to cake: one can perform a similar regression on this data once it has
been isolated from the pressure drop due to formation damage. In this synthetic example,
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we can recover the cake growth rate using any linear least squares routine, such as LSQLIN

in Matlab.
Figure 4.1a shows the prescribed and recovered permeability functions; Figure 4.1b shows

the solution of the direct problem using the recovered permeability reduction function, com-
pared with the noisy data.
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Figure 4.1. Synthetic data corresponding to the case described in Subsection
3.2, and solution of the system (3.6): on the left, the prescribed and recovered
permeability functions; on the right, the pressure from the solution of the
direct problem using the recovered permeability function, plotted over the
noisy pressure drop input data.

5. Conclusions

This method recovers the coefficients of a parametric permeability reduction function from
pressure drop and deposition measurements. It works well for synthetic data, and can be
adapted to different experimental procedures. It is easy to implement and computationally
light.

The aim of this procedure is to recover de permeability reduction function, which is related
to pressure drop due to deep bed filtration. However, cake formation may occur, and it is of
interest to quantify it when it is present. If one assumes the model for deep bed filtration
to be valid, this procedure can provide good experimental data about cake formation, which
cannot be measured directly with satisfactory accuracy.

Alternatively, the procedure described herein can be complemented by an analogous para-
metric model for the cake formation, allowing simultaneous recovery of both permeability
reduction as a function of the deposition and of cake formation as a function of other in-
formation such as deposition at the injection face, injection pressure, elapsed time and cake
thickness. Such investigation is motivation for further research both experimental and the-
oretical.

Appendix A. Deep bed filtration model

We now summarize the model for beed bed filtration with formation damage. Further
detail can be found in [3] and [2]. Assuming for simplicity that:

• the mass densities of solid particles in suspended and entrapped states are equal,



A SIMPLE INVERSE SOLVER FOR THE PERMEABILITY FUNCTION FOR FLOW IN POROUS MEDIA7

• water is incompressible,
• injection takes place at constant volumetric rate,

the mass conservation equation proposed by Herzig et Al. in [5], neglecting diffusive and
suspended particle mass accumulation terms, can be written as:

φ
∂σ

∂t
+ U

∂c

∂x
= 0, (A.1)

where

• φ is the rock porosity,
• c(x, t) and σ(x, t) are the (nondimensional) concentrations of the particles suspended

in the water and entrapped in the rock pores, respectively,
• 0 ≤ x ≤ L is the position,
• L is the length of the core,
• t > 0 is the time value,
• U is the fluid injection rate.

The quantities c and σ have values between 0 and 1, but usually c ∼= 10−4, while σ grows
up to 10−2. Thus φc and φσ are the concentration of suspended and retained particle per
unit volume of core rock. X-ray measurements capture the sum of these quantities. However,
because c is much smaller than σ most of the time, we often neglect c in such a sum. (See
Remark A.1.)

The model requires a law for particle deposition rate, usually written as:

∂σ

∂t
= λ(σ)cU. (A.2)

The form of the right hand side of Eq. (A.2) cannot be determined from first principles, so
this is a heuristic equation. The non-negative λ(σ) is an empirical coefficient known as the
filtration function, which cannot be measured directly.

Remark A.1. Except at initial times, it turns out that c is much smaller than σ. Because
of this fact, the simplified mass conservation equation (A.1) was proposed in [5], while the
correct form of the mass conservation equation is the given in [4], for negligible dispersive
effects:

φ
∂

∂t
(c + σ) + U

∂c

∂x
= 0.

The simplified equation (A.1) is appropriate for our purposes since usually there are no
accurate data measurements at early times. Indeed, at such times both c and σ are so small
that experimental error predominates in the measured data.

A.1. Boundary and initial conditions. We denote the solid particle concentration en-
tering into the porous medium as follows:

x = 0 : c = ci(t) > 0, t > 0. (A.3)

In the absence of cake formation, ci is the volumetric solid particle concentration in the
injection fluid. As initial data at t = 0, we assume that the rock contains water with no
particles:

t = 0 : σ = 0 and c = 0 for x ∈ [0, L]. (A.4)
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Using the change of variables given by Eq. (2.3), the system (A.1)–(A.2) and the definition
(A.3) can be rewritten in non-dimensional form, in terms of c(X, T ) and σ(X, T ) with X ∈
[0, 1], and T ≥ 0:

∂σ

∂T
+

∂c

∂X
= 0, (A.5)

∂σ

∂T
= λ(σ)c, (A.6)

c(0, T ) = ci

(
φL

U
T

)
, (A.7)

where the non-dimensional λ(σ) in (A.6) is the dimensional λ(σ) in (A.2) multiplied by φL.
Along the line X = 0, equation (A.5) becomes:

dσ(0, T )

dT
= λ(σ(0, T ))c(0, T ), and σ(0, 0) = 0. (A.8)

Integrating Eq. (A.8) provides σ(0, T ), which is positive and increasing.

A.2. Solution of the direct deposition problem. In [3] the following is proved:

Theorem A.2. Assume that λ(σ) is a known, non-negative function, piecewise differentiable
with uniformly bounded derivative, and that ci(T ) is also known. Then the system of PDEs
(A.1)–(A.2) with data (A.3)–(A.4) has a unique solution, and given the family of ordinary
differential equations

∂σ

∂X
= −λ(σ)σ and

∂c

∂X
= −λ(σ)c, (A.9)

this solution can be obtained by solving Eq. (A.9a) with data (A.8) and Eq. (A.9b) with data
(A.7).

In Eq. (A.9) the time T is fixed, so these should be regarded as a system of ordinary
differential equations in X, which determine σ(X, T ) and c(X, T ) in terms of X provided
the values of σ(0, T ) and c(0, T ) are available. The value of σ(0, T ) can be calculated by
solving Eq. (A.8), and c(0, T ) is given by Eq. (A.7).
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