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In the context of ocean dynamics, a reduced strongly nonlinear one-dimensional
model for the evolution of internal waves over an arbitrary seabottom with submerged
structures is derived. The reduced model is aimed at obtaining an efficient numerical
method for this two-dimensional problem. Two layers containing inviscid, immisci-
ble, irrotational fluids of different densities are defined. The upper layer is shallow
compared with the characteristic wavelength at the interface of the two-fluid system,
while the bottom region’s depth is comparable to the characteristic wavelength. The
non-linear evolution equations describe the behaviour of the internal wave elevation
and mean upper-velocity for this water configuration. The system is a generalization
of the one proposed by Choi and Camassa for the flat bottom casein the same phys-
ical settings. Due to the presence of topography a variable coefficient accompanies
each space derivative. These Boussinesq-type equations contain the Intermediate Long
Wave (ILW) equation and the Benjamin-Ono (BO) equation when restricted to the uni-
directional wave regime. We intend to use this model to studythe interaction of the
wave with the bottom profile. The dynamics include wave scattering, dispersion and
attenuation among other phenomena. The research is relevant in oil recovery in deep
ocean waters, where salt concentration and differences in temperature generate stratifi-
cation in such a way that internal waves can affect offshore operations and submerged
structures. Important properties of the model will be discussed. A hierarchy of one-
dimensional models is derived from this strongly nonlinearmodel by considering the
different regimes (linear, weakly nonlinear or strongly nonlinear) as well as the flat or
corrugated bottom cases. Numerical schemes based on the method of lines for all of
them will be described. The numerical results from the Matlab implementations will
be shown including periodic topography experiments and solitary waves solutions.

Internal waves, Inhomogeneous media, Asymptotic theory.

1 INTRODUCTION

Modelling internal waves is of great interest in the study ofocean dynamics. Internal
ocean waves appear when salt concentration and differences in temperature generate
stratification. They can interact with the bottom topography and submerged structures
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Figure 1: Offshore operations, internal waves and submerged structures.

as well as with surface waves. In particular, in oil recoveryin deep ocean water, in-
ternal waves can affect offshore operations and submerged structures, see Figure 1.
Accurate reduced models are a first step in producing efficient computational methods
for engineering problems in oceanography. This was the goalin [16, 1].

To describe this nonlinear wave phenomenon in deep waters there are several bidi-
rectional models containing the Intermediate Long Wave (ILW) equation and the Ben-
jamin-Ono (BO) equation, starting from works such as [2, 6, 17, 10, 12] to more recent
papers such as [13, 3, 4, 5, 9]. In these models two fundamental mechanisms, nonlin-
earity and dispersion, are responsible for the main features of the propagating wave.
One of the most interesting behaviours observed is the existence of solitary wave solu-
tions with permanent shape. They are observed when the steepening of a given wave
front due to the nonlinearity and the flattening and attenuation promoted by the dis-
persion are balanced on a particular scale. Usually the contribution of nonlinearity
is quantified by the non-dimensional nonlinearity parameter α, which is the ratio be-
tween the wave amplitude and the fluid layer thickness. It appears as a small non-zero
parameter in the so-called weakly nonlinear regime, and accompanies the nonlinear
terms. On the other hand, the dispersion parameterβ is the squared ratio between the
fluid layer thickness and the typical wavelength. It appearsin the dispersion relation,
making the phase velocity a function of the wavenumberk. The balance that creates a
solitary wave is commonly obtained through a scaling relation betweenα andβ, in the
form of a power law, for asymptotic valuesα ≪ 1 andβ ≪ 1. In the water configu-
ration considered here, it is the scalingα = O(

√
β) that leads to the ILW [10, 12]. In

the limit when one layer thickness tends to infinity, the ILW equation becomes the BO
equation [2, 6, 17].

For all these models, the dependence on the vertical coordinate has been eliminated
by focusing on specific regimes and using systematic asymptotic expansion methods
in small parameters. This results in a considerable simplification of the original Euler
equations that leads to more efficient computational methods than the integration of the
Euler system in the presence of a free interface. However, the approximation needs to
be accurate even for large values of the parametersα andβ. In other words, the model
needs to be robust enough to cover several regimes in which the viscosity effects are
negligible, justifying the use of the Euler equations. In [5], the authors compared
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Figure 2: Two-fluid system configuration. Horizontal rigid lid (green), interface (red),
bottom topography (cyan).

weakly nonlinear models with experimental data obtained byKoop and Butler in [11].
They found a divergence. This motivated them to propose a strongly nonlinear model
for flat bottom that shares the simplicity of the weakly nonlinear ones and extends
its domain of validity. The numerical results agree very well with the experimental
data. This model is generalized in the present work to consider an arbitrary sea bottom.
We remark that the new model support bidirectional wave propagation, so it is able to
capture the reflected wave from the propagation over a nonuniform sea bottom.

The models found in the literature consider flat or slowly varying bottom topogra-
phy. Here, the model of Choi and Camassa is generalized to thecase of an arbitrary
bottom topography by using the conformal mapping techniquedescribed in [16]. We
obtained a strongly nonlinear long-wave model like Choi andCamassa’s which is able
to describe large amplitude internal solitary waves.

2 METHODS

2.1 Governing Equations & Reduced Model

A system of two layers of fluids constrained to a region limited by a horizontal rigid lid
at the top and an arbitrary bottom topography is considered,as described in Figure 2.
Define the layer density of each inviscid, immiscible, irrotational fluid asρ1 for the
upper layer andρ2 for the lower layer. For a stable stratification,ρ2 > ρ1. Similarly,
(ui ,wi) denotes the velocity components andpi the pressure, wherei = 1,2. The
upper layer is assumed to have an undisturbed thicknessh1, much smaller than the
characteristic wavelength of the perturbed interfaceL > 0, hence the upper layer will
be in the shallow water regime. At the lower layer the irregular bottom is described by
z= h2(h(x/l)−1). The functionh needs not to be continuous neither univalued, see for
example Figure 2 where a polygonal shaped topography is sketched. We can assume
thath has compact support so the roughness is confined to a finite interval. Moreoverh2

is the undisturbed thickness of the lower layer outside the irregular bottom region and it
is comparable with the characteristic wavelengthL, that characterizes an intermediate
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Figure 3: Vertical averaging of physical quantities involved in the upper layer equa-
tions. The green arrows indicate the mean-layer horizontalupper velocityu1.

depth regime. In the slowly varying bottom case we defineε = L/l ≪ 1; when
a more rapidly varying bottom is of concern, the horizontal length scale for bottom
irregularitiesl is such thath1 < l ≪ L. The coordinate system is positioned at the
undisturbed interface between layers. The displacement ofthe interface is denoted by
η(x, t) and we may assume that initially it has compact support.

The corresponding Euler equations are

ui x + wi z = 0,

ui t + uiui x + wiui z = −
pi x

ρi
,

wi t + uiwi x + wiwi z = −
pi z

ρi
− g,

for i = 1,2. Subscriptsx, z and t stand for partial derivatives with respect to spatial
coordinates and time. The continuity condition at the interfacez= η(x, t) demands that

ηt + uiηx = wi , p1 = p2,

namely, a kinematic condition for the material curve and no pressure jumps allowed.
At the top we impose a rigid lid condition,

w1(x,h1, t) = 0,

commonly used in ocean and atmospheric models, while at the irregular impermeable
bottom

−h2

l
h′

( x
l

)

u2 + w2 = 0.

By averaging in the vertical direction (see Figure 3) we reduced the two-dimensio-
nal (2D) Euler equations for the upper layer (i = 1) to a one-dimensional (1D) system.
To close that system in terms of the perturbation of the interfaceη and the mean-layer
horizontal upper velocityu1, an asymptotic expansion in the small dispersion parameter
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Figure 4: Conformal mapping of the undisturbed bottom layer.

β =
(

h1
L

)2
was done. The resulting dimensionless equations are



















−ηt +
(

(1− η)u1
)

x = 0,

u1t + u1 · u1x = −ηx −
(

p2
(

x, η(x, t), t
)

)

x
+O(β).

Details can be found in [18, 19].
Actually, we still need to get an expression forp2 in order to close the system

and also to establish a connection with the lower intermediate depth layer. To get an

approximation for
(

p2
(

x, η(x, t), t
)

)

x
from the Euler equations for the lower fluid layer,

a conformal mapping of the undisturbed bottom layer is performed, see Figure 4. Then
the approximate potential problem is solved in the terrain-following coordinates (ξ, ζ),
giving rise to a Hilbert transform on the strip term. Substituting in the curvilinear
coordinates system we obtain the following,































ηt −
1

M(ξ)
[

(1− η)u1
]

ξ = 0,

u1t +
1

M(ξ)
u1 u1ξ +

1
M(ξ)

(

1− ρ2

ρ1

)

ηξ =
√

β
ρ2

ρ1

1
M(ξ)

T
[

(

(1− η)u1
)

ξt

]

.

(1)

This is a Boussinesq-type system with variable (time independent) coefficients 1/M(ξ).
T is the Hilbert transform on the strip. The terrain coefficient M(ξ) comes from the
conformal mapping and it contains the bottom information. Since M(ξ) is an analytic
function, a highly complex boundary profile has been converted into a smooth variable
coefficient in the system above. No smallness assumption was made on the wave am-
plitude, thus the model derived is strongly nonlinear. It involves a Hilbert transform on
the strip characterizing the presence of harmonic functions (hence the potential flow)
below the interface. Efficient computational methods can be produced for this accurate
reduced model which governs, to leading order, a complex two-dimensional problem.
If the bottom is flat, thenM(ξ) = 1 and the same system derived in [5] is obtained,
which is a nice consistency check.
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Linear Weakly
nonlinear

Strongly
nonlinear

Flat
bottom

FFT FFT Explicit
matrices

Rough
bottom

Explicit
matrices

Explicit
matrices

Explicit
matrices

Table 1: Hierarchy of one-dimensional models. Computationof the dispersive term.

2.2 Numerical Method

From system (1), a hierarchy of one-dimensional models can be derived by considering
the different regimes (linear, weakly nonlinear or strongly nonlinear) as well as the flat
or corrugated bottom cases. To find the solution for the initial value problem of these
systems is a nontrivial task. That is why we resorted to numerical methods to find
approximate solutions. For numerical implementations, weworked on the periodic
domainξ ∈ Π[0,2ℓ]. The choice of a computational periodic domain was made to be
able to use spectral methods to compute the Hilbert transform.

According to the method of lines, we discretized in space andsolved a coupled
system of ODEs by a finite difference formula int like, for example, the fourth order
Runge-Kutta integration scheme (RK4). First, an approximation scheme for theξ-
derivatives must be used for the discretization in space. Our choice was to approximate
theξ-derivative of a functionf (ξ) by the fourth order, five point formula

fξ(ξ j) =
8( f j+1 − f j−1) + f j−2 − f j+2

12∆ξ
+O(∆ξ4). (2)

where f j = f (ξ j), ξ j = j∆ξ, ∆ξ = 2ℓ/N, j = 1, . . . ,N. Finally, to compute the
dispersive term involving the Hilbert transform, we used the Fast Fourier Transform
(FFT) for the linear and constant coefficients cases. When the dispersive term has a
nonlinear dependence betweenη andu1, or it has a variable coefficient accompanying
it, the use of the FFT is no longer straightforward, so we use amatrix formulation. By
using a spectral matrix instead of an FFT, we are only paying aprice in complexity but
not in accuracy. Table 1 sumarizes the strategy used for eachmodel. Details can be
found in [19].

3 RESULTS & DISCUSSION

3.1 Periodic topography experiment

Here we present an example of a wave propagating over a periodic topography bottom.
We avoid the computation ofM(ξ) from the variable depth bottom, which can be costly
even using Driscoll’s package [7]. Let us assume that it is a function of the form
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Figure 5: Pulse propagating over a synthetic periodic slowly-varying topography. Dot-
ted line: numerical solution fort = 32.3977, vertical bars mark spatial intervals of size
2.5133 that fall together with the end of each period of the reflected signal.

M(ξ) = 1+ n(ξ) wheren(ξ) describes periodic fluctuations. This choice is not far from
the real coefficient that comes from mapping a periodic piecewise linear topography,
see [14, 16, 15]. So, let us consider a periodic slowly-varying coefficientM(ξ) defined
on the domain [0,16π] as

M(ξ) =

{

1+ 0.5 sin(5ξ), for 6π ≤ ξ ≤ 12π,
1, elsewhere.

The initial perturbation of the interface is the Gaussian function

η0(ξ) = 0.5e−a(ξ−π)2/64

with a = 200 and effective widthL = 2.4. The ratio inhomogeneities/wavelength is
about 0.5236. The physical parameters areρ1 = 1, ρ2 = 2, β = 0.0001,α = 0.01. We
employed 1024 grid points, spatial discretization∆ξ = 0.0491, time discretization∆t =
0.0491. The numerical solution for the weakly nonlinear corrugated bottom model
(WNCM) using RK4 for timet = 32.3977 is shown in Figure 5. As expected from
Bragg’s phenomenon theory [8], twice the period of the bottom oscillations (2.5133)
is in very good agreement with the reflected wavelength. In Figure 5 vertical bars
marking spatial intervals of size 2.5133 fall together with the end of each period of the
reflected signal.

3.2 Approximate solitary wave solution

Now we present an example of an internal solitary wave from the Regularized ILW
equation evolving according to the weakly nonlinear flat bottom model (WNFM). That
is, we take as initial condition for the WNFM a solitary wave from its unidirectional
reduction. We expect the wave to behave almost like a solitary wave. In particular,
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Figure 6: Propagation of a single solitary wave untilt = 50.8545.

the balance between nonlinearity and dispersion should be maintained and the wave
should travel without a significant change of shape. The velocity of propagation should
be similar to that in the ILW equation. The numerical solution in the interval [0,16π]
is obtained by the RK4 numerical solver forρ1 = 1, ρ2 = 2, β = 0.0001,α = 0.01,
N = 256,∆ξ = 0.1963,∆t = 0.1963. The expected behaviour of the wave is captured
by the numerical method for long times as shown in Figure 6. The pulse propagates
with an approximate velocity of 0.9884 in conformity with its propagation velocityc =
0.9961 in the Regularized ILW equation. The shape of the solitary wave is preserved
for long times. The error between the initial condition and the solution that returns to
the original position at approximate timet = 50.8545 is 0.0047. Taking into account
that the initial condition came from the unidirectional case, the result is satisfactory.

A more extensive set of examples can be found in [19]. It suggests that the model
proposed can be implemented numerically and that its basic qualitative properties are
well captured by the numerical solutions.

4 CONCLUSION

In the present work, a one-dimensional strongly nonlinear variable coefficient Boussi-
nesq-type model for the evolution of internal waves in a two-layer system is shown.
The regime considered is a shallow water configuration for the upper layer and an
intermediate depth for the lower layer. The bottom has an arbitrary, not necessarily
smooth nor single-valued profile generalizing the flat bottom model derived in [5].
This arbitrary topography is dealt with by performing a conformal mapping as in [16].
In the unidirectional propagation regime the model reducesto an ILW equation when
a slowly varying topography is assumed. The adjustment for the periodic wave case
and its computational implementation is also performed. Westudy the interaction of
internal waves with periodic bottom profiles and the evolution of approximate solitary
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wave solutions. The expected qualitative behaviour is captured. We intend to use the
strongly nonlinear model to study the interaction of large amplitude internal waves with
multiscale topography profiles. The refocusing and stabilization of solitary waves for
the large levels of nonlinearity allowed by this model is thegoal of current research.
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UM MODELO REDUZIDO PARA ONDAS INTERNAS INTERAGINDO COM
ESTRUTURAS SUBMARINAS A PROFUNDIDADES INTERMEDIRIAS

No contexto da din̂amica ocêanica, é obtido um modelo reduzido unidirecional
fortemente ñao linear para a evolução de ondas internas sobre topografias de fundo
arbitŕario. Com o modelo reduzido busca-se obter métodos nuḿericos eficientes para
resolver o problema bidimensional. São consideradas duas camadas contendo dois flui-
dos inv́ıscidos, imisćıveis e irrotacionais de densidades diferentes. A camada superior
é delgada se comparadaà longitude de onda caracterı́stica entanto que a profundidade
da camada inferioŕe da mesma ordem da longitude de onda caracterı́stica. As equaç̃oes
de evoluç̃ao ñao lineares obtidas descrevem o comportamento da elevação da onda in-
terna e a velocidade superior média para esta configuração daágua. O sistemáe uma
generalizaç̃ao daquele proposto por Choi e Camassa para o caso de fundo plano nas
mesmas condiç̃oes f́ısicas. Devidòa presença da topografia, cada derivada espacial
est́a acompanhada por um coeficiente variável. Estas equações de Boussinesq contêm
a equaç̃ao da Onda Longa Intermediária (Intermediate Long Wave, ILW) e a equaç̃ao de
Benjamin-Ono (BO) se restritas ao regime unidirecional de propagaç̃ao de ondas. Pre-
tendemos utilizar este modelo para estudar a interação das ondas com o perfil do fundo.
A dinâmica inclui reflex̃ao, dispers̃ao e atenuaç̃ao das ondas entre outros fenômenos.
A pesquisáe de import̂ancia na recuperação de petŕoleo emáguas profundas oceânicas
onde a concentração de sal e as diferenças de temperatura geram estratificação de tal
forma que as ondas internas podem afetar as operaçõesoffshoree as estruturas submer-
sas. Propriedades importantes do modelo serão discutidas. Uma hierarquia de modelos
unidimensionaiśe obtida a partir do modelo fortemente não linear ao considerar os
diferentes regimes (linear, fracamente não linear, fortemente não linear) assim como
os casos de fundo plano e variável. Métodos nuḿericos baseados no método das linhas
ser̃ao descritos. Mostraremos os resultados obtidos com a implementaç̃ao em Mat-
lab, incluindo experimentos nuḿericos com topografia periódica e soluç̃oes de ondas
viajantes.

Ondas internas, meio não homogêneo, teoria assintótica.
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