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In the context of ocean dynamics, a reduced strongly noalioee-dimensional
model for the evolution of internal waves over an arbitraggsottom with submerged
structures is derived. The reduced model is aimed at obtaizu €ficient numerical
method for this two-dimensional problem. Two layers camitag inviscid, immisci-
ble, irrotational fluids of dterent densities are defined. The upper layer is shallow
compared with the characteristic wavelength at the interfaf the two-fluid system,
while the bottom region’s depth is comparable to the charatic wavelength. The
non-linear evolution equations describe the behaviouhefihternal wave elevation
and mean upper-velocity for this water configuration. Th&tesy is a generalization
of the one proposed by Choi and Camassa for the flat bottomircdlse same phys-
ical settings. Due to the presence of topography a variatdicient accompanies
each space derivative. These Boussinesg-type equatiotarcthe Intermediate Long
Wave (ILW) equation and the Benjamin-Ono (BO) equation wiesstricted to the uni-
directional wave regime. We intend to use this model to stihdyinteraction of the
wave with the bottom profile. The dynamics include wave scat), dispersion and
attenuation among other phenomena. The research is relevaihrecovery in deep
ocean waters, where salt concentration atfi@dinces in temperature generate stratifi-
cation in such a way that internal waves cdieet dfshore operations and submerged
structures. Important properties of the model will be désad. A hierarchy of one-
dimensional models is derived from this strongly nonlineexdel by considering the
different regimes (linear, weakly nonlinear or strongly nogdir) as well as the flat or
corrugated bottom cases. Numerical schemes based on thedradtlines for all of
them will be described. The numerical results from the Mattaplementations will
be shown including periodic topography experiments anidesplwaves solutions.

Internal waves, Inhomogeneous media, Asymptotic theory.

1 INTRODUCTION

Modelling internal waves is of great interest in the studyoéan dynamics. Internal
ocean waves appear when salt concentration affireinces in temperature generate
stratification. They can interact with the bottom topogsaphd submerged structures
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Figure 1: Gfshore operations, internal waves and submerged structures

as well as with surface waves. In particular, in oil recoviergleep ocean water, in-
ternal waves canfiect dfshore operations and submerged structures, see Figure 1.
Accurate reduced models are a first step in producffigient computational methods

for engineering problems in oceanography. This was theigdab, 1].

To describe this nonlinear wave phenomenon in deep waters #re several bidi-
rectional models containing the Intermediate Long Wavi\jlequation and the Ben-
jamin-Ono (BO) equation, starting from works such as [2,/,1D, 12] to more recent
papers such as [13, 3, 4, 5, 9]. In these models two fundahmaetzhanisms, nonlin-
earity and dispersion, are responsible for the main featafehe propagating wave.
One of the most interesting behaviours observed is thessdstof solitary wave solu-
tions with permanent shape. They are observed when theestiegpof a given wave
front due to the nonlinearity and the flattening and attdoongbromoted by the dis-
persion are balanced on a particular scale. Usually theribatibn of nonlinearity
is quantified by the non-dimensional nonlinearity parametevhich is the ratio be-
tween the wave amplitude and the fluid layer thickness. leappas a small non-zero
parameter in the so-called weakly nonlinear regime, andrapanies the nonlinear
terms. On the other hand, the dispersion parangigethe squared ratio between the
fluid layer thickness and the typical wavelength. It appéatke dispersion relation,
making the phase velocity a function of the wavenunbérhe balance that creates a
solitary wave is commonly obtained through a scaling retabietweery andg, in the
form of a power law, for asymptotic values<« 1 andB <« 1. In the water configu-
ration considered here, it is the scalimg= O(+/B) that leads to the ILW [10, 12]. In
the limit when one layer thickness tends to infinity, the IL§uation becomes the BO
equation [2, 6, 17].

For all these models, the dependence on the vertical caiedivas been eliminated
by focusing on specific regimes and using systematic asytrorpansion methods
in small parameters. This results in a considerable sirogtifin of the original Euler
equations that leads to morffieient computational methods than the integration of the
Euler system in the presence of a free interface. Howeverpiproximation needs to
be accurate even for large values of the parametersdg. In other words, the model
needs to be robust enough to cover several regimes in whichisoosity &ects are
negligible, justifying the use of the Euler equations. I, [he authors compared
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Figure 2: Two-fluid system configuration. Horizontal rigid (green), interface (red),
bottom topography (cyan).

weakly nonlinear models with experimental data obtaine&bgp and Butler in [11].
They found a divergence. This motivated them to proposeoagly nonlinear model
for flat bottom that shares the simplicity of the weakly noalr ones and extends
its domain of validity. The numerical results agree verylwath the experimental
data. This model is generalized in the present work to censid arbitrary sea bottom.
We remark that the new model support bidirectional wave ggagion, so it is able to
capture the reflected wave from the propagation over a néoramsea bottom.

The models found in the literature consider flat or slowlyyirgg bottom topogra-
phy. Here, the model of Choi and Camassa is generalized toathe of an arbitrary
bottom topography by using the conformal mapping technapseribed in [16]. We
obtained a strongly nonlinear long-wave model like Choi @adhassa’s which is able
to describe large amplitude internal solitary waves.

2 METHODS
2.1 Governing Equations & Reduced M odel

A system of two layers of fluids constrained to a region limhiby a horizontal rigid lid

at the top and an arbitrary bottom topography is considexediescribed in Figure 2.
Define the layer density of each inviscid, immiscible, iatodnal fluid asp; for the
upper layer ang, for the lower layer. For a stable stratificatiqw, > p;. Similarly,
(ui,w;) denotes the velocity components apdthe pressure, where= 1,2. The
upper layer is assumed to have an undisturbed thickngssiuch smaller than the
characteristic wavelength of the perturbed interface 0, hence the upper layer will
be in the shallow water regime. At the lower layer the irregllottom is described by
z = hp(h(x/l) — 1). The functiorh needs not to be continuous neither univalued, see for
example Figure 2 where a polygonal shaped topography istsé@t We can assume
thath has compact support so the roughness is confined to a firétwaht Moreoveh,

is the undisturbed thickness of the lower layer outsidertiegular bottom region and it
is comparable with the characteristic wavelengttthat characterizes an intermediate
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Figure 3: Vertical averaging of physical quantities inavin the upper layer equa-
tions. The green arrows indicate the mean-layer horizaqpér velocityu;.

depth regime. In the slowly varying bottom case we define= L/I <« 1; when
a more rapidly varying bottom is of concern, the horizongaidth scale for bottom
irregularities| is such thath; < | < L. The coordinate system is positioned at the
undisturbed interface between layers. The displacemethieahterface is denoted by
n(x,t) and we may assume that initially it has compact support.

The corresponding Euler equations are

Uix + Wiz = 0,

i - —— Pix

U|t + U|U|x + VV|U|Z —_ T T,
Pi

piz

Wit + UiWiyx + WiWi; = —— — 0,
pi
fori = 1,2. Subscriptx, z andt stand for partial derivatives with respect to spatial

coordinates and time. The continuity condition at the iiaiezz = n(X, t) demands that

e+ Uinx = W, P1 = P2,

namely, a kinematic condition for the material curve and resgure jumps allowed.
At the top we impose a rigid lid condition,

wi(X, hy,t) =0,

commonly used in ocean and atmospheric models, while atrisgular impermeable
bottom

—I— H (:—()Uz +w, = 0.

By averaging in the vertical direction (see Figure 3) we ediithe two-dimensio-
nal (2D) Euler equations for the upper layer(1) to a one-dimensional (1D) system.
To close that system in terms of the perturbation of the faten; and the mean-layer
horizontal upper velocity;, an asymptotic expansion in the small dispersion parameter
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Figure 4: Conformal mapping of the undisturbed bottom layer

_ (hl )2 h I . . . | .
B = ) was done. The resulting dimensionless equations are

—ne+ ((L-n)n), =0,
{ Upp + U - Upy = —7jx — (pz(x, n(x,t), t))x + O(B).

Details can be found in [18, 19].
Actually, we still need to get an expression fps in order to close the system
and also to establish a connection with the lower intermediapth layer. To get an

approximation f0|(p2(x, n(X, t),t)) from the Euler equations for the lower fluid layer,

a conformal mapping of the undisturbed bottom layer is peréal, see Figure 4. Then
the approximate potential problem is solved in the terfallowing coordinates{, ¢),
giving rise to a Hilbert transform on the strip term. Suhsiitg in the curvilinear
coordinates system we obtain the following,

1

T — M(©) [(1- 77)U_1]§ =0,
1 L (i_P2), = P2 Y - @
Uzt + Wul Uie + W ( - p_l)ﬂ.f = ﬁp_lm [(( - U)Ul)gt] .

This is a Boussinesqg-type system with variable (time inddpat) coéficients YM(¢).

7 is the Hilbert transform on the strip. The terrain fitzent M(¢) comes from the
conformal mapping and it contains the bottom informatiomc8M(£) is an analytic
function, a highly complex boundary profile has been comekiito a smooth variable
codficient in the system above. No smallness assumption was nmetiie evave am-
plitude, thus the model derived is strongly nonlinear. Voines a Hilbert transform on
the strip characterizing the presence of harmonic funstitience the potential flow)
below the interface. ficient computational methods can be produced for this ateura
reduced model which governs, to leading order, a complexdiw@nsional problem.

If the bottom is flat, therM(£) = 1 and the same system derived in [5] is obtained,
which is a nice consistency check.
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Linear Weakly Strongly
nonlinear nonlinear
Flat FFT FFT Explicit
bottom matrices
Rough Explicit Explicit Explicit
bottom matrices matrices matrices

Table 1: Hierarchy of one-dimensional models. Computaiathe dispersive term.

2.2 Numerical Method

From system (1), a hierarchy of one-dimensional models eatebived by considering
the diferent regimes (linear, weakly nonlinear or strongly nozdir) as well as the flat
or corrugated bottom cases. To find the solution for theahitalue problem of these
systems is a nontrivial task. That is why we resorted to nicaemethods to find
approximate solutions. For numerical implementations,waeked on the periodic
domainé € T1]0, 2¢]. The choice of a computational periodic domain was madeeto b
able to use spectral methods to compute the Hilbert tramsfor

According to the method of lines, we discretized in space soided a coupled
system of ODEs by a finite flerence formula irt like, for example, the fourth order
Runge-Kutta integration scheme (RK4). First, an approkimnascheme for the-
derivatives must be used for the discretization in space.cOoice was to approximate
the&-derivative of a functiorf (¢) by the fourth order, five point formula

8(fj1— fi-1) + fi2— fj2
1oAZ

fe(&)) = +O(AY). )
where f; = (&), & = jAé A8 = 2¢/N, j = 1,...,N. Finally, to compute the
dispersive term involving the Hilbert transform, we used Bast Fourier Transform
(FFT) for the linear and constant dfieients cases. When the dispersive term has a
nonlinear dependence betweganduy, or it has a variable cdgcient accompanying

it, the use of the FFT is no longer straightforward, so we usgtix formulation. By
using a spectral matrix instead of an FFT, we are only payipmgca in complexity but

not in accuracy. Table 1 sumarizes the strategy used for mackel. Details can be
found in [19].

3 RESULTS& DISCUSSION

3.1 Periodic topography experiment

Here we present an example of a wave propagating over a petagebgraphy bottom.
We avoid the computation &l (¢) from the variable depth bottom, which can be costly
even using Driscoll's package [7]. Let us assume that it isr&ction of the form
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Figure 5: Pulse propagating over a synthetic periodic slexakying topography. Dot-
ted line: numerical solution fdr= 323977, vertical bars mark spatial intervals of size
2.5133 that fall together with the end of each period of the céfie signal.

M(¢) = 1 + n(¢) wheren(¢) describes periodic fluctuations. This choice is not famfro
the real co#ficient that comes from mapping a periodic piecewise linepogoaphy,
see [14, 16, 15]. So, let us consider a periodic slowly-vayyiodticient M(¢) defined
on the domain [016r7] as

M(&) = 1+05sin(%), for6r<¢<12r,
£) = 1 elsewhere

The initial perturbation of the interface is the Gaussianction
no(¢) = 0.5e 2754

with a = 200 and fective widthL = 2.4. The ratio inhomogeneitiggavelength is
about 05236. The physical parameters afe= 1, p, = 2,8 = 0.0001,¢ = 0.01. We
employed 1024 grid points, spatial discretizatigh= 0.0491, time discretizationt =
0.0491. The numerical solution for the weakly nonlinear cgated bottom model
(WNCM) using RK4 for timet = 323977 is shown in Figure 5. As expected from
Bragg's phenomenon theory [8], twice the period of the bottuscillations (5133)

is in very good agreement with the reflected wavelength. fufe 5 vertical bars
marking spatial intervals of size$133 fall together with the end of each period of the
reflected signal.

3.2 Approximate solitary wave solution

Now we present an example of an internal solitary wave fromRlegularized ILW
equation evolving according to the weakly nonlinear flatdmotmodel (WNFM). That
is, we take as initial condition for the WNFM a solitary waverfr its unidirectional
reduction. We expect the wave to behave almost like a splitave. In particular,
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Figure 6: Propagation of a single solitary wave unti 50.8545.

the balance between nonlinearity and dispersion should diatained and the wave
should travel without a significant change of shape. Theciglof propagation should
be similar to that in the ILW equation. The numerical solatio the interval [016x]
is obtained by the RK4 numerical solver for = 1, p» = 2,8 = 0.0001,« = 0.01,

N = 256,A¢ = 0.1963,At = 0.1963. The expected behaviour of the wave is captured

by the numerical method for long times as shown in Figure 6e plise propagates
with an approximate velocity of.0884 in conformity with its propagation velocity=
0.9961 in the Regularized ILW equation. The shape of the sylitave is preserved
for long times. The error between the initial condition ahd solution that returns to
the original position at approximate tinte= 50.8545 is 00047. Taking into account
that the initial condition came from the unidirectional eathe result is satisfactory.

A more extensive set of examples can be found in [19]. It ssigghat the model
proposed can be implemented numerically and that its basilitgtive properties are
well captured by the numerical solutions.

4 CONCLUSION

In the present work, a one-dimensional strongly nonlin@giable coéicient Boussi-

nesg-type model for the evolution of internal waves in a tayer system is shown.
The regime considered is a shallow water configuration ferupper layer and an
intermediate depth for the lower layer. The bottom has aftrarp, not necessarily
smooth nor single-valued profile generalizing the flat battmodel derived in [5].

This arbitrary topography is dealt with by performing a amnfial mapping as in [16].
In the unidirectional propagation regime the model reduoem ILW equation when
a slowly varying topography is assumed. The adjustmenthferperiodic wave case
and its computational implementation is also performed. stMely the interaction of
internal waves with periodic bottom profiles and the evolutbf approximate solitary
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wave solutions. The expected qualitative behaviour isurept We intend to use the
strongly nonlinear model to study the interaction of larggétude internal waves with
multiscale topography profiles. The refocusing and stzdtilbn of solitary waves for
the large levels of nonlinearity allowed by this model is ¢foal of current research.
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UM MODELO REDUZIDO PARA ONDASINTERNASINTERAGINDO COM
ESTRUTURAS SUBMARINAS A PROFUNDIDADESINTERMEDIRIAS

No contexto da didmica océnica, & obtido um modelo reduzido unidirecional
fortemente &o linear para a evol@ap de ondas internas sobre topografias de fundo
arbitrario. Com o modelo reduzido busca-se obtétados nuraricos eficientes para
resolver o problema bidimensionaB&consideradas duas camadas contendo dois flui-
dos invscidos, imistveis e irrotacionais de densidades diferentes. A camgukxisu
é delgada se comparaddongitude de onda caraciglica entanto que a profundidade
da camada inferic® da mesma ordem da longitude de onda caratiea. As equaies
de evolu@o rao lineares obtidas descrevem o comportamento da @ewksconda in-
terna e a velocidade superioédia para esta configui@g daagua. O sistema uma
generalizago daquele proposto por Choi e Camassa para o caso de fumdonala
mesmas conddgs fsicas. Devidaa presenca da topografia, cada derivada espacial
esti acompanhada por um coeficiente &ael. Estas equaes de Boussinesq c@mh
a equago da Onda Longa Intermextia (ntermediate Long Way#L W) e a equago de
Benjamin-Ono (BO) se restritas ao regime unidirecionalrd@agaéo de ondas. Pre-
tendemos utilizar este modelo para estudar a inerdas ondas com o perfil do fundo.
A dinamica inclui reflego, disperdo e atenudp das ondas entre outros demenos.

A pesquisé de imporéncia na recuperag de petleo emaguas profundas oaricas
onde a concentrap de sal e as diferencas de temperatura geram estréatdidactal
forma que as ondas internas podem afetar as opesagfshoree as estruturas submer-
sas. Propriedades importantes do modelasdiscutidas. Uma hierarquia de modelos
unidimensionai€ obtida a partir do modelo fortementamlinear ao considerar os
diferentes regimes (linear, fracamentgorinear, fortementedo linear) assim como
os casos de fundo plano e \@aréel. Metodos nuraricos baseados noatodo das linhas
selo descritos. Mostraremos os resultados obtidos com a rimepléo em Mat-
lab, incluindo experimentos nuaricos com topografia périca e soluges de ondas
viajantes.

Ondas internas, meio ndo homogéneo, teoria assintbtica
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