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Abstract.
A reduced one-dimensional model for the evolution of internal waves over an arbi-

trary bottom topography is derived. The reduced model is aimed at obtaining an efficient
numerical method for the two-dimensional problem. Two layerscontaining inviscid, im-
miscible, irrotational fluids of different densities are defined. The upper layer is shallow
compared with the characteristic wavelength at the interfaceof the two-fluid system, while
the bottom region is deeper. The non-linear evolution equations describe the behaviour of
the internal wave elevation and mean upper-velocity for thiswater configuration. These
Boussinesq-type equations contain the Intermediate Long Wave (ILW) and the Benjamin-
Ono (BO) equations in the unidirectional wave regime. We intend to use this model to
study the interaction of the wave with the bottom profile. The dynamics include wave
dispersion, reflection and attenuation among other phenomena. The research is rele-
vant in oil recovery in deep ocean waters, where salt concentration and differences in
temperature generate stratification in such a way that internal waves can affect offshore
operations and submerged structures.

Keywords: Internal waves, Inhomogeneous media, Asymptotic theory

1. INTRODUCTION

Modelling internal waves is of great interest in the study ofocean dynamics. These
internal waves appear when salt concentration and differences in temperature generate
stratification and they can interact with the bottom topography and submerged structures
as well as surface waves. In particular, in oil recovery in deep ocean waters, internal
waves can affect offshore operations and submerged structures. Accurate reduced models
are a first step in producing efficient computational methodsin engineering problems.
This was the goal in Nachbin (2003); Artiles and Nachbin (2004).

To describe this non-linear wave phenomenon in deep waters there are several bidi-
rectional models containing the Intermediate Long Wave (ILW) and the Benjamin-Ono
(BO) equations, starting from works such as Benjamin (1967); Davis and Acrivos (1967);
Ono (1975); Joseph (1977); Kubota et al. (1978) to more recent papers such as Matsuno
(1993); Choi and Camassa (1996a,b, 1999). The aforementionedbidirectional models
consider flat bottom topography. In this paper the model of Choi and Camassa is gen-
eralized to the case of an arbitrary bottom topography by using the technique described
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Figure 1: Two-fluid system configuration.

in Nachbin (2003). A system of two layers constrained to a region limited by a horizon-
tal rigid lid at the top and an arbitrary bottom topography isconsidered, as described in
Fig. 1. The upper layer is shallow compared with the characteristic wavelength at the in-
terface of the two-fluid system, while the lower region is deeper. The non-linear evolution
equations describe the behaviour of the internal wave elevation and mean upper-velocity
for this water configuration. These Boussinesq-type equations contain the ILW and BO
equations in the unidirectional wave regime. We intend to use this model to study the
interaction of the wave with the bottom profile. The dynamicsinclude wave dispersion,
reflection and attenuation among other phenomena.

The paper is organized as follows. In Section 2 the physical setting is presented,
along with a set of upper layer averaged equations that will be completed with informa-
tion from the lower layer to obtain the reduced model. The continuity of pressure at the
interface establishes a connection between both layers that is used to add the topography
information to the averaged upper layer system. The case when the depth of the bottom
topography approaches infinity is also considered. In Section 3 the dispersion relations for
the linearized models are computed. In Section 4 the ILW and BOequations are obtained
from the reduced model as unidirectional wave propagation models.

2. DERIVATION OF THE EQUATIONS GOVERNING THE DYNAMICS

Define the density of each inviscid, immiscible, irrotational fluid asρ1 for the upper
fluid andρ2 for the lower fluid. For stable stratification,ρ2 > ρ1. Similarly, (ui ,wi) denotes
the velocity components andpi the pressure, wherei = 1,2. The upper layer is assumed
to have an undisturbed thicknessh1, much smaller than the characteristic wavelength of
the perturbed interfaceL > 0. The bottom is described byz = h(x) − h2 with roughness
confined to the horizontal intervalx ∈ [0,L ]. This means that outside this interval the
bottom is flat (h(x) = 0) and the thickness of the undisturbed lower layer ish2. It is
assumed thath2 = O(L). The coordinate system is positioned at the undisturbed interface.
The displacement of the interface is denoted byη(x, t). See Fig. 1.
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The corresponding Euler equations are

ui x + wi z = 0,

ui t + uiui x + wiui z = −
pi x

ρi
,

wi t + uiwi x + wiwi z = −
pi z

ρi
− g,

for i = 1,2. Subscriptsx, z and t represent partial derivatives with respect to spatial
coordinates and time. The continuity condition at the interfacez= η(x, t) demands that

ηt + uiηx = wi , p1 = p2.

At the rigid top,

w1(x,h1, t) = 0,

while at the irregular bottomz= h(x) − h2,

h′(x)u2 + w2 = 0.

Introducing the dimensionless parameterβ =
(

h1
L

)2
, it follows from the shallowness

of the upper layer that

O
(
√

β
)

= O

(

h1

L

)

≪ 1.

Let U0 =
√

gh1 be the characteristic speed. According with these scalings, physical
variables involved in the upper layer equations are non-dimensionalized as follows:

x = Lx̃, z= h1z̃, t =
L

U0
t̃, η = h1η̃,

p1 = (ρ1U
2
0)p̃1, u1 = U0ũ1, w1 =

√

βU0w̃1.

2.1 Reducing the upper layer dynamics to the interface

The dimensionless equations for the upper layer (the tilde has been removed) are:

u1x + w1z = 0,

u1t + u1u1x + w1u1z = −p1x,

β
(

w1t + u1w1x + w1w1z
)

= −p1z− 1.

The boundary conditions are

ηt + u1ηx = w1 and p1 = p2 at z= η(x, t), (1)

w1(x,1, t) = 0.

The bottom layer will be non-dimensionalized according to the scalingz= Lz̃.
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Focusing on the upper region, consider the following definition: for any function
f (x, z, t), let itsmean-layer quantityf be

f (x, t) =
1

1− η

1
∫

η

f (x, z, t) dz.

Let η1 = 1− η. From the horizontal momentum equation,

η1u1t + η1u1u1x + η1w1u1z = −η1p1x. (2)

In Choi and Camassa (1999), the authors showed how each of thesemean-layer quan-
tities could be expressed in terms ofu1 andη. The difficulty at this stage is breaking up
the mean of squared and general quadratic terms. To begin with, note that

d
dt

(η1u1) = η1























1
η1

1
∫

η

u1t dz− ηt

η1
u1(x, η, t)























− η1t

η1

1
∫

η

u1 dz− ηtu1,

= η1u1t − ηtu1,

whereu1(x, z, t) is evaluated at the interfacez= η(x, t). So,

η1u1t =
d
dt

(η1u1) + ηtu1. (3)

Similarly

2η1u1u1x = ηxu
2
1 +

(

η1u2
1

)

x
. (4)

Therefore atz= η(x, t),

η1(u1t + u1u1x) = (η1u1)t + u1ηt +
1
2
ηxu

2
1 +

1
2

(

η1u2
1

)

x
.

From Eq. (1),u1ηt +
1
2ηxu2

1 = u1w1 − 1
2ηxu2

1 and by substitution,

η1(u1t + u1u1x) = (η1u1)t + u1w1 −
1
2
ηxu

2
1 +

1
2

(

η1u2
1

)

x
.

On the other side, integration by parts and incompressibility give

η1w1u1z = −w1u1 −
1
∫

η

w1zu1 dz= −w1u1 +

1
∫

η

u1xu1 dz.

From Eq. (4),

η1w1u1z = −w1u1 +
1
2
ηxu

2
1 +

1
2

(

η1u2
1

)

x
. (5)
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Replacing Eqs. (3), (4) and (5) in Eq. (2) and using Eq. (1), thefollowing equation is
derived

(η1u1)t +

(

η1u2
1

)

x
= −η1p1x. (6)

Note also thatw1 = u1xη1 at z = η(x, t). This, together with (η1u1)x = η1u1x − u1ηx,
shows that

w1 = u1ηx + (η1u1)x,

so that Eq. (1) leads toηt + u1ηx = u1ηx + (η1u1)x and

−η1t = (η1u1)x. (7)

The quantitiesu1 · u1 andp1x prevent the closure of the system of Eqs. (6)–(7). Those
quantities will be expressed in terms ofη andu1 up to a certain order in the dispersion
parameterβ.

The vertical momentum equation suggests the following asymptotic expansion in
powers ofβ

f (x, z, t) = f (0)
+ β f (1)

+O(β2)

for any of the functionsu1, w1, p1.
Sincep1z = −1+O(β), integration fromη to z leads to

p1(x, z, t) − p1(x, η, t) = −(z− η) +O(β),

and the pressure continuity across the interface gives

p1(x, z, t) = p2(x, η, t) − (z− η) +O(β).

Pressurep2(x, η, t) should be non-dimensionalized in the same fashion asp1, that is,

p2 = ρ1U
2
0 p̃2.

DefineP(x, t) = p2
(

x, η(x, t), t
)

. Then

p1 = P(x, t) − (z− η) +O(β),

which inmediately yields

p1x = Px(x, t) + ηx +O(β),

p1x =
1
η1

1
∫

η

Px(x, t) dz+ ηx +O(β)

= Px(x, t) + ηx +O(β)

=

(

p2
(

x, η(x, t), t
)

)

x
+ ηx +O(β).
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An approximation forPx will be obtained later from the Euler equations for the lower
fluid layer. We now approximate the mean of squared horizontal velocity in terms ofu1

andη.
In order to expressu1 · u1 as a function ofu1 andη, it should be pointed out that the

irrotational condition in non-dimensional variables is

U0

h1
u1z =

√

β
U0

L
w1x,

i. e. u1z = βw1x. Henceu(0)
1 z = 0 andu(0)

1 is independent fromz:

u(0)
1 = u(0)

1 (x, t). (8)

By using

u1 = u(0)
1 + βu

(1)
1 +O(β2) (9)

and Eq. (8) it is straightforward that

u2
1 = u(0)

1

2
+ 2βu(1)

1 u(0)
1 +O(β2),

1
∫

η

u2
1 dz=

1
∫

η

u(0)
1

2
dz+ 2β

1
∫

η

u(1)
1 u(0)

1 dz+O(β2),

η1u1 · u1 = u(0)
1

2
(1− η) + 2η1βu

(0)
1 u(1)

1 +O(β2),

so that

u1 · u1 = u(0)
1 · u

(0)
1 + 2βu(0)

1 u(1)
1 +O(β2).

From Eq. (9),

1
η1

1
∫

η

u1 dz= u(0)
1 + βu

(1)
1 +O(β2),

u1 = u(0)
1 + βu

(1)
1 +O(β2),

u1 · u1 = u(0)
1 · u

(0)
1 + 2βu(0)

1 u(1)
1 +O(β2),

thus leading to

η1u1 · u1 = η1u1 · u1 +O(β2). (10)

Using Eq. (10), Eq. (6) becomes

η1tu1 + η1u1t +
(

η1u1 · u1 +O(β2)
)

x = −η1p1x,

η1tu1 + η1u1t + u1(η1u1)x + η1u1 · u1x = −η1p1x +O(β2).



CILAMCE 2005 – ABMEC & AMC, Guarapari, Espı́rito Santo, Brazil, 19th – 21st October 2005

From Eq. (7) one obtains that

η1u1t + η1u1 · u1x = −η1p1x +O(β2).

Finally, the following set of equations for the upper layer has been deduced:

η1t + (η1u1)x = 0,

u1t + u1 · u1x = −ηx +

(

p2
(

x, η(x, t), t
)

)

x
+O(β),

or equivalently,

−ηt +
(

(1− η)u1
)

x = 0,

u1t + u1 · u1x = −ηx +

(

p2
(

x, η(x, t), t
)

)

x
+O(β).

2.2 Connecting the upper and lower layers

The coupling of the upper and lower layers is done through thepressure term. To get

an approximation forPx(x, t) =
(

p2
(

x, η(x, t), t
)

)

x
from the Euler equations for the lower

fluid layer, observe that in the deep water configuration,

h2

L
= O(1),

so that the following scaling relation

w2

u2
= O

(

h2

L

)

= O(1)

is valid as a consequence of the continuity equation. According to this, introduce the
velocity potencialφ =

√
βU0Lφ̃ and the tilded dimensionless variables for the lower

region

x = Lx̃, z= Lz̃, t =
L

U0
t̃, η = h1η̃,

p2 = (ρ1U
2
0)p̃2, u2 =

√

βU0ũ2, w2 =
√

βU0w̃2.

Note that the definition for ˜z is different from the one for the upper region, since the
relationO(z̃) = 1 is needed.

In these dimensionless variables, the Bernoulli law for the interface reads

√

β φt +
β

2
(

φ2
x + φ

2
z

)

+ η +
ρ1

ρ2
P = C(t),

where the tilde has been ignored.C(t) is an arbitrary function of time. Then, up to order
β, the pressure derivativePx is

Px = −
ρ2

ρ1

(

ηx +
√

β φxt(x,0, t)
)

+O(β), (11)
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because
[
√

βφt

(

x,
√

βη, t
)]

x
=

√

βφtx

(

x,
√

βη, t
)

+ βφtz

(

x,
√

βη, t
)

ηx

=

√

βφtx

(

x,
√

βη, t
)

+O(β)

=

√

βφtx(x,0, t) +O(β).

From Eq. (11) it is clear that it is sufficient to find the linearsolution for the horizontal
velocityφx atz= 0 in order to obtainPx at the interface. Therefore, problem























































φxx + φzz= 0, on−h2

L
+

h(Lx)
L
≤ z≤

√

β η(x, t),

φz = ηt +
√
β ηxφx, atz=

√
β η(x, t),

−h′(Lx)φx + φz = 0, atz= −−h2

L
+

h(Lx)
L

,

is linearized aroundz= 0 to give






















































φxx + φzz= 0, on−h2

L
+

h(Lx)
L
≤ z≤ 0,

φz = ηt, atz= 0,

−h′(Lx)φx + φz = 0, atz= −−h2

L
+

h(Lx)
L

.

(12)

In this systematic reduction we use

φx(x,
√

β η, t) = φx(x,0, t) +O
(
√

β
)

,

φ(x,
√

β η, t) = φ(x,0, t) +O
(
√

β
)

,

and so on.
To find the horizontal velocityφx(x,0, t) in problem (12), a conformal mapping be-

tween the lower unperturbed layer and the flat stripξ ∈
[

0,−h2
L

]

is performed. See Fig. 2,

whereH(x) = h(Lx)
L .

The problem in conformal coordinates is






















































φξξ + φζζ = 0, on−h2

L
≤ ζ ≤ 0,

φζ(ξ,0, t) = M(ξ) ηt
(

x(ξ,0), t
)

, at ζ = 0,

φζ = 0, at ζ = −h2

L
,

(13)

whereM(ξ) is the variable free surface coefficient zζ(ξ,0), as in Nachbin (2003).
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z= 0

z= −h2
L + H(x)

ζ = 0

ζ = −h2
L

Figure 2: Conformal mapping, (x, z) =
(

x(ξ, ζ), z(ξ, ζ)
)

.

To obtain the Neumann condition at the unperturbed interface in problem (13), con-
sider

φζ = φxxζ + φzzζ

evaluated atz= 0 (equivalentlyζ = 0) and

φζ(ξ,0, t) = φx(x,0, t) xζ(ξ,0)+ φz(x,0, t) zζ(ξ,0).

Cauchy-Riemann relations and the fact that z(ξ,0) = 0 and zξ(ξ,0) = 0 imply that
xζ(ξ,0) = 0, which leads to the Neumann condition employed.

Since a conformal mapping was used in the coordinate transformation, xξ(ξ,0) , 0.
Fromφξ(ξ,0, t) = φx(x,0, t) xξ(ξ,0), velocityφx(x,0, t) is recovered as

φx(x,0, t) =
φξ(ξ,0, t)

M(ξ)
.

Notice thatφξ(ξ,0, t) is a tangential derivative on the boundary for problem (13).
Hence it can be obtained as the Hilbert transform on the stripapplied to the Neumann
data. Namely

φξ(ξ,0, t) = T
[

M(·)ηt
(

x(·,0), t
)]

(ξ),

where

T [ f ](ξ) =
L

2h2

?
f (ξ̃) coth

(

πL
2h2

(ξ̃ − ξ)
)

dξ̃ (14)
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is the Hilbert transform on the strip of heighth2
L . The integral must be interpreted as

a principal value. The effect of the two-dimensional layer below the interface is being
collapsed onto a one-dimensional integral. This integral is easily computed by FFTs
leading to efficient computational schemes such as in Artiles and Nachbin (2004).

Now, φx(x,0, t) is also a tangential derivative on the flat upper boundary for problem
(12), whose domain is a corrugated strip. Hence, it is also expressed as a Hilbert transform
acting on Neumann data. Since

φx(x,0, t) =
L

2h2

?
M(ξ̃)

M
(

ξ(x,0)
) ηt
(

x(ξ̃,0), t
)

coth

(

πL
2h2

(

ξ̃ − ξ(x,0)
)

)

dξ̃,

a Hilbert-like transform on the corrugated strip has been defined:

Tc[ f ](x) =
L

2h2

?
M(ξ̃)

M
(

ξ(x,0)
) f
(

x(ξ̃,0)
)

coth

(

πL
2h2

(

ξ̃ − ξ(x,0)
)

)

dξ̃,

which unlike Eq. (14) is not a convolution operator.
Finally, substituting the expression forPx in the upper layer averaged equations:















































ηt −
[

(1− η)u1
]

x = 0,

u1t + u1 u1x +

(

1− ρ2

ρ1

)

ηx =

√

β
L

2h2

ρ2

ρ1

1
M
(

ξ(x,0)
)

?
M(ξ̃)ηtt

(

x(ξ̃,0), t
)

coth

(

πL
2h2

(

ξ̃ − ξ(x,0)
)

)

dξ̃ +O(β).

In a compact notation this becomes























ηt −
[

(1− η)u1
]

x = 0,

u1t + u1 u1x +

(

1− ρ2

ρ1

)

ηx =
√

β
ρ2

ρ1
T
[

M(·)
M(ξ)

ηtt
(

x(·,0), t
)

]

+O(β).

Note that the first equation is exact. According to itηtt =
(

(1−η)u1
)

xt so only the first
time derivative ofu1 needs to enter the right-hand side of the second equation.

In conclusion, the reduced one-dimensional model (shallowwater for the upper layer
and intermediate depth for the lower one) is:























ηt −
[

(1− η)u1
]

x = 0,

u1t + u1 u1x +

(

1− ρ2

ρ1

)

ηx =
√

β
ρ2

ρ1
T
[

M(·)
M(ξ)

(

(1− η)u1
)

xt

(

x(·,0), t
)

]

.
(15)

This is a Boussinesq-type system for the perturbation of the interfaceη and the mean-layer
horizontal upper velocityu1. It involves a Hilbert transform on the strip characterizing
the presence of harmonic functions (or the potential flow) below the interface. Efficient
computational methods can be produced for this accurate reduced model which governs,
to leading order, a complex two-dimensional problem.
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There is an interesting limit for this model when the lower depth tends to infinity
(h2 → ∞). In this case the bottom is not seen anymore (M(ξ) → 1 and x(̃ξ,0) → ξ̃).
Therefore

φxt(x,0, t)→
1
π

? (
(1− η)u1

)

xt

(

x̃, t
)

x̃− x
dx̃ = H

[

(

(1− η)u1
)

xt

(·, t)
]

,

whereH is the usual Hilbert transform defined as

H [ f ](x) =
1
π

?
f (x′)
x′ − x

dx′.

In this (shallow upper layer) infinite lower layer regime, system (15) becomes






















ηt −
[

(1− η)u1
]

x = 0,

u1t + u1 u1x +

(

1− ρ2

ρ1

)

ηx =
√

β
ρ2

ρ1
H
[

(

(1− η)u1
)

xt

(·, t)
]

.
(16)

The FFT of a Hilbert transform is easily computed. We now makea comment regarding
using FFTs in numerical schemes. Both operatorsT [ f ] andH [ f ] have Fourier transforms
of the form

T̂ [ f ] = i coth

(

kh2

L

)

f̂ ,

Ĥ [ f ] = i sgn(k) f̂ ,

where the operator’s symbol multiplies the transform off , namely f̂ . Therefore in
Eqs. (15) and (16) a pseudospectral scheme would Fourier transform (namely through
a FFT) the terms inside the square brackets.

Details of the computational methods available will be published elsewhere in the
near future.

3. DISPERSION RELATIONS FOR THE LINEARIZED MODELS

Consider the flat bottom case in system (15), that is,M ≡ 1:






















ηt −
[

(1− η)u1
]

x = 0,

u1t + u1 u1x +

(

1− ρ2

ρ1

)

ηx =
ρ2

ρ1

√

βT
[

(

(1− η)u1
)

xt

]

+O(β).

Its linearization around the steady stateη = 0, u1 = 0 gives:






















ηt − u1x = 0,

u1t +

(

1− ρ2

ρ1

)

ηx =
ρ2

ρ1

√

βT [u1xt
]

.

By differentiating once int, η can be eliminated from the second equation:

u1tt +

(

1− ρ2

ρ1

)

u1xx =
ρ2

ρ1

√

βT [u1xtt
]

.
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Let u1 = Aei(kx−ωt) and substituting above

ei(kx−ωt)

(

−ω2 −
(

1− ρ2

ρ1

)

k2

)

=

ρ2

ρ1

√

β kω2 e−iωt T
[

−ieikx
]

.

SinceT [eikx] = i coth
(

kh2
L

)

eikx,

ω2
=

(

ρ2

ρ1
− 1
)

k2

1+ ρ2
ρ1

k
√
β coth

(

kh2
L

)

which is the correct limit for the full dispersion relation whenkh1 → 0. Observe that as
ω2

k2 → 0, bounded phase velocities are obtained ask becomes large.
In the limit h2 → ∞ the operatorT becomesH . SinceH [eikx] = i sgn(k)eikx, the

dispersion relation for system (16) is

ω2
=

k2
(

ρ2

ρ1
− 1
)

1+ ρ2
ρ1

√
β |k|

andω
2

k2 → 0 ask→ ∞.
The computational methods will capture these dispersion relations since the spatial

discretizations are highly accurate through the use of FFTs.

4. UNIDIRECTIONAL WAVE REGIME

For weakly nonlinear unidirectional waves and slowly varying topography, our model
reduces to the ILW equation and the BO equation.

Consider again system (15). Setη = αη∗, u1 = αc0u1
∗, t = t∗

c0
wherec2

0 =
(

ρ2

ρ1
− 1
)

andα = O
(√
β
)

. Depending on the rootc0 chosen, there will be a right- or left-travelling
wave.

Then






















ηt −
[

(1− αη)u1
]

x = 0,

u1t + αu1 u1x − ηx =
√

β
ρ2

ρ1
T
[

M(·)
M(ξ)

[

(1− αη)u1
]

xt

]

+O(β).
(17)

Note that

ηt = u1x +O
(

α,
√

β
)

; ηx = u1t +O
(

α,
√

β
)

.

Look for a solution, corrected to first order inα and
√
β, in the form

η = A1u1 + αA2u1
2
+

√

βA3T
[

M(·)
M(ξ)

u1t

]

.

Substituting in the system of Eqs. (17) up to orderα,
√
β, two equations foru1 are

obtained:

0 = A1u1t + 2αA2u1 u1t + 2αA1u1 u1x − u1x +
√

βA3T
[

M(·)
M(ξ)

u1tt

]
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and

0 = u1t + αu1 u1x −
[

A1u1x + 2αA2u1 u1x +
√

βA3T
[

M(·)
M(ξ)

u1xt

]]

−

−
√

β
ρ2

ρ1
T
[

M(·)
M(ξ)

u1xt

]

+ O
(

α2, β, α
√

β
)

.

These two equations are consistent ifA1 = 1, A2 = −1
4 andA3 = − ρ22ρ1

. Therefore, the
evolution equation foru1 is

u1t +
3
2
αu1 u1x − u1x −

ρ2

ρ1

√
β

2
T
[

M(·)
M(ξ)

u1xt

]

= O
(

β, α2, α
√

β
)

.

For the elevation of the interfaceη a similar equation can be obtained through asymp-
totic relations which permit (to leading order) to exchangederivatives inη for derivatives
in u1, as well as time derivatives for spatial derivatives. The evolution equation for the
elevation of the interface is

ηt − ηx +
3
2
αηηx −

ρ2

ρ1

√
β

2
T
[

M(·)
M(ξ)

ηxt

]

= O
(

β, α2, α
√

β
)

.

This is a BO-type equation called ILW equation. Instead of theusual Hilbert transform
on the half-space, a Hilbert transform on the strip appears.The dispersion relation is

ω =
k

1− ρ2
ρ1

√
β

2 kcoth
(

kh2
L

) .

Mathematical details will be provided elsewhere to explainwhy thex-derivatives can
be exchanged with the operatorTc. We only remark here that there is no need to specify
the slow parameterε in the equations above if we establish a relation betweenα, β andε
of typeε2 = O

(√
β
)

.
For system (16) a similar reduction is obtained

ηt − ηx +
3
2
αηηx −

ρ2

ρ1

√
β

2
H [ηxt] = 0,

which is a regularized BO equation.

CONCLUSIONS

A one-dimensional Boussinesq-type model for the evolution of internal waves in a
two-layer system is derived. The regime considered is a shallow water configuration for
the upper layer and an intermediate or infinite depth for the lower layer. The bottom has
an arbitrary, not necessarily smooth, profile generalizingthe flat bottom model derived
by Choi and Camassa (1999). This arbitrary topography is dealtwith by performing
a conformal mapping as in Nachbin (2003), which leads to a Hilbert-like transform on
the corrugated strip. In the unidirectional propagation regime the model reduces to a
generalized BO equation when a slow varying topography is assumed.

We intend to use this model to study the interaction of internal waves with different
types of bottom profiles such as submerged structures and multiscale topography profiles.
Stability analysis for the hyperbolic and weakly dispersive regimes is to be performed.
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