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Abstract.

A reduced one-dimensional model for the evolution of irdewaves over an arbi-
trary bottom topography is derived. The reduced model isediat obtaining an efficient
numerical method for the two-dimensional problem. Two lagergaining inviscid, im-
miscible, irrotational fluids of different densities arefibed. The upper layer is shallow
compared with the characteristic wavelength at the interfafdbe two-fluid system, while
the bottom region is deeper. The non-linear evolution equatdescribe the behaviour of
the internal wave elevation and mean upper-velocity for Waser configuration. These
Boussinesg-type equations contain the Intermediate Lang\WLW) and the Benjamin-
Ono (BO) equations in the unidirectional wave regime. Wenidt® use this model to
study the interaction of the wave with the bottom profile. Theadyics include wave
dispersion, reflection and attenuation among other phemameThe research is rele-
vant in oil recovery in deep ocean waters, where salt concéotraand differences in
temperature generate stratification in such a way that irdémaves can affect offshore
operations and submerged structures.

Keywords: Internal waves, Inhomogeneous media, Asymptotic theory

1. INTRODUCTION

Modelling internal waves is of great interest in the studypoéan dynamics. These
internal waves appear when salt concentration and diftei®im temperature generate
stratification and they can interact with the bottom toppbseand submerged structures
as well as surface waves. In particular, in oil recovery ieglecean waters, internal
waves can affect offshore operations and submerged stesctéiccurate reduced models
are a first step in producing efficient computational methiadsngineering problems.
This was the goal in Nachbin (2003); Artiles and Nachbin @00

To describe this non-linear wave phenomenon in deep wdters taire several bidi-
rectional models containing the Intermediate Long Wav&\jland the Benjamin-Ono
(BO) equations, starting from works such as Benjamin (196ayi$and Acrivos (1967);
Ono (1975); Joseph (1977); Kubota et al. (1978) to more tguamers such as Matsuno
(1993); Choi and Camassa (1996a,b, 1999). The aforementimdedctional models
consider flat bottom topography. In this paper the model ofi@hd Camassa is gen-
eralized to the case of an arbitrary bottom topography bygugie technique described
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Figure 1: Two-fluid system configuration.

in Nachbin (2003). A system of two layers constrained to @goregmited by a horizon-
tal rigid lid at the top and an arbitrary bottom topographgasisidered, as described in
Fig. 1. The upper layer is shallow compared with the charetie wavelength at the in-
terface of the two-fluid system, while the lower region ispire The non-linear evolution
equations describe the behaviour of the internal wave #tgwvand mean upper-velocity
for this water configuration. These Boussinesg-type egagtontain the ILW and BO
equations in the unidirectional wave regime. We intend ® tlés model to study the
interaction of the wave with the bottom profile. The dynamicdude wave dispersion,
reflection and attenuation among other phenomena.

The paper is organized as follows. In Section 2 the physietiing is presented,
along with a set of upper layer averaged equations that witdmpleted with informa-
tion from the lower layer to obtain the reduced model. Thetiooiity of pressure at the
interface establishes a connection between both layerssthaed to add the topography
information to the averaged upper layer system. The case Wigedepth of the bottom
topography approaches infinity is also considered. In 8e&the dispersion relations for
the linearized models are computed. In Section 4 the ILW ancg@tions are obtained
from the reduced model as unidirectional wave propagatiodets.

2. DERIVATION OF THE EQUATIONS GOVERNING THE DYNAMICS

Define the density of each inviscid, immiscible, irrotaabfiuid asp, for the upper
fluid andp, for the lower fluid. For stable stratificatiop, > p,. Similarly, (U, w;) denotes
the velocity components ang the pressure, whelie= 1,2. The upper layer is assumed
to have an undisturbed thicknelss much smaller than the characteristic wavelength of
the perturbed interfacke > 0. The bottom is described lzy= h(x) — h, with roughness
confined to the horizontal interval € [0,L]. This means that outside this interval the
bottom is flat fi(x) = 0) and the thickness of the undisturbed lower layehn,is It is
assumed thdt, = O(L). The coordinate system is positioned at the undisturbiedface.
The displacement of the interface is denotedpyt). See Fig. 1.
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The corresponding Euler equations are

Uix + Wiz = 07
Uit + Uil + Williz = —&,
Pi
Pi
Wit + UiWix + WiWj; = —— — G,
Pi
fori = 1,2. Subscriptsx, z andt represent partial derivatives with respect to spatial

coordinates and time. The continuity condition at the faiegz = n(x, t) demands that
N+ Uinx =W, P1 = P2.

At the rigid top,
wi (X, hy, 1) = 0,

while at the irregular bottorm = h(x) — hy,
H' (X)up + w, = 0.

hy

. : . 2 .
Introducing the dimensionless parameiet (T) , it follows from the shallowness

of the upper layer that
O(\/B) =0 L < 1
L

Let Uy = +/gh; be the characteristic speed. According with these scalirlyssical
variables involved in the upper layer equations are noredsionalized as follows:

L .

X = LK, z=h2, t=—1, n = hin,
Uo

p1 = (p1U3) pi, u; = Uolh, Wy = BUoWa.

2.1 Reducing the upper layer dynamics to the interface

The dimensionless equations for the upper layer (the titdelleen removed) are:

Uy + Wp, = 0’
Uzt + UzUsy + Wili; = —Piyo
B (Wi + UpWay + WiWi,) = —p1, — 1.

The boundary conditions are

Nt + Uiy = Wq and P1= P2 at z= 7](X, t), (1)
wi(x, 1,t) = 0.

The bottom layer will be non-dimensionalized according# $calingg = LZ



CILAMCE 2005 — ABMEC & AMC, Guarapari, EBjio Santo, Brazil, 18 — 215 October 2005

Focusing on the upper region, consider the following dedinit for any function
f(x, z 1), let itsmean-layer quantity be

1
f(x,t) = rln ff(x,z,t) dz
n

Letn; = 1 - n. From the horizontal momentum equation,

n1Uy; + maUiUsy + maWils, = =171 P1y. 2

In Choi and Camassa (1999), the authors showed how each oftieaselayer quan-
tities could be expressed in termsw@fandrn. The difficulty at this stage is breaking up
the mean of squared and general quadratic terms. To bedinvate that

1 1
d __ 1 n —
i (mth) = m | — fult dz- 1Ul(X, Y- = ful dz— nn,
n n m
n n
= n1Ug; — MUy,

whereu, (X, z t) is evaluated at the interfaze= n(x, t). So,

. d, _
mUy = dt (m1U1) + Uy (3
Similarly
211U Upy = ﬂxU% + (ﬂlu_i) . 4)
X

Therefore atz = n(x, 1),

o _ 1 1/ =
n1(Uz; + Uplry) = (172U1); + Uarge + Eﬂxui + > (Uluf) .
X

From Eq. (1) + 37U = UyWy — 377¢U2 and by substitution,
1 (U + Uglny) = (71Un); + UyWy — Enxul + > (Ulul) .
X

On the other side, integration by parts and incompressilglve

1 1

Wil = —WqUp — f Wi,Up dz= -wyup + f Uy, up dz

n n

From Eq. (4),

1 1/ =
mWily, = —WiUp + Enxui + > (nluf) . (5)
X
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Replacing Egs. (3), (4) and (5) in Eqg. (2) and using Eq. (1),fthewing equation is
derived

(m2Up); + (Ulu_i) = —N1P1x- (6)

X

Note also thatv; = U, atz = n(x,t). This, together with#{;Uz)x = n1U1x — U7y,
shows that

Wy = Uy + (17201,

so that Eq. (1) leads t@ + uiny = Uiny + (71U1)x and

—n1e = (7201 (7)

The quantitie®; - u; andpy, prevent the closure of the system of Egs. (6)—(7). Those
guantities will be expressed in termspBndU; up to a certain order in the dispersion
parametep.

The vertical momentum equation suggests the following g@égtic expansion in
powers ofB

f(x,zt) = fO+8f® + 0@

for any of the functionsiy, wy, p;.
Sincepy, = -1+ O(B), integration frony to zleads to

pi(X. 2 t) — p(x 77, 1) = —(z2— 1) + O(B),
and the pressure continuity across the interface gives
P1(X. 2 1) = p2(X. 7, 1) — (z— 1) + O).
Pressurg,(x, n,t) should be non-dimensionalized in the same fashiop, athat is,
P2 = p1UGP.
DefineP(x,t) = p2(X, (X, t),t). Then
p1 = P(X.1) = (z—n) + O(B),

which inmediately yields

P1x = Px(X, 1) + 1y + O(B),
1

_ 1
Piy = Efo(x,t) dz+ ny + O(B)
n

= Px(x. 1) + ¢ + O(B)
= (pZ(X’ U(X, t)7 t))x Tx+ O(ﬁ)
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An approximation forP, will be obtained later from the Euler equations for the lower
fluid layer. We now approximate the mean of squared horizamedacity in terms oft;
andn.

In order to express; - U; as a function ofi; andn, it should be pointed out that the
irrotational condition in non-dimensional variables is

U U
h—:ulz = \/E LOW]_X,

i. €. Ui, = pwy,. Henceu® = 0 andu{ is independent frora:

u® = u9(x, ). (8)
By using
u = u? + UM + O(B?) 9)

and Eq. (8) it is straightforward that

w2 = u®” 4 2,8u(1)u(°) + O(,BZ)
1

ful dz= f“” dz+2,8f uPu® dz+ 0(s?),

UL Up = u(1> (1-7)+ 2n1,8u(1°)u(11> + O(B?),
so that
U ur = U - u + 28u0uD + O(8?).

From Eq. (9),

1

u dz=u? + ﬁu(l) + O(8?),
771
n

T = U + Ul + O(F?),
U T = U U + 28u0uP + O(?),
thus leading to
niUp - Ug =m0y - Ug + O(B°). (10)
Using Eq. (10), Eqg. (6) becomes

101 + iU + (107 - Ug + O(B?)), = —11Pip
101 + il + Ur(p1Un)x + 7101 - Uny = —171P1y + O(B7).
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From Eq. (7) one obtains that
n1Un, + iUy - Ury = =11 Pry + O(8?).
Finally, the following set of equations for the upper layastbeen deduced:
n1e + (mUn)x = 0,

W+ T T = i+ (P06 006 0,0)) +OB)
X
or equivalently,

=7+ (L =1, = 0,
U + U~ T = -+ Pax (6 .1)) +O(B).

2.2 Connecting the upper and lower layers

The coupling of the upper and lower layers is done througlpthssure term. To get
an approximation foPy(x,t) = (pz(x, n(x, t),t)) from the Euler equations for the lower

fluid layer, observe that in the deep water coﬁfiguration,

h,
— =0(1
L ( )’
so that the following scaling relation
Wo h2
— =0[—=|=001
o =o(¢)-ow

is valid as a consequence of}he continuity equation. Acngrtb this, introduce the
velocity potencialp = +/BUgL¢ and the tilded dimensionless variables for the lower
region

x = LX, z=1% t=—f n =y,

P2 = (01U%) P2, U = yBUollp, Wy = BUoW,.

Note that the definition foz is different from the one for the upper region, since the
relationO(2) = 1 is needed.
In these dimensionless variables, the Bernoulli law for tterface reads

B+ 5@ g +n+ 2P =,
P2

where the tilde has been ignoredi(t) is an arbitrary function of time. Then, up to order
B, the pressure derivativig, is

Py = —’;—j (e + VB da(x. 0.1)) + O(B). (11)
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because

[ \/B¢t (X, \/EU’ t)]x = \/Efptx (X’ \/Bm t) + B, (X’ \/Bﬂa t) Nx
= VB (x VBn.t) + OB)
= \/B(ptx(xv O’ t) + O(ﬁ)

From Eq. (11) itis clear that it is sufficient to find the linesatution for the horizontal
velocity ¢« atz = 0 in order to obtairPy at the interface. Therefore, problem

h, h(LX)
L

¢Xx+¢zzzo, On__+

L <z< \Bnxt),

¢, =m+ VBuxdx, atz= \Bn(xt),

- (LX)px + p, =0, atz= —_—hz + h(LX),
L L
is linearized around = 0O to give
Oxx + P2z =0, on—%+ h(Lx) <z<0,
by = 1, atz=0, (12)
- (LX)¢y + ¢, =0, atz= —_Thz + h(tx)-

In this systematic reduction we use

$x(%, VB.1) = ¢x(x,0,1) + O(B),
$(x, VB 1) = 6(x,0,t) + O(yB),

and so on.
To find the horizontal velocity(x, 0,t) in problem (12), a conformal mapping be-
tween the lower unperturbed layer and the flat ﬁrip[o, —h—f] is performed. See Fig. 2,

whereH(x) = X,

The problem in conformal coordinates is

bee + ¢r =0, On—%SJSQ

¢§(€:’ 0’ t) = M(é:) nt(x(é:’ O)’ t)’ atg = 0’ (13)
_ __h

¢, =0, at{ = R

whereM(¢) is the variable free surface coefficien{g 0), as in Nachbin (2003).
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z=0

J\/\/—’ik z= - +H(X)

Figure 2: Conformal mappingx{(2) = (X(¢, ), (£, ).

To obtain the Neumann condition at the unperturbed interfiagroblem (13), con-
sider

¢{ = ¢XX{ + ¢ZZ§

evaluated at = 0 (equivalently = 0) and

¢((§’ O’ t) = ¢X(X’ O’ t) X{(é‘:’ O) + ¢Z(X’ O’ t) Z_((f’ O)

Cauchy-Riemann relations and the fact that @ = 0 and z(¢,0) = 0 imply that
X;(¢,0) = 0, which leads to the Neumann condition employed.

Since a conformal mapping was used in the coordinate tremstoon, x(¢, 0) # O.
Frome(£,0,1) = ¢x(X, 0,t) xs(£, 0), velocitygx(X, O, t) is recovered as

¢§(§’ 07 t)
M) -

Notice thatg.(¢,0,t) is a tangential derivative on the boundary for problem (13)
Hence it can be obtained as the Hilbert transform on the afjied to the Neumann
data. Namely

¢:(£,0,1) = 7 [M()m(x(-, 0), )] (&),

where

¢X(X’ O’ t) =

7110 = 5 f 1® com(;—hz@ —5)) oF (14)
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is the Hilbert transform on the strip of heigﬁﬁ. The integral must be interpreted as
a principal value. The effect of the two-dimensional layelow the interface is being

collapsed onto a one-dimensional integral. This integgadasily computed by FFTs

leading to efficient computational schemes such as in Artiled Nachbin (2004).

Now, ¢«(X, 0,1) is also a tangential derivative on the flat upper boundarpfoblem
(12), whose domain is a corrugated strip. Hence, it is alpoassed as a Hilbert transform
acting on Neumann data. Since

L M(¢)
6200 = 50~ f g nxE 0D ot - E - x.0))

a Hilbert-like transform on the corrugated strip has bedimdd:

TLA0) = f(x(E.0)) coth( E - £(x 0»)

2h, f M(£(x, 0))

which unlike Eq. (14) is not a convolution operator.
Finally, substituting the expression By in the upper layer averaged equations:

- [Q-nt], =0,

u—1t+u—1u—1x+(1—f72)nx:

L P2 ~ ~ al - .
\/Bth o1 M(f(x 0) J[M(f)mt(x(f, 0),t) coth(z—hz(g — &(x, 0))) dZ + O(p).

In a compact notation this becomes
- [@-n)u], =
_— 02
oo 2]

Note that the first equation is exact. According tgit= ((1-1)t),, SO only the first
time derivative oft; needs to enter the right-hand side of the second equation.

In conclusion, the reduced one-dimensional model (shaNater for the upper layer
and intermediate depth for the lower one) is:

~[(A-n)u], =0,

U_1t+U_1U1X (1__)

m(X( 0). 1) | + O(B).

15
- VBZ7 ['\I\//ll((f))((l MTD)(X(- 0). 1) .

This is a Boussinesq-type system for the perturbation ofitegface; and the mean-layer
horizontal upper velocityr;. It involves a Hilbert transform on the strip characterigin
the presence of harmonic functions (or the potential flopuwehe interface. Efficient

computational methods can be produced for this accurateeeldnodel which governs,
to leading order, a complex two-dimensional problem.
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There is an interesting limit for this model when the lowepttetends to infinity
(h, = o). In this case the bottom is not seen anymdvg) — 1 and x£,0) — &).
Therefore

(1 = m)uy),(X, t)
% — X

$x(%.0,1) — = H|((A - n)tn),(-. 1|,

whereH is the usual Hilbert transform defined as
H[FI(X) = —f;(x) dx.
In this (shallow upper layer) infinite lower layer regimessym (15) becomes
- [(A-n)t],=0

U_lt + u_l Uix + (1 - _) Nx = \/_pz [((1 - n)u_l)xt(" t) .

(16)

The FFT of a Hilbert transform is easily computed. We now makemment regarding
using FFTs in numerical schemes. Both operaidrg] andH| f] have Fourier transforms
of the form

71f] = icoth(%) f,
HIT] = isgni)f,

where the operator’s symbol multiplies the transformfofnamely f. Therefore in
Egs. (15) and (16) a pseudospectral scheme would Fourmsferen (namely through
a FFT) the terms inside the square brackets.

Details of the computational methods available will be mii#d elsewhere in the
near future.

3. DISPERSION RELATIONS FOR THE LINEARIZED MODELS
Consider the flat bottom case in system (15), thatliss 1:

- [Q-mt],=0

Ty, + Uy Uy + (1 - %) My = ’;—i \/ET[((l - n)u_l)xt] +0p).

1

Its linearization around the steady state 0, U; = O gives:
nt - u_lX = 0’

U, +(1— ’ﬁ)nx =22 BT [l
P1 P1

By differentiating once in,  can be eliminated from the second equation:

u_1tt + (1 - /2)u_lxx = & \/IET [u_lxtt] .
P1 P1
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LetT; = Aé®Y and substituting above

ei(kx—wt)( (1 Zz)kz) 22 \/_kw elwt(i—[ Ielkx]
1 1

Since7 [€] = icoth(%)e‘kx,

2 (;’;_i B 1) k?
14 ;’—jkx/ﬁcoth(%)

which is the correct limit for the full dispersion relatiorhenkh, — 0. Observe that as
“k’—f — 0, bounded phase velocities are obtaineld bscomes large. _

In the limit h, — oo the operato/~ becomesH. SinceH[eX] = isgnk)ek, the
dispersion relation for system (16) is
k(2 - 1)

2 _ P1

1+ 2B

and% — 0 ask — co.
The computational methods will capture these dispersitatioas since the spatial
discretizations are highly accurate through the use of FFTs

4. UNIDIRECTIONAL WAVE REGIME

For weakly nonlinear unidirectional waves and slowly vagyiopography, our model
reduces to the ILW equation and the BO equation.
Consider again system (15). Sgt an*, Uy = aCyU; ', t = = wherec2 (—l - 1)

anda = O(+}B). Depending on the roa, chosen, there will be a right- or left-travelling
wave.

Then
—[(1 - an)uy], =0,
17
Uy + aUg Ugy — \/—pz [M—() (1 - an)ty],,| + O). ()
Note that

=T+ O(a, VB);  mx =Tz +O(e. VB).

Look for a solution, corrected to first orderdnand+/3, in the form

n = AL + @Al + \BAT [ M((;)u—lt]
Substituting in the system of Eqgs. (17) up to order/B, two equations foi; are
obtained:

M
0 = AT, + 20AsTl Uy, + 20A T Uiy — Uiy + \/BAST[ O ]

M@
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and

0 = Uy, + oy Upy — [Alu—lx+2aAzu—1u—1x+ \//_SAs‘T[ O ]

ME
\/—.02 M(f)U1Xt+O< ,B,a\/ﬁ).

These two equations are consistenfjf= 1, A, = _Z andA; = —%. Therefore, the
evolution equation foty is

U, + gau—lu—lx ~ Upy - Z—jifr[w(;)u—lxt] O(B,a”, a~B).
For the elevation of the interfagea similar equation can be obtained through asymp-
totic relations which permit (to leading order) to exchadgeivatives iny; for derivatives
in Uy, as well as time derivatives for spatial derivatives. Thel@wn equation for the
elevation of the interface is

3 P2 VB[ M()
M —Nx+ ZCmnX_p_l_T[M(g) xt] (ﬁ,az,a\/ﬁ).

This is a BO-type equation called ILW equation. Instead ofubeal Hilbert transform
on the half-space, a Hilbert transform on the strip appd&drs.dispersion relation is
B Kk
B VB khp )’
1-2Pkcoth(E)
Mathematical details will be provided elsewhere to explainy the x-derivatives can

be exchanged with the operattg. We only remark here that there is no need to specify
the slow parameter in the equations above if we establish a relation betweghande

of typee? = O(\/B)
For system (16) a similar reduction is obtained

\/_

3
m—1nx+ 2a7777x_ — j‘[ xt] =
o1

which is a regularized BO equation.

CONCLUSIONS

A one-dimensional Boussinesqg-type model for the evolutibmt@rnal waves in a
two-layer system is derived. The regime considered is dashabater configuration for
the upper layer and an intermediate or infinite depth for el layer. The bottom has
an arbitrary, not necessarily smooth, profile generalizimgflat bottom model derived
by Choi and Camassa (1999). This arbitrary topography is aetit by performing
a conformal mapping as in Nachbin (2003), which leads to aédlitlike transform on
the corrugated strip. In the unidirectional propagatiogime the model reduces to a
generalized BO equation when a slow varying topography ismasd.

We intend to use this model to study the interaction of iraewaves with different
types of bottom profiles such as submerged structures artésoalé topography profiles.
Stability analysis for the hyperbolic and weakly dispegsiggimes is to be performed.
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