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Figure 1: Traditional discretization and reconstruction. Given a
continuous signal f , the discretization process convolves it with
an analysis filter ψ∨ before sampling. The reconstruction process
applies mixed convolution between the discrete sampling JfψK and
a reconstruction kernel ϕ to obtain the reconstructed output.
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Figure 2: Generalized discretization and reconstruction. A discrete
filtering stage is added to the pipeline. The output JfψK of the
sampling stage is convolved with a discrete transformation filter q.
It is the result c of this stage (and not JfψK) that is convolved with
reconstruction kernel ϕ to produce the reconstructed signal.

Abstract
Analysis and reconstruction filters are crucial in graphics. The
signal processing community has recently developed new filter-
ing strategies based on a generalization of the traditional sampling
pipeline. The main idea is to select simple basis functions such
as B-splines but to effectively reshape these kernels by adding a
discrete transformation filter. This approach is not widely known to
graphics practitioners. In this paper we introduce new notation to
succinctly summarize important algorithms in generalized sampling.
We also present and analyze novel algorithms, including supersam-
pling for antialiased rendering, and image downscaling for mipmap
creation. The advantages of generalized sampling are twofold. The
non-negativity of B-spline kernels simplifies both importance-based
integration and GPU evaluation. And, the broader support of the
transformed kernels improves filtering quality. A key challenge is
that the discrete transformation often involves inverse convolutions,
but fortunately the associated linear systems are banded and can be
parallelized.

Keywords: signal processing, discretization and reconstruction, image
interpolation, supersampling, antialiasing, downscaling.

1 Introduction
Given the continuous nature of visual information and the discrete
nature of computers, it is unsurprising that discretization and recon-
struction are fundamental operations in computer graphics. Figure 1
shows the traditional convolution-based sampling and reconstruc-
tion pipeline. During discretization (e.g., scene rasterization), a
continuous input signal f is passed through an analysis filter ψ∨

(a.k.a. sampling kernel, prefilter, or antialiasing filter) before being
sampled. The result is a discrete sequence JfψK (e.g., an image).
During reconstruction (e.g., texture interpolation), the continuous
approximation f̃ of the original signal is obtained by mixed con-
volution with a reconstruction kernel ϕ (a.k.a. generating function,

basis function, or postfilter). The roles of the analysis filter ψ∨and
reconstruction kernel ϕ have traditionally been understood in light of
the sampling theorem [Shannon 1949]. Thus, ψ∨ eliminates high fre-
quencies from f so that the bandlimited fψ can be sampled without
aliasing. In turn, ϕ aims to reconstruct f̃ from the sampled values
without introducing spurious high frequencies. Ideally, f̃ equals fψ
or better yet, if f is already bandlimited then f̃ equals f itself. The
filters ψ and ϕ are typically designed to have small support for
efficiency reasons, and this hinders their effectiveness.

Over the last 15 years, the signal and image processing communi-
ties have made significant progress using a slight generalization of
the discretization and reconstruction pipeline [Unser and Aldroubi
1994; Unser et al. 1995a,b; Blu et al. 1999, 2001, 2004; Condat et al.
2005]. As shown in figure 2, the result JfψK of the sampling stage is
transformed by a discrete filter q (a.k.a. correction or basis change)
to form a new discrete signal c, which is then convolved with ϕ as
usual to reconstruct f̃ . By introducing the discrete transformation q,
we can effectively create analysis and reconstruction filters of the
form ψ =ψ∗q and ϕ=q∗ϕ, which have wider support and thus
higher quality. The key to the efficiency of this generalized sampling
framework is that the transformation kernels q that arise in practice
can be factored into a sequence of compact filters and inverses of
compact filters. Even in the case of inverse filters, there are efficient
algorithms to compute the required discrete convolution. Thus the
correction stage adds negligible cost.

Generalized sampling was initially driven by the development
of interpolation strategies based on a more general class of recon-
struction kernels [Blu et al. 1999]. Figure 3 shows this application.
The sampled image JfψK is processed by a discrete filter q resulting
in a new image c. This image can then be reconstructed efficiently
with a simple cubic B-spline filter β3. The resulting upsampled
image is sharper and more isotropic (i.e., has higher quality) than
that produced with the traditional Mitchell-Netravali filter [1988],
even though both filters have the same degree and support.

We believe that the benefits of generalized sampling can impact
many areas of computer graphics. In section 5 we explore several
applications, including antialiased rendering and mipmap downscal-
ing. Figure 4 shows the scenario of antialiasing using supersampling.
A continuous signal f (i.e., a scene) is supersampled using the cubic
B-spline basis β3 as an antialiasing filter. The resulting image is
then transformed with a discrete filter q that reshapes the antialias-



Discretized JfψK Reconstructed f̃M = JfψK ∗M

→

↓

→

Corrected c = JfψK ∗ q Reconstructed f̃β3 = c ∗ β3

Figure 3: Reconstruction example. The top row shows the result
of the traditional cubic Mitchell-Netravali filter M . The bottom
row uses the generalized sampling approach, first applying a digital
prefilter q as a preprocess, and then reconstructing with the cubic
B-spline β3 — which is less expensive to evaluate on a GPU thanM .

Input f (approximate depiction) Discretized JfKK = Jf ∗K∨K

→

↓

→

Discretized Jfβ3K=Jf ∗(β3)
∨K Corrected c = Jfβ3K ∗ q

Figure 4: Supersampling example. The top row shows the result
of the Keys (Catmull-Rom) filter K. The bottom row shows super-
sampling with the B-spline basis function β3, followed by a digital
correction filter q. The kernels K and β3 have the same support,
and the fact that β3 is non-negative simplifies importance sampling.

ing kernel a posteriori. The resulting image exhibits less ringing
and aliasing for a similar computational cost. Moreover, the fact
that we can easily draw random samples distributed as β3 simplifies
importance-based Monte Carlo integration.

Our paper aims to broaden access to this theory in the graphics
community through the following contributions:

• We introduce novel notation (section 3) that simplifies the deriva-
tion of many previous algorithmic results (section 4), as well as
our own new algorithms;

• We present and analyze novel algorithms for antialiased rendering
and for downscaling of images (section 5);

• We describe the key operation of inverse convolution (of a com-
pactly supported filter) in terms of linear algebra, and leverage
matrix techniques to parallelize its computation (section 6);

• We present an off-line algorithm that enforces range constraints
on the transformed coefficients c, for compatibility with fixed-
point image formats (section 6.4);

• We evaluate many reconstruction and antialiasing strategies, us-
ing animation tests that reveal subtle visual artifacts (section 8).

2 Previous work
The sampling theorem [Shannon 1949] bootstrapped decades of
research by establishing the conditions under which a signal can be
sampled and reconstructed without any loss of information. Specif-
ically, a bandlimited signal that is sampled more densely than its
Nyquist rate (twice its maximum frequency) can be reproduced ex-
actly with the ideal reconstruction kernel ϕ = sinc. To eliminate
high frequencies from a non-bandlimited signal, we again use the
ideal low-pass filter ψ∨ = sinc for the analysis. The search for
finite-support alternatives to the sinc filter led to the development of
various windowed-sinc approximations (see [Meijering et al. 1999a]
for a comprehensive analysis).

In the context of generalized sampling, the roles of ψ∨ and ϕ
have been updated (see [Unser 2000] for a historical account).
Given a sampling period T , the reconstruction kernel ϕ de-
fines a signal subspace Vϕ,T containing all functions of the
form f̃T (x) =

∑
k∈Z cT [k]ϕ(x/T − k). The analysis and correc-

tion filters ψ∨and q take an input function and determine the discrete
sequence cT . A key principle in the design of ϕ, q, and ψ∨ comes
from approximation theory. The goal is to find combinations that
lead the approximation error ‖f − f̃T ‖L2 to quickly vanish as the
sampling period decreases. The development of practical formulas
that tie the approximation error to the choice of a given reconstruc-
tion scheme [Unser 1996] led to a number of results, including
improved interpolation strategies [Blu et al. 2001].

Due to the symmetric role of the ideal low-pass filter sinc in
discretization and reconstruction (a property that comes from orthog-
onality [Hummel 1983; Unser and Aldroubi 1994]), kernels designed
to approximate sinc are used in both applications. In fact, this dual-
ity allows kernels specifically designed for reconstruction [Mitchell
and Netravali 1988] to perform well in discretization (section 5).

Nevertheless, the two applications impose different constraints
on the designer: reconstruction filters must be efficient to evaluate,
whereas analysis filters are sometimes preferred to be non-negative.
Research in alternative analysis filters ψ∨ and reconstruction ker-
nels ϕ has therefore been conducted mostly independently. We split
the description of related work accordingly.

2.1 Reconstruction kernels
We focus on piecewise polynomial reconstruction kernels. Besides
enjoying an efficiency advantage over non-polynomial alternatives,
these have been shown to match windowed-sinc approximations in
quality [Meijering et al. 2001]. Excellent surveys of reconstruction
strategies can be found elsewhere [Lehmann et al. 1999; Thévenaz
et al. 2000; Meijering 2002]. Like Thévenaz et al. [2000], we use a
set of properties that characterize reconstruction kernels to guide us
through the bibliography.

The degree N of a kernel ϕ is the maximum degree found in
any of its polynomials pieces. The support W of ϕ is the width
of the smallest interval outside of which ϕ vanishes. Increasing
either the degree or support of a kernel ϕ creates more degrees of
freedom to the designer, but unfortunately also adds to the runtime
computational cost.

To guarantee linear-phase response, most kernels are symmetric
about the origin (see [Blu et al. 2004] for a curious exception). The
regularity R measures the smoothness of ϕ. In other words, a ker-



nelϕ is said to be inCR if it can be differentiatedR times. The order
of approximation L measures the rate at which the approximation
error vanishes as the sampling step is reduced:

‖f − f̃T ‖L2 ∝ TL as T → 0.

Equivalently, a kernel with approximation order L can reproduce
polynomial signals of degree L−1. Enforcement of regularity, sym-
metry, and approximation order in ϕ removes degrees of freedom
from the design process.

The best approximation order a kernel of degree N can attain
is L=N+1. This optimal order can be achieved even with a rel-
atively compact support W =N+1 [Blu et al. 2001]. Different
strategies for setting the remaining degrees of freedom have led to
the development of a multitude of reconstruction kernels.

A reconstruction kernel ϕ is interpolating if it satisfies ϕ(0) = 1
and ϕ(k) = 0, k ∈ Z \ {0}. Naturally, enforcing this property elim-
inates further degrees of freedom. Popular interpolating kernels
include the ubiquitous nearest-neighbor (L = 1,W = 1) and lin-
ear (L = 2,W = 2) interpolation kernels.

Keys [1981] started from the family of differentiable interpolating
cubic kernels (N = 3, R = 1). Optimizing the remaining degree
of freedom for approximation order, he found the Catmull-Rom
spline [Catmull and Rom 1974] (L = 3,W = 4), and another kernel
with wider support and higher approximation order (L = 4,W = 6).
Following a similar method, which is based on equating the Taylor
series expansions of f and f̃ , German [1997] designed a quartic
kernel characterized by L = 5,W = 7, R = 1. Note that the sup-
port of these kernels is larger than necessary for their approximation
order.

In designing a family of cubic kernels, Mitchell and Netravali
[1988] started from W = 4, R = 1 and L = 1. The two remaining
degrees of freedom were subjectively evaluated by their effect on
the amount of ringing, blur, and anisotropy in upsampled images.
Enforcing L = 2 left only one degree of freedom, and its value was
chosen based on subjective quality.

Dodgson [1997] studied a family of second-order, quadratic re-
construction kernels (N = 2,W = 3, L = 2). From this family he
identified two interesting kernels: one is C0-continuous and interpo-
lating; the other is C1-continuous but non-interpolating.

Inspired by the work of Park and Schowengerdt [1983], who had
reached the same cubic kernel as Keys through a different route,
Schaum [1993] derived a frequency-domain formula for the mean
approximation error over all shifts of the input function:

‖f − f̃T ‖L2 =

(∫
|f̂(ω)|2E(Tω)

dω

2π

)- 1
2

.

Interestingly, the expression for the so-called error kernel E(Tω)
does not depend on f , but only on ϕ. Since much of the useful
information in images lies in the low frequencies, Schaum designed
a family of interpolating kernels whose associated error kernel van-
ishes at ω=0, along with as many of its derivatives as possible. The
result is a family of local Lagrangian interpolators parametrized by
degree, each with optimal order and support L = W = N + 1.

Meijering et al. [1999b] designed kernels starting from interpola-
tion and regularity constraints. To make the kernels behave like sinc
in the low frequencies, the remaining parameters were selected to
cancel as many terms as possible in the Maclaurin series of their
Fourier transforms. The resulting cubic kernel is the same as that
of Keys. Although the supports of the quintic and septic kernels
are larger (W = 6 and 8, respectively), they have the same ap-
proximation order L = 3 as the cubic and perform only slightly
better.

A breakthrough came from the idea that the responsibility for
interpolating the original samples need not be imposed on the contin-
uous kernel ϕ itself, but can instead be achieved by using a discrete

correction prefilter q. This was first demonstrated in the context of
B-spline interpolation [Hou and Andrews 1978; Unser et al. 1991].
B-splines are the most regular members of a class of functions called
MOMS (maximal order, minimum support) [Blu et al. 2001]. The
best performing kernels, the O-MOMS (optimal MOMS), trade-
off regularity to minimize the leading coefficient Cint in the mean
interpolation error

‖f − f̃T ‖L2 = Cint T
L ‖f (L)‖L2 as T → 0.

For applications needing derivatives, the SO-MOMS (sub-optimal
MOMS) minimize Cint subject to C1-continuity. None of these ker-
nels use up degrees of freedom enforcing the interpolation constraint.
In contrast, the I-MOMS (interpolating MOMS) are precisely the
local Lagrangian interpolators described by Schaum [1993] (which
do not perform nearly as well).

As we will see in section 4.1, obtaining the optimal reconstruction
error within a signal subspace Vϕ requires both access to the original
signal f and analysis with the dual ϕ̊∨ of ϕ. Nevertheless, when we
only have access to JfψK, it is still possible to reduce reconstruction
error by mimicking the low-frequency behavior of ϕ̊∨.

The shifted linear interpolation scheme of Blu et al. [2004] gives
up on linear phase and uses the additional freedom to minimize the
approximation error. Quasi-interpolation schemes instead give up
on interpolation of JfψK, so that q is freed of this restriction. Instead,
the interpolation property holds only when f is a polynomial of
degree less than L (the quasi-interpolation order). Blu and Unser
[1999] propose an IIR design for q, Condat et al. [2005] an all-pole
design, and Dalai et al. [2005] a FIR design. The improvements can
be substantial, particularly for low-degree schemes (N ≤ 3).

2.2 Analysis filters
In computer graphics, analysis filters (called antialiasing filters) are
used for image synthesis in 2D or 3D rendering. The input signal f
is the 2D illustration or projected 3D scene. Compared to many other
signal-processing fields, graphics is fortunate in that this continuous
function f is available prior to sampling, sometimes even in analytic
form.

Computing samples of the filtered signal fψ at positions k ∈ Z
entails evaluating integrals of the form

fψ(k) =
(
f ∗ ϕ∨

)
(k) =

∫

Ωψ

f(x+ k)ψ(x) dx,(1)

where Ωψ is the support of ψ. Techniques for computing an ex-
act or approximate analytic solution to (1) are called prefiltering
techniques. Unfortunately, analytic approximations are often imprac-
tical. Instead, one often relies on supersampling techniques which
approximate (1) using Monte Carlo estimation:

∫

Ωψ

f(x+ k)ψ(x) dx = E
(
f(X+ k)ψ(X)

)
(2)

≈ 1

m

m∑

i=1

f(xi + k)ψ(xi).(3)

Here E stands for expectation, and the xi are samples drawn from
the random variable X , distributed in Ωϕ. To reduce the variance
of the estimator, and therefore increase its precision, it suffices to
increase the number m of samples proportionally.

Adapting the spatial distribution of the samples can improve the
rate of convergence of the integral (see quasi-Monte Carlo, impor-
tance sampling, and stratified sampling), and can also reshape the
spectral properties of the estimation error, thereby trading off alias-
ing for noise (see jittering) [Glassner 1995]. Here we are interested
in the antialiasing kernels themselves, and therefore assume that the
integrals are evaluated to the maximum output precision.



The quality of an antialiasing filterψ involves a subjective balance
between aliasing, blurring, and ringing. The sweet spot also depends
on properties of the output device such as post-aliasing [Mitchell and
Netravali 1988]. Some favor the sharpness offered by filters with
negative lobes (the negative lobists [Blinn 1989]), while others fear
the accompanying ringing in dark regions (a problem accentuated
by gamma correction). Professional rendering systems offer several
alternatives, including box, triangle, Catmull-Rom (Keys), Gaussian,
and sinc filters [Pixar 2005].

For both prefiltering and supersampling, it is important for the
analysis filter to have small support W to maximize performance.
For prefiltering, compact support reduces the complexity of the
analytic expression because it involves fewer scene elements. For
supersampling, small support improves locality of reference.

3 Notation and basic properties
In this section we introduce some novel notation and a variety of
properties (some standard, others less known) that will be used
throughout the paper. These tools simplify the derivation of many
algorithms and concepts to trivial algebraic manipulations.

We denote discrete sequences by bold letters, or write them en-
closed in bold square-brackets J K:

c
def
= J. . . , c-2, c-1, c0, c1, c2, . . .K, ck ∈ R, k ∈ Z.

An element of a sequence is selected by postfixing the sequence with
the index in normal square-brackets [ ]:

c[k]
def
= ck, k ∈ Z.

The operation of uniformly sampling a function at all multiples of a
sampling period T is so fundamental to this paper that we introduce
special notation for the resulting sequence:

JfKT def
= J. . . , f(−2T ), f(−T ), f(0), f(T ), f(2T ), . . .K
def
= JfK, in short when T = 1.

Throughout the text we assume a unit sampling period unless other-
wise indicated. Where there is risk of ambiguity or need for added
flexibility, we explicitly specify the sampling index, as in:

Jf(kT )Kk∈Z = JfKT .
Let “·” denote the implicit parameter of a univariate function, e.g.:

f(s·+ k)
def
= x 7→ f(s x+ k).

The three flavors of convolution are denoted by the same operator.
The discrete and continuous convolutions are defined as

b ∗ c def
=
∑

k∈Z
b[k]c[·− k] and f ∗ g def

=

∫ ∞

-∞
f(x)g(·− x) dx,

and mixed convolution is defined as

c ∗ ϕ def
= c ∗1 ϕ, where c ∗T ϕ def

=
∑

k∈Z
c[k]ϕ(·− kT ).

Commutativity and associativity apply to all combinations of convo-
lutions, including mixed convolutions. Thus parentheses are unnec-
essary, and we can manipulate convolutions like products:

(b ∗ c) ∗ f = b ∗ (c ∗ f) and (f ∗ g) ∗ b = f ∗ (g ∗ b).(4)

Interestingly, sampling a mixed convolution is equivalent to perform-
ing a discrete convolution between the sequence and the sampled
function (as long as the sampling periods are the same):

Jb ∗T fKT = b ∗ JfKT .(5)

The discrete and continuous unit impulses δ and δ are uniquely
defined by the sampling properties:

δ ∗ c def
= c, ∀c and δ ∗ f def

= f, ∀f.(6)

The discrete impulse can also be defined simply as

δ = J. . . , 0, 0, 1, 0, 0, . . .K where δ[0] = 1.(7)

The convolution inverse b-1 of a sequence b, when it exists (see
section 6 for details), is uniquely defined by:

b-1∗ b def
= δ.(8)

Shifted versions of δ and δ are denoted in short as

δk
def
= δ[·− k], k ∈ Z and δτ

def
= δ(·− τ), τ ∈ R.

Due to the convolution properties

b[·−k]∗c = (b∗c)[·−k] and f(·−τ)∗g = (f ∗g)(·−τ),

we can use the shorthand notation for the shifting operations

δk ∗ c = c[·− k] and δτ ∗ ϕ = ϕ(·− τ).

The reflection of sequences and functions is denoted by

c∨
def
= c[−·] and f∨

def
= f(−·),

and distributes over all flavors of convolution:

(b ∗c)∨= b∨∗c∨, (f ∗g)∨=f∨∗g∨, and (b ∗ϕ)∨= b∨∗ϕ∨.(9)

We also use short notation for the reflected convolution inverse:

b-∨ def
= (b-1)

∨
= (b∨)

-1
.

The cross-correlation of functions f and g is denoted by

af,g
def
= f ∗ g∨.(10)

In particular, the auto-correlation of f is denoted by

af
def
= f ∗ f∨.(11)

The L2 inner product of real-valued functions f and g is defined as

〈f, g〉 def
=

∫ ∞

-∞
f(x)g(x) dx.

A key relationship between inner products and convolution lets us
express in compact notation the operation of sampling a function f
with an analysis filter ψ:

〈f, ψ〉 = (f ∗ ψ∨)(0)⇒
〈f, δk∗ ψ〉 = (f ∗ ψ∨)(k)⇒J〈f, δk∗ ψ〉Kk∈Z = Jf ∗ ψ∨K.(12)

Two functions f and g are biorthogonal if they satisfy

〈f, δk∗ g〉 = 〈δi∗ f, δj∗ g〉 =

{
1 i = j

0 otherwise,
(13)

where k, i, j ∈ Z and k = i− j, or equivalently,

Jaf,gK = δ.(14)



The Discrete Time Fourier Transform (DTFT) of a sequence and the
Fourier Transform of a function are defined respectively by

(15) ĉ(ω)
def
=
∑

k∈Z
c[k]e−iωk and f̂(ω)

def
=

∫ ∞

-∞
f(x)e−iωx dx.

Convolution in the time domain becomes a product in the frequency
domain. This is also true of mixed convolutions:

(̂b ∗ c) = ĉ b̂ (̂f ∗ g) = f̂ ĝ. (̂f ∗ c) = f̂ ĉ(16)

The B-spline basis functions βn are defined by the relations:

(17) β0(x) =





1 |x| < 1
2

1
2
|x| = 1

2

0 otherwise
and βn = βn-1 ∗ β0.

Our notation can summarize concisely many of the important
properties that kernel functions may have:

Property of kernel ϕ Expressed in our notation

Symmetry ϕ = ϕ∨

Interpolation JϕK = δ
Orthogonality Jϕ ∗ ϕ∨K = δ
Normalization ϕ ∗ 1 = 1
Partition of unity ϕ ∗ J1K = 1

4 Previous algorithms
In this section we use our new notation to review several previous
algorithms involving generalized sampling. To simplify the presen-
tation, we express all computations in one dimension. However, all
the results are easily extended to 2D images and 3D volumes by
making use of tensor-product basis functions. For example, in 2D
we have ϕ2D(x, y) = ϕ(x)ϕ(y).

Space of admissible kernels In formal presentations, it is
common to open with admissibility restrictions on the generating
function ϕ. That is, we must ensure that the signal subspace

Vϕ,T = {f̃T : R→ R | f̃T = cT ∗T ϕ(·/T ), ∀cT ∈ l2}

is a closed subspace of L2 before we can discuss approximation
in Vϕ,T . To do so, we require that the set of shifted generating
functions ϕ(·/T − k), k ∈ Z form a Riesz basis of Vϕ,T . In other
words, any signal in Vϕ,T is uniquely determined by cT . This
restriction is equivalent to the requirement that convolution with the
auto-correlation sequence JaϕK of ϕ must be an invertible operator
from l2 into itself. Interestingly, if p is an invertible convolution
operator and ϕ = p ∗ ϕ, then Vϕ = Vϕ and therefore ϕ and ϕ are
equivalent generating functions.

Another common requirement is that Vϕ,T contain elements ar-
bitrarily close to any signal in L2 as we allow the sampling step T
to decrease indefinitely. This is equivalent to enforcing the parti-
tion of unity property in ϕ, that is

∑
k∈Z ϕ(·− k) = 1. It is also

equivalent to requiring ϕ to have approximation order L ≥ 1.
The important observation here is that these safeguards are satis-

fied by most generating functions we find in practice. The interested
reader is referred to [Aldroubi and Unser 1994; Unser and Aldroubi
1994] for a careful treatment of the subject.

4.1 Orthogonal projection
The closest reconstructed signal f̃ ∈ Vϕ ⊂ L2 to an input signal f ∈
L2 is the orthogonal projection Pϕf [Aldroubi and Unser 1994].
The vector c corresponding to the orthogonal projection can be
generated by sampling the convolution of f with ψ∨= ϕ̊∨, where ϕ̊

is the dual of ϕ (see figure 5c). A key property is that ϕ̊ ∈ Vϕ, and
therefore ϕ̊ can be expressed as a mixed convolution with ϕ, i.e.,
ψ = q ∗ ϕ. We derive an expression for q as follows.

The orthogonality condition is

(f−f̃) ⊥ Vϕ ⇔ 〈f−f̃ , δk∗ ϕ〉 = 0, ∀k ∈ Z,(18)

or equivalently by (12),
q
(f−f̃) ∗ ϕ∨

y
= 0. Therefore,

Jf ∗ ϕ∨K = Jf̃ ∗ ϕ∨K by linearity(19)

= Jc ∗ ϕ ∗ ϕ∨K since f̃ = c ∗ ϕ(20)

= c ∗ Jϕ ∗ ϕ∨K by (5)(21)
= c ∗ JaϕK by (11).(22)

Here we note that JaϕK = Jϕ ∗ ϕ∨K is the sampled auto-correlation
function of ϕ. Convolving both sides with the inverse of JaϕK,

c = JaϕK-1∗ Jf ∗ ϕ∨K by (8)(23)

=
q
f ∗ JaϕK-1∗ ϕ∨y by (5) and (4)(24)

=
q
f ∗
(JaϕK-∨∗ ϕ)∨y by (9)(25)

=
q
f ∗
(JaϕK-1∗ ϕ)∨y aϕ is symmetric.(26)

Therefore, the expression we seek for the dual is

ϕ̊ = JaϕK-1∗ ϕ, so that q = JaϕK-1 (see figure 5c,f).(27)

Indeed, ϕ and ϕ̊ are duals since:

Jϕ ∗ ϕ̊∨K =
q
ϕ ∗

(JaϕK-1∗ ϕ)∨y =
q
ϕ ∗ JaϕK-1∗ ϕ∨y(28)

= JaϕK-1∗ Jϕ ∗ ϕ∨K = JaϕK-1∗ JaϕK = δ,(29)

which implies biorthogonality from (14).

Benefit of generalized sampling Here comes the interesting
part. Recall from section 2 that for efficiency we desire both ϕ and ψ
to be compactly supported. However, if ϕ has compact support,
its dual ϕ̊ must have infinite support (except for the uninteresting
kernels for which JaϕK = δ). Thus, directly evaluating Jf ∗ ϕ̊∨K is
impractical. Instead, we factor it as Jf ∗ϕ̊∨K = Jf ∗ψ K = Jf ∗ψK∗q,
with ψ = ϕ and q = JaϕK-1, both of which are efficient. We will
see pattern again in other algorithms.

4.2 Consistent sampling (oblique projection)
Often we have little control over the analysis filter ψ∨ (e.g., it is
part of an acquisition device). Naturally, this prevents us from using
the orthogonal projection. When ψ∨ is known and with a given ϕ,
consistent sampling [Unser and Aldroubi 1994] is a strategy that
guarantees idempotence of the sampling pipeline. The appropriate
discrete filter q is derived as follows:

JfψK =
q
(JfψK ∗ ϕ) ∗ ψ∨

y
(30)

= JfψK ∗ Jϕ ∗ ψ∨K(31)

= JfψK ∗ Jq ∗ ϕ ∗ ψ∨K(32)
= JfψK ∗ q ∗ Jaϕ,ψK.(33)

Note that Jaϕ,ψK = Jϕ ∗ ψ∨K is the sampled cross-correlation of ϕ
and ψ. Since q ∗ Jaϕ,ψK leaves the arbitrary JfψK unchanged,

q ∗ Jaϕ,ψK = δ ⇒ q = Jaϕ,ψK-1 by (7) and (8).(34)

Since JfψK = Jf ∗ ψ∨K and JfψK ∗ ϕ = f̃ , we can rewrite (30) as

Jf ∗ ψ∨K = Jf̃ ∗ ψ∨K ⇒ J(f−f̃) ∗ ψ∨K = 0.(35)
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Figure 5: Visualization of the functions and sequences associated
with the choice ϕ = β3 of the cubic B-spline basis.

Thus consistent sampling can be viewed as a form of oblique projec-
tion since the residual f−f̃ is orthogonal to Vψ , and not necessarily
to Vϕ. The notation is f̃ = Pϕ⊥ψf .

The approximation error of the oblique projection is bounded by

‖f−Pϕf‖ ≤ ‖f−Pϕ⊥ψf‖ ≤ (cos θψ,ϕ)-1‖f−Pϕf‖,(36)

where θψ,ϕ is a measure of the “maximum angle” between the two
spaces and can be computed from their spectral coherence [Unser
and Aldroubi 1994].

4.3 Interpolation
In section 2, we saw that relievingϕ from the restrictive interpolation
constraints JϕK = δ lets us use degrees of freedom to optimize for
other desirable properties. Here we derive the discrete filter q that
causes the reconstruction of c with ϕ to interpolate JfψK. Since
this filtering operation can be performed during preprocessing, we
pay no performance penalty during the reconstruction stage. In the
words of Blu et al. [1999], “higher-quality at no additional cost”.
From the interpolation assumption,

JfψK = Jf̃ K = Jc ∗ ϕK = c ∗ JϕK = JfψK ∗ q ∗ JϕK.(37)

Here we note that q ∗ JϕK leaves the arbitrary JfψK unchanged, so

q ∗ JϕK = δ ⇒ q = JϕK-1 by (6) and (8).(38)

It is possible to reach the same results starting from the consistent
sampling conditions. Simply set ψ = δ in (34):

q = Jaϕ,ψK-1 = Jϕ ∗ ψ∨K-1 = Jϕ ∗ δ K-1 = JϕK-1,(39)

as expected. This preprocessing approach is equivalent to recon-
struction with an effective basis function ϕ = q ∗ ϕ which is called
the cardinal generating function ϕint of Vϕ (see figure 5b,e):

ϕint = JϕK-1∗ ϕ.(40)

It is easy to verify that ϕint is indeed an interpolating kernel:

JϕintK =
qJϕK-1∗ ϕy = JϕK-1∗ JϕK = δ.(41)

4.4 Least-squares translation
The naïve way of translating a discrete signal JfψK by an offset τ
is to first reconstruct it as f̃ = c ∗ ϕ ∈ Vϕ in some way, and then
sample the translated reconstruction δτ ∗ f̃ :

Jδτ ∗f̃ K = Jδτ ∗ c ∗ ϕK = c ∗ Jδτ ∗ ϕK.(42)

The operation reduces to a discrete convolution between the coeffi-
cient array c and the sampled, translated basis function. In a sense,
this operation samples δτ ∗ f̃ without any filtering. The idea be-
hind the least-squares translation operator described in [Unser et al.
1995b] is to form the orthogonal projection Pϕ(δτ ∗ f̃) = cτ ∗ϕ:

cτ = Jδτ ∗f̃ ∗ ϕ̊∨K = Jδτ ∗ c ∗ ϕ ∗ ϕ̊∨K = c ∗ Jδτ ∗ ϕ ∗ ϕ̊∨K(43)

= c ∗
q
δτ ∗ ϕ ∗ JaϕK-1∗ ϕ∨y(44)

= c ∗ JaϕK-1∗ Jδτ ∗ aϕK.(45)

Therefore, the sampled least-squares translation isq
Pϕ(f ∗ δτ )

y
= c ∗ JaϕK-1∗ Jδτ ∗ aϕK ∗ JϕK,(46)

which can be computed as three consecutive discrete convolutions.
Unser et al. observe from rewriting (44) into the form

cτ = c ∗
q
δτ ∗ (aϕ)int

y
by (40)(47)

that least-squares translation in space Vϕ is essentially the same as
naïve translation in the space Vaϕ . For example, if ϕ = βn is the
B-spline of degree n (and order L = n+ 1), then aϕ = β2n+1 is
the B-spline of degree 2n+ 1 (and order L = 2n+ 2). Therefore,
in this case least-squares translation is equivalent to performing the
naïve translation in a space that has twice the approximation order.

4.5 Least-squares downscaling
Image resizing involves resampling its signal at a different rate.
An extremely naïve downscaling algorithm is to sample the recon-
structed function with a different period s to obtain the sequence

Jf̃ K 1
s

= Jf̃sK,(48)

where f̃s
def
= f̃(·/s) denotes the scaled version of f̃ . Here aliasing is

a great concern, because we are likely sampling f̃s below its Nyquist
rate. To address this, one should instead apply an appropriately
scaled analysis filter 1

s
ψs = p ∗s ψs, to produce

1
s
Jf̃ ∗ (ψs)

∨Ks.(49)

Here, the factor 1
s

simply renormalizes the scaled filter. When s is
an integer, we usually rely on a discrete approximation:

Jf̃ ∗ (ψs)
∨Ks ≈ qJf̃ K ∗ J(ψs)∨Kys = p ∗

qJf̃ K ∗ J(ψs)∨Kys(50)

As in the previous section, Unser et al. [1995a] present a least-
squares construction that operates in the continuous domain. The
idea is to compute the least-squares scaled version of f̃ by taking
its orthogonal projection from space Vϕ to space Vϕ,s. Let (ϕs)

◦

denote the dual of ϕs.1 The orthogonal projection Pϕs f̃ = cs ∗s ϕs
can be computed as follows:

cs =
q
f̃ ∗
(
(ϕs)

◦)∨y
s

=
q
c ∗ ϕ ∗

(
(ϕs)

◦)∨y
s

(51)

=
q
c ∗ ϕ ∗

(JaϕsKs)-1∗s (ϕs)
∨y

s
by (27)(52)

=
(JaϕsKs)-1∗ qc ∗ ϕ ∗ (ϕs)

∨y
s

by (5)(53)

1Note that
(
ϕ(·/s))◦ = 1

s
ϕ̊(·/s).



and since JaϕsKs = sJaϕK,
cs = 1

s
JaϕK-1∗ qc ∗ ϕ ∗ (ϕs)

∨y
s

(54)

= 1
s
JaϕK-1∗ Jc ∗ aϕ,ϕsKs,(55)

where aϕ,ϕs is the (continuous) cross-correlation of ϕ and ϕs. In
words, convolve c with aϕ,ϕs , sample with step s, and apply the
discrete correction filter 1

s
JaϕK-1 to the result.

Note that since the mixed convolution and the sampling operation
use different step sizes in the term Jc ∗ aϕ,ϕsKs of (55), relation (5)
does not apply. Therefore, in the general case we may have to
evaluate the cross-correlation function aϕ,ϕs at the arbitrary posi-
tions s i− j, with i, j ∈ Z. Fortunately, when s ∈ Z (correspond-
ing to downscaling by an integer factor), the operation becomes
much simpler: compute c ∗ Jaϕ,ϕsK and decimate the results by s.
Better yet, we can compute only the elements in the discrete con-
volution that remain after the integer decimation operation. Either
way, Jaϕ,ϕsK has a compact support and the few required nonzero
elements can be precomputed.

When general scaling factors are necessary, certain approxima-
tions can make the problem more tractable (though still not suitable
for real-time applications). Restricting ϕ to the family of B-splines,
Unser et al. [1995a] provide explicit formulas for the piecewise-
constant ϕ = β0 and piecewise-linear ϕ = β1 cases, and show that
for higher orders the cross-correlation function aβn,βns quickly con-
verges to a Gaussian. In contrast, Lee et al. [1998] approach the
problem from the oblique projection perspective. The idea is to
reconstruct f̃ with ϕ and then analyze it with a simpler (ψs)

∨. Since
the target reconstruction space is spanned by ϕs, the correction
filter Jaψs,ϕsK-1 completes the oblique projection. Simple and ef-
ficient algorithms are provided for ψs = β0

s piecewise-constant
and ϕ = βn B-splines.

5 New algorithms
We apply the theory of generalized sampling to other scenarios in
graphics. We first describe three new algorithms to improve and
simplify scene antialiasing based on supersampling, and compare
their results. We then describe an algorithm for high-quality image
downscaling. A common theme in all these techniques is to perform
signal analysis using a simple kernel, and then modify the sampled
signal a posteriori.

5.1 Least-squares supersampling
We have already seen that the best approximation for a signal f ∈ L2

in space Vϕ ⊂ L2 is given by its orthogonal projection Pϕ f . Unlike
in most other signal-processing applications, in rendering we have
access to the continuous function f . Therefore we can accurately
compute this orthogonal projection, and sample the result to form
an image. The direct approach would be:

JPϕf K =
qJf ∗ ϕ̊∨K ∗ ϕy.(56)

While ϕ is typically chosen to have local support, its dual ϕ̊ usually
has infinite support. Therefore, direct evaluation of (56) requires a
continuous integral over a large extent, which can be impractical.
Fortunately, we can rewrite (56) as:

JPϕf K = Jf ∗ ϕ̊∨K ∗ JϕK =
q
f ∗ JaϕK-1∗ ϕ∨y ∗ JϕK(57)

= Jf ∗ ϕ∨K ∗ JaϕK-1∗ JϕK.(58)

In words, we filter with the primal (compact and perhaps even non-
negative) and then apply a discrete correction filter. This correction
is the composition of JaϕK-1 (the inverse of a compactly supported
filter), and JϕK (compactly supported). Therefore, the correction
step can be computed efficiently with the techniques of section 6.
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(a) Least-squares:
β3 ∗ Jaβ3K-1∗ Jβ3K (b) Consistent: βe ∗JaK,β3K-1∗ JaKK (c) Generalized:

β3 ∗ Jβ3K-1
Figure 6: Frequency response of the effective analysis filter ψ
for three supersampling strategies. (a) The least-squares strategy
of section 5.1 magnifies high-frequencies and is aliased. (b) The
consistent strategy of section 5.2 produces similar results to the Keys
kernel as expected (compare the spectrum to that of figure 10d).
(c) The generalized strategy of section 5.3 produces the best results.

Unfortunately, using the orthogonal projection can be perceptually
unsatisfactory. This should come as no surprise. The orthogonal
projection of a discontinuous signal f into the space of bandlimited
functions Vsinc, for example, contains strong undesirable ringing
artifacts due to the Gibbs phenomenon (see figure 6). Since most
rendering applications encounter discontinuous signals, this serious
concern motivates the following alternative techniques.

5.2 Consistent supersampling
Let us consider the case that we would like to supersample with
an analysis filter ξ, but for efficiency reasons we prefer to use a
simpler analysis filter ψ. Discretization with the analysis filter ξ∨

can be interpreted as the orthogonal projection into space Vξ , where
the resulting discrete sequence is to be reconstructed with ϕ= ξ◦,
the dual of ξ. We can use the machinery of consistent sampling
(section 4.2) to sample the oblique projection from Vψ into Vξ◦ :

JPξ◦⊥ψf K = JfψK ∗ q, where(59)

q = Jaξ◦, ψK-1 = Jξ◦∗ ψ∨K-1 =
qJaξK-1∗ ξ ∗ ψ∨y-1

(60)

= JaξK ∗ Jξ ∗ ψ∨K-1 = JaξK ∗ Jaξ,ψK-1.(61)

A special case worthy of mention is when ψ = βn is a member
of the B-spline family. One reason we may prefer βn as an analysis
filter is that it is a probability density function (i.e., non-negative).
Moreover it is trivial to draw random samples from βn. Because βn

is the n-fold convolution β0∗ β0∗ · · · ∗ β0, it is the probability den-
sity function of the sum of n+ 1 random variables distributed as β0,
which itself is just uniform distribution in the interval [- 1

2
, 1

2
].

Now assume ξ = K is the Keys (Catmull-Rom) kernel. Using
the consistent supersampling strategy, we can filter with β3 then
apply the discrete correction filter

q = JaKK ∗ JaK,β3K-1.(62)

Once again, with the help of section 6, this correction step can be
implemented efficiently.



(a) Traditional Keys
(Catmull-Rom)

(b) Consistent:
β3 ∗ JaK,β3K-1∗ JaKK (c) Generalized:

β3 ∗ Jβ3K-1
Figure 7: Comparisons of supersampling results using various strate-
gies, on a zonal plate function and resolution chart.

5.3 Generalized supersampling
The trick we used to filter with the dual is of course a special case of
a more general property that lets us indirectly sample a function f
with any of the equivalent generating functions ψ = p ∗ ψ of a
signal subspace:

Jf ∗ψ∨K =
q
f ∗ (p∗ψ)∨

y
= Jf ∗ p∨∗ ψ∨K = Jf ∗ψ∨K ∗ p∨.(63)

Motivated by the fact that the step response of high-quality inter-
polation strategies contains mild ringing artifacts (see figure 12), we
investigate the quality of sampling with cardinal B-splines filters. In
particular, the choice ψ = (β3)int leads to particularly good results
(see section 5.4) while requiring a very simple correction filter:r

f ∗
((
β3)

int

)∨z
=

q
f ∗
(
β3)∨y ∗ qβ3y-∨

.(64)

In other words, we simply set ψ = β3 and q =
q
β3

y-∨. This was in
fact the technique used to produce the result in figure 4.

5.4 Supersampling experiments
Figure 7 compares results using different supersampling strategies
on the zonal plate function f = sin(x2 + y2) as in Mitchell and
Netravali [1988], as well as close-ups of a vector graphics ISO 12233
test chart. The quality of the results are similar. Traditional Keys
filtering shows slightly more aliasing.

5.5 Generalized downscaling
Just as in the case of least-squares supersampling, the least-squares
downscaling technique of section 4.5 gives rise to ringing artifacts
(figure 8a,b). We may therefore wish to take advantage of the per-
ceptually superior filtering properties of an equivalent generating
function ψ = p ∗ ψ. To do that, we follow the steps of section 4.5.
In words, we reconstruct a signal f̃ in Vϕ, and then sample f̃ψs . In
this derivation, let f denote our discrete input, so that f̃ = f ∗ ϕ,
with ϕ = r ∗ ϕ. It follows that:

Jf̃ψsKs= Jf̃ ∗ ( 1
s
ψs)
∨K
s
= Jf ∗ϕ ∗ ( 1

s
ψs)
∨K
s

(65)

= Jf ∗ϕ ∗ ( 1
s
p ∗s ψs)∨Ks= 1

s
p∨∗ Jf ∗ϕ ∗ (ψs)

∨Ks(66)

= 1
s
p∨∗ Jf ∗ r ∗ ϕ ∗ (ψs)

∨Ks(67)

= 1
s
p∨∗ Jf ∗ r ∗ aϕ,ψsKs.(68)

Equation (68) describes a family of downscaling algorithms
parametrized by the choices of the analysis and reconstruction ker-
nels ψ and ϕ. For example, setting ψ = ϕ = (β3)int, and special-
izing to s= 2, we reach the following algorithm for the recursive

(a) Least-squares in Vβ3 (b) Bandlimited (least-sq. in Vsinc)

(c) Using ψ = K (Keys) (d) Using ψ = ϕ = (β3)int

Figure 8: Comparison of downscaling strategies. The images show
mipmap level 3 (corresponding to downscaling by s=8). (a,b) Least-
squares downscaling (section 4.5) in Vβ3 and Vsinc (bandlimited
scaling in frequency space) are the sharpest, but contain ringing
artifacts. (c) The popular Keys (Catmull-Rom) kernel performs well.
(d) The images produced by our generalized downscaling strategy
in equation (69) are sharper and show negligible ringing.

Figure 9: Comparison of aliasing characteristics of two fast down-
scaling strategies. Given the input image (left), downscaling by
a factor of 8 with the traditional Keys filter (70) results in more
aliasing (middle) than with generalized downscaling (71) (right).

generation of level i in an image pyramid, starting from an input
image f0:

f i = 1
2
Jβ3K-∨∗ qf i-1 ∗ Jβ3K-1∗ Jaβ3,β3

2
Ky

2
.(69)

Here, sequence Jaβ3,β3
2
K is symmetric, has support 12, and is used in

a direct convolution. The remaining operations are convolutions with
the inverse of kernel Jβ3K, which is symmetric and has support 3.
Section 6 shows how to perform these operations efficiently.

Figure 8 compares the result of (69) with traditional Keys
(Catmull-Rom) downscaling, i.e. setting ψ = K in equation (49) to
obtain

f i = 1
2

q
f i-1 ∗ J(K2)∨Ky

2
.(70)

The generalized downscaling result is slightly sharper.
In real-time applications (such as mipmap construction), we rec-

ommend generalized downscaling with ψ = S3 (the cubic interpo-
lator of Schaum [1993]) and ϕ = β0 (nearest-neighbor). The re-
sulting sequence JaS3,β0

2
K = 1

192
J-7,-9,53,155,155,53,-9,-7K has only 8

nonzero elements and there are no inverse convolutions:

f i = 1
2

q
f i-1 ∗ JaS3,β0

2
Ky

2
.(71)

Thus it is as efficient as traditional Keys downscaling (70), and as
shown in figure 9, it aliases less.



5.6 Summary of algorithms
The following table provides a summary of the generalized sampling
algorithms. It shows the setting in which they are applicable, and
the associated discrete transforms q.

Algorithm Setting Discrete correction q

Orth. projection ψ = ϕ JaϕK-1
Consist. sampling ψ,ϕ given Jaψ,ϕK-1
Interpolation ψ = δ? JϕK-1
L.S. translation JPϕ(f̃ ∗ δτ )K JaϕK-1∗ Jδt ∗ aϕK ∗ JϕK
L.S. downscaling† JPϕs f̃K s JaϕK-1∗ JϕK
L.S. supersampling JPϕfK JaϕK-1∗ JϕK
Consist. supersampling‡∗ JPξ◦⊥ψfK JaξK ∗ Jaξ,ψK-1
Gen. supersampling‡ Jf ∗ ψ∨K p∨, ψ = p ∗ ψ
Gen. downscaling† Jf̃ ∗ (ψs)

∨Ks 1
s
p∨, ψ =p ∗ ψ

†The downscaling operations also involve an additional filter before down-
sampling and correction. ‡In the supersampling algorithms, the result of
the discrete correction q is the sampled reconstruction Jf̃K rather than the
sequence c. ∗The function ξ /∈ Vψ is the desired analysis filter.

6 Efficient inverse convolution
For mathematical convenience, discrete convolutions are defined
over infinite sequences. In practice however, we always deal with
finite sequences. For the purposes of this paper, when we compute a
convolution f = b ∗ c, the sequences either have finite support or
we restrict our attention to an n-element span.

Say b has finite support and cn is an n-element span of c. To
obtain an n-element output vector fn = b ∗ cn, we must specify
what happens past the boundaries of cn. There are several alterna-
tives. The simplest is to assume that c is zero outside of cn (zero
padding). A better option is to interpret cn as one of the periods of c,
which is assumed to be periodic2. An even better option, to avoid
discontinuities at the boundaries, is to work with even-periodic ex-
tensions3. For example, the even-periodic extension of a 4-element
sequence c4 = J1, 2, 3, 4K is:

c = J. . . , 3, 4, 4, 3, 2, 1, 1, 2, 3, 4︸ ︷︷ ︸
c4

, 4, 3, 2, 1, 1, 2 . . .K.
In any case, discrete convolution by b is a linear operator and as

such can be expressed in matrix form:

fn = b ∗ cn = Bncn.

This observation clarifies the meaning of the inverse operator:

cn = b-1∗ fn = B-1
n fn.

In other words, inverting a discrete convolution is equivalent to solv-
ing a linear system. Fortunately, matrix B has regular structure. For
even-periodic extensions, it is almost Toeplitz. Efficient algorithms
exist to solve the associated linear systems [Boisvert 1991]. Here
we describe an algorithm adapted from Malcolm and Palmer [1974]
for the common case where b3 = Jp, q, pK is symmetric with three
nonzero elements. The resulting even-periodic matrix is

B =




p+ q p
p q p

. . .
. . .

. . .
p q p

p q + p



,

2Periodicity is used by circular convolutions, and is implied by the DFT.
3Even-periodicity is implied by the type-II DCT. It is available as the

mirror texture address mode in Direct3D, and as the reversed or symmetric
array padding strategies in Mathematica or Matlab, respectively.

and its LU -decomposition takes the form

B = p




1
l0 1

. . .
. . .
ln-3 1

ln-2 1







l-10 1
l-11 1

. . .
. . .
l-1n-2 1

v



.

Interestingly, when |q| > 2|p| (i.e., whenB is diagonally dominant),
we do not need to compute or store the entire factorization. This
is because the sequence Jl0, l1, . . .K quickly converges to a limit
(l∞ = (q −

√
q2 − 4p2)/2p), as it forms a convergent sequence of

periodic continued fractions. Thus we can precompute and store the
prefix of the sequence l until convergence. Moreover the sequence
values are independent of n. The last diagonal element v = 1+1/l∞
of U must be handled separately due to boundary effects.

As an example, we provide the LU -decomposition arising from
the cubic B-spline interpolation problem, where b3 = 1

6
J1, 4, 1K:

const float l[] = {
0.2f, 0.26315789f, 0.26760563f, 0.26792453f,
0.26794742f, 0.26794907f, 0.26794918f, 0.26794919f };

const int ln = sizeof(l)/sizeof(l[0]);
const float p = 0.16666667f, v = 4.73205078f;

Only 8 coefficients are needed before the sequence l converges to
single-precision floating-point. The forward and back-substitution
are so simple that we include the source code for completeness:

void solve(float* f, int n) {
// First pass: solve Lc′ = f in-place
for (int i=1; i<ln; i++) f[i] = f[i] - l[i-1]*f[i-1];
const float l∞ = l[ln-1];
for (int i=ln; i<n; i++) f[i] = f[i] - l∞*f[i-1];
// Second pass: solve U c = c′ in-place
f[n-1] = p-1/v*f[n-1];
for (int i=n-2; i>=ln-1; i--) f[i] = l∞*(p-1*f[i]-f[i+1]);
for (int i=ln-2; i>=0; i--) f[i] = l[i]*(p-1*f[i]-f[i+1]);

}

From the algorithm, it is clear that cn = b3
-1∗ fn can be com-

puted with only 3n products and 2n additions. Coincidentally, this
is the same cost as computing fn = b3 ∗ cn. An important differ-
ence is that each element in b3 ∗ cn can be computed independently,
whereas the computation b3-1 ∗ fn involves chains of output de-
pendencies. If one can make do with a scaled version p cn of the
solution, such as for the image between the horizontal and vertical
solvers, then the computation requires n fewer products.

6.1 Connection to recursive digital filters
It is also possible to approach discrete inverse convolution from the
digital filtering perspective [Hou and Andrews 1978; Unser et al.
1991]. The basic idea is to note that b is an all-zero filter. The inverse
filter b-1 is an all-pole filter that can be factored into a causal part
and an anticausal part, each to be realized as a recursive filter. Un-
surprisingly, these are largely equivalent to the LU -decomposition
approach we describe (L-1 playing the role of the causal part, U -1

the anticausal part). The connection is clearer when the input size is
conceptually infinite, in which case B becomes bi-infinite Toeplitz,
and only the limits l∞ and d∞ appear in L and U , which become
Toeplitz themselves [McGill 1991].

With a pair of recursive digital filters, Unser et al. [1991] present
an algorithm for solving b3-1 ∗ fn using only 2n products and
2n additions (i.e., one fewer product per element), to produce a
scaled solution p cn. As we saw in the previous section, this insight
is not specific to the recursive-filter interpretation.

In our opinion, viewing convolution as a matrix operation has a
number of benefits. The finite matrix B includes boundary condi-
tions explicitly. Also, it lets us take advantage of the vast literature
on parallel solution of banded linear systems.



6.2 Connection to deconvolution
Many physical processes such as motion blur and defocus can be
formulated as convolution between an ideal image and a kernel
which may be spatially varying and even unknown. The problem
of recovering the ideal image is referred to as deconvolution. In
our context we use the term inverse convolution to avoid confusion,
because the operation may be used to transform an ideal image into
a new basis, as in figure 3.

6.3 Parallelization
When dealing with images, we solve one linear system per row, and
then one per column. Because a typical image has at least 512 rows
and columns, processing all rows concurrently and then all columns
concurrently provides significant parallelism for multicore CPUs.

Nonetheless, we use an additional strategy, recursive doubling, to
expose parallelism within each linear system. The idea is as follows.
The dependency of each output value on the previous one in a tight
loop such as

for (int i = 1; i < n; i++) f[i] -= l∞*f[i-1];

gives little freedom to the processor. We can rewrite the loop to
evaluate small batches of values per iteration. Here is an example
using batches of two values:

float p = 0, l = l∞, l2 = l*l;
for (int i = 0; i <= n-2; i += 2) {

float a = f[i+0], b = f[i+1];
float a1 = a-l*p, b1 = b-l*a;
f[i+0] = a1; p = f[i+1] = b1+l2*p;

}

Within each batch, the algorithm uses the recursive-doubling strat-
egy of Stone [1973] to expose instruction-level parallelism. This
enables a superscalar core to execute multiple arithmetic operation
per clock-cycle and to reorder instructions to hide memory latency.
The performance improvement can be significant (up to 50% on
smaller images).

Our CPU implementation of discrete inverse convolution operates
in-place on a single-precision floating-point image. It makes two
streaming passes over the image data. The first pass sweeps down
over the image, applying the substitution matrices L and U over the
image rows (left-to-right and right-to-left respectively). In addition,
as it sweeps down, it also applies the forward-substitution matrix
L over the resulting image columns. (Interleaving the horizontal
computation with the vertical sweep reduces total bandwidth to
main memory.) The second pass sweeps through the image from
bottom to top, applying the back-substitution matrix U over the
image columns. For both the vertical and horizontal computations,
we distribute bands of image columns or rows over several parallel
threads for multiprocessing. And, pixels are processed in groups
of 4 with vector SSE instructions, using recursive doubling to expose
parallelism. For a 3-channel 1-megapixel image, and the q=Jβ3K-1
cubic B-spline interpolation kernel, we obtain a processing rate of
200 megapixels per second on a 2.66GHz Intel Core i7 quad-core
processor.

6.4 Range constraints
An important consideration is that a signal f with values in a
bounded range [0, 1] may lead to a solution vector c with values
outside this range, especially when f has high-frequency content.
While this is likely acceptable for floating-point or HDR image rep-
resentations, it is a concern for common 8-bit fixed-point formats.

To enable quantization of c within an 8-bit image format, we set
its quantized range to a somewhat larger interval [−0.5, 1.5], and
solve the constrained optimization

(72) arg min
cn

‖Bn cn−fn‖2 s.t. -0.5≤cn[k]≤1.5, k = 1..n.

This is a least squares problem with simple bounds constraints, and
can be solved efficiently, for instance with the Matlab function lsqlin.
It may be possible to implement this constrained optimization in
real-time, but we have not yet explored this.

One might expect that the sampled reconstruction Jf̃ K would only
interpolate a given input f with 7 bits of precision, because the quan-
tized c values now span twice the range. Surprisingly, this is not the
case for natural images. With the bicubic B-spline basis, each pixel
is reconstructed by a weighted combination of 16 coefficients of c.
This combination effectively provides sub-quantum precision. Even
with the simple constrained optimization (72), which is unaware of
the subsequent quantization process, a reconstruction of the original
image of figure 8 from an 8-bit-quantized vector c has an rms error
of 0.10% and a maximum error of 1.2%, with over 93% of pixel
values reproduced exactly. Intuitively, the reconstruction B-spline ϕ
gives more precision to low frequencies.

As future work one could explore a combinatorial optimization
to let the 8-bit-quantized c values approximate an image with more
than 8 bits of precision. Such super-precision may be possible only
in low-frequency regions, but these smooth regions are precisely
where precision is most perceptible.

7 GPU reconstruction
GPU texture samplers have custom hardware to perform bilinear
reconstruction, essentially at no cost. With traditional filtering,
moving to higher-quality reconstruction incurs a large performance
penalty because the dedicated bilinear units are unhelpful. For
instance, implementation of the bicubic Mitchell-Netravali filter
requires 4×4=16 texture reads, versus 1 read for bilinear filtering.

As shown by Sigg and Hadwiger [2005], even though the bicubic
B-spline basis has the same 4×4 support, the fact that it is non-
negative allows it to be evaluated by combining just 4 bilinear reads
at appropriately computed locations. Therefore, the use of B-splines
for reconstruction in the lower row of Figure 3 is a significant benefit.
Ruijters et al. [2008] also describe a CUDA implementation of cubic
B-spline evaluation in both 2D and 3D.

8 Experiments and analysis
To help sort through dozens of discretization and reconstruction
strategies, we present quantitative and qualitative comparisons. Our
reconstruction tests include traditional evaluations of the effect of re-
peated rotations and translations applied to an image. For discretiza-
tion, we present qualitative comparisons based on conventional chal-
lenging test patterns. We also include a variety of animation tests
revealing subtle artifacts that would otherwise be hard to measure
quantitatively. Note that due to space constraints, we only include
in the paper a small subset of the strategies tested. The remaining
results can be found in the supplemental materials.

8.1 Frequency and transient responses

One of the most valuable tools in assessing the quality of analysis
and reconstruction filters is in the form of plots of their frequency
and transient behavior. In this section, we review how to extend this
analysis to the generalized sampling pipeline.

Frequency response The frequency response of an analysis
filter ψ reveals important information about the relationship between
the input signal f and the filtered fψ . Conversely, the frequency
response of a reconstruction kernel ϕ describes the connection be-
tween the discretized JfψK and its reconstruction f̃ .

To calculate the frequency response of a piecewise polynomial
kernel, we can use the method of Thévenaz et al. [2000] or rely
on symbolic manipulation programs. In the generalized sampling
context, we must also take into account the effect of the discrete



filtering stage. This is a simple matter, since

q̂ ∗ ϕ = q̂ ϕ̂ and q̂-1 = 1/q̂.(73)

Usually, q can be factored into components that have compact sup-
port or compactly supported inverses, so that an explicit and finite
expression for the DTFT of q comes directly from definition (15)
and property (16). We illustrate with the B-spline family, for which
the formulas are particularly simple, since

β̂n = sincn+1, ̂(βn)int = (sincn+1)/ ĴβnK,(74)

(̂βn)◦ = (sincn+1)/ ĴaβnK, aβn = β2n+1.(75)

The frequency response of (β3)int, for example, is

(̂β3)int =
sinc4

1
6
Ĵ1,4,1K ⇒ (̂β3)int(ω) =

(ω
2

)-4 sin4(ω
2

)
1
6

(
4 + 2 cos(ω)

) .(76)

Figures 10 show the amplitude responses of a variety of kernels.
(The phase responses are all linear and have been omitted.) It has
been shown that the spectrum of cardinal B-splines (and of their
duals) converges to that of the ideal low-pass filter (shown in dashed
lines) as n increases [Aldroubi and Unser 1994], and this is clearly
visible from figures 10a–f. The plots also indicate that cubic B-
spline interpolation should perform substantially better than the
popular Mitchell-Netravali and Keys (Catmull-Rom) cubic kernels
(compare with figures 10d–e), and even match the quality of Lanczos’
windowed-sinc approximation with supportW = 6. Using the same
support, we could instead use the quintic B-spline interpolation
and obtain even higher quality. These results are confirmed by the
experiments in section 8.

The reconstruction response does not tell the whole story because
we are often more interested in the relationship between the sampled
and resampled signals JfψK and Jf̃ K. To qualify this resampling
response, Parker et al. [1983] suggest evaluating the effect of the
naïve translation operation for varying offsets τ (see section 4.4).
Once again, we must take into account the discrete filter q, so we an-
alyze the spectrum of the discrete filter q ∗ Jδτ ∗ ϕK. Since Jδτ ∗ ϕK
has compact support, the DTFTs can again be computed explic-
itly from (15) and (16). To consolidate information of all offsets τ
into a single plot, each plot shows a shaded the region between the
minimum and maximum values over all offsets τ ∈ [- 1

2
, 1

2
]. This

means that a horizontal line at amplitude one is the ideal resam-
pling amplitude response, whereas a horizontal line at zero is the
ideal resampling phase error. The size and shape of the shaded
regions therefore depict the extent to which each resampling strategy
deviates from these ideals.

The results in figure 11 show that all resampling strategies attenu-
ate and displace high frequency detail (at least for certain offsets).
Unlike the interpolating strategies, Mitchell and Netravali [1988]
reconstruction attenuates high frequencies even at zero offset. Also
apparent is the improvement in the resampling spectrum of B-spline
interpolation as the degree increases. Other conclusions are similar
to those drawn from figure 10.

Transient response The impulse and step responses of a recon-
struction strategy reveal transient properties that cannot be deduced
from the frequency-space analysis just discussed. The impulse re-
sponse is the result of reconstructing the unit impulse sequence δ,
and depicts the kernel ϕ = q ∗ ϕ itself. The step response is the
result of reconstructing the unit step sequence J. . . , 0, 1, . . .K (i.e., a
sharp edge).

Figure 12 shows the impulse and step responses of selected ker-
nels. The most prominent transient artifacts visible in many plots is
ringing — an oscillatory overshoot near image edges. Any kernel
containing negative lobes produces some amount of ringing, and

minimizing these artifacts was one of the goals in the design of the
Mitchell-Netravali filter. The significant oscillations in the impulse
and step response of figure 12 have often scared users away from
B-spline interpolation, even though the amount of ringing seems to
be comparable to the popular Lanczos reconstruction.

Here we note that properly antialiased images seldom contain
sharp discontinuities such as the unit impulse and step. Instead,
discontinuities are smoothed out into more gradual changes, such as
the ramp in sequence J. . . , 0, 0, 1

2
, 1, 1, . . .K. As seen in figure 12,

such milder transitions generate significantly smaller oscillations.
This is why images reconstructed with B-spline interpolation do not
suffer from the severe ringing artifacts one might expect.

8.2 Quantitative experiments
It is common practice in the literature to evaluate the quality of a
reconstruction technique by analyzing the effect of repeated op-
erations (such as translations and rotations). This type of test
greatly magnifies any artifacts introduced by a given reconstruc-
tion scheme to more easily reveal which method performs best.
Moreover, if we rotate or translate back to the initial alignment,
the original image provides ground truth. The results in table 1
show reconstruction accuracy results, using the mean structural
similarity (MSSIM) metric of Wang et al. [2004], which is closer
to the perceptual characteristics of the human visual system than
mean squared error. We use 32 successive translations, cycling over
{(0.5,0.5),(0.5,-0.5),(-0.5,-0.5),(-0.5,0.5)}, and 31 successive rotations
by angle 2π/31 about the image center. Four test images are taken
from the Kodak lossless true color image suite, and “CIR” is the
radial function f = 1 + cos( 4πr

5
4−r/n). In supplemental material

we provide a larger table with a superset of filters. We also include
results of rms error (PSNR), in which the quality rankings of the
filters are very similar.

8.3 Animation tests
In animation sequences, the effect of the resampling frequency re-
sponse of section 8.1 is often visible. Phase errors cause high fre-
quencies to oscillate in position, whereas amplitude errors cause
high frequencies to oscillate in brightness. To demonstrate these
effects, we use simple animation sequences in which each frame is
the result of translating an input image around a circle with a 5 pixel
radius, according to the naïve scheme of section 4.4. These results
are available in the supplemental material.

9 Conclusions
Generalized sampling is an exciting approach for filtering signals
in graphics. Our extensive analysis and experiments confirm that it
enables significantly higher quality in upsampling and resampling
operations. We have drawn from many concepts of generalized sam-
pling to derive a variety of supersampling techniques, and shown
that these offer comparable quality to the best conventional tech-
niques, but with greater freedom in decoupling the integration filter
from the desired spectral properties. Similarly, we have explored a
new family of downscaling techniques, some of which outperform
traditional algorithms in terms of blurring, ringing, and aliasing.
Generalized sampling does require the solution of discrete inverse
filters, but this problem can be solved efficiently and scales well to
multicore architectures. One of our lasting contributions may be
the new parameterless notation used throughout the paper, which
algebraically joins discrete and continuous functions. By freeing us
from tedious index manipulations, it lets us reason more intuitively
about otherwise complex operations.
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(a) (β1)int (linear) (b) (β3)int (W = 4) (c) (β5)int (W = 6) (d) Mitchell (W = 4) (e) Keys (W = 4) (f) Lanczos (W = 6)

Figure 10: Reconstruction frequency responses. (a–c) The amplitude response of B-spline interpolation approaches that of the ideal low-pass
filter as the degree increases. (b) (β3)int outperforms the popular cubic kernels (d) [Mitchell and Netravali 1988] and (e) [Keys 1981], and has
quality comparable to that of the more expensive Lanczos kernel (f). Using the same support, (β5)int in (c) performs even better.

Table 1: Quantitative analysis of reconstruction quality. Kernel properties are degree N , width W , and approximation order L. The main
columns report the mean structural similarity (MSSIM) between five reference images (circles of Figure 3, four Kodak benchmarks) and
their reconstructions for three types of experiments (repeated translations or rotations, and single upsampling). The kernels are sorted
in descending order of average quality across all experiments. The interpolating B-splines bspline*i consistently outperform the more
traditional filters for the same N and W . The O-MOMS kernels omoms* offer even slightly higher quality but at the expense of differentiability.
The quasi-interpolant condat2, which has degree 2 and support 3, also performs remarkably well.

Comparison against ground truth (MSSIM)

Properties Repeated translations Repeated rotations Upscaling Average

Kernel N W L CIR K05 K08 K19 K23 CIR K05 K08 K19 K23 CIR AVG

omoms5 5 6 6 0.993 0.975 0.945 0.957 0.984 0.999 0.986 0.977 0.980 0.990 0.886 0.979
bspline5i 5 6 6 0.990 0.966 0.931 0.947 0.981 0.998 0.983 0.972 0.976 0.989 0.886 0.973
omoms3 3 4 4 0.981 0.949 0.905 0.929 0.975 0.997 0.980 0.968 0.973 0.987 0.886 0.964
quasiblu35 3 4 4 0.965 0.926 0.874 0.907 0.969 0.994 0.975 0.961 0.968 0.986 0.885 0.946
condat3 3 4 4 0.962 0.921 0.867 0.903 0.967 0.991 0.971 0.956 0.964 0.984 0.885 0.943
hamming6 – 6 1 0.960 0.918 0.862 0.901 0.966 0.977 0.956 0.937 0.951 0.979 0.885 0.941
bspline3i 3 4 4 0.948 0.904 0.846 0.888 0.963 0.977 0.958 0.938 0.952 0.980 0.885 0.935
condat2 2 3 3 0.930 0.884 0.822 0.872 0.957 0.989 0.967 0.951 0.961 0.983 0.884 0.927
lanczos6 – 6 1 0.964 0.788 0.787 0.827 0.909 0.987 0.959 0.946 0.958 0.978 0.884 0.910
bspline2i 2 3 3 0.901 0.854 0.787 0.848 0.949 0.955 0.939 0.916 0.936 0.975 0.884 0.906
omoms2 2 3 3 0.814 0.774 0.713 0.793 0.929 0.961 0.944 0.921 0.940 0.976 0.885 0.876
schaum2∗ 2 3 3 0.822 0.782 0.710 0.792 0.930 0.921 0.914 0.885 0.916 0.967 0.877 0.864
lanczos4 – 4 1 0.822 0.782 0.710 0.792 0.930 0.896 0.902 0.871 0.906 0.963 0.882 0.857
keys† 3 4 3 0.822 0.782 0.710 0.792 0.930 0.894 0.900 0.869 0.905 0.963 0.882 0.857
schaum3‡ 3 4 4 0.822 0.782 0.710 0.792 0.930 0.876 0.891 0.858 0.897 0.960 0.883 0.852
dalai1 1 2 2 0.657 0.652 0.601 0.715 0.896 0.956 0. 938 0.915 0.936 0.974 0.865 0.828
linrev 1 2 2 0.686 0.667 0.587 0.710 0.898 0.960 0.926 0.903 0.924 0.960 0.864 0.822
condat1 1 2 2 0.651 0.648 0.597 0.713 0.895 0.947 0.933 0.909 0.931 0.972 0.866 0.824
hamming4 – 4 1 0.663 0.657 0.603 0.716 0.897 0.822 0.859 0.826 0.875 0.951 0.879 0.787
mitchell 3 4 2 0.581 0.599 0.554 0.685 0.881 0.625 0.761 0.733 0.810 0.921 0.881 0.715
linear 1 2 2 0.391 0.480 0.449 0.623 0.847 0.540 0.721 0.698 0.787 0.908 0.864 0.644
nearest 0 1 1 0.042 0.102 0.087 0.367 0.560 0.547 0.654 0.633 0.731 0.851 0.586 0.457

∗Same as IMOMS-2. †Same as Catmull-Rom. ‡Same as IMOMS-3. The kernels omoms* are from [Blu et al. 2001]; bspline*i are the cardinal B-splines βint;
schaum* are from [Schaum 1993]; linrev is from [Blu et al. 2004]; condat* are from [Condat et al. 2005]; dalai1 is from [Dalai et al. 2005].
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Figure 11: Resampling frequency responses. The shaded regions indicate the range of amplitude and phase responses when resampling under
all possible shifts of the input signal. These results corroborate those of figure 10. The cubic B-spline interpolation (b) performs better than
other cubic kernels (d,e), and the quintic B-spline (c) performs better than Lanczos (f).
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Figure 12: Transient responses. Any reconstruction kernel containing negative lobes results in a certain amount of ringing (b–f). Mitchell
and Netravali [1988] designed their kernel to minimize such problems (d), and this can be seen in the comparison with the impulse and step
responses of other kernels, in particular B-spline interpolation (b,c) and Lanczos (f). The ramp response, which is more characteristic of
properly antialiased images, predicts significantly reduced ringing across all kernels.
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