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Abstract

The work presents a method for obtaining perceptually natural panoramic
videos, that is, videos composed of wide-angle frames, where straight lines
and object shapes are preserved. The shape preservation for moving ob-
jects has a special treatment in order to avoid unpleasant temporal artifacts.
The problem is geometrically modeled for the case of a fixed omnidirec-
tional camera, and a solution by optimization is presented. Our optimization
works per-frame, which makes the proposed method scalable and practical
for arbitrarily long scenes. Results show the potential of this technique as a
way to provide more information in a movie, and reveals new possibilities
for the art of film making.

1 Introduction

We present a method for obtaining perceptually natural panoramic videos. By
panoramic videos we mean videos where each frame is a wide-angle image. The
notion of naturalness is represented by a set of energy terms describing perceptual
properties such as shape and straight-line preservation. Shape preservation of
moving objects across time is especially treated.

Since their invention, video cameras evolved a lot in terms of image quality, image
representation, zoom and portability. On the other hand, the language of shooting
videos remains nearly the same. Thus, movie making techniques consist mainly
of changing the position of the camera, the direction which it points to and the
zoom of the lens (in some narrow field of view range). Even artistic explorations
(e.g., the Hitchcock zoom) do not depart very much from these settings.
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With the recent developments in computational photography, omnidirectional video
cameras appeared. They are now being widely used for navigation and immersion
purposes (e.g., Google Street View). However, the way in which they are applied
simulates traditional cameras. The only difference is that now the user decides the
view direction and zoom angle.

We consider a new use for the spherical videos provided by these cameras: videos
with wide-angle frames. We improve on recent developments in the understanding
of the distortions involved in wide-angle images [Zorin and Barr 1995; Zelnik-
Manor et al. 2005; Kopf et al. 2007, 2009; Carroll et al. 2009], and study the
implications of the introduction of the time dimension.

We consider the case in which the viewpoint and the field of view are fixed,
which allows a variety of applications such as sport broadcasting, film making,
and surveillance.

Since the only difference between our problem and the one of computing static
panoramic images are the moving objects, one could think of segmenting the
moving objects and computing separate projections for the background and the
foreground. This approach presents some problems: first, a precise segmentation
(at subpixel level) would be required. Second, a method for accurately combin-
ing images from the different projections would also be necessary. Finally, the
most difficult problem would be the imposition of spatial and temporal relations
between the different projections for background and foreground.

Another possibility would be to solve the problem for both background and fore-
ground at the same time, considering all the video as a space-time volumetric
mesh. Shape preservation for the moving objects in different frames could be
imposed in the same way methods for other problems already did (for example,
[Wang et al. 2009] for video resizing). This solution suffers from some draw-
backs: first, the related optimization problem can easily reach the size of millions
of variables. Solving for smaller parts of the video can alleviate this problem but
compromises temporal coherence. But the most important issue is that imposing
coherence for moving objects can affect the background, and even if the back-
ground changes smoothly this would be noticeable. For example, it would be
unacceptable for the floor or walls of a room to move during a video.

Our solution is a hybrid of the two possibilities mentioned above. We first com-
pute a minimum energy projection for the background, using novel energy terms
which substantially improve previous ones proposed in the panoramic image lit-
erature. We then use this background projection as a reference to compute an
optimizing projection for each frame, based on energy terms designed specifically
to avoid distorting moving objects and to consider temporal variations coming
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from neighboring frames. Finally, we perform another optimization to correct the
background areas that were affected by the intermediate step.

Since our method solves the problem separately for each frame, it is scalable and
practical for arbitraitly long films. The linear systems that have to be solved for
each frame are well conditioned, which enables the method to quickly converge
to an accurate solution. Moreover, the method is simple to be implemented and
leads to high quality results.

The text is structured as follows. We review the literature and discuss previous
work in Section 2. The pipeline of the proposed method is described in Sec-
tion 3. Section 4 details the spatial constraints and the first optimization step of
our method. Section 5 approaches the temporal requirements and the other two
optimizations that are performed for each frame. Section 6 gives some implemen-
tation details and presents some results. The text concludes with remarks about
limitations and future work in Section 7.

2 Related Work

As the availability of point-and-shoot cameras capable of producing panoramic
images increases, the problem of preserving straight lines and object shapes in the
resulting projections has gained renewed practical relevance.

Early work in this area [Zorin and Barr 1995] formalized desirable properties for
wide-angle images and showed that the preservation of object shapes and straight
lines cannot be satisfied simultaneously. The alternative the authors proposed was
to employ a family of transformations that can achieve a compromise between
these two constraints according to a parameter and minimize the overall distortion
of the final picture.

Follow-up work in this area started to use the scene content. Agrawala et al. [2000]
use local projections to introduce shape distortions of individual objects, allow-
ing for artistic control. Zelnik-Manor et al. [2005] use local projections for the
foreground objects and multi-plane perspective projections for the background.
Discontinuities appearing in the intersection between projection planes are han-
dled by choosing these planes in a way that fits the geometry of the scene.

The method by Kopf et al. [2009] starts with a projection cylinder and deforms it
in order to rectify user specified planar regions in the scene. The work of Carroll
et al. [2009] formulates energies that measure how a panoramic image creates
distortions such as line bending and shape stretching and find a least distorted
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projection via an optimization process.

Between all the works that deal with panoramic images, our work is most closely
related to [Carroll et al. 2009]. The spatial constraints we use to obtain a good
projection for the background are similar to theirs. But we have made some signif-
icant improvements to their formulation: (1) Our optimization process has a proof
of convergence; (2) Our line constraints are more uniformly distributed along the
lines. Their approach imposed considerably more constraints on the endpoints;
(3) Our extra energy term to make the final linear system nonsingular is more nat-
ural, since it fixes scale and general position of the projection. In contrast, they
add a term that penalizes the projection from deviating from the stereographic
projection.

The most straightforward approach to generating a panoramic video would be
to directly use well-established panoramic image methods in a frame by frame
manner. However, since these methods do not consider temporal variations in the
scene, undesirable distortions in the final result would appear. For instance, ap-
plying the work of Zelnik-Manor et al. [2005] would cause objects to have strong
variation in orientation when they pass over the intersection of projection planes.
A similar behavior would happen if one applied the approach by Kopf et al. [2009]
to scenes with intersecting or close planar regions. Temporal incoherences of scale
and orientation for the moving objects would also happen when using the method
of Carroll et al. [2009], especially near line segments.

Temporal incoherences as the ones mentioned above were already considered in
other contexts, such as video resizing. Between all the works in this subject, the
ones closest to ours are [Wang et al. 2009], [Wang et al. 2010] and [Wang et al.
2011]. The preservation of moving objects that we impose are related to the ones
proposed by Wang et al. [2009] and our concern of making the method scalable
has connections with [Wang et al. 2011]. But we explore these ideas in a different
way and in a very different context.

Although the problem of generating videos composed of wide-angle frames has
not yet been thoroughly investigated, a few additional related works are worthy of
mention. In [Agarwala et al. 2005], for instance, the authors produce a video with
wide-angle frames from a set of common photographs, by transferring textures be-
tween frames in a coherent way. This work, however, does not consider geometric
distortions, and is restricted to scenes with a particular structure: those that allow
the construction of video textures. For immersion purposes, works such as [Neu-
mann et al. 2000], [Kimber et al. 2001], and [Uyttendaele et al. 2004] generate
video in which each frame has a narrow FOV. Similar ideas are already available
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Figure 1: Top: in the pre-processing phase, straight lines are marked on the
background images (left) and the field of view is specified on the foreground im-
ages (right). Bottom: the greatest box contained in all frames is suggested as the
crop area for the generation of the final video.

on the web1.

3 Overview

The pipeline for the panoramic video generation method that we propose is as
follows.

Since we are dealing with the case of a fixed camera and moving objects, we
treat background and foreground objects in different ways. Thus, the first step
consists of capturing two panoramic videos: one with the background scene, and
the other with the moving objects. The source videos are omnidirectional: a series
of equirectangular frames, shot with a 5-lens spherical camera (Ladybug2, by
Point Grey).

Then, three phases are performed: pre-processing, optimization and post-processing.
We will detail here the phases performed with user interaction (pre- and post-
processing). The optimization procedure will be described in the following sec-
tions.

In the pre-processing phase, the user loads the background and foregrounds im-
ages of the scene, in separate windows. Over the background images, straight

1See http://edition.cnn.com/interactive/2010/01/world/haiti.360/
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lines are marked, in the same manner as was done in [Carroll et al. 2009] for
panoramic images (Figure 1, top left). Lines are tagged as horizontal, vertical or
slanted (of undetermined orientation). Foreground images are used to specify the
area of the images that will be transformed (Figure 1, top right). While the user
works on these operations, background subtraction is performed in order to detect
the moving objects.

The post-processing phase consists of cropping an area of the distorted images
to produce the final video. The solution of the optimization problem is a vector
with the positions where the points of a grid superimposed on the original frames
should go. These positions, along with the corresponding texture coordinates,
are used to suggest to the user a possible region for cropping (Figure 1, bottom),
which can be edited if desired.

4 Spatial Constraints

Our method consists of distorting the set of input equi-rectangular images in order
to produce a temporally consistently deformed panoramic video. Thus, we want
to find a projection

U : [λo, λf ]× [φo, φf ]× [0, tf ]→ R3 (1)
(λ, φ, t) 7→ (U(λ, φ, t), V (λ, φ, t), t)

with desirable properties. Above, [λo, λf ] × [φo, φf ] ⊆ [−π, π] × [−π
2
, π

2
] is the

FOV specified by the user and [0, tf ] is a time interval. Given integers m and n
we define the discretization

φi = φo + i∆φ, λj = λo + j∆λ, tk = k∆t, (2)

where i = 0, . . . ,m − 1, j = 0, . . . , n − 1, k = 0, . . . l − 1, ∆φ =
φf−φo
m−1

,
∆λ =

λf−λo
n−1

and l is the number of frames. With this setting, we replace the
continuous problem by finding

Uijk := (Uijk, Vijk, tk) = U(λj, φi, tk). (3)

Before computing a discretized projection for the whole video, we formulate in
this section energies that measure how the discretized projection of the back-
ground deviates from well known requirements for panoramic images. By mini-
mizing these energies, we obtain a good projection for the background which con-
sists in the first step of our panoramic video generation system. The unknowns
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Uij and Vij for the background (the index k is not necessary in this case) are put
together in a solution vector denoted by xbg .

Conformality and smoothness: The energies that we use to model these proper-
ties are very similar to the ones proposed by Carroll et al. [2009], with the main
differences being that we constrain the variation of both north and east differen-
tial vectors in the smoothness energy (their formulation constrains only the north
vector, which can lead to additional temporal incoherences in panoramic videos),
we do not use the proposed spatially-varying weights (we did not find them nec-
essary in our framework) and we weight the constraints by the area of the quads,
instaed of a factor of the area. We denote by Ec(xbg) the conformality energy and
by Es(xbg) the smoothness energy.

Straight lines: Let L be a user specified line segment in the spherical domain and
nL a normal vector associated to the projection of L in the final result. For exam-
ple, if the user specifies L to be vertical in the final result, then nL =

(
1 0

)T .
If L is set to be horizontal, then nL =

(
0 1

)T . If the user does not specify an
orientation for L, then nL is unknown.

Let also VL be the set of edges of the discretization grid of the domain intersected
by L. For each vertical edge ew = {(λjw , φiw), (λjw , φiw+1)} ∈ Vl, we define a
virtual output vertex

UL
w = awUiw,jw + bwUiw+1,jw , (4)

where the values aw and bw are obtained in the same way did by Carroll et al.
[2009], with the only difference that we interpolate only between two points (the
edge endpoints), while they interpolate between four. We define output vertices in
an analogous way for horizontal edges.

The following energy is defined to express how the projection of L deviates from
the normal direction to nL, for all line segments L:

El(xbg , {nL}) =
∑
L line

∑
ew∈VL

(
nTL
(
UL
w+1 −UL

w

))2
. (5)

Above, UL
w+1 is the virtual output vertex defined by ew+1, the edge intersected by

L immediately after ew.

Assuming a solution xbg is available we can fix xbg in (5) and minimize El for the
unknown normals nL. For each line L, the normal for the other lines do not affect
its energy value, thus the minimization can be performed separately for each line
L. It is natural that we impose ‖ nL ‖2= 1. Then the problem becomes

arg min
∑

ew∈VL

(
nTL
(
UL
w+1 −UL

w

))2
, s.t. ‖ nL ‖2= 1. (6)
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By using the Lagrange optimality conditions, one obtains that nL is the unitary
eigenvector associated to the smallest eigenvalue of P TP where the lines of the
matrix P are given by

Pw∗ =
(
UL
w+1 −UL

w

)T
, ∀ew ∈ VL. (7)

Our optimization process to obtain a projection for the background will alternate
between optimizing for the normals nL and for the discretized projection xbg.
More details will be provided at the end of this section.

Fixing some positions: Up to now, all energies we presented are annihilated
by constant projections, making these trivial projections global minimizers for
any combination of them. To avoid this problem, we propose a new term that
fixes the V coordinates of the corner points of the discretization of the domain
[λo, λf ]× [φo, φf ]:

Ea(xbg) = (V00 − 0)2 + (V0,n−1 − 0)2 +(Vm−1,0 − 1)2 + (Vm−1,n−1 − 1)2.
(8)

This term can also be seen as a term that prevents arbitrary scales and translation
of the points, behavior that was not prevented by the other energy terms.

We are now ready to describe the first step in our optimization. The other two
steps are described in the next section.

Step 1 - Optimal background projection: The optimal projection for the back-
ground xbg is obtained by solving the following minimization problem:

arg min Ebg(xbg, {nL}), s.t. ‖ nL ‖2= 1, (9)

for all line segments L with no specified orientation, where

Ebg(xbg, {nL}) = w2
cEc(xbg) + w2

sEs(xbg) +w2
lEl(xbg, {nL}) + w2

aEa(xbg)
(10)

For all results in this paper, we have set wc = 1, ws = 0.5, wl = 3 and wa = 0.01.

We solve this problem as follows: first, we drop off from (10) the terms in El
which depend on the normals {nL} and optimize all the other terms to obtain x

(0)
bg .

Then we obtain a set of optimal normals {n(0)
L } by solving (6) with xbg = x

(0)
bg .

The next step is to fix {nL} = {n(0)
L } in (10) and solve the optimization problem
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Figure 2: Detail of one frame of the result video after each of the three steps of
our method. Top-left: Result video of step 1. The man’s face present unacceptable
distortions. Top-right: Result video of step 2. The face is much less distorted, but
now some lines near the man are bent. Bottom: Result video of step 3. The head’s
shape is preserved, and the lines are a little more correct.

to obtain x
(1)
bg . By continuing this process we obtain a decreasing sequence of

energy values

Ebg(x
(0)
bg , {n

(0)
L }) > Ebg(x

(1)
bg , {n

(0)
L }) > Ebg(x

(1)
bg , {n

(1)
L }) > . . . (11)

and, since Ebg is bounded below by zero, we have that the sequence of energy
values is convergent.

5 Temporal Constraints

Applying the background projection for all frames can result in temporal incon-
sistencies on the moving objects, such as the ones shown in Figure 2 (top-left).
In this example, strong line constraints on the background severely distorted the
man’s head leading to undesirable artifacts.

In this section we design temporal constraints to avoid such inconsistencies and
propose a solution for the resulting optimization problem. We denote by xk the
vector that contains the unknown positions Uijk and Vijk. The optimization is
performed separately for each xk, which makes our method scalable to long films.
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Shape preservation of moving objects: The inconsistencies observed in Figure 2
(top-left) are caused by strong variations of the differential north and east vectors,
which are defined by

H(λ, φ, t) =

(∂U
∂φ

(λ, φ, t)
∂V
∂φ

(λ, φ, t)

)
(12)

and

K(λ, φ, t) =
1

cos(φ)

(
∂U
∂λ

(λ, φ, t)
∂V
∂λ

(λ, φ, t)

)
, (13)

in different areas of the background projection. When an object passes over these
areas, these variations become more pronounced, leading to unpleasant effects.

To avoid these problems we restrict the projection to be smoother in moving object
areas, by avoiding variation of the vectors H and K. For all points (λj, φi, tk)
detected as belonging to an object, if (λj+1, φi, tk) and (λj, φi+1, tk) also belong
to a moving object, we enforce{

H(λj, φi, tk) = H(λj+1, φi, tk)

K(λj, φi, tk) = K(λj+1, φi, tk)
(14)

and {
H(λj, φi, tk) = H(λj, φi+1, tk)

K(λj, φi, tk) = K(λj, φi+1, tk)
(15)

These requirements alone could still lead to temporal incoherences, since no in-
formation about the neighboring frames is being considered. For example, since
we use a mesh which is coarser than the input image resolution, inconsistencies
at object borders could appear. Also, abrupt changes in the scene such as objects
suddenly coming in and out of the frame could lead to changes in the resulting
video. Finally, the use of the segmentation in individual frames would make any
errors in the detected foreground object immediately apparent.

To consider the information coming from neighboring frames, we impose (14)
and (15) to points that belong to objects in adjacent past and future instants, as
illustrated in Figure 3. For all points (λj, φi, tk+l) detected as object at time tk+l,
if (λj+1, φi, tk+l) (λj, φi+1, tk+l) belong to an object, we ask (14) and (15) to be
satisfied. Above, l ∈ {−w

2
+ 1,−w

2
+ 2, . . . ,−1, 0, 1, . . . , w

2
− 2, w

2
− 1}, where

w corresponds to a chosen window size. Observe that we are only constraining
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Figure 3: We consider constraints coming from close past and future frames.
These constraints are multiplied by gaussian weights.

Figure 4: Illustration of the result of our temporal constraints. The object is
consistently deformed across time.

points at time tk, which makes the problem of obtaining xk independent of the
other frames. We multiply this constraints by the gaussian weights

wk,l =
1√

2πσ2
e−

l2

2σ2 , (16)

which makes constraints coming from closer frames stronger than the ones com-
ing from more distant frames. All results we present in this paper were generated
using w = 32 and σ = w

2
.

We illustrate the result of our temporal requirements in Figure 4. An object moves
from the left of the projection to the right. In the first frame, the vectors H and
K at the area occupied by the object are consistent. As the object moves away
(second frame in Figure 4) these vectors start to smoothly change, tending to be
the vectors of the projection of the background. On the other side, the vectors of
the area that the object will occupy in the future start to be more consistent. In
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third frame, the vectors on the right are equal and the vectors on the left are the
background ones.

Discretizing (14) and (15) using finite differences at each (λj, φi, tk) ∈ Obk+l,
where

Obk+l ={(λj, φi, tk)|(λj, φi, tk+l), (λj+1, φi, tk+l),

(λj, φi+1, tk+l) belong to an object},
(17)

multiplying the equations by wk,l and by cos(φi) to compensate the spherical dis-
tortions, we obtain the following energy for moving object shape preservation:

Esh(xk) = Esh,0 + Esh,1 + Esh,2 + Esh,3 +Esh,4 + Esh,5 + Esh,6 + Esh,7 (18)

In the energy above, four terms correspond to the discretization of (14) and the
other four correspond to the discretization of (15). For example, the first equation
in (14) lead to the term

Esh,0(xk) =

w
2
−1∑

l=−w
2

+1

∑
(λj ,φi,tk)∈Obk+l

(
wk,l cos(φi)

Ui+1,j,k−Uijk
∆φ

− wk,l cos(φi)
Ui+1,j+1,k−Ui,j+1,k

∆φ

)2
,

(19)

The other terms are analogous and are omitted for conciseness.

Step 2 - Optimization of the shape preservation energy: The intermediate step
of our method consists of minimizing the energy just proposed and restricting the
points that do not belong to moving objects throughout the entire time window to
be projected as in the solution of step 1. This is achieved by minimizing

Eob(xk) = γ2Esh(xk)+ ‖ xk − xbg ‖2, (20)

where xbg is the solution calculated for the background in step 1. For all the results
in this paper, we have set γ = 2.5.

Step 3 - Optimization to combine foreground and background: The solution
obtained in step 2 for xk is not satisfactory yet. As can be seen in Figure 2 (top-
right), the extra constraints for the man rectified his shape but distorted the region
around him (the line on the right of his head is not as straight as desired, for
example).

We fix this problem by re-optimizing the spatial energies plus a term that considers
how much the projection deviates from the one obtained in step 2 (say xob

k ). Thus,
we minimize

Efinal(xk) = Ebg(xk, {nL}) + γ2 ‖ xk − xob
k ‖2, (21)
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where we choose the set of normals {nL} for lines with no specified orientation
as the last one obtained in step 1. The result for the example we are considering
is shown in Figure 2 (bottom).

We observe that, although we have not proposed any energy term for temporal
coherence of the background, the preservation of the background along time is
a consequence of our formulation. After step 2, most of the points (except the
moving objects in the time window) have the same projection as the one calculated
for the background in step 1. After step 3, since the final energy is almost the
same as in step 1, the result tends to be the same for background points as the one
obtained in step 1.

6 Implementation and Results

To solve the linear systems associated to minimize (10), (20) and (21), we used
PETSc2, a toolkit that implements many Krylov methods for solving sparse linear
systems. Between these methods, we chose the Conjugate Gradient method with
SOR pre-conditioner (details can be found in [Saad 2003]).

The calculation of the optimal normals in (6) is done by using explicit formulas
for the matrix P TP and its eigenvectors. This is possible since these problems
are two dimensional problems. By alternating three times between minimizing
the background energy for {nL} and for xbg we usually obtain satisfactory con-
vergence.

Once the solutions for all frames are computed, a set of meshes is generated and
passed to OpenGL for texture mapping (textures are, of course, the correspond-
ing input equirectangular images). The user then determines, over the distorted
images, the area that will be cropped to generate the final video (as explained in
Figure 1).

For background subtraction we used OpenCV [Bradski and Kaehler 2008] and
for MOV video generation we used Quicktime. Some image handling operations
were performed using Netpbm3.

We now present some results of our method. All these results are presented in the
accompanying video of this paper.

We typically used for each frame of each video a mesh with resolution around
70 × 70 vertices. The results did not vary too much for finer meshes, so we

2http://www.mcs.anl.gov/petsc/
3http://netpbm.sourceforge.net/
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Figure 5: Two frames frames of a result of our method.

decided to use the minimum density that produces acceptable results.

All the results were generated using a desktop PC with an Intel Xeon Quad Core
2.13GHz and 12 GB of RAM. Each minimization for xbg in Step 1 took about 3
seconds and 2,000 iterations of Conjugate Gradient method to converge. Solving
steps 2 and 3 for each frame was much faster, taking in average 0.05 seconds
and 100 iterations for step 2 and 0.005 seconds and 10 iterations for step 3. We
conclude that calculating the projection for the background takes much longer, but
this is not a problem, since we only compute it once.

The first result is shown in Figures 5 and 1. This video comprehends a field of
view of 170 degrees longitude by 110 degrees latitude. It has 170 frames.

Figures 6 and 7 show input data for our method and some frames of the re-
sults. In figure 6 we show the lines marked by the user and a frame of the fore-
ground/background segmentation (the FOV is also indicated). The result consists
of a 120 × 90 FOV and has 60 frames. In figure 7 we show the lines and the
specified FOV, which is 215× 120 degrees. This video has 100 frames.

Finally, we compare a result of our method with well known standard projections
in Figure 8. We can see that our result is the only one that has the property of
preserving straight lines and both moving and still objects in the scene. This result
also evidences the scalability of our method. It has 800 frames and is one minute
long, and the the computational time to solve the optimization for each frame was
about 0.05 seconds. Each frame comprehends 135× 100 degrees.

7 Limitations and Future Work

The result in Figure 7 of the previous section reveals a weakness of our method.
Objects too close to the camera cannot appear uniformly conformal in the final
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(a) User specified lines. (b) Segmentation and specified FOV.

(c) 4th frame. (d) 25th frame.

Figure 6: (a), (b): Input data for our method. (c), (d): Frames of the result video.

(a) User specified lines. (b) FOV specified in the interface.

(c) 57th frame. (d) 94th frame.

Figure 7: (a), (b): Input data for our method. (c), (d): Frames of the result video.

15



(a) Equi-rectangular projection.

(b) Perspective projection.

(c) Stereographic projection.

(d) Mercator projection.

(e) Our optimized projection.

Figure 8: Comparison of our result with standard projections. As can be seen,
equi-rectangular (a), stereographic(c) and Mercator (d) projections do not pre-
serve straight lines. On the other hand, perspective projection (b) preserves lines
but distorts objects. Our result (e) conciliates both straight line and object preser-
vation. 16



result. This property, which we enforced on the moving objects, is not satisfied
by the table in Figures 7(c) and 7(d). Even the man on the right, which should be
more consistently deformed, appears a little distorted in Figure 7(c). This could
be fixed by prescribing an additional restriction to correct for such distortions.

In our method, we used only line segments marked over the background without
considering lines over the moving objects. Line bending is usually a problem only
for long line segments which occupy a wide FOV. Since moving objects usually
occupy a narrow FOV, line bending over moving objects did not turn out to be a
severe problem in our examples.

The need for background images could also be considered a limitation of our
work, but the background images are only important to determine whether or not
a region belongs to a moving object. Other possibilities for determining mov-
ing object areas, such as user marking or optical flow computation, can be used
instead.

As mentioned in the introduction, our method is restricted to the case where both
the field of view and viewpoint do not change across time. We think simple ex-
tensions of what was proposed in this work can handle the case of a moving FOV,
such as introducing time-varying position constraints for some points on the vary-
ing FOV. For the more general case, where both FOV and viewpoint are moving
across time, we could use the optical flow of the input video to transport geomet-
rical properties of corresponding points in a temporally coherent manner.

Our minimization based approach offers the possibility of adding extra energy
terms to control the distortion of scene features. For example, moving features
could be preserved in the same way Wang et al. [2011] did for the video resizing
problem. Artistic perspective control could be included in our formulation with
energy terms similar to the ones proposed by Carroll et al. [2010].

In conclusion, we have seen that the method presented in this work allows the
introduction of content in movies in a realistic manner. It would be interesting to
provide this tool to film makers for exploring scenes and stories that would be told
differently when using a camera with a narrower field of view. In a small room, for
instance, the director has to perform a cut in the scene to follow the dialog of two
actors in opposite ends of a wall, but a panoramic camera with the proper angle of
view could allow both actors to appear in the same view simultaneously. In fact
we are already in conversation with a film professional regarding the exploration
of possibilities like this.
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