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Abstract

We study one-dimensional flows, when air is injected into a porous medium filled with inert gas,
medium or high viscosity oil and water, giving rise to a combustion wave in a process known as high-
temperature oxidation (HTO). In the oil we distinguish three pseudo-components: asphaltenes, medium
and light oil. At high temperatures, the heaviest components (“precoke”) are converted to coke, which
undergoes combustion. Medium oil components are cracked at intermediate temperatures releasing
gaseous oil. Light oil components and water are vaporized. The oxidation rate of gaseous oil components
is negligible. Combustion regimes are described in the form of a sequence of waves. We develop a simple
mathematical pathway based on Zeldovich’s approach to provide analytical formulae for parameters in
these waves. It is shown that there is a combustion regime in which either coke or oxygen are partially
consumed in the combustion as well as a regime in which both are consumed completely. Each of the
regimes can be subdivided in two regimes, where the reaction is either trailing or leading with respect
to the thermal wave. Explicit conditions for each combustion regime are given. The structure of the oil
cracking layer is investigated. Stability of the solutions is studied. We analyse our formulae for typical
in-situ combustion data and compare the results with numerical simulations.

keyword in-situ combustion; porous medium; filtration; traveling wave; combustion regimes; stability;
heavy oil; cracking; vaporization

Nomenclature

t time (s)
x spatial coordinate (m)
cg heat capacity of gas (J/molK)
Cm heat capacity of porous medium (J/m3K)
Ec cracking activation energy (J/mol)
Eh HTO activation energy (J/mol)
Kc cracking pre-exponential factor (1/s)
Kh HTO pre-exponential factor (1/s)
Mc average molar weight of cracked oil (kg/mol)
Mh molar weight of carbon (kg/mol)
Mv average molar weight of light oil/water (kg/mol)
nh precoke (carbon) concentration (kg/m3)
nc medium oil concentration (kg/m3)
nv light oil concentration (kg/m3)
Ptot prevailing pressure of gas (Pa)
Qh HTO reaction enthalpy (J/kg)
Qc cracking reaction enthalpy (J/kg)
Qv vaporization heat (J/kg),
R ideal gas constant (J/molK)

T temperature (K)
Tst reference temperature (K)
u gas Darcy velocity (m/s)
Y molar fraction of oxygen in gas (mol/mol)
λ thermal conductivity of porous medium (W/mK)
ρ molar density of gas (mol/m3)
φ porosity
Wh HTO rate (kg/m3s)
Wc cracking rate (kg/m3s)
Wv vaporization rate (kg/m3s)
inj injection conditions (subscript)
unb unburned part of a reactant (sub- or superscript)
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Dimensionless variables
θ temperature
θv vapor zone temperature
m gas flux

1 Introduction

There is renewed interest in developing methods to recover ”difficult oil”. One of the options to recover
medium viscosity oil, i.e., oil with a viscosity lower than 104 [cP], is the application of air injection [1, 2,
3, 4, 5, 6, 7]. It is proposed that the oxygen in the air burns the heavier components of oil, generating a
heat wave leading to cracking and vaporization of lighter components. Studying a one dimensional version
of this flow would reveal some mechanisms in the combustion process. Even in 1-D this is not a trivial
problem, because combustion, cracking, etc., occur in regions with narrow width, leading to a tough multi-
scale problem [8, 9, 10, 11, 12]. For this reason it is useful to develop analytical models that can be used to
validate numerical results and for assessing the risk of oxygen breakthrough [13, 14], a serious hazard in the
application of this technique.

Analytical studies of steady combustion waves in a porous medium containing solid fuel were performed
for forward [15] and counterflow [16] combustion, as well as for buoyant combustion [17, 18]. Transition to
flaming was analyed in [19]. Intermediate resonant regimes leading to maximal energy accumulation were
investigated in [20]. Periodic and other non-steady combustion regimes were investigated in [21, 22].

Note that in petroleum field applications of in-situ combustion heat losses are very small. However, they
may become significant in laboratory experiments. The effect of heat losses for coke combustion was studied
in [23]. Heat losses also prevent unlimited increase of temperature in the resonance regime [20].

A wave structure analysis within a narrow combustion layer is necessary representing the major mathe-
matical difficulty. The typical approach uses a sheet approximation for the reaction region, e.g., [24], or large
activation energy asymptotic expansion, e.g., [15]. Reaction-leading or reaction-trailing wave structures are
usually identified, which correspond to partial oxygen or partial fuel consumption in the reaction for our prob-
lem. Additional physical processes may influence the combustion, e.g., multiple reactions [25, 26, 27, 28, 29],
effects of solid conversion [30], gas–solid nonequilibrium [24], and vaporization of liquid (water) initially
present in the reservoir [31] or injected with air [32, 33]. Similar analyses have been applied in problems of
polymerization [34, 35] and smoldering of polyurethane foam, e.g., [36].

We analyse a three pseudo-component model for crude oil in-situ combustion presented in [14]. The
pseudo-components are distinguished according to the types of reaction in which they participate, viz.,
HTO, cracking and vaporization. The gas phase contains oxygen, gaseous oil, steam, combustion products
(carbon dioxide) and inert gas, e.g., N2. In some combustion regimes, oxygen may be present in the gas
together with gaseous light oil, potentially leading to oxidation. However, the oxidation in the gaseous phase
can be ignored in in-situ combustion applications; this reaction is suppressed because of small pore size.
Such a model allows describing the internal structure of the combustion wave relative to HTO, cracking and
vaporization, which is our contribution.

We approximate the solution of the combustion process as a sequence of thermal and combustion waves
traveling with constant speeds and separated by a constant state (hot) region in between. In this paper we
take the reservoir state ahead of the sequence of waves as given. Otherwise, one would require an extension of
the present model to include flow, condensation and slow oxidation reactions in the reservoir at relatively low
temperatures, which is a separate problem. Based on the large activation energy asymptotic approach, we
develop a simplified method for the analysis of combustion waves. It allows a simple mathematical pathway
providing a series of analytical expressions for in-situ combustion.

Using this method, we derive explicit formulae for the dependent variables in the waves and classify
possible combustion regimes. As in previous studies (e.g., [15, 24, 32]), we distinguish the reaction-leading
and reaction-trailing structures. For both structures, our method allows to identify a relatively wide range
of parameters, corresponding to essentially complete consumption of both oxygen and coke in the HTO
reaction. We also describe in detail the structure of the cracking region, and estimate the effect of oil
vaporization. Stability of the resulting solutions is studied analytically.

The structure of the paper is as follows. Section 2 describes the model and the reduction of its equations
to a dimensionless form. In Section 3, we study combustion solutions with a reaction-leading wave sequence,
i.e., where the HTO reaction occurs at the upstream part of the sequence. Section 4 studies solutions with a
reaction-trailing wave sequence. In Section 5 we give stability conditions for the solutions obtained. Section
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6 presents the results of numerical calculations with typical reservoir data for in-situ combustion. We end
with some conclusions. The Appendices provide the study of the cracking layer in more detail and the
stability analysis of steady combustion waves.

2 Model

Models of in-situ combustion in oil reservoirs have several properties distinguishing them from smoldering
problems in other environments like polyurethane foams, SHS, etc.. The usual set of assumptions includes
(see, e.g., [23]): large volumetric rock heat capacity, limited fuel availability in certain cases, small pore sizes
suppressing reactions in the gas phase, small heat radiation effects in the rock, large prevailing pressures
with small relative variations, small changes of porosity and permeability in the combustion process, and
small heat losses.

The subject of our study are flows possessing a combustion wave when a gaseous oxidizer (air) is injected
into the porous medium, a rock cylinder thermally insulated preventing lateral heat losses and filled with
gas, some crude (medium viscosity) oil, and water. The case of forward combustion when the ignition occurs
at the injection side is considered. In our study of combustion, the mobility of any components other than
gas will be ignored, because it is assumed that the speed of the reaction wave exceeds substantially the speed
of any liquids.

Oil consists of multiple components: asphaltenes, volatiles, saturates, aromatics, resins, etc.. We will
consider a reaction scheme comprising high-temperature oxidation (HTO), cracking and vaporization. The
oil components will be grouped accordingly into three pseudo-components called precoke, medium and light
oil.

Precoke includes the heaviest (asphaltene) components, which are converted to coke at high temperatures,
releasing gaseous hydrocarbons. The gaseous mass and heat exchanges in this process are small and can be
neglected, so we include coke into the same precoke pseudo-component. We describe precoke in terms of the
corresponding carbon concentration nh. The combustion of coke in the presence of oxygen (HTO) gives rise
to the highest temperatures present in the combustion process. We model HTO as a single reaction

C +O2 → CO2. (2.1)

The lighter components, which are vaporized ahead of the combustion layer, are grouped into the light
oil pseudo-component with concentration nv. If water is present, we include it into the nv component. The
remaining parts form a medium oil pseudo-component with concentration nc. As temperature increases, the
medium oil cracks into lighter components, which are released as vapor. The concentrations nh, nc, nv are
expressed in terms of [kg/m3 of porous medium].

Transport of oil by convection is disregarded, as explained above. Therefore, it is possible to write the
rate of change of the oil concentrations in terms of the reaction rates W [kg/m3s] as follows

∂nh

∂t
= −Wh,

∂nc

∂t
= −Wc,

∂nv

∂t
= −Wv. (2.2)

As to the gas composition, we distinguish between the molar fraction Y of oxygen and the remaining
non-reactive gas fraction 1 − Y that consists of vaporized oil, steam, combustion products and initial inert
gas. The mass balance equations for the gas fractions are

φ
∂

∂t
(1− Y )ρ+

∂

∂x
(1− Y )ρu =

Wh

Mh
+

Wc

Mc
+

Wv

Mv
, (2.3)

φ
∂

∂t
Y ρ+

∂

∂x
Y ρu = −Wh

Mh
, (2.4)

with the constant rock porosity φ and gas density ρ = Ptot/RT . Pressure variations are assumed to be
small, so we take Ptot = const. We ignored diffusion in (2.3), (2.4). For the most typical reaction-leading
wave structure, diffusion effects are unimportant as will be justified later. For the reaction-trailing wave
structure, the case when diffusion is dominant in the HTO layer requires a separate study. The sum of (2.3)
and (2.4) gives the mass balance for the total gas

φ
∂ρ

∂t
+

∂ρu

∂x
=

Wc

Mc
+

Wv

Mv
. (2.5)
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Here the Wh term cancels out as the HTO reaction (2.1) produces no net gas in moles.
Assuming that the temperature of solid rock, liquid oil/water and gas are equal and neglecting heat

losses, we write the heat transport equation as

Cm
∂T

∂t
+ cg

∂

∂x
ρu(T − Tst) = λ

∂2T

∂x2
+QhWh −QcWc −QvWv. (2.6)

The heats Qh, Qv are positive; in most situations Qc is also positive. In the accumulation term, we ignore
gas, water and oil heat capacities compared to rock heat capacity. Therefore, the heat capacity per unit
volume of the porous medium is taken approximately equal to the constant heat capacity of the rock Cm.
The gas heat capacity is taken approximately as cg ≈ 3.5R, ignoring small variations of heat capacity among
different gas components. The fact that heat capacities are constant is used to write (2.6) in a simple form.

Note that the form of the left-hand side of (2.6) corresponds to constant reaction heats (enthalpies) Qh,
Qc, Qv taken at standard conditions for the temperature Tst. If these reaction heats are evaluated at the
actual temperature T , the left-hand side becomes Cm∂T/∂t+ cgρu∂T/∂x, as one can show using the mass
balance equations (2.2)–(2.5).

Arrhenius’ law and the assumption of a linear dependence on the fuel concentration and oxygen concen-
tration lead to

Wh = KhY nh exp

(
− Eh

RT

)
. (2.7)

For the cracking reaction rate, one can assume

Wc = Kcnc exp

(
− Ec

RT

)
. (2.8)

We will not need an expression for vaporization rate, because it affects only the internal structure of the
condensation wave, which is not relevant here.

The variables to be found are the temperature T , the concentrations nh, nc, nv, Y and the Darcy velocity
u. All the coefficients in the equations (Cm, cg, λ, etc.) are assumed to be constant. The air injection is
characterized by the Darcy velocity uinj , oxygen fraction Yinj and temperature Tinj .

2.1 Dimensionless equations

The governing equations are non-dimensionalized by introducing dimensionless dependent and independent
variables as ratios of dimensional quantities and reference quantities:

t̃ =
t

t∗
, x̃ =

x

x∗ , θ =
T − Tst

T ∗ , m =
ρu

m∗ ,

ñh =
nh

n∗
h

, ñc =
nc

n∗
c

, ñv =
nv

n∗
v

,

(2.9)

where m∗ = uinjPtot/RTst is the injected gas flux. We take v∗ = cgm
∗/Cm, which turns out to be the speed

of the thermal wave in a reservoir with no oil. Then we introduce the reference length x∗ = λ/(Cmv∗), which
is related to the length of the conduction zone of the combustion wave, and the corresponding reference time
t∗ = x∗/v∗. We choose T ∗ = Qhn

∗
h/Cm which is the temperature change for combustion under adiabatic

conditions. As the model presented here does not include the condensation zone, the reference concentrations
n∗
h, n

∗
c , n

∗
v will be specified later as input concentrations far downstream of the combustion wave.

In the left-hand side of (2.3)–(2.5), the accumulation terms are negligible relative to the flux terms
because the relation between the gas speed u and wave speed v = dx/dt turns out to be v/u ∼ 10−3 in our
applications. Therefore, we neglect these small terms from now on. Using (2.9) and omitting the tildes in
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the dimensionless quantities, equations (2.4)–(2.6) and (2.2) are written in dimensionless form as

∂θ

∂t
+

∂mθ

∂x
=

∂2θ

∂x2
+ wh − qcwc − qvwv, (2.10)

∂m

∂x
= γcwc + γvwv, (2.11)

∂Y m

∂x
= −γhwh, (2.12)

∂nh

∂t
= −wh, (2.13)

∂nc

∂t
= −wc, (2.14)

∂nv

∂t
= −wv (2.15)

with dimensionless parameters

qc =
Qcn

∗
c

CmT ∗ , qv =
Qvn

∗
v

CmT ∗ , θ0 =
Tst

T ∗ , θinj =
Tinj

T ∗ ,

γh =
cgn

∗
h

CmMh
, γc =

cgn
∗
c

CmMc
, γv =

cgn
∗
v

CmMv
,

Nh = t∗Kh, Nc = t∗Kc, Eh =
Eh

RT ∗ , Ec =
Ec

RT ∗ .

(2.16)

Here qc (qv) are the ratios between the heat of cracking (vaporization) and the heat of combustion. The
quantities γh, γc, γv characterize reduced fluxes with which the precoke, the intermediates and the volatiles
enter the moving combustion structure. They are normalized with respect to the air injection flux. For this
interpretation we use cg/Cm = v∗/m∗, where m∗ is the air injection flux. The quantities Nh and Nc are
related to Damköhler numbers, the ratios between reaction rates and the convective transport rate. The
quantities Eh and Ec relate the activation temperatures Eh/R and Ec/R to the temperature increase due to
the reaction. The dimensionless reaction rates are wh = t∗Wh/n

∗
h, wc = t∗Wc/n

∗
c , and wv = t∗Wv/n

∗
v with

wh = NhY nh exp

(
− Eh
θ + θ0

)
, (2.17)

wc = Ncnc exp

(
− Ec
θ + θ0

)
. (2.18)

The boundary condition expressing air injection is described as

x = 0 : θ = θinj , m = 1, Y = Yinj . (2.19)

The initial reservoir is characterised by uniform distributions of temperature θ and oil concentrations nh,
nc, nv, except for the fact that at t = 0 there must be a small region of ignition near the injection point
that allows for the formation of the combustion wave. We will study the solution as a sequence of separate
waves that develop at large times.

3 Reaction-leading structure

Solution with reaction-leading structure is shown schematically in Fig. 1. Here the (slowest) thermal wave
is determined by heat convection only. Along this wave the temperature decreases from a high combustion
temperature θh to an injected gas temperature θinj . All oil has been removed from the region where this
wave moves, so that the reaction rates are zero wh = wc = wv = 0 and the mass flux remains constant,
m = 1. Then (2.10) has solution θ(t, x) = 1

2 (θh + θinj) +
1
2 (θh − θinj) erf((x− t)/2

√
t) describing a thermal

wave moving with dimensionless speed vT = 1.
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Figure 1: Temperature vs. distance for the reaction-leading structure. The reaction wave is faster than the
thermal wave; the narrow layer in the reaction wave, where the HTO reaction occurs, is shown by the black
bar. The cold and hot zones contain injected air. The vapor zone contains oleic, aqueous and gaseous phases.
The latter contains oil vapor, steam and combustion products. The internal structure of the reaction wave
is described in Fig. 2.

Figure 2: Blow-up of Fig. 1 with ξ = x − vt. Reaction wave internal structure: HTO, cracking and vapor-
ization layers (indicated in grey). The HTO reaction occurs in a narrow layer at the highest temperatures.
Cracking of each component occurs at a certain temperature θc within the cracking layer. The values of the
oxygen flux Y m and the oil components concentrations nh, nc, nv are specified in each region.

Ahead of the intermediate hot zone there is a reaction wave with speed v > 1. This wave occurs in
wide range of temperatures and encompasses the HTO reaction, oil cracking and vaporization. The HTO
reaction takes place in a thin layer corresponding to a small interval of the highest temperatures. The HTO
layer is preceded by layers where cracking and vaporization occur, see Fig. 2. The presence of a hot zone
containing oxygen behind the reaction wave ensures that all coke is consumed in the HTO reaction. Oxygen
consumption is not necessarily complete, so the HTO reaction is coke limited.

Ahead of the reaction wave the temperature drops to the vapor zone value θv. The vapor zone contains
oil and water in both liquid and gaseous forms. In the presence of oxygen (that may partially pass through
the reaction wave), slow oxidation occurs in the vapor zone at lower temperatures. When the gas reaches
the original cold reservoir, part of the oil vapor condenses. The oil concentrations in the vapor zone as well
as the temperature θv are determined by the condensation and flow processes far ahead of the reaction wave,
which represent a separate problem. In our study of combustion, we assume these quantities to be given.

Such a solution structure is called reaction-leading because combustion occurs ahead of the hot zone. As
we will see below, the reaction-leading structure occurs when

Yinj > γh. (3.1)

This condition was also derived, e.g., in [15, 37, 38, 39] for similar problems. Note that (3.1) is satisfied
in most practical situations, unless the injected gas contains very little oxygen. Physically, γh/Yinj is the
“flux” of coke with respect to the moving thermal wave divided by the oxygen flux. If this ratio is smaller
than one, we need a higher coke “flux” and hence the reaction wave moves ahead of the thermal wave.

The unknown parameters of the reaction wave to be determined are the temperature θh, the wave speed v,
the flux change in the wave and Yunb, the amount of oxygen that passes unburned through the reaction wave.
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We assume that the reaction wave has a traveling wave form, i.e., all quantities depend on a single traveling
variable ξ = x−vt. In the hot zone behind the reaction wave, the porous medium contains only injected air:
m = 1, Y = Yinj , nh = nc = nv = 0. In the vapor zone ahead of the wave, there are liquid oil, liquid water
and gas. The gas contains combustion products, light oil vapor, steam, and possibly some oxygen. We take
the concentrations of the oil pseudo-components in the vapor zone as the reference quantities n∗

h, n
∗
c , n

∗
v in

(2.9). Thus, in the vapor zone, the dimensionless concentrations are nh = nc = nv = 1.

3.1 High-temperature oxidation layer

The layer where HTO takes place contains coke, injected gas with oxygen, combustion products and some
inert gas. As all medium and light oil components have been cracked and vaporized ahead of the HTO layer,
nc = nv = 0, hence, wc = wv = 0. The molar gas flux m is equal to one, as follows from (2.11). It remains
constant because one mole of O2 is converted to one mole of CO2. The coke concentration in the layer
changes from nh = 1 to 0 and the oxygen fraction in the gas changes from the mole fraction left unburned
after passing the HTO layer to the injected mole fraction, i.e. from Yunb to Yinj .

The reaction rate wh in (2.17) has a strong temperature dependence determined by the argument of the
exponential factor. Therefore we can only afford a very small temperature variation δθh in the HTO layer,
before the reaction rate becomes negligible. Expanding the exponent near the temperature of the hot zone
θh, for small δθ = θh − θ we find

exp

(
−Eh
θ + θ0

)
≈ exp

(
−Eh

θh + θ0

)
exp

(
−Zhδθ

θh − θv

)
, (3.2)

Zh =
Eh(θh − θv)

(θh + θ0)2
, (3.3)

where Zh ≫ 1, because the activation energy Eh is large (a typical value is Zh ≈ 15). The exponential
containing Zh is a reduction factor in the reaction rate. When the reduction factor becomes small enough
the reaction no longer contributes. Arbitrarily we choose this threshold at exp(−1). Thus, the reaction
occurs within a small temperature interval δθh ∼ (θh − θv)/Zh corresponding to a change of order 1 in the
exponent; the reaction rate decreases exponentially and can be neglected for θh−θ ≫ δθh. The quantity Zh

is the Zeldovich number, the ratio between the total temperature variation in the wave and the temperature
variation in the HTO layer [9]. Using the expression for δθh, we find that the HTO reaction is confined
within the space interval

δξh ∼ δθh
|θ′h|

∼ θh − θv
Zh|θ′h|

, (3.4)

where |θ′h| is the effective temperature gradient in the HTO layer. For Zh ≫ 1, δξh is much smaller than the
width of the whole wave, estimated as (θh − θv)/|θ′h|. Thus, the HTO layer is narrow indeed.

Substituting wh from (2.17) into (2.12) with m = 1 and using the traveling wave coordinate ξ = x− vt,
we obtain

∂ log Y

∂x
=

d log Y

dξ
= −γhNhnh exp

(
− Eh
θ + θ0

)
. (3.5)

Since nh changes from 1 to 0, its average value is nh ∼ 1/2. Taking

d log Y

dξ
∼ log Yinj − log Yunb

δξh
=

1

δξh
log

(
Yinj

Yunb

)
and θ ≈ θh in (3.5) with Zh and δξh and from (3.3), (3.4) gives

log
Yinj

Yunb
∼ γhAh

Yinj
, (3.6)

Ah =
(θh + θ0)

2NhYinj

2Eh|θ′h|
exp

(
− Eh
θh + θ0

)
. (3.7)

Using the estimate in (3.6), we can distinguish two regimes according to the values of ratio Yunb/Yinj

between the oxygen fraction remaining downstream of the HTO layer (unburned oxygen) and the oxygen
fraction in the injected air. The importance of this ratio has been recognized in different contexts, e.g.,
[24, 26, 28, 36].
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The first regime is characterized by almost complete consumption of oxygen in the HTO layer, Yunb ≪
Yinj , and corresponds to high combustion temperatures θh (and according to Eq. (3.6) to large Ah). The
condition for this regime follows from (3.6); it is approximately

γhAh

Yinj
> 1. (3.8)

Due to the strong exponential dependence of Ah on the combustion temperature θh in (3.2), one can show
that this approximation distinguishes the two regimes with an uncertainty of order Z−1

h . This number is also
the width of the narrow transition zone between the regimes. Since almost all the oxygen is consumed, the
reaction ahead of the HTO layer stops primarily due to lack of oxygen. Hence, the HTO layer width is smaller
than δξh obtained in (3.4) based on the temperature dependence of the reaction rate. Note that, in this
regime, coke is consumed completely too, giving rise to an “optimal” combustion regime with consumption
of both reactive components. Such regimes are called stoichiometric or filtration-controlled, see, e.g., [15, 24].
As we will see later, the complete coke and oxygen consumption regime occurs for a relatively wide range of
problem parameters separating the cases of oxygen limited and coke limited combustion.

In the second regime (3.8) is not satisfied. In this case, the HTO reaction stops due to low temperatures
when both coke and oxygen are still present (kinetically-controlled regime, see, e.g., [15, 24]). Since a
substantial part of the oxygen is not consumed in the HTO, we can use Y ∼ Yinj and nh ∼ 1/2 estimating
the reaction rate in (2.17) as

wh ∼ Nh(Yinj/2) exp(−Eh/(θh + θ0)).

Then equation (2.13) with ∂nh/∂t ∼ 1/δth ∼ v/δξh and (3.4), (3.3) yield the relation v ∼ Ah with Ah given
by (3.7). Using (3.2), one can show that pretending that v and Ah are actually equal leads to an error of
order Z−1

h in the temperature value θh. This justifies writing this relation approximately as

v = Ah. (3.9)

Note that (3.9) can also be obtained by solving the differential equations for the traveling wave in the HTO
layer as in [15, 24, 31].

The unburned oxygen fraction Yunb can be found from the mass balance. Equation (2.12) with wh

expressed from (2.13) yields (Y m)′ = −γhvn
′
h, where the prime denotes the derivative with respect to the

traveling coordinate ξ = x− vt, and we used ∂/∂x = d/dξ, ∂/∂t = −vd/dξ. Integrating this equation across
the HTO layer, where Y changes from Yinj to Yunb, nh changes from 0 to 1, and m = 1 remains unchanged
(see Fig. 2), we obtain

Yunb = Yinj − γhv. (3.10)

Using the conditions v > 1 and Yunb > 0 in (3.10), we confirm the inequality (3.1). Note that (3.10) with v
from (3.9) yields Yunb = 0 at the threshold given by (3.8) written as an equality.

Similarly, using rates expressed from (2.13)–(2.15) and ∂/∂x = d/dξ, ∂/∂t = −vd/dξ in (2.10), we obtain(
θ′ + (v −m)θ) + v(nh − qcnc − qvnv)

)′
= 0. (3.11)

Integration of (3.11) across the HTO layer, where nh changes from 0 to 1, θ′ changes from 0 to θ′h+, while
m = 1 and nc = nv = 0 remain unchanged (see Fig. 2), yields

θ′h+ = −v, (3.12)

ignoring a small temperature variation δθh. Since the temperature gradient in the HTO layer changes from
(3.12) to θ′ = 0, its average value to be used in (3.7) is

|θ′h| = v/2. (3.13)

Finally, let us consider the effect of oxygen diffusion, which was neglected in equation (2.4). One can
show that diffusion has no influence on the description of the HTO layer we presented, within the accuracy
of the method. Indeed, in the case of partial oxygen consumption, when Yunb ∼ Yinj , the variation of Y
due to diffusion is not important for the result (3.9), which was obtained using order-of-magnitude estimates
and exploiting the strong exponential dependence of combustion rate on temperature. Using (3.9) in (3.10),
we obtain Yunb > 0 only if γhAh/Yinj < 1. Therefore, the condition (3.8) for complete oxygen consumption
remains valid when gas diffusion is taken into account.
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3.2 Reaction wave for complete coke/oxygen consumption

Let us consider the case (3.8), when all oxygen is consumed in the HTO layer. The wave speed is found by
taking Yunb = 0 in (3.10) as

v = Yinj/γh. (3.14)

Integrating (3.11) across the whole reaction wave yields

[θ′] + v[θ]− [mθ] + v([nh]− qc[nc]− qv[nv]) = 0, (3.15)

where the square brackets denote the variation of the quantity in the wave. Using in (3.15) the conditions
[θ′] = 0, [θ] = θv − θh, [mθ] = mvθv − θh, and [nh] = [nc] = [nv] = 1, where mv denotes the gas flux ahead
of the wave, we obtain

θh =
v(q + θv)− θvmv

v − 1
with q = 1− qc − qv. (3.16)

The quantity q describes the total heat production rate in the wave due to HTO, cracking and vaporization.
Similarly, integration of (2.11) across the reaction wave with rates given by (2.14), (2.15) and using the

moving coordinate ξ = x− vt yields
[m] = v(γc + γv). (3.17)

Since [m] = mv − 1, we find
mv = 1 + v(γc + γv). (3.18)

Using (3.13) and (3.14), we write condition (3.8) as

γ2
h(θh + θ0)

2Nh

YinjEh
exp

(
− Eh
θh + θ0

)
> 1. (3.19)

Together with expression (3.16), all quantities in this condition are expressed through the known problem
parameters. The reaction wave parameters are given by (3.14), (3.16) and (3.18). Note that in this solution we
did not use any kinetic relations for cracking and vaporization. However, the kinetic coefficients for the HTO
reaction are important, as they appear in the necessary condition (3.19). The assumption v = Yinj/γh > 1
yields the inequality (3.1) mentioned above.

3.3 Wave parameters for partial oxygen consumption

Now, let us consider the case when condition (3.8) or, equivalently, (3.19) are not satisfied and, therefore,
part of oxygen passes through the HTO layer, such that Yunb > 0. This is the only difference relative to the
previous case, so the formulae (3.15)–(3.18) are still valid.

Substituting (3.18) into (3.16), we express v as

v =
θh − θv

θh − q − θv(1− γc − γv)
. (3.20)

Substituting Ah from (3.7), (3.13) and Zh from (3.3) into (3.9) we obtain

exp

(
− Eh
θh + θ0

)
=

Ehv2

NhYinj(θh + θ0)2
, (3.21)

where the speed v is given by (3.20). This is an implicit equation for the HTO temperature θh. Because
we are considering the reaction-leading structure (v > 1) and the condition Yunb > 0 in (3.10), we find the
wave speed interval 1 < v < Yinj/γh. Using (3.16), this range of v determines the interval for θh where
equation (3.21) must be solved. This can be done numerically. Once θh is found, the other wave parameters
are determined by (3.10), (3.20).
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Figure 3: Temperature vs. distance for the reaction-trailing structure. The HTO wave is slower than the
thermal wave; a narrow layer where the HTO reaction occurs is shown by the black bar. Cracking and
vaporization occur in the thermal wave. The cold zone contains air. The hot zone contains coke and gas
with combustion products. The vapor zone contains oleic, aqueous and gaseous phases. The latter contains
oil vapor, steam and combustion products.

3.4 Cracking layer

Due to its high activation energy, the cracking reaction in our model occurs in a narrow layer near the
corresponding temperature θc, see Fig. 2 (narrow dark interval). The analysis of the cracking layer will be
presented in short form, because it has much in common with the analysis of the HTO layer. The cracking
layer is narrow due to the simple expression taken for cracking rate (2.18). A more realistic study of cracking
for distributed medium oil components is presented in A giving a wider cracking layer shown in Fig. 2.

The reaction is mostly confined within a small temperature interval δθc ∼ (θh−θv)/Zc with large Zeldovich
number Zc = Ec(θh−θv)/(θc+θ0)

2 ≫ 1. As in (3.4), the width of the cracking layer is δξc ∼ (θh−θv)/Zc|θ′c|,
where |θ′c| is the effective temperature gradient in the layer. The analogue of formula (3.9) in this case is

v =
(θc + θ0)

2Nc

2Ec|θ′c|
exp

(
− Ec
θc + θ0

)
. (3.22)

The parameters qc and γc describing heat and gas production in cracking are usually very small in
applications to in-situ combustion. Then, in the region between the HTO and cracking layers, we can
take the approximately constant flux m = 1 and drop the heat source term in (3.11), which leads to
(θ′ + (v − 1)θ)′ = 0. Integration in the region between the HTO layer and the cracking layer, where θ, θ′

change from θc, θ
′
c to θh, θ

′
h+ = −v (see Fig. 2), yields the estimate

θ′c ≈ −v + (v − 1)(θh − θc). (3.23)

The position of the cracking layer in the wave can also be computed, see A.
Using (3.23), equation (3.22) can be solved numerically, furnishing the cracking temperature θc. Of

course, for the existence of our solution, it is important that the condition θc < θh is satisfied. Otherwise,
medium oil remains in the HTO layer and, therefore, participates in the HTO reaction.

4 Reaction-trailing structure

When the coke concentration is large (or oxygen concentration in the injected air is small), so that Yinj < γh
and (3.1) fails, the solution has the structure shown in Fig. 3. The HTO reaction occurs in a slow HTO wave
traveling with speed v < 1. The temperature in this wave changes from high value θh in the hot zone ahead
of the wave to the injected air temperature θinj behind. The cracking reaction and oil vaporization take
place in another wave traveling with higher speed vT . If there were neither medium oil nor light oil/water
in the reservoir, this wave would be just a thermal wave with speed vT = 1 similar to that mentioned at the
beginning of Section 3. The hot region between the two waves contains coke with dimensionless concentration
nh = 1, with neither medium oil nor light oil/water. As in Section 3, we assume that the oil component
concentrations n∗

h, n
∗
c , n

∗
v and the temperature θv in the vapor zone ahead of the thermal wave are given.

Since the hot region ahead of the HTO wave contains coke, the oxygen is consumed completely in the
HTO reaction. Coke consumption is not necessarily complete, so the HTO reaction is oxygen limited. This
solution structure is called reaction-trailing because combustion occurs behind the hot zone.
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4.1 HTO wave

High-temperature oxidation is the only reaction in the HTO wave. Such a combustion wave was studied in
[15, 24, 31], for instance. Here we present a simpler method for the analysis of this wave, similar to that
of Section 3, and we show that there are two different combustion regimes, characterized by complete or
partial coke consumption in the HTO reaction. The profile is assumed to have a traveling wave form in the
coordinate ξ = x − vt. The coke can be partially consumed in the reaction, leaving behind unburned coke
with concentration nunb

h . The gas flow is uniform throughout the wave, m = 1.
Substitution of wh from (2.17) into (2.13) with m = 1 yields

∂ log nh

∂t
= −v

d log nh

dξ
= −NhY exp

(
− Eh
θ + θ0

)
. (4.1)

The wave contains a narrow HTO layer at about the highest temperature θh in the flow. The reaction is
confined within a space interval δξh ∼ (θh + θ0)

2/Eh|θ′h|, the same as in (3.2), (3.4). Taking d log nh/dξh ∼
log(1/nunb

h )/δξh and Y ∼ Yinj/2 in (4.1), we obtain

v log(1/nunb
h ) ∼ Ah (4.2)

with the same expression (3.7) for Ah.
The condition for complete coke consumption, nunb

h ≪ 1, analogous to condition (3.8), takes the form

Ah > v. (4.3)

In this case the analysis of the HTO wave is completed as in Section 3.2, but the absence of medium and
light oil components as well as of water lead to simplification. In the reaction trailing situation we need to
replace θv by θinj , mv by 1, and qc = qv = γc = γv = 0 in the expressions (3.14), (3.13), (3.16), yielding

v =
Yinj

γh
, |θ′h| =

Yinj

2γh
, θh = θinj +

v

1− v
. (4.4)

Then condition (4.3) takes the form (3.19). Therefore, (3.19) becomes the general condition for complete
coke/oxygen consumption in the HTO reaction. Of course, the expression for θh to be used in (3.19) in the
reaction-leading case (3.16) is different from the reaction-trailing case (4.4).

In the opposite case of incomplete coke consumption, i.e., Ah < v, we can take nh ∼ 1, i.e., close
to the initial concentration, in the HTO layer. Then using ∂Y m/∂x = dY/dξ ∼ −Yinj/δξh with δξh ∼
(θh + θ0)

2/Eh|θ′h| and the reaction rate (2.17) with nh ∼ 1 and Y ∼ Yinj/2 in equation (2.12) yields

Yinj = γhAh (4.5)

with Ah from (3.7). In this equation we took the equality sign disregarding a small error as in (3.9).
Integration of (3.11) in the narrow HTO layer as in Section 3.2 yields the temperature gradient θ′h+ =

v(1 − nunb
h ) behind the layer and, thus, |θ′h| = v(1 − nunb

h )/2. Equation (3.15) takes the form (v − 1)(θh −
θinj)+v(1−nunb

h ) = 0. Integration of (2.12) with wh from (2.13) gives [Y ] = −vγh[nh] or Yinj = vγh(1−nunb
h ).

As a result, we get

nunb
h = 1− Yinj

vγh
, v = 1− Yinj

γh(θh − θinj)
, (4.6)

and expression (4.4) for |θ′h|. Then (4.5) with Ah from (3.7) takes the form

exp

(
− Eh
θh + θ0

)
=

EhYinj

Nhγ2
h(θh + θ0)2

. (4.7)

This equation determines θh implicitly and can be solved numerically.
As our analysis leading to (4.2) used only order estimates for the oxygen fraction Y , diffusion has no

effect within the accuracy of the method, unless it is dominant in the HTO layer. The latter case may result
in extinction and requires a separate study.

11



4.2 Thermal wave

Cracking and vaporization are heat absorbing processes, which decrease the thermal wave speed: vT < 1.
The heat equation (2.10) for a traveling wave depending on the single variable ξ = x − vT t is (3.11) with
nh = 0 and vT instead of v. Integrating this equation across the wave as in (3.15) taking into account the
conditions [θ′] = 0, [θ] = θv − θh, [mθ] = mvθv − θh, and [nc] = [nv] = 1, we obtain

vT (θv − θh)− (mvθv − θh)− vT (qc + qv) = 0. (4.8)

The gas flux ahead of the wave is mv = 1+ vT (γc + γv), as in (3.18). Using this expression in (4.8), we find
the wave speed

vT =
θh − θv

θh − θv(1− γc − γv) + qc + qv
. (4.9)

Note that the existence of the hot zone between the HTO and thermal waves ensures that complete
cracking of the medium oil occurs ahead of the HTO wave.

5 Stability of steady combustion

In this section we study stability of the combustion waves with respect to small perturbations of the de-
pendent variables. The stability problem has a simple solution when oxygen is completely consumed in
combustion (both in the complete and partial coke consumption cases). In this case the amount of coke
converted is controlled by the injected oxygen flux. Hence, the total conversion rate is not affected by a
small perturbation in the temperature profile. This implies that there is no source of instability, and the
steady combustion regimes with complete oxygen combustion are stable.

In the case of partial consumption of oxygen, instability may occur leading, for example, to a pulsating
combustion regime. Let us consider the case when the cracking and vaporization have a minor effect on
the temperature and gas flux, so that the corresponding terms can be neglected in equations (2.10)–(2.13).
Then the problem is equivalent to the combustion in a reservoir with a single solid fuel component. Stability
analysis for this case with the reaction rate approximated by the Dirac delta function was carried out in
[40]. A similar analysis adapted to our model is presented in B.

We assume that a small perturbation of the steady combustion solution depends on time via the complex
factor exp(ωt). The complex quantity ω is found from the equation derived in B as

(v(K − 1) + (v − 1)Ω)
√
1 + 4Ω

= v(K − 1− 2Ω) + (v − 1)(2K − 1)Ω,
(5.1)

where

Ω =
ω

(v − 1)2
, K =

Eh(θh − θv)

(θh + θ0)2

(
1

2
+

θh + θ0
Eh

)
. (5.2)

For Ω ̸= 0, equation (5.1) can be reduced to Ω2 + b1Ω+ b2 = 0 with

b1 = −K2 +K

(
1 +

4v

v − 1

)
+

(3− 4v)v

(v − 1)2
,

b2 =
v(K − 1)(K + v − 1)

(v − 1)2
.

(5.3)

The perturbation decays in time when Reω < 0, which requires b1 > 0 and b2 > 0. Using Zh from (3.3)
in the second expression in (5.2), we see that K ∼ Zh/2. Since v > 1 and in the derivations of Section 3
we assumed Zh ≫ 1, we conclude that the condition b2 > 0 is satisfied and the condition b1 > 0 yields the
stability condition

K <
5v − 1 +

√
9v2 + 2v + 1

2(v − 1)
. (5.4)

This condition implies that the steady combustion regime with partial consumption of oxygen becomes
unstable for sufficiently large Zeldovich numbers.

Stability to small perturbations in transverse directions can also be studied. It reduces to the substitution
Ω → Ω+ k2/(v − 1)2 in (5.1), where k is a wave number of a transverse harmonic perturbation, see [40].

12



Qh 3.28× 107 J/kg
Qc 3.39× 105 J/kg
Qv 1.28× 106 J/kg,
Eh 1.8× 105 J/mol (Ref. [41])
Kh 3.05× 106 1/s (Ref. [41])
Ec 2.5× 105 J/mol
Kc 4.6× 1014 1/s
R 8.314 J/molK
Cm 2× 106 J/m3K
λ 0.87 W/mK
cg 3.5R J/molK
Ptot 105 Pa (1 atm)
uinj 1.16× 10−3 m/s (100 m/day)
Mh 0.012 kg/mol
Mc 0.112 kg/mol
Mv 0.065 kg/mol

Tinj = Tst 293.15 K

Table 1: Typical values of the dimensional parameters for in-situ combustion.

6 In-situ combustion for typical reservoir parameters

Consider the representative reservoir data in Table 1. The numbers quoted there correspond to octene
(C8H16) as a single effective light oil component, to hexadecene (C16H32) as a medium oil component, and
to an average vaporization heat Qv for equal mass densities of light oil and water in the vapor zone. We use
alkenes for stoichiometric convenience.

Assume that air with an oxygen fraction of Yinj = 0.21 is injected into the reservoir. The condition (3.1)
written in dimensional form using (2.16) as n∗

h < YinjCmMh/cg is satisfied for the precoke concentrations
n∗
h < 173 [kg/m3] in the vapor zone. This is the case of the reaction-leading wave structure and computations

must be carried out using formulae of Section 3. Fig. 4 shows the reaction wave parameters versus the initial
precoke concentration n∗

h, when the other parameters in the vapor zone are taken as n∗
c = 100 [kg/m3],

n∗
v = 60 [kg/m3], and Tv = 350 [K] in θv = (Tv − Tst)/T

∗. Complete coke/oxygen consumption in the HTO
reaction occurs for high precoke concentrations n∗

h > 35.5 [kg/m3], as found by checking inequality (3.19).
For lower precoke concentrations, a considerable part of the injected oxygen passes through the reaction
wave, as shown in Fig. 4. The passage from complete to partial oxygen consumption regime is characterized
by an abrupt change in the dependence of the variables relative to the coke concentration n∗

h.
Computations show that changes in medium and light oil/water concentrations have a minor influence on

the combustion and cracking temperatures θh and θc. Indeed, the corresponding equations (3.21) and (3.22)
have strong exponential dependence on temperature, so the solutions are weakly affected by the change of
coefficients. On the contrary, the speed v of the reaction wave decreases when medium and light oil/water
concentrations are higher. Extinction occurs when q = 1− qc − qv becomes small, i.e., when the combustion
heat Qhn

∗
h becomes close to the heat Qcn

∗
c+Qvn

∗
v necessary for cracking and vaporization. At the extinction

point, the speeds of the reaction and thermal waves coincide, i.e., v → 1 in dimensionless form.
Consider now the same reservoir parameters in the vapor zone, but using an injected gas with very low

initial oxygen fraction Yinj = 0.025. The numerical results are shown in Fig. 5. Condition (3.1) is satisfied
for precoke concentrations n∗

h < 20.6 [kg/m3] and corresponds to the case discussed in Section 3. For higher
concentrations, the reaction-trailing wave structure occurs and calculations use the formulae of Section 4.
These two cases are separated by a resonance point, where the speeds of the two waves coincide: v = vT .
The complete coke/oxygen consumption regime is determined by inequality (3.19) and corresponds to a

range of initial coke concentrations given by 14.5 < n∗
h < 44.9 [kg/m

3
]. Temperatures in this regime become

very high, so that the effects not taken into account in our model may become important, e.g., heat losses.
On the contrary, the partial oxygen (n∗

h < 14.5 [kg/m3]) and partial coke (nh > 44.9 [kg/m3]) consumption
regimes are characterized by a more or less constant combustion temperature. When the regime changes,
there is a singularity in the dependence of the HTO wave parameters on the initial coke concentration n∗

h.
Fig. 6 presents a chart with different combustion regimes in the (n∗

h, Yinj) plane: coke concentration
versus oxygen fraction in injected air. The reaction-leading wave structure is determined by condition (3.1).
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Figure 4: Reaction wave parameters in terms of the coke concentration n∗
h [kg/m

3]. Here we use n∗
c =

100 [kg/m3], n∗
v = 60 [kg/m3] and injection of air with 21% oxygen. The vapor zone temperature is Tv =

77 [�]. Indicated are the hot zone temperature Th [�], the cracking temperature Tc [�], the reaction wave
speed v [m/day], the thermal wave speed vT [m/day], and the unburned oxygen fraction Yunb [mol-O2/mol-
air]. The dotted segments correspond to unstable steady combustion waves. Results of numerical simulations
are presented for n∗

h = 10, 25, 40 [kg/m3] and indicated by diamonds and circles.

In this case condition (3.19) with θh from (3.16) determine the combustion regime with complete coke and
oxygen consumption. Otherwise, oxygen is only partially consumed. The reaction-trailing wave structure is
determined by the opposite of condition (3.1). Then (3.19) with θh from (4.4) determines the combustion
regime with complete coke and oxygen consumption. Otherwise, coke is partially consumed. Extinction
occurs for small n∗

h or small Yinj , when the waves speeds coincide, vT = v. The coincidence of the waves
speeds occurs also at the resonance line, see Fig. 6.

Checking numerically the stability condition (5.4), we find oscillatory solutions with partial oxygen con-
sumption in the dark-grey region to the right of the dashed line in Fig. 6. Oscillatory solutions are also
indicated by dotted lines in Fig. 4.

The chart of combustion regimes has the qualitative form shown in Fig. 6 for a wide range of parameters.
Note that a similar chart of combustion regimes for different parameters (Yinj , minj) and without instability
region was obtained in [15].

6.1 Numerical simulations

We performed direct numerical simulations of the PDE system (2.10)–(2.15) using a split-implicit finite
difference numerical scheme. In order to define the vaporization rate wv, we introduce the molar fraction
X of light oil vapor together with steam in the gas. Cracked and vaporized components form the part
mX of the total gas flux m. The remaining part m (1−X) corresponds to the injected gas flux, which
is equal to 1. This gives X = 1 − 1/m. As we already mentioned above, the details of the vaporization
process have minor influence on the reaction waves of interest here. So we can use a simplified model for
numerical purposes that reflects only qualitative properties of vaporization. We take the vaporization rate
wn = κnv (Xeq −X) proportional to the liquid oil and water concentration nv and to the difference between
the equilibrium and actual vapor fractions Xeq − X. The equilibrium vapor fraction is determined by the
relation Xeq = exp (h (θ − θb)), which is the approximation of the Clausius-Clapeyron relation with the
linearized exponential expression. The effective boiling temperature θb satisfies the equilibrium condition in
the vapor zone Xv = exp(h(θv − θb)). The constant coefficients are taken to be κ = 100, h = 20.

The reaction leading and reaction trailing wave structures were observed in numerical simulation for initial
temperatures high enough for ignition to occur in a reasonable time span, with different oil concentrations in
the initial reservoir and oxygen fractions in the injected gas. The dimensional parameters of the reaction and
thermal waves obtained in this simulation are shown in Figs. 4 and 5; we see very good agreement between
our approximate solutions and the numerical results.

The combustion waves were found to be stable waves with fixed profile in numerical simulation, except
for the case of n∗

h = 25 [kg/m3] in Fig. 4. In the latter case the reaction wave speed v oscillates periodically
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Figure 5: Reaction wave parameters depending on the coke concentration n∗
h [kg/m

3] with n∗
c = 100 [kg/m3],

n∗
v = 60 [kg/m3] and injection of air with reduced oxygen (2.5%). Indicated are the hot zone temperature

Th [�], the HTO and thermal waves speeds v, vT [m/day], the unburned oxygen fraction Yunb, and the
unburned coke fraction nunb

h /n∗
h. The results of numerical simulations are presented for n∗

h = 80 [kg/m3].

in time; Fig. 4 shows the average values of the corresponding quantities. Oscillation amplitudes are about
7% of the average value for Th and about 30% for v and Yunb. These simulation results agree with the
theoretical stability study, see Fig. 6.

7 Conclusions

In this paper, we developed a simplified mathematical approach that provides approximate analytical solu-
tions for steady combustion waves. In this method, rather than explicitly integrating wave equations, we
use general estimates and exploit the strong exponential dependence of combustion rate on temperature to
simplify the results. This procedure is general and can be applied to the analysis of combustion characterized
by large Zeldovich numbers.

This method was used for the analysis of combustion by air injection in porous media containing oil and
water, taking into account different chemical and physical processes. The oil is modelled as a composition
of three pseudo-components: asphaltenes (precoke), medium and light oil. Precoke is converted to coke at
high temperatures, medium oil components are cracked at slightly lower temperatures releasing gaseous oil.
Finally, light oil components and water are vaporized. Heat is released in the high-temperature oxidation of
coke. Cracking of separate components in the medium oil is also studied (see A).

The solutions are found in the form of sequences of traveling waves. The wave structure is conventionally
distinguished according to the position of the hot zone relative to the combustion wave: reaction-leading and
reaction-trailing wave structures. The reaction-trailing structure corresponds to high precoke concentrations
or low injected oxygen fractions. Otherwise, one finds the reaction-leading structure. Each structure occurs
in two different combustion modes. In the first mode, both coke and oxygen are completely consumed in
combustion. In the second mode, only a part of oxygen is consumed in the case of the reaction-leading wave
structure, or a part of coke is consumed in the case of the reaction-trailing wave structure.

We derived explicit analytical conditions for each combustion regime, stability conditions, and formu-
lae describing dependent variables in the wave sequence solutions. Additionally we described the internal
structure of the oil cracking layer for the reaction-leading wave structure.

Numerical computations with typical reservoir data for in-situ combustion lead to the following obser-
vations. The most typical wave structure is reaction-leading. With increasing coke concentration, a mode
with partial oxygen consumption changes into a mode with complete coke/oxygen consumption. The first
mode is characterized by a weak dependence of the combustion temperature on the reservoir parameters,
while temperatures may become much higher in the mode with complete coke/oxygen consumption. The
reaction-trailing structure can also be found when the injected air contains reduced oxygen fractions (for
example, for injection of a mixture of air and flue gases). It is shown that instability can only occur in the
regime with partial oxygen consumption. Numerical simulation of the full system of governing equations
was carried out showing the expected accuracy of our asymptotic formulae; the simulations confirmed the
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Figure 6: Chart of coke and oxygen consumption in combustion regimes for different coke concentrations
n∗
h [kg/m

3] and injected oxygen fractions Yinj . Resonant states form a straight line that separates combustion
regimes with different wave structures: reaction-leading (above the line) and reaction-trailing (below the
line). The grey regions correspond to combustion regimes with partial oxygen or partial coke consumption.
The upper dark grey region to the right of the dashed line corresponds to oscillatory solutions. The white
region corresponds to essentially complete coke and oxygen consumption. Thin white strips near the axes
correspond to extinction.

existence of combustion in a periodically pulsating wave in the instability region.

A Cracking of multiple components

More realistic description of cracking process requires considering a distribution of hydrocarbon components
in the medium oil. Let us denote these components by the index α with corresponding dimensionless
concentrations ncα normalized so that ncα = 1 downstream in the vapor zone. The cracking rate wcα of
each component is described by expression (2.18) with specific kinetic coefficients Ncα and Ecα. Finally, one
should write (2.14) in the form ∂ncα/∂t = −wcα and substitute qcwc by

∑
α qcαwcα and γcwc by

∑
α γcαwcα

in (2.10), (2.11).
Each medium oil component cracks independently near the corresponding temperature θcα within the

cracking layer, see Fig. 2. An analysis similar to that in Section 3.4 yields an equation similar to (3.22):

v =
(θcα + θ0)

2Ncα

2Ecα|θ′cα|
exp

(
− Ecα
θcα + θ0

)
. (A.1)

The temperature gradient θ′cα must be estimated by solving the heat balance equation ahead of the HTO
layer. The approximate form of this equation is (θ′ + (v − 1)θ)′ = 0, as shown in Section 3.4. Integration
yields the relation

θ′cα = −v + (v − 1)(θh − θcα) (A.2)

similar to (3.23). Using (A.2), equation (A.1) can be solved numerically for θcα giving the cracking temper-
ature of component α. Setting ξ = 0 in front of the HTO layer, where θ(0) = θh and θ′(0) = θ′h+ = −v, we
find

θ(ξ) = θh +
v − v exp((1− v)ξ)

1− v
. (A.3)

Given θ(ξα) = θcα, this equation determines the position ξα of the α-component cracking layer in the wave.

B Stability analysis

The analysis below applies the method developed in [40] to the model under consideration. We study the
reaction-leading wave structure when all coke and part of oxygen burn in the HTO layer (v > 1). When
cracking and vaporization are neglected (wc = wv = 0), equation (2.11) yields ∂m/∂x = 0, so the gas flux is
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fixed by the injection condition and by our choice of nondimensional parameters as m = 1. The temperature
profile is governed by equation (2.10) taking the form

∂θ

∂t
+

∂θ

∂x
=

∂2θ

∂x2
+ wh. (B.1)

The HTO layer is narrow. Neglecting its width, we can write the reaction rate as proportional to Dirac’s
delta function δ(x). Using (2.13) with nh changing from the initial value 1 to 0 (complete consumption of
coke), we find

wh(x, t) ≈ δ(t− th(x)) =
dxh

dt
δ(x− xh(t)), (B.2)

where x = xh(t) denotes the HTO layer position at time t, and t = th(x) is its inverse. The second equality
in (B.2) exploits transformation properties of delta functions. Note that the assumption of a single narrow
HTO layer is valid for small perturbations considered in our stability analysis. However, as indicated in [35],
there is no clear relationship between the value of δξh in (3.4) and the width of the HTO layer for pulsating
fronts.

The delta function (B.2) in (B.1) is balanced by the second derivative. This implies a jump of the first
derivative of the temperature at the HTO layer and the continuity of the temperature θ. That is,

θ+ = θ−,

(
∂θ

∂x

)
+

−
(
∂θ

∂x

)
−
= −dxh

dt
, (B.3)

where the subscripts ± denote the values on different sides of the HTO layer, x → xh(t) ± 0. The third
condition is (3.9) with Ah from (3.7), v = dxh/dt, and θh = θ+ = θ−:

dxh

dt
=

(θ− + θ0)
2NhYinj

2Eh|θ′h|
exp

(
− Eh
θ− + θ0

)
. (B.4)

Expressing dxh/dt from (B.3) and taking 2θ′h ∼ (∂θ/∂x)− + (∂θ/∂x)+, which is negative, we write this
condition as (

∂θ

∂x

)2

+

−
(
∂θ

∂x

)2

−
=

(θ− + θ0)
2NhYinj

Eh
exp

(
− Eh
θ− + θ0

)
. (B.5)

The steady solution θ(x, t) = θ0(ξ) with ξ = x − vt was found in Section 3.3. With the simplifications
stated above, the steady solution is determined by equations (B.1)–(B.3) as

θ0(ξ) = θv + (θh − θv) exp(−(v − 1)ξ) for ξ > 0;

θ0(ξ) = θh for ξ < 0.
(B.6)

The temperature θh is found from (B.3), (B.6) as

θh − θv = v/(v − 1) (B.7)

in agreement with (3.20) for q = 1 from (3.16). The speed v is determined by (3.21), which can also be
derived from (B.5)–(B.7).

Consider small perturbation of the temperature profile and the HTO layer position in the form

θ(x, t) = θ0(ξ) + θ1(ξ) exp(ωt), xh(t) = vt+ ε exp(ωt). (B.8)

The latter also implies the change of inequalities in (B.6) as ξ > ε exp(ωt) and ξ < ε exp(ωt). We are looking
for solutions with Reω > 0. Such solutions grow in time and imply the instability of the steady combustion
wave. Equation (B.1) with wh = 0 for x ̸= xh gives the bounded solution as

θ1(ξ) = A exp(z1ξ) for x > xh(t);

θ1(ξ) = B exp(z2ξ) for x < xh(t),
(B.9)

with

z1 = −v − 1

2
(1 +

√
1 + 4Ω), z2 = −v − 1

2
(1−

√
1 + 4Ω) (B.10)

and Ω defined in (5.2).
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For x > xh, using (B.8) and the first expressions in (B.6), (B.9), we obtain

θ(x, t) = θv + (θh − θv) exp(−(v − 1)(x− vt))

+A exp(z1(x− vt) + ωt).
(B.11)

Assuming that A, B and xh − vt = ε exp(ωt) are small, and considering the limit x → xh(t) + 0, we find up
to first order terms

θ+ = θh − (θh − θv)(v − 1)ε exp(ωt) +A exp(ωt)

= θh + (A− vε) exp(ωt),
(B.12)

where the last equality follows from (B.7). Analogous derivations using the second expressions in (B.6),
(B.9) in the limit x → xh(t)− 0 yield

θ− = θh +B exp(ωt). (B.13)

For spacial derivatives, the corresponding limits are found similarly as(
∂θ

∂x

)
+

= −v +

(
z1A+

v2ε

θh − θv

)
exp(ωt),(

∂θ

∂x

)
−
= z2B exp(ωt).

(B.14)

Substituting (B.12)–(B.14) and xh from (B.8) into (B.3), (B.5), zero order terms cancel due to (3.21),
and for first order terms we obtain equations

A− vε = B, (B.15)

z1A+ v2ε/(θh − θv)− z2B = −ωε, (B.16)

−2v(z1A+ v2ε/(θh − θv)) =

= NhYinj exp

(
−Eh

θh + θ0

)(
1 +

2(θh + θ0)

Eh

)
B.

(B.17)

Multiplying both sides of (B.17) by (θh − θv)/2v
2 and using (3.21), we find

−(θh − θv)z1A/v − vε = KB (B.18)

withK defined in (5.2). Equations (B.15), (B.16), (B.18) have nonzero solution for A, B, ε if the determinant
of the coefficient matrix vanishes. Using (B.7) and (B.10), this gives equation (5.1).
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