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Abstract. A discontinuous Galerkin discretization for second order elliptic

equations with discontinuous coefficients in 2-D is considered. The domain of

interest Ω is assumed to be a union of polygonal substructures Ωi of size O(Hi).
We allow this substructure decomposition to be geometrically nonconforming.

Inside each substructure Ωi, a conforming finite element space associated to

a triangulation Thi
(Ωi) is introduced. To handle the nonmatching meshes

across ∂Ωi, a discontinuous Galerkin discretization is considered. In this paper

additive and hybrid Neumann-Neumann Schwarz methods are designed and

analyzed. Under natural assumptions on the coefficients and on the mesh sizes

across ∂Ωi, a condition number estimate C(1 + maxi log Hi
hi

)2 is established

with C independent of hi, Hi, hi/hj , and the jumps of the coefficients. The

method is well suited for parallel computations and can be straightforwardly
extended to three dimensional problems. Numerical results are included.

1. Introduction

In this paper a discontinuous Galerkin (DG) approximation of elliptic problems
with discontinuous coefficients is considered [8]. See [4] and references therein for
an overview on local DG discretizations. The problem is considered in a polygo-
nal region Ω which is a geometrically nonconforming union of disjoint polygonal
substructures Ωi, i = 1, . . . , N . The discontinuities of the coefficients are assumed
to occur only across the interfaces of the substructures ∂Ωi. Inside each substruc-
ture Ωi, a conforming finite element method is introduced to discretize the local
problem, and is allowed nonmatching triangulations to occur across the ∂Ωi. This
kind of composite discretization is motivated by the location of the discontinuities
of the coefficients and by the regularity of the solution of the problem. The dis-
crete problem is formulated using a symmetric DG method with interior penalty
(IPDG) terms on ∂Ωi. To deal with the discontinuities of the coefficients across
the substructure interfaces, harmonic averages of the coefficients are considered on
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these interfaces; see [8]. The consistency of this discretization is given in [9] while
an optimal a priori error estimate is established in [8]; see also Lemma 2.2 below.
IPDG methods based on harmonic averages of the coefficients were also considered
for advection-diffusion-reaction problems [6] to obtain stable discretizations.

The main goal of this paper is to design and analyze additive and hybrid Neu-
mann - Neumann algorithms for the resulting DG-discrete problem. This type
of algorithms is well established for standard conforming and nonconforming dis-
cretizations [14, 26, 27, 30, 29, 20], however, no enough attention were payed to DG
discretization. We note that other types of preconditioners were considered for solv-
ing discrete IPDG problems. In connection with two-level domain decomposition
preconditioners, we mention [15, 16, 23, 5, 1, 2, 7, 25], where small and generous
overlapping Schwarz methods were considered for DG discretizations. In connection
with multilevel preconditioners for DG problems, we mention [17, 19, 24, 22, 21].
These papers focus on the scalability of the preconditioners with respect to mesh
parameters, however, only few discussions were considered on the robustness with
respect to jumps of the coefficients across the substructuring interfaces. For classical
conforming and nonconforming discretizations, it is known that, in two dimensions,
domain decomposition and multilevel methods may lead to robust preconditioners
with respect to jumps of the coefficients; see [30]. In three dimensions, however,
the robustness of these methods can be achieved only in special circumstances such
as when every subdomain touches part of the Dirichlet boundary or when only
few cross points do not satisfy the quasi-monotonicity condition on the jumps of
the coefficients; see [12, 31, 18]. For more general discontinuous coefficients, the
robustness of these methods can be achieved when coarse problems based on dis-
crete harmonic extensions are introduced; see [14, 12, 14, 27, 29, 13, 28]. The same
robustness issues also occur for DG discretizations, hence, the notion of discrete
harmonic extension in the DG sense was also introduced in the Technical Report
[11] in order to design robust N-N algorithms; see also [10] for numerical experi-
ments. We point out that only the geometrically conforming case was treated in
these works. Here in this paper we extend these results to the geometrically non-
conforming case and introduce new N-N coarse spaces and solvers. We note that,
using the techniques developed in this paper, we can extend the Balancing Domain
Decomposition by Constraints (BDDC) methods for DG discretizations [9] to the
geometrically nonconforming case.

The problem is reduced to the Schur complement form with respect to unknowns
on ∂Ωi, for i = 1, . . . , N . Discrete harmonic functions defined in a special way are
used in this step. The methods are designed and analyzed for the Schur complement
problem using the general theory of N-N methods; see [30]. The local problems are
defined on Ωi and faces or part of faces of ∂Ωj which are common to Ωi. The
coarse space is defined using a special partitioning of unity with respect to the
subdomains Ωi and introducing master and slave sides of local interfaces between
substructures. Recall that we work with a geometrically nonconforming partition of
Ω into substructures Ωi, i = 1, . . . , N . A (part of) face Fij = ∂Ωi ∩∂Ωj is a master
when ρi ≥ Cρj , otherwise it is a slave, so if Fij ⊂ ∂Ωi is a master then Fji ⊂ ∂Ωj ,
Fij = Fji, is a slave. The hi-triangulation on Fij and hj-triangulation on Fji are
built in a way that hi ≥ Chj if ρi ≥ Cρj . Here hi and hj are the parameters of
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the triangulation in Ωi and Ωj , respectively, and C is a generic constant of O(1).
We prove that the algorithms are almost optimal and their rate of convergence is
independent of the mesh parameters, the number of subdomains Ωi and the jumps
of coefficients. The algorithms are well suited for parallel computations and they
can be straightforwardly extended to three-dimensional problems.

The paper is organized as follows. In Section 2 the differential problem and its
DG discretization are formulated. In Section 2.3 the Schur complement problem is
derived using discrete harmonic functions in an special way. Some technical tools
are introduced in Section 3. Section 4 is dedicated to introduce important nota-
tions and the interface condition on the coefficients and the parameters steps, see
Assumption 4.1. Two additive Neumann-Neumann Schwarz preconditioners, one
based on a small coarse space and another based on a larger coarse space, are de-
fined and analyzed in Section 5. In Section 6 we present the Balancing Domain
Decomposition versions. Finally, in Section 7 some numerical experiments are pre-
sented which confirm the theoretical results. The numerical results show that the
introduced Assumption 4.1 is necessary and sufficient.

2. Differential and discrete problems

In this section we study in detail properties of the discrete problem.

2.1. Differential problem. Consider the following problem: Find u∗ ∈ H1
0 (Ω)

such that

(2.1) a(u∗, v) = f(v) for all v ∈ H1
0 (Ω)

where

a(u, v) :=
N∑

i=1

∫
Ωi

ρi∇u · ∇vdx and f(v) :=
∫

Ω

fvdx.

Here, Ω = ∪N
i=1Ωi where the substructures Ωi are disjoint regular polygonal sub-

regions of diameter O(Hi). We assume the substructures Ωi form a geometrically
nonconforming partition of Ω, therefore, for all i 6= j the intersection ∂Ωi ∩ ∂Ωj is
empty, a vertex of Ωi and/or Ωj , or a common face or part of a face of ∂Ωi and ∂Ωj .
In case the intersection is empty or a common vertex Ωi and Ωj , or a common face
of Ωi and Ωj , we say that a partition is geometrically conforming. For simplicity
of presentation we assume that the right-hand side f ∈ L2(Ω) and the coefficients
ρi are all positive constants.

2.2. Discrete problem. In each Ωi we introduce a shape regular triangulation
Ti(Ωi) in each Ωi with triangular elements and mesh parameter hi. The resulting
triangulation on Ω is in general nonmatching across ∂Ωi. We introduce Xi(Ωi) to
be the regular finite element (FE) space of piecewise linear and continuous functions
in Ti(Ωi). We do not assume that functions in Xi(Ωi) vanish on ∂Ωi ∩ ∂Ω. We
define

Xh(Ω) := X1(Ω1)× · · · ×XN (ΩN )

and represent functions v of Xh(Ω) as v = {vi}N
i=1 with vi ∈ Xi(Ωi).



4 MAKSYMILIAN DRYJA, JUAN GALVIS, AND MARCUS SARKIS

The discrete problem obtained by the DG method, see [4, 8], is of the form: Find
u∗h ∈ Xh(Ω) such that

(2.2) ah(u∗h, vh) = f(vh) for all vh ∈ Xh(Ω)

where

(2.3) ah(u, v) =
N∑

i=1

âi(u, v) and f(v) =
N∑

i=1

∫
Ωi

fvidx.

Each bilinear form âi is given as a sum of three bilinear forms:

(2.4) âi(u, v) := ai(u, v) + si(u, v) + pi(u, v),

where

(2.5) ai(u, v) :=
∫

Ωi

ρi∇ui∇vidx,

si(u, v) :=
∑

Fij⊂∂Ωi

∫
Fij

ρij

lij

(
∂ui

∂ni
(vj − vi) +

∂vi

∂ni
(uj − ui)

)
ds

and

(2.6) pi(u, v) :=
∑

Fij⊂∂Ωi

∫
Fij

ρij

lij

δ

hij
(uj − ui)(vj − vi)ds.

Here, the bilinear form pi is called the penalty term with a positive penalty param-
eter δ. In the above equations, we set lij = 2 when Fij = ∂Ωi ∩ ∂Ωj is a common
face (or part of a face) of ∂Ωi and ∂Ωj , and define ρij := 2ρiρj/(ρi + ρj) as the
harmonic average of ρi and ρj , and hij := 2hihj/(hi + hj). In order to simplify
notations we include the index j = ∂ when Fi∂ := ∂Ωi ∩ ∂Ω is a face of ∂Ωi and
set li∂ := 1 and let v∂ = 0 for all v ∈ Xh(Ω), and define ρi∂ := ρi and hi∂ := hi.
The outward normal derivative on ∂Ωi is denoted by ∂

∂ni
. We note that when ρij

is given by the harmonic average then min{ρi, ρj} ≤ ρij ≤ 2 min{ρi, ρj}.

We also define the positive bilinear forms di as

(2.7) di(u, v) := ai(u, v) + pi(u, v),

and the broken bilinear form dh for Xh(Ω) with weights given by ρi and δ
lij

ρij

hij
by

(2.8) dh(u, v) :=
N∑

i=1

di(u, v).

For u = {ui}N
i=1 ∈ Xh(Ω) the associated broken norm is then defined by

(2.9)

‖u‖2h := dh(u, u) =
N∑

i=1

{ρi ‖ ∇ui ‖2L2(Ωi)
+

∑
Fij⊂∂Ωi

δ

lij

ρij

hij

∫
Fij

(ui − uj)2ds}.

It is known that there exist constants δ0 = O(1) > 0 and 0 < c < 1 such that for
δ ≥ δ0, we have |si(u, u)| < cdi(u, u) and

∑
i si(u, u) < cdh(u, u), and the lemma

follows:
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Lemma 2.1. There exists δ0 > 0 such that for δ ≥ δ0 and for all u ∈ Xh(Ω) the
following inequalities hold:

(2.10) γ0di(u, u) ≤ âi(u, u) ≤ γ1di(u, u), i = 1, . . . , N,

and

(2.11) γ0dh(u, u) ≤ ah(u, u) ≤ γ1dh(u, u)

where γ0 and γ1 are positive constants independent of the ρi, hi and Hi.

For the proof we refer to [8] or [9]. This result implies that the problem (2.2) is
elliptic and has a unique solution.

A priori error estimates for the method are optimal for constant coefficients,
and also for the case where hi and hj are of the same order; see [3, 4]. For dis-
continuous coefficients ρi and/or for hi and hj are not on the same order, we have
the following Lemma 2.2. For the proof, see Theorem 4.2 of [8] and Lemma 2.2 of [9].

Lemma 2.2. Let u∗ and u∗h be the solutions of (2.1) and (2.2). For u∗ ∈ H1
0 (Ω)

and u∗|Ωi ∈ H2(Ωi), i = 1, . . . , N , we have

‖u∗ − u∗h‖2h ≤ C
N∑

i=1

h2
i +

∑
Fij⊂∂Ωi

h3
j

hi

 ρi|u∗|2H2(Ωi)

where C is independent of hi, Hi and ρi.

2.3. Schur complement problem. In this subsection we derive the Schur com-
plement bilinear form for the problem (2.2). We first introduce auxiliary notations.

Define X◦
i (Ωi) as the subspace of Xi(Ωi) of functions that vanish on ∂Ωi. A

function ui ∈ Xi(Ω) can be represented as

(2.12) ui = Hiui + Piui

where Hiui is the discrete harmonic part of ui in the sense of ai(., .), see (2.5), i.e.,

(2.13)
{

ai(Hiui, vi) = 0 for all vi ∈ X◦
i (Ωi)

Hiui = ui on ∂Ωi,

while Piui is the projection of ui into X◦
i (Ωi) in the sense of ai(., .), i.e.,

(2.14) ai(Piui, vi) = ai(ui, vi) for all vi ∈ X◦
i (Ωi).

Note that Hiui is the classical discrete harmonic part of ui. Let us denote by X◦
h(Ω)

the subspace of Xh(Ω) defined by X◦
h(Ω) := X◦

1 (Ω1)× · · · ×X◦
N (ΩN ) and consider

the global projections Hu := {Hiui}N
i=1 and Pu := {Piui}N

i=1 : Xh(Ω) → X◦
h(Ω) in

the sense of
∑N

i=1 ai(·, ·). Hence, a function u ∈ Xh(Ω) can then be decomposed as

(2.15) u = Hu + Pu.

Alternatively to (2.15), a function u ∈ Xh(Ω) can be represented as

(2.16) u = Ĥu + P̂u,

where P̂u = {P̂iui}N
i=1 : Xh(Ω) → X◦

h(Ω) is the projection in the sense of the
original bilinear for ah(·, ·), see (2.3), while Ĥu = {Ĥiu}N

i=1 ∈ Xh(Ω) where Ĥiu is
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the discrete harmonic part of u in the sense of âi(., .) defined in (2.4), i.e., Ĥiu ∈
Xi(Ωi) is the solution of

(2.17)


âi(Ĥiu, vi) = 0 for all vi ∈ X◦

i (Ωi),
Ĥiu = ui on ∂Ωi

Ĥiu = uj on every (part of) face Fji ⊂ ∂Ωj .

Here the index j in the last equation of (2.17) runs over all Ωj and j = ∂ such that
Ωi∩Ωj and Ωi∩Ω has nonzero measure, respectively. In the latter case, recall that
u∂ = 0.

Observe that since P̂iui ∈ X◦
i (Ωi) we have that for all vi ∈ X◦

i (Ωi),

ai(P̂iu, vi) = ah(u, Eivi),

where Ei is the standard discrete zero extension operator, i.e., Eivi := {vj}N
j=1,

where vj vanishes for j 6= i; see also Section 4 for the definition of others zero
extension operators Ii and Ĩi.

The discrete solution of (2.2) can be decomposed as u∗h = Ĥu∗h + P̂u∗h. To
compute the projection P̂u∗h we need to solve the following set of standard discrete
Dirichlet problems:

(2.18) ai(P̂iu
∗
h, vi) = f(Eivi) for all vi ∈ X◦

i (Ωi).

Note that these problems, for i = 1, . . . N , are local and independent, and so, they
can be solved in parallel. This is a precomputational step.

We next formulate the problem for Ĥu∗h. We first point out that for vi ∈ X◦
i (Ωi)

we have

(2.19) âi(ui, vi) = (ρi∇ui,∇vi)L2(Ωi) +
∑

Fij⊂∂Ωi

ρij

lij
(
∂vi

∂n
, uj − ui)L2(Fij).

Note that (2.17) has a unique solution. To see this, let us rewrite (2.17) in the form

(2.20) ρi(∇Ĥiu,∇ϕi
k)L2(Ωi) = −

∑
Fij⊂∂Ωi

ρij

lij
(
∂ϕi

k

∂n
, uj − ui)L2(Fij)

where ϕi
k is the nodal basis function of X◦

i (Ωi) associated with any interior nodal

point xk of the hi-triangulation of Ωi. The normal derivative ∂ϕi
k

∂n does not vanish
on ∂Ωi when xk is a node of an element of the triangulation Ti(Ωi) touching ∂Ωi.
We see that Ĥiu is a special extension into Ωi where u is given on ∂Ωi and on all
(part of) faces Fji. Therefore, Ĥiu depends not only on the values of ui on ∂Ωi

but also on the values of uj given on Fji = ∂Ωi ∩ ∂Ωj and on F∂i (we already have
assumed u∂ = 0). Note that Ĥiu is discrete harmonic except at nodal points close
to ∂Ωi. We will sometimes call Ĥiu as the discrete harmonic in a special sense, i.e.,
in the sense of âi(·, ·).

Observe that (2.17) for u ∈ Xh(Ω) is obtained from

(2.21) ah(Ĥu, v) = 0
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when taking v = {vi}N
i=1 ∈ X◦

h(Ω). It is easy to see that Ĥu = {Ĥiu}N
i=1 and

P̂u = {P̂iui}N
i=1 are orthogonal in the sense of ah(., .), i.e.,

(2.22) ah(Ĥu, P̂v) = 0, u, v ∈ Xh(Ω).

In addition,

(2.23) HĤu = Hu and ĤHu = Ĥu

since neither Ĥu nor Hu changes the values of u at the nodes on the boundaries of
the subdomains Ωi; see (2.13) and (2.17).

Define

(2.24) Γh := (∪i∂Ωihi),

where ∂Ωihi
is the set of nodal points of ∂Ωi. We note that the definition of Γh

includes the nodes on both triangulations of ∪i∂Ωi.

We are now in a position to derive the Schur complement problem for (2.2).
Applying the decomposition (2.16) in (2.2) we obtain

ah(Ĥu∗h + P̂u∗h, Ĥvh + P̂vh) = f(Ĥvh + P̂vh)

or
ah(Ĥu∗h, Ĥvh) + 2ah(Ĥu∗h, P̂vh) + ah(P̂u∗h, P̂vh) = f(Ĥvh) + f(P̂vh).

Using (2.18) and (2.21) we have

(2.25) ah(Ĥu∗h, Ĥvh) = f(Ĥvh) for all vh ∈ Xh(Ω).

This is the Schur complement problem for (2.2). We denote by V the set of all
functions vh in Xh(Ω) such that vh ≡ Ĥvh, i.e., the space of discrete harmonic
functions in the sense of the Ĥ. We rewrite the Schur complement problem as
follows: Find u∗h ∈ V such that

(2.26) S(u∗h, vh) = g(vh) for all vh ∈ V

where, here and below, u∗h ≡ Ĥu∗h and

(2.27) S(uh, vh) := ah(Ĥuh, Ĥvh) and g(vh) := f(Ĥvh).

The Schur complement problem (2.26) has a unique solution.

3. Technical tools

Our main goal is to design and analyze Neumann-Neumann (N-N) methods for
solving (2.26). This will be done in the next sections. We now introduce some
notations and facts to be used later. Let u = {ui}N

i=1 ∈ Xh(Ω) and consider di(·, ·)
and dh(·, ·), the bilinear forms defined in (2.7) and (2.8), respectively. First note
that for u ∈ Xh(Ω), Lemma 2.1 states that

(3.1) γ0dh(u, u) ≤ ah(u, u) ≤ γ1dh(u, u),

where γ0 and γ1 are positive constants independent of hi, Hi and ρi. Additionally,
the following lemma shows the equivalence between the discrete harmonic functions
in the sense of H and in the sense of Ĥ. For the proof of the following lemma we
refer to [9].
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Lemma 3.1. For u ∈ Xh(Ω) we have

(3.2) di(Hiu,Hiu) ≤ di(Ĥiu, Ĥiu) ≤ Cdi(Hiu,Hiu), i = 1, . . . , N,

and

(3.3) dh(Hu,Hu) ≤ dh(Ĥu, Ĥu) ≤ Cdh(Hu,Hu)

where Hu = {Hiui}N
i=1 and Ĥu = {Ĥiu}N

i=1 are defined by (2.13) and (2.17) re-
spectively, and C is a positive constant independent of hi, u, ρi and Hi.

From (3.1) and (3.3) we have

(3.4) γ0dh(Hu,Hu) ≤ ah(Ĥu, Ĥu) ≤ Cγ1dh(Hu,Hu)

and therefore, we can take advantages of all the discrete Sobolev norm results known
for H discrete harmonic extensions and for the norm dh.

4. Notations and the interface condition

In this section we introduce local and global subspaces and bilinear forms on the
interface Γh; see (2.24). We also introduce a sufficient condition (Assumption 4.1)
for designing robust preconditioners and for deriving quasi-optimal bounds for the
condition number of the preconditioners. In Section 7 we show numerically that
Assumption 4.1 is indeed necessary for robustness.

First we classify substructures according to their position with respect to the
boundary ∂Ω. We say that a substructure Ωi is an interior substructure or floating
substructures if Ωi does not share a face with the boundary of Ω, i.e., when the size
(the Lebesque measure) of ∂Ωi ∩ ∂Ω vanishes. Otherwise, we say it is a boundary
substructure or nonfloating substructure. We denote by NI and NB the sets of in-
dices of interior and boundary substructures, respectively.

Recall that a common (part of) face of ∂Ωi to ∂Ωj has two sides, the side con-
tained in ∂Ωi, denoted by Fij , and the side contained in ∂Ωj , denoted by Fji. Note
also that geometrically Fji = Fij . For convenience of notation we also introduce
fictitious faces F∂i = Fi∂ where F∂i = ∂Ωi ∩ ∂Ω; see Subsection 2.2. Since in this
paper we consider only the zero Dirichlet boundary condition, functions defined
on F∂i must vanish, while functions on Fi∂ are free to take any value. Through-
out this paper, Fij stands for a face (or part of a face) of positive Lebesque measure.

Let
◦
Ωihi

and ∂Ωihi
be the interior and boundary nodes of Thi

(Ωi) in Ωi and on
∂Ωi, respectively. Define Fijhi

as the set of nodes of ∂Ωihi
that are on Fij . Recall

that Fij is a closed interval. We also define ∂Fijhi
as the set of nodes on Fijhi

that

are closest to the boundary ∂Fij . Let
◦
F ijhi

:= Fijhi
\ ∂Fijhi

be the set of interior
nodes in Fij . Additionally, we define the extended boundary nodes ∂eFijhi as the
union of ∂Fijhi and the nodal points y ∈ ∂Ωi \ Fij closest to x ∈ ∂Fij when x is
not a nodal point. Note that when Fij is a full face of ∂Ωi, then ∂eFijhi

= ∂Fij .

Let F ijhi
:=

◦
F ijhi

∪ ∂eFijhi
. See Figure 1 for an example. We define

(4.1) Γi := ∂Ωihi
∪

⋃
Fij⊂∂Ωi

F jihj
.
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Figure 1. An example of nodes classification on an interface.

Note that Γi is defined to include the nodes on Γh necessary for computing Ĥi;
see (2.17). Define Wi as the space of piecewise linear functions defined by the nodal
values on Γi extended via Ĥi (defined in (2.17)) inside Ωi, i.e.,

(4.2) Wi :=
{

v : nodal values of v defined on
◦
Ωihi

∪ Γi and v ≡ Ĥiv in Ωi

}
.

Observe that a function u(i) ∈ Wi can be represented as

u(i) = {u(i)
l }l∈#(i) where #(i) = {i} ∪ {j : Fij ∈ ∂Ωi}.

Here u
(i)
i and u

(i)
j stand for the nodal values of u(i) on Ωi and on F jihj

, respectively.
Recall also that sometimes we write u = {ui}N

i=1 ∈ V to refer to a function defined
on all of Γh with each ui defined (only) on ∂Ωi; see Subsection 2.2. We point out
that Fij and Fji are geometrically the same even though the mesh on the side Fij

is inherited from the Ωi triangulation while the mesh on the side Fji corresponds
from the Ωj triangulation. Note also that, according to our conventions, if i ∈ NB

and u(i) ∈ Wi then u
(i)
∂ = 0 on the fictitious face F∂i.

Define the extension operator Ĩi : Wi → V as follows: Given u(i) ∈ Wi, let Ĩiu
(i)

be equal to u(i) at nodes of Γi and
◦
Ωihi

and zero on Γh\Γi, and extended by ĤĨiu
(i)

elsewhere and denoted also by Ĩi, i.e.,

Ĩiu(x) =


u(x) if x ∈ Γi ∪

◦
Ωihi

0 if x ∈ Γh\Γi

ĤĨiu ≡ Ĩiu elsewhere.
(4.3)

In addition, we assign to each pair {Fij , Fji} a master and a slave side. If Fij is a
slave side then Fji is a master side and vice versa. If Fij is a slave side we will use
the notation δij (instead of Fij) to emphasis this fact, while if Fij is a master side
we will use the notation γij . Note that since we are working with a geometrically
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nonconforming decomposition of Ω, a part of a face can be labeled as master while
other part of the same face can be marked as slave. We will use the notation

γijhi
:= Fijhi

,
◦
γijhi

:=
◦
F ijhi

, γijhi
:= F ijhi

∂γijhi
:= ∂Fijhi

, ∂eγijhi
:= ∂eFijhi

when Fij is a master side. Analogous notation will be used also for a slave side δij .
The choice of slave-master sides are such that the interface condition, stated next
in Assumption 4.1, can be satisfied. Under this assumption, Theorems 5.2, 5.5 and
Theorem 6.1 below hold with constants C independent of the ρi, hi and Hi. This
assumption says basically that the coarser meshes hi should be chosen where the
coefficient ρi are larger, and additionally, the master side should be chosen on the
side where the coefficient is larger.

Assumption 4.1 (The interface condition). We say that the coefficients {ρi} and
the local mesh sizes {hi} satisfy the interface condition if there exist constants β1

and β2, of the order O(1), such that for any (part of) face Fij, one of the following
inequalities hold:{

hi ≤ β1hj and ρi ≤ β2ρj if Fij is a slave side, or
hj ≤ β1hi and ρj ≤ β2ρi if Fij is a master side.(4.4)

We associate to each Ωi, i = 1, · · · , N a weighting diagonal matrices D(i) =

{D(i)
l }l∈#(i) on Γi ∪

◦
Ωihi

. Let x be a node of Γi ∪
◦
Ωihi

. Then, the diagonal element
of D(i) associated to x is defined by:

• On
◦
Ωihi

∪ ∂Ωi,hi
(l = i)

D
(i)
i (x) =

{
0 if x ∈

◦
F ijhi

and Fij is a slave side
1 otherwise,

(4.5)

• On F jihj
(l = j)

D
(i)
j (x) =


0 if x ∈ ∂eFjihj

,

1 if x ∈
◦
F jihj

and Fij is a master side

0 if x ∈
◦
F jihj

and Fij is a slave side,

(4.6)

• For x ∈ F i∂hi we set D
(i)
i (x) = 1.

Remark 4.2. We can define any value for D(i) on
◦
Ωihi since, as we will see below,

the operator of interest is Ii := ĨiD
(i) and Ĩiu

(i) does not depend on the values of

u(i) on
◦
Ωihi

.
There are two alternative ways of defining the diagonal matrices D(i) on Γi and

still ensuring Theorems 5.2, 5.5 and 6.1 below to hold: 1) On (part of) faces Fij ,
where hi and hj are of the same order, the values of (4.5) and (4.6) at nodal points

x of
◦
F jihj

can be replaced by ρβ
i

ρβ
i +ρβ

j

, β ≥ 1/2 (see [29]); 2) Similarly, on (part of)

faces Fij , where ρi and ρj are of the same order, we can replace (4.5) and (4.6) at

nodal nodes x of
◦
F ijhi and

◦
F jihj by hi

hi+hj
.
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The prolongation operators Ii : Wi → V , i = 1, . . . , N , are defined as

(4.7) Ii = ĨiD
(i).

It is easy to see that the image of Ii forms a decomposition (a direct sum) for V
since

(4.8)
N∑

i=1

IiĨ
T
i u = u,

where the ĨT
i stand for the restriction of V to Wi.

5. Additive preconditioners

To design and analyze additive N-N type methods for solving (2.26) we use the
general framework of ASM; see Lemma 5.1 below and [30]. In the Section 5.1
we consider an additive Schwarz method based on the coarse space V0,I , i.e., a
coarse space with one degree of freedom per interior substructure and no degree of
freedom per boundary substructure; see (5.5). Then we consider several variants of
this method.

5.1. Additive Schwarz method with the V0,I coarse space. We now introduce
the local and coarse problems to define the additive Schwarz method Tas,I .

5.1.1. Local problems. Recall the definition of Γi in (4.1) and the space Wi in (4.2).
Define

(5.1)


Vi = Vi(Γi) :=

{
u(i) ∈ Wi :

∫
∂Ωi

u
(i)
i = 0

}
, if i ∈ NI

Vi = Vi(Γi) := Wi, if i ∈ NB

i.e., for interior substructures Ωi, Vi is the subspace of Wi consisting of functions
with zero average value on ∂Ωi, while for boundary substructures, Vi is the whole
space Wi. We recall that a function v(i) ∈ Wi (or Vi) then v(i) ≡ Ĥiv

(i) and v ∈ V

then v ≡ Ĥv.

For u(i), v(i) ∈ Vi, i = 1, . . . , N , we define the local bilinear form bi as

(5.2) bi(u(i), v(i)) := âi(u(i), v(i)),

where the bilinear form âi is defined in (2.4). We define the operators Ti : V → V ,
i = 1, . . . , N , by defining T̃i : V → Vi as

(5.3) bi(T̃iu, v(i)) = ah(u, Iiv
(i)) for all v(i) ∈ Vi,

and then set Ti = IiT̃i. It is easy to see, from Lemma (2.1), that these problems
are well posed.

5.1.2. Coarse problems. Let e(i) ∈ Wi be the vector with value one at the nodes

of Γi and on
◦
Ωihi

. Recall that the prolongation operators Ĩi and Ii are defined in
(4.3) and (4.7), respectively. Define Θi ∈ V , for i = 1, . . . , N , as Θi := ĨiΘ(i) where
Θ(i) = D(i)e(i). Hence, Θi = Iie

(i) and Θi ≡ ĤΘi. Note from (4.5) and (4.6) we
have that



12 MAKSYMILIAN DRYJA, JUAN GALVIS, AND MARCUS SARKIS

(5.4)
N∑

i=1

Θi = 1 on Γh.

We consider the following coarse space:

(5.5) V0,I = Span {Θi}i∈NI
⊂ V.

The coarse bilinear form is defined according to

(5.6) b0(u, v) =
(

1 + log
H

h

)−2

ah(u, v), u, v ∈ V0,I .

Next we define the projection-like operator T0 : V → V0,I as

(5.7) b0(T0u, v(0)) = ah(u, v(0)) for all v(0) ∈ V0,I .

Let us denote below V0 = V0,I and I0 by the identity operator defined on functions
V0 ⊂ V .

The additive preconditioner is defined by

(5.8) Tas,I =
N∑

i=0

Ti,

Note that Tas,I is symmetric and from the abstract theory of ASM we have the
following:

Lemma 5.1 (See Theorem 2.7 in [30]). Suppose that the following three assump-
tions hold:
Assumption i) There exists a constant C0 such that for all u ∈ V there exists a

decomposition u =
∑N

i=0 Iiu
(i) with u(i) ∈ Vi, i = 0, 1, . . . , N , such that

(5.9) b0(u(0), u(0)) +
N∑

i=1

bi(u(i), u(i)) ≤ C2
0ah(u, u).

Assumption ii) There exist constants εij, i, j = 1, . . . , N , such that for all u(i) ∈ Vi,
u(j) ∈ Vj we have

ah(Iiu
(i), Iju

(j)) ≤ εijah(Iiu
(i), Iiu

(i))1/2ah(Iju
(j), Iju

(j))1/2.

Assumption iii) There exists a constant ω such that

ah(Iiu
(i), Iiu

(i)) ≤ ωbi(u(i), u(i)) for all u(i) ∈ Vi, i = 0, 1, . . . , N.

Then, Tas,I is invertible and

C−2
0 ah(u, u) ≤ ah(Tas,Iu, u) ≤ (ρ(ε) + 1)ωah(u, u) for all u ∈ V.

Here, ρ(ε) is the spectral radius of the matrix ε = {εij}N
i,j=1.
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5.1.3. Condition number estimation for Tas,I . In this section we state and prove
the main result concerning the preconditioner defined in (5.8) with V0 = V0,I .

To avoid the proliferation of constants, we will use sometimes the notation A � B
to represent the inequality A ≤ (constant)B, and A � B if A � B and B � A,
where the (constant) does not depend on Hi, hi and ρi.

Theorem 5.2. Let the Assumption 4.1 be satisfied. In addition, assume that for
i ∈ NB, the size of ∂Ωi∩∂Ω is of the same order as the diameter of Ωi. Then there
exist positive constants C1 and C2 independent of hi,Hi and the jumps of ρi such
that

(5.10) C1ah(u, u) ≤ ah(Tas,Iu, u) ≤ C2

(
1 + log

H

h

)2

ah(u, u) for all u ∈ V.

Here log(H/h) = maxi log(Hi/hi).

Proof. By the general theory of ASMs we need to check the three key assumptions
of Lemma 5.1.

Assumption i) In order to verify (5.9) it is enough to prove (see Lemma 2.1)
that for every u = {ui}N

i=1 ∈ V , there exist u(i) ∈ Vi, i = 0, . . . , N , such that
u = u(0) +

∑N
i=1 Iiu

(i) and

(5.11) b0(u(0), u(0)) +
N∑

i=1

bi(u(i), u(i)) ≤ C2
0dh(u, u)

where C0 does not independ on hi, Hi and ρi.

Recall that Θi = Iie
(i) where e(i) has value one at the nodes of Γi and

◦
Ωihi

. See
also (4.5), (4.6) and (4.7). Let u = {ui}N

i=1 ∈ V and define

(5.12) u(0) =
∑
i∈NI

uiΘi =
∑
i∈NI

Iiuie
(i),

with

(5.13) ui =
1

|∂Ωi|

∫
∂Ωi

uidx, i = 1, . . . N.

Since the operators Ii defined in (4.7) form a partition of unity on Γh, see (4.8), we
can write

(5.14) u− u(0) =
N∑

i∈NI

Ii(ĨT
i u− uie

(i)) +
∑

i∈NB

Ii(ĨT
i u) =

N∑
i=1

Iiu
(i),

where u(i) := ĨT
i u − uie

(i) if i ∈ NI , and u(i) := ĨT
i u if i ∈ NB . Note that

u(i) ∈ Vi, i = 1, · · · , N .

Note that u(i) can be represented as u(i) = {u(i)
l }l∈#(i) ∈ Vi, for i = 1, · · · , N .

For i ∈ NI we have

(5.15)

{
u

(i)
i = ui − uie

(i)
i = ui − ui on Ωi,

u
(i)
j = uj − ūie

(i)
j = uj − ūi on Fji, for all Fij ⊂ ∂Ωi,
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while for i ∈ NB we have

(5.16)

{
u

(i)
i = ui on ∂Ωi,

u
(i)
j = uj on Fji, for all Fij ⊂ ∂Ωi.

Using Lemma 2.1 we have that for i = 1, · · · , N ,

bi(u(i), u(i)) � ρi ‖ ∇Hiu
(i)
i ‖2L2(Ωi)

+
∑

Fij⊂∂Ωi

δ
ρij

hij
‖ u

(i)
i − u

(i)
j ‖2L2(Fij)

= ρi ‖ ∇Hiui ‖2L2(Ωi)
+

∑
Fij⊂∂Ωi

δ
ρij

hij
‖ ui − uj ‖2L2(Fij)

.(5.17)

It remains to estimate b0(u(0), u(0)). In Lemma 5.3, see below, we will prove that

(5.18) dh(u(0), u(0)) ≤ C

(
1 + log

H

h

)2

dh(u, u),

and therefore, together with Lemma 2.1 and the definition of b0 in (5.6), we have
that

(5.19) b0(u(0), u(0)) ≤ Cah(u, u)

where C does not independ on hi, Hi and ρi.

Assumption ii) We need to prove that

(5.20) ah(Iiu
(i), Iju

(j)) ≤ εija
1/2
h (Iiu

(i), Iiu
(i)) a

1/2
h (Iju

(j), Iju
(j))

for u(i) ∈ Vi and u(j) ∈ Vj , i, j = 1, · · · , N, and that the spectral radius of
ε = {εij}N

i,j=1, %(ε), is bounded. In our case %(ε) ≤ C with constant indepen-
dent of hi, Hi and ρi, i = 1, . . . , N . This follows from the fact that εij vanishes
when Γi and Γj do not touch each other.

Assumption iii). We need to prove that for i = 0, 1, · · · , N,

(5.21) ah(Iiu
(i), Iiu

(i)) ≤ ωbi(u(i), u(i)) for all u(i) ∈ Vi

with ω ≤ C (1 + log(H/h))2 where C is a positive constant independent of hi, Hi

and the jumps of ρi. The proof of (5.21) for i = 0 with ω = C (1 + log(H/h))2

follows from the definition of b0(·, ·), while for i = 1, . . . , N , the proof will be
presented separately in Lemma 5.4 below. �

We now complete the proof of Theorem 5.2 by proving auxiliary results associ-
ated with (5.18) and (5.21). See Lemmas 5.3 and 5.4 below.

Lemma 5.3. Let the Assumption 4.1 be satisfied. Then for any u ∈ V and u(0)

defined by (5.12), the following inequality holds

(5.22) dh(u(0), u(0)) ≤ C

(
1 + log

H

h

)2

dh(u, u)

where the constant C does not independ of hi, Hi and the jumps of ρi.
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Proof. Let us denote u(0) = {u(0)
i }N

i=1. By Lemma 3.1 it is enough to prove the
estimate (5.22) for Hu(0) = {Hiu

(0)
i }N

i=1. Let us denote Hu(0) by u(0). We have
(5.23)

dh(u(0), u(0)) =
N∑

i=1

ρi ‖ ∇u
(0)
i ‖2L2(Ωi)

+
∑

Fij⊂∂Ωi

δ

lij

ρij

hij
‖ u

(0)
i − u

(0)
j ‖2L2(Fij)

 .

We now estimate the first term in (5.23). Let us consider first the case where
i ∈ NI . From the definition of u(0) in (5.12) we see that on ∂Ωi

(5.24) u
(0)
i = uiΘ

(i)
i +

∑
δij⊂∂Ωi

ujΘ
(j)
i −

∑
δij⊂∂Ωi, j∈NB

ujΘ
(j)
i .

It is easy to see from (4.6) that when δij = Fij is a slave side and
◦
F ijhi

is

empty then Θ(j)
i vanishes. Hence, we consider only the cases in (5.24) which

◦
F ijhi

is not empty, and hence from the definition of
◦
F ijhi

we have hi � |Fij |, where |Fij |
denotes the size (the Lebesque measure) of Fij . In general, |Fij | can be very tiny
due to the geometrically nonconformity of the Ωi partition, however, this is not

the case when
◦
F ijhi

is not empty. Additionally, because Fij is a slave side and the
Assumption 4.1 hypothesis holds, we have hi � hij � hj . From (5.4) we have

(5.25) u
(0)
i − ui =

∑
δij⊂∂Ωi

(uj − ui)Θ
(j)
i −

∑
δij⊂∂Ωi, j∈NB

ujΘ
(j)
i on ∂Ωi.

Using (5.25) we obtain

‖ ∇u
(0)
i ‖2L2(Ωi)

= ‖ ∇(u(0)
i − ui) ‖2L2(Ωi)

�
(

1 + log
Hi

hi

) ∑
δij⊂∂Ωi

(ui − uj)2 +
∑

δij⊂∂Ωi, j∈NB

u2
j

(5.26)

where we have used the following extension theorem

‖ ∇Θ(j)
i ‖2L2(Ωi)

�‖ Θ(j)
i ‖2

H
1/2
00 (δij)

and the discrete inequality (see [30])

‖ Θ(j)
i ‖2

H
1/2
00 (δij)

�
(

1 + log
Hi

hi

)
.

Now we estimate the term (ui − uj)2 in (5.26). Denote

(5.27) uij =
1

|Fij |

∫
Fij

uids and uji =
1

|Fji|

∫
Fji

ujds.

Note that hij � hi � |Fij | and so

(uij − uji)2 =
1

|Fij |2
(ui − uj , 1)2L2(Fij)

� 1
hi
‖ui − uj‖2L2(Fij)

.

By the discrete and Poincaré inequalities, and using again that hi � |Fij | we obtain

(5.28) (ui − uij)2 �
(

1 + log
Hi

hi

)
‖ ∇ui ‖2L2(Ωi)

.
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Using the above estimates we obtain

(ui − uj)2 � (ui − uij)2 + (uij − uji)2 + (uji − uj)2

�
(

1 + log
Hi

hi

)
‖ ∇ui ‖2L2(Ωi)

+
1

hij
‖ ui − uj ‖2L2(Fij)

+
(

1 + log
Hj

hj

)
‖ ∇uj ‖2L2(Ωj)

.(5.29)

We point out that the log factor above in (5.28) can be dropped if |Fij | � Hi. See
Remark 5.6 below.

Now we estimate the term u2
j in (5.26) for j ∈ NB . Recall that u∂ = 0, hence,

u∂j = 0. Then, using the notation (5.27) we obtain

(uj)2 = (uj − uj∂ + uj∂ − u∂j)2

�
(

1 + log
Hj

hj

)
‖∇uj‖2L2(Ωj)

+
1

hj∂
‖uj − u∂‖2L2(Fj∂).(5.30)

We now estimate the first term in (5.23) for i ∈ NB , see (5.24). We obtain

‖ ∇u
(0)
i ‖2L2(Ωi)

�
∑

δij⊂∂Ωi, j∈NI

(uj)2 ‖ Θ(j)
i ‖2

H
1/2
00 (δij)

�
(

1 + log
Hi

hi

) ∑
δij⊂∂Ωi, j∈NI

u2
j .(5.31)

Here again, the log factor above in (5.31) can be dropped if |Fj∂ | � Hj . See also
Remark 5.6.

To estimate the term u2
j with j ∈ NI we use

(uj)2 �
{
(uj − uji)2 + (uji − uij)2 + (uij − ui)2 + (ui − ui∂ + ui∂ − u∂i)2

}
and then apply the same arguments given above. Substituting (5.29) and (5.30)
into (5.26) and recalling that ρi � ρij � ρj and hi � hij � hj on every slave side
δij , we obtain

ρi ‖ ∇u(0) ‖2L2(Ωi)
�

(
1 + log

H

h

)2 {
ρi ‖ ∇ui ‖2L2(Ωi)

(5.32)

+
∑

δij⊂Ωi

ρj ‖ ∇uj ‖2L2(Ωj)
+

ρij

hij
‖ ui − uj ‖2L2(Fij)

+
ρj∂

hj∂
‖ uj − u∂ ‖2L2(Fj∂)

}
.

It remains to estimate the second term of (5.23). Observe that the estimate is
obvious for Fi∂ since u(0) = 0 on F∂i and Fi∂ . when i ∈ NB . Assume now that
i ∈ NI and j ∈ NI . We consider separately the cases when Fij is a master and a
slave side. Suppose that Fij = γij is a master side. We have on Fij

u
(0)
i − u

(0)
j = uiΘ

(i)
i −

(
ujΘ

(j)
j + uiΘ

(i)
j

)
(5.33)

= (ui − uj)Θ
(j)
j .
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Hence,
1

hij
‖ u

(0)
i − u

(0)
j ‖2L2(Fij)

=
1

hij
(ui − uj)2 ‖ Θ(j)

j ‖2L2(Fij)
� (ui − uj)2

where we have used that hj � hij � hi and

(5.34) ‖ Θ(j)
j ‖2L2(Fij)

� hj

since Θ(j)
j vanishes on

◦
F jihj

. Using (5.29) and ρj � ρij � ρi we obtain

ρij

hij
‖ u

(0)
i − u

(0)
j ‖2L2(Fij)

�
(

1 + log
Hi

hi

)
ρi ‖ ∇ui ‖2L2(Ωi)

+
ρij

hij
‖ ui − uj ‖2L2(Fij)

+
(

1 + log
Hj

hj

)
ρj ‖ ∇uj ‖2L2(Ωj)

.(5.35)

Now assume that Fij = δij is a slave side. In this case on Fij we have, see (5.33),

u
(0)
i − u

(0)
j = ūiΘ

(i)
i + ūjΘ

(j)
i − ūjΘ

(j)
j = (ui − uj)Θ

(i)
i ,

therefore, we get
ρij

hij
‖ u

(0)
i − u

0)
j ‖2L2(Fij)

=
ρij

hij
(ui − uj)2 ‖ Θ(i)

i ‖2L2(Fij)
(5.36)

� ρij(ui − uj)2 �
(

1 + log
Hi

hi

)
ρi ‖ ∇ui ‖2L2(Ωi)

+
ρij

hij
‖ ui − uj ‖2L2(Fij)

+
(

1 + log
Hj

hj

)
ρj ‖ ∇uj ‖2L2(Ωj)

in view of (5.34) for δij ⊂ ∂Ωi and (5.29).
Assume now i ∈ NI and j ∈ NB . Since i ∈ NI then u

(0)
j vanishes on Fji. If

Fij = δij is a slave side or Fij = γij is a master side then
ρij

hij
‖ u

(0)
i − u

(0)
j ‖2L2(Fij)

� ρij(ui)2

and using that

u2
i � (ui − uij)2 + (uij − uji)2 + (uji − uj)2 + (uj − uj∂ + uj∂ − u∂j)2

and the same arguments given before, the estimate follows. The case i ∈ NB and
j ∈ NI follows from the previous case.

Substituting (5.32), (5.35) and (5.36) into (5.23) we get (5.22 ). �

In order to complete the proof of Theorem 5.2 in the next lemma we prove the
inequality (5.21).

Lemma 5.4. Let the Assumption 4.1 be satisfied. In addition, assume that for
i ∈ NB the size of ∂Ωi ∩ ∂Ω is of the same order as the diameter of Ωi. Then for
u(i) ∈ Vi, i = 1, . . . , N , we have

(5.37) ah(Iiu
(i), Iiu

(i)) ≤ C

(
1 + log

H

h

)2

bi(u(i), u(i)),
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where C does not independ on hi, Hi and the jumps of ρi.

Proof. To prove (5.37) we can replace the terms ah(Iiu
(i), Iiu

(i)) and bi(u(i), u(i))
by dh(HiIiu

(i),HIiu
(i)) and di(Hiu

(i),Hiu
(i)), respectively; see Lemma 2.1 and

Lemma 3.1.
In order to simplify notations, all the functions are considered as harmonic ex-

tensions in the H sense. Hence, we denote HIiu
(i) by D(i)u(i) and Hu(i) by u(i)

and let u(i) = {u(i)
l }l∈#(i) ∈ Vi. Using (2.7), (2.8) and (4.7) we obtain

(5.38) dh(D(i)u(i), D(i)u(i)) = di(D(i)u(i), D(i)u(i)) +
∑

j

dj(D(i)u(i), D(i)u(i))

where the sum is taken over Ωj with common faces or part of faces to Ωi. The
first term of the right-hand side of (5.38) can be estimated as follows. From the
definition of di in (2.7) we write

di(D(i)u(i), D(i)u(i))

= ρi‖∇D
(i)
i u

(i)
i ‖2L2(Ωi)

+
∑

Fij⊂∂Ωi

δ

lij

ρij

hij
‖ D

(i)
i u

(i)
i −D

(i)
j u

(i)
j ‖2L2(Fij)

.(5.39)

We now bound the first term of (5.39). We note that
(5.40)

ρi ‖ ∇D
(i)
i u

(i)
i ‖2L2(Ωi)

≤ 2ρi

{
‖ ∇(D(i)

i u
(i)
i − u

(i)
i ) ‖2L2(Ωi)

+ ‖ ∇u
(i)
i ‖2L2(Ωi)

}
and observe that from the definition of D

(i)
i in (4.5) and (4.6) we have

(5.41) ρi ‖ ∇(D(i)
i u

(i)
i − u

(i)
i ) ‖2L2(Ωi)

≤ C
∑

δij⊂∂Ωi

ρi ‖ ũ
(i)
i ‖2

H
1/2
00 (δij)

.

Here, ũ
(i)
i = u

(i)
i at the nodal points in

◦
δijhi , and ũ

(i)
i = 0 at ∂eδijhi and at the

remaining nodes of ∂Ωihi . Note that the support of ũ
(i)
i is contained in δij . Also

recall that δij denotes Fij when Fij is a slave side. For i ∈ NI , the local function
u

(i)
i has zero average value on ∂Ωi, hence, we can bound the H

1/2
00 −norm of ũ

(i)
i by

(see for example [30])

ρi ‖ ũ
(i)
i ‖2

H
1/2
00 (δij)

�
(

1 + log
Hi

hi

)2

ρi|u(i)
i |2H1(Ωi)

.

For i ∈ NB we have

ρi‖ũ(i)‖2
H

1/2
00 (δij)

�
(

1 + log
Hi

hi

)2

ρi

{
|u(i)

i |2H1(Ωi)
+

1
H2

i

‖u(i)
i ‖2L2(Ωi)

}
�

(
1 + log

Hi

hi

)2

ρi

{
|u(i)

i |2H1(Ωi)
+

1
hi
‖u(i)

i ‖2L2(Fi∂)

}
(5.42)

where Fi∂ ⊂ ∂Ω. To get the inequality in (5.42) we have used the following estimate
1

H2
i

‖u(i)
i ‖2L2(Ωi)

≤ 2
H2

i

{
‖u(i)

i − ū
(i)
i∂ ‖

2
L2(Ωi)

+ ‖ū(i)
i∂ ‖

2
L2(Ωi)

}
� |u(i)

i |2H1(Ωi)
+

1
hi
‖u(i)

i ‖2L2(Fi∂)(5.43)

where ū
(i)
i∂ =

∫
Fi∂

u
(i)
i ds/|Fi∂ |. Note that we have used the assumption that the

size |Fi∂ | � Hi in order to avoid an extra log factor in the inequality (5.43). In the
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case this assumption is not satisfied, the coarse basis function Θi must be added to
the coarse problem to obtain the estimate with (1 + log(Hi/hi))2 factor. We point
out that the coarse space V0,I∪B defined later in (5.59) includes automatically such
functions; see that Theorem 5.5 below does not assume that the size of ∂Ωi ∩ ∂Ω
is of the same order as the diameter of Ωi. Using the estimates (5.41) and (5.42)
in (5.40) we get

ρi‖∇D
(i)
i u

(i)
i ‖2L2(Ωi)

(5.44)

�
(

1 + log
Hi

hi

)2

ρi

{
‖∇u

(i)
i ‖2L2(Ωi)

+
1
hi
‖u(i)

i ‖L2(Fi∂)

}
.

We now estimate the second terms of (5.39) with Fij ⊂ ∂Ωi. First note that the
estimate is straightforward for boundary faces Fi∂ since by definition u

(i)
∂ = 0 and

D
(i)
i = 1 on Fi∂ . We now estimate the terms of (5.39) when the δij = Fij is a slave

side. From (4.5) and (4.6) we have

‖ D
(i)
i u

(i)
i −D

(i)
j u

(i)
j ‖2L2(δij)

� hi max
δij

|u(i)
i |2,

and recalling that ρi � ρij � ρj and hi � hij � hj we obtain

ρij

hij
‖ D

(i)
i u

(i)
i −D

(i)
j u

(i)
j ‖2L2(δij)

� ρi max
δij

|u(i)
i |2

�
(

1 + log
Hi

hi

)
ρi

{
|u(i)

i |2H1(Ωi)
+

1
H2

i

‖u(i)
i ‖2L2(Ωi)

}
.(5.45)

To estimate of the second term of the right-hand side in (5.45) we use a Poincaré
inequality (recall u

(i)
i has zero average value on ∂Ωi) when i ∈ NI , and we use the

inequality (5.43) when i ∈ NB . Thus

ρij

hij
‖D(i)

i u
(i)
i −D

(i)
j u

(i)
j ‖2L2(δij)

� (1 + log
Hi

hi
) ρi

{
|u(i)

i |2H1(Ωi)
+

1
hi
‖u(i)

i ‖2L2(Fi∂)

}
.(5.46)

Now consider the case where γij = Fij is a master side. Remember that on a master
side, hj � hij � hi and ρj � ρij � ρi. We have

‖ D
(i)
i u

(i)
i −D

(i)
j u

(i)
j ‖L2(γij)≤‖ u

(i)
i − u

(i)
j ‖L2(γij) + ‖ z

(i)
j ‖L2(Fji),(5.47)

where

z
(i)
j =

∑
xj

k∈∂eFjihj

u
(i)
j (xj

k)ϕj
k.

Here, ϕj
k are the nodal basis functions on Fji,hj

corresponding to the nodes xj
k on

∂eFji,hj . Let us denote the support of z
(i)
j by S

z
(i)
j

on Fji and see that |S
z
(i)
j
| � hj .

We have

‖ z
(i)
j ‖L2(S

z
(i)
j

)�‖ u
(i)
j ‖L2(S

z
(i)
j

)� ‖u(i)
j − u

(i)
i ‖2L2(γij)

+ ‖u(i)
i ‖2L2

S(z
(i)
j

)

.(5.48)
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The second term of the right-hand side of (5.48) can be estimated by

‖u(i)
i ‖2L2(S

z
(i)
j

) � Chj max
Fij

|u(i)
i |2

� hi

(
1 + log

Hi

hi

){
|u(i)

i |2H1(Ωi)
+

1
hi
‖u(i)

i ‖2L2(Fi∂)

}
,(5.49)

where we have used a Poincaré inequality for i ∈ NI and the estimate (5.43) for
i ∈ NB . Using (5.48) and (5.49) in (5.47 ) we get

ρij

hij
‖D(i)

i u
(i)
i −D

(i)
j u

(i)
j ||2L2(Fij)

�(5.50)

ρij

hij
‖u(i)

j − u
(i)
i ‖2L2(Fij)

+
(

1 + log
Hi

hi

)
ρi

{
‖∇u

(i)
i ‖2L2(Ωi)

+
1
hi
‖u(i)

i ‖2L2(Fi∂)

}
.

We now use the estimates (5.44), (5.45) and (5.50) in (5.39) and Lemma 2.1 to
obtain

(5.51) di(D(i)u(i), D(i)u(i)) �
(

1 + log
Hi

hi

)2

bi(u(i), u(i)).

We now estimate the second terms of (5.38) by bounding dj(D(i)u(i), D(i)u(i))
by bi(u(i), u(i)). For u = {u(i)

j } ∈ Vi we have

dj(ĨiD
(i)u(i), ĨiD

(i)u(i))

= ρj ‖ ∇D
(i)
j u

(i)
j ‖2L2(Ωj)

+
δ

lij

ρij

hij

∫
Fij

(D(i)
i u

(i)
i −D

(i)
j u

(i)
j )2dx.(5.52)

We only need to estimate the first term of (5.52) since the second term has been
already estimated; see (5.45) and (5.50). If Fij is a slave side of ∂Ωi then D

(i)
j

vanishes, and so vanishes ‖ ∇D
(i)
j u

(i)
j ‖2L2(Ωj)

. We now estimate the case where

γij is a master side of Fij = ∂Ωi ∩ ∂Ωj . On Fji we decompose u
(i)
j = w

(i)
j +∑

xj
k∈∂eFjihj

u
(i)
j (xj

k)ϕj
k, where w

(i)
j = D

(i)
j u

(i)
j , i.e., w

(i)
j equals u

(i)
j at the nodes in

◦
F jihj

and zero at the nodes in ∂eFjihj
. Note that the support of w

(i)
j belongs to

Fji. We have

‖ ∇w
(i)
j ‖2L2(Ωj)

� ‖ w
(i)
j ‖2

H
1/2
00 (Fji)

= {|w(i)
j |2H1/2(Fji)

+
∫

Fji

(w(i)
j )2

dist(s, ∂Fji)
ds}.(5.53)

We now estimate the first term of (5.53). Let Qj be the L2- projection on the hj-
triangulation of Fji. Then

|w(i)
j |2H1/2(Fji)

≤ 2{|w(i)
j −Qju

(i)
i |2H1/2(Fji)

+ |Qju
(i)
i |2H1/2(Fji)

}(5.54)

� 1
hj

‖ w
(i)
j − u

(i)
i ‖2L2(Fji)

+ ‖ ∇u
(i)
i ‖2L2(Ωi)
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and

‖ w
(i)
j − u

(i)
i ‖2L2(Fji)

≤ 2{‖ u
(i)
j − u

(i)
i ‖2L2(Fji)

+ ‖
∑

xj
k∈∂eFji,hj

u
(i)
j (xj

k)ϕj
v ‖2L2(Fji)

}(5.55)

where the second term of (5.55) can be bounded as before, see (5.47)-(5.49).

It remains to estimate the second term of (5.53). In order to simplify the argu-
ments, we take Fij as the interval [0,H]. Note that

(5.56)
∫

Fji

(w(i)
j )2

dist(s, ∂Fji)
ds �

∫ H/2

0

(w(i)
j )2

s
ds +

∫ H

H/2

(w(i)
j )2

(H − s)
.

Let us estimate the first term in the right-hand side of (5.56). Let A be the most left

node of
◦
F jihj in [0,H/2] and note the size of the interval of [0, A] is O(hj). We have

∫ H/2

0

(w(i)
j )2

s
ds =

∫ A

0

(w(i)
j )2

s
ds +

∫ H/2

A

(u(i)
j )2

s
ds

� (u(i)
j (A))2 +

∫ H/2

A

(u(i)
i − u

(i)
j )2

s
ds +

∫ H/2

A

(u(i)
i )2

s
ds

� (u(i)
j (A))2 +

1
hj

‖ u
(i)
i − u

(i)
j ‖2L2(Fji)

+
(

1 + log
Hj

hj

)
max
Fij

|u(i)
i |2

� 1
hj

‖ u
(i)
i − u

(i)
j ‖2L2(Fij)

+
(

1 + log
Hi

hi

)(
1 + log

Hj

hj

){
|u(i)

i |2H1(Ωi)
+

1
hi
‖u(i)

i ‖2L2(Fi∂)

}
where (u(i)

j (A))2 has been estimated using (5.48) and (5.49). The second term of
(5.56) is estimated similarly. Substituting these estimates in (5.56) we get∫

Fji

(w(i)
j )2

dist(s, δFji)
ds(5.57)

�
(

1 + log
H

h

)2

{‖ ∇u
(i)
i ‖2L2(Ωi)

+
1
hj

‖ u
(i)
i − u

(i)
j ‖2L2(Fij)

+
1
hi
‖u(i)

i ‖2L2(Fi∂)}.

Substituting (5.54) and (5.57) and together with (5.55) into (5.53), and then
substituting this resulting estimate with (5.45) and (5.50) into (5.52), and using
Lemma 2.1, we get

(5.58) dj(D(i)u(i), D(i)u(i)) �
(

1 + log
H

h

)2

bi(u(i), u(i)).

Using (5.51) and (5.58) in (5.38), we get

dh(D(i)u(i), D(i)u(i)) �
(

1 + log
H

h

)2

bi(u(i), u(i)).
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�

5.2. Additive Schwarz method with the V0,I∪B coarse space. We recall that
the upper bound C(1+log H/h)2 in Theorem 5.2 requires the condition that |∂Ωi∩
∂Ω| � Hi for all i ∈ NB . Without this condition we obtain an upper bound
C(1+ log H/h)3; see the discussion below (5.43). To obtain an upper bound C(1+
log H/h)2 without this condition, we enhance the coarse space V0,I , see (5.5), by
adding boundary coarse basis functions, i.e.,

(5.59) V0,I∪B = Span {Θi}i∈NI∪NI
.

The additive preconditioner is then defined by

(5.60) Tas,I∪B =
N∑

i=0

Ti,

where the T0 is defined as in (5.7) except that now we replace V0,I by V0,I∪B . We
then obtain:

Theorem 5.5. Let the Assumption 4.1 be satisfied. Then there exist positive con-
stants C1 and C2 independent of hi,Hi and the jumps of ρi such that

(5.61) C1ah(u, u) ≤ ah(Tas,I∪Bu, u) ≤ C2

(
1 + log

H

h

)2

ah(u, u) for all u ∈ V.

Here log(H/h) = maxi log(Hi/hi).

Proof. Use that V0,I ⊂ V0,I∪B ⊂ V and repeat the proof of Theorem 5.2 with the
discussion below (5.43). �

Remark 5.6. There are cases where we can use the following coarse bilinear form,

(5.62) b̃0(u, v) =
(

1 + log
H

h

)−1

ah(u, v), u, v ∈ V0

and still keeping the two logs result (5.10) and (5.61) of Theorem 5.2 and Theorem
5.5, respectively. The cases are when the size of any face or part of a face Fij and
Fi∂ are of the same order as Hi. In such cases, it is easy to see that (5.22) in
Lemma 5.3 will hold with only one log; see the discussions in (5.29) and (5.31).

Remark 5.7. Finally we point ourt that all the bilinear forms bi, i = 0, · · · , N
considered until now were based on exact solvers, i.e., based on the bilinear forms
ah(Ĥu(0), Ĥu(0)) and âi(Ĥiu

(i), Ĥiu
(i)). We note that, due to Lemma 2.1 and

Lemma 3.1, all the results will still hold if we replace those bilinear forms by
dh(Hu(0),Hu(0)), and di(Hiu

(i),Hiu
(i)), respectively.

6. Hybrid preconditioners

In this section we design and analyze an hybrid type (BDD) method for solving
(2.26); see [26, 30]. We consider the hybrid version of Tas,I , see (5.8). The hybrid
version of Tas,I∪B , see (5.60), can be treated similarly.
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6.1. The method. Recall the definition of the Γi in (4.1), the spaces Wi in (4.2),
the local subspaces Vi in (5.1) and the coarse subspace V0 = V0,I in (5.5). Consider
the bilinear forms bi, i = 1, · · · , N , defined in (5.2).

Now define bilinear form a0 as the exact bilinear form ah, i.e.,

(6.1) a0(u, v) = ah(u, v), u, v ∈ V0,

with Ĥ defined in (2.17). Introduce the coarse projection P0 : V → V0 defined by

(6.2) a0(P0u, v) = ah(u, v) for all v ∈ V0.

The hybrid method is defined as (see [30])

(6.3) Thyb,I = P0 + (I − P0)

(
N∑

i=1

Ti

)
(I − P0),

where the operators Ti were defined as Ti = IiT̃i with T̃i defined by (5.3), i =
1, . . . , N .

Let the subspace V ⊥
0 ⊂ V consists of functions w ∈ V such that ah(w, v0) = 0,

for all v0 ∈ V0. It is easy to check that if w ∈ V ⊥
0 then Thyb,Iw ∈ V ⊥

0 . The PCG
algorithm for solving Thyb,Iv = w, w ∈ V ⊥

0 , searches for the best approximation
to the solution in the Krylov subspace generated by powers of Thyb,I applied to
w. Assume the goal is to solve Su = g, where u = u∗h, see (2.26). We replace
this equation by Thyb,Iu = g̃ where g̃ = Thyb,Iu, and compute u0 = P0u. The
computations of g̃ and u0 can be obtained directly from g without the knowledge
of u by (5.3) and (5.7), respectively; see also [30]. Note that in our case u = v + u0

and w = Thyb,Iu − P0u belongs to V ⊥
0 . Then we can solve Thyb,Iv = w using the

PCG algorithm operated on the subspace V ⊥
0 .

6.2. Condition number estimate for Thyb,I . ¿From the analysis of the additive
method Tas,I developed in Theorem 5.2 we can derive an analysis for the hybrid
method Thyb,I . Observe that in both methods we have considered the same local
and coarse spaces. Note also that in the design of the hybrid method Thyb,I we
have considered the bilinear form a0(·, ·) defined in (6.1) rather than the bilinear
form b0(·, ·) defined in (5.6). These two bilinear forms differ only from each other
by a scaling factor. For both methods we have considered the same local bilinear
forms bi(·, ·) defined in (5.2).

Theorem 6.1. Let the Assumption 4.1 be satisfied. In addition, assume that for
i = 1, · · · , N , the size of ∂Ωi∩∂Ω is of the same order as the diameter of Ωi. Then
there exists a positive constant C independent of hi,Hi and the jumps of ρi such
that

(6.4) ah(u, u) ≤ ah(Thyb,Iu, u) ≤ C

(
1 + log

H

h

)2

ah(u, u) for all u ∈ V ⊥
0 .

Here log(H/h) = maxi log(Hi/hi).

Proof. Upper Bound: Using Rayleigh quotient arguments and properties of the
orthogonal projection P0, i.e., that (I − P0)P0 = 0, we obtain

λmax(Thyb,I |V ⊥0
) = max

u∈V ⊥0 \{0}

a(Thyb,Iu, u)
a(u, u)
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= max
u∈V ⊥0 \{0}

ah(
∑N

i=1 Tiu, u)
ah(u, u)

= max
u∈V ⊥0 \{0}

ah([γP0 +
∑N

i=1 Ti]u, u)
ah(u, u)

≤ max
u∈V \{0}

ah([γP0 +
∑N

i=1 Ti]u, u)
ah(u, u)

= λmax(Tas,I),

where γ =
(
1 + log H

h

)−2
and Tas,I defined in (5.8). Hence, the upper bound fol-

lows from the upper bound of Theorem 5.2.

Lower Bound: We obtain

λmin(Thyb,I |V ⊥0
) = min

u∈V ⊥0 \{0}

a(Thyb,Iu, u)
a(u, u)

= min
u∈V ⊥0 \{0}

ah(
∑N

i=1 Tiu, u)
ah(u, u)

= sup
ε>0

min
u∈V ⊥0 \{0}

ah([εP0 +
∑N

i=1 Ti]u, u)
ah(u, u)

≥ sup
ε>0

min
u∈V \{0}

ah([εP0 +
∑N

i=1 Ti]u, u)
ah(u, u)

.

It remains to show

(6.5) sup
ε>0

min
u∈V \{0}

ah([εP0 +
∑N

i=1 Ti]u, u)
ah(u, u)

≥ 1.

Let ε > 0 be fixed. A lower bound estimation for εP0+
∑N

i=1 Ti can be obtained from
the general theory of ASMs where we need to check the Assumption i) of Lemma
5.1. To check this assumption, let u ∈ V and consider the same decomposition∑N

i=1 Iiu
(i) = u described in the proof of Theorem 5.2, i.e., u(0) defined in (5.12)

and the u(i), i = 1, · · · , N defined in (5.14). Using the same steps of the proof of
Theorem 5.2 we obtain

εah(u0, u0) ≤ Cε(1 + log
H

h
)2ah(u, u),

and
N∑

i=1

bi(u(i), u(i)) = ah(u, u).

Note that to obtain this equality we do not use di as in (5.17). Instead, we work
with âi and we get an equality in (5.17) with right-hand side equals to âi. Summing
these equalities we get the above estimates. Hence, we obtain

εah(u0, u0) +
N∑

i=1

bi(u(i), u(i)) ≤
(

1 + Cε(1 + log
H

h
)2
)

ah(u, u),

and therefore

sup
ε>0

min
u∈V \{0}

ah([εP0 +
∑N

i=1 Ti]u, u)
ah(u, u)

≥ sup
ε>0

(
1 + Cε(1 + log

H

h
)2
)−1

= 1.

�
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7. Numerical experiments

In this section, we present numerical results for the preconditioners introduced in
(5.8), (5.60) and (6.3), for the geometrically conforming and nonconforming cases.
We also show that the bounds of Theorems 5.2, 5.5 and 6.1 are reflected in the
numerical tests. In particular we show that the interface condition (Assumption
4.1) is necessary and sufficient.

7.1. Geometrically conforming case. Let choose the domain Ω = (0, 1)2 and
divide it into N = M ×M equally spaced squares subdomains Ωi. Inside each sub-
domain Ωi we generate a structured triangulation with ni subintervals in each coor-
dinate direction and apply the discretization presented in Section 2 with δ = 4. In
the numerical experiments we use a red and black checkerboard type of subdomain
partition. On the black subdomains we let nb = 2 ∗ 2Lb and on the red subdomains
we let nr = 3∗2Lr , where Lb and Lr are integers denoting the number of refinements
inside each subdomain Ωi. Hence, the mesh sizes are hb = 2−Lb

2M and hr = 2−Lr

3M ,
respectively. We solve the second order elliptic problem −div(ρ(x)∇u∗(x)) = 1 in
Ω with homogeneous Dirichlet boundary conditions. We consider ρ(x) to be piece-
wise constant with different positive constants in substructures. In the numerical
experiments, we run PCG until the l2 initial residual is reduced by a factor of 106.

7.1.1. Hybrid preconditioner. We first test the hybrid preconditioner (6.3). In the
first test we consider the constant coefficient case ρr = ρb = 1. We consider different
values of M×M coarse partitions and different values of local refinements Lb = Lr,
therefore, keeping constant the mesh ratio hb/hr = 3/2. We place the master on
the black subdomains. Table 1 lists the number of PCG iterations and in parenthe-
sis the condition number of the preconditioned system. We note that the interface
condition (Assumption 4.1) is satisfied. As expected from the analysis, the condi-
tion numbers appear to be independent of the number of subdomains and grow by
a polylogarithmical factor when the size of the local problems increases. Note that
in the case of continuous coefficients, as expected, the Theorem 6.1 is valid without
any assumption on hb and hr since the master sides are chosen on the larger meshes.

Table 1. Geometrically conforming case: Thyb,I iterations count
and condition numbers for different sizes of coarse and local prob-
lems and with constant coefficients ρb = ρr = 1 and Lb = Lr.

Lr ↓ M → 2 4 8 16
0 13 ( 6.86) 18 ( 8.39) 20 ( 8.89) 19 ( 9.02)
1 17 ( 8.97) 22 (11.30) 24 (11.57) 24 (11.63)
2 18 (12.12) 26 (14.74) 28 (14.82) 27 (14.83)
3 19 (16.82) 30 (19.98) 32 (20.03) 32 (20.05)
4 21 (22.23) 33 (26.64) 37 (26.64) 37 (26.67)
5 22 (28.25) 36 (34.19) 42 (34.04) 42 (34.06)

We now consider the discontinuous coefficient case where we set ρb = 1 on the
black subdomains and ρr = µ on the red subdomains. The subdomain partition is
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Table 2. Geometrically conforming case: Thyb,I iterations count
and condition numbers for different values of the coefficients ρr = µ
and local meshes with Lr refinements on the red subdomains. On
black subdomains the coefficients ρr = 1 and refinement Lb = 0
are kept fixed. The subdomain partition is also kept fixed to 4×4.

Lr ↓ µ → 1000 10 0.1 0.001
0 90 (2556) 33 (29.16) 17 (8.28) 18 ( 8.83)
1 133 (3744) 40 (42.31) 19 (8.70) 18 ( 8.95)
2 184 (5362) 47 (58.20) 19 (9.21) 18 ( 9.46)
3 237 (7178) 52 (75.55) 19 (9.50) 18 ( 9.83)
4 303 (9102) 57 (94.59) 19 (9.65) 18 (10.08)

kept fixed to 4× 4. Table 2 lists the results on runs for different values of µ and for
different levels of refinements Lr on the red subdomains. On the black subdomains
nb = 2 is kept fixed. The masters are placed on the black subdomains. It is easy
to see that the interface condition (Assumption 4.1) is a sufficient and necessary
condition for the robustness of the solver.

7.1.2. Additive preconditioner. We repeat the tests above however now for the ad-
ditive preconditioner (5.8) and with the coarse bilinear form defined in (5.6). Nu-
merically the coarse bilinear form defined in (5.6) showed slightly better results
(not presented in this paper) than the coarse bilinear form defined according to
(5.62). Tables 3 and 4 show the results. The results, as expected, are similar to
the hybrid preconditioner and are consistent with Theorem 5.2. Even though the
number of iterations for the additive Schwarz method is slightly larger than for the
hybrid Schwarz method, we point out that the additive version has the advantage
that it requires only one residual calculation per each PCG iteration while the hy-
brid version requires two residual calculations. In addition, the additive version,
unlike the hybrid version, allows the use of some inexact local and global solvers;
see Remark 5.7.

Table 3. Geometrically conforming case: Tas,I iterations count,
the condition numbers and minimal eigenvalue for different sizes
of coarse and local problems and constant coefficients ρb = ρr = 1
and Lb = Lr. Here we use the coarse bilinear form b0 defined in
(5.6).

Lr ↓ M → 2 4 8 16
0 14 ( 8.10,1.00) 25 (30.26,0.44) 34 (38.89,0.34) 39 (40.46,0.33)
1 16 (10.50,1.00) 27 (28.23,0.59) 35 (35.82,0.48) 39 (37.58,0.47)
2 19 (14.23,1.01) 29 (29.94,0.70) 37 (39.86,0.59) 42 (41.80,0.58)
3 20 (18.40,1.03) 32 (36.06,0.78) 42 (46.88,0.68) 46 (49.02,0.66)
4 20 (23.47,1.03) 34 (44.14,0.83) 47 (55.90,0.75) 52 (58.23,0.73)

In the case of discontinuous coefficient we set as before ρb = 1 on the black
subdomains and ρr = µ on the red subdomains. The subdomain partition is kept
fixed to 4×4. Table 4 lists the results. On the black subdomains nb = 2 is kept fixed
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Table 4. Geometrically conforming case: Tas,I iterations count
and condition numbers of the additive preconditioner for different
values of coefficients ρr = µ and the local mesh refinements Lr on
the red subdomains only. The coefficients and the local mesh sizes
on the black subdomains are kept fixed to ρb = 1 and Lb = 0. The
subdomain partition is also kept fixed to 4× 4. Here we used the
coarse bilinear form b0 defined in (5.6).

Lr ↓ µ → 1000 10 1 0.1 0.001
0 179 (465239.38) 46 ( 184.52) 25 (30.26) 21 (18.13) 19 (13.79)
1 291 (638410.53) 61 ( 293.31) 26 (34.61) 21 (16.05) 18 (12.24)
2 400 (710636.95) 71 ( 429.62) 30 (43.08) 22 (15.45) 18 (11.55)
3 518 (666219.34) 78 ( 593.21) 32 (54.57) 22 (15.43) 18 (11.21)
4 660 (559822.47) 82 ( 788.51) 34 (68.52) 22 (15.71) 18 (11.04)
5 776 (449924.63) 89 (1019.62) 36 (84.68) 22 (16.14) 18 (10.97)

(Lb = 0) and masters are placed on the black subdomains. We can see in Table 4
that the interface condition (Assumption 4.1) holds if and only if the preconditioner
is robust.

Figure 2. Geometrically nonconforming partition.

7.2. Geometrically nonconforming case. We consider the domain Ω = (0, 1)2

and divide it into N = M×M rectangular geometrically nonconforming subdomains
Ωi as in Figure 2. In each subdomain, the next level of refinement is obtained from
a regular conforming 2× 2 rectangular refinement by enlarging (or decreasing) the
width or high of some rectangles by a factor fac = 1 + 1/23 (or 1 − 1/23); see
Figure 2.

Note that (fac)log2(M) = O(1), therefore, H ' 1/M . Inside each subdomain
Ωi we generate a structured triangulation with ni subintervals in each coordinate
direction and apply the discretization presented in Section 2 with δ = 4. In the
numerical experiments we use a red and black checkerboard type of subdomain par-
tition. On the black subdomains we let nb = 2 ∗ 2Lb and on the red subdomains we
let nr = 3 ∗ 2Lr , where Lb and Lr are integers denoting the number of refinements
inside each subdomain Ωi. Hence, since the size of each subdomain is O(1/M) then
the mesh sizes are hb ' 1

Mnb
and hr ' 1

Mnr
, respectively. We solve the second order
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elliptic problem −div(ρ(x)∇u∗(x)) = 1 in Ω with homogeneous Dirichlet boundary
conditions. We repeat the experiment of Section 7.1.

7.2.1. Hybrid preconditioner. We first test the case ρr = ρb = 1. We consider also
different values of M ×M coarse partitions and different values of local refinements
Lb = Lr. Here and on the tests below, we place the master on the black subdomain
in the case that (a part of) a face Fij = ∂Ωi ∩ ∂Ωj shares two different colors
subdomains, and place on the most north-east subdomain otherwise. Table 5 lists
the number of PCG iterations and in parenthesis the condition number estimate of
the preconditioned system. We note that the interface condition (Assumption 4.1)
is satisfied. As expected from the analysis, the condition numbers appear to be
independent of the number of subdomains and grow by a polylogarithmical factor
when the size of the local problems increases. Note that in the case of continuous
coefficients Theorem 6.1 is valid without any assumption on hb and hr since the
master sides are chosen on the larger meshes.

Table 5. Geometrically nonconforming case: Thyb,I iterations
count, condition number and smallest eigenvalue of the hybrid pre-
conditioner for different sizes of coarse and local problems and with
constant coefficients ρb = ρr = 1.

Lr ↓ M → 2 4 8 16
0 12( 6.22,1.00) 18( 7.83,1.03) 22(10.79,1.02) 23 (12.23,1.01)
1 16( 7.95,1.00) 24(11.74,1.02) 26(13.98,1.01) 27 (14.76,1.01)
2 20(16.03,1.05) 29(18.87,1.01) 32(18.77,1.01) 32 (18.96,1.00)
3 22(20.24,1.06) 32(24.13,1.00) 36(23.87,1.00) 36 (24.51,1.00)
4 23(29.05,1.02) 37(33.34,1.00) 42(33.33,1.00) 43 (34.60,1.00)

Table 6. Geometrically nonconforming case: Thyb,I iterations
count and condition numbers for different values of the coefficients
ρr = µ and local meshes with Lr refinements) on the red subdo-
mains. On black subdomains the coefficients ρr = 1 and refinement
Lb = 0 are kept fixed. The subdomain partition is also kept fixed
to 4× 4.

Lr ↓ µ → 1000 10 1 0.1 0.001
0 93(3069.53) 34(34.84) 18( 7.83) 18( 8.93) 18( 9.73)
1 120(4530.84) 43(50.36) 21(10.35) 19( 9.60) 19(10.45)
2 175(4990.32) 48(54.73) 23(14.81) 20(15.60) 19(16.24)
3 235(6496.58) 53(69.84) 25(17.54) 20(17.41) 19(18.12)
4 336(7542.38) 57(79.24) 26(20.02) 21(20.05) 19(20.98)

We now consider the discontinuous coefficient case where we set ρb = 1 on the
black subdomains and ρr = µ on the red subdomains. The substructures partition
is kept fixed to 4 × 4. Table 6 lists the results on runs for different values of µ
and for different levels of refinements Lr on the red subdomains. On the black
subdomains nb = 2 is kept fixed. It is easy to see in Table 6 that the interface
condition (Assumption 4.1) holds if and only if the preconditioner is robust.
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7.2.2. Additive preconditioner. We repeat the experiments done for the hybrid pre-
conditioner in the geometrically nonconforming case. As before we consider the
constant coefficient case ρr = ρr = 1, the mesh ratio hb/hr = 3/2. Table 7 shows
that the condition numbers appear to be independent of the number of subdo-
mains and grow by a polylogarithmical factor when the size of the local problems
increases. As expected by Theorem 5.5, Table 8 shows that condition numbers do
not change much when we replace Tas,I to Tas,I∪B .

Table 7. Geometrically nonconforming case: Tas,I iterations
count and condition numbers for different sizes of coarse and local
problems and constant coefficients ρb = ρr = 1 and Lb = Lr.

Lr ↓ M → 2 4 8 16
0 11 ( 7.32,1.00) 24 (36.03,0.40) 42 (50.00,0.31) 51 (55.82,0.29)
1 17 (15.01,1.00) 30 (40.09,0.53) 39 (51.82,0.42) 45 (56.56,0.40)
2 22 (20.19,1.03) 32 (47.28,0.63) 42 (59.81,0.52) 46 (62.27,0.50)
3 23 (23.76,1.05) 35 (48.76,0.71) 43 (62.95,0.60) 47 (67.01,0.58)

Table 8. Geometrically nonconforming case: Tas,I∪B iterations
count and condition numbers for different sizes of coarse and local
problems and constant coefficients ρb = ρr = 1 and Lb = Lr.

Lr ↓ M → 2 4 8 16
0 13 ( 8.20,1.00) 23 (36.99,0.44) 40 (49.11,0.35) 44 (53.93,0.33)
1 18 (17.25,1.00) 31 (44.82,0.55) 40 (56.05,0.44) 46 (60.45,0.43)
2 23 (22.83,1.05) 35 (53.68,0.63) 43 (62.59,0.53) 48 (67.40,0.51)
3 25 (27.10,1.06) 37 (55.76,0.71) 44 (65.16,0.61) 48 (69.74,0.59)

Table 9. Geometrically nonconforming case: Thyb,I iterations
count and condition numbers for different values of coefficients and
the local mesh sizes on the red subdomains only. The coefficients
and the local mesh sizes on the black subdomains are kept fixed.
The number of subdomains are also kept fixed to 4×4 and Lb = 0.

Lr ↓ µ → 1000 10 1 0.1 0.001
0 137 (225164.57) 47 (205.41) 24 (36.03) 22 (23.75) 22 (24.41)
1 218 (294622.11) 60 (333.17) 26 (42.50) 22 (23.05) 23 (22.86)
2 291 (291958.12) 67 (462.11) 28 (54.06) 22 (36.76) 23 (35.45)
3 395 (289006.68) 72 (621.10) 30 (65.35) 23 (39.06) 22 (36.61)
4 529 (273591.72) 77 (790.20) 32 (78.79) 24 (44.24) 23 (40.29)

Now the case of discontinuous coefficient ρb = 1 on the black subdomains and
ρr = µ on the red subdomains. The subdomain partition is kept fixed to 4 × 4.
Table 9 lists the results on runs for different values of µ and for different levels
of refinements Lr on the red subdomains. On the black subdomains nb = 2 is
kept fixed, i.e., Lb = 2. It is easy to see in Table 9 that the interface condition
(Assumption 4.1) holds if and only if the preconditioner is robust.
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8. Conclusions

In this paper we consider a discontinuous Galerkin discretization of second or-
der elliptic equations with discontinuous coefficients and nonmatching meshes on
geometrically nonconforming substructures. We designed and analyzed Neumann-
Neumann methods of additive and additive-multiplicative. We prove that the
method is almost optimal and very well suited for parallel computations. The
coarse space is constructed using a special partition of unity. The rate of conver-
gence of both methods are polylogarithmically with repect to the local mesh size,
and does not depend on the number of substructures and on the jumps of coeffi-
cients. The numerical tests confirm the theoretical results. The methods can be
straightforwardly extended to 3-D cases.
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