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1 Introduction

Quantitative methods to analyze the option to invest in a project enjoy a long and distinguished history. The
classical work of McDonald and Siegel (1986) (see also Dixit and Pindyck (1994)) investigates the problem
from the point of view of derivative pricing and assigns the project’s value as

value = e−rTE [(VT − IT )+] . (1.1)

Here, the expected value is taken under an appropriate risk-adjusted measure. Furthermore, VT and IT

represent the project’s value and amount to be invested, respectively, at time T .
If the project can be started at anytime, then (1.1) is modified to its American counterpart. In this case,

the maturity date T is replaced by a stopping time τ (0 ≤ τ ≤ T ) and the investor chooses the stopping
time to maximize the option’s value. As such, the problem becomes a free boundary problem in which the
optimal strategy is computed simultaneously with the option’s value.

Traditionally, the project value is assumed to be a geometric Brownian motion (GBM) and the investment
amount is constant or deterministic, as in the pioneering work of Tourinho (1979). Stochastic investment
amounts have also been investigated: the case of an investment that is driven by a GBM, in the special
situation that the opportunity to invest does not expire in time i.e. a perpetual option, is treated in
McDonald and Siegel (1986) See also Berk, Green, and Naik (1999). More recently, Elliott, Miao, and Yu
(2007) have investigated the case of regime switching investment costs. It should be also pointed out that
similar problems arise in swap options, as in Margrabe (1978), and in uncertain payoffs, as in Fischer (1978).
(MAX REFERENCE).

However, much of this work—e.g. McDonald and Siegel (1986) and Blenman and Clark (2005)—also
assumes that the amount to be invested is also a GBM. A GBM may be a good model for the project value
in certain circumstances, since in many cases it represents a net present value. On the other hand, as already
noticed in McDonald and Siegel (1986), the investment costs are typically prices of commodities, and thus
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are expected to revert to an equilibrium level. Furthermore, in situations where the cashflows of the project
are directed linked to commodities, then the project value is also expected to approach an equilibrium level.
there are many situations in which a GBM does not suffice. One such situation is the valuation of the option
to the invest in an oil field. Like most commodities, oil prices tend to mean-revert and as a direct result the
value of investment in an oil field is also mean-reverting. Consequently, it would not be appropriate to use
GBM to model the value of such a project. Of course, several authors have noticed this and mean-reverting
processes have been considered in the more recent literature. See for example Metcalf and Hasset (1995) and
Sarkar (2003). However, combining mean-reverting project value with mean-reverting investment amount
has not been considered so far. There are good reasons for the amount to be invested to be mean-reverting.
Consider an oil company which is contemplating to invest in a recently found oil field. The oil company’s
profits and therefore the amount available to invest, will tend to mean-revert.

2 Trigger curves for mean-reversion investments

The difficulty with allowing both project value Vt and investment amount It to mean-revert lies in the fact
that the problem becomes a two-dimensional one and the optimal policy will depend on both Vt and It. In
the case when both processes are GBM, the optimal policy depends only on the ratio Vt/It and the value
of the option becomes homogeneous in It (or Vt)—this has been already observed in McDonald and Siegel
(1986) and it seems that this fact has become a paradigm in Real Options pricing. We therefore seek a new
mean-reverting model which produces the qualitative features of mean-reverting Vt and It while maintaining
the homogeneity of the solution. To this end, our model assumes the following

Vt = eθ+Xt , (2.1)

dXt = −αXt dt+ σX dW
X
t , (2.2)

It = eφ+Yt , (2.3)

dYt = −((α− β)Xt + βYt) dt+ σY dW
Y
t , (2.4)

Here, WX
t and WY

t are, in general, correlated Brownian motions with correlation ρ. As usual we work on
a probability space (Ω,F,P) where F = {(Ft)0≤t≤T } ( Ft = σ((WX

s ,W
Y
s )0≤s≤t)) is the natural filtration

generated by the driving Brownian motions and P is the statistical (historical) probability measure.
In this model, the value Vt of the project mean-reverts to a long-run level θ, while the investment It

available for the project instantaneously mean-reverts to a stochastic level ηt := exp{φ+ α−β
β Xt}. However,

the process Xt itself mean-reverts to zero, implying that exp{φ} is the true long-run level of the investment
process. This coupling of investment and value is not entirely artificial. In fact, it is quite reasonable
to assume that the amount available for the investment is tied in some way to the value of the project
itself. Nonetheless, this coupling of investment can be minimized by appropriate choices of the model
parameters. In Figure 2.1, two sample paths for the value and investment are presented. Panel (a) contains
no correlation between the increments in the investment level and value; however, since the investment is
instantaneously pulled to the stochastic level ηt, there is some feedback effect. In fact, the processes Xt and
Yt are cointegrated.

Under the modeling assumption (2.1)-(2.4), the value Vt of the project and the value to investment ratio
Vt/It are both mean-reverting processes and the dynamics of the ratio depends only on the ratio itself.
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(a) ρ = 0
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(b) ρ = 0.8

Figure 2.1: Two sample paths with differing levels of correlation. The lines label mr level are the long-run
mean-reverting levels for the value and investment, while stoch level is the instantaneous mean reversion
level of the investment.

Specifically, notice that Vt

It
= e(θ−φ)+(Xt−Yt) and define Zt = Xt − Yt, then

dZt = −β Zt dt+ σX dW
X
t − σY dWY

t . (2.5)

This implies that the ratio can be modeled directly as a mean-reverting process with mean-reversion rate β
and effective instantaneous variance of σ2 := σ2

X + σ2
Y − 2ρσXσY .

We now investigate the option to invest under the modeling framework (2.1)-(2.4). The Bermudan option
to invest, where investment can only be exercised at discrete times {t0, t1, . . . , tn} (e.g. quarterly, monthly,
or weekly), can priced recursively on the exercise dates as follows:

ptn(Vtn , Itn) = (Vtn − Itn)+ (2.6)

ptm−1 = max
{
e−r∆tmE

[
ptm(Vtm , Itm) |Ftm−1

]
; (Vtm−1 − Itm−1)+

}
, (2.7)

for m = {1, 2, . . . , n}. Let us proceed to describe how to value the option. First, we require

ftn−1 , E
[
(Vtn − Itn)+ |Ftn−1

]
(2.8)

= E
[
(Vtn/Itn − 1)+Itn |Ftn−1

]
. (2.9)

If It were a geometric Brownian motion, then it would be straightforward to absorb It into a simple measure
change – akin to a numeraire change. However, due to the mean-reverting behavior of It a more clever
measure change is necessary to absorb it. To this end, introduce a new measure PT via the Radon-Nikodym
derivative process

ηTt ,

(
dPT

dP

)
t

=
E[IT |Ft]
E[IT |F0]

. (2.10)
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Notice that ηTT = IT /E[IT |F0] so that,

ftn−1 = E[Itn |Ftn−1 ] Etn
[
(Vtn/Itn − 1)+ |Ftn−1

]
(2.11)

where Etn [.] denotes expectation under the new measure Ptn . Through recursive application of the described
measure change, the option can be evaluated through a series of one-dimensional problems because the ratio
Vtn/Itn depends solely on the Zt process and not Xt and Yt individually. More specifically, a one-dimensional
binomial tree can be developed for the ratio process; however, a new measure must be used between each
exercise date. This does not pose any real problems and we are able to compute the optimal exercise policy
as a function of Vt/It.

3 Beyond mean-reversion

The above procedure is appropriate when the process does not contain any jumps; however, if jumps are
present, then alternative methods must be used. Firstly, jumps render a tree approximation inadequate –
multinomial trees are possible, but inaccuracies arise quickly. Furthermore, finite-difference schemes require
inverting dense matrices resulting in large slowdowns and potential errors due to truncation of large jumps.
Secondly, the measure changed induced by a jump process is more complicated, and although it is possible
to derive the appropriate change, tractability is lost. Instead, we will now describe a variant of the mean-
reverting Fourier Space Time-Stepping method of Jaimungal and Surkov (2009) appropriate for this real-
options context and which is also easily extensible to incorporate jumps. See also Jackson, Jaimungal, and
Surkov (2008) for the FST method without mean-reversion.

Consider the value of the option to invest in between two decision dates, i.e. t ∈ (tm−1, tm), without the
discount value:

pt = E [ptm(Xtm , Ytm) |Ft] . (3.1)

Notice that, without loss of generality, we have chosen to write the option value in terms of the “log”
processes Xt and Yt. When viewed as a process pt is a P-martingale, consequently it satisfies the PDE{

(∂t + L) p(t,X, Y ) = 0

p(tm, X, Y ) = ptm(X,Y )
(3.2)

Here, ptm(X,Y ) is already known from the previous step in the iteration and L is the infinitesimal generator
of the process (Xt, Yt)

L =− α∂X + 1
2σ

2
X∂XX − ((α− β)X + βY )∂Y + 1

2σ
2
Y ∂Y Y + ρσXσY ∂XY . (3.3)

By introducing the 2D-Fourier transform of p(t,X, Y ) with respect to the X and Y variables, the PDE can
be solved explicitly (see Jaimungal and Surkov (2009)) resulting in

p(t,X, Y ) = F−1
[
F [p̃(tm, X, Y )] (ω1, ω2)eΨ((tm−t),ω1,ω2)

]
(3.4)

Here, p̃(tm, X, Y ) = ptm(Xe−α(tm−t), (X − Y )e−β(tm−t)), Ψ(., ., .) is a particular quadratic form in (ω1, ω2)
with coefficients that depend on the model parameters, and F [.] and F−1[.] represent Fourier and inverse
Fourier transforms respectively.
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Through the above representation, a recursive formulation for the value at any given time step can be
written as

ptm−1(X,Y ) = max
{
e−r∆tmF−1

[
F [p̃(tm, X, Y )] (ω1, ω2)eΨ(∆tm,ω1,ω2)

]
; (Vtm−1 − Itm−1)+

}
(3.5)

By comparison with the intrinsic value, the optimal strategy can be computed numerically through two fast
Fourier transforms which approximately evaluate the Fourier and inverse transforms. This procedure is far
more efficient than a tree or finite-difference scheme as it requires O(N logN) computations per exercise
date, while finite difference schemes will require O(MN) where M is the number of steps required between
exercise dates. Furthermore, it is straightforward to incorporate jumps into the above representation – it
will require a simple modification of the function Ψ – while tree or finite-difference methods will run into
stability and computational issues.
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