
HOMOGENIZATION OF NONLINEAR PDE’S

IN THE FOURIER-STIELTJES ALGEBRAS

HERMANO FRID AND JEAN SILVA

Abstract. We introduce the Fourier-Stieltjes algebra in R
n which we denote by FS(Rn). It is a subalgebra

of the algebra of bounded uniformly continuous functions in R
n, BUC(Rn), strictly containing the almost

periodic functions, whose elements are invariant by translations and possess a mean-value. Thus, it is a so

called algebra with mean value, a concept introduced by Zhikov and Krivenko (1986). Namely, FS(Rn) is the

closure in BUC(Rn), with the sup norm, of the real valued functions which may be represented by a Fourier-

Stieltjes integral of a complex valued measure with finite total variation. We prove that it is an ergodic

algebra and that it shares many interesting properties with the almost periodic functions. In particular,

we prove its invariance under the flow of Lipschitz Fourier-Stieltjes fields. We analyse the homogenization

problem for nonlinear transport equations with oscillatory velocity field in FS(Rn). We also consider the

corresponding problem for porous medium type equations on bounded domains with oscillatory external

source belonging to FS(Rn). We further address a similar problem for a system of two such equations

coupled by a nonlinear zero order term. Motivated by the application to nonlinear transport equations, we

also prove basic results on flows generated by Lipschitz vector fields in FS(Rn) which are of interest in their
own.

1. Introduction

The purpose of this paper is to introduce a large algebra with mean value (w.m.v.), strictly containing the
almost periodic functions and to consider the homogenization problem for some nonlinear partial differential
equations with oscillatory behavior governed by functions belonging to that algebra w.m.v.. Namely, denoting
by BUC(Rn) the space of bounded uniformly continuous functions, we are going to deal with the algebra
FS(Rn) defined as the closure in the sup norm of the functions in BUC(Rn) whose Fourier transform is
a complex-valued measure with finite total variation. We show that this algebra shares many important
properties with the almost periodic functions. In particular, it is an ergodic algebra, which also contains the
perturbations of almost periodic functions by continuous functions vanishing at infinity.

We then consider the homogenization problem for certain nonlinear PDE’s. More specifically, we begin
by analysing the homogenization of nonlinear transport equations where the associated vector field belongs
to the algebra FS(Rn). This discussion extends and improves the one corresponding to the same problem in
[2], in the context of almost periodic functions, as well as the pioneering one provided by W. E in [18] in the
context of periodic functions.

Next, we consider the homogenization problem for a porous medium type equation on a bounded domain
with a stiff oscillatory external source in FS(Rn). The latter was addressed in [3] for the Cauchy problem in
Rn with oscillatory external source belonging to a general ergodic algebra and “well-behaved” initial data,
i.e., initial data which are solutions of the associated steady equation in the fast variable. Here we restrict the
discussion to FS(Rn) which allows us to consider more general initial data not necessarily “well-behaved”.
Finally, we also address the homogenization problem for a system of two such porous medium type equations
coupled by a nonlinear zero-order term.
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Both applications given here, namely, to nonlinear transport equations and to porous medium type equa-
tions in bounded domains with more general initial data, make essential use of nice properties of the functions
in FS(Rn) established in this paper, whose extension to general ergodic algebras is not known as yet. More
specifically, in the first mentioned application, we make use of the fact that FS(Rn) is invariant under the
flows generated by Lipschitz vector fields whose components belong to FS(Rn). This property was proved
for the class of almost periodic functions in [2] and it is extended here to the functions in the Fourier-Stieltjes
algebra (see Theorem 4.1 below). In the second mentioned application, we make use of the property that if
f ∈ FS(Rn) has mean value zero, then, for any ε > 0, there is u ∈ FS(Rn) satisfying f − ε ≤ ∆u ≤ f + ε
in Rn . As it is shown in Lemma 3.3 below, such property follows easily from the definition of FS(Rn). In
both cases, the possibility of extending the corresponding property to general ergodic algebras is an open
question.

The ergodic algebra FS(Rn) contains the class PAP(Rn) of functions f ∈ BUC(Rn) such f = g + ψ
with g ∈ AP(Rn) and ψ ∈ C0(Rn), where AP(Rn) is the space of almost periodic functions and C0(Rn) is
the space of continuous functions vanishing at infinity. In particular, this ergodic algebra not only strictly
contains the almost periodic functions, but it is also stable under perturbations given by continuous functions
vanishing at infinity. Moreover, it contains also the Fourier transforms of Cantor measures, which do not
belong to PAP(Rn) and so it is strictly larger than PAP(Rn) (see Proposition 3.1). In this way, FS(Rn) is
capable of describing much more general oscillatory profiles than AP(Rn). In fact, it is also a challenging
open problem whether there exist or not ergodic algebras that are not subalgebras of FS(Rn).

We use the existence of multiscale Young measures in the setting of vector valued algebras with mean value
proved in [3]. As in the case of almost periodic functions, we make essential use of the fact that associated
with any algebra w.m.v. A there exists a compact space K such that any f ∈ A may be viewed as an element
of C(K). Such compact space associated with the algebra w.m.v. provides the additional parameter of the
multiscale (two-scale) Young measures. The latter are useful tools for the search of corrector functions in
nonlinear homogenization problems.

Multiscale Young measures have been introduced in periodic problems by W. E [18] as a broader tool
extending the previous concept of multiscale convergence introduced by Nguetseng [28] and further developed
by Allaire [1]. It refines to multiple scale analysis the classical concept of Young measures introduced in [35],
so fundamentally useful, especially after its striking applications in connection with problems concerning
compactness of solution operators for nonlinear partial differential equations by Tartar [34], Murat [26],
DiPerna [15, 16, 17], etc. . We recall that in [3] it was established a link between multiscale Young measures
and the more general setting of homogenization of random stationary ergodic processes (see, e.g., [30], [23],
[22], [13], [32], [24], [9]).

The extension of the multiscale Young measures from the periodic setting to the almost periodic one
was carried out in [2] where applications to nonlinear transport equations, scalar conservation laws with
oscillatory external sources, Hamilton-Jacobi equations and fully nonlinear elliptic equations are provided. In
this connection, we recall that the two-scale convergence has been extended to the context of almost periodic
homogenization and, more generally, to generalized Besicovitch spaces in [10] (see also, e.g., [28, 29]). We also
recall that the method of two-scale convergence was extended to the context of stochastic homogenization,
under separability assumption, in [6]. The applications in the cited references [10, 28, 29, 6] are basically to
linear or monotone operators.

This paper is organized as follows. In Section 2, we recall the basic facts about algebras w.m.v. introduced
in [36] and, in particular, ergodic algebras. In Section 3, we introduce the algebra FS(Rn) and establish
a number of its important properties. In Section 4, we analyse flows of Lipschitz vector fields in FS(Rn)
establishing some basic results which are of interest in their own and will be needed in our study of the
homogenization of nonlinear transport equations. In Section 5, we briefly recall the concept of vector-valued
algebras w.m.v. and the theorem on the existence of multiscale Young measures from homogenization in
algebras w.m.v. established in [3]. In Section 6, we consider the application to nonlinear transport equations
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improving and extending to the context FS(Rn) a previous result of [2], in the almost periodic setting, and
the pioneering one by W. E [18] in the periodic setting. Finally, in Sections 7 and 8 we give applications
to porous medium type equations on bounded domains, with oscillatory external source and initial data in
FS(Rn) with respect to the oscillatory variable, and to a system of such equations coupled by a nonlinear
zero-order term, respectively.

2. Ergodic Algebras

In this section we recall the basic facts concerning algebras with mean values and, in particular, ergodic
algebras. To begin, we recall the notion of mean value for functions defined in Rn.

Definition 2.1. Let g ∈ L1
loc(R

n). A number M(g) is called the mean value of g if

(2.1) lim
ε→0

∫

A

g(ε−1x) dx = |A|M(g)

for any Lebesgue measurable bounded set A ⊆ Rn, where |A| stands for the Lebesgue measure of A. This is
equivalent to saying that g(ε−1x) converges, in the duality with L∞ and compactly supported functions, to
the constant M(g). Also, if At := {x ∈ Rn : t−1x ∈ A} for t > 0 and |A| 6= 0, (2.1) may be written as

(2.2) lim
t→∞

1

tn|A|

∫

At

g(x) dx = M(g).

We will also use the notation
∫

Rn g dx for M(g).

Notation: As usual, we denote by BUC(Rn) the space of the bounded uniformly continuous real-valued
functions in Rn.

We recall now the definition of algebras with mean value introduced in [36].

Definition 2.2. Let A be a linear subspace of BUC(Rn). We say that A is an algebra with mean value (or
algebra w.m.v., in short), if the following conditions are satisfied:

(A) If f and g belong to A, then the product fg belongs to A.
(B) A is invariant with respect to translations τy in Rn.
(C) Any f ∈ A possesses a mean value.
(D) A is closed in BUC(Rn) and contains the unity, i.e., the function e(x) := 1 for x ∈ Rn.

Remark 2.1. Condition (D) was not originally in [36] but we include it here since any algebra satisfying (A),
(B) and (C) can be extended to an algebra satisfying (A)–(D) in a unique way modulo isomorphisms.

For the development of the homogenization theory in algebras with mean value, as is done in [36, 22] (see
also [10]), in similarity with the case of almost periodic functions, one introduces, for 1 ≤ p <∞, the space
Bp as the abstract completion of the algebra A with respect to the Besicovitch seminorm

|f |pp := lim sup
L→∞

1

(2L)n

∫

[−L,L]n
|f |p dx.

Both the action of translations and the mean value extend by continuity to Bp, and we will keep using the
notation τyf and M(f) even when f ∈ Bp and y ∈ Rn. Furthermore, for p > 1 the product in the algebra
extends to a bilinear operator from Bp × Bq into B1, with q equal to the dual exponent of p, satisfying

|fg|1 ≤ |f |p|g|q.
In particular, the operator M(fg) provides a nonnegative definite bilinear form on B2.

Since there is an obvious inclusion between members of this family of spaces, we may define the space B∞

as follows:
B∞ = {f ∈

⋂

1≤p<∞

Bp : sup
1≤p<∞

|f |p <∞}.
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We endow B∞ with the (semi)norm

|f |∞ := sup
1≤p<∞

|f |p.

Obviously the corresponding quotient spaces for all these spaces (with respect to the null space of the

seminorms) are Banach spaces, and we get a Hilbert space in the case p = 2. We denote by
Bp

=, the
equivalence relation given by the equality in the sense of the Bp semi-norm.

Remark 2.2. A classical argument going back to Besicovitch [4] (see also [22], p.239) shows that the elements
of Bp can be represented by functions in Lploc(R

n), 1 ≤ p <∞.

We next recall a result established in [3] which provides a connection between algebras with mean value
and compactifications of Rn endowed with a group of “translations” and an invariant probability measure.

Theorem 2.1 (cf. [3]). For an algebra A, we have:

(i) There exist a compact space K and an isometric isomorphism i identifying A with the algebra C(K)
of continuous functions on K. Moreover, if A separates points of Rn, then K is a compactification
of Rn.

(ii) The translations T (y) : Rn → Rn, T (y)x = x+ y, extend to a group of homeomorphisms T (y) : K →
K, y ∈ Rn.

(iii) There exists a Radon probability measure m on K which is invariant under the group of transforma-
tions T (y), y ∈ Rn, such that ∫

Rn

f dx =

∫

K

i(f) dm

(iv) The family T (y), y ∈ Rn, is a continuous n-dimensional dynamical system on K.

(v) For 1 ≤ p ≤ ∞, the Besicovitch space Bp
/ Bp

= is isometrically isomorphic to Lp(K,m).

Remark 2.3. When p = 2, we denote L2(K,m) simply by L2(K).

A group of unitary operators T (y) : B2 → B2 is then defined by setting [T (y)f ] = τyf , where τy denotes
the map induced by the translation x 7→ x+ y. Since the elements of A are uniformly continuous in Rn, the
group {T (y)} is strongly continuous, i.e. T (y)f → f in B2 as y → 0 for all f ∈ B2. The notion of invariant

function is then introduced by simply saying that a function in B2 is invariant if T (y)f
B2

= f , for all y ∈ Rn.
More clearly, f ∈ B2 is invariant if

(2.3) M
(
|T (y)f − f |2

)
= 0, ∀y ∈ Rn.

The concept of ergodic algebra is then introduced as follows.

Definition 2.3. An algebra A w.m.v. is called ergodic if any invariant function f belonging to the corre-
sponding space B2 is equivalent (in B2) to a constant.

In [22] an alternative definition of ergodic algebra is also given which is shown therein to be equivalent
to Definition 2.3, by using von Neumann’s Mean Ergodic Theorem. We state that as the following lemma,
whose detailed proof may be found in [22], p.247.

Lemma 2.1. Let A ⊆ BUC(Rn) be an algebra with mean value. Then A is ergodic if and only if

(2.4) lim
t→∞

My

(
∣∣ 1

|B(0; t)|

∫

B(0;t)

f(x+ y) dx−M(f)
∣∣2
)

= 0 ∀f ∈ A.
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3. The algebra FS(Rn)

For any f ∈ L∞(Rn), let us denote by f̂ the Fourier transform of f defined as the following distribution

〈f̂ , φ〉 :=

∫
f(x)φ̌(x) dx, for all φ ∈ C∞

c (Rn),

where φ̌ denotes the usual inverse Fourier transform of φ defined by

φ̌(x) =
1

(2π)
n
2 )

∫
φ(y)eiy·x dy.

Next we introduce an important algebra w.m.v. for the purposes of this paper.

Definition 3.1. We denote by FS(Rn) the closure in BUC(Rn) of the space FS∗(Rn), defined by

(3.1) FS∗(R
n) :=

{
f : Rn → R : f(x) =

∫

Rn

eix·y dν(y) for some ν ∈ M∗(R
n)

}
,

where by M∗(Rn) we denote the space of complex-valued measures µ with finite total variation, i.e., |µ|(Rn) <
∞. We call FS(Rn) the Fourier-Stieltjes algebra.

Recall that a subalgebra B of an algebra A is called an ideal of A if for any f ∈ A and g ∈ B we have
fg ∈ B. Let C0(Rn) denote the closure of C∞

c (Rn) with respect to the sup norm, and let AP(Rn) denote the
algebra of almost periodic functions in Rn. We denote by PAP(Rn) the space of perturbed almost periodic
functions in Rn defined by

PAP(Rn) := {f ∈ BUC(Rn) : f = g + ψ, g ∈ AP(Rn), ψ ∈ C0(R
n)}.

We have the following result.

Proposition 3.1. FS(Rn) ⊆ BUC(Rn) is an algebra w.m.v. containing C0(Rn) as an ideal. Moreover,
FS(Rn) is an ergodic algebra and PAP(Rn) is a closed strict subalgebra of FS(Rn).

Proof. 1. Obviously all functions in FS∗(Rn) are bounded and uniformly continuous, and the measure ν in
(3.1) is the Fourier transform of f . That FS∗(Rn), and therefore FS(Rn), is an algebra follows from the
fact that the Fourier transform of the product is the convolution of the Fourier transforms of the factors,
and M∗(Rn) is stable under convolution. The invariance by translations, follows from the fact that the

Fourier transform of f(· + t) equals eit·y f̂(y). Finally, the mean value property follows from the fact that if

f ∈ FS∗(Rn), then its mean value exists and it is equal to f̂({0}) := ν({0}). The latter follows easily from

the fact that f̂ is a complex-valued measure with finite total variation and the mean value of
∫
y 6=0

eix·ydf̂(y)

is equal to zero by Fubini and dominated convergence theorems.
2. The Fourier transform maps the Schwartz space of smooth fast decaying functions S(Rn) into itself

and therefore C∞
c (Rn) ⊆ FS∗(Rn). It follows that its closure, namely C0(Rn), is an ideal of FS(Rn). That

AP(Rn) is a subalgebra of FS(Rn) follows easily from the fact that the Fourier transform of eiλ·x is δλ, where
δλ denotes the Dirac measure concentrated at λ, and by the fact that the vector space spanned by these
functions is dense in AP(Rn) with respect to the sup norm (Bohr theorem). It follows that PAP(Rn) is a
subalgebra of FS(Rn).

3. The fact that PAP(Rn) is closed can be seen as follows. Given ε > 0, g1, g2 ∈ AP(Rn) and ψ1, ψ2 ∈
C0(Rn) such that ‖f1 − f2‖∞ < ε, with fi = gi + ψi, i = 1, 2, then, for a suitable compact K, we have
|g1(x) − g2(x)| < 2ε, for x /∈ K. The almost periodicity then implies that ‖g1 − g2‖∞ < 3ε and so
‖ψ1 − ψ2‖∞ < 4ε. Hence, if (fk = gk + ψk)k∈N is a Cauchy sequence in PAP(Rn), then (gk) and (ψk)
are Cauchy sequences in AP(Rn) and C0(Rn), respectively. Since these spaces are closed in BUC(Rn), we
conclude that the limit of (fk) is in PAP(Rn). Therefore, PAP(Rn) is closed.

4. The fact that PAP(Rn) is strictly contained in FS(Rn) is seen as follows. If n > 1, say n = 2, then

for f(x1, x2) = ϕ(x1), with ϕ ∈ S(R), we have that f̂ is the product measure ϕ̂× δ0, where ϕ̂ ∈ S(R) is the
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one-dimensional Fourier transform of ϕ and δ0 is the Dirac measure on R concentrated at 0. Hence, such
f belongs to FS(R2). On the other hand, f /∈ PAP(R2) since it is obviously impossible to have f = g + ψ,
with g ∈ AP(R2) and ψ ∈ C0(R2).

5. It remains then to prove that PAP(R) ( FS(R). To see that, consider the Cantor set C contained in
[− 1

2 ,
1
2 ] obtained by excluding the middle third (− 1

6 ,
1
6 ), then the middle thirds (− 4

9 ,− 2
9 ) and ( 2

9 ,
4
9 ), and so

on. Consider the Cantor measure µC characterized by the fact that fC(x) := µC((−∞, x)) is the probability
that an element of C taken at random belongs to (−∞, x). It is easy to see that fC(x) is the distribution of∑∞
n=1Xn/3

n, where Xn are independent random variables assuming values −1 and 1 with probability 1/2
each. Therefore, the inverse Fourier transform of µC , FC := µ̌C , can be expressed as the infinite product (see,
e.g., problem 31.15 in [5], [33] and [21])

FC(x) =
∞∏

k=1

cos
(πx

3k

)
.

In particular,

FC(x) = cos
(πx

3

)
FC

(x
3

)
.

Using this recursion formula it is possible to find a sequence xk, with xk → ∞, for which |FC(xk)| > δ0
for all k ∈ N, for some δ0 > 0, that is, FC /∈ C0(R) (see, e.g., the graph of FC in Figure 2 in [21]). More
specifically, if xk = 2 · 3k, then FC(xk+1) = FC(xk). It is possible to show directly, analysing the series∑∞
n=1 log

∣∣cos
(

2π
3k−1

)∣∣, that |FC(6)| > 0, so |FC(xk)| = |FC(6)| > 0, for all k ∈ N. Now, if FC = g + ψ, with

g ∈ AP(R) and ψ ∈ C0(R), then ψ̂ is a complex valued measure with finite total variation, which must
attribute value zero to any point so that we can have |ψ(x)| → 0 as |x| → ∞. Hence, since µC also attributes
value zero to any point, we conclude that g = 0 and so FC ∈ C0(R) which is not true. Hence, FC /∈ PAP(R)
although, obviously, FC ∈ FS(R), which concludes the proof that PAP(Rn) ( FS(Rn) for all n ∈ N.

6. The fact that FS(Rn) is an ergodic algebra is proved as follows. First, we claim that any function in
FS(Rn) such that M(f) = 0 may be uniformly approximated by functions φ ∈ FS∗(Rn) with the property

that the support of φ̂ is a compact at positive distance from the origin. Indeed, given f ∈ FS(Rn) with
M(f) = 0, there exists (ϕk)k∈N ⊆ FS∗(Rn) with M(ϕk) = 0 and ϕk → f uniformly. Setting µk = ϕ̂k, since
µk({0}) = 0 and |µk|(Rn) <∞, we can find 0 < rk < Rk such that

|µk| (Rn \ {x : |x| < rk or |x| > Rk}) <
1

k
.

Defining, νk := µkb{x : rk ≤ |x| ≤ Rk} and φk := ν̌k, we obtain that the sequence (φk)k∈N ⊆ FS∗(Rn) has
the required properties.

7. To complete the proof that FS(Rn) is an ergodic algebra we are going to use Lemma 2.1. Since
f −M(f) has mean value zero, it suffices to verify (2.4) assuming M(f) = 0. For φ ∈ FS∗(Rn) satisfying
the property described in the preceding step, it is possible to prove that Mx(φ(x + y)) = 0 uniformly with
respect to y ∈ Rn (see [22], p.246). Hence, taking such φ so that ‖f − φ‖∞ <

√
ε/2 and taking t0 > 0 large

enough so that

1

|B(0; t)|

∣∣∣∣∣

∫

B(0;t)

φ(x+ y) dx

∣∣∣∣∣ <
√
ε

2
, for t > t0,

uniformly with respect to y ∈ Rn, we arrive at

My

(
∣∣ 1

|B(0; t)|

∫

B(0;t)

f(x+ y) dx
∣∣2
)
< ε, for t > t0,

which proves the ergodicity of FS(Rn). �
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Remark 3.1. We recall that an example presented in [22] allows to construct an algebra w.m.v. which is
not ergodic. Namely, we take the closed algebra with unity in BUC(R) generated by the function cos 3

√
x

and its translates cos 3
√
x+ t, t ∈ R. Indeed, cos 3

√
x − cos 3

√
x+ t → 0 as |x| → ∞ for all t ∈ R, and

each of the functions cosk 3
√
x, k ∈ N, possesses a mean value Mk. Clearly, any product of translates

cos 3
√
x+ t1 · · · cos 3

√
x+ tk is B2-equivalent to cosk 3

√
x, k ∈ N. Moreover, M1 = 0 and M2 = 1

2 . Hence,

this algebra is an algebra w.m.v. which is not ergodic since the function cos 3
√
x is invariant and is not B2-

equivalent to a constant. The question remains whether or not there exist ergodic algebras which are not
subalgebras of FS(Rn).

Remark 3.2. It follows from Proposition 3.1, in particular, that we can apply Theorem 2.1 to the algebra
w.m.v. FS(Rn). Henceforth, K and B2 are, respectively, the compactification of Rn and the Besicovitch
space associated with FS(Rn), and m is the corresponding Randon probability measure on K.

The following lemma concerning functions in FS∗(Rn) will be used in the next section.

Lemma 3.1. Let f ∈ FS∗(Rn) and F ⊆ Rn such that |µ|(F ) = 0, where µ := f̂ . Then, there exists

(fj)j≥1 ⊆ FS∗(Rn) such that fj → f uniformly and each f̂j has compact support such that supp f̂j ∩ F = ∅.
Proof. Given ε > 0, there is an open set V ⊃ F and R > 0 such that

|µ|({x : |x| > R}) < ε

2
and |µ|(V ) <

ε

2
.

Define µ1 := µb{x : |x| > R}, µ2 := µb{V ∩{x : |x| < R}} and µ3 := µ−µ1 −µ2. Let fε := µ̌3 and observe
that

f − fε = µ̌1 + µ̌2 =

∫

Rn

e−ix·y dµ1(y) +

∫

Rn

e−ix·y dµ2(y)

and so
‖f − fε‖∞ ≤ |µ1|(Rn) + |µ2|(Rn) < ε.

Further, we have supp f̂ε ⊆ {x : |x| ≤ R} − {V ∩ {x : |x| < R}} and it is separated from F . �

We will also make use of the following property of FS(Rn) in the next section.

Lemma 3.2. Let

E1 :=
{
ϕ ∈ FS∗(R

n) : supp ϕ̂ ⊆ {x : xn = 0}
}
,

E2 :=
{
ϕ ∈ FS∗(R

n) : supp ϕ̂ ⊆ {x : xn 6= 0} and it is compact
}
.

Then, we have the following orthogonal decomposition for B2:

(3.2) B2 = E1 ⊕ E2,

where means the closure in B2.

Proof. 1. Given ψ ∈ FS∗(Rn), there exist ψ1, ψ2 ∈ FS∗(Rn) such that supp ψ̂1 ⊆
{
x; xn = 0

}
, supp ψ̂2 ⊆{

x; xn 6= 0
}

and ψ = ψ1 + ψ2. To see this, let µ := ψ̂ and note that µ = µb{x : xn = 0} + µb{x : xn 6=
0} = ν1 + ν2. Define ψ1 := ν̌1 and ψ2 := ν̌2.

2. Besides, by Lemma 3.1, ψ2 may be uniformly approximated by functions
{
ψ

(j)
2

}
j≥1

⊆ FS∗(Rn) such

that supp ψ̂
(j)
2 is compact and supp ψ̂

(j)
2 ∩

{
x; xn = 0

}
= ∅. The functions ψ1 and ψ2 are orthogonal as

elements of B2. Indeed, setting νj2 = ψ̂
(j)
2 , we have 〈ψ1, ψ

j
2〉 = ψ̂1ψ

j
2{0} = ν1 ∗ νj2{0} = 0, since the supports

of ν1 and νj2 are disjoint. Letting j → ∞ we obtain 〈ψ1, ψ2〉 = 0.
3. Now, given any v ∈ B2, there exists a sequence (ψj)j∈N ⊆ FS∗(Rn) such that ψj → v in B2. For each

ψj we have a decomposition ψj = ψj1 + ψj2, with ψj1 ∈ E1 and ψj2 ∈ E2. By the orthogonality between ψj1
and ψj2 and the boundedness of ψj in B2, we deduce that the functions ψj1 and ψj2 are uniformly bounded in
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B2. Hence, by passing to a subsequence if necessary, there exist v1, v2 ∈ B2 such that ψj1 ⇀ v1 and ψj2 ⇀ v2,

where ⇀ means weak convergence in B2. Since E1 and E2 are convex, we have that v1 ∈ E1 and v2 ∈ E2. It
is immediate to see that v1 is orthogonal to E2 and the same for v2 and E1. Hence, v1 and v2 are orthogonal.
By orthogonality, we also deduce that the decomposition v = v1 + v2 with v1 ∈ E1 and v2 ∈ E2 is unique
and this concludes the proof of the asserted orthogonal decomposition for B2.

�

The following fact concerning functions in FS(Rn) will be used in our application to homogenization of
porous medium type equations in the final part of this paper.

Lemma 3.3. If f ∈ FS(Rn) and M(f) = 0, then for any ε > 0 there exists a bounded smooth function uε
satisfying the inequalities

f − ε ≤ ∆uε ≤ f + ε.(3.3)

Proof. Clearly, the stated property is stable under uniform approximations. Hence, we may assume further

that f ∈ FS∗(Rn). Let µ = f̂ . In this case, the assumption that M(f) = 0 is equivalent to µ({0}) = 0 as we
have seen in the proof of Proposition 3.1.

Now, given any ε > 0, for R > 0 sufficiently large and for r > 0 sufficiently small we have

|µ|({x : |x| > R}) < ε

2
and |µ|({x : |x| < r}) < ε

2
,

the latter because µ({0}) = 0. Let ν1 := µb{x : |x| > R} and ν2 := µb{x : |x| < r}. We easily verify that
‖ν̌1‖∞ < ε/2 and ‖ν̌2‖∞ < ε/2.
Now, set ν := µ − ν1 − ν2 and let g := ν̌. We claim that g and all its derivatives belong to BUC(Rn) and
there is a bounded and smooth solution for the equation ∆u = g in Rn. Indeed, this follows immediately
from the fact that ĝ has compact support separated from zero. In fact, we have g = g ∗ φ where φ ∈ S(Rn)

satisfies φ̂ ∈ C∞
c (Rn), φ̂ = 1 on supp ν and φ̂ = 0 in a neighborhood of the origin. Further, define h by

ĥ(ξ) = −φ̂(ξ)/|ξ|2 and u = g ∗h. Then ∆(g ∗h) = g ∗∆h = g ∗φ = g (cf. [22], p.246). This proves the claim
and concludes the proof. �

4. Flows Generated By Lipschitz Vector Fields in FS(Rn)

In this section we investigate the flows generated by Lipschitz fields in FS(Rn).
Let a ∈ FS∩W 1,∞(Rn; Rn), and let us assume that a is incompressible, i.e.

(4.1) ∇z · a = 0.

Let us consider the Cauchy problem

(4.2)





dX

dt
(z, t) = a(X(z, t)),

X(z, 0) = z.

In some occasions we will denote the map t 7→ X(z, t) by Xt(z).
We are interested in the properties of the map X t : BUC(Rn) → BUC(Rn) defined by g 7→ g ◦Xt.

Theorem 4.1. ϕ ◦Xt ∈ FS(Rn) for any ϕ ∈ FS(Rn) and

(4.3)

∫

Rn

|ϕ(X(z, t))|2 dz =

∫

Rn

|ϕ(z)|2 dz.

Therefore Xt can be extended to an operator in B2 satisfying

(4.4)

∫

Rn

|Xt(ϕ)|2 dz =

∫

Rn

|ϕ(z)|2 dz ∀ϕ ∈ B2.
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Proof. 1. Assume that b ∈ FS∗(Rn; Rn) and that ϕ ∈ FS∗(Rn) is such that the support of µ := ϕ̂ is compact.
Define

γ(x) := ϕ(x+ b(x)) =

∫

Rn

eix·yeib(x)·y dµ(y).

We have

〈γ̂, ψ〉 = 〈γ, ψ̌〉 =

∫

Rn

γ(x)ψ̌(x) dx =

∫

Rn

{∫

Rn

eix·yeib(x)·y dµ(y)

}
ψ̌(x) dx

=

∫

Rn

{∫

Rn

eix·yeib(x)·yψ̌(x) dx

}
dµ(y) =

∫

Rn

〈ey · ey ◦ b, ψ̌〉 dµ(y)

=

∫

Rn

〈δy ∗ êy ◦ b, ψ〉 dµ(y)

where ey(x) := eix·y. Moreover, êy ◦ b is a complex-valued measure with total variation
∣∣êy ◦ b

∣∣(Rn) ≤
e|y||b̂|(R

n). Since the support of µ is compact, then
∫

Rn δy ∗ êy ◦ b dµ(y) is a well defined complex-valued
measure. Thus, γ ∈ FS∗(Rn).

2. Now, take ϕ ∈ FS(Rn) and observe that ∃
{
ϕj
}
j≥1

⊆ FS∗(Rn) such that the support of ϕ̂j is compact

and ϕj → ϕ uniformly. Thus, ϕj(·+ b(·)) → ϕ(·+ b(·)) uniformly and, by the step 1, ϕj(·+ b(·)) ∈ FS∗(Rn)
for all j, which implies that ϕ(· + b(·)) ∈ FS(Rn).

3. Let b ∈ FS(Rn; Rn). Recalling the definition of FS(Rn), we have that there exists (bj)j∈N ⊆ FS∗(Rn; Rn)
such that bj → b uniformly. Hence, ϕ(·+ bj(·)) → ϕ(·+ b(·)) uniformly. By the step 2, ϕ(·+ bj(·)) ∈ FS(Rn)
for any j. Thus, we have proved that ϕ(· + b(·)) ∈ FS(Rn) for any ϕ ∈ FS(Rn) and b ∈ FS(Rn; Rn).

4. Define Y :=
{
f ∈ C(Rn; Rn); f(x)−x ∈ L∞(Rn; Rn)

}
. Note that if f, g ∈ Y , then, f−g ∈ L∞(Rn; Rn).

We define in Y the metric dY (f, g) := ‖f − g‖∞ and observe that (Y, dY ) is a complete metric space. Fix
T > 0 and let X := C([−T, T ];Y ) with the metric d(ϕ1, ϕ2) := supt∈[−T,T ] dY (ϕ1(t), ϕ2(t)). The space

(X, d) is a complete metric space and define F : X → X by:

F (ϕ)(t, z) := z +

∫ t

0

a(ϕ(s, z))ds.

Using a standard argument, we see that there is a single fixed point Xt(z) of F which is the unique solution
of (4.2). Moreover, ∀Φ ∈ X, we have that F (j)(Φ) → Xt(z) in X. Therefore, for each t fix, F (j)(Φ)(t) → Xt

uniformly in z. Now, we take Φ(t, z) = z and X (j) := F (j)(Φ) = F (F (j−1)(Φ)) = F (X(j−1)) and note that
X(1)(t, z) = z+ ta(z) and it is uniformly continuous in [−T, T ]×Rn. By step 3, ϕ◦X(1)(t, ·) = ϕ(·+ ta(·)) ∈
FS(Rn) for any ϕ ∈ FS(Rn).

5. Suppose that for all ϕ ∈ FS(Rn), we have ϕ(X(j−1)(t, ·)) ∈ FS(Rn) for each fixed t ∈ [−T, T ] and
X(j−1) is uniformly continuous in [−T, T ] × Rn. Observe that,

ϕ(X(j)(z, t)) = ϕ(F (X(j−1))(z, t)) = ϕ

(
z +

∫ t

0

a(X(j−1)(z, s)) ds

)
.

Since X(j−1) is uniformly continuous, then the Riemann sums of
∫ t
0
a(X(j−1)(z, s)) ds uniformly converge

in z. Therefore,
∫ t
0
a(X(j−1)(z, s)) ds ∈ FS(Rn; Rn) and by step 3, ϕ(X(j)(t, ·)) ∈ FS(Rn). Moreover, it is

easy to see that X(j) is uniformly continuous in [−T, T ] × Rn. Thus, we have proved, by induction, that
ϕ(X(j)(t, ·)) ∈ FS(Rn) for all j. Therefore, the uniform convergence of X (j)(t, ·) to Xt(·) provides the proof
of the first part of the theorem.
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6. Now we prove (4.3). The incompressibility assumption (4.1) implies that the Jacobian determinant of
Xt is a.e. equal to 1, and we have

1

Ln

∫

[0,L]n
|ϕ(X(z, t))|2 dz =

1

Ln

∫

Xt([0,L]n)

|ϕ(w)|2 dw

=
1

Ln

∫

[0,L]n
|ϕ(w)|2 dw − 1

Ln

∫

[0,L]n\Xt([0,L]N )

|ϕ(w)|2 dw

+
1

Ln

∫

Xt([0,L]n)\[0,L]n
|ϕ(w)|2 dw.

Take the limit as L→ ∞ observing that the two last terms on the right-hand side of the last equality above
go to 0 as L→ ∞ since

[‖a‖∞t, L− ‖a‖∞t]n ⊆ Xt([0, L]n) ⊆ [−‖a‖∞t, L+ ‖a‖∞t]n.
We then obtain (4.3). Relation (4.3) immediately implies that X t can be extended to an operator in B2,
and that Xt fulfills (4.4). �

We will make use of the following lemma which is a generalization of a lemma of [2], whose simple proof
remains essentially the same and for which, therefore, we refer to [2].

Lemma 4.1. Let X1, X2 be compact spaces, R1 a dense subset of X1 and W : R1 → X2. Suppose that for
all g ∈ C(X2) the function g ◦W is the restriction to R1 of some (unique) g1 ∈ C(X1). Then W can be
extended to a continuous mapping W : X1 → X2.
Further, suppose in addition that R2 is a dense set of X2, W is a bijection from R1 onto R2 and for all
f ∈ C(X1), f ◦W−1 is the restriction to R2 of some (unique) f2 ∈ C(X2). Then W can be extended to a
homeomorphism W : X1 → X2.

Corollary 4.1. For any t ∈ R the flow map Xt can be uniquely extended to a homeomorphism X t of K and
Xt(ϕ) = ϕ(Xt) for any ϕ ∈ L2(K).

Proof. Since C(K) is isomorphic to FS(Rn), it is a direct consequence of the invariance of FS(Rn) under Xt

and of Lemma 4.1, with R1 = R2 = Rn, X1 = X2 = K and W = Xt. �

Let S be the closed subspace of B2 defined as follows. Let us consider the equation

(4.5) ∇ · (av) = 0.

We define a class of asymptotic solutions of (4.5) as follows. Let us define the space of test functions

(4.6) T := {v ∈ FS(Rn) ∩W 1,∞(Rn) : ∇av := a · ∇v ∈ FS(Rn)}.
We then define

(4.7) S :=

{
v ∈ B2 :

∫

Rn

v(z)∇aϕ(z) dz = 0, for all ϕ ∈ T
}
.

We also consider the following subspaces of S:

(4.8) S∗ :=
{
v ∈ FS(Rn) ∩W 1,∞(Rn) : ∇av = 0 a.e.

}
,

(4.9) S† :=

{
v ∈ S : ∃ (vk)k∈N ⊆ T , vk

B2∩L2
loc−→ v and ∇avk

B2∩L2
loc−→ 0

}
.

and

(4.10) S[ :=

{
v ∈ S : ∃ (vk)k∈N ⊆ T , vk B2

−→ v and ∇avk
B2

−→ 0

}
.
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Clearly, we have S∗ ⊆ S† ⊆ S[. We will also be concerned in this section with the question whether S† is
dense in S because of our application to nonlinear transport equations. In the case of periodic functions, the
analogues of S† and S[ coincide since convergences in L2

loc and B2 are equivalent in that case. We will see

in the next proposition that in fact S[ = S. The analogous result in the periodic case implies S† = S. The
latter was given another proof in [12] by a standard argument using convolutions with approximations of the
Dirac measure. Nevertheless, this argument is heavily supported on the equivalence between L2

loc and B2

convergences in the periodic case and so cannot be extended even to the case of almost periodic functions.
Therefore, here, as in [2], instead of considering the question of the density of S† in S, we will address the
question concerning the stronger property of the density of S∗ in S.

Let us consider for a moment the one-parameter group of unitary operators X t : B2 → B2 defined by
Xtv = v ◦Xt, where Xt is the flow generated by the vector field a. Let us denote also by B2 its standard
complex extension and consider the natural extension of X t to the complexification of B2. By Stone’s
Theorem (see, e.g., [31], p. 266) there is a self-adjoint operator A on B2 so that Xt = eitA. We have the
following fact.

Proposition 4.1. The self-adjoint operator A such that X t = eitA is essentially self-adjoint on T and
A|T = 1

i∇a. Moreover, S is the invariant space under X t and S[ = S.

Proof. 1. The proof follows ideas in the proof of Stone’s Theorem. We denote by 〈·, ·〉 the inner product in
B2:

〈u, v〉 :=

∫

Rn

u(z)v̄(z) dz, for u, v ∈ B2.

Let φ ∈ C∞
c (R) and for each v ∈ T define

vφ :=

∫ ∞

−∞

φ(t)Xtv dt =

∫ ∞

−∞

φ(t)v ◦Xt dt.

Let T ∗ be the set of finite linear combinations of all such vφ for v ∈ T and φ ∈ C∞
c (R). We claim that

T ∗ ⊆ T and that T ∗ is dense in T in the uniform topology and hence it is also dense in B2.
2. First we see that vφ ∈ FS∩W 1,∞(Rn). Indeed, that vφ ∈ FS(Rn) follows from the uniform convergence

of the Riemann sums and the invariance of FS by the flow Xt given by Theorem 4.1. The fact that
vφ ∈W 1,∞(Rn) follows from the fact that v ∈W 1,∞(Rn) and the Lipschitz continuity of the Xt with respect
to the initial data, which follows from the Lipschitz continuity of the vector field a through Duhamel’s
formula and Grönwall’s inequality. Finally, the fact that ∇avφ ∈ FS(Rn) is seen as follows. By the Lipschitz
continuity of vφ we deduce that

∇avφ(x) = lim
h→0

vφ ◦Xh(x) − vφ(x)

h
,

where the limit exists for a.e. x ∈ Rn. On the other hand we have(
Xh − I

h

)
vφ =

∫ ∞

−∞

φ(t)

(
Xt+h − Xt

h

)
v dt

=

∫ ∞

−∞

φ(t− h) − φ(t)

h
Xtv dt

B2

−→ −
∫
φ′(t)Xtv dt

= v−φ′ .

Hence, ∇avφ = v−φ′ and so ∇avφ ∈ T ∗, which gives in particular that T ∗ ⊆ T . The density of T ∗ in T
follows by taking an approximate identity sequence ϕε(t) = ε−1ϕ(ε−1t), with 0 ≤ ϕ ∈ C∞

c (R),
∫
ϕdt = 1,

and noticing that vϕε
converges uniformly to v for any v ∈ T . Since T is dense in B2, we conclude that T ∗

is dense in B2.
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3. For vφ ∈ T ∗ we define Bvφ := i−1∇avφ = i−1v−φ′ . Notice that Xt : T ∗ → T ∗, B : T ∗ → T ∗ and
XtBvφ = BXtvφ, for vφ ∈ T ∗. Furthermore, given v1, v2 ∈ T ∗ we clearly have

〈Bv1, v2〉 = lim
s→0

〈(
Xs − I

is

)
v1, v2

〉

= lim
s→0

〈
v1,

(
I − X−s

is

)
v2

〉

= 〈v1, Bv2〉,
and so B is symmetric.

4. The proof that B is essentially self-adjoint uses the criterion that this fact is equivalent to Ker(B∗±i) =
{0} (see [31], p. 257) and follows the lines of the argument for a similar assertion in the proof Stone’s
Theorem. The argument is as follows. Suppose that there is a u ∈ D(B∗) so that B∗u = iu. Then for each
v ∈ D(B) = T ∗,

d

dt
〈Xtv, u〉 = 〈iBXtv, u〉 = −i〈Xtv,B

∗u〉 = −i〈Xtv, iu〉
= 〈Xtv, u〉.

Thus, the complex-valued function f(t) = 〈X tv, u〉 satisfies the ordinary differential equation f ′ = f which
means f(t) = f(0)et, and so f(0) = 〈v, u〉 = 0, because f(t) is bounded. Since T ∗ is dense, u = 0. A similar
argument shows that Ker(B∗ + i) = {0}, which completes the proof that B is essentially self-adjoint. In
particular, A = B̄.

5. Now, we observe that T ⊆ D(A). Indeed, this follows if we can show that limt→0
Xtv − v

t
exists in

B2 for all v ∈ T (see, e.g., Theorem VIII.7 in [31]). But from the definition of T we immediately have that
this limit exists in the sense of uniform convergence and so also in B2, and it is equal to ∇av. In particular,
A|T = i−1∇a.

6. We show now that S ⊆ D(A) and that S is the invariant space under X t. The fact that S ⊆ D(A)
follows from the definition of T since it implies trivially that S ⊆ D(B∗) = D(A). Now, for each u ∈ S,
given any v ∈ T , the function g(t) := 〈X tu, v〉 = 〈u,X−tv〉 satisfies g′(t) = 0 and so g(t) = g(0). Hence,
Xtu = u for all u ∈ S. On the other hand, if u ∈ B2 is invariant by Xt we have

0 = 〈(Xt − I)u, v〉 = 〈u, (X−t − I)v〉.
Dividing by t and making t→ 0 we obtain that u ∈ S.

7. Finally, the fact that S[ = S is a consequence of the fact that A is essentially self-adjoint when
restricted to T ∗ and S ⊆ D(A). Indeed, given u ∈ S, since (u, 0) ∈ graph(A), we have that there exists a
sequence vα ∈ T ∗ such that vα → u in B2 and ∇avα → 0 in B2. This means that u ∈ S[ and so S[ = S.

�

Recalling the canonical isomorphism between B2 and L2(K), when v is viewed as a function in L2(K), we
can say that v ∈ S if

(4.11)

∫

K

v(z)∇aϕ(z) dm(z) = 0 for all ϕ ∈ T ,

where, for simplicity, we use the same notation for a function g in FS(Rn) or B2 and its extension g to C(K)

or L2(K).
Given g ∈ B2, we denote by g̃ ∈ S its orthogonal projection on S. Accordingly, we denote by ã the vector

field whose components ãi are the projections on S of ai.
By the properties of orthogonal projections, g̃ is characterized by

(4.12)

∫

K

gh dm =

∫

K

g̃h dm, g ∈ L2(K), h ∈ S.
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The next result improves a similar proposition in [2] for the case of almost periodic functions. The proof
is similar to the corresponding one in [2] but now we can dispense with the density of S∗ in S by using the
equality S[ = S which holds in general by Proposition 4.1.

Proposition 4.2. S ∩ L∞(K) is an algebra and

(4.13) g̃r = gr̃ ∀g ∈ S ∩ L∞(K), r ∈ L2(K).

Proof. Given g ∈ S ∩ L∞(K), let (gk)k∈N ⊆ T be such that gk → g and ∇agk → 0 in L2(K), which exists
since S = S[. As g ∈ L∞(K), we may choose (gk) to be uniformly bounded, by replacing gk by ρ ◦ gk where
ρ ∈ C∞

c (R) is such that ρ(s) = s for s ∈ [−‖g‖∞, ‖g‖∞]. Now, given r ∈ S, since gk ∈ T , we have the
identity

rgk∇aϕ+ rϕ∇agk = r∇a(ϕgk),

for all ϕ ∈ T . Integrating, we obtain

〈rgk,∇aϕ〉 = −〈rϕ,∇agk〉,
and letting k → ∞ we find 〈rg,∇aϕ〉 = 0, for all ϕ ∈ T , which means that rg ∈ S.

Finally, let g, r be as in (4.13). For any h ∈ S we have
∫

K

hg̃r dm =

∫

K

h(gr) dm =

∫

K

hgr̃ dm

because hg ∈ S. Since gr̃ ∈ S and h ∈ S is arbitrary this proves that g̃r = gr̃. �

We remark that the Mean Ergodic Theorem (see [14], Theorem VIII.7.1), which is applicable due to
Theorem 4.1 and to the fact that S is the invariant space of X t (see Proposition 4.1 above) implies that for
g ∈ B2 we have

(4.14) lim
t→∞

1

t

∫ t

0

Xsg(z) ds = g̃(z) ∀g ∈ B2,

in the sense of convergence in B2, and one can use this formula to link in a more explicit way g̃ to g.
For the remaining of this section we will be concerned with the question of the density of S∗ in S which

obviously implies the density of S† in S and is motivated by the application to nonlinear transport equations
to be considered later on. More specifically, we will be interested in establishing conditions on the vector
field a such that the density of S∗ in S holds.

For the sake of reference, we state the following elementary lemma whose proof is a simple calculus exercise
left to the reader.

Lemma 4.2. Let W : Rn → Rn be a bi-Lipschitz map, Φ := W−1 and b a vector field. Then, the following
are equivalent:

(i) b · ∇(ϕ ◦W ) = (Dnϕ) ◦W for all ϕ ∈ C1(Rn).
(ii) (DnΦ) ◦W = b.

where Dn is the partial derivative with respect to the n-th coordinate. Thus, Φ satisfies the ordinary differ-
ential equation

dΦ

dyn
= b(Φ).

The first result that we establish giving sufficient conditions for the density of S∗ in S is the analogue of
a lemma established in [2] for the case of almost periodic functions. The proof follows the same lines as the
proof of the analogous result in [2] with the exception that here we have to replace the use made therein
of the orthogonal family {cosλ · x, sinλ · x : λ ∈ Rn} spanning AP(Rn) by the decomposition given by
Lemma 3.2. We omit the proof since it may be easily achieved from what we have said and also because it
is similar to the proof of the Lemma 4.4 stated below, whose details will be provided.
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Lemma 4.3. Suppose that W : Rnz → Rnw is a bi-Lipschitz map satisfying: for all g ∈ FS(Rn), g ◦W ∈
FS(Rn) and g ◦W−1 ∈ FS(Rn). Let J = |det ∂W∂z | and assume that J ∈ FS(Rn) and κ1 ≤ J ≤ κ2 for certain
constants 0 < κ1 ≤ κ2. Assume that the vector field a(z) satisfies

1

J(z)
a(z) · ∇z(ϕ ◦W ) =

(
∂ϕ

∂wn

)
◦W ∀ϕ ∈ C1(Rnw).

Then S∗ is dense in S.

The following lemma is a more efficient tool in providing concrete examples where S∗ is dense in S.

Lemma 4.4. If a = (a1, · · · , an) is a vector field and x = (x1, · · · , xn), let us use the notation ā =
(a1, · · · , an−1) and x̄ = (x1, · · · , xn−1). Suppose the following assumptions hold:

(A1) a ∈ FS∩W 1,∞(Rn; Rn), div a = 0 and |an| ≥ δ > 0;
(A2) The function defined by Φ(x) := (Φxn

(x̄), xn), where Φxn
(x̄) is the flow associated with the Cauchy

problem

(4.15)





dX

dxn
(x̄, xn) =

ā(X(x̄, xn), xn)

an(X(x̄, xn), xn)
,

X(x̄, 0) = x̄,

is such that Φ : Rn 7→ Rn is a bi-Lipschitz map and g ◦ Φ, g ◦ Φ−1 ∈ FS(Rn) for any g ∈ FS(Rn).

Then, S∗ is dense in S.

Proof. 1. Its easy to check that

divx̄

(
a

an

)
= − 1

an2
a · ∇an

By Lemma 4.2, a · ∇an = anDn(an ◦ Φ) ◦ Φ−1. This gives

divx̄

(
a

an

)
(Φ) =

−1

an ◦ Φ
Dn(an ◦ Φ) =

Dn((an ◦ Φ)−1)

(an ◦ Φ)−1
.

By the well known Euler’s formula for Jacobians (see, e.g., [19]), we have

DnJ = divx̄

(
a

an

)
(Φ)J

where J := |det(∂Φ/∂z)|. Hence, combining these last two equalities, we conclude that

J(x) =
an(x̄, 0)

an(Φ(x))
.

In particular, J ∈ FS(Rn).
2. Let E1 and E2 be as in Lemma 3.2. Given ψ ∈ E2, there is ϕ ∈ FS∗(Rn) such that Dnϕ = ψ

an(x̄,0) .

Indeed, let f ∈ C∞
c (Rn) be such that f̂ = 1 on supp ψ̂ and f̂ = 0 on a neighborhood of {x : xn = 0}. Set

ĥ := f̂
ixn

and define ϕ := 1
an(x̄,0)ψ ∗ h. Therefore, it is sufficient to observe that Dn(ψ ∗ h) = ψ ∗ Dnh =

ψ ∗ f = ψ.
3. Let W := Φ−1. Using the fact that

[−L/C,L/C]n ⊆W ([−L,L]n) ⊆ [−LC,LC]n

for a suitable constant C, it is easy to see that g ◦W ∈ B2 if and only if g ∈ B2. Now, if f, g ∈ FS∗(Rn),
then the following important relation holds:

(4.16) lim
L→+∞

1

(2L)n

∫

W ([−L,L]n)

f(x)g(x) dx = M(fg)M(J−1).
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Indeed, let µ = f̂g. Hence, we have

1

(2L)n

∫

W ([−L,L]n)

f(x)g(x) dx =
1

(2L)n

∫

[−L,L]n
f ◦Wg ◦WJ−1(x) dx

=
1

(2L)n

∫

[−L,L]n

∫

Rn

eiW (x)·y dµ(y)J−1(x) dx

= µ({0}) 1

(2L)n

∫

[−L,L]n
J−1(x) dx

+
1

(2L)n

∫

[−L,L]n

∫

Rn\{0}

eiW (x)·y dµ(y)J−1(x) dx

= M(fg)
1

(2L)n

∫

[−L,L]n
J−1(x) dx+

∫

Rn\{0}

1

(2L)n

∫

W ([−L,L]n)

eix·y dx dµ(y)

→M(fg)M(J−1) as L→ ∞,

where the last limit is due to the fact that for y 6= 0 the inner integral is O(Ln−1). Clearly (4.16) may be
extended to hold for f, g ∈ B2.

4. Given v ∈ S, we have by the definition of S

0 =

∫

Rn

v(z)a(z) · ∇ϕ(z) dz for all ϕ ∈ T .

Changing ϕ by ϕ ◦W in the equality above and taking into account Lemma 4.2 which yields

a · ∇(ϕ ◦W ) = (an(x̄, 0) ◦W ) (Dnϕ) ◦W J−1,

we get

0 =

∫

Rn

v(x)a(x) · ∇(ϕ ◦W )(x) dx = lim
L→+∞

1

(2L)n

∫

[−L,L]n
v(x)(an(x̄, 0) ◦W ) (Dnϕ) ◦W J−1 dx

= lim
L→+∞

1

(2L)n

∫

W ([−L,L]n)

v ◦W−1an(x̄, 0)Dnϕdx =
〈
v ◦W−1, an(x̄, 0)Dnϕ

〉
M(J−1),

where 〈·, ·〉 is the usual inner product of B2. Hence, by the step 2,

〈v ◦W−1, ψ〉 = 0, ∀ψ ∈ E2.

Since B2 = E1 ⊕ E2, we have that v ◦W−1 ∈ E1 and from this it follows that there exists (ϕj)j≥1 ⊆ E1

such that ϕj → v ◦W−1 in the sense of B2. Using (4.16) and the fact that 0 < k1 ≤ J−1 ≤ k2 for suitable
positive constants k1 and k2, we see that

‖ϕj ◦W − v‖2 ≤ k2

k1
‖ϕj − v ◦W−1‖2,

where ‖ · ‖ is the norm induced by the standard inner product of B2. Therefore, ϕj ◦W → v in B2 and, since
(ϕj ◦W )j≥1 ⊆ S∗, the result follows. �

We conclude this section with some examples of vector fields satisfying the assumptions (A1) and (A2) of
Lemma 4.4. For this purpose the next lemma will be important.

Lemma 4.5. Let us consider the Cauchy problem

(4.17)

{ dX
dt (z, t) = ᾱ(X(z, t))θ(t),

X(z, 0) = z.
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where ᾱ ∈ FS∩W 1,∞(Rn−1; Rn−1) and θ ∈ FS(R) is such that %(t) :=
∫ t
0
θ(s) ds ∈ FS(R). Let Xt(x) be the

flow generated by the vector field ᾱ(x). Then, Φ(x, t) := (X%(t)(x), t) satisfies ϕ ◦ Φ, ϕ ◦ Φ−1 ∈ FS(Rn) for
any ϕ ∈ FS(Rn).

Proof. The proof follows the same method as the one of Theorem 4.1 and so we only describe the main steps.
1. As in the proof of the referred theorem, we first show that ϕ(x+β(x, t), t) ∈ FS(Rn) for any ϕ ∈ FS(Rn)

and β ∈ FS(Rn; Rn−1).
2. Using the same notation in the proof of Theorem 4.1 with T := ‖%‖∞, we then prove thatX(j)(·, %(·)) →

X%(·)(·) uniformly with respect to x, t. Moreover, ϕ(X (1)(·, %(·)), ·) ∈ FS(Rn) for any ϕ ∈ FS(Rn).
3. Finally, we prove that if X(j−1) is uniformly continuous in Rn−1 × [−T, T ] and ϕ(X(j−1)(·, %(·)), ·) ∈

FS(Rn) for all ϕ ∈ FS(Rn), then the same is true of X(j). To this we observe that

ϕ(X(j)(x, %(t)), t) = ϕ

(
x+

∫ %(t)

0

ᾱ(X(j−1)(x, s)) ds , t

)

and, by the uniform continuity of ᾱ(X (j−1)(x, s)) and %(t), the Riemann sums corresponding to the integral∫ %(t)
0

ᾱ(X(j−1)(x, s)) ds uniformly converge in x, t. The conclusion of the proof is as in the one of Theorem 4.1.
�

Corollary 4.2. Let a be a vector field of the form a(x̄, xn) :=

(
α1(x̄)θ(xn), · · · , αn−1(x̄)θ(xn), αn(x̄)

)
,

where αi ∈ FS∩W 1,∞(Rn−1), i = 1, . . . , n, |αn| ≥ δ > 0, θ ∈ FS∩W 1,∞(R),
∫ xn

0
θ(y) dy ∈ FS(R) and

divx̄ ᾱ = 0. Then, S∗ is dense in S.

Proof. It suffices to observe that a satisfies the assumptions (A1) and (A2) of Lemma 4.4, which is immediate
from Lemma 4.5. �

Remark 4.1. We observe that if θ ∈ FS∗(R) is such that 1
y ∈ L1

|θ̂|
(R), then the indefinite integral of θ belongs

to FS(R).

5. Two-scale Young Measures

In this section we recall the theorem giving the existence of two-scale Young measures established in [3].
We begin by recalling the concept of vector-valued algebra with mean value.

Given a Banach space E and an algebra w.m.v. A, we denote by A(Rn;E) the space of functions f ∈
BUC(Rn;E) such that Lf := 〈L, f〉 belongs to A for all L ∈ E∗ and the family {Lf : L ∈ E∗, ‖L‖ ≤ 1} is
relatively compact in A.

For bounded Borel sets Q ⊆ Rn and f ∈ BUC(Rn;E), it is easily checked by an approximation with
Riemann sums that L 7→

∫
Q
〈L, f〉 dx defines a linear functional on E∗, continuous for the weak topology

σ(E∗, E); as a consequence, there exists a unique element of E, that we shall denote by
∫
Q
f dx, satisfying

〈L,
∫

Q

f dx〉 =

∫

Q

〈L, f〉 dx ∀L ∈ E∗.

For similar reasons, if f ∈ A(Rn;E) the integrals
∫
Qt
f dx weakly converge in E, as t → +∞, to a vector,

that we shall denote by
∫

Rn f dx, characterized by

〈L,
∫

Rn

f dx〉 =

∫

Rn

〈L, f〉 dx ∀L ∈ E∗.
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Theorem 5.1 (cf. [3]). Let E be a Banach space, A an algebra and K be the compact associated with A.
There is an isometric isomorphism between A(Rn;E) and C(K;E). Denoting by g 7→ g the canonical map
from A to C(K), the isomorphism associates to f ∈ A(Rn;E) the map f ∈ C(K;E) satisfying

(5.1) 〈L, f〉 = 〈L, f〉 ∈ C(K) ∀L ∈ E∗.

In particular, for each f ∈ A(Rn;E), ‖f‖E ∈ A.

We define the space Lp(K;E) as the completion of C(K;E) with respect to the norm ‖ · ‖p, defined as
usual:

‖f‖p :=

(∫

K

‖f‖pE dm
)1/p

.

As usual, we identify functions in Lp that coincide m-a.e. in K.
The next theorem gives the existence of two-scale Young measures associated with an algebra A. For the

proof, we again refer to [3].
Let Ω ⊆ Rn be a bounded open set and {uε(x)}ε>0 be a family of functions in L∞(Ω;K), for some

compact metric space K.

Theorem 5.2. Given any infinitesimal sequence {εi}i∈N there exist a subnet {uεi(d)
}d∈D, indexed by a

certain directed set D, and a family of probability measures on K, {νz,x}z∈K,x∈Ω, weakly measurable with
respect to the product of the Borel σ-algebras in K and Rn, such that

(5.2) lim
D

∫

Ω

Φ(
x

εi(d)
, x, uεi(d)

(x)) dx =

∫

Ω

∫

K

〈νz,x,Φ(z, x, ·)〉 dm(z) dx ∀Φ ∈ A (Rn;C0(Ω ×K)) .

Here Φ ∈ C (K;C0(Ω ×K)) denotes the unique extension of Φ. Moreover, equality (5.2) still holds for
functions Φ in the following function spaces:

(1) B1(Rn;C0(Ω ×K));
(2) Bp(Rn;C(Ω̄ ×K)) with p > 1;
(3) L1(Ω;A(Rn;C(K))).

As in the classical theory of Young measures we have the following consequence of Theorem 5.2.

Theorem 5.3. Let Ω ⊆ Rn be a bounded open set, let {uε} ⊆ L∞(Ω; Rm) be uniformly bounded and let νz,x
be a two-scale Young measure generated by a subnet {uε(d)}d∈D, according to Theorem 5.2. Assume that U

belongs either to L1(Ω;A(Rn; Rm))) or to Bp(Rn;C(Ω̄; Rm)) for some p > 1. Then

(5.3) νz,x = δU(z,x) if and only if lim
D

‖uε(d)(x) − U(
x

ε(d)
, x)‖L1(Ω) = 0.

6. Application to Nonlinear Transport equations

In this section we study the homogenization problem for a nonlinear transport equation with an incom-
pressible and autonomous velocity field. The main result here improves and extends the one corresponding
to the same problem in [2] in the context of homogenization in AP(Rn).

Let a ∈ FS∩W 1,∞(Rn; Rn), and let us assume that a is incompressible, i.e.

(6.1) ∇z · a(z) = 0.

We consider the equation

(6.2) ∂tuε + ∇x · (a(
x

ε
)f(uε)) = 0, t > 0, x ∈ Rn,

with f ∈ C1(R), and the initial data given by

(6.3) uε(x, 0) = U0(
x

ε
, x),
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where U0(z, x) ∈ L1
loc(R

n; FS(Rn)). For each z ∈ K, we also consider the auxiliary initial value problem
given by

(6.4) Ut + ∇x · (ã(z)f(U)) = 0, t > 0, x ∈ Rn,

and the initial data

(6.5) U(z, x, 0) = U0(z, x), x ∈ Rn.

In (6.4), ã is the vector field whose components are the images of the corresponding components of the vector
field a by the projection of L2(K) onto S as defined by (4.12), in accordance with the notation introduced
in Section 4.

The stability properties of entropy solutions to scalar conservation laws show that, possibly modifying ã
in a negligible set, U may be viewed as a Borel map from K into L1

loc(R
n+1
+ ), where Rn+1

+ = Rn × (0,+∞)).

Using this fact, one can for instance find a Borel function Ū , setting

Ū(z, x, t) := lim inf
ε→0

U(z, ·, t) ∗ ρε(x).

Hence, in the following we can assume with no loss of generality that U is a Borel map.
We will need the following theorem (see [2] for the proof) which provides a comparison principle between

two parametrized families of measures satisfying a first-order differential inequality in conservation form,
which extends a theorem of DiPerna [17].

Theorem 6.1. Let {µix,t}, (x, t) ∈ Rn+1
+ , i = 1, 2, be two weakly measurable parametrized families of

probability measures over a compact separable metric space K. Let {µix,0}x∈Rn , i = 1, 2, be two parametrized
families of probability measures over K satisfying

lim
t→0

1

t

∫ t

0

∫

Rn

〈µ1
x,s, g〉φ(x) dx ds =

∫

Rn

〈µ1
x,0, g〉φ(x) dx,

lim
t→0

∫

{|x|<R}

|〈µ2
x,s, g〉 − 〈µ2

x,0, g〉| dx = 0,

(6.6)

for all g ∈ C(K), φ ∈ Cc(Rn) and R > 0. Let I : K ×K → R, G : K ×K → Rn be continuous functions
with I ≥ 0 and |G(ρ, λ)| ≤ C I(ρ, λ), for some C > 0. Assume

∂t〈µ1
x,t, I(·, λ)〉 + ∇x · 〈µ1

x,t, G(·, λ)〉 ≤ 0, for all λ ∈ K,

∂t〈µ2
x,t, I(ρ, ·)〉 + ∇x · 〈µ2

x,t, G(ρ, ·)〉 ≤ 0, for all ρ ∈ K,
(6.7)

in the sense of the distributions in Rn+1
+ . Then, for a.e. t > 0, we have

(6.8)

∫

{|x|<R}

〈µ1
x,t ⊗ µ2

x,t, I(·, ·)〉 dx ≤
∫

{|x|<R+Ct}

〈µ1
x,0 ⊗ µ2

x,0, I(·, ·)〉 dx.

In the following theorem we extend to the context of the algebra FS a result of W. E (cf. [18]), relative to
the periodic case. We relax the restriction f ′ > 0 imposed on [18], asking only that the set of zeros of f ′ is
nowhere dense. We characterize the weak limit of uε and, under suitable additional regularity assumptions
on U , we prove a strong correctors formula. By the latter we mean an oscillatory profile U( xε , x, t) which

corrects the weak convergence of uε to a strong one in L1
loc.

We remark that in the periodic setting A.-L. Dalibard [12] has recently obtained a characterization of the
weak limit of uε, with no strong correctors formula, without restrictions on f , as a consequence of a more
general rather technical analysis using the kinetic formulation.

Theorem 6.2. Let a ∈ W 1,∞ ∩ FS(Rn; Rn) and U0 ∈ L1
loc(R

n; FS(Rn)). Let {uε}ε>0 be the sequence of
entropy solutions of (6.2), (6.3). Assume that the set E = {u ∈ R : f ′(u) = 0} has one-dimensional Lebesgue
measure zero, that U0 is bounded and satisfies

(6.9) U0(·, x) ∈ S for a.e. x ∈ Rn, with S defined in (4.7)
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and finally that the set S† defined in (4.9) is dense in S.
Then uε weakly star converge in L∞(Rn+1

+ ) to

(6.10) u(x, t) :=

∫

K

U(z, x, t) dm(z),

where U is the solution of (6.4), (6.5). Suppose further that

(6.11) either U ∈ L1
loc(R

n × [0, T ];C(K)) or U ∈
⋂

R>0

L2(K;C(BR(0) × [0, T ]))

for some T > 0. Then

(6.12) lim
ε→0

(
uε(x, t) − U(

x

ε
, x, t)

)
= 0 in L1

loc
(Rn × [0, T ]).

Proof. 1. We first observe that the entropy solutions uε of (6.2), (6.3) are uniformly bounded in L∞(Rn+1
+ ).

Hence, taking into account Theorem 5.3, it suffices to show that any two-scale Young measure νz,x,t generated
by a subnet of {uε}ε>0 satisfies

(6.13) νz,x,t = δU(z,x,t),

for a.e. (z, x, t) ∈ K × Rn+1
+ . Let then νz,x,t be a two-scale Young measure generated by a subnet of {uε}ε>0

which, for notational simplicity, we still denote by {uε}. For any nonnegative ψ ∈ L1(Rn+1
+ ) we set also

(6.14) σψz :=

∫

R
n+1
+

ψ(x, t)νz,x,t dx dt.

2. We use Theorem 6.1 to prove (6.13). So, let us consider the family of Kruzkhov’s entropies

(6.15) η(λ, k) = |λ− k|, q(λ, k) = sgn(λ− k)(f(λ) − f(k)),

so that the entropy solution of (6.2) satisfies

(6.16) ∂tη(uε, k) + ∇x · (a(
x

ε
)q(uε, k)) ≤ 0 ∀k ∈ R,

in the sense of distributions: it means that for all 0 ≤ φ ∈ C∞
c (Rn+1) we have

(6.17)

∫

R
n+1
+

{η(uε, k)φt + q(uε, k)(a(
x

ε
) · ∇xφ)} dx dt+

∫

Rn

η(U0(
x

ε
, x), k)φ(x, 0) dx ≥ 0.

In (6.17) we take φ(x, t) = εϕ(xε )ψ(x, t), where 0 ≤ ϕ ∈ T , with T defined in (4.6), and 0 ≤ ψ ∈ C∞
c (Rn+1),

and let ε→ 0 to get

(6.18)

∫

K

〈σψz , q(·, k)〉∇aϕdm(z) ≥ 0.

By applying this inequality with C ± ϕ, with C = ‖ϕ‖∞, and using the arbitrariness of ϕ we get (recalling
(4.11))

(6.19) z 7→ 〈σψz , q(·, k)〉 ∈ S.
3. Relation (6.19) is true also for the entropy fluxes s+(u, k), s−(u, k) associated with the convex entropies

r+(u, k) = max{0, u−k}, r−(u, k) = max{0, k−u}. By linearity, we deduce that (6.19) holds for any entropy
flux q associated with a Lipschitz entropy η satisfying η′ = χI , where χI is the characteristic function of
any interval I ⊆ R. Since any Lipschitz function may be locally uniformly approximated by finite linear
combinations of Lipschitz entropies of that form, we deduce that (6.19) holds for all entropy fluxes associated
with any Lipschitz entropy (not necessarily convex!). Now, if Ī ⊆ R \ E, then the entropy flux associated
with the Lipschitz entropy ηI satisfying η′I = χI/f

′ is qI defined modulo constants by q′I = χI . Hence,
z 7→ 〈σψz , qI〉 ∈ S, for any interval I with Ī ⊆ R \ E. By linearity and the fact that E has measure zero,
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we deduce that the latter holds for any interval I. Again using the fact that any Lipschitz function may be
locally uniformly approximated by finite linear combinations of such functions qI , we conclude that

(6.20) z 7→ 〈σψz , g〉 ∈ S for any Lipschitz function g : R → R.

By approximation we deduce that (6.20) holds for any ψ ∈ L1(Rn+1
+ ).

4. Let φ(x, t) = ϕ(xε )ψ(x, t), where 0 ≤ ϕ ∈ S† and 0 ≤ ψ ∈ C∞
c (Rn+1). By the definition of S†, there

exists (ϕk)k∈N ⊆ T , where T is defined in (4.6), such that ϕk → ϕ and ∇aϕk → 0, both in B2 and in L2
loc.

We first consider (6.17) with φ(x, t) replaced by φk(x, t) = ϕk(
x
ε )ψ(x, t) and make k → ∞. Then we pass to

the limit as ε→ 0 to get
∫

R
n+1
+

∫

K

{〈νz,x,t, η(·, k)〉ϕψt + 〈νz,x,t, q(·, k)〉ϕ(a · ∇xψ)} dm(z) dx dt(6.21)

+

∫

Rn

∫

K

η(U0(z, x), k)ϕ(z)ψ(x, 0) dm(z) dx ≥ 0.

5. By Proposition 4.2 and (6.19) the maps z 7→ ϕ(z)〈σ∂iψ
z , q(·, k)〉 belong to S. Therefore, taking (4.12)

into account, we can rewrite (6.21) as
∫

R
n+1
+

∫

K

{〈νz,x,t, η(·, k)〉ϕψt + 〈νz,x,t, q(·, k)〉ϕ(ã · ∇xψ)} dm(z) dx dt(6.22)

+

∫

Rn

∫

K

η(U0(z, x), k)ϕ(z)ψ(x, 0) dm(z) dx ≥ 0,

for all 0 ≤ ϕ ∈ S† and all 0 ≤ ψ ∈ C∞
c (Rn+1). But then, using also the fact that z 7→ 〈σψt

z , η(·, k)〉 (see
(6.20)) and ãi〈σ∂iψ

z , q(·, k)〉 belong to S and assumption (6.9) on U0, we obtain that (6.22) holds for all
0 ≤ ϕ ∈ L2(K) (here we use the density of S† in S). In particular, for each fixed 0 ≤ ψ ∈ C∞

c (Rn+1),
inequality (6.22) can be strengthened to an inequality a.e. on z ∈ K. A density argument on the class of test
functions ψ then gives that for a.e. z ∈ K the following property is fulfilled:

∫

R
n+1
+

{〈νz,x,t, η(·, k)〉ψt + 〈νz,x,t, q(·, k)〉(ã(z) · ∇xψ)} dx dt

+

∫

Rn

η(U0(z, x), k)ψ(x, 0) dx ≥ 0,

(6.23)

for all 0 ≤ ψ ∈ C∞
c (Rn+1).

6. We are going to apply Theorem 6.1 to show that νz,x,t is a Dirac measure for almost every (z, x, t) ∈
K × Rn+1

+ . To do this, first we observe that (6.23) implies

(6.24) lim
t→0

1

t

∫ t

0

∫

Rn

〈νz,x,τ , g〉φ(x) dx dτ =

∫

Rn

〈δU0(z,x), g〉φ(x) dx,

for all g ∈ C(R) and φ ∈ Cc(Rn). Indeed, choosing ψ(x, t) = δh(t)φ(x), with δh(t) = max{h−1(h− t), 0}, for
t ≥ 0, h > 0, φ ∈ C∞

c (Rn), φ ≥ 0, in (6.23), we obtain

(6.25) lim
h→0

1

h

∫ h

0

∫

Rn

〈νz,x,t, | · −k|〉φ(x) dx dt ≤
∫

Rn

|U0(z, x) − k|φ(x) dx,

for all φ ∈ C∞
c (Rn), φ ≥ 0, and a fortiori also for all 0 ≤ φ ∈ L1(Rn). Taking advantage of the flexibility given

by the presence of φ ∈ L1(Rn) in (6.25), we may replace k by any function k(x) in L∞(Rn), in particular,
k(x) = U0(z, x). This proves (6.24).

7. Now, let U(z, x, t) be the solution of (6.4), (6.5). The entropy condition states that

(6.26) ∂tη(λ,U) + ∇x · (ã(z)q(λ,U)) ≤ 0 for all λ ∈ R, z ∈ K.
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and

(6.27) lim
t→0

∫

{|x|<R}

|U(z, x, t) − U0(z, x)| dx = 0, for all R > 0.

Therefore, we can apply Theorem 6.1 with µ1
x,t = νz,x,t, µ

2
x,t = δU(z,x,t), I = η and G = ã(z)q, for a.e. z ∈ K.

From this we easily deduce that νz,x,t = δU(z,x,t), for a.e. (z, x, t) ∈ K × Rn+1
+ .

8. To prove the weak convergence uε ⇀ u, with u(x, t) given by (6.10), we argue as follows. Let
U δ ∈ C(K × Rn+1

+ ) be bounded. Using (5.2) with test function

Φ(λ, z, x, t) := |λ− U δ(z, x, t)|ψ(x, t)

with 0 ≤ ψ ∈ Cc(R
n+1
+ ), we obtain

lim sup
ε→0

∫

R
n+1
+

ψ(x, t)|uε(x) − U δ(
x

ε
, x, t)| dx dt =

∫

R
n+1
+

∫

K

|Uψ − U δψ| dm(z) dx dt.

On the other hand, the continuity of Uδ gives

lim
ε→0

∫

R
n+1
+

U δ(
x

ε
, x, t)ψ(x, t) dx dt =

∫

R
n+1
+

∫

K

U δ(z, x, t) dm(z)ψ(x, t) dx dt.

Hence, combining the previous two formulas, we get

lim sup
ε→0

∣∣∣∣∣

∫

R
n+1
+

uε(x)ψ(x, t) − Ū δ(x, t)ψ(x, t) dx dt

∣∣∣∣∣ ≤ ‖U δψ − Uψ‖L1 ,

with Ū δ(x, t) :=
∫
K
U δ(z, x, t) dm(z). By a density argument we obtain the weak star convergence of uε to

limδ Ū
δ, i.e.

∫
K
U(z, x, t) dm(z). Finally the fact that uε(x, t) − U(xε , x, t) → 0 in L1

loc(R
n × [0, T ]) as ε→ 0,

under assumption (6.11), follows directly by Lemma 5.3. �

Concerning (6.11), ensuring the existence of strong correctors, we observe that the first alternative is
trivially satisfied if U0 and ã are independent of z, in which case we may take any T > 0. A simple example
is provided, for N = 2, by the incompressible vector field a(z) = (g(z2), β) with g ∈ FS(R) ∩W 1,∞(R) and
β 6= 0. In this case ã(z) = (

∫
g, β), which follows easily from (4.14). The following lemma gives sufficient

conditions for the verification of the second alternative in (6.11).

Lemma 6.1. If the range of a is contained in a closed convex set P, then U ∈ L2(K;C(B(0, R) × [0, T ]))
for any R > 0, for any T > 0 such that the entropy solutions Vb of

(6.28) ∂tVb + ∇x · (bf(Vb)) = 0, t > 0, x ∈ Rn,

(6.29) Vb(x, 0) = U0(z, x), x ∈ Rn,

have locally uniformly bounded Lipschitz constant in Rn × [0, T ], with respect to b ∈ P and z ∈ Rn.

Proof. By applying (4.14) we obtain that also the range of ã is contained in P. We will prove that U(z, x, t) ∈
L2(K;C(BR(0) × [0, T ])) for any R > 0. Since U is bounded we need only to check its measurability. This
follows by the fact that for any δ > 0 it is possible to find a compact Kδ ⊆ K such that U(z, x, t) ∈
C(Kδ;C(Rn× [0, T ])). Indeed, given δ > 0 we may find Kδ such that the restriction of ã to Kδ is continuous.
Now, the stability properties of entropy solutions tell us that z 7→ U(z, ·, ·) is continuous from Kδ ⊆ K
into L1

loc(R
n+1
+ ). The local uniform Lipschitz bound then gives continuity with respect to the stronger

topology. �
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An example where Lemma 6.1 applies is provided by the case in which all the components of a are
nonnegative, f ′′(u) ≥ 0 for all u ∈ R and ∂U0

∂xi
(z, x) ≥ 0 for all (z, x) ∈ Rn × Rn, i = 1, . . . , n. In this case, if

b ∈ P = [0,M ]n for some M > 0, then it is well known that the entropy solution Ub of (6.28), (6.29) can be

constructed by the method of characteristics in such a way that Ub ∈W 1,∞
loc (Rn+1

+ )) if the initial datum is a
Lipschitz function. We recall that, in general, entropy solutions are discontinuous.

7. Porous medium type equations with oscillatory external sources on bounded domains

In this section we consider a homogenization problem for a porous medium type equation with oscillatory
external force, similar to the one considered in [3]. The differences with respect to the earlier problem lie in
the fact that we now consider the equation on a bounded domain and we allow more general initial data. The
price we pay for these extensions is that we need to impose some restrictions on the ergodic algebra, namely
requiring the external source as a function of the oscillatory variable to belong to FS(Rn). Also, for our result
on the existence of oscillatory profiles enhancing the weak convergence to a strong convergence we ask the
“pressure” function to be convex, which was not necessary for the corresponding result in [3]. To simplify our
boundary conditions we consider external sources depending explicitly also on the non-oscillatory variable.

So, let Ω be a bounded open subset of Rn with smooth boundary. We consider the initial-boundary value
problems

∂tu = ∆f(u) − ∆G(x,
x

ε
) (x, t) ∈ Ω × (0,∞),(7.1)

u|∂Ω = p0,(7.2)

u(x, 0) = u0(x,
x

ε
) := ϕ0(x,

x

ε
) + p0.(7.3)

The main goal here will be to apply the theory developed in earlier sections and not to solve the problem
(7.1)-(7.3) in its greatest generality. Therefore in what follows we will be quite generous in our regularity
assumptions, without paying attention to possible extensions under weaker regularity hypotheses. To avoid

confusion we explicitly state that ∆G(x, xε ) :=
∑n
i=1

(
Gxixi

(x, y) +
2

ε
Gxiyi

(x, y) +
1

ε2
Gyiyi

(x, y)

)
with y =

x

ε
.

Notation: We shall denote by Cγ(Ω̄) the Hölder continuous functions in Ω̄ with Hölder exponent γ ∈ (0, 1).
By Cγ0 (Ω) we shall denote the functions in Cγ(Ω̄) which vanish at ∂Ω. Also, we shall denote by C2+γ(Ω̄) the

functions in C2(Ω̄) whose second derivatives are in Cγ(Ω̄) and by C2+γ
0 (Ω) the functions in C2+γ(Ω̄)∩Cγ0 (Ω)

whose derivatives up to second order are in Cγ0 (Ω).

In the case of the porous medium equation, typical examples of the function f(u) are given by f(u) = uγ ,
with γ > 0. With this application in mind, we will not assume in principle that f is defined in the whole
line, which causes the need of more technical specifications in the assumptions to follow.

We make the following assumptions on f , G, p0 and ϕ0:

(A3) The function f is defined and smooth on an interval (a, b) ⊆ R on which it satisfies f ′ > 0.

(A4) The function G(x, y) satisfies G ∈ C2+γ(Ω̄ × Rn) ∩ FS(Rn;C2+γ
0 (Ω)), for some 0 < γ < 1;

(A5) ϕ0 ∈ C2+γ(Ω̄ × Rn) ∩ FS(Rn;C2+γ
0 (Ω));

(A6) p0 ∈ (a, b) and there exist q1, q2 ∈ f((a, b)) such that q1 < f(p0) < q2 and

α < q1 +G(x, y) < f(u0(x, y)) < q2 +G(x, y) < β, for all (x, y) ∈ Ω × Rn,

with [α, β] ⊆ f((a, b)). In particular, we have

(7.4) a < Φq1(x,
x

ε
) < u0(x,

x

ε
) < Φq2(x,

x

ε
) < b,



HOMOGENIZATION IN THE FOURIER-STIELTJES ALGEBRAS 23

where, for q ∈ f((a, b)),

(7.5) Φq(x, y) := f−1 (G(x, y) + q) .

For q ∈ [q1, q2] define

ḡ(x, q) := My

(
f−1

(
G(x, y) + q

))
.

For each x ∈ Ω, p ∈ [ḡ(x, q1), ḡ(x, q2)], we define f̄(x, p) implicitly by the formula

(7.6) p = My

(
f−1

(
G(x, y) + f̄(x, p)

))
.

Clearly, we have ḡ(x, f̄(x, p)) = p and f̄(x, ḡ(x, q)) = q.
We notice that for all q ∈ R such that G(x, y) + q ∈ f((a, b)), for (x, y) ∈ Ω × Rn, the function Φq(x, y)

defined in (7.5) is such that Φq(x,
x

ε
) is a stationary solution of (7.1).

Under the assumptions (A3)-(A6) we have the following result.

Theorem 7.1. Let uε be the (classical) solution of problem (7.1)-(7.3). Then uε is uniformly bounded in

L∞(Ω× (0,∞)) and uε
∗
⇀ ū in L∞(Ω× (0,∞)) where ū ∈ C2,1(Ω̄× [0,∞)) is the (classical) solution of the

initial-value problem

∂tū = ∆f̄(x, ū),(7.7)

ū|∂Ω = p0,(7.8)

ū(x, 0) = p0 +My (ϕ0(x, y)) ,(7.9)

where for each x ∈ Ω, f̄(x, ·) is implicitly defined on [ḡ(x, q1), ḡ(x, q2)] by the relation (7.6). Moreover, if
f ′′(u) 6= 0 for all a < u < b then

(7.10) uε(x, t) − Φf̄(x,ū(x,t))(x,
x

ε
) → 0 in L1

loc
(Ω × (0,∞)).

Proof. 1. Existence, uniqueness and smoothness of solutions of (7.1)-(7.3) follow from the classical theory
developed in [25]. The fact that the solutions of (7.1)-(7.3) form a uniformly bounded sequence in L∞(Ω ×
(0,∞)) follows from the inequalities (see, e.g., [7])

(7.11)

∫ ∞

0

∫

Ω

{(u− v)±φt ∓H(±(u− v))∇(f(u) − f(v)) · ∇φ} dxdt ≥ 0

for all 0 ≤ φ ∈ C∞
0 (Rn × (0,∞)), which hold for smooth solutions of (7.1)-(7.3), satisfying (u − v)± = 0

on ∂Ω × (0,∞), where by (s)± we denote the function max{±s, 0} and by H(s) we denote the Heaviside
function H(s) = 1 for s > 0 and H(s) = 0 for s < 0. Indeed, we may apply (7.11) for (u − v)− and for

(u − v)+ with v = v1(x,
x

ε
) := Φq1(x,

x

ε
) and v = v2(x,

x

ε
) := Φq2(x,

x

ε
), respectively, for q1 and q2 as in

(7.4). Therefore, using a suitable sequence of test functions φ(x, t) we arrive at the inequalities

(7.12) a < v1(x,
x

ε
) ≤ uε(x, t) ≤ v2(x,

x

ε
) < b.

2. We now define Uε(x, t) in Ω × [0,∞) as the smooth bounded solution of

∆U = uε(x, t),(7.13)

U |∂Ω = 0,(7.14)

We then notice that Uε is the (viscosity) solution of

∂tU − f(∆U) = −G(x,
x

ε
) − f(p0),(7.15)

U |∂Ω = 0,(7.16)

U(x, 0) = U0,ε(x),(7.17)
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where U0,ε is the smooth bounded solution of (7.13)-(7.14) for t = 0. We refer to [11] for a self-contained
exposition of the theory of viscosity solutions for fully nonlinear elliptic equations, and to [8] for the cor-
responding regularity theory. Next we shall study the homogenization of (7.15)-(7.17) using a method
motivated by [20].

3. Since uε(x, t) is uniformly bounded in L∞(Ω × [0,∞)), we easily see that Uε(x, t) form a uniformly
bounded sequence in L∞([0,∞);W 2,p(Ω)) for all p ∈ (1,∞). On the other hand, from (7.15) we easily
deduce that |Uε(x, t) − Uε(x, s)| ≤ C|t− s| for all x ∈ Ω for some constant C > 0, independent of ε. Hence,
we see that Uε is uniformly bounded in W 1,∞(Ω̄ × [0,∞)). In particular, there is a subsequence Uεi

of Uε
converging locally uniformly in Ω̄ × [0,∞) to a function Ū ∈W 1,∞(Ω̄ × [0,∞)).

4. We claim that Ū(x, t) is the viscosity solution of the initial-boundary value problem

Ut − f̄(x,∆U) = −f(p0),(7.18)

U |∂Ω = 0,(7.19)

U(x, 0) = Ū0(x),(7.20)

where Ū0 is the solution of

∆U = p0 +My (ϕ0(x, y)) ,(7.21)

U |∂Ω = 0,(7.22)

5. Indeed, let (x̂, t̂) ∈ Ω × (0,∞) and let vδ ∈ FS(Rn) be smooth bounded and such that

∆yvδ ≤ f−1
(
G(x̂, y) + f̄(x̂, p)

)
− p+ δ,(7.23)

∆yvδ ≥ f−1
(
G(x̂, y) + f̄(x̂, p)

)
− p− δ,(7.24)

with p = ∆Ū(x̂, t̂), whose existence is given by Lemma 3.3. In particular, given any δ′ > 0 we can find δ > 0
sufficiently small such that

f(∆Ū(x̂, t̂) + ∆vδ(y)) ≤ G(x̂, y) + f̄(x̂,∆Ū(x̂, t̂)) + δ′,

f(∆Ū(x̂, t̂) + ∆vδ(y)) ≥ G(x̂, y) + f̄(x̂,∆Ū(x̂, t̂)) − δ′.

Take ρ > 0, and let xj ∈ Ω be a point of maximum of

Uj(x, t̂) − Ū(x, t̂) − ε2jvδ(
x

εj
) − ρ|x− x̂|2 + ρ,

which exists since vδ is bounded. Here we denote Uj = Uεj
. We clearly have xj → x̂ as j → ∞. We have

Ujt(xj , t̂) − f

(
∆Ū(xj , t̂) + ∆vδ(

xj
εj

) + ρ

)
≤ −G(xj ,

xj
εj

) − f(p0),

and

f

(
∆Ū(x̂, t̂) + ∆vδ(

xj
εj

)

)
≤ G(x̂,

xj
εj

) + f̄(x̂,∆Ū(x̂, t̂)) + δ′,

which, after addition, gives

Ujt(xj , t̂) − f̄(x̂,∆Ū(x̂, t̂)) ≤ −f(p0) +O(|xj − x̂|) +O(ρ) + δ′.

Hence, letting j → ∞ first, and then letting ρ, δ′ → 0, we obtain

Ūt(x̂, t̂) − f̄(x̂,∆Ū(x̂, t̂)) ≤ −f(p0).

The opposite inequality follows in a similar way and hence we have proved the claim.
6. By the uniqueness of the viscosity solution of (7.18)–(7.20), we conclude that the whole sequence Uε(x, t)

converges uniformly to Ū(x, t). Consequently, uε(x, t) converges in the weak-∗ topology of L∞(Ω × (0,∞))
to ū = ∆Ū(x, t), which is the classical solution of (7.7)–(7.9), and this concludes the proof of the first part
of the theorem.
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7. We are now going to prove (7.10) under the additional assumption that f ′′(u) 6= 0 for all u ∈ (a, b).
We write the identity

∂tUε − f(∆Uε) = −G(x,
x

ε
) − f(p0).

Multiplying by φ(x, t)ϕ(xε ) with φ ∈ C∞
0 (Ω × (0,∞)) and ϕ ∈ FS(Rn), then integrating in Ω × (0,∞) and

next taking the limit along a suitable subnet ε(d), d ∈ D, we obtain by Theorem 5.2
∫ ∞

0

∫

Ω

∫

K

{〈νx,t,z, f(·)〉 −G(x, z) − f̄(x,∆Ū)}φ(x, t)ϕ(z) dm(z) dx dt = 0,

where K is the compactification of Rn associated with FS(Rn). Since φ and ϕ are arbitrary, we have

〈νx,t,z, f(·)〉 = G(x, z) + f̄(x,∆Ū) = f
(
f−1

(
G(x, z) + f̄(x,∆Ū)

))
, for a.e. (x, t, z) ∈ Ω × (0,∞) ×K.

Since f ′′ 6= 0 we conclude that

νx,t,z = δ
f−1
(
G(x,z)+f̄(x,∆Ū)

), for a.e. (x, t, z) ∈ Ω × (0,∞) ×K.

and this implies that (7.10) holds. �

8. A system of porous medium type equations with oscillatory external sources

Again, we let Ω be an open bounded subset of Rn with smooth boundary. We consider the following
system of porous media equations

(8.1)

{
ut = ∆f1(u) + h(v) − ∆G1(x,

x
ε ),

vt = ∆f2(v) − ∆G2(x,
x
ε ).

As we observe, the equation for u has an additional source term h(v) which couples it with the equation
for v. We then prescribe the following initial and boundary data

u|∂Ω = p01, v|∂Ω = p02,(8.2)

u(x, 0) = u0(x,
x

ε
) := ϕ01(x,

x

ε
) + p01, v(x, 0) = v0(x,

x

ε
) := ϕ02(x,

x

ε
) + p02.(8.3)

We suppose that assumptions (A3)–(A6) are satisfied with f , G and ϕ0 replaced by f1, f2, G1, G2 and
ϕ01, ϕ02, respectively. For simplicity we assume now that (a, b) = (0,+∞), as is the case in the model of
porous media where u, v represent densities. As for h, we assume the following.

(A7) The function h is defined and smooth in the interval (0,+∞) and h(v) ≥ 0 for all v ∈ (0,∞).

We further assume:

(A8) The function f2 also satisfies f ′′
2 (v) 6= 0 for all v ∈ (0,∞).

Concerning problem (8.1)–(8.3), under the assumptions (A3)–(A8), we have the following result.

Theorem 8.1. The (classical) solutions (uε, vε) of the problem (8.1)-(8.3) form a uniformly bounded se-

quence in L∞(Ω× (0, T ))2 and (uε, vε)
∗
⇀ (ū, v̄) in L∞(Ω× (0, T )) for all T > 0 where (ū, v̄) is the (classical)

solution of the initial-boundary value problem
{
∂tu = ∆f̄1(x, u) + h̄(x, v),

∂tv = ∆f̄2(x, v),
(8.4)

(u, v)|∂Ω = (p01, p02),(8.5)

(u(x, 0), v(x, 0)) =
(
p01 +My

(
ϕ01(x, y)

)
, p02 +My

(
ϕ02(x, y)

))
,(8.6)
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where for each x ∈ Ω, f̄1(x, ·), f̄2(x, ·) are implicitly defined on [ḡ1(x, q11), ḡ1(x, q12)] and [ḡ2(x, q21), ḡ2(x, q22)],
respectively, by the relation (7.6) with f replaced by f1, f2, where ḡ1 and ḡ2 are the corresponding inverses.
The function h̄(x, v) is defined by

h̄(x, v) = My

(
h
(
f−1
2 (G2(x, y) + f̄2(x, v))

))
.

Moreover,

(8.7) vε(x, t) − Φ2
f̄2(x,v̄(x,t))

(x,
x

ε
) → 0 in L1

loc(Ω × (0,∞)),

where

Φ2
q(x, y) = f−1

2 (G2(x, y) + q).

Further, if f ′′
1 (u) 6= 0 we also have

(8.8) uε(x, t) − Φ1
f̄1(x,ū(x,t))(x,

x

ε
) → 0 in L1

loc
(Ω × (0,∞)),

where

Φ1
q(x, y) = f−1

1 (G1(x, y) + q).

Proof. 1. By Theorem 7.1, we immediately have the assertions concerning vε.
2. The fact that uε are uniformly bounded in L∞(Ω × (0, T )) for all T is proved as follows. Since h ≥ 0,

we have that uε satisfies
∫ ∞

0

∫

Ω

{(u− Φ1
q01)−φt +H(Φ1

q01 − u)∇(f1(u) − f1(Φ
1
q01)) · ∇φ} dx dt ≥ 0,

for all 0 ≤ φ ∈ C∞
0 (Ω × (0,∞)), where q01 = f(p01). Then, using a suitable sequence of test functions φ we

arrive at the inequality
∫

Ω

(u(x, t) − Φ1
q01(x,

x

ε
))− dx ≤

∫

Ω

(u0(x,
x

ε
) − Φ1

q01(x,
x

ε
))− dx,

and so we get uε(x, t) ≥ Φ1
q01(x,

x
ε ) for all (x, t) ∈ Ω × (0,∞).

3. To get a uniform bound from above for uε on Ω × (0, T ) we proceed as follows. Let M > 0 be such
that h(vε(x, t)) < M for (x, t) ∈ Ω × (0,∞). We easily verify the validity of the inequality

∫ ∞

0

∫

Ω

{(u− Φ1
q02 −Mt)+φt −H(u− Φ1

q02 −Mt)∇(f1(u) − f1(Φ
1
q02)) · ∇φ} dx dt ≥ 0,

for all 0 ≤ φ ∈ C∞
0 (Ω × (0,∞)), where q02 = f(p02), from which it follows, by taking a suitable sequence of

test functions φ,
∫

Ω

(u(x, t) − Φ1
q02(x,

x

ε
) −Mt)+ dx ≤

∫

Ω

(u0(x,
x

ε
) − Φ1

q01(x,
x

ε
))+ dx.

Therefore, we get uε(x, t) ≤ Φ1
q02(x,

x
ε ) +Mt for all (x, t) ∈ Ω × (0,∞).

4. Now, let us denote by ∆−1g the solution of the boundary-value problem

∆w = g, x ∈ Ω,(8.9)

w|∂Ω = 0.(8.10)

As h(vε(x, t)) − h
(
Φ2
f̄2(x,v̄(x,t))

(x, xε )
)
→ 0 in L1

loc(Ω × (0,∞)), we obtain that

∆−1
(
h(vε(x, t)) − h

(
Φ2
f̄2(x,v̄(x,t))

(x,
x

ε
)
))

→ 0, uniformly in Ω for a.e. t ∈ (0, T ),
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for all T > 0. Also, since h
(
Φ2
f̄2(x,v̄(x,t))

(x, xε )
)

converges weakly to My

(
h
(
Φ2
f̄2(x,v̄(x,t))

(x, y)
))

we obtain

that

∆−1h
(
Φ2
f̄2(x,v̄(x,t))

(x,
x

ε
)
)
→ ∆−1My

(
h
(
Φ2
f̄2(x,v̄(x,t))

(x, y)
))
, uniformly in Ω for a.e. t ∈ (0, T ),

for all T > 0. Hence we conclude that

∆−1h(vε(x, t)) → ∆−1My

(
h
(
Φ2
f̄2(x,v̄(x,t))

(x, y)
))
, uniformly in Ω for a.e. t ∈ (0, T ),

for all T > 0. Let us denote

ψ(x, t) := ∆−1My

(
h
(
Φ2
f̄2(x,v̄(x,t))

(x, y)
))

= ∆−1h̄(x, v̄(x, t)).

5. Again, let U ε := ∆−1uε. Hence, U ε is a viscosity solution to

Ut − f1(∆U) = −G1(x,
x

ε
) + ψ(x, t) + f(p01) +Ot(ε),(8.11)

U |∂Ω = 0,(8.12)

U(x, 0) = ∆−1u0(x,
x

ε
),(8.13)

where
Ot(ε) := ∆−1h(vε(x, t)) − ψ(x, t) → 0, uniformly in Ω for a.e. t ∈ (0,∞).

6. We claim that U ε(x, t) converges uniformly in Ω for a.e. t ∈ (0,∞) to Ū(x, t), where Ū(x, t) is the
viscosity solution of

Ut − f̄1(x,∆U) = ψ(x, t) + f1(p01),(8.14)

U |∂Ω = 0,(8.15)

U(x, 0) = ∆−1My(u0(x, y)).(8.16)

7. Indeed, let (x̂, t̂) ∈ Ω × (0,∞), where t̂ is such that Ot̂(ε) → 0 uniformly in Ω, and vδ satisfy (7.23)
and (7.24), with f, f̄ , G replaced by f1, f̄1, G1. Proceeding exactly as in the proof of Theorem 7.1 we prove
the claim, observing that the presence now of the term Ot̂(ε) does not affect the validity of the arguments.

8. Since uε = ∆Uε is a uniformly bounded sequence in L∞(Ω × (0, T )), we then conclude that the whole
sequence uε converges in the weak-∗ topology of L∞(Ω × (0, T )) to the (classical) solution ū(x, t) of

ut − ∆f̄1(x, u) = h̄(x, v̄(x, t)),(8.17)

u|∂Ω = p0,(8.18)

u(x, 0) = My(u0(x, y)).(8.19)

9. The final assertion of the theorem is proved exactly as the analogous one in Theorem 7.1.
�
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