A NOTE ON A MAXIMAL CURVE

Arnaldo Garcia®* and Henning Stichtenoth

ABSTRACT. In this note we give a simple proof for the maximality of a curve over a finite field
that was recently introduced by Abdon-Bezerra-Quoos. The main ingredient of our proof is a

result of Frey-Riick.

1. INTRODUCTION

Let k be a finite field of square cardinality |k| = ¢2, with £ being some prime power. By
definition, a k-maximal curve C is an algebraic curve (projective, non-singular and geometrically
irreducible) defined over k such that its number |C(k)| of k-rational points attains the Hasse-Weil

upper bound; i.e.,

(1.1) C(k)| = k] +1+29(C)/IK],

where ¢g(C) denotes the genus of the curve C. In this note we will be concerned with the case
where £ = ¢" and n > 3 is an odd integer. We fix the following notations:

e n > 3 is an odd integer,
e ¢ is a power of a prime number p,
e k is the finite field with ¢* elements,
e N:=(¢"+1)/(¢+1).
Observe that N is an integer since n is odd.
It is a result due to Abdon-Bezerra-Quoos [1] that the following affine plane equation defines

a k-maximal curve:

(1.2) Ye —y =zVN.

We denote by x the curve given by Eqn.(1.2). In [1], the maximality of x is proved by
an explicit determination of the Z-coordinates of the k-rational points, which is in fact very
technical and does not give any insight why the curve is maximal. The maximality of y was

later used in [5] to prove that the two equations
(1.3) Y© —y =2 and X74 X =Yyot!
define an affine space curve whose non-singular projective model is k-maximal.
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The particular case n = 3 in Eqn.(1.3) is due to Giulietti-Korchmaros [8]. For ¢ # 2 these
curves are particularly interesting since they provide the only examples of maximal curves for
which it is known that they are not covered by the Hermitian curve over k.

Maximal curves have the so-called subcover property; i.e., if we have a surjective covering
C1 — Cy defined over k and C; is a k-maximal curve, then Cs is also k-maximal (see [9]).

The Hermitian curve is the best-known maximal curve over k, see [10, Lemma 6.4.4]; it can
be defined by the affine plane equation

n

(1.4) W —W =aX9 ! with o 71 =-1.

Setting Z; = X" in Eqn.(1.4) and noting that the element « is an N-th power in the field k,
it follows from the subcover property above that also the following equation gives a k-maximal

curve:
(1.5) w —w =2V,

The aim of this note is to give a simple proof for the maximality of the curve y in Eqn.(1.2).
This will be done by comparing certain subcovers of the curve xy with some subcover of the
curve defined by Eqn.(1.5); the latter one we already know to be maximal over k, again by the
subcover property of maximal curves. The new ingredient of this simplification is a theorem due
to Frey-Riick [3] (see also the appendix of [2]) about relations between Zeta functions in Galois
coverings of curves defined over finite fields. Our proof avoids the explicit determination of the
Z-coordinates of the rational points in Eqn.(1.2). It would be nice to have a simplification of
the proof of the maximality also for the curve in Eqn.(1.3) for n > 5 (see [4] for the Giulietti-
Korchmaros case n = 3).

2. PROOF OF THE THEOREM

We start with a remark describing a specific quotient curve of the curve given by Eqn.(1.5).
Remark 2.1. Setting in Eqn.(1.5)

w =W L W WP W
we get that the following equation
(2.1) wP —w =27V
defines a k-maximal curve.

Now we present our proof of the theorem of Abdon-Bezerra-Quoos [1].

Theorem 2.2. The curve x which is defined by the equation
YO -y =2z" N=("+1)/g+1),

is mazimal over the field k of cardinality g™, with n > 3 odd.
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Proof. Denote by P! the projective line corresponding to the Z-coordinate. From the defining
equation of the curve y we see that y covers P! and that this covering is p-elementary abelian
of degree ¢?>. We are going to show that all intermediate covers C:

x — C = P! with degp=p,

are maximal curves over k. After having proved this assertion, the theorem follows immediately
from [2, Cor.6.7].
In Eqn.(1.2) we set, for 3 € IFqXQ,

y = (m/)q?/p + (ﬁy)tﬂf 4 (BY)P + (BY)

then we get the following equation:

2

(2.2) W —y=pYT -Y)=pZ".

As the element (8 varies over IF;, the curves given by Eqn.(2.2) are exactly the intermediate

curves C mentioned above, see [6]. Since

q" +1 n
N =("—-1)(¢g+1),

any 0 € IFqX2 is in fact an N-th power in the field k. Thus for each 8 € IF;Q, the curve C
defined by Eqn.(2.2) is k-isomorphic to the curve given by Eqn.(2.1). Hence all such curves C

(¢> — 1) divides (¢"—1)-

are k-maximal, which finishes the proof of the theorem. O

Remark 2.3. It has been shown that the curve over Fq6 given by Y — Y = X7 (which is the
special case ¢ = n = 3 of Eqn.(1.2)) is not Galois covered by the Hermitian curve over Fss, see
[7]. It seems plausible that this assertion holds for all curves in Eqn.(1.2) with ¢ # 2. In the
case ¢ = 2 it is Galois covered, see [1]. A surprizing fact is that both the Hermitian curves and
the curves x from Eqn.(1.2) are fibre products over P; of curves which are isomorphic to the
one defined by Eqn.(2.1).

Remark 2.4. Using the curve (1.3), one can construct other curves with many rational points
as follows. Denote by ¢(X) the polynomial

X — X\t
i x)

Then the maximal curve over k = IF 2n defined by Eqn.(1.3) can also be given by the equation

(2.3) G(X) = X7 + X — (X9+ X))@/t = (x94 X)) (

(2.4) ZUH = p(X).

The high inseparability of ¢(X) in Eqn.(2.3) is the key point in showing that the genus =y of the
curve given by Eqn.(2.4) is small; we have that

(2.5) 2y=(q—1)- (" +¢" - ).



From the maximality of this curve we get
(2.6) {2z €Fpn | @(z) EFgn}| =¢""? = ¢® + ¢*
Now we define another curve C over k by

(2.7) Z9 + 7 = p(X).

The genus and number of rational points of C are given by
(2.8) 29(C) = (¢" = 1)(¢° —¢*) and [C(k)| = (¢""* ¢’ +¢*) - ¢"+1,

where the last equality above follows from Eqn.(2.6). One should also compare the genera in

Eqn.(2.5) and Eqn.(2.8). The curve C is particularly interesting for ¢ = 2; in this case one has
(2.9) 2g(C) =4-2"—4 and |C(k)|=4-2>"—4.2" +1.

Note that a maximal curve over k with the genus as in Eqn.(2.9) (if such a curve exists) would
have 5- 22" — 4 .2" + 1 k-rational points.
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