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GLOBAL STABILITY FOR A CLASS OF VIRUS MODELS WITH CTL

IMMUNE RESPONSE AND ANTIGENIC VARIATION

MAX O. SOUZA AND JORGE P. ZUBELLI

Abstract. We study the global stability of a class of models for in-vivo virus dynamics,

that take into account the CTL immune response and display antigenic variation. This class

includes a number of models that have been extensively used to model HIV dynamics. We

show that models in this class are globally asymptotically stable, under mild hypothesis, by

using appropriate Lyapunov functions. We also characterise the stable equilibrium points for

the entire biologically relevant parameter range. As a byproduct, we are able to determine

what is the diversity of the persistent strains.

1. Introduction

1.1. Models for in-vivo virus dynamics. A number of population dynamics models have

been proposed in order to describe the HIV in-vivo dynamics (Perelson & Nelson 1999, Nowak

& May 2000). Although these models have distinct features, since they attempt to incorporate

different aspects of the interaction between the virus and the immune system, many of them

share a common long-term behaviour, evolving towards an isolated equilibrium state (Nowak

& May 2000).

The basic model for the HIV in-vivo dynamics is given by a three-by-three, first-order

system of ordinary differential equations (ODEs)—(Nowak & Bangham 1996, Bonhoeffer,

et al. 1997, Nowak & May 2000):

(1)











ẋ = λ − dx − βxv,

ẏ = βxv − ay,

v̇ = ky − uv.

In this model, x denotes the uninfected cells, y the infected cells and v the free virus particles.

The average lifetime of an infected cell is 1/a, while the average lifetime of a virus particle is

1/u. The total number of virus particles produced by an infected cell is k/a. Healthy cells
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are infected at a rate βxv. New CD4+ T cells are produced, in the thymus, at a rate λ, and

die at a rate dx.

System (1) has two equilibrium points:

(1) The disease free equilibrium: x∗ = λ/d, y∗ = v∗ = 0;

(2) The endemic equilibrium: x∗ = au/βk, y∗ = (βλk−dau)/βak, v∗ = (βλk−dau)/βau.

The long term dynamics of System (1) can be entirely described in terms of the dimensionless

parameter

(2) R0 =
βλk

dau
,

also known as the basic reproductive ratio.

If R0 ≤ 1, the disease free equilibrium is a global attractor, and the infection cannot

persist. If R0 > 1, the endemic equilibrium becomes a global attractor, and the infections

persists indefinitely. This has been first observed numerically (Nowak & Bangham 1996,

Bonhoeffer et al. 1997, Nowak & May 2000). Mathematical proofs of these global stability

characteristics were given by Li & Muldowney (1995), using Hirsch’s theory of competitive

differential systems—see Smith (1995)—and, more recently by de Leenheer & Smith (2003)

and Korobeinikov (2004a) using a Lyapunov function approach.

Given the notable ability of the HIV to escape from immune response, there is interest

in studying models that account for a more detailed immune response as, for instance, the

role of cytotoxic T lymphocytes (CTLs). An example is the following four-by-four system of

ODEs (Nowak & Bangham 1996):

(3)



















ẋ = λ − dx − βxv,

ẏ = βxv − ay − pyz,

v̇ = ky − uv,

ż = cyz − bz.

System (3) extends (1) by introducing the z variable, that denotes the CTL response. Infected

cells are killed at a rate pyz, while antigen stimulation produces CTL cells at a rate cyz. In

the absence of such a stimulation, CTL cells decay at a rate bz.

In the same vein, the high mutation rate of HIV naturally leads to the study of the interplay

between immune response and virus diversity for a number of different strains. The immune

response produces a selection pressure on these different strains of the virus, as discussed in

Nowak & Bangham (1996), when studying and numerically analysing a (3n + 1)-by-(3n + 1)

first-order ODE system of the form:

(4)



















ẋ = λ − dx − x
∑n

i=1 βivi,

ẏi = βixvi − aiyi − piyizi, i = 1, . . . , n,

v̇i = kiyi − uivi, i = 1, . . . , n,

żi = ciyizi − bizi, i = 1, . . . , n.
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System (4) is a slightly generalised form of the system studied by Nowak & Bangham (1996),

where the more restricted case ai = a, pi = p, ui = u, ci = c, and bi = b was addressed.

In all these models, there is the question as whether the long term dynamics approaches

an equilibrium or, more generally, an attractor, and how this might depend on the initial

condition. There is compelling numerical evidence—cf. (Nowak & Bangham 1996, Bonhoeffer

et al. 1997, Nowak & May 2000)—that Systems (3) and (4) are globally asymptotically stable.

However, no mathematical proof of this fact seems to be available. In System (4) there is also

the question of determining the antigenic diversity at the equilibrium.

In this work, we study the stability characteristics of the models given by (4) following

a Lyapunov approach. The Lyapunov functional used here has been used before by Kore-

beinikov & Wake (1999), in the global analysis of three-dimensional predator-prey systems,

and by Korobeinikov (2004a) and Korobeinikov (2004b) in the global analysis of various virus

models. More precisely, by using an appropriate linear combination of this Lyapunov func-

tional, we are able to show global asymptotic stability results for System (4), and hence to

(3).

The plan for this article goes as follows: We close this introductory section with further

biological background and motivations. In Section 2 we address some preliminary issues such

as choice of dimensionless variables and parameter reductions. We study the global stability

characteristics of model (3). In Section 3, we study the equilibria and global stability of

model (4) under the assumption of unique fitnesses of the strains. In this case, we determine

the possible equilibria of (4), and show than there are 2n−1(n+2) equilibrium points. We also

show that system is globally asymptotic stable, and we determine what is the global attractor

in the nonnegative orthant of R
3n+1. As a byproduct, we characterise the attained diversity

and show that it is monotonically increasing with the strength of the immune response. Some

additional results for the case of nonunique fitnesses are also presented. We conclude in

Section 4 with a discussion of some of the implications of our results.

1.2. Biological Background and Motivation. The models studied by equation 4 have

many potential biological applications. Most notably, to within-host infections connected

to cytotoxic T lymphocytes with antigenic variation including, but not restricted to, HIV

infection. A better understanding of how the within-host HIV, interacts with immune cells

seems to be a key factor in the development of effective long-term therapies or possibly pre-

ventive vaccines for deadly diseases such as the acquired immunodeficiency syndrome (Nowak

& May 2000). Mathematical modeling of the underlying biological mechanisms and a good

understanding of the theoretical implications of such models is crucial in this process. In-

deed, it helps clarifying and testing assumptions, finding the smallest number of determining

factors to explain the biological phenomena, and analysing the experimental results (Asquith

& Bangham 2003). Furthermore, modeling has already impacted on research at molecu-

lar level (Nowak & May 2000) and important results have been obtained in modeling the
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virus dynamics for several infections, such as the HIV (Nowak & Bangham 1996, Perelson,

et al. 1993, Perelson, et al. 1996), hepatitis B (Marchuk, et al. 1991), hepatitis C (Neumann,

et al. 1998), and influenza (Bocharov & Romanyukha 1994).

In the particular case of the HIV infection, the dynamics of the within-host infection goes

as follows: First, the HIV enters a T cell. Being a retrovirus, once the HIV is inside the T cell,

it makes a DNA copy of its viral RNA. For this process it requires the reverse transcriptase

(RT) enzyme. The DNA of the virus is then inserted in the T-cell’s DNA. The latter in

turn will produce viral particles that can bud off the T cell to infect other ones. Before one

such viral particle leaves the infected cell, it must be equipped with protease, which is an

enzyme used to cleave a long protein chain. Without protease the virus particle is uncapable

of infecting other T cells.

One of the key characteristics of HIV is its extensive genetic variability. In fact, the HIV

seems to be changing continuously in the course of each infection and typically the virus

strain that initiates the patient’s infection differs from the one found a year ore more after

the infection. In this respect, the introduction of the different strains in the model is crucial

for it to be realistic.

In general terms, one can also say that Model (4) is similar in spirit to other models

such as food-chain models. The latter have attracted substantial interest by a number of

authors. See for example (Roy & Solimano 1986, Kooi & Hanegraaf 2001, Kooi, et al. 1998)

and references therein. However, the presence of more general quadratic terms or of logistic

terms on the right hand side of the different “strains” leads to a potentially richer dynamics

than the globally stable present in Model 4. See for example (Kooi & Hanegraaf 2001) for a

bifurcation analysis of certain food chain models.

2. Preliminaries

2.1. Parameter reduction. As already noticed in the introduction, a more restricted form

of (4) with a number of parameters being strain-independent has been studied by Nowak

& Bangham (1996). It turns out that some parameters in (4) can indeed be taken to be

strain-independent, as we now show.

We start by noting that if ki = 0, then vi decays exponentially with rate ui. Also, if pi = 0,

then the dynamics of zi does not impinges on the rest of the system. Thus, without loss of

generality, we can assume that ki, pi 6= 0, i = 1, . . . , n. In this case, following Pastore (2005),

we rescale the vis and βis. In addition, we also rescale the zis. More precisely, the change of

variables

(5) vi 7→
ki

k
vi, zi 7→

p

pi
zi and βi 7→

k

ki
βi
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takes (4) into

(6)



















ẋ = λ − dx − x
∑n

i=1 βivi,

ẏi = βixvi − aiyi − pyizi, i = 1, . . . , n,

v̇i = kyi − uivi, i = 1, . . . , n,

żi = ciyizi − bizi, i = 1, . . . , n.

Intuitively, the change of variables (5) reflects that only the ratio βi/ki turns out to be

important, and that this can be already taken into account in the βis, provided we rescale

the vis. Moreover, it also shows that the precise value pi does not matter, as long as it is

nonzero.

2.2. Dimensionless constants. In Nowak & Bangham (1996), it was already observed that,

in addition to R0, the quantity cy∗/b is also important in determining the global equilibria.

In a more precise fashion, Nowak & May (2000) define

RI = 1 +
βbk

cdu
,

which they term the basic reproductive ratio in the presence of immune response. However,

we follow Pastore (2005), and find more convenient to write

RI = 1 +
R0

I0

,

where

I0 =
cλ

ab
.

An alternative dimensionless constant is the CTL reproduction number given by

P0 =
I0(R0 − 1)

R0

.

Although only two constants among R0, I0 and P0 are independent, and are sufficient to

describe the regimes of (6), we have chosen to use both, three constants, as some conditions are

better characterised by P0, while much of the algebra in the Lyapunov functional derivatives

is better handled by expressing them in terms of R0 and I0. Thus, we shall use the strain

dependent constants:

(7) Ri
0 =

βiλk

daiui
, Ii

0 =
ciλ

aibi
and P i

0 =
Ii
0(R

i
0 − 1)

Ri
0

.

2.3. Strain sets. In order to deal with plethora of equilibria that arises in System (6), we

shall now define some notation for some special set of strain indices. This will allows us to

deal conveniently with the combinatorial structure of the equilibria.

Without loss of generality, we shall assume that the strains are indexed by increasing order

of Ri
0.

Let N = {1, 2, . . . , n}. Then, we define the set of the strong responders as

S = {i ∈ N |P i
0 > 1}.
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Definition 1. We shall say that the set S of strong responders is consistent, if

S = {1, . . . ,m}, 1 ≤ m ≤ n.

This is certainly the cases, if the Ii
0 satisfy Ii

0 ≥ Ii+1
0 . In particular, this holds if Ii

0 = I0 as

in the model studied by Nowak & Bangham (1996).

Given a set of indices I, we define

ρI0 =
∑

i∈I

Ri
0

Ii
0

.

Two important definitions are given below:

Definition 2. We shall say that I ⊂ S is an antigenic set, if

(8) Ri
0 ≥ 1 + ρI0 , i ∈ I

holds. In addition, if

(9) Ri
0 ≤ 1 + ρI0 , i 6∈ I.

also holds, we shall say that I is a stable antigenic set.

Notice that, if S 6= ∅, we have that I = {1} is an antigenic set. Let l be the largest integer

for which the set J = {1, . . . , l} is an antigenic set. Then we shall say that J is the maximal

antigenic set.

Two important facts about the maximal and stable antigenic sets are collected below:

Lemma 1. Assume that S 6= ∅, and that the strain basic reproductive numbers are distinct.

(1) If a stable antigenic set exists, then it is also the maximal antigenic set. In particular,

stable antigenic sets are unique.

(2) If N is the maximal antigenic set, then it is a stable antigenic set.

Proof. (1) Assume that I is a stable antigenic set and let il = max I. If 1 ≤ k < l, then

ik ∈ I. Indeed, by the increasing ordering and (8), we have that

Rik
0 > Ril

0 ≥ 1 + ρI0 .

But this contradicts (9), thus we must have ik ∈ I. Now assume that I ′ = {i1, . . . , il+1}

is also an antigenic set. Then we must have

Rl+1
0 ≥ 1 + ρI

′

0 = 1 + ρI0 +
Rl+1

0

I l+1
0

≥ 1 + ρI .

But this again contradicts (9) and, hence, that I is stable antigenic. Therefore, it is

maximal.

(2) This follows since, in this case, (9) cannot be violated.

�
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3. The model with antigenic variation

In this section we shall study the stability of of (6) in the non-negative orthant of R
3n+1

which we shall denote by O. The positive orthant will be denoted by O
+.

We observe that the planes zi = 0 and that O are positive invariant sets for (4), since the

field points inwards.

The equilibria and stability characteristics of (6) depend significantly whether the Ri
0s are

distinct or not. In §3.1 and §3.2, we describe the equilibria and study their stability in the

case of unique fitnesses, i.e., we assume that if Ri
0 = Rj

0, then i = j. In this case, with the

adopted order, we have that

Ri
0 > Ri+1

0 , i = 1, . . . , n − 1.

Additional remarks when the fitnesses are not unique can be found in Section 3.3.

3.1. Equilibria. Let N = {1, 2, . . . , n}. It turns out that the equilibria of (4) can be con-

veniently indexed by (j,J ), where J ⊆ N , and either j = 0 or j 6∈ J . The corresponding

equilibrium point will be denoted by Xj,J .

Using this notation, we have

Lemma 2. System (6) has 2n−1(2 + n) equilibrium points which can be written as

Xj,J =

(

λ

d
Qx

j,J ,
λ

a1

Qy1

j,J , . . . ,
λ

an
Qyn

j,J ,
d

β1

Qv1

j,J , . . . ,
d

βn
Qvn

j,J ,
a1

p
Qz1

j,J , . . . ,
an

p
Qzn

j,J

)

,

where

(1)

Qx
0,∅ = 1, and Qyi

0,∅
= Qvi

0,∅
= Qzi

0,∅
= 0.

(2) If j is such that 1 ≤ j ≤ n, then we have

Qx
j,∅ =

1

Rj
0

, Q
yj

j,∅
= 1 −

1

Rj
0

, Q
vj

j,∅
= Rj

0 − 1 and Q
zj

j,∅
= 0.

and

Qyi

j,∅
= Qvi

j,∅
= Qzi

j,∅
= 0, i = 1, . . . , n, i 6= j.

(3) Given J ⊆ N , we have

Qx
0,J =

1

1 + ρJ0

and

Qyi

0,J =
1

Ii
0

, Qvi

0,J =
Ri

0

Ii
0

, Qzi

0,J =
Ri

0

1 + ρJ0
− 1, i ∈ J ;

also

Qyi

0,J = Qvi

0,J = Qzi

0,J = 0, i 6∈ J .



8 MAX O. SOUZA AND JORGE P. ZUBELLI

(4) Given a proper subset J ⊂ N , and 1 ≤ j′ ≤ n, j′ 6∈ J , we have that

Qx
j′,J =

1

Rj′

0

, Q
yj′

j′,J = 1 −
1

Rj′

0

−
ρJ0

Rj′

0

, Q
vj′

j′,J = Rj′

0 − 1 − ρJ0 , Q
zj′

j′,J = 0;

for i ∈ J , we have

Qyi

j′,J =
1

Ii
0

, Qvi

j′,J =
Ri

0

Ii
0

, Qzi

j′,J =
Ri

0

Rj′

0

− 1.

For i 6∈ J , and i 6= j′, we have

Qyi

j′,J = Qvi

j′,J = Qzi

j′,J = 0.

Proof. The first equilibrium is trivial. The second type of equilibria is obtained by choosing

an index j such that zj = 0, but yj 6= 0. We can choose only one such j, since this determines

x. For the other indices i, we set yi = vi = zi = 0. The first equation then determines vj . The

third type is obtained by choosing a set J of indices, such that, for i ∈ J , we have zi 6= 0.

This readily determines yi and vi. For i 6∈ J , we have yi = vi = zi = 0. The first equation,

then, determines x. Finally, the last equilibria is found by having a set of indices J , as in the

equilibrium of the third type, and then choosing an index j′ 6∈ J as in the second equilibrium.

Again, only one such j′ can be chosen. �

3.2. Stability analysis. We are now ready to study the global stability of the equilibria

of System 6. Surprisingly, although there is a large number of equilibria, only four of them

will be globally stable. In what follows, unless otherwise is said, we shall assume that that

Ri
0 > Ri+1

0 , for i = 1, . . . , n − 1, and that the set of strong responders is consistent.

Theorem 1. For system (6), defined on O, and with initial condition at its interior, there is

always a globally asymptotically stable equilibrium given as follows:

(1) X0,∅, if Rn
0 ≤ 1;

(2) X1,∅, if 1 < R1
0, and P 1

0 ≤ 1.

(3) If P 1
0 > 1, let J be the maximal antigenic set. Then

(a) If J is a stable antigenic set, then the equilibrium X0,J is globally asymptotically

stable.

(b) Otherwise, let j′ be the smallest integer such that j′ 6∈ J , which exists by virtue

of Lemma 1. Then the equilibrium Xj′,J is globally asymptotically stable.

Proof of Theorem 1. Following Korobeinikov (2004a), we shall use the following Lyapunov

function:

V (x,y,v, z) = x − x∗ ln(x/x∗) +

n
∑

i=1

(yi − y∗i ln(yi/y
∗
i )) +

+
n
∑

i=1

Ci (vi − v∗i ln(vi/v
∗
i )) + p

n
∑

i=1

1

ci

(zi − z∗i ln(zi/z
∗)) ,
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where Ci will be a constant to be specified later on.

Then, using the uniform notation of the the equilibria of (6), that is set in Lemma 2, see

§3.1, we have that

V̇ =
d

dt
V (x(t),y(t),v(t), z(t))

λ

[

+Qx
j,J +

n
∑

i=1

Qyi

j,J +
d

λ

n
∑

i=1

Ci
ui

βi
Qvi

j,J +

n
∑

i=1

Qzi

j,J

Ii
0

]

−

[

dx +
λ2Qx

j,J

dx

]

−

− λ

n
∑

i=1

βi

ai
Qyi

j,J

xvi

yi
− dk

n
∑

i=1

Ci

βi
Qvi

j,J

yi

vi
+

n
∑

i=1

yi

[

kCi − ai − aiQ
zi

j,J

]

+(10)

λ

d
Qx

j,J

n
∑

i=1

viβi −
n
∑

i=1

Ciuivi + pλ
n
∑

i=1

aizi

[

Qyi

j,J −
1

Ii
0

]

.

For the first two equilibria, we consider the Lyapunov function (10), with Ci = ai/k. Then,

on using the structure of equilibria of (6), we may write V̇ as follows:

V̇ =λ

[

1 + Qx
j,J +

n
∑

i=1

Qyi

j,J +
n
∑

i=1

Qvi

j,J

Ri
0

+
n
∑

i=1

Qzi

j,J

Ii
0

]

−

[

dx +
λ2Qx

j,J

dx

]

−

− λ

n
∑

i=1

βi

ai
Qyi

j,J

xvi

yi
− d

n
∑

i=1

ai

βi
Qvi

j,J

yi

vi
−

n
∑

i=1

aiQ
zi

j,J yi+

+
λ

d

n
∑

i=1

βivi

[

Qx
j,J −

1

Ri
0

]

+ pλ

n
∑

i=1

zi

ai

[

Qyi

j,J −
1

Ii
0

]

.

For X0,∅, we find, using Lemma 2, that

V̇ = 2λ −

[

dx +
λ2

dx

]

+
λ

d

n
∑

i=1

βivi

[

1 −
1

Ri
0

]

− pλ
n
∑

i=1

zi

aiI
i
0

.

Since Ri
0 ≤ 1, for i = 1, . . . , n, and

dx +
λ2

dx
≥ 2λ,

we have that V̇ < 0 in O
+. Hence, that X0,∅ is globally asymptotically stable in this case.

Now, suppose that 1 < R1
0, and that P 1

0 ≤ 1. In this case, Lemma 2 yields that

V̇ =λ

[

3

(

−
1

R1
0

)

+
2

R1
0

]

−

[

dx +
λ2

R1
0dx

]

−
λ

a1

β1

(

1 −
1

R1
0

)

xv1

y1

−
a1d

β1

(R1
0 − 1)

y1

v1

+

+
λ

d

n
∑

i=1

βivi

[

1

R1
0

−
1

Ri
0

]

+ pλ
z1

a1

[

1 −
1

R1
0

−
1

I1
0

]

− pλ

n
∑

i=2

zi

aiI
i
0

.

The last term in V̇ is clearly negative. We also observe that, since Ri
0 < R1

0, for 1 < i ≤ n,

we have that
n
∑

i=1

βivi

[

1

R1
0

−
1

Ri
0

]

< 0.
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Also, since P 1
0 ≤ 1, then we have that R1

0 ≤ 1 + R1
0/I

1
0 . Therefore, the last three terms in the

expression for V̇ are negative.

For the remaining terms, let us write

λ2

R1
0

=

(

λ

R1
0

)2

+

(

1 −
1

R1
0

)

λ2

R1
0

.

Then we have that

dx +

(

λ2

R1
0dx

)2

≥ 2
λ

R1
0

,

and that

.
λ2

R1
0dx

(

1 −
1

R1
0

)

+ λ
β1

a1

(

1 −
1

R1
0

)

xv1

y1

+
da1

β1

(R1
0 − 1)

y1

v1

≥ 3λ

(

1 −
1

R1
0

)

.

Thus V̇ < 0 in O
+, and hence we have that X1,∅ is a globally asymptotically stable equilibrium.

Finally, if P 1
0 > 1, then let J be the maximal antigenic set. First, we assume that J is

stable antigenic and show that X0,J is globally asymptotically stable. In this case, we use

the Lyapunov function (10), with Ci = x∗βi/ui.

Using Lemma 2, this can be further recast as V̇ = V̇1 + V̇2, where

V̇1 =λ

[

3 −
1

1 + ρJ0

]

−

[

dx +
λ2

dx
(

1 + ρJ0
)

]

− λ
∑

i∈J

βi

Ii
0ai

xvi

yi

−
λk

1 + ρJ0

∑

i∈J

Ri
0

uiIi
0

yi

vi

;

V̇2 =
∑

i6∈J

aiyi

[

Ri
0

1 + ρJ0
− 1

]

− pλ
∑

i6∈J

zi

aiIi
0

.

We treat V̇2 first. The last term is clearly negative. Also, since for i 6∈ J , we have that

Ri
0

1 + ρJ0
< 1 and thus that

∑

i6∈J

yi

[

Ri
0

1 + ρJ0
− 1

]

< 0.

Therefore, V̇2 < 0, when J 6= N .

Let

η =
ρJ0

1 + ρJ0
and ηi =

Ri
0

Ii
0

1 + ρJ0
, i ∈ J .

Then, we may write V̇1 as

V̇1 = λ



3 −
1

1 +
ρJ
0

I0



−

[

dx +
λ2

dx
(

1 + ρJ0
)2

]

−

−
∑

i∈J

λ2ηi

dx
(

1 + ρJ0
) − λ

∑

i∈J

βi

Ii
0ai

xvi

yi

−
λk

1 + ρJ0

∑

i∈J

Ri
0

uiI
i
0

yi

vi
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For each i ∈ J , we have

−
λ2 Ri

0

Ii
0

dx
(

1 + ρJ0
)2

− λ
βi

Ii
0ai

xvi

yi
−

λk

1 + ρJ0

Ri
0

uiIi
0

yi

vi
≤ −3λ





Ri
0

Ii
0

1 + ρJ0



 ,

and that

dx +
λ2

dx
(

1 + ρJ0
)2

> 2λ
1

1 + ρJ0
.

After combining these estimates and summing for i ∈ J , we get that V̇1 ≤ 0 and thus we

have the result, If J is a proper subset of N . In the case that J = N , we have V̇ ≤ 0, with

equality ocurring only when

x =
λ

d
Qx

0,J and
vi

yi
=

ki

ui
.

Inasmuch this plane is not invariant by the corresponding flow—other than the point X0,J —

we have global stability as a consequence of LaSalle’s theorem (LaSalle 1964). For the fourth

point, we use a mix of the two Lyapunov functions above, namely:

V (x,y,v, z) =x − x∗ ln(x/x∗) +

n
∑

i=1

(yi − y∗i ln(yi/y
∗
i )) +

+ x∗
n
∑

i=1

i6=j′

βi

ui
(vi − v∗i ln(vi/v

∗
i )) + p

n
∑

i=1

1

ci
(zi − z∗i ln(zi/z

∗))+

+
aj′

k

(

vj′ − v∗j′ ln(vj′/v
∗
j′)
)

.

Computing V̇ and using the uniform notation, we find that

V̇ =λ






1 + Qx

j′,J +

n
∑

i=1

Qyi

j′,J + Qx
j′,J

n
∑

i=1

i6=j′

Qvi

j′,J +

n
∑

i=1

Qzi

j′,J

Ii
0

+
Q

vj′

j′,J

Rj′

0






−

[

dx +
λ2Qx

j′,J

dx

]

−

− λ
n
∑

i=1

βiQ
yi

j′,J

ai

xvi

yi

− λkQx
j′,J

n
∑

i=1

i6=j′

Qvi

j′,J

ui

yi

vi

+
n
∑

i=1

i6=j′

yi

[

βiλk

dui

Qx
j′,J − ai − aiQ

zi

j′,J

]

+

+ pλ
n
∑

i=1

zi

ai

[

Qyi

j′,J −
1

Ii
0

]

−
daj′

βj′
Q

vj′

j′,J

yj′

vj′
− aj′Q

zj′

j′,J yj′ +
λβj′

d
vj′

[

Qx
j′,J −

1

Rj′

0

]

On using Lemma 2, and that

1 =

(

1 −
1

Rj′

0

−
ρJ0

Rj′

0

)

+
1

Rj′

0

+
ρJ0

Rj′

0

,
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where each term in the sum is positive, but smaller than one, we rewrite it as V̇ = V̇1 + V̇2 +

V̇3 + V̇4, where

V̇1 =

(

1 −
1

Rj′

0

−
ρJ0

Rj′

0

)[

3λ −
λ2

dxRj′

0

−
λβj′

aj′

xvj′

yj′
−

daj′R
j′

0

βj′

yj′

vj′

]

,

V̇2 =
2λ

Rj′

0

−

[

dx +
λ2

dx(Rj′

0 )2

]

,

V̇3 = 3λ
ρJ0

Rj′

0

−
λ2ρJ0

dx(Rj′

0 )2
− λ

∑

i∈J

βi

aiI
i
0

xvi

yi

−
λk

Rj′

0

∑

i∈J

Ri
0

uiI
i
0

yi

vi

,

V̇4 =
pλzj′

aj′

(

1 −
1

Rj′

0

−
ρJ0

Rj′

0

−
1

Ij′

0

)

.

The terms V̇1, V̇2 and V̇3 can be treated similarly as in the previous equilibria and are all

nonpositive in the interior.

As for V̇4, first we observe that

1 −
1

Rj′

0

−
ρJ0

Rj′

0

−
1

Ij′

0

=
1

Rj′

0

(

Rj′

0 − 1 − ρJ0 −
Rj′

0

Ij′

0

)

if j′ 6∈ S, then we that

Rj′

0 − 1 − ρJ0 −
Rj′

0

Ij′

0

< Rj′

0 − 1 −
Rj′

0

Ij′

0

≤ 0.

If j′ ∈ S, then let J ′ = J ∪ {j′}. Then we have that

1 −
1

Rj′

0

−
ρJ0

Rj′

0

−
1

Ij′

0

=
1

Rj′

0

(

Rj′

0 − 1 − ρJ
′

0

)

.

Since J is the maximal antigenic set, we must have that

Rj′

0 − 1 − ρJ
′

0 ≤ 0.

�

3.3. Nonunique Fitness. Given the non-generic nature of this case, we shall only briefly

discuss the stability when some of the strains have the same fitness, i.e., there exists at lest

one index set Γ, such that Ri
0 = Rj

0, for i, j ∈ Γ. Notice that, in this case, we have non-isolated

equilibria.

We start by observing that the computation with the Lyapunov function for the equilibrium

X0,∅ does not depend on the uniqueness of fitness. Hence we have

Corollary 1. If Ri
0 ≤ 1, for i = 1, . . . , n, then X0,∅ is a globally asymptotically stable equi-

librium.

The case Ii
0 = I0, 1 < R1

0 and P 1
0 < 1 can also be partially treated:



GLOBAL STABILITY FOR A CLASS OF VIRUS MODELS 13

Proposition 1. Let Γ be the set of indices i ∈ N such that Ri
0 = Rn

0 . Let EΓ be the set

satisfying

x∗ =
λ

dRn
0

, yj = vj = 0, j 6∈ Γ,
∑

j∈Γ

βjvj =
dx∗ − λ

x∗
, vj ≥ 0,

vi =
k

u
yi, and zi = 0, i ∈ N .

If x(t,x0) is a solution of (4), with initial condition x0, then

x(t) → EΓ, as t → ∞.

Proof. Let us denote the omega set of x(t,x0) by Ω(x0). As shown in (Pastore 2005), the

solutions to (4) are bounded in R
3n+1
+ . Hence, Ω(x0) is compact.

Using the same Lyapunov function for X1,∅ as in Section 3.2, we find that

V̇ =λ

[

3 −
1

R1
0

]

−

[

dx +
λ2

R1
0dx

]

−
λ

a
β1

(

1 −
1

R1
0

)

xv1

y1

−
ad

β1

(R1
0 − 1)

y1

v1

+

+
λ

d

∑

i6∈Γ

βivi

[

1

R1
0

−
1

Ri
0

]

+
pλ

a

n
∑

i=1

zi

[

1 −
1

Ri
0

−
1

I0

]

.

The same calculations in section 3.2 shows that V̇ ≤ 0. However, notice that V̇ = 0 in EΓ. If

s ∈ R
N and S ⊂ R

N is closed, then let

d(s, S) = min
s′∈S

‖s − s′‖.

LaSalle’s invariant principle then yields that,

lim
t→∞

d(x(t), EΓ) = 0.

�

Corollary 2. If R1
0 > Ri

0 for i = 2, . . . , n, then X1,∅ is a globally asymptotically stable

equilibrium, when 1 < R1
0 ≤ 1 + R1

0/I0.

We have performed numerical calculations of (4), using a high order Runge-Kutta method,

which suggest that in the case treated by proposition 1, a solution of System (4) will converge

to a unique equilibrium point in EΓ, that depends only on the initial condition.

Finally, when the viable set of strains is not the full antigenic variation, we have

Proposition 2. If Ii
0 = I0, P 1

0 > 1. Assume that J 6= I is a stable antigenic set, then we

have that X0,J is a globally asymptotic stable equilibrium.

Proof. In this case, the estimate V̇1 ≤ 0 remains valid. Moreover, if J 6= I, then we must

have V̇2 < 0, which yields the result. �
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4. Conclusions

In this work, we have performed a thorough study of System (4). As a preliminary result,

we have shown that, when the both the virus production rate and the CTL interaction

rate are nonzero for all strains, then System (4) is dynamically equivalent to System (6),

which has strain-independent virus production and CTL interaction rates. In particular, the

precise nonzero values of the CTL interaction rates are completely irrelevant to the dynamical

behaviour of the system. This seems to suggest that a more refined model which is able to

capture this difference is needed.

We have also identified all the 2n−1(2 + n) equilibria of (6) in Lemma 2. When n is

large this can be quite a large number. Nevertheless, under the hypothesis of unique fitness,

we were able to show that only four of them are dynamically relevant. More precisely, we

assume that the virus basic reproduction rates, Ri
0 are distinct and that the CTL reproduction

numbers, P i
0 have the same ordering as the Ri

0. This last condition is automatically satisfied

if Ii
0 = I0 for all i. In this case, Theorem 1 shows that, if the largest reproduction number,

R1
0, is smaller than one, the the disease-free equilibrium—X0,∅ in the notation of Lemma 2—is

globally asymptotic stable. In this case, no strain is viable and the infection dies out. On

the other hand, if R1
0 > 1, but P 1

0 < 1, then only the first strain survives, and the infection

persists. If P 1
0 > 1, then we have that the two outcomes are possible: either a (unique)

stable antigenic set exists and then X0,J is globally asymptotic stable. In this case, the set

J determines the antigenic diversity. In other words, a strong immune response generates a

larger antigenic variation. Alternatively, there exits a pair (j′,J ) such that the point Xj′,J is

globally asymptotic stable. In this case, the strain with the weakest fitness will not actually

trigger the CTL response at all in the long run. In the case of absence of antigenic variation,

i.e. System (3), then only the first outcome is possible. We were unable to interpret in a

biological sense the combinatorial conditions of existence of a stable antigenic set, and we

believe that this should be addressed in the future. The results presented in Theorem 1 show

rigorously some of the inferences that have already been made in Nowak & Bangham (1996)

based on extensive simulations of System (4).

We have also shown some results for very special cases in which the Ri
0s are not distinct.

In these cases, the equilibria is not isolated and this complicates the matters further. Also,

we have not addressed that case when the set of strong responders is not consistent, and this

might also merit further study in the future.
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