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Abstract

In this paper we will develop a theory for simplicial diffeomorphims,
that is, diffeomorphims that preserve the incidence relations of a simplicial
complex, and analyze alternative schemes to construct them with different
properties. In combining piecewise linear functions on complexes with
simplicial diffeomorphisms, we propose a new representation of curves and
surfaces (and hypersurfaces, in general) that is simultaneously implicit and
parametric.

1 Introduction

Spatial transformations are basic operations for geometric modeling, visualiza-
tion and computer vision. In geometric modeling, deformation techniques such
as Free-Form Deformations (FFD) provide powerful tools for shape creation
and editing. In visualization, warping and morphing techniques constitute the
foundations of most image-based algorithms. In computer vision, projective
transformations are at the heart of camera calibration and other fundamental
problems.

Implicit surfaces turn out to be particularly suited to deformation based
modeling and rendering techniques. In this setting, the surface S is defined as
the inverse image f−1(c) of a regular value c of a scalar function f : R

3 → R in
the ambient space. Therefore, warping the domain of f causes the surface S to
be deformed.

In order to be able effectively work with implicit surfaces in the above con-
text, it is necessary to use well behaved spatial transformations. More specifi-
cally, the warping must be 1−1 and smooth. In other words, a diffeomorphism.
The main reason for this requirement is that the deformation should preserve
the global topology of the level set.

A general and popular way to create implicit surfaces, and hypersurfaces, in
general, is by resorting to a spatial decomposition that allows the construction of
the function f in a piecewise manner. In particular, a simplicial space partition
has all the required properties.

The definition of a simplicial implicit hypersurface is as follows: Let K be a
simplicial complex in R

m and f:V → R−{0} a function defined on the vertices
of K. It is well known that f can be extended to a function f̂ defined on the set
of points |K| in R

m that belong to the simplexes of K by linear interpolation.
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If p ∈ σ = 〈v0, . . . , vm〉, do

f̂(p) =
m∑

i=0

wifvi ,

where wi are the baricentric coodinates of p relative to σ. The implicit hyper-
surface O = f̂−1(c) obtained in this way is clearly piecewise linear. Let’s call
them linear isocomplexes.

A linear isocomplex has various important properties that are intimately
related with the linear structure of the simplexes which constitute its domain
and the piecewise linear function f̂ itself. For example, it is easy to verify if a
point p ∈ R

m is inside or outside O. It is also easy to sample points in O. On the
other hand, if we want to approximate a smooth hypersurface by an isocomplex
O, probably we will have to take a mesh K with very small simplexes.

To overcome the limitations of the piecewise linear nature of f̂ we can employ
a simplicial diffeomorphism, that is, a diffeomorphism X attached to complex K
that preserve its incidence relations. In this way, we are able to produce curved
isocomplexes O = (f̂ ◦ X)−1(c) while retaining the properties of the simplicial
structure. Moreover, simplicial diffeomorphisms incorporate into the implicit
hypersurface definition a very powerful deformation based modeling mechanism
that can be exploited in many applications.

In this paper we will develop a theory for simplicial diffeomorphims and an-
alyze alternative schemes to construct them with different properties. In section
2 we define K-invariant functions and prove that K-invariant functions locally
injective are homeomorphisms. In order to apply the jacobian determinant cri-
terion of local injectivity to functions defined on simplexes, we derive formulas
to express the jacobian in barycentric coordinates in section 3. In section 4 we
present the first non trivial example of simplicial diffeomorphisms, the mono-
tonic ones. Section 5 is dedicated to the search of sufficient conditions for a
polynomial function to be a simplicial diffeomorphism, and ditto for rational
functions in section 6. In section 7, we show that simplicial diffeomorphisms
combined with isocomplexes provide a new kind of hypersurface representation.
Section 8 is devoted to the delicate question of smoothness conditions for curved
isocomplexes. We present two simple applications in section 9 and finish the
paper in a brief conclusion (section 10).

2 K-invariant functions

Definition 2.1. Let K be a simplicial complex and X: |K| → |K| a continuous
function. We say that X is K-invariant, if X(σ) ⊂ σ for all σ ∈ K.

In particular, the vertices of K are fixed points of X . The identity function
on |K| is a trivial example of K-invariant function. Moreover, the composition
of two K-invariant functions is clearly also K-invariant.

The first remarkable property exhibited by the K-invariant functions is that
the “⊂” symbol in definition 2.1 is, indeed, a equality. We’ll prove this fact with
the help of the following lemmas.

Lemma 2.1 (Sperner). Let T be a triangulation of the standard m-dimensional
simplex Δm, and L:T0 → {0, . . . , m} a mapping between the vertices of T and
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the integers from 0 to m. We say that L labels the vertices of T . If, for each
v = (v0, . . . , vm) ∈ T0,

L(v) = i ⇒ vi 	= 0,

then there is a m-simplex σ = 〈v0, . . . , vm〉 ∈ T which vertices are completely
labeled, that is, such that

L({v0, . . . , vm}) = {0, . . . , m}.

Proof. See [6] for a proof.

Lemma 2.2. Let X : Δm → Δm be a Δm-invariant function. Then there is a
point x ∈ Δm such that X(x) = 1

m+111, where 11 := (1, 1, . . . , 1). That is, X
maps x to the barycenter of Δm.

Proof. Let (Tn)n∈N be a sequence of triangulations of Δm such that

lim
n→∞ mesh(Tn) = 0,

where
mesh(T ) = max{diam(σ)|σ ∈ T }.

Define the mapping Ln over the vertices of Tn as follows: if v is a vertex of Tn

and X(v) = (w0, . . . , wm), Ln(v) = i, where i is the smallest integer such that
wi = maxj{wj}. The hypothesis of X be Δm-invariant means that, for each
v = (v0, . . . , vm) ∈ Δm, X(v) = (w0, . . . , wm) satisfies

vi = 0 ⇒ wi = 0.

Therefore,
Ln(v) = i ⇒ wi 	= 0 ⇒ vi 	= 0,

that is, the hypothesis of Sperner Lemma holds for Ln, what ensure the ex-
istence of a sequence (σn)n∈N of completely labeled m-simplexes such that
limn→∞ diam(σn) = 0. As Δm is a compact set, we can suppose, by tak-
ing a subsequence if necessary, that the sequence of barycenters of σn con-
verges to a point x. It follows from X continuity and from Ln definition that
X(x) = (w0, . . . , wm), with each wi = maxj{wj}, that is, X(x) = 1

m+111.

Theorem 2.3. Let X:Δm → Δm be a Δm-invariant function. Then X(σ) = σ
for all σ ∈ Δm. In particular, X is surjective.

Proof. By induction on m. The case m = 0 is trivial. Let be m > 0. By the
induction hypothesis X(σ) = σ for each proper face σ in Δm. We only need to
prove that for all y ∈ int(Δm), that is, such that y ∈ Δm and yi > 0, there is a
point x ∈ Δm with X(x) = y. Consider the function Yy:Δm → Δm given by

Yy(w0, . . . , wm) =
1∑
wi

yi

(
w0

y0
, . . . ,

wm

ym
).

It is easy to see that Yy is Δm-invariant and invertible, with inverse

Y −1
y (w0, . . . , wm) =

1∑
wiyi

(w0y0, . . . , wmym).
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Applying the preceeding lemma to YyX we obtain a point x such that

YyX(x) =
1

m + 1
11.

It follows from the properties of Yy that

X(x) = Y −1
y (

1
m + 1

11) = y.

Corollary 2.4. Let X: |K| → |K| be a K-invariant function. Then X(σ) = σ
for all σ ∈ K. In particular, X is surjective.

Proof. Write X in the barycentric coordinates of σ then apply the previous
theorem.

Now that we know that K-invariant functions are surjective, we may ask
when they are injective. It is hard, in general, to prove that a function is
globally injective. On the other hand, it is easier to verify the local injectivity.
In the case of a differentiable function F , for example, the local injectivity of F
in a neighborhood of x follows from the injectivity of DF (x).

In a classical paper [2], Meisters and Olech thoroughly described some con-
ditions that a continuous locally injective function must satisfy to be globally
injective. We present now an adaptation of their arguments to the case of K-
invariant functions. In order to make the exposition self-contained, we begin by
demonstrating the following lemma.

Lemma 2.5. Let f : U → R
m be a continuous function defined on a open set

U ⊂ R
m. If f is locally injective, then f(U) is a open set.

Proof. If f(U) is empty, there is nothing to prove. If f(U) is not empty, let y =
f(x) be a point of f(U). As U is open, there is a neighborhood N of x contained
in U such that f |N is injective. Moreover, there is a open set V ⊂ U with x ∈ V ,
V compact and V ⊂ U . Therefore f restricted to V is a homeomorphism.
Because x is an interior point of V , it follows from Brouwer invariance of domain
theorem that f(x) is an interior point of f(V ) and consequently is an interior
point of f(U).

We are ready to present the main result of this section — K-invariant func-
tions locally injective are injective.

Theorem 2.6. Let X:Δm → Δm be a Δm-invariant function. If X is locally
injective, then X is injective.

Proof. By induction on m. The case m = 0 is trivial. Let be m > 0. From
lemma 2.5 combined to proposition 2.3 it results that{

X(bd(Δm)) = bd(X(Δm)) = bd(Δm)
X(int(Δm)) = int(X(Δm)) = int(Δm) (1)

By theorem 2.3, for each point of y ∈ Δm there is at least one point x ∈ Δm

such that X(x) = y. Let A be the set of y ∈ Δm such that there is only one
x ∈ Δm with X(x) = y and B = Δm \ A, that is, the points with more than
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one preimage. By the induction hypothesis, X restricted to bd(Δm) is injective
and by (1) there is no interior point of Δm mapped on bd(Δm). It follows that
bd(Δm) ⊂ A, that is, A is not empty. Our objective is to show that B is empty.
For that, we’ll suppose that B is not empty, concluding from that supposition
that A∪B is a non trivial partition of Δm, which is impossible because Δm is a
connected set. In order to derive this contradiction, we’ll prove that A ∩B = ∅
and A ∩ B = ∅.

Let y be a point of B. Then there is two distinct points x1 and x2 in Δm such
that X(x1) = X(x2) = y. As X(bd(Δm)) = bd(Δm) ⊂ A, it follows from the
induction hypothesis that x1 and x2 are not both in bd(Δm). It’s not possible
also that x1 ∈ bd(Δm) and x2 ∈ int(Δm) (or vice-versa), by (1). Therefore x1

and x2 are in int(Δm). Consequently, threre are open neighborhoods N1 and
N2, from x1 and x2 respectively, with N1 ∩ N2 = ∅, such that

N1 ⊂ int(Δm) and N2 ⊂ int(Δm).

By lemma 2.5, X(N1) and X(N2) are open sets. Thus,

N = X(N1) ∩ X(N2)

is a open neighborhood of y entirely contained in B, because each point of N
has at least two preimages. Hence A ∩ B = ∅.

Let (yn)n∈N be a sequence of points in B that converges to a point y ∈ Δm.
Then there are sequences (x1

n)n∈N and (x2
n)n∈N in Δm such that, for all n,

yn = X(x1
n) = X(x2

n) and x1
n 	= x2

n.

From the compactness of Δm, passing to a subsequence if necessary, we can
assume that (xi

n)n∈N converges to a certain xi ∈ Δm, i = 1, 2. By the continuity
of X , it results that

y = X(x1) = X(x2).

We have that x1 	= x2, for otherwise X wouldn’t be locally injective in x1(= x2).
Hence A ∩ B = A ∩ B = ∅.
Corollary 2.7. Let X : |K| → |K| be a K-invariant function. If X is locally
injective, then X |σ:σ → σ is a homeomorphism, for all σ ∈ K.

In other words, every K-invariant function which is locally injective is a
homeomorphism.

Until now, the continuity of X was sufficient to our purposes. But, in order
to verify the local injectivity of X , the differentiability of X is more suitable,
because the local injectivity of X follows from the injectivity of the linear trans-
formation DX . In a nutshell, the idea is to pass from topology to analysis and
from analysis to algebra. This justifies the following definition.

Definition 2.2. Let X: |K| → |K| be a K-invariant function. We say that X is
a simplicial diffeomorphism with respect to complex K or, more briefly, that X
is a K-invariant diffeomorphism, if X restricted to int(σ) is a diffeomorphism
for all σ ∈ K.

Let SD(K) be the set of all K-invariant diffeomorphisms. The following
properties are easily verified:
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1. Id ∈ SD(K);

2. X ∈ SD(K) ⇒ X−1 ∈ SD(K);

3. X1, X2 ∈ SD(K) ⇒ X1X2 ∈ SD(K).

It’s also clear that a K-invariant function X is a K-invariant diffeomorphism
if X |int(σ) is differentiable and D(X |int(σ))(p) is injective for all σ ∈ K and for
all p ∈ int(σ).

3 Jacobian determinant in barycentric coordi-

nates

In this section, our objective is to describe how to express the jacobian deter-
minant of a differentiable function in barycentric coordinates, with respect to
a simplex σ = 〈p0, p1, . . . , pm〉 ⊂ R

m. This result will help us to exhibit non
trivial examples of simplicial diffeomorphisms.

The barycentric coordinates w := (w0, . . . , wm) of a point x ∈ R
m, with

respect to a simplex σ, satisfy the relation

Pσ

⎛
⎜⎜⎜⎝

w0

w1

...
wm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
x1

...
xm

⎞
⎟⎟⎟⎠ (2)

where

Pσ =

⎛
⎜⎜⎜⎝

1 1 · · · 1
p1
0 p1

1 · · · p1
m

...
...

. . .
...

pm
0 pm

1 · · · pm
m

⎞
⎟⎟⎟⎠ .

Let F := (F 1, . . . , Fm): Rm → R
m and G := (G0, . . . , Gm): Rm+1 → R

m+1

be differentiable functions. We say that G is a barycentric representation of F
if

Pσ

⎛
⎜⎜⎜⎝

G0(w)
G1(w)

...
Gm(w)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
F 1(x)

...
Fm(x)

⎞
⎟⎟⎟⎠ (3)

holds for all x ∈ R
m and w ∈ R

m+1 related by (2). Moreover, we say that a
barycentric representation G is restricted if there is a real function Gs:R → R

such that
m∑

i=0

Gi(w0, . . . , wm) = Gs(
m∑

i=0

wi),

for all (w0, . . . , wm) ∈ R
m+1. Note that Gs(1) = 1 necessarily.

Let F ′ := det(JF ) and G′ := det(JG) where

JF =
(

∂F i

∂xj

)
and JG =

(
∂Gi

∂wj

)
.
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are the jacobian matrices of F and G. By the inverse function theorem, if
F ′(x) 	= 0, then F is injective in a neighborhood of x. We may ask how this
condition is translated in barycentric coordinates. Clearly, G can be locally in-
jective in w even if G′(w) = 0, because the dependency between the barycentric
coordinates can make JG(w) singular.

The following propositions show how to express F ′(x) in barycentric coor-
dinates, if a barycentric representation of F is restricted.

Proposition 3.1. Let G be a restricted barycentric representation of F . If
G′

s(1) = α 	= 0, then

F ′(x) =
G′(w)

α
.

Proof. By (2), (3) and the chain rule, the matrix

L = PσJG(w)P−1
σ

has the following block decomposition:(
u v
q JF (x)

)
.

By the hypothesis on Gs, ∑
i

∂jG
i(w) = G′

s(1) = α

for j = 0, . . . , m. Therefore the product PσJG(w) can be written in blocks as(
α11
Q

)
.

Thus, the first row of L satisfies(
u v

)
Pσ = α11.

Solving this system, we conclude that v = 0 and u = α. Hence,

G′(w) = det PσG′(w) det P−1
σ = detL = u detJF (x) = αF ′(x).

Proposition 3.2. Let G be a restricted barycentric representation of F . If

G′
s(1) = 0,

then

F ′(p) =
m∑

i=0

JGii(w),

where JGii(w) are the diagonal cofactors of JG(w).
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Proof. Applying the Cauchy-Binet formula to equation (3), we have that

F ′(x) =
m∑

i=0

m∑
j=0

(Pσ)0jJGij(w)(P−1
σ )i0.

By the hypotheses on Gs, ∑
i

∂jG
i(w) = G′

s(1) = 0.

for j = 0, . . . , m. Therefore, lemma A.5 implies that JGij = JGii, hence

F ′(x) =
m∑

i=0

JGii(w)
m∑

j=0

(Pσ)0j (Pσ)0i

detPσ
=

m∑
i=0

JGii(w)
m∑

j=0

(Pσ)0j

detPσ
=

m∑
i=0

JGii(w).

4 Monotonic simplicial diffeomorphisms

We’ll show now the first non trivial example of simplicial diffeomorphisms. Let
g: [0, 1] → [0, 1] be a continuous function on the interval [0, 1] such that g(0) = 0,
g(1) = 1. As [0, 1] is nothing more than a one dimensional simplex, the last
condition on g means only that g is [0, 1]-invariant function, in our terminology.
It is well known that if g′(x) > 0 for all x ∈ [0, 1], then g is a diffeomorphism
of [0, 1], or a simplicial diffeomorphism. Let us generalize that result to higher
dimensional simplexes.

Let gi : [0, 1] → R be functions such that gi(0) = 0 and g′i(x) > 0 for all
x ∈ [0, 1], where i = 0, . . . , m. As the derivative is positive, gi is increasing and
gi(x) > 0 if x > 0. Define

G := (G0, . . . , Gm):Δm ⊂ R
m+1 → Δm

setting

Gi(w0, . . . , wm) =
gi(wi)∑m

j=0 gj(wj)
.

It’s easy to see that Gi(w) = 0 if wi = 0, thus G is a Δm-invariant function.
Moreover, G is restricted because,

m∑
i=0

Gi(w0, . . . , wm) = 1,

and Gs(t) = 1, therefore G′
s(1) = 0. Calculating its jacobian,

∂jG
i =

∂jgi(
∑

k gk) − gi∂jgj

(
∑

k gk)2
=

δijg
′
j(
∑

k gk) − gig
′
j

(
∑

k gk)2
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=
g′j(δij(

∑
k gk) − gi)

(
∑

k gk)2
=

g′j∑
k gk

(
δij − gi∑

k gk

)
.

Making u = [
g′

j∑
k gk

] and v = [− gj∑
k gk

], where u and v are column vectors, we
have that

JG = diag u + uvT .

From this especial structure, it follows that the submatrices of JG obtained by
deleting the entries from the diagonal also have the same form, that is, denoting
by vi and ui the vectors obtained from v and u by deleting the i-th row, we
have that

JGii = det(diag ui + uiv
T
i ).

From lemma A.4, it results that

m∑
i=0

JGii =
m∑

i=0

det(uiv
T
i + diag ui) =

m∑
i=0

∏
j �=i

g′j∑
k gk

(1 −
∑
j �=i

gj∑
k gk

)

=
1

(
∑

k gk)m+1
(

m∑
i=0

(
∏
j �=i

g′j)gi) > 0,

and G is a diffeomorphism Δm-invariant.
This result can be extend to a simplicial complex K. Suppose that there

is a function gv : [0, 1] → R with the properties above for each vertex v ∈ K.
Let’s define the function X : |K| → |K| in the following way. Given x ∈ σ =
〈v1, . . . , vn〉 ⊂ K, let w be the barycentric coordinates of x with respect to σ.
Set

X(x) = Pσ
1∑n

i=0 gvi(wi)
(gv1(w1), . . . , gvn(wn)).

It’s easy to see that X is K-invariant and a simplicial diffeomorphism, by the
result above.

One feature of this kind of simplicial diffeomorphism, that we call monotonic,
is that all the information about the warping produced by X is concentrated
on vertices, so can be difficult to control what happens in the interior of higher
dimensional simplexes. We want a more local control, so we must study other
types of diffeomorphisms.

5 Polynomial simplicial diffeomorphisms

Let F := (F 1, . . . , Fm):Rm → R
m be a polynomial mapping, that is, a mapping

in the form

x := (x1, . . . , xm) → (F 1(x1, . . . , xm), . . . , Fm(x1, . . . , xm))

with each F i ∈ R[X ] := R[X1, . . . , Xm], the ring of polynomials in m indeter-
minates over R. We set

deg(F ) = max deg F i,

that is, the degree of F is equal to the highest degree among all F i.
Let G := (G0, . . . , Gm): R

m+1 → R
m+1 be a polynomial barycentric rep-

resentation of F , that is, each Gi is a polynomial of R[W ] := R[W0, . . . , Wm].
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Note that F can have many representations because Gi assumes the same values
that Gi+Q.(W0+. . .+Wm−1) when evaluated in w, where Q is any polynomial
in R[W ]. In other words, if G and H are two barycentric representations of F ,
then

Gi = Hi (mod M),

where M = 〈W0+. . .+Wm−1〉 is the ideal of R[W ] generated by the polynomial
W0 + . . . + Wm − 1.

We say that a barycentric representation H of F is homogeneous of degree n
if each Hi is a homogeneous polynomial of degree n. There is a unique degree
n = deg(F ) homogeneous barycentric representation of F . To see that, define
polynomials Gi by relation (3), in such a way that

Gi =
∑
|I|≤n

gi
IW

I ,

where I is a integer vector (I0, . . . , Im), |I| =
∑

i Ii and W I := W I0

0 . . . W Im

m .
It is easy to see that H := (H0, . . . , Hm), with

Hi =
∑
|I|≤n

gi
IW

I(W0 + . . . + Wm)n−|I|

is the claimed representation.
Alternatively, H can be written in the form

H =
∑
|I|=n

bIBI , (4)

where the bI are called control points of H and BI :=
(
n
I

)
W I are thes Bézier-

Bernstein polynomials [1]. To see that
∑

i bi
I = 1, note that by (2) and (3)∑

i

Hi(
W0

W0 + . . . + Wm
, . . . ,

Wm

W0 + . . . + Wm
) = 1.

As Hi is homogeneous of degree n,∑
i

Hi = (W0 + . . . + Wm)n. (5)

Therefore, ∑
i

∑
|I|=n

bi
IBI = (W0 + . . . + Wm)n

∑
|I|=n

(
∑

i

bi
I)BI =

∑
|I|=n

BI

hence ∑
i

bi
I = 1.

We can define points cI ∈ R
m, related to bI by equation

PσbI =

⎛
⎜⎜⎜⎝

1
c1
I
...

cm
I

⎞
⎟⎟⎟⎠ ,
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called control points of F with respect to simplex σ. Such points completely
determine F and our objective is to find out sufficient conditions on cI such
that F be a σ-invariant diffeomorphism. In fact, the conditions will be given on
the points bI , turning then independent of the particular simplex σ.

Let’s initially derive a sufficient condition for H be Δm-invariant. Let χ be
a function that associates to each n-uple (x1, . . . , xn) a n-uple (y1, . . . , yn) such
that

yi =

⎧⎨
⎩

−1, se xi < 0
0, se xi = 0
1, se xi > 0 .

Definition 5.1. We say that a degree n homogeneous polynomial H is adjusted
if χ(bI) = χ(I) for all I with |I| = n.

The intuitive idea behind this definition can be resumed as follows: if p is
a point of Δm, χ(p) is a binary code that identifies the lower dimensional face
of Δm that contains p. Thus, the definition means that each control point bI

belongs to face of code χ(I).

Proposition 5.1. If H is adjusted, then H is Δm-invariant.

Proof. We must show that if wi = 0 then Hi(w) = 0. As H is adjusted, Ii = 0
implies that bi

I = 0. Therefore

wi = 0 ⇒ Hi(w) =
∑
|I|=n

bi
IBI(w) =

∑
|I|=n,Ii=0

bi
IBI(w) = 0.

Equation (5) shows that H is a restricted barycentric representation of F ,
with Hs(t) = tn. As H ′

s(1) = n, it follows from proposition 3.1 that if H ′ is
positive in Δm, then F ′ is positive in σ. The following theorem, on the other
hand, give us sufficient and necessary conditions for the positivity of H ′.

Theorem 5.2 (Pólya). Let H ∈ R[W ] be a homogeneous polynomial of degree
n. Then H(w) > 0 for all w ∈ Δm if and only if

H · (W0 + . . . + Wm)N

has, for some N ∈ N, the form ∑
|K|=n+N

aKWK

with aK > 0.

Proof. A proof can be found in [5, Satz 3.6].

In order to apply it, we should write H ′ in a convenient form. Let us
introduce some notation.

Given two matrices A = (aij), B = (bij) ∈ R
m×m, let A � B := (aijbij),

that is, each entry of A � B is the product of the corresponding entries of A
and B. In general, there is no relation between the determinant of A � B and
the determinants of A and B. But, if there is a constant c ∈ R such that
Πm

i=1biσ(i) = c for each permutation σ ∈ Sm, it is easy to see that det(A�B) =
c det(A).

11



Proposition 5.3.
H ′ =

∑
|K|=(m+1)(n−1)

aKWK

where

aK =
∑

I0>...>Im
I0+...+Im=K+11

det(bI0 , . . . , bIm) det(I0, . . . , Im)
m∏

i=0

(
n

Ii

)
.

Proof. Writing H as the matrix product,

H = (bi
I)(m+1)×p(BI)p×1,

where p = #{I = (I0, . . . , Im) ∈ N
m+1||I| = n}, it follows that

JH = (bi
I)(∇BI) = (bi

I)
(

(Ij) � (
(

n

I

)
W I−ej )

)
.

By the Cauchy-Binet formula and by the preceding observation,

H ′ =
∑

I0>...>Im

det(bI0 , . . . , bIm)

(
det(I0, . . . , Im)

m∏
i=0

(
n

Ii

)
W
∑m

i=0 Ii−11

)
,

therefore
H ′ =

∑
|K|=(m+1)(n−1)

aKWK

with

aK =
∑

I0>...>Im
I0+...+Im=K+11

det(bI0 , . . . , bIm) det(I0, . . . , Im)
m∏

i=0

(
n

Ii

)
.

In the next subsections, we’ll prove a set of sufficient conditions for a homo-
geneous application H of degree n be a Δm-invariant diffeomorphism, for some
combinations of n and m.

5.1 Unidimensional case (m = 1)

The simplest case is the unidimensional one. Initially, we note that the lexi-
cografical order applied to the points of Δ1 provides the same information that
the usual order in the interval [0, 1], that is, if bI >lex bJ , with bI , bJ ∈ Δ1, then
bI is “at right” of bJ . The following proposition shows that if the control points
keep its relative positions, then H is a simplicial diffeomorphism (figure 1).

Proposition 5.4. Let H =
∑

|I|=n bIBI be an adjusted polynomial application
in Δ1. If the control points are ordered, that is, if I >lex J ⇒ bI >lex bJ , then
H |Δ1 is a Δ1-invariant diffeomorphism.

Proof. Note that
bI >lex bJ ⇔ det(bI , bJ) > 0.

The result follows from Pólya theorem and from proposition (5.3).

12



06 15 24 33 42 5160

Figure 1: A degree 6 Δ1-invariant diffeomorfism. Note that the control points
are ordered.

The above proposition holds for unidimensional applications of any degree,
but it’s possible to achieve better results in particular cases. For n = 2, it’s easy
to see that if H is adjusted then the control points are ordered. The case n = 3
is more interesting, where it’s sufficient that H be adjusted, because suppose
that b21 < b12. Replacing relations

det(b12, b03) = det(b21, b03) + det(b12, b21)

det(b30, b03) = det(b21, b03) + det(b12, b21) + det(b30, b12)

det(b30, b21) = det(b12, b21) + det(b30, b12)

in the expression of H ′, we obtain

H ′ = 9(det(b21, b03)(W 22 + 2W 13 + W 04)+

det(b12, b21)(W 40 − 2W 22 + W 04) + det(b30, b12)(W 40 + 2W 31 + W 22)).

It is not difficult to see that H ′ is positive in Δ1, because

(W 40 − 2W 22 + W 04)

is positive in Δ1, except in the point (1
2 , 1

2 ), where is zero. But in this point the
other terms are positive.

In the case n = 4, the counterexample of figure 2 shows that H be adjusted is
not sufficient. An analogous counterexample holds for dimensions greater than
1.

5.2 Quadratic case (n = 2)

In order to show that every adjusted polynomial application of degree two is a
Δm-invariant diffeomorfism, for all m > 0, we’ll prove a combinatorial lemma.

13
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Figure 2: An adjusted polynomial application of degree 4 that is not injective.
Note that control points b13 and b31 are exchanged.

Lemma 5.5. Given a vector K = (K0, . . . , Km) ∈ N
m+1, with |K| = m + 1,

it’s always possible to find vectors I0, . . . , Im ∈ N
m+1, with |Ii| = 2, such that

I0 + . . . + Im = K + 11

and det(I0, . . . , Im) 	= 0.

Proof. By induction on m. The case m = 0 is trivial. We can suppose without
loss of generality that Ki ≥ Kj if i < j. There are two possible cases: or Km = 0
or Km = 1. If Km = 1, we set Ii

j = 2δij , and det(I0, . . . , Im) = 2m+1 > 0. If
Km = 0, we define K ′ = (K0 − 1, . . . , Km−1) and, applying the induction
step, we obtain vectors I ′j ∈ N

m, with |I ′j | = 2 and det(I ′0, . . . , I ′m−1) > 0.
It’s enough now to set Ij = (I ′j , 0) for j = 0, . . . , m − 1 and Im satisfying
Ii
m = [i = 0 or i = m]. Applying the Laplace expansion, we conclude that

det(I0, . . . , Im) = det(I ′0, . . . , I ′m−1) > 0.

Proposition 5.6. Let H =
∑

|I|=2 bIBI be an adjusted aplication of degree 2.
Then H |Δm is a Δm-invariant diffeomorphism.

Proof. The idea is to show that the aK coefficient of proposition 5.3 is positive.
Initially, we’ll prove that aK ≥ 0. Note that

det(I0, . . . , Im)
m∏

i=0

(
2
Ii

)
= det(

(
2
I0

)
I0, . . . ,

(
2

Im

)
Im) = 2m+1 det(A),

where A is a 0 − 1 matrix with at most two ones per row. It follows from
corollary A.2 that aK ≥ 0. But lemma 5.5 implies that at least one term of aK

is not zero. Hence, aK > 0 and H |Δm is a Δm-invariant diffeomorphism.

14



(a) (b)

Figure 3: The action of a quadratic simplicial diffeomorphism: in (a), the control
points are in their natural positions, hence the diffeo is the identity; in (b), the
control points were moved.

5.3 One free control point

Let us study a very interesting and useful case. What happens when, intuitively,
there is only one free control point ?

Proposition 5.7. Let H =
∑

|I|=n bIBI be an adjusted application of degree n

and J = (J0, . . . , Jm) ∈ N
m+1 with |J | = n and J i ∈ {0, 1}. If bI = I/n for

I 	= J , then H |Δm is a Δm-invariant diffeomorphism.

Proof. We have that

H =
∑
|I|=n

I

n
BI + bJBJ − J

n
BJ =

(W0 + . . . + Wm)n−1

⎛
⎜⎝W0

...
Wm

⎞
⎟⎠+ (bJ − J

n
)BJ .

It follows that

JH = (W0 + . . . + Wm)n−1(Id +uvT + abT ),

with

u =
n − 1

W0 + . . . + Wm

⎛
⎜⎝W0

...
Wm

⎞
⎟⎠ ,

vT =
(
1 · · · 1

)
,

a =
n

(W0 + . . . + Wm)n−1
(bJ − J/n) and

bT =
(
J0BJ−e0 · · · JmBJ−em

)
.
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Applying lemma A.3,

H ′ = n(W0 + . . . + Wm)(m+1)(n−1)(1 + bT n

(W0 + . . . + Wm)n−1
(bJ − J/n)) =

n(W0+. . .+Wm)m(n−1)−1((W0+. . .+Wm)n+n(W0+. . .+Wm)bT (bJ −J/n)) =

n(W0 + . . . + Wm)m(n−1)−1E,

where
E =

∑
|I|=n

BI + D(bJ − J/n) and

D =
(∑

i J0(1 − δi0 + J i)BJ−e0+ei · · · ∑
i Jm(1 − δim + J i)BJ−em+ei

)
.

That is,

E =
∑
|I|=n

BI +
∑

j

∑
i

Jj(1 − δij + J i)BJ−ej+ei(b
j
J − Jj/n) =

∑
|I|=n

BI +
∑

j

∑
i�=j

Jj(1 + J i)BJ−ej+ei(b
j
J − Jj/n) +

∑
j

(Jj)2BJ(bj
J − Jj/n) =

∑
|I|=n

BI +
∑

j

∑
i�=j

Jj(1 + J i)BJ−ej+ei(b
j
J − Jj/n) + BJ

∑
j

(bj
J − Jj/n) =

∑
|I|=n

BI +
∑

j

∑
i�=j

Jj(1 + J i)BJ−ej+ei(b
j
J − Jj/n).

Analyzing the coefficients of E, we verify that, for i 	= j,

Coeff(E, BJ−ej+ei) = 1 + Jj(1 + J i)(bj
J − Jj/n) =

(1 − Jj(1 + J i)/n) + Jj(1 + J i)bj
J =

(1 − Jj(1 + J i)/n) + (1 + J i)bj
J > 0,

because n > 1, J i ∈ {0, 1} and bj
j = 0 ⇔ Jj = 0. As Coeff(E, BI) = 1 for the

remaining coefficients, it follows from Pólya theorem that H ′ is positive in Δm,
therefore H |Δm is a Δm-invariant diffeomorphism.

Let us detail the meaning of that proposition. As previously mentioned,
each face of Δm can be identified by a binary code, accordingly the number
of non zero coordinates of its points. Thus, for m = 3, we have the following
correspondence:

(1111) → 3-simplex

(1110), (1101), (1011), (0111)→ 2-simplexes

(1100), (1010), (1001), (0110), (0101), (0011)→ 1-simplexes

(1000), (0100), (0010), (0001)→ 0-simplexes

(0000) → empty simplex

Let GJ be a polynomial application such that

Gi
J = Wi + (bi

J − J i/|J |)BJ ,
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where J i ∈ {0, 1}. Examining the proposition, we see that

Gi
J = Hi (mod M),

therefore GJ and H define the same application in Δm and, as proved above,
GJ is a Δm-invariant diffeomorphism.

Moreover, by definition, GJ only affects those points in face δJ , as well the
points in incident faces to δJ with greater dimensions. That is, the control point
bJ effectively controls the action of GJ over δJ .

Now, we can compose the diffeomorfisms GJ and define a diffeomorfism G
that depends on parameters associated to each face of Δm. In the case m = 3,
we can define, for instance,

G = G0011G0101G0110G1001G1010G1100G0111G1011G1101G1110G1111.

We see that G depends on 17 independent parameters, 1 for each 1-simplex, 2
for each 2-simplex and 3 for the 3-simplex. That scheme is perfectly general
but, as the applications GJ do not commute in general, the resulting application
G depends on the composition order, causing an assimetry with respect to the
action of the control points, what can be a problem in certain applications.

(a) (b)

Figure 4: The action of a cubic simplicial diffeomorphism: in (a), the control
points are in their natural positions; in (b), the central control point b111 was
moved.

5.4 Stratified scheme

In order to overcome that problem, let us present a stratified scheme where G
can be written as a composition of m applications Gj ,

G = G1G2 . . .Gm,

with,
Gi

j = Wi +
∑

|J|=j+1,Jk∈{0,1}
(bi

J − J i/|J |)BJ .
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The idea is that Gj summarizes the combined effect of the control points asso-
ciated to the j-simplexes of Δm. But what can be said about the applications
Gj ?

Note that Gj defines the same application in Δm that the homogeneous
application of degree j + 1 Hj , with

Hi
j = Wi(W0 + . . . + Wm)j +

∑
|J|=j+1,Jk∈{0,1}

(bi
J − J i/|J |)BJ .

Thus, by propositions 5.6 and 5.7, it turns out that Gj is a Δm-invariant dif-
feomorfism for j = 1 and j = m. But what happens for other values of j
?

A possible approach is regard the jacobian determinant H ′
j as a function of

the control points bJ too. As each bJ is limited to a j dimensional face of Δm,
it turns out that H ′

j can be regarded as a function defined in the product of
simplexes

Δm × Δj × . . . × Δj︸ ︷︷ ︸
r times

,

where r is the number of j dimensional simplexes of Δm. Before taking this
approach, let us consider some facts about the positivity of polynomial functions
defined on products of simplexes.

Let P : Δm1 × Δm2 . . . × Δmr → R be a polynomial function defined on a
product of r simplexes of dimensions m1, . . . , mr, given by

(u1, . . . , ur) → P (u0
1, . . . , u

m1
1 , u0

2, . . . , u
m2
2 , . . . , u0

r, . . . , u
mr
r ),

with P ∈ R[U ] := R[U10, . . . , U1m1 , U20, . . . , U2m2 , . . . , Ur0, . . . , Urmr ].
Letting U := 〈∑mi

l=0 Uil − 1; i = 1, . . . , r〉, we see that if two polynomials
P, Q ∈ R[U ] are such that

P = Q (mod U),

then they define the same application on Δm1×Δm2 . . .×Δmr , because
∑

l u
l
i =

1.
Given a r-uple N = (n1, . . . , nr) ∈ N

r, he say that P ∈ R[U ] is N -homogeneous
if

P =
∑

|I1|=n1

. . .
∑

|Ir |=nr

aI1...IrU
I1
1 . . . U Ir

r .

with U I
i := (Ui0)I0

. . . (Uimi)
Imi .

We state now the generalization of Pólya theorem to polynomial application
defined on a product of simplexes.

Theorem 5.8. Let H ∈ R[U ] be N -homogeneous polynomial application with
N = (n1, . . . , nr). Then H(u1, . . . , ur) > 0 for all (u1, . . . , ur) ∈ Δm1 ×
Δm2 . . . × Δmr if and only if

H · (U10 + . . . + U1m1)
R1 . . . (Ur0 + . . . + Urmr)

Rr

has, for some R = (R1, . . . , Rr) ∈ N
r, the form∑

|K1|=n1+R1

. . .
∑

|Kr|=nr+Rr

aK1...KrU
K1
1 . . . UKr

r ,

with aK1...Kr > 0.

18



Proof. See [5, Satz 3.54].

Let Cm,n = {C ∈ N
n|0 ≤ C0 < C1 < . . . < Cn−1 < m}, that is, Cm,n

represents the combinations of m objects {0, 1, . . . , m − 1} taken n at a time.
This set can be linearly ordered by the lexicographic order in N

n, therefore we
denote the i-nth element of Cm,n by Cm,n,i, where i runs from 1 to

(
m
n

)
.

There is also a clear bijection between the set of J ∈ N
m such that Jk ∈ {0, 1}

with |J | = n and Cm,n. Let’s denote by J(C) the image of C ∈ Cm,n by such
bijection, that is, J(C) = (J0, . . . , Jm−1), with J i = [∃l, Cl = i].

Returning to the stratified scheme, let’s parametrize control points bJ in Gj

in terms of indeterminates U . Initially, we set r =
(
m+1
j+1

)
and m1 = m2 = . . . =

mr = j, that is, r counts the j dimensional faces of Δm. The parametrization
goes as follows:

bk
J(Cm+1,j+1,i)

=
{

Uil , if Cl
m+1,j+1,i = k

0 , otherwise.

Replacing bJ in Hj and applying proposition 5.3, we have that the coeffi-
cients aK of H ′

j are polinomials in R[U ] now. The idea is apply the generalized
Pólya theorem to show that aK > 0, resulting that Gj is a Δm-invariant diffeo-
morphism. Let’s firstly write aK as a homogeneous polynomial.

Define

d(I0, . . . , Im) =
r∏

i=1

(
j∑

l=0

Uil)t(i,I0,...,Im) det(bI0 , . . . , bIm),

where t(i, I0, . . . , Im) is a predicate that only says if

J(Cm+1,j+1,i) = Ik

for some k, that is,

t(i, I0, . . . , Im) =
{

0 , if ∃k, J(Cm+1,j+1,i) = Ik

1 , otherwise.

By the determinant properties, we conclude that d(I0, . . . , Im) is 11-homogeneous.
Moreover,

d(I0, . . . , Im) = det(bI0 , . . . , bIm) (mod U).

Therefore, if we define

uK =
∑

I0>...>Im
I0+...+Im=K+11

d(I0, . . . , Im) det(I0, . . . , Im)
m∏

i=0

(
n

Ii

)
,

then uK is 11-homogeneous too and

uK = aK (mod U).

Note that uK has (j + 1)r terms in general.
Let’s apply these ideas to the tridimensional case, that is, to m = 3. We

already know that G1 and G3 are Δ3-invariant diffeomorphisms, so it remains
to prove this for G2. Following the parametrization recipe, we have that

b1110 = (U10, U11, U12, 0), b1101 = (U20, U21, 0, U22),
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b1011 = (U30, 0, U31, U32) and b0111 = (0, U40, U41, U42).

Then, using the symbolic computation package Asir[3], we compute uK for
every K ∈ N

4 with |K| = 8. We verify that these 165 polinomials have exactly
3(4

3) = 81 terms with positive coefficients. Thus, we prove the following fact:

Proposition 5.9. G1, G2 and G3 are Δ3-invariant diffeomorphisms.

We belive that this result extends for m > 3, but the computations are in-
creasingly complex. For example, for m = 4 the uK polynomials corresponding
to G2 have 3(5

3) = 59 049 terms.
The natural question posed now is what can be said about rational functions.

That is the theme of next section.

6 Rational simplicial diffeomorphisms

Let Q be a degree n rational application

Q =
1∑

|I|=n qIBI

∑
|I|=n

qIbIBI ,

where qI > 0 are weights associated to control points bI . We say that Q is
adjusted if χ(bI) = χ(I). It’s easy to see that Q is Δm-invariant if Q is adjusted.
On what conditions is Q a Δm-invariant diffeomorphism ? Surprisingly, there
is a simple, yet powerful, sufficient condition: set the control points fixed (bI =
I/n) and let the weights qI free.

Using the properties of Bézier-Bernstein polynomials, we see that∑
i

Qi(W0, . . . , Wm) = 1,

therefore a sufficient condition for Q be a Δm-invariant diffeomorphism is that∑
i

JQii(w) > 0,

for all w ∈ Δm. Let’s compute the jacobian of Q.

Proposition 6.1. JQ = [qij ], with

qij =
1

(
∑

I qIBI)2
∑
I>J

qIqJ (bi
I − bi

J)
(Ij − Jj)

W j
BIBJ .

Proof.

qij = ∂jQ
i =

n(
∑

I qIb
i
IBI−ej

∑
J qJBJ −∑J qJbi

JBJ

∑
I qIBI−ej )

(
∑

I qIBI)2
=

n

(
∑

I qIBI)2
(
∑
I,J

qIqJ(bi
I − bi

J)BJBI−ej ) =

n

(
∑

I qIBI)2
(
∑
I,J

qIqJ (bi
I − bi

J)
Ij

nW j
BJBI) =
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1
(
∑

I qIBI)2
((
∑
I<J

+
∑
I>J

)qIqJ(bi
I − bi

J)
Ij

W j
BJBI) =

1
(
∑

I qIBI)2
∑
I>J

qIqJ(bi
I − bi

J)
(Ij − Jj)

W j
BJBI .

In order to make the computations more manageable, let’s express JQ as a
product of matrices. Let

U =
[

bI − bJ

]
and V =

[
I − J

]
two (m+1)×#(N), where the columns are indexed by the set N of pairs (I, J),
with I > J , lexicographly ordered. Thus, analysing the expression of JQ, we
have that

JQ =
1

(
∑

I qIBI)2
U diag(qIqJBIBJ)(I,J)∈NV T diag(1/W 0, . . . , 1/Wm).

Given a integer k = 0, . . . , m and a sequence L = (I1, J1) > . . . > (Im, Jm) of
elements of N , we’ll denote by Uk,L the matrix obtained from U by deleting
the k-th row and the columns not in {(I1, J1), . . . , (Im, Jm)}. Depending on the
context, Uk,L also will mean the determinant of such matrix.

Proposition 6.2.

k∑
i=0

JQkk =
1

(
∑

I qIBI)2m

∑
|K|=m(2n−1)

aKWK ,

where
aK =

∑
K=

∑
L−11+ek

qLUk,LV k,L

and qL =
∏m

l=1 qIl
qJl

( n
Il

)( n
Jl

), with L = (I1, J1) > . . . > (Im, Jm) ranging over
the ordered sequences of lenght m of N .

Proof. Applying the Cauchy-Binet formula,

m∑
k=0

JQkk =

m∑
k=0

1
(
∑

I qIBI)2m

∑
L

Uk,L(
∏

l

qIl
qJl

BIl
BJl

)V k,LW−11+ek =

1
(
∑

I qIBI)2m

∑
L

m∑
k=0

qLUk,LV k,LW
∑

L−11+ek =

1
(
∑

I qIBI)2m

∑
|K|=m(2n−1)

⎛
⎝ ∑

K=
∑

L−11+ek

qLUk,LV k,L

⎞
⎠WK .
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In order to show that every adjusted rational application with fixed control
points is a Δm-invariant diffeomorfism, for all m > 0, we’ll prove a combinatorial
lemma.

Lemma 6.3. Given a vector K = (K0, . . . , Km) ∈ N
m+1, with |K| = m(2n−1),

it’s always possible to find a decreasing sequence L of pairs of vectors (I1, J1) >
(I2, J2) > . . . > (Im, Jm), with Ii > Ji and |Ii| = |Ji| = n, and a integer
k = 0, . . . , m such that

I1 + J1 + . . . + Im + Jm − 11 + ek = K

and V k,L 	= 0, where

V =
[

I − J
]
(m+1)×#(I>J)

.

Proof. Without loss of generality, we can suppose that K0 ≥ K1 ≥ · · · ≥ Km,
because otherwise we can order the entries of K and permute suitablely the
sequence L obtained, what cause possibily just a change in the signal of V k,L.
The proof is by induction in n. If n=1, we have that |K| = m. Take Ii such that
|Ii| = 1 ,Ii ≥ Ii+1,

∑m
i=1 Ii = K, Ji = ei+1 and k = 0. It’s easy to see that there

is only one sequence Ii satisfying this properties and that Ii > Ji. Therefore,
the matrix V k,L is higher triangular, with each diagonal entries equals to −1.
Hence Dk,L 	= 0.

If n > 1, we have that |K| = m(2n − 1). We can write K in the form
K = K ′ + 2K ′′, where |K ′| = m(2(n − 1) − 1), |K ′′| = m and K ′

0 ≥ . . . ≥ K ′
m.

This can be done in the following way: set initialy K ′ := K and K ′′ := 0.
Repeat m times the operation K ′ := K ′−2el and K ′′ := K ′′ +el, where l is the
larger index such that Kl ≥ 2. Clearly this procedure works, because suppose
that after m′ steps, with m′ < m, there were no entries Kl ≥ 2. This implies
that |K| ≤ 2m′ + m + 1. But

m′ < m ⇒ 2m′ + 1 < 2m ⇒
|K| ≤ 2m′ + m + 1 < 3m ≤ m(2n − 1) = |K|,

and we have a contradiction.
Now we can apply the induction step to K ′, obtaining the sequence L′ =

(I ′1, J
′
1) > . . . > (I ′m, J ′

m) and k = 0. Take Ii = I ′i + K ′′
i and Ji = J ′

i + K ′′
i ,

where |K ′′
i | = 1, K ′′

i ≥ K ′′
i+1 and

∑m
i=1 K ′′

i = K ′′. Thus

I1 + J1 + . . . + Im + Jm − 11 + e0 =

I ′1 + K ′′
1 + J ′

1 + K ′′
1 + . . . + I ′m + K ′′

m + J ′
m + K ′′

m − 11 + e0 =

K ′ + 2K ′′ = K,

and V k,L = V k,L′
, because Ii − Ji = I ′i − J ′

i .

Theorem 6.4. Let

Q =
1∑

|I|=n qIBI

∑
|I|=n

qIbIBI ,

be a rational application. If bI = I/n and qI > 0, then Q is a Δm-invariant
diffeomorphism.
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Proof. The idea is to show that the aK coefficient of proposition 6.2 is positive.
Initially, we’ll prove that aK ≥ 0. Note that

Uk,LV k,L =
1

nm
(V k,L)2,

therefore aK ≥ 0. But lemma 6.3 implies that at least one term of aK is not
zero. Hence, aK > 0 and Q|Δm is a Δm-invariant diffeomorphism.

(a) (b)

Figure 5: The action of a rational degree 5 simplicial diffeomorphism: in (a),
the control points are in their natural positions and the weights are equal; in
(b), the control points are unchanged, but some weights were changed. Note
that control points with greater weights are more atractive.

We have an additional result if Q has degree 2. In this case, the matrices
Uk,L and V k,L have at most two non zero entries per row. Applying corollary
A.2, we obtain the following theorem.

Theorem 6.5. Let
Q =

1∑
|I|=2 qIBI

∑
|I|=2

qIbIBI ,

be a degree 2 adjusted rational application. If qI > 0, then Q is a Δm-invariant
diffeomorphism.

7 Curved isocomplexes

In section 1, we define a linear isocomplex as the piecewise linear hypersurface
O = f̂−1(c), where f̂ is the piecewise linear function obtained by linear inter-
polation of a real function f defined in the vertices of complex a K. If X is a
K-invariant diffeomorphism, we can use it to deform the set |K|, obtaining a
curved isocomplex O = (f̂ ◦ X)−1(c). As this deformation is bijective, contin-
uous and preserve the incidence relations of K, it results that O has the same
topology of O. Moreover, the topological and geometrical information of O are
clearly separated: the topology is codified in the complex K and in the signal
of f in the vertices, and the geometry is given by X .
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(a) f̂−1(0) (b) f−1(0)

(c) (f̂ ◦ Id)−1(0) (d) (f̂ ◦ X)−1(0)

Figure 6: The zero set of function f(x, y) = x2 + y2 − 0.282 in four versions:
in (a), the linear interpolation over complex K is far from the real curve (b).
Composition with the identity changes nothing (c), but a suitable diffeo X
deforms the linear interpolation closer to the real curve.

Let’s relate this representation with two other representations of hypersur-
faces. In the implicit representation, the hypersurface is represented as a zero
set of a given equation. In the parametric representation, the hypersurface is
represented by a colection of patches that covers the hypersurface and are glued
each other in a precise way. We can write the expression of O above in two
ways:

O = (f̂ ◦ X)−1(c) = X−1(f̂−1(c)),

The two equalities above have sligthly different interpretations. In the first case,

O = (f̂ ◦ X)−1(c),

is clearly a implicit hypersurface, being the set of points p ∈ R
n that satisfies

equation f̂(X(p)) = c. In the second case,

O = X−1(f̂−1(c)),
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says that the set O is covered by parametrizations in the form X−1(θ), where
θ is linear patch of O, being therefore a parametric hypersurface. That is why
we call this a implicit-parametric representation.

Let’s consider how the implicit-representation performs in two typical prob-
lems: (1) determine if a point p ∈ R

n is inside or outside O and (2) sample
points q ∈ O. To solve (1), we find which cell σ ∈ K contains p, compute
q = X |σ(p) and evaluate the signal of f̂σ(q). For problem (2), we sample a
point p ∈ O, what is a easy task because O has a simple parametrization for
each linear patch θ ⊂ σ ∈ K, and compute q = X |−1

σ (p).
In general, the simplicial diffeomorphism X depends on a set of intrinsic pa-

rameters β, therefore we will denote the diffeomorphism by Xβ when necessary.
In the case of polynomial diffeomorphisms, for example, β could be represented
by a vector of control points. As we will see in section 9, the main task of the
applications is to fit the intrinsic parameters to the data.

8 Smoothness conditions for curved isocomplexes

By our definition, a simplicial diffeomorphism X is a diffeomorphism in the
interior of each simplex of K, but there are no guarantees that X is a global
diffeomorphism and, in fact, in the applications we focus, namely the repre-
sentation of curved isocomplexes, X cannot be a global diffeomorphism. Let’s
understand why this happens.

Let’s consider the case of complex K = σ∪σ′, where σ = 〈p0, p1, . . . , pn〉 and
σ′ = 〈p′0, p1, . . . , pn〉. Note that σ and σ′ share a common facet δ = 〈p1, . . . , pn〉.
Let X be a K-invariant diffeomorphism and f a real function defined on the
vertices of K. If p is a point in δ∩O, the hypersurface normal O is proportional
to the gradient

∇(f̂ ◦ X)(p) = ∇f̂(X(p)).DX(p).

But ∇f̂ is not well defined in δ, because f̂ is only piecewise linear. Let n = ∇f̂ |σ
and n′ = ∇f̂ |σ′ . For O to be smooth in p is necessary that

n.DX(p) = n′.DX(p).

If X were smooth at the point p, then DX(p) would be not-singular and there-
fore we would have that n = n′. In other words, O would be smooth in δ
only if O were also smooth. Thus, in order for O to be smooth, the simplicial
diffeomorphism X must have a discontinuous derivative in δ.

We have to admit that the above fact poses a small difficulty to the analysis,
since we are used to continuity conditions and not to discontinuity conditions.
Among the various types of simplicial diffeomorphisms that we studied in the
previous sections, only in the rational case we were able to derive simple condi-
tions such that O be smooth. To simplify the notation, we are going to define
cI as the control point in cartesian coordinates corresponding to the points I

n ,
in the following way.

Pσ
I

n
=

⎛
⎜⎜⎜⎝

1
c1
I
...

cm
I

⎞
⎟⎟⎟⎠ .

Now, we can state the result:
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Theorem 8.1. Let X be a rational diffeomorphism K-invariant of degree n,
with

X |σ =
1∑

|I|=n qIBI

∑
|I|=n

qIcIBI and,

X |σ′ =
1∑

|I|=n q′IBI

∑
|I|=n

q′Ic
′
IBI ,

where K is like described above. Then O is C1-continuous in δ if

qJ+e0 f̂ |σ(cJ+e0) =
∑

i

wiq
′
J+ei

f̂ |σ′(c′J+ei
),

where |J | = m − 1, J0 = 0 and (w0, . . . , wn) are the barycentric coordinates of
p0 in relation to σ′.

Proof. Note initially, that if p ∈ δ ∩ O then f̂(X(p)) = 0, by definition. More-
over, it follows from the linearity of f̂ that

f̂(X(p)) =

∑
|I|=n qI f̂(cI)BI(X(p))∑

|I|=n qIBI(X(p))
.

Computing the gradient of f̂ ◦ X in p, with relation to the simplex σ, we have
that

∇(f̂ ◦ X)(p) =
u′v − uv′

v2
,

where
u =

∑
|I|=n

qI f̂(cI)BI(X(p)),

u′ =
∑
|I|=n

qI f̂(cI)∇BI(X(p)),

v =
∑
|I|=n

qIBI(X(p)),

v′ =
∑
|I|=n

qI∇BI(X(p)).

But u = 0 because u = f̂(X(p)).v and v > 0. The gradient at a point p ∈ δ ∩O
is equal to

∇(f̂ ◦ X)(p) =

∑
|I|=n qI f̂(cI)∇BI(X(p))∑

|I|=n qIBI(X(p))
.

The function in the denominator is continuous in δ, and the numerator is the
gradient of the function g(q) =

∑
|I|=n qI f̂(cI)BI(q) in q = X(p), which is

C1-continuous in δ if

qJ+e0 f̂ |σ(cJ+e0) =
∑

i

wiq
′
J+ei

f̂ |σ′(c′J+ei
), (6)

from the usual C1-continuity conditions.
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We can apply the condition (6) to all faces of the complex K, what orig-
inates a system of linear equations in qI , in general underdetermined, whose
solutions represent the simplicial diffeomorphisms which make the isocomplex
O smooth. However, we have an additional problem: we are interested in the
positive solutions, since the weights qI should be positive. The investigation of
existence conditions of such positive solutions is a very interesting topic which
we hope to develop in a future paper. Presently, we can attack this problem
using optimization. The idea is to consider the error function

err(δ, β) =
∑

J

‖qJ+e0 f̂ |σ(cJ+e0 ) −
∑

i

wiq
′
J+ei

f̂ |σ′(c′J+ei
)‖2,

which associates to each face δ a value that measures the C1 discontinuity of
the isocomplex in δ, where β is a vector containing all the weights qI , and then
we optimize

min
β>0

∑
δ∈K

err(δ, β).

We tested this method in an aplication with very good results, even though
some numerical problems might eventually arise due to small values (near zero)
in the denominator.

In any case, the smoothness criterion discussed above is valid only for ra-
tional mappings. In the case of polynomial mappings, such analysis becomes
difficult because the need to reconcile smoothness criteria with injectivity cri-
teria. Furthermore, in the polynomial models that we proposed, we made ex-
tensive use of function composition, what makes the analysis even harder. In
those cases, the most viable approach is, once again, to deal with the problem
through optimization, now considering the error function

err(δ, β) =
∑
pi∈δ

‖nδ,β(pi) − n′
δ,β(pi)‖2,

which measures the deviation between the normals with respect to the cells σ
and σ′ incident at a face δ in some number of sample points pi, where β denote
the intrinsic parameters of the diffeomorphism. We have also implemented this
other method with good results. Although we cannot guarantee that the surfaces
generated in this way will be smooth at all points, we have a more compact
representation than a piecewise linear approximation with the added benefits
of a simultaneous parametric and implicit representation. As an example, we
are going to discuss briefly in the next section some applications of simplicial
diffeomorphisms.

9 Applications

In this section we are going to present two applications of using the simplicial
diffeomorphisms proposed in this paper. The applications are free-form model-
ing of implicit shapes and adapted polygonization of implicit objects. In both
applications, we use the polynomial diffeomorphisms described in section 5.4.
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9.1 Free-Form Modeling of Implict Objects

To present the application of free-form modeling of implicit shapes, first we will
briefly describe how the user interacts with the program and subsequently we
are going to discuss the implementation.

The basic idea is that the user starts the interaction by visualizing an initial
coarse grid K0. The user can refine the triangulation using restricted stellar
subdivision, obtained a finer simplicial complex K. At the same time, the user
can alter some parameters associated with the vertices and edges of K, which
are going to determine a curved isocomplex O with suport in K.

In each vertex v, the user can make three operations: 1) drag the vertex,
moving it to a new position; 2) change the sign s(v), making v to belong either
to the interior of the object if s(v) = −1, or to the exterior of the object if
s(v) = +1; and change the scalar value r(v). These operations allows one to
build a linear isocomplex O = f̂−1(0), where f(v) = s(v)r(v), which gives a
piecewise linear approximation of the object that we wish to model.

In each edge ε of K that is intercepted by O, the user has access to two
controls, which are responsible for controlling the K-invariant diffeomorphism
X . There is a control handle that can be moved along the edge, indicating the
point p(ε) where O should intercept the edge. The other control is a unit vector
n(ε), represented by an arrow, that indicates the direction of the normal of O
should have at p(ε).

These modeling parameters are intuitive for the user, but we need to compute
the intrinsic parameters β. For this purpose, we observe that when interpreted
mathematically the modeling parameters should satisfy

f̂ ◦ Xβ(p(ε)) = 0 and
∇(f̂ ◦ Xβ)(p(ε))

‖∇(f̂ ◦ Xβ)(p(ε))‖ = n(ε),

such that all edges ε that are intecepted by O, that are the ones with vertices
with opposite signs. Let’s define the error function

err(σ, β) =
∑

ε={v0,v1}∈σ

s(v0)s(v1)<0

(
F 2

σ,β(p(ε))
‖∇Fσ,β(p(ε))‖2

+ α‖ ∇Fσ,β(p(ε))
‖∇Fσ,β(p(ε))‖ − n(ε)‖2),

where Fσ,β = f̂σ ◦ Xβ, that associates to each cell σ, an error err(σ, β) that
measures how much the parameters β satisfy the geometric requisites in each
cell σ. The parameter α is a weight that controls how much emphasis is given
to the position or direction of the intersection point.

Thus, to determine the parameters β, we simply minimize the error over all
cells of K:

min
β

∑
σ∈K

err(σ, β).

Some iterations of this optimization program are performed every time the
user updates the modeling parameters. It is possible also to run the optimization
program with more interactions in order to obtain a beter result. In Figure 7
we show an example of user interaction.
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(a) The user defines a curve... (b) ... and changes the control on the
right.

Figure 7: Example of interaction in the free-form modeling application.

9.2 Polygonization of Implicit Objects

The input to the program for polygonization of implicit objects is a function
g : [0, 1]n → R, which we assume continuous and differentiable. We want to
determine a curved isocomplex O such that

O ⊂ g−1((−a, a)),

for a small, in other words, we would like that O lies on a neighborhood of
g−1(0).

The idea is to build a sequence of isocomplexes Oi = (f̂i ◦ Xβi)−1(0) that
approximates g−1(0). We set initially K0 equal to the canonical triangulation
of [0, 1]n, f0(v) = g(v), for all v ∈ K0, and Xβ0 equal to identity. In order to
describe the inductive step that computes Oi+1 from Oi,we need to define a
function err(σi, βi) which associates to each cell σi ∈ Ki an error that measures
how close O, restrited to σi, is from g−1(0).

Let θi be the linear patch of O in σi. We compute the m sample points
p1, . . . , pm over θi and define

err(σi, βi) =
∑

pj∈θi

|g(Xβi(pj))|2,

that is, err(σi, βi) measures how well θi is taken to g−1(0) by Xβi .
The inductive step is done in the following way: we choose the cell σi ∈ Ki

with the largest error. Subsequently we perform

Ki+1 = Subdivide(Ki, σi),

where Subdivide(K, σ) represents the subdivision of σ with adaptive propaga-
tion.

After such subdivision, k new vertices v1, . . . , vk are inserted, in that order.
For each vertex vk, we make fi+1(vk) = g(vk), fi+1 being equal to fi in the
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other vertices, and we execute the optimization program.

min
βi+1

∑
σi+1∈st(vk,Ki+1)

err(σi+1, βi+1),

in order to compute Xβi+1 . Notice that in this way we are computing Xβi+1

only in the regions of the mesh that were modified by the subdivision.
The stopping criterion is based on the one described in [4]. Let Iσ be the

smallest n-dimensional box which contains a cell σ. The inclusion function �g
for a function g computes for each n-dimensional box Iσ an interval �g(Iσ) such
that

x ∈ Iσ ⇒ g(x) ∈ �g(Iσ).

Such an inclusion function for g can be computed by the usual methods of
interval arithmetic. Before evaluating the subdivision in a cell σ, we evaluate
the condition

0 /∈ �g(Iσ) ∨ 〈�∇g(Iσ), �∇g(Iσ)〉 > 0.

If the condition is true, the subdivision is not done, that is, if σ does not contains
a zero of g or if g is parametrizable along one direction, then it is not necessary
to perform the subdivision.

In Figures 8, 9 and 10 we show the polygonization algorithm applied to
Taubin’s curve,

0.004 + 0.110x − 0.177y − 0.174x2 + 0.224xy − 0.303y2−

0.168x3 + 0.327x2y − 0.087xy2 − 0.013y3+

0.235x4 − 0.667x3y + 0.745x2y2 − 0.029xy3 + 0.072y4 = 0,

in three distinct stages. Note how the geometry is well captured, even with a
small number of subdivisions.

Figure 8: Polygonization of Taubin’s curve (1).
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Figure 9: Polygonization of Taubin’s curve (2).

Figure 10: Polygonization of Taubin’s curve (3).

10 Conclusion

We have developed a theory of simplicial diffeomoprphisms. This type of spatial
mapping is very powerful and can be used in several applications. In particular,
it can be applied to the pieciewise description of shapes through curved isocom-
plexes. Simplicial diffeomorphisms can also be employed as a general warping
mechnism with intuitive controls.

We have shown how to define simplicial diffeomorphisms using the notion
of simplicial invariant functions and three alternative ways to construct them
with different properties: using monotonic functions; using polynomial basis;
and rational polynomials.

We have also discussed conditions to enforce smoothness fo curved isocom-
plexes generated with simplicial diffeomorphism, and demonstrated examples of
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applications to free-form modeling and implicit surface approximation.
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A Linear algebra lemmas

Lemma A.1. Let A = (aij) ∈ R
m×m be a 0−1 matrix where rows and columns

have exactly two ones and such that det(A) 	= 0. Then there are permutations
π, γ ∈ Sm, that are related to permutation matrices P = (pij) e C = (cij), with
pij = δπ(i),j and cij = δγ(i),j, such that

1. PA = Id +C;

2. γ is a derangement;

3. If γ = γ1γ2 . . . γk, where γi are disjoint cycles, then each γi is even and
det(Id +C) = 2k;

4. If B = (bij) ∈ R
m×m is a matrix such that bij ≥ 0 and bij = 0 ⇔ aij = 0,

then det(A) det(B) > 0.

Proof. 1. There is a matrix P such that PA has only ones in its diagonal,
because otherwise, by the very definition of determinant, det(A) would be
zero. Define, therefore, C = PA − Id. As A has exactly two ones in each
row and column, C has exactly one one in each row and column, hence is
a permutation matrix;

2. As C diagonal has only zeros, γ is a derangement;

3. Let D = Id +C. We have that

dij = [i = j] + [γ(i) = j].
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By the definition of determinant,

det(D) =
∑

σ∈Sm

sgn(σ)Πi([i = σ(i)] + [γ(i) = σ(i)]).

But
∀i, [i = σ(i)] + [γ(i) = σ(i)] = 1 ⇔ σ = γk1 . . . γkj ,

where {k1, . . . , kj} ⊂ {1, . . . , k}. It follows that

det(D) =
∑

{k1,...,kj}⊂{1,...,k}
sgn(γk1 . . . γkj ) = Πk

i=1(1 + sgn(γi)).

Therefore each γi is a even permutation, because otherwise det(D) would
be zero, and det(D) = 2k.

4.
det(A) det(B) = det(P ) det(A) det(P ) det(B) = det(D) det(E)

where E = PB is such that eij > 0 ⇔ dij > 0. Thus the permutations
σ such that Πm

i=1eiσ(i) 	= 0 are exactly equal to γk1 . . . γkj . As each γi is
even, det(E) > 0, and det(A) det(B) > 0.

Corollary A.2. Let A = (aij) ∈ R
m×m be a 0 − 1 matrix having at most two

ones per row and such that det(A) 	= 0. If B = (bij) ∈ R
m×m is a matrix with

bij ≥ 0 and bij = 0 ⇔ aij = 0, then det(A) det(B) > 0.

Proof. If A has exactly two ones per row and column, we can apply the previous
lemma. Otherwise, we can exchange rows and columns in such a way that

P1AQ1 =
(

1 0
q A1

)
or P1AQ1 =

(
1 q
0 A1

)

for permutation matrices P1 and Q1. Note that det(A) = s1 det(A1), with
s1 ∈ {−1, 1}. Proceeding inductively, we obtain a matrix An that has exactly
two ones per row and column, such that

det(A) = sn det(An).

Applying the same procedure to matrix B, we conclude that

det(A) det(B) = (sn det(An))(snb1 . . . bk det(Bn)) =

s2
n(b1 . . . bk)(det(An) det(Bn)) > 0

where bi are certain elements of B.

Lemma A.3. If M = Id +uvT + abT , with vT a = 0, then

detM = (1 + vT u)(1 + bT a).
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Proof. The identity
det(Id +uvT ) = 1 + vT u

holds in general, therefore we conclude that

det(N + abT ) = det(N−1) det(N + abT ) det(N) =

det(Id +N−1abT ) det(N) = det(N) + bT (det(N)N−1)a,

for an invertible N . Letting N = Id +uvT , gives

N−1 = Id− 1
1 + vT u

uvT ,

and

det(M) = det(N + abT ) = (1 + vT u) + bT ((1 + vT u) Id−uvT )a =

= (1 + vT u)(1 + bT a).

Lemma A.4. If M = diag(u) + uvT , then

detM = (
∏

i

ui)(1 +
∑

i

vi).

Proof.

det(diag(u) + uvT ) = det(diag(u)(Id +11vT )) = (
∏

i

ui)(1 +
∑

i

vi).

Lemma A.5. Let A = [aij ] be a n × n matrix such that
∑

i aij = 0, for all
j = 1, . . . , n. Then Aij = Akj , for all i, j, k = 1, . . . , n, where Aij denotes the
cofator of A obtained by deleting row i and column j.

Proof. We’ll show that A21 = A11 and the general result follows after a suitable
permutation of rows and columns. We have that

A21 = −

∣∣∣∣∣∣∣∣∣
a12 a13 · · · a1n

a32 a33 · · · a3n

...
...

. . .
...

an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣
=

−

∣∣∣∣∣∣∣∣∣
−∑n

i=2 ai2 −∑n
i=2 ai3 · · · −∑n

i=2 ain

a32 a33 · · · a3n

...
...

. . .
...

an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣
=

n∑
i=2

∣∣∣∣∣∣∣∣∣
ai2 ai3 · · · ain

a32 a33 · · · a3n

...
...

. . .
...

an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
a22 a23 · · · a2n

a32 a33 · · · a3n

...
...

. . .
...

an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣
= A11.
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