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Abstract. We describe arbitrary multiplicative differential forms on Lie groupoids
infinitesimally, i.e., in terms of Lie algebroid data. This description is based on the
study of linear differential forms on Lie algebroids and encompasses many known
integration results related to Poisson geometry. We also revisit multiplicative mul-
tivector fields and their infinitesimal counterparts, drawing a parallel between the
two theories.
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1. Introduction

This paper is devoted to the study of multiplicative differential forms on Lie
groupoids, with focus on their infinitesimal counterparts. Given a Lie groupoid
G over a manifold M , recall that a k-form ω ∈ Ωk(G) is called multiplicative if
m∗ω = pr∗1ω + pr∗2ω, where m : G(2) = G ×M G → G is the groupoid multiplication,
and pri : G(2) → G, i = 1, 2, are the natural projections. Our goal is to characterize
multiplicative forms on G solely in terms of information from its Lie algebroid.
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Much of the motivation for this work comes from symplectic geometry and its
generalizations, including Poisson and Dirac structures [10, 26], as well as generalized
complex structures [16, 17]; it is known (e.g. from [5, 9, 11]) that all these geometrical
structures encode infinitesimal data relative to multiplicative 2-forms and, as a result,
Lie groupoids equipped with multiplicative 2-forms provide global models for these
geometries. There are further connections between multiplicative 2-forms and the
theory of moment maps, found e.g. in [4, 5, 23, 27].

Multiplicative differential forms also arise as constituents of the Bott-Schulman
double complex of Lie groupoids [2] (see also [1] and references therein), which com-
putes the cohomology of their classifying spaces. So the problem of understanding
multiplicative forms infinitesimally may be seen as part of the problem of finding
infinitesimal models for the cohomology of classifying spaces. This broader perspec-
tive is explored in the recent work [1], leading to results closely related to ours; a
comparison between our viewpoint and the one in [1] is also discussed in this paper.

Our approach to describe multiplicative forms infinitesimally starts with the study
of linear differential forms on vector bundles A → M . We observe (Theorem 2.5)
that any linear k-form on A is equivalent to a pair (µ, ν) of vector-bundle maps
µ : A → ∧k−1T ∗M , ν : A → ∧kT ∗M , covering the identity on M . If A carries a
Lie algebroid structure, with bracket [·, ·] and anchor ρ, we say that the pair (µ, ν)
is an IM k-form (IM standing for infinitesimally multiplicative) if the following
compatibility conditions are satisfied: for all u, v ∈ Γ(A),

(1) iρ(u)µ(v) = −iρ(v)µ(u),
(2) µ([u, v]) = Lρ(u)µ(v)− iρ(v)dµ(u)− iρ(v)ν(u),
(3) ν([u, v]) = Lρ(u)ν(v)− iρ(v)dν(u).

We prove in Theorem 4.6 that multiplicative k-forms on a source-simply-connected
Lie groupoid G over M are in one-to-one correspondence with IM k-forms on its Lie
algebroid A→M . Concretely, the IM k-form (µ, ν) associated with a multiplicative
k-form ω ∈ Ωk(G) is defined by

〈µ(u), X1 ∧ . . . ∧Xk−1〉 = ω(u,X1, . . . , Xk−1),

〈ν(u), X1 ∧ . . . ∧Xk〉 = dω(u,X1, . . . , Xk),

where Xi ∈ TM , i = 1, . . . , k, and we view M ⊆ G and A ⊆ TG|M .
A special class of IM-forms is obtained as follows. Any closed form φ ∈ Ωk+1(M)

determines a map ν : A → ∧kT ∗M , ν(u) = −iρ(u)φ, satisfying condition (3) above.
The IM k-forms (µ, ν) with ν of this type are referred to as IM k-forms relative to
φ; they are the infinitesimal versions of multiplicative k-forms satisfying

dω = s∗φ− t∗φ,

where s and t denote the groupoid source and target maps. For k = 2, IM forms
relative to φ include φ-twisted Poisson and Dirac structures [26], and our Theorem 4.6
recovers their known integrations [5, 8]. For arbitrary k, IM forms relative to φ were
studied in [1] in connection with the Weil algebra of a Lie algebroid. These and
other examples are discussed in this paper.

The method we use to integrate IM forms on Lie algebroids to multiplicative forms
on Lie groupoids relies entirely on the known correspondence between Lie-algebroid
and Lie-groupoid morphisms (Lie’s second theorem for Lie algebroids); in particular,
we do not resort to the path spaces of [7, 12, 25], hence avoiding infinite dimensional
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constructions. Although our method is inspired by [3, 21, 22], it brings a technical
difference in that we represent differential k-forms on a manifold N by functions
⊕kTN → R (as opposed to maps ⊕k−1TN → T ∗N); this small variation greatly
simplifies computations, so even when restricted to known situations, our general
proof seems more direct than existing ones. The integration of IM forms is carried
out in two steps: first, we show that an IM k-form on a Lie algebroid A → M
defines an element in Ωk(A) whose associated function ⊕kTA→ R is a Lie-algebroid
morphism; second, upon integration, one obtains a groupoid morphism ⊕kTG → R
which defines a multiplicative k-form.

In the last part of the paper, we revisit multiplicative multivector fields on Lie
groupoids, as in [18]. We show how the very same techniques used to study mul-
tiplicative forms apply to the dual situation of multivector fields, leading to an
alternative proof of the universal lifting theorem of [18] (not involving path spaces)
and drawing a clear parallel between the two theories.

As a final remark, we note that the results in this paper admit a natural formu-
lation in terms of graded geometry. Multiplicative forms and multivector fields on
a given Lie groupoid G may be seen as multiplicative functions on the associated
graded Lie groupoids T [1]G and T ∗[1]G, respectively. On ordinary Lie groupoids,
the infinitesimal counterpart of a multiplicative function is a Lie-algebroid cocycle.
The same holds at the graded level and, from this perspective, our results consist
in using the geometry of T [1]G and T ∗[1]G to obtain concrete descriptions of their
Lie-algebroid cocycles. For example, using the the natural multiplicative vector field
on T [1]G (the de Rham differential on G), one identifies its Lie-algebroid cocycles
with IM forms (see Theorem 3.1); for an analogous description of the Lie-algebroid
cocycles of the graded groupoid T ∗[1]G (see Theorem 6.1), ones uses its canonical
multiplicative symplectic structure (defined by the Schouten bracket on G). We will
not elaborate on the supergeometric viewpoint in this paper, though it makes our
results more intuitive.

The paper is organized as follows. In Section 2, we consider linear differential forms
on vector bundles A → M and establish their correspondence with pairs of vector-
bundle maps (µ, ν), where µ : A→ ∧k−1T ∗M and ν : A→ ∧kT ∗M . In Section 3, we
define IM k-forms on Lie algebroids and prove a compatibility result with tangent Lie
algebroid structures (Theorem 3.1). Section 4 is devoted to Theorem 4.6, which is
the correspondence between IM forms on Lie algebroids and multiplicative forms on
Lie groupoids; we also discuss several special cases of this result. Section 5 explains
the relationship between Theorem 4.6 and the Van Est isomorphism of [1]. In Section
6, we revisit the theory of multivector fields from [18].

Acknowledgments. We thank D. Iglesias Ponte and C. Ortiz for helpful discussions
related to this project. Cabrera thanks CNPq for financial support and IMPA for
its hospitality and stimulating environment during the development of this work.
Bursztyn’s research has been supported by CNPq and Faperj.

Notation, conventions and identities. For vector bundles A→M and B →M
over the same base M , a vector-bundle map Ψ : A→ B is always assumed to cover
the identity map on M , unless stated otherwise. We denote its transpose, or dual, by
Ψt : B∗ → A∗. We denote the k-fold direct sum of a vector bundle qA : A → M by
⊕kMA, or simply ⊕kA if there is no risk of confusion. We may also use the notation
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qA
A if we want to be explicit about the projection map qA (this is relevant when

dealing with double vector bundles).
For a Lie groupoid G over M , we usually denote its source and target maps by

s and t. The set G(2) ⊂ G × G of composable pairs is defined by the condition
s(g) = t(h), and the multiplication is denoted by m : G(2) → G, m(g, h) = gh. The
unit map ε : M → G is often used to identify M with its image in G. The Lie
algebroid of G is AG = ker(T s)|M , with anchor T t|A : A → M and bracket induced
by right-invariant vector fields. For a Lie algebroid A → M , we denote its anchor
by ρA and bracket by [·, ·]A (or simply ρ and [·, ·], if there is no risk of confusion).

We introduce some notation and collect some identities that will be useful for later
computations. If U1, . . . , Um are vector fields on a manifold M , we set

(1.1) IUm,r := iUm . . . iUr , r ≤ m,
where iU is the usual contraction. An inductive application of Cartan’s formula gives

(1.2) IUm,1d =
m∑
l=1

(−1)l+1IUm,l+1LUlI
U
l−1,1 + (−1)mdIUm,1,

where d denotes the de Rham differential and LU is the Lie derivative. Given another
vector field X and recalling the commutator formula i[X,Ul] = LXiUl − iUlLX , we
obtain

(1.3) LXIUm,1 =
m∑
l=1

IUm,l+1i[X,Ul]I
U
l−1,1 + IUm,1LX .

Given a differential form α, we also have

(1.4) IUm,1(df ∧ α) =
m∑
l=1

(−1)l+1df(Ul)IUm,l+1I
U
l−1,1α+ (−1)mdf ∧ IUm,1α.

We often use Einstein’s summation convention when there is no risk of confusion.

2. Linear forms on vector bundles

In order to define linear forms, we recall a few facts about tangent and cotangent
bundles of vector bundles.

2.1. Tangent and cotangent bundles of vector bundles. Let qA : A −→M be
a vector bundle, and let TA be the tangent bundle of the total space A. Besides its
natural vector bundle structure over A, with projection map denoted by pA : TA −→
A, it is also a vector bundle over TM , with respect to the map TqA : TA −→ TM .

It is useful to consider a coordinate description of these bundles. Let (xj) be
coordinates on M , j = 1, . . . ,dim(M), and let {ed} be a basis of local sections
of A, d = 1, . . . , rank(A). The corresponding coordinates on A are denoted by
(xj , ud), and tangent coordinates on TA by (xj , ud, ẋj , u̇d). In this notation, given
x = (xj), the coordinates (ud) specify a point in Ax, (ẋj) a point in TxM , whereas
(u̇d) determines a point on a second copy of Ax, tangent to the fibres of A −→ M .
Note that pA(xj , ud, ẋj , u̇d) = (xj , ud), and TqA(xj , ud, ẋj , u̇d) = (xj , ẋj).

Similarly, consider the cotangent bundle T ∗A, with local coordinates (xj , ud, pj , ξd),
where (pj) determines a point in T ∗xM , and (ξd) a point in A∗x, dual to the direction
tangent to the fibres of A −→ M . In this case, besides the natural vector bundle
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structure cA : T ∗A −→ A, cA(xj , ud, pj , ξd) = (xj , ud), T ∗A is also a vector bundle
over A∗ [21], with respect to the projection map given in coordinates by

(2.1) r : T ∗A −→ A∗, r(xj , ud, pj , ξd) = (xj , ξd).

The total spaces TA and T ∗A are examples of double vector bundles, see [20, 24].
They fit into the following commutative diagrams:

TA
TqA //

pA
��

TM

pM
��

A qA
// M

T ∗A
r //

cA
��

A∗

qA∗

��
A qA

// M

where

(2.2) pM : TM −→M, pM (xj , ẋj) = (xj), qA∗ : A∗ −→M, qA∗(xj , ξd) = (xj),

are the natural projections. Recall, see e.g. [20], that the intersection of the kernels
of the top and left arrows on each diagram defines a vector bundle over M , known
as the core. In the case of TA, the core is identified with A −→M , with coordinates
(xj , u̇d); for T ∗A, the core is T ∗M , with coordinates (xj , pj).

2.2. The structure of linear forms on vector bundles. Let A −→ M be a
vector bundle, with local coordinates (xj , ud), and let us consider the k-fold direct
sum of TA over A,

⊕kATA := TA×A . . .×A TA,

locally described by coordinates (xj , ud, ẋj1, . . . , ẋ
j
k, u̇

d
1, . . . , u̇

d
k). It is a vector bundle

over A, with projection map

(xj , ud, ẋj1, . . . , ẋ
j
k, u̇

d
1, . . . , u̇

d
k) 7→ (xj , ud),

and also a vector bundle over ⊕kTM = TM ×M . . .×M TM , with projection map

(xj , ud, ẋj1, . . . , ẋ
j
k, u̇

d
1, . . . , u̇

d
k) 7→ (xj , ẋj1, . . . , ẋ

j
k).

Given a k-form Λ ∈ Ωk(A) on the total space of A −→ M , let us consider the
induced maps

Λ] : ⊕k−1
A TA −→ T ∗A, Λ](U1, . . . , Uk−1) = iUk−1

. . . iU1Λ,(2.3)

Λ : ⊕kATA −→ R, Λ(U1, . . . , Uk) = iUk . . . iU1Λ,(2.4)

which are alternating and linear in each of their entries1.

Definition 2.1. A k-form Λ is called linear if the induced map Λ] (2.3) is a mor-
phism of vector bundles with respect to the vector bundle structures ⊕k−1

A TA −→
⊕k−1TM and T ∗A −→ A∗. The space of linear k-forms on A is denoted by Ωk

lin(A).

1Notice that, since Λ] (resp. Λ) is multilinear in its entries, it is not a vector-bundle morphism
from the direct sum ⊕k−1TA→ A (resp. ⊕kTA→ A) to T ∗A→ A∗, unless k = 2 (resp. k = 1).
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In particular, Λ] covers a base map λ : ⊕k−1TM −→ A∗,

(2.5) ⊕k−1
A TA

Λ] //

��

T ∗A

r

��
⊕k−1TM

λ
// A∗.

The map λ is skew symmetric on its entries, so it can be viewed as a vector-bundle
map ∧k−1TM −→ A∗. Its transpose is the vector-bundle map

(2.6) λt : A −→ ∧k−1T ∗M.

A simple computation in coordinates shows the following.

Lemma 2.2. Given a k-form Λ ∈ Ωk(A), the following are equivalent:
(1) Λ is linear.
(2) In local coordinates (xj , ud) on A, Λ has the form

Λ =
1
k!

Λi1...ik,d(x)uddxi1 ∧ . . . ∧ dxik+(2.7)

1
(k − 1)!

λi1...ik−1d(x)dxi1 ∧ . . . ∧ dxik−1 ∧ dud,

where λi1...ik−1d = 〈λ(∂xi1 , . . . , ∂xik−1 ), ed〉, and ∂xj = ∂
∂xj

.
(3) The map Λ : ⊕kATA −→ R defines a vector-bundle map

(2.8) ⊕kATA
Λ //

��

R

��
⊕kTM // {∗}.

Given a vector-bundle map µ : A −→ ∧kT ∗M , let us consider the linear k-form
Λµ on A given at a point u ∈ A by

(2.9) (Λµ)u := TqA|tuµ(u).

In local coordinates (xi, ud) on A, Λµ is written as

(2.10) (Λµ)u =
1
k!
µi1...ik,d(x)uddxi1 ∧ . . . ∧ dxik ,

where µi1...ik,d is defined by

µi1...ik,d =
〈
µ(ed),

∂

∂xi1
∧ . . . ∧ ∂

∂xik

〉
.

Example 2.3. When k = 1, a direct computation in coordinates shows that the
linear 1-form Λµ, defined by the vector-bundle map µ : A −→ T ∗M , satisfies

(2.11) Λµ = µ∗θcan,

where θcan = pidxi is the canonical 1-form on T ∗M . (When A = M −→ M is the
vector bundle with zero fibres, (2.11) recovers the well-known “tautological” property
µ∗θcan = µ.)



7

Lemma 2.4. A linear k-form Λ covers the fibrewise zero map in (2.5) if and only
if it is of the form Λµ (as in (2.9)) for a vector bundle map µ : A −→ ∧kT ∗M .

Proof. We can use Lemma 2.2, or argue more globally as follows. Consider the
projection r : T ∗A −→ A∗, as in (2.1). One can directly check that

ker(r)u = (ker(TqA|u))◦ = im(TqA|tu),

where ◦ stands for the annihilator. It follows from (2.9) that r◦Λ]µ = 0, which means
that Λµ covers the fibrewise zero map in (2.5). Conversely, if Λ covers the fibrewise
zero map, then r ◦ Λ] = 0; so, given U1, . . . , Uk ∈ TuA, Λ](U1, . . . , Uk−1) = TqA|∗uα
for some α ∈ T ∗qA(u)M . Since Λ is skew symmetric, we conclude that Λ(U1, . . . , Uk)
only depends on TqA|u(Uj), j = 1, . . . , k. Hence, for each u ∈ A, there exists
µ(u) ∈ ∧lT ∗qA(u)M such that (Λ)u = TqA|∗uµ(u). The linear dependence of µ(u) on
u follows from the linear dependence of (Λ)u on u, see (2.7); the resulting vector
bundle map µ : A −→ ∧kT ∗M is smooth by the local expression (2.10). �

Proposition 2.5. There is a one-to-one correspondence between linear k-forms Λ on
A, covering a map λ : ⊕k−1TM −→ A∗, and pairs (µ, ν), where µ : A −→ ∧k−1T ∗M
and ν : A −→ ∧kT ∗M are vector bundle morphisms. The correspondence is given by

(2.12) Λ = dΛµ + Λν ,

where µ = (−1)k−1λt.

Proof. Let Λ be a linear k-form on A, and set µ = (−1)k−1λt. A direct computation
using the local expression (2.10) and Lemma 2.2 shows that the k-form dΛµ is linear
and covers the same map λ, hence the linear k-form Λ−dΛµ covers the fibrewise zero
map. By Lemma 2.4, there is a unique ν : A −→ ∧kT ∗M such that Λ−dΛµ = Λν . �

A direct consequence of (2.12) is that if Λ is a linear form, then so is dΛ.

Example 2.6. Let Λ ∈ Ω2(A) be a linear 2-form with dΛ = 0. According to the
previous proposition, we can write it as Λ = dΛµ + Λν , and Λ being closed amounts
to dΛν = 0; this condition immediately implies that ν = 0, so Λ = dΛµ. Using
(2.11), it follows that

Λ = (λt)∗ωcan,
where ωcan = −dθcan = dxi ∧ dpi the canonical symplectic form on T ∗M (see [19,
Sec. 7.3], and also [3, Prop. 4.3]).

2.3. Tangent lifts. We now briefly discuss linear forms obtained via the tangent
lift operation [14, 28] (see also [3]), that assigns to any k-form on a manifold M a
linear k-form on the total space of its tangent bundle pM : TM →M .

Let us consider the operation

(2.13) τ : Ωl(M) −→ Ωl−1(TM), τ(β)|X := (TpM |X)t(iXβ),

where X ∈ TM and l ≥ 1; i.e., for U1, . . . , Ul−1 ∈ TX(TM),

iUl−1
. . . iU1τ(β)|X = β(X,TpM (U1), . . . , TpM (Ul−1)).

In the notation of Section 2.2, τ(β) is a linear (l − 1)-form on the vector bundle
A = TM of type Λν , where

ν : TM −→ ∧l−1T ∗M, ν(X) = iXβ.
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It directly follows from Example 2.3 that, if ω ∈ Ω2(M), then τ(ω) = (ω])∗θcan,
where θcan = pidxi is the canonical 1-form on T ∗M .

The tangent lift operation,

(2.14) Ωk(M) −→ Ωk(TM), α 7→ αT ,

assigns to α ∈ Ωk(M) the form αT ∈ Ωk(TM) defined by the Cartan-like formula

(2.15) αT = dτ(α) + τ(dα).

It follows directly from (2.15) that αT is linear and that the operation (2.14) is
compatible with exterior derivatives, in the sense that (dα)T = dαT .

We will also need an equivalent characterization of the tangent lift, see e.g. [14].
Given α ∈ Ωk(M), consider the associated map

α : ⊕kTM −→ R, (X1, . . . , Xk) 7→ α(X1, . . . , Xk).

Let
∏k
TpM

T (TM) denote the fibred product with respect to the vector bundle

TpM : T (TM) −→ TM, TpM (xj , ẋj , δxj , δẋj) = (xj , δxj),

where (xj , ẋj , δxj , δẋj) are the local coordinates on T (TM) induced by the tan-
gent coordinates (xj , ẋj) on TM . We have a natural identification T (⊕kTM) ∼=∏k
TpM

T (TM), so we can view the differential of the function α in C∞(⊕kTM) as a
map

dα :
k∏

TpM

T (TM) −→ R.

Note that the canonical involution

(2.16) JM : T (TM) −→ T (TM), JM (xj , ẋj , δxj , δẋj) = (xj , δxj , ẋj , δẋj),

induces an identification

J
(k)
M :

k∏
pTM

T (TM) −→
k∏

TpM

T (TM).

One can prove (see e.g. [14]) that, given α ∈ Ωk(M), its tangent lift αT ∈ Ωk(TM)
is uniquely determined by the condition

(2.17) αT = dα ◦ J (k)
M :

k∏
pTM

T (TM) −→ R.

3. Linear forms on Lie algebroids

3.1. Core and linear sections. Let us consider local coordinates (xj) on M , a
basis of local sections {ed} of A, and dual basis {ed} of A∗. As in Section 2, we
denote the corresponding coordinates on A by (xj , ud), and on A∗ by (xj , ξd), while
coordinates on TA are denoted by (xj , ud, ẋj , u̇d), and on T ∗A by (xj , ud, pj , ξd).

Each local section ea of A defines two local sections of TA −→ TM by

(3.1) êa(xj , ẋj) = (xj , 0, ẋj , δda), T ea(xj , ẋj) = (xj , δda, ẋ
j , 0),

where δda is the d-th component of ea, i.e., 1 if d = a or zero otherwise.
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More generally, ea defines two types of local sections of ⊕kATA −→ ⊕kTM as
follows: the first type is given, for each n ∈ {1, . . . , k}, by

(3.2) êa,n(ẋ1 ⊕ . . .⊕ ẋk) := 0̂(ẋ1)⊕ . . .⊕ 0̂(ẋn−1)⊕ êa(ẋn)⊕ 0̂(ẋn+1)⊕ . . .⊕ 0̂(ẋk),

where ẋl = (xj , ẋjl ) belongs to the l-th component of ⊕kTM and 0̂(ẋl) = (xj , 0, ẋjl , 0);
the second type is

(3.3) (Tea)k(ẋ1 ⊕ . . .⊕ ẋk) := Tea(ẋ1)⊕ . . .⊕ Tea(ẋk).

The sections êa,n and (Tea)k are examples of core and linear sections, respectively,
of double vector bundles (see e.g. [13, 20]). A key property is that they generate the
module of local sections of ⊕kATA −→ ⊕kTM . Note also that, under the natural
projection ⊕kATA −→ A, core sections êa,n are sent to the zero section of A −→M ,
while linear sections (Tea)k map to the section ea.

3.2. Tangent Lie algebroids. Suppose that A −→M carries a Lie algebroid struc-
ture (see e.g. [6, 20]), with Lie bracket [·, ·]A on Γ(A) and anchor map ρA : A −→ TM .
Then the vector bundle TA −→ TM inherits a natural Lie algebroid structure,
known as the tangent Lie algebroid, see e.g. [21]. We will need local expressions for
the tangent Lie algebroid in terms of the coordinates introduced in Section 3.1.

The Lie algebroid A −→ M is locally determined by structure functions ρja and
Ccab defined by

(3.4) ρA(ea) = ρja
∂

∂xj
, [ea, eb]A = Ccabec.

The tangent Lie algebroid structure on TA −→ TM is defined in terms of core and
linear sections (3.1) by

[êa, êb]TA = 0, [Tea, êb]TA = Ccabêc, [Tea, T eb]TA = CcabTec + ẋi
∂Ccab
∂xi

êc,(3.5)

ρTA(Tea) = ρja
∂

∂xj
+ ẋi

∂ρja
∂xi

∂

∂ẋj
, ρTA(êa) = ρja

∂

∂ẋj
.(3.6)

In (3.6), we have identified points in T (TM), written in coordinates as (xj , ẋj , δxj , δẋj),
with tangent vectors

δxj
∂

∂xj
+ δẋj

∂

∂ẋj

∣∣∣
(xj ,ẋj)

.

We notice that the tangent Lie algebroid induces a Lie algebroid structure on the
direct sum ⊕kATA −→ ⊕kTM . This is a general property of VB-algebroids, which
we directly verify in this example. A simple consequence of (3.5) and (3.6) is that if
U and V are local sections of TA −→ TM , each of type êa or Tea, then

(3.7) TpM (ρTA(U)) = ρA(pA(U)), pA([U, V ]TA) = [pA(U), pA(V )]A,

where pM : TM −→ M and pA : TA −→ A are the natural projections. It follows
from the first equation in (3.7) that if U1⊕ . . .⊕Uk ∈ ⊕kATA is of type (3.2) or (3.3),
then

TpM (ρTA(Ul)) = TpM (ρTA(Um)), ∀l,m ∈ {1, . . . , k}.
As a result, (ρTA(U1), . . . , ρTA(Uk)) defines an element in

∏k
TpM

T (TM). Using the
natural identification

∏k
TpM

T (TM) = T (⊕kTM), we obtain a vector bundle map
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ρk : ⊕kATA −→ T (⊕kTM),

(3.8) ρk(U1 ⊕ . . .⊕ Uk) := ρTA(U1)⊕ . . .⊕ ρTA(Uk).

Writing ⊕kTM in local coordinates (xj , ẋj1, . . . , ẋ
j
k), we have the following explicit

formulas:

ρk(êa,n) = ρja
∂

∂ẋjn
,(3.9)

ρk((Tea)k) = ρja
∂

∂xj
+

k∑
n=1

W j
a,n

∂

∂ẋjn
,(3.10)

where W j
a,n = ẋin

∂ρja
∂xi
∈ C∞(⊕kTM).

The second equation in (3.7) implies that if U1 ⊕ . . . ⊕ Uk and V1 ⊕ . . . ⊕ Vk are
local sections of ⊕kATA −→ ⊕kTM of type (3.2) or (3.3), then

(3.11) [U1 ⊕ . . .⊕ Uk, V1 ⊕ . . .⊕ Vk]k := [U1, V1]TA ⊕ . . .⊕ [Uk, Vk]TA

is a well-defined local section of ⊕kATA −→ ⊕kTM . Explicitly, we have:

[êa,n, êb,m]k = 0,(3.12)

[(Tea)k, êb,m]k = Cdabêd,m(3.13)

[(Tea)k, (Teb)k]k = Cdab(Ted)
k +

k∑
n=1

ẋin
∂Cdab
∂xi

êd,n.(3.14)

The induced Lie algebroid structure on ⊕kATA −→ ⊕kTM is defined by ρk and
the extension of [·, ·]k to all sections via the Leibniz rule2.

3.3. IM-forms. Let Λ ∈ Ωk(A) be a linear k-form on a Lie algebroid A −→ M ,
k ≥ 1. Following Prop. 2.5, let µ : A −→ ∧k−1T ∗M and ν : A −→ ∧kT ∗M be the
vector-bundle maps such that Λ = dΛµ + Λν . Let us consider the bundle map

(3.15) ⊕kATA
Λ //

��

R

��
⊕kTM // {∗}.

The following is the main result of this section.

Theorem 3.1. The map (3.15) is a Lie algebroid morphism if and only if the fol-
lowing holds for all u, v ∈ Γ(A):

iρ(u)µ(v) = −iρ(v)µ(u)(3.16)

µ([u, v]) = Lρ(u)µ(v)− iρ(v)dµ(u)− iρ(v)ν(u)(3.17)

ν([u, v]) = Lρ(u)ν(v)− iρ(v)dν(u).(3.18)

2We adopt the simplified notation ρk, [·, ·]k, instead of ρ⊕k
AT A and [·, ·]⊕k

AT A; in particular, ρ1 =

ρT A and [·, ·]1 = [·, ·]T A.
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For a Lie algebroid A→M and vector-bundle maps

µ : A −→ ∧k−1T ∗M, ν : A −→ ∧kT ∗M, k ≥ 1,

we say that the pair (µ, ν) is an IM k-form on A if conditions (3.16), (3.17) and
(3.18) are satisfied. The terminology IM stands for infinitesimally multiplicative, and
it will be clarified in Section 4. The space of IM k-forms on A is denoted by ΩIM(A).

We note that Theorem 3.1 can be alternatively phrased in terms of the map Λ]

(2.5), as this map is a Lie algebroid morphism if and only if so is Λ.

Remark 3.2. Given an IM-form (µ, ν), it follows from (3.17), using the skew-
symmetry and Jacobi identity for the Lie algebroid bracket [·, ·] on Γ(A), that ν
automatically satisfies

iρ(u)ν(v) = −iρ(v)ν(u),(3.19)

iρ(w)(Lρ(v)ν(u)− Lρ(u)ν(v)) + c.p. = 0(3.20)

for all u, v, w ∈ Γ(A), where c.p. stands for cyclic permutations in u, v, w.

Example 3.3. Consider a Lie algebroid A → M and a k-form η ∈ Ωk(M). Then
the pair (µ, ν) of vector-bundle maps

µ : A→ ∧k−1T ∗M, µ(u) = −iρ(u)η, and ν : A→ ∧kT ∗M, ν(u) = −iρ(u)dη,

defines an IM k-form on A.

Example 3.4. Let A → M be a Lie algebroid, and let φ ∈ Ωk+1(M) be such that
iρ(u)dφ = 0, ∀u ∈ Γ(A). One directly checks that the vector-bundle map ν : A −→
∧kT ∗M given by

(3.21) ν(u) := −iρ(u)φ

verifies (3.18). The particular IM k-forms (µ, ν) on A for which ν is given as in
(3.21) for a closed form φ ∈ Ωk+1(M) are called IM k-forms relative to φ. These
special types of IM forms have first appeared in [5] (for k = 2), and more recently in
[1] (for arbitrary k), in the study of multiplicative forms (see Section 4).

Remark 3.5. Let ιC : C ↪→ M be an orbit of the Lie algebroid A → M , i.e., an
integral leaf of the distribution ρ(A) ⊂ TM . If (µ, ν) is an IM k-form on A, then
we have induced forms µC ∈ Ωk(C) and νC ∈ Ωk+1(C) defined by

iρ(u)µC = ι∗Cµ(u), iρ(u)νC = ι∗Cν(u).

It follows from (3.16) and (3.19) that the formulas above do define differential forms
on C; moreover, (3.17) implies that dµC = νC. In particular, we see that any IM
k-form on a transitive Lie algebroid is like the one in Example 3.3.

In order to prove Thm. 3.1, we need some lemmas. We work in local coordinates
(xj , ud) on A, induced by coordinates (xj) on M and the choice of a basis of local
sections {ed} of A (see Section 3.1).

Lemma 3.6. Let ẋ = (ẋ1, . . . , ẋk) ∈ ⊕kTM , where ẋl = (xj , ẋjl ) belongs to the l-th
copy of TM . Then:

Λ(êa,n(ẋ1, . . . , ẋk)) = (−1)n−1I ẋk,n+1I
ẋ
n−1,1µ(ea),(3.22)

Λ((Tea)k(ẋ1, . . . , ẋk)) = I ẋk,1(dµ(ea) + ν(ea)),(3.23)

seen as functions in C∞(⊕kTM) (see (1.1) for notation).
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Proof. Writing Λ = dΛµ + Λν and recalling the local expressions of Λµ and Λν (see
(2.10)), we have

Λ|(xj ,ud) =
1

(k − 1)!
uddµi1...ik−1,d(x) ∧ dxi1 ∧ . . . ∧ dxik−1+(3.24)

1
(k − 1)!

µi1...ik−1,d(x)dud ∧ dxi1 ∧ . . . ∧ dxik−1+

1
k
νi1...ik,d(x)uddxi1 ∧ . . . ∧ dxik .

We write points in TA with coordinates (xj , ud, ẋj , u̇d) in terms of horizontal tangent
vectors ∂

∂xj
and vertical tangent vectors ∂

∂ud
as

ẋj
∂

∂xj
+ u̇d

∂

∂ud

∣∣∣
(xj ,ud)

.

In particular, recalling the local sections êa, 0̂ and Tea of TA → TM from Section
3.1, we have

0̂(ẋ) = ẋj
∂

∂xj

∣∣∣
(xj ,0)

, êa(ẋ) = ẋj
∂

∂xj
+

∂

∂ua

∣∣∣
(xj ,0)

, T ea(ẋ) = ẋj
∂

∂xj

∣∣∣
(xj ,δda)

,

where ẋ = (xj , ẋj) ∈ TM . Using (3.2) and (3.3), formulas (3.22) and (3.23) follow
from a direct calculation. �

Let (xj , ẋj1, . . . , ẋ
j
k) be local coordinates on ⊕kTM , and fix n ∈ {1, . . . , k}.

Lemma 3.7. Let α ∈ Ωl(⊕kTM) be such that L ∂

∂ẋ
j
n

α = 0 ∀j, and consider on

⊕kTM the local vector fields ẋn = ẋjn
∂
∂xj

, V v = vj(x) ∂

∂ẋjn
, and V h = vj(x) ∂

∂xj
.

Then LV v iẋnα = iV hα.

Proof. The proof follows from the identity i[X,Y ] = LXiY − iY LX and the fact that
[vi(x) ∂

∂ẋin
, ẋjn

∂
∂xj

] = vj ∂
∂xj
− ẋjn ∂v

i

∂xj
∂
∂ẋin

. �

We now proceed to the proof of the main result.

Proof. (of Theorem 3.1)
To show that the map Λ in (3.15) is a Lie algebroid morphism (see e.g. [20]), the

only condition to be verified is

(3.25) Λ([U, V ]k) = Lρk(U)Λ(V )− Lρk(V )Λ(U)

for all U, V sections of ⊕kATA −→ ⊕kTM . Since sections of type êa,n (core) and
(Teb)k (linear) locally generate the space of sections of ⊕kATA −→ ⊕kTM , it suffices
to verify (3.25) taking U and V to be of these types.

Core-Core: Let us consider two core sections êa,n and êb,m. Since [êa,n, êb,m]k = 0
(3.12), condition (3.25) in this case becomes

(3.26) Lρk(êa,n)Λ(êb,m)− Lρk(êb,m)Λ(êa,n) = 0.

Using (3.9) and (3.22), we see that

Lρk(êa,n)Λ(êb,m) = (−1)n−1Lρia ∂

∂ẋin

I ẋk,m+1I
ẋ
m−1,1µ(eb).



13

This condition is trivially satisfied when n = m, so we may assume that n > m (the
case n < m leads to the same). Using Lemma 3.7, we see that the right-hand side
of the last equation agrees with

(−1)n−1I ẋk,n+1iρ(ea)I
ẋ
n−1,m+1I

ẋ
m−1,1µ(eb) =

(−1)n−1(−1)n−2I ẋk,n+1I
ẋ
n−1,m+1I

ẋ
m−1,1iρ(ea)µ(eb).

Hence we obtain

Lρk(êa,n)Λ(êb,m) = −I ẋk,n+1I
ẋ
n−1,m+1I

ẋ
m−1,1iρ(ea)µ(eb).

An analogous computation leads to

Lρk(êb,m)Λ(êa,n) = I ẋk,n+1I
ẋ
n−1,m+1I

ẋ
m−1,1iρ(eb)µ(ea).

It follows that (3.26) is equivalent to

iρ(ea)µ(eb) = −iρ(eb)µ(ea).

Core-Linear: We now consider sections êb,m and (Tea)k, so that (3.25) reads

(3.27) Λ([(Tea)k, êb,m]k) = Lρk((Tea)k)Λ(êb,m)− Lρk(êb,m)Λ((Tea)k).

Using the linearity of Λ, (3.13) and (3.22), we have

Λ([(Tea)k, êb,m]k) = Λ(Cdabêd,m) = Cdab(−1)m−1I ẋk,m+1I
ẋ
m−1,1µ(ed)(3.28)

= (−1)m−1I ẋk,m+1I
ẋ
m−1,1µ([ea, eb]).

For each fixed n, consider the functions W j
a,n = ∂ρja

∂xi
ẋin defined in (3.10), noticing

the following identity (of local vector fields on ⊕kTM):

(3.29) W j
a,n

∂

∂xj
= −[ρ(ea), ẋn],

where ẋn = ẋin
∂
∂xi

. Using (3.29) and Lemma 3.7, we see that

Lρk((Tea)k)Λ(êb,m) =

(
Lρ(ea) +

k∑
l=1

LW i
a,l

∂

∂ẋi
l

)
(−1)m−1I ẋk,m+1I

ẋ
m−1,1µ(eb)

= (−1)m−1

(
Lρ(ea)I

U
k,1µ(eb)−

k∑
l=1

IUk,l+1i[ρ(ea),Ul]I
U
l−1,1µ(eb)

)
where U = (U1, . . . , Uk−1) = (ẋ1, . . . , ẋm−1, ẋm+1, . . . , ẋk). It follows from (1.3) that

(3.30) Lρk((Tea)k)Λ(êb,m) = (−1)m−1I ẋk,m+1I
ẋ
m−1,1Lρ(ea)µ(eb).

Using (3.23) and Lemma 3.7, we obtain

Lρk(êb,m)Λ((Tea)k) = Lρia ∂

∂ẋim

I ẋk,1(dµ(ea) + ν(ea)) = I ẋk,m+1iρ(ea)I
ẋ
m−1,1(dµ(ea) + ν(ea))

= (−1)m−1I ẋk,m+1I
ẋ
m−1,1iρ(ea)(dµ(ea) + ν(ea)).

Combining this last equation with (3.28) and (3.30), we see that (3.27) is equivalent
to

(3.31) µ([ea, eb]) = Lρ(ea)µ(eb)− iρ(eb)dµ(ea)− iρ(eb)ν(ea).
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Linear-Linear: We finally consider condition (3.25) for two linear sections:

(3.32) Λ([(Tea)k, (Teb)k]k) = Lρk((Tea)k)Λ((Teb)k)− Lρk((Teb)k)Λ((Tea)k).

Using (3.14) and the linearity of Λ, we have

Λ([(Tea)k, (Teb)k]k) = CdabΛ((Ted)k) +
k∑

n=1

dCdab(ẋn)Λ(êd,n)

= CdabI
ẋ
k,1(dµ(ed) + ν(ed)) +

k∑
n=1

(−1)n−1dCdab(ẋn)I ẋk,n+1I
ẋ
n−1,1µ(ed).(3.33)

It follows from (1.4) (also using that I ẋk,1µ(ed) = 0, since µ(ed) is a (k − 1)-form)
that

I ẋk,1C
d
abdµ(ed) = I ẋk,1d(Cdabµ(ed))− I ẋk,1(dCdab ∧ µ(ed))

= I ẋk,1d(Cdabµ(ed))−
k∑

n=1

(−1)n+1dCdab(ẋn)I ẋk,n+1I
ẋ
n−1,1µ(ed).

Comparing with (3.33), we conclude that

Λ([(Tea)k, (Teb)k]k) = I ẋk,1(dµ(Cdabed) + ν(Cdabed))(3.34)

= I ẋk,1(dµ([ea, eb]) + ν([ea, eb])).

Using Lemma 3.7, (3.29) and (1.3), we directly obtain

Lρ((Tea)k)Λ((Teb)k) =

(
Lρ(ea) +

k∑
n=1

LW i
a,n

∂

∂ẋin

)
I ẋk,1(dµ(eb) + ν(eb))(3.35)

= I ẋk,1Lρ(ea)(dµ(eb) + ν(eb)).

Similarly

(3.36) Lρ((Teb)k)Λ((Tea)k) = I ẋk,1Lρ(eb)(dµ(ea) + ν(ea)).

Combining (3.34), (3.35) and (3.36), we see that (3.32) is equivalent to

dµ([ea, eb]) + ν([ea, eb]) = Lρ(ea)(dµ(eb) + ν(eb))− Lρ(eb)(dµ(ea) + ν(ea)).

We may assume that (3.31) holds, in which case one can directly check that the last
equation is equivalent to

ν([ea, eb]) = Lρ(ea)ν(eb)− iρ(eb)dν(ea).

�

4. Infinitesimal description of multiplicative forms

In this section, we relate IM-forms on Lie algebroids with multiplicative forms
on Lie groupoids. Let G be a Lie groupoid over M , with source and target maps
denoted by s, t : G −→M , respectively, multiplication m : G(2) −→ G, and unit map
ε : M −→ G (that we often use to view M as a submanifold of G). The Lie algebroid
of G is denoted by A(G), or simply A if there is no risk of confusion; see Section 1.

A k-form α ∈ Ωk(G) is called multiplicative if

(4.1) m∗α = pr∗1α+ pr∗2α,
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where pr1, pr2 : G(2) −→ G are the natural projections. Alternatively, one may define
multiplicative forms in terms of a natural groupoid structure on TG over TM , known
as the tangent groupoid, see e.g. [20]; it has source (resp. target) map T s : TG −→
TM (resp. T t : TG −→ TM), multiplication Tm : (TG)(2) = TG(2) −→ TG, and
unit map Tε : TM −→ TG. This groupoid structure can be naturally extended to
the direct sum ⊕kGTG, k ≥ 1, making it a Lie groupoid over ⊕kTM , with source
(resp. target) map ⊕kT s (resp. ⊕kT t), multiplication map ⊕kTm, etc.

Let α ∈ Ωk(G), and let us consider the associated map

(4.2) α : ⊕kGTG −→ R, α(U1, . . . , Uk) = iUk . . . iU1α.

The following observation is immediate from (4.1).

Lemma 4.1. α is multiplicative if and only if α is a groupoid morphism. (Here R
is viewed as an additive group.)

We denote the space of multiplicative k-forms on G by Ωk
mult(G) .

4.1. From multiplicative to IM forms. Let G be a Lie groupoid over M , and
consider the tangent lift operation Ωk(G) → Ωk(TG), α 7→ αT , recalled in Section
2.3. Using the natural inclusion ιA : A = AG ↪→ TG, we define a map

(4.3) Lie : Ωk(G) −→ Ωk(A), α 7→ Lie(α) = ι∗AαT .

Given α ∈ Ωk(G), let us consider the associated bundle maps µ : A −→ ∧k−1T ∗M
and ν : A −→ ∧kT ∗M ,

〈µ(u), X1 ∧ . . . ∧Xk−1〉 = α(u,X1, . . . , Xk−1),(4.4)

〈ν(u), X1 ∧ . . . ∧Xk〉 = dα(u,X1, . . . , Xk),(4.5)

for X1, . . . , Xk ∈ TM and u ∈ A (here we use the natural inclusions TM ↪→ TG|M
and A ↪→ TG|M ).

Lemma 4.2. The k-form Lie(α) ∈ Ωk(A) is linear and satisfies

Lie(α) = dΛµ + Λν .

Proof. Let β ∈ Ωl(G) be any l-form on G, and let us consider the l − 1-form on A
given by ι∗Aτ(β) (see (2.13)), i.e.,

ι∗Aτ(β)|u = (TιA|u)tτ(β)|ιA(u) = (TιA|u)t(TpG |ιA(u))
tiιA(u)β

= (T (pG ◦ ιA)|u)tiιA(u)β.

From the commutative diagram

A
ιA //

qA

��

TG
pG

��
M ε

// G,

we see that
ι∗Aτ(β)|u = (TqA|u)t(Tε|qA(u))

tiιA(u)β.

It immediately follows (see (2.9)) that

ι∗Aτ(α) = Λµ, ι∗Aτ(dα) = Λν .
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Using (2.15), we see that

Λ = ι∗A(dτ(α) + τ(dα)) = dι∗Aτ(α) + ι∗Aτ(dα) = dΛµ + Λν .

�

Recall that any groupoid morphism ψ : G1 −→ G2 defines a Lie algebroid morphism
Lie(ψ) : AG1 −→ AG2 that fits into the diagram

(4.6) TG1
Tψ // TG2

AG1
Lie(ψ)

//

ιA1

OO

AG2

ιA2

OO

When α ∈ Ωk(G) is multiplicative, we saw in Lemma 4.1 that α : ⊕kGTG −→ R is a
groupoid morphism; we consider its infinitesimal counterpart,

Lie(α) : A(⊕kGTG) −→ R,

where now R is viewed as the trivial Lie algebroid over a point. The natural projec-
tion pG : TG −→ G is a groupoid morphism, and there is a canonical identification
of Lie algebroids3

A(⊕kGTG) =
k∏

Lie(pG)

A(TG).

Our next goal is to compare the following two maps:

Lie(α) : ⊕kAT (AG) −→ R and Lie(α) :
k∏

Lie(pG)

A(TG) −→ R.

The involution JG : T (TG) −→ T (TG) (see (2.16)) defines an identification of Lie
algebroids jG : T (AG) −→ A(TG) via the diagram

(4.7) T (AG)
jG //

TιAG
��

A(TG)

ιA(TG)
��

T (TG)
JG

// T (TG)

Note that the property TpG ◦ JG = pTG implies that

Lie(pG) ◦ jG = pA.

As a result, we have a natural identification of Lie algebroids,

(4.8) j
(k)
G : ⊕kATA =

k∏
pA

T (AG) ∼−→
k∏

Lie(pG)

A(TG),

3The Lie algebroid A(TG)→ TM is a VB-algebroid with respect to the vector bundle structure

Lie(pG) : A(TG) → A; the algebroid structure on A(TG) can be extended to
∏k

Lie(pG)A(TG) in

terms of core and linear sections, just as described in Section 3.2.
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fitting into the diagram

(4.9)
∏k
pA
T (AG)

j
(k)
G //

(TιAG)k

��

∏k
Lie(pG)A(TG)

(ιA(TG))
k

��∏k
pTG

T (TG)
J

(k)
G

//
∏k
TpG

T (TG).

Lemma 4.3. Let α ∈ Ωk(G) be multiplicative. Then

(4.10) Lie(α) ◦ j(k)
G = Lie(α).

In particular, Lie(α) : ⊕kAT (AG) −→ R is a Lie algebroid morphism.

Proof. By definition, Lie(α) = dα ◦ (ιA(TG))k, and using (4.9) and (2.17) we obtain

Lie(α) ◦ j(k)
G = dα ◦ (ιA(TG))

k ◦ j(k)
G = dα ◦ J (k)

G ◦ (TιAG)k

= αT ◦ (TιAG)k = ι∗AαT .

�

Proposition 4.4. Let α ∈ Ωk(G) be multiplicative, and let µ and ν be defined as in
(4.4) and (4.5). Then (µ, ν) is an IM k-form on AG.

Proof. The result is a direct consequence of Lemmas 4.2, 4.3, and Theorem 3.1. �

4.2. Integration of IM forms. Let G be a Lie groupoid over M , with Lie algebroid
A = AG. Assume that G is source-simply-connected (i.e., the s-fibres are connected
with trivial fundamental group), so that ⊕kGTG is also a source-simply-connected
groupoid4. Let Λ ∈ Ωk(A) be a k-form on A for which Λ : ⊕kATA −→ R is a Lie
algebroid morphism.

Lemma 4.5. There is a unique multiplicative k-form α ∈ Ωk(G) such that Lie(α) =
Λ (see (4.3)).

Proof. Since Λ is a morphism of Lie algebroids, the identification (4.8) also leads to
a Lie algebroid morphism

(4.11) Λ ◦ (j(k)
G )−1 =

k∏
Lie(pG)

A(TG) ∼= A(⊕kTG) −→ R.

As ⊕kGTG is a source-simply-connected groupoid, we can use Lie’s second theorem
(see e.g. [20]) to obtain a unique groupoid morphism

(4.12) IΛ : ⊕kGTG −→ R

4Given any X = (X1, . . . , Xk) ∈ ⊕kTxM , the projection (pG)k : ⊕kGTG −→ G makes the source

fibre ((T s)k)−1(X) ⊆ TG into an affine bundle over the source fibre s−1(x) ⊆ G
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integrating the morphism (4.11), i.e., such that Lie(IΛ) = Λ◦ (j(k)
G )−1. To check that

IΛ = α, for α ∈ Ωk(G), it suffices to verify that the following conditions hold:

IΛ(U1, . . . , Ui, . . . , Uj , . . . , Uk) =− IΛ(U1, . . . , Uj , . . . , Ui, . . . , Uk),(4.13)

IΛ(U1, . . . , Ui−1, cUi, Ui+1, . . . , Uk) =cIΛ(U1, . . . , Uk),(4.14)

IΛ(U1, . . . , Ui−1, Ui + U ′i , Ui+1, . . . , Uk) =IΛ(U1, . . . , Ui, . . . , Uk)+(4.15)

IΛ(U1, . . . , U
′
i , . . . , Uk),

for all Ui, U ′i ∈ TgG, g ∈ G, c ∈ R, where 1 ≤ i < j ≤ k. As we now show, all
conditions can be verified with the same type arguments (cf. [21]).

To prove that (4.13) holds, one directly checks that the map I
(ij)
Λ : ⊕kGTG −→ R,

I
(ij)
Λ (U1, . . . , Ui, . . . , Uj , . . . , Uk) := −IΛ(U1, . . . , Uj , . . . , Ui, . . . , Uk),

is a groupoid morphism, and Lie(I(ij)
Λ ) :

∏k
Lie(pG)A(TG) −→ R satisfies

Lie(I(ij)
Λ )(V1, . . . , Vi, . . . , Vj , . . . , Vk) = −Lie(IΛ)(V1, . . . , Vj , . . . , Vi, . . . , Vk)

= −Λ ◦ (j(k)
G )−1(V1, . . . , Vj , . . . , Vi, . . . , Vk)

= Lie(IΛ)(V1, . . . , Vi, . . . , Vj , . . . , Vk),

since Λ is skew-symmetric. So Lie(I(ij)
Λ ) = Lie(IΛ), and the uniqueness of integration

in Lie’s second theorem implies that I(ij)
Λ = IΛ, which is (4.13).

Similarly, for a fixed c ∈ R, one can directly show that both the left and right-
hand sides of (4.14) define groupoid morphisms ⊕kGTG −→ R, whose infinitesimal
counterparts agree at the level of Lie algebroids due to the multilinearity of Λ. Then
(4.14) follows again by the uniqueness part of Lie’s second theorem.

The last condition (4.15) can be treated in a completely analogous way, by first
noticing that both sides of (4.15) define groupoid morphisms ⊕k+1

G TG −→ R, where
now we need an extra copy of TG for U ′i . Again, these morphisms agree at the
infinitesimal level due to the multilinearity of Λ, and hence agree globally.

The fact that α is multiplicative follows from Lemma 4.1, and the equality Λ =
Lie(α) is a consequence of Lemma 4.3. �

A direct consequence of Lemmas 4.3 and 4.5 is that the map

Ωk
mult(G)→ Ωk(A), α 7→ Lie(α),

is a bijection onto the subspace of k-forms Λ ∈ Ωk(A) such that Λ : ⊕kATA → R is
a morphism of Lie algebroids. By the correspondence in Theorem 3.1, this bijection
can be alternatively phrased in terms of IM-forms on A:

Theorem 4.6. Let G be a source-simply-connected Lie groupoid over M with Lie
algebroid A −→M . For each positive integer k, there is a 1-1 correspondence

(4.16) Ωk
mult(G) −→ Ωk

IM(A), α 7→ (µ, ν),

where µ, ν are given by

〈µ(u), X1 ∧ . . . ∧Xk−1〉 = α(u,X1, . . . , Xk−1),(4.17)

〈ν(u), X1 ∧ . . . ∧Xk〉 = dα(u,X1, . . . , Xk).(4.18)

Proof. The result follows from Lemma 4.2 and Theorem 3.1. �
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The following is a simple example of correspondence in Theorem 4.6.

Example 4.7. Let us equip A = T ∗M →M with the trivial Lie algebroid structure
(both anchor and bracket are identically zero), so we may identify G = T ∗M (with
groupoid multiplication given by fibrewise addition). Fixing µ = Id : T ∗M → T ∗M ,
then any vector-bundle map ν : T ∗M → ∧2T ∗M defines an IM 2-form (µ, ν). When
ν = 0, then (µ, ν) corresponds under (4.16) to the canonical symplectic form ωcan
on G = T ∗M ; for an arbitrary ν, the corresponding multiplicative 2-form is given,
at each g = (qj , pj) ∈ T ∗M , by

ω|g = ωcan|g + c∗Mν(g)

where cM : T ∗M →M is the natural projection.

Let us list some immediate consequences of Theorem 4.6, illustrating how the
correspondence (4.16) restricts to subclasses of multiplicative and IM forms:

(a) Let η ∈ Ωk(M). Following Example 3.3, we know that (µ, ν), where µ(u) =
−iρ(u)η and ν(u) = −iρ(u)dη, defines an IM k-form. One directly verifies
that the corresponding multiplicative k-form is α = s∗η − t∗η.

(b) Let φ ∈ Ωk+1(M) be a closed k+1-form. Then Theorem 4.6 gives a bijective
correspondence between IM k-forms on A relative to φ (i.e., ν(u) = −iρ(u)φ,
see Example 3.4) and multiplicative k-forms α satisfying dα = s∗φ − t∗φ.
To verify this fact, just notice that dα is a multiplicative (k + 1)-form cor-
responding to an IM (k + 1)-form of the type discussed in item (a). This
recovers [5, Thm. 2.5] when k = 2 (cf. [3]), as well as [1, Thm. 2] when k is
an arbitrary positive integer.

(c) Let α ∈ Ωk
mult(G) be a given closed multiplicative k-form, with associated IM

k-form (µα, να) (note that να = 0, necessarily). It follows from Theorem 4.6
that there is a 1-1 correspondence between multiplicative (k − 1)-forms θ
with dθ = α and vector-bundle maps µ : A → ∧k−2T ∗M satisfying, for all
u, v ∈ Γ(A),

iρ(u)µ(v) = −iρ(v)µ(u), µ([u, v]) = Lρ(u)µ(v)− iρ(v)dµ(u)− iρ(v)µα(u).

The reason is that (µ, µα) is the IM (k−1)-form associated with θ (note that
µα satisfies (3.18) as a result of (µα, να) being an IM k-form for α and να
being zero). This correspondence is the content of [1, Thm. 3].

For k = 2, one has further refinements of Theorem 4.6 based on the general study
of multiplicative 2-forms carried out in [5, Section 4], leading to natural generaliza-
tions of twisted Poisson and Dirac structures (in the sense of [26]). On the vector
bundle TM ⊕ T ∗M , consider the pairing 〈(X,α), (Y, β)〉 = β(X) + α(Y ), and the
natural projections prT : TM ⊕ T ∗M → TM and prT ∗ : TM ⊕ T ∗M → T ∗M . As in
Theorem 4.6, we denote by G a source-simply-connected groupoid with Lie algebroid
A→M .

(d) Given an IM 2-form (µ, ν) on A, we consider the vector-bundle map (ρ, µ) :
A→ TM ⊕ T ∗M and its image

(4.19) L = {(ρ(u), µ(u)) | u ∈ A} ⊂ TM ⊕ T ∗M,

which is a subbundle whenever it has constant rank. By (3.16), over each
point of M , L is isotropic with respect to the pairing 〈·, ·〉. It follows from
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[5, Cor. 4.8] that, under the assumption that dim(G) = 2 dim(M), the cor-
respondence (4.16) restricts to a bijection between multiplicative 2-forms ω
such that

(4.20) ker(T s)x ∩ ker(ω)x ∩ ker(T t)x = {0}, ∀x ∈M,

and IM 2-forms (µ, ν) for which L = L⊥ (i.e., L is lagrangian with respect
to 〈·, ·〉; in particular, it is a subbundle with rank(L) = dim(M)) and

(4.21) (ρ, µ) : A −→ L ⊂ TM ⊕ T ∗M

is an isomorphism of vector bundles. Moreover, t : G →M relates ω and L as
a forward Dirac map (see, e.g., [5, Sec. 2.1]). If we define νL : L→ ∧2T ∗M by
νL((ρ(u), µ(u))) = ν(u), then the identification (4.21) induces a Lie algebroid
structure on L with anchor prT |L and bracket on Γ(L) given by

(4.22) [(X,α), (Y, β)]L := ([X,Y ],LXβ − iY dα− iY νL(X,α)).

Conversely, if a lagrangian subbundle L ⊂ TM ⊕ T ∗M is equipped with
νL : L→ ∧2T ∗M for which (4.22) is a Lie bracket on Γ(L), then A = L is a
Lie algebroid with anchor prT |L; if νL also satisfies (3.18), then (prT ∗ |L, νL)
is an IM 2-form. Then, under the bijection (4.16), (prT ∗ |L, νL) corresponds
to a multiplicative 2-form ω on G satisfying (4.20). Taking νL to be of type
νL(X,α) = −iXφ for a closed 3-form φ ∈ Ω3(M), we recover the integration
of twisted Dirac structures by twisted presymplectic groupoids of [5, Sec. 2].

(e) When a multiplicative 2-form is nondegenerate, then dim(G) = 2 dim(M)
automatically (see, e.g., [5, Lem. 3.3]), and (4.20) trivially holds. Under
(4.16), this situation corresponds to the case where the IM 2-form (µ, ν) is
such that µ : A → T ∗M is an isomorphism; in other words, L is the graph
of a bivector field π on M : L = {(iαπ, α) | α ∈ T ∗M}. Following (d) above,
the fact that Γ(L) is closed under the bracket (4.22) is expressed by the
compatibility condition

1
2

[π, π](α, β, γ) = νL((iαπ, α))(iβπ, iγπ)

for all α, β, γ ∈ Ω1(M). When νL is of type νL(X,α) = −iXφ for a closed
3-form φ ∈ Ω3(M), one recovers twisted Poisson structures, and (4.16) gives
their integration to twisted symplectic groupoids (cf. [8]).

5. Relation with the Weil algebra and Van Est isomorphism

This section clarifies how linear and IM-forms on Lie algebroids fit into the Weil
algebra of [1, Sec. 3], and how the infinitesimal description of multiplicative forms
relates to the general Van Est isomorphism of [1, Sec. 4].

Let A be a Lie algebroid over M . We consider the associated Weil algebra W (A)
as in [1, Sec. 3], which is a bi-graded differential algebra. The space of elements
of degree (p, k) is denoted by W p,k(A), and the differential on W (A) is a sum of
differentials dh + dv, where

dh : W p,k(A) −→W p+1,k(A), dv : W p,k(A) −→W p,k+1(A).

We will be mostly concerned with W p,k(A) for p = 0, 1, 2.
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For p = 0, we have W 0,k(A) = Ωk(M). An element ΛW ∈ W 1,k(A) is given by a
pair ((ΛW )0, (ΛW )1), where

(5.1) (ΛW )0 : Γ(A) −→ Ωk(M), (ΛW )1 ∈ Ωk−1(M,A∗),

subject to the compatibility condition

(5.2) (ΛW )0(fu) = f(ΛW )0(u)− df ∧ (ΛW )1(u),

for f ∈ C∞(M), u ∈ Γ(A), and (ΛW )1 viewed as a C∞(M)-linear map

(5.3) (ΛW )1 : Γ(A) −→ Ωk−1(M).

An element cW ∈W 2,k(A) is a triple ((cW )0, (cW )1, (cW )2), where

(cW )0 : Γ(A)× Γ(A) −→ Ωk(M), (cW )1 : Γ(A) −→ Ωk−1(M,A∗),(5.4)

(cW )2 ∈ Ωk−1(M,S2(A∗)),

and such that (cW )0 is skewsymmetric and R-bilinear, subject to suitable compati-
bility conditions (extending (5.2)) that we will not need explicitly.

We need to recall the expression for dh restricted to W 1,k(A). By definition (see
[1, Sec. 3.1]), for ΛW = ((ΛW )0, (ΛW )1) ∈ W 1,k(A), dhΛW ∈ W 2,k(A) is given by
(cf. (5.4))

(dhΛW )0(u, v) = −(ΛW )0([u, v]) + Lρ(u)((ΛW )0(v))− Lρ(v)((ΛW )0(u)),(5.5)

(dhΛW )1(u)(v) = Lρ(u)((ΛW )1(v))− (ΛW )1([u, v]) + iρ(v)((ΛW )0(u)),(5.6)

(dhΛW )2(u) = −iρ(u)((ΛW )1(u)),(5.7)

for u, v ∈ Γ(A).
We also need the expression for dv in the following particular situation. Any

bundle map µ : A→ ∧kT ∗M (equivalently seen as a C∞(M)-linear map µ : Γ(A) −→
Ωk(M)) defines an element µW ∈W 1,k(A) by

(5.8) (µW )0 = µ, (µW )1 = 0.

In this case, dv(µW ) ∈W 1,k+1(A) is defined by (see [1, Sec. 3.1])

(5.9) (dvµW )0(u) = −dµ(u), (dvµW )1 = µ.

Proposition 5.1. Consider the map ψ : Ωk
lin(A) −→W 1,k(A), k = 1, 2, . . .,

Λ = dΛµ + Λν 7→ ΛW := −dvµW + νW .

The following holds:
(1) ψ induces a C∞(M)-linear isomorphism Ω•lin(A) ∼−→W 1,•(A).
(2) ψ ◦ d = −dv ◦ ψ.
(3) ψ restricts to a linear isomorphism Ωk

IM(A) ∼−→ ker(dh|W 1,k(A)).

Proof. It is clear from (5.8) and (5.9) that the map ψ is injective. Let us check
that any ΛW ∈ W 1,k(A) can be written in the form −dvµW + νW for C∞(M)-
linear maps µ : Γ(A) −→ Ωk−1(M), ν : Γ(A) −→ Ωk(M). Let us write ΛW =
((ΛW )0, (ΛW )1), and set µ = −(ΛW )1. Then (dvµW )1 = −(ΛW )1, so the element
c = dvµW + ΛW ∈ W 1,k(A) is such that c1 = 0, which implies that c = νW for a
bundle map ν : A −→ ∧kT ∗M . The C∞(M)-linearity of ψ results from the following
properties: fdΛµ = dΛfµ − Λdf∧µ and dv(fµ)W = fdvµW − (df ∧ µ)W . Hence (1)
is proven.



22

To prove (2), writing Λ = dΛµ + Λν , we have dΛ = dΛν . By definition of ψ, it
follows that ψ(dΛ) = −dvνW . On the other hand, −dv(ψ(Λ)) = −dv(−dvµW+νW ) =
−dvνW , hence (2) holds.

For (3), we must consider the condition dhΛW = 0. Written in terms of its
components (5.5), (5.6), and (5.7), we obtain three equations involving (ΛW )0 and
(ΛW )1, which must be shown to agree with conditions (3.16), (3.17) and (3.18) in
Thm. 3.1. Using (5.8), (5.9), we see that

(5.10) (ΛW )0(u) = dµ(u) + ν(u), (ΛW )1(u) = −µ(u)

for all u ∈ Γ(A), and it is clear that (5.7) and (5.6) coincide with conditions (3.16)
and (3.17), respectively.

For the degree-0 condition (5.5), using (5.10) and (3.17), we find

ν([u, v]) = diρ(v)dµ(u) + diρ(v)ν(u) + Lρ(u)ν(v)− Lρ(v)dµ(u)− Lρ(v)ν(u).

Using Cartan’s formula LX = iXd + diX , one directly verifies that the last equation
agrees with (3.18). �

Let G be a source-simply-connected Lie groupoid over M , with Lie algebroid A −→
M . There is a double complex Ωk(G(p)) associated to G, known as the Bott-Shulman
complex, see [2]. It is equipped with a differential ∂ : Ωk(G(p)) −→ Ωk(G(p+1)), as well
as the de Rham differential d : Ωk(G(p)) −→ Ωk+1(G(p)). The Van Est isomorphism
constructed in [1] relates the cohomologies of Ωk(G(p)) and W p,k(A). We will only
need a few results of the theory, for p = 0, 1.

For p = 0, Ωk(G(0)) = Ωk(M) = W 0,k(A), and

∂ : Ωk(M) −→ Ωk(G), ∂(η) = t∗η − s∗η.

For p = 1, the differential ∂ : Ωk(G) −→ Ωk(G(2)) is

∂(α) = pr∗1α−m∗α+ pr∗2α,

and the Van Est map of [1, Sec. 4] restricts to a map

(5.11) V : Ωk
mult(G) = ker(∂|Ωk(G)) −→ ker(dh|W 1,k(A)) ⊂W 1,k(A),

given by

(5.12) V(α)0(u) = ε∗(diuα+ iudα), V(α)1(u) = −ε∗(iuα)

where α ∈ Ωk
mult(G), u ∈ Γ(A) (we view A as a subbundle of TG|M ) and ε : M → G

is the unit map of G. The map V satisfies

(5.13) V ◦ d = −dv ◦ V, V(∂(η)) = dhη,

for η ∈ Ωk(M). The general Van Est isomorphism of [1] implies that the induced
map

(5.14)
Ωk

mult(G)
Im(∂|Ωk(M))

−→
ker(dh|W 1,k(A))
Im(dh|Ωk(M))

is a bijection. In this specific situation, a stronger fact holds.

Proposition 5.2. The map V : Ωk
mult(G) −→ ker(dh|W 1,k(A)) is a bijection.

The proof of the proposition uses the following observation (cf. [1, Sec. 6]).
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Lemma 5.3. Let σ ∈ W 1,k(A), ω ∈ Ωk+1
mult(G) be such that dhσ = 0 and V(ω) =

−dvσ. Then there exists a unique β ∈ Ωk
mult(G) such that

V(β) = σ, dβ = ω.

Proof. The key fact to prove the lemma is shown in [1, Lem. 6.3]: for a closed k-form
α ∈ Ωk

mult(G), V(α) = 0 if and only if α = 0. As an application, we see that ω is
necessarily closed, since V(dω) = dv(dvσ) = 0.

Since dhσ = 0, the isomorphism (5.14) implies that there exists β̃ ∈ Ωk
mult(G) such

that V(β̃) = σ + dhη. If β = β̃ − ∂η, then by (5.13) we have

V(β) = V(β̃)− V(∂η) = σ.

To conclude that dβ = ω, note that dβ−ω is multiplicative, closed, and V(dβ−ω) =
−dvσ + dvσ = 0. �

We can now prove the proposition.

Proof. (of Prop. 5.2) Let us fix ξ ∈W 1,k(A), dhξ = 0. Let σ = −dvξ. Then dvσ = 0,
dhσ = 0, and Lemma 5.3 implies that there exists a unique β ∈ Ωk+1

mult(G) such that

(5.15) V(β) = σ, dβ = 0.

Since V(β) = −dvξ, and, by assumption, dhξ = 0, we can apply Lemma 5.3 to
conclude that there exists a unique θ ∈ Ωk

mult(G) such that V(θ) = ξ and dθ = β.
But notice that the condition dθ = β is automatically satisfied if V(θ) = ξ, since
V(dθ) = σ and the conditions in (5.15) determine β uniquely. �

Composing the bijection (5.11) with the identification Ωk
IM(A) ∼= ker(dh|W 1,k(A))

of (3) in Prop. 5.1, we obtain a bijection

Ωk
mult(G) ∼−→ Ωk

IM(A).

Using (5.10) and (5.12), we see that this bijection is explicitly given by α 7→ (µ, ν),
where µ, ν are defined as in (4.4), (4.5), hence agreeing with Theorem 4.6.

6. The dual picture: multiplicative multivector fields

In this section, we illustrate how the techniques used in the paper to study in-
finitesimal versions of multiplicative forms can be equally applied to multiplicative
multivector fields.

We keep the notation introduced in Section 2.1. We focus on the cotangent
bundle cA : T ∗A → A of a vector bundle A → M , described in local coordi-
nates (xj , ud, pj , ξd), where (xj , ud) are relative to a basis of local sections {ed} of
A. The local coordinates on A∗ relative to the dual basis {ed} are denoted by
(xj , ξd); recall from (2.1) that we have a vector-bundle structure r : T ∗A → A∗,
(xj , ud, pj , ξd) 7→ (xj , ξd). As in Section 2.2, we also consider the k-fold direct sum
⊕kAT ∗A, described by local coordinates (xj , ud, p1

j , . . . , p
k
j , ξ

1
d, . . . , ξ

k
d), as a vector bun-

dle over ⊕kA∗, with projection map (xj , ud, p1
j , . . . , p

k
j , ξ

1
d, . . . , ξ

k
d) 7→ (xj , ξ1

d, . . . , ξ
k
d).

As in Section 3.1, we will need special sections of the bundle ⊕kAT ∗A → ⊕kA∗.
For the bundle T ∗A −→ A∗, we consider local sections

(6.1) dx̂i(xj , ξd) = (xj , 0, δij , ξd), eLa (xj , ξd) = (xj , δda, 0, ξd),
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which are core and linear sections, respectively; these sections generate the module
of local sections of T ∗A −→ A∗, and the projection T ∗A −→ A maps core sections to
the zero section of A −→M and linear sections eLa to the section ea. More generally,
local sections of ⊕kAT ∗A→ ⊕kA∗ are generated by sections of types

dx̂i,n(ξ1 ⊕ . . .⊕ ξk) = 0(ξ1)⊕ . . . 0(ξn−1)⊕ dx̂i(ξn)⊕ 0(ξn+1) . . .⊕ 0(ξk),(6.2)

(eLa )k(ξ1 ⊕ . . .⊕ ξk) = eLa (ξ1)⊕ . . .⊕ eLa (ξk),(6.3)

where ξ1 ⊕ . . . ⊕ ξk ∈ ⊕kA∗ and 0 : A∗ → T ∗A, 0(xj , ξd) = (xj , 0, 0, ξd), is the zero
section. For each k, we will use these sections to express the natural Lie algebroid
structure on ⊕kAT ∗A→ ⊕kA∗, similarly to Section 3.2.

Using the notation in (3.4), the defining relations for the cotangent Lie algebroid
structure on T ∗A→ A∗ are

[dx̂i, dx̂j ]T∗A = 0,(6.4)

[eLa , dx̂
j ]T∗A =

∂ρja
∂xi

dx̂i, [eLa , e
L
b ]T∗A = −

∂Ccab
∂xi

ξcdx̂i + Ccabe
L
c ,(6.5)

ρT∗A(dx̂i) = ρid
∂

∂ξd
, ρT∗A(eLa ) = ρja

∂

∂xj
+ Ccabξc

∂

∂ξb
.(6.6)

This Lie algebroid structure is extended to direct sums ⊕kAT ∗A → ⊕kA∗ in total
analogy to what was done for the tangent Lie algebroid in Section 3.2; we adopt the
simplified notation ρk = ρ⊕kAT ∗A

and [·, ·]k = [·, ·]⊕kAT ∗A for the resulting anchor and
bracket5. Explicitly, the anchor is given by

(6.7) ρk(dx̂i,n) = ρid
∂

∂ξnd
, ρk((eLa )k) = ρja

∂

∂xj
+ Ccabξ

n
c

∂

∂ξnb
,

whereas for the bracket we have

[dx̂i,n, dx̂j,m]k = 0, [(eLa )k,dx̂j,m]k =
∂ρja
∂xi

dx̂i,m(6.8)

[(eLa )k, (eLb )k]k = Cdab(e
L
d )k −

∂Ccab
∂xi

ξnc dx̂i,n.(6.9)

6.1. Linear multivector fields and derivations. Let π ∈ X k(A) = Γ(∧kTA) be
a k-vector field on the total space of a vector bundle qA : A → M . Let us consider
the function (cf. (2.4))

π : ⊕kAT ∗A→ R, π(Υ1, . . . ,Υk) = iΥk . . . iΥ1π.

We say that π ∈ X k(A) is linear if π defines a vector-bundle map

(6.10) ⊕kAT ∗A
π //

��

R

��
⊕kA∗ // {∗},

similarly to (2.8). One can directly verify that the notion of linear multivector field
agrees with the one considered in [18, Section 3.2]. The space of linear k-vector

5Since tangent Lie algebroids are not used in this section, this notation should not cause any
confusion with the one in Section 3.2.
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fields is denoted by X klin(A). As in Lemma 2.2 (cf. (2.7)), π is expressed in local
coordinates (xj , ud) of A as

π =
1
k!
πb1...bkd (x)ud

∂

∂ub1
∧ . . . ∧ ∂

∂ubk
+(6.11)

1
(k − 1)!

πb1...bk−1j(x)
∂

∂ub1
∧ . . . ∧ ∂

∂ubk−1
∧ ∂

∂xj
.

We have the following analog of Proposition 2.5 for linear multivector fields, proven
in [18, Prop. 3.7]: there is a 1-1 correspondence between elements in X klin(M) and
pairs (δ0, δ1), where δ0 : C∞(M) → Γ(∧k−1A) and δ1 : Γ(A) → Γ(∧kA) are linear
maps satisfying

(6.12) δ0(fg) = gδ0f + fδ0g, δ1(fu) = (δ0f) ∧ u+ fδ1u,

for all f, g ∈ C∞(M) and u ∈ Γ(A). Equivalently, one may view such pairs (δ0, δ1)
as restrictions of linear maps δ : Γ(∧•A)→ Γ(∧•+k−1A) satisfying the property

(6.13) δ(u ∧ v) = (δu) ∧ v + (−1)p(k−1)u ∧ (δv)

for u ∈ Γ(∧pA) and v ∈ Γ(∧qA); i.e., δ is a degree-(k − 1) derivation of the exterior
algebra Γ(∧•A). For this reason, we denote both maps δ0 and δ1 by δ. The explicit
correspondence between π and δ is given by6 (see [18, Section 3.2])

π(dlξ1 , . . . ,dlξk−1 , dq∗Af) = q∗A

〈
δf, ξ1 ∧ . . . ∧ ξk−1

〉
,(6.14)

π(dlξ1 , . . . ,dlξk)(u) =
k∑
i=1

(−1)i+kπ(dlξ1 , . . . , d̂lξi , . . . ,dlξk , dq
∗
A

〈
ξi, u

〉
)(6.15)

−
〈
δu, ξ1 ∧ . . . ∧ ξk

〉
,

where f ∈ C∞(M), u ∈ Γ(A), ξ1, . . . , ξk ∈ Γ(A∗), and lξi ∈ C∞(A) is the linear
function lξi(u) =

〈
ξi, u

〉
. In coordinates, we have

(6.16) δxi =
1

(k − 1)!
πb1...bk−1i(x)eb1∧. . .∧ebk−1

, δea = − 1
k!
πb1...bka (x)eb1∧. . .∧ebk ,

where {ed} is a basis of local sections of A.
Let A → M be a Lie algebroid. The Lie bracket [·, ·] on Γ(A) has a natural

extension (still denoted by [·, ·]) to the exterior algebra Γ(∧•A),

[·, ·] : Γ(∧pA)× Γ(∧qA)→ Γ(∧p+q−1A),

making it into a Gerstenhaber algebra (see e.g. [6]): for u ∈ Γ(∧pA), v ∈ Γ(∧qA),
and w ∈ Γ(∧rA), we have

[u, v] = −(−1)(p−1)(q−1)[v, u],(6.17)

[u, v ∧ w] = [u, v] ∧ w + (−1)(p−1)qv ∧ [u,w].(6.18)

The next result is the analog of Theorem 3.1 for linear multivector fields.

6To see that (6.14) and (6.15) determine the linear k-vector π, note that fibres of T ∗A→ A are
generated by elements of types dlξ and dq∗Af , and by linearity idq∗

A
f2 idq∗Af1π = 0.
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Theorem 6.1. Let π ∈ X klin(A) be a linear k-vector field on a Lie algebroid A, and
let δ : Γ(∧•A)→ Γ(∧•+k−1A) be the associated derivation (as in (6.14) and (6.15)).
Then the map π (6.10) is a Lie algebroid morphism if and only if

(6.19) δ[u, v] = [δu, v] + (−1)(p−1)(k−1)[u, δv],

for all u ∈ Γ(∧pA), v ∈ Γ(∧qA) (i.e., δ is a (k − 1)-derivation of the Gerstenhaber
bracket).

To draw a clear parallel with Theorem 3.1, we denote by X kIM(A) the space of
degree (k − 1) derivations δ : Γ(∧•A)→ Γ(∧•+k−1A) of the Gerstenhaber structure
(i.e., (6.13) and (6.19) hold), in analogy with IM k-forms.

Proof. We work locally, so the condition that π is a Lie algebroid morphism is

(6.20) π([Υ1,Υ2]k) = Lρk(Υ1)π(Υ2)− Lρk(Υ2)π(Υ1),

where Υ1,Υ2 are local sections of ⊕kAT ∗A→ ⊕kA∗ of types (6.2) or (6.3) (cf. (3.25));
hence, just as in the proof of Theorem 3.1, there are 3 cases to be analyzed. The
assertion of Theorem 6.1 is a direct consequence of the following claims:

(c1) Let Υ1 = dx̂i,l and Υ2 = dx̂j,m. If l = m, then (6.20) is automatically
satisfied; if l 6= m, then (6.20) is equivalent to

(6.21) δ[xi, xj ] = [δxi, xj ] + (−1)k−1[xi, δxj ] = 0.

(c2) Let Υ1 = dx̂i,l and Υ2 = (eLb )k. Then (6.20) is equivalent to

(6.22) δ[xi, eb] = [δxi, eb] + (−1)k−1[xi, δeb].

(c3) Let Υ1 = (eLa )k and Υ2 = (eLb )k. Then (6.20) is equivalent to

(6.23) δ[ea, eb] = [δea, eb] + [ea, δeb].

In order to prove claims (c1), (c2) and (c3), we need some general observations.
For any function F : ⊕kA∗ → R which is k-linear over C∞(M) and skew symmetric,
let ΦF ∈ Γ(∧kA) be the unique element such that

F (ξ1, . . . , ξk) =
〈

ΦF , ξ
1 ∧ . . . ∧ ξk

〉
.

E.g., for F (ξ1, . . . , ξk) = F b1...bkξ1
b1
. . . ξkbk with F b1...bk totally antisymetric in its

indices, we have ΦF = 1
k!F

b1...bkeb1 ∧ . . . ∧ ebk . We will consider the cases where
F = π(dx̂j,m) and F = π((eLa )k). Using the local expressions (6.2), (6.3) as well as
(6.11) and (6.16), one may directly verify the following identities:

π(dx̂j,m(ξ1, . . . , ξk)) = (−1)k−m
〈
δxj , ξ1 ∧ . . . ∧ ξ̂m ∧ . . . ∧ ξk

〉
,(6.24)

π((eLa )k(ξ1, . . . , ξk)) = −
〈
δea, ξ

1 ∧ . . . ∧ ξk
〉
,(6.25)

where the notation ξ1 ∧ . . . ∧ ξ̂m ∧ . . . ∧ ξk means that ξm is omitted.
Let us now consider F (ξ1, . . . , ξk) = F b1...bkξ1

b1
. . . ξkbk and the vector fields ρk(dx̂i,l)

and ρk((eLa )k) on ⊕kA∗, see (6.7). Then a direct computation shows the following
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identities:

Lρk(dx̂i,l)(F (ξ1, . . . , ξk)) = (−1)l
〈

[xi,ΦF ], ξ1 ∧ . . . ∧ ξ̂l ∧ . . . ∧ ξk
〉
,(6.26)

Lρk((eLa )k)(F (ξ1, . . . , ξk)) =
〈

[ea,ΦF ], ξ1 ∧ . . . ∧ . . . ∧ ξk
〉
.(6.27)

From (6.24) and (6.26), we directly see, assuming that l < m, that

Lρk(dx̂i,l)(π(dx̂j,m)(ξ1, . . . , ξk)) =

(−1)l+k−m
〈

[xi, δxj ], ξ1 ∧ . . . ∧ ξ̂l ∧ . . . ∧ ξ̂m ∧ . . . , ξk
〉
,

Lρk(dx̂j,m)(π(dx̂i,l)(ξ1, . . . , ξk)) =

(−1)m−1+k−l
〈

[xj , δxi], ξ1 ∧ . . . ∧ ξ̂l ∧ . . . ∧ ξ̂m ∧ . . . ∧ ξk
〉
.

Combining these two equations with (6.17), we conclude that claim (c1) holds.
To prove the other two claims, note first that the derivation property for functions

in (6.12) implies that

(6.28) δf =
∂f

∂xj
δxj , f ∈ C∞(M).

As a result, since [eb, xi] = Lρ(eb)x
i = ρib, we have that

(6.29) δ[xi, eb] = −δ[eb, xi] = −
∂ρib
∂xj

δxj .

Using the second formula in (6.8) together with (6.24) and (6.29), we obtain

π([dx̂i,l, (eLb )k]k(ξ1, . . . , ξk)) = −(−1)k−l
〈
∂ρib
∂xj

δxj , ξ1 ∧ . . . ∧ ξ̂l ∧ . . . ∧ ξk
〉

(6.30)

= (−1)k−l
〈
δ[xi, eb], ξ1 ∧ . . . ∧ ξ̂l ∧ . . . ∧ ξk

〉
.

Combining (6.24) and (6.27), as well as (6.25) and (6.26), we immediately get

Lρk((eLb )k)(π(dx̂i,l(ξ1, . . . , ξk))) = (−1)k−l
〈

[eb, δxi], ξ1 ∧ . . . ∧ ξ̂l ∧ . . . ∧ ξk
〉
,(6.31)

Lρk(dx̂i,l)(π((eLb )k(ξ1, . . . , ξk))) = −(−1)l
〈

[xi, δeb], ξ1 ∧ . . . ∧ ξ̂l ∧ . . . ∧ ξk
〉
.(6.32)

Now claim (c2) is a direct consequence of (6.30), (6.31) and (6.32).
Finally, to prove (c3), we observe a few facts. From (6.28), we see that

(6.33) δ[ea, eb] = δ(Ccabec) =
∂Ccab
∂xj

δxj ∧ ec + Ccabδec.

The usual formula for the wedge product gives us the identity

∂Ccab
∂xj

〈
δxj ∧ ec, ξ1 ∧ . . . ∧ ξk

〉
=

k∑
n=1

(−1)k−n
∂Ccab
∂xj

ξnc

〈
δxj , ξ1 ∧ . . . ∧ ξ̂n ∧ . . . ∧ ξk

〉
;

using it, we immediately obtain from (6.9), (6.24) and (6.25) that

(6.34) π([(eLa )k, (eLb )k]k(ξ1, . . . , ξk)) = −
〈
δ[ea, eb], ξ1 ∧ . . . ∧ ξk

〉
.

On the other hand, from (6.25) and (6.27) we have that

(6.35) Lρk((eLa )k)(π((eLb )k(ξ1, . . . , ξk))) = −
〈

[ea, δeb], ξ1 ∧ . . . ∧ ξk
〉
.
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Using (6.34) and (6.35), we can immediately verify that claim (c3) holds. �

6.2. Infinitesimal description of multiplicative multivector fields. We now
discuss the analogs of the results in Section 4 for multiplicative multivector fields.

Let G be a Lie groupoid over M . Its cotangent bundle T ∗G has a natural Lie
groupoid structure over A∗, known as the cotangent groupoid of G, see [9] and
[20] for a full description. For us, it will suffice to recall that the unit map ε̃ : A∗ →
T ∗G|M identifies A∗ with the annihilator of TM ⊂ TG, and that the source map
s̃ : T ∗G → A∗ is defined by

(6.36) 〈̃s(αg), u〉 = 〈αg, T lg(u− T t(u))〉, αg ∈ T ∗g G, u ∈ As(g),

where lg denotes left translation in G. Note that s̃ is a vector-bundle map covering
s : G →M ; using coordinates (zl) on G, it has the form

(6.37) s̃(zl, αl) = (s(z)j , C ld(z)αl) ∈ A∗|s(z).

We will not need the explicit expression for C ld(z), just to note that s̃(dt∗f) = 0 for
all f ∈ C∞(M) (by (6.36)), which implies that

(6.38) C ld(z)
∂(t∗f)
∂zl

= 0, ∀f ∈ C∞(M).

Similarly to what happens for the tangent groupoid, the cotangent groupoid struc-
ture extends to direct sums ⊕kGT ∗G over ⊕kA∗. A multivector field Π ∈ X k(G) is
called multiplicative if the associated map

(6.39) Π : ⊕kGT ∗G → R, Π(ζ1, . . . , ζk) = iζk . . . iζ1Π

is a groupoid morphism (cf. Lemma 4.1). We denote the space of multiplicative
k-vector fields on G by X kmult(G).

Remark 6.2. We may equivalently consider the map

(6.40) Π] : ⊕k−1
G T ∗G → TG, Π](ζ1, . . . , ζk−1) = iζk−1

. . . iζ1Π,

and verify that Π is multiplicative if and only if Π] is a groupoid morphism.

Let us recall, see e.g. [21], the identification of Lie algebroids

(6.41) θG : A(T ∗G) ∼−→ T ∗(AG),

which extends to an identification θkG : A(⊕kGT ∗G) =
∏

Lie(cG)A(T ∗G) → ⊕kAT ∗A
(cG : T ∗G → G is a groupoid morphism). Given Π ∈ X kmult(G), we consider the
infinitesimal map Lie(Π) : A(⊕kGT ∗G)→ R (see (4.6)), as well as the composition

(6.42) Lie(Π) ◦ (θkG)−1 : ⊕kAT ∗A→ R.

The exact same arguments as in Lemma 4.5 directly show that there is a unique
k-vector field Lie(Π) ∈ X k(A) satisfying

(6.43) Lie(Π) = Lie(Π) ◦ (θkG)−1;

moreover, the map
X kmult(G) −→ X k(A), Π 7→ Lie(Π),

is a bijection onto the subspace of k-vector fields π ∈ X klin(A) for which π : ⊕kAT ∗A→
R is a morphism of Lie algebroids. An immediate consequence of Theorem 6.1 is
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Corollary 6.3. There is a bijective correspondence

(6.44) X kmult(G) −→ X kIM(A), Π 7→ δ,

where δ is the derivation associated with π = Lie(Π) ∈ X klin(A) (via (6.14) and
(6.15)).

This result is parallel to Theorem 4.6, except that it provides no explicit way of
computing δ directly out of Π (analogous to (4.17) and (4.18)). This missing aspect
will be clarified in the next section.

6.3. The universal lifiting theorem revisited. For u ∈ Γ(∧pA), let us denote
by ur the corresponding right-invariant p-vector field on G. As observed in [18,
Section 2], given Π ∈ X kmult(G), then [Π, ur] is again right invariant, which means
that there exists δΠu ∈ Γ(∧p+k−1A) such that (δΠu)r = [Π, ur]. One can check that
the map δΠ : Γ(∧pA) → Γ(∧p+k−1A) is a derivation of the Gerstenhaber structure,
i.e., δΠ ∈ X kIM(M).

Proposition 6.4. The map X kmult(G) −→ X kIM(A), Π 7→ δΠ, where δΠ is defined by

(6.45) (δΠf)r = [Π, t∗f ], (δΠu)r = [Π, ur],

for f ∈ C∞(M) and u ∈ Γ(A), coincides with the map (6.44); in particular, it is a
bijection.

The fact that the correspondence in Proposition 6.4 is a bijection is the universal
lifting theorem of [18] (see Theorem 2.34 therein), which we recover here as a con-
sequence of Corollary 6.3. We need to collect some observations before getting into
the proof of Proposition 6.4.

Let us consider the isomorphism

(6.46) Θ : T (T ∗G) −→ T ∗(TG), (zj , αj , żj , α̇j) 7→ (zj , żj , α̇j , αj),

which is related to the identification θG in (6.41) via

(6.47) θG = (TιA)t ◦Θ ◦ ιA(T ∗G),

where (TιA)t is the fibrewise dual to the vector-bundle map TιA : TA → ι∗AT (TG)
(the composition in (6.47) is well defined since Θ◦ιA(T ∗G)(A(T ∗G)) ⊂ ι∗AT ∗(TG); this
can be derived directly from (6.37)). For a k-vector field Π ∈ X k(G), its tangent
lift is the k-vector field ΠT ∈ X k(TG) defined by the condition (cf. (2.17))

(6.48) ΠT = dΠ ◦ (Θ−1)k,

where dΠ : T (⊕kGT ∗G) =
∏k
TcG

T (T ∗G) → R is the differential of the function Π in
C∞(⊕kGT ∗G) defined by (6.39).

Remark 6.5. As observed in [14], one may alternatively define the tangent lift ΠT

in terms of Π] (6.40):

(6.49) Π]
T : ⊕k−1

TG T
∗(TG)→ T (TG), Π]

T = (JG)−1 ◦ TΠ] ◦ (Θ−1)(k−1),

where JG : T (TG)→ T (TG) is the involution (2.16).
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When Π is multiplicative, it follows from (6.43) that

(6.50) π = Lie(Π) = ΠT ◦ (Θ ◦ ιAT ∗G ◦ θ−1
G )k.

We will need this characterization of π in the proof of Proposition 6.4.
For local computations, it will be convenient to consider adapted local coordinates

(6.51) (xj , yd) on G around M ⊂ G,

where yd are coordinates along the s-fibres. We will also use the induced coordinates
((xj , yd), (ẋj , ẏd)) on TG, and similarly for T ∗G, T (T ∗G) and T ∗(TG). In these co-
ordinates, ιA : A → TG|M , ιA(xj , ud) = ((xj , 0), (0, ud)), and TιA : TA → ι∗AT (TG)
is given by

TιA

(
ẋj

∂

∂xj
+ u̇d

∂

∂ud

) ∣∣∣
u

= ẋj
∂

∂xj
+ u̇d

∂

∂ẏd

∣∣∣
ιA(u)

, u ∈ A,

whereas for (TιA)t : ι∗AT
∗(TG)→ T ∗A we have

(TιA)t(pjdxj + γady
a + pjdẋ

j + γadẏ
a)|ιA(u) = (pjdxj + γadu

a)|u, u ∈ A.

Since the unit map ε̃ : A∗ → T ∗G|M identifies A∗ with the annihilator of TM ⊂ TG,
given ξ ∈ Γ(A∗), locally written as (xj , ξd), the local 1-form on G given by

(6.52) ξ̃(xj , yd) = ξd(x)dyd

extends ε̃(ξ(x)) to a neighborhood of M in G. We denote by l
ξ̃
∈ C∞(TG) the

linear function determined by ξ̃. The following lemma is key to compare the map in
Proposition 6.4 with the map (6.44).

Lemma 6.6. Let J = Θ ◦ ιAT ∗G ◦ θ−1
G : T ∗A → ι∗AT

∗(TG), and let u0 ∈ A. Then,
for any f ∈ C∞(M) and ξ ∈ Γ(A∗), we have

J (dq∗Af |u0) = d(t∗f)∨|ιA(u0),(6.53)

J (dlξ|u0) = (dl
ξ̃

+ dh∨)|ιA(u0),(6.54)

where ∨ means the pull-back of functions on G by pG : TG → G, and h ∈ C∞(G) is a
function that vanishes on M ⊂ G.

Proof. The proof follows from some observations, all of which can be checked through
computations in adapted local coordinates (xj , yd) as in (6.51).

The first observation one can directly verify is that

(6.55) (TιA)t(d(t∗f)∨|ιA(u)) = dq∗Af |u, u ∈ A.

Using the local expression (6.37) for the source map s̃, the property (6.38), and
the definition of Θ, a direct computation shows that

(6.56) T s̃(Θ−1(d(t∗f)∨|ιA(u))) = 0 ∈ TA∗|qA(u), qA(u) ∈M ⊂ A∗.

It follows that Θ−1(d(t∗f)∨|ιA(u)) is in the image of ιA(T ∗G), hence there is a unique
Υ ∈ T ∗A|qA(u) such that

Θ−1(d(t∗f)∨|ιA(u)) = ιA(T ∗G)(θ
−1
G (Υ)), i.e., J (Υ) = d(t∗f)∨|ιA(u).

Using (6.55) and (6.47). we conclude that Υ = dq∗Af |u, which proves (6.53).
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With respect to the coordinates ((xj , yd), (ẋj , ẏd)) on TG, one can write

(6.57) dl
ξ̃
|ιA(u) =

∂ξa
∂xi

uadxi + ξadẏa ∈ T ∗(TG)|ιA(u),

from where we conclude that

(6.58) (TιA)t(dl
ξ̃
|ιA(u)) =

(
∂ξa
∂xj

uadxj + ξadua
) ∣∣∣

u
= q∗Adlξ|u ∈ T ∗A|u.

Let us now consider J (q∗Adlξ) ∈ ι∗AT ∗(TG). Since Θ−1(J (q∗Adlξ)) lies in T (T ∗G)|A∗ ,
one can directly verify that J (q∗Adlξ) can be written as

pjdxj + γadya + γadẏ
a,

i.e., its components relative to dẋj vanish. By (6.47), (TιA)t(J (q∗Adlξ)|u) = q∗Adlξ|u,
so from the second equality in (6.58) we conclude that pj = ∂ξa

∂xj
ua and γa = ξa, i.e.,

J (q∗Adlξ|u) =
(
∂ξa
∂xj

uadxj + γady
a + ξadẏa

) ∣∣∣
ιA(u)

.

For each given u0 ∈ A, one can find h ∈ C∞(G) vanishing on M ⊂ G and such
that dh∨|ιA(u0) = γa(ιA(u0))dya, and (6.54) follows by a direct comparison with
(6.57). �

We will need the following immediate observations about linear functions on vector
bundles.

Lemma 6.7. Let qB : B → N be a vector bundle, with coordinates (xj , bd) relative
to a basis of local sections {ed}, and consider b = bded ∈ Γ(B), b∨ = bd ∂

∂bd
∈ X (B),

and β = βde
d ∈ Γ(B∗). Let lβ ∈ C∞(B) be the linear function defined by β, and fix

b0 = b(x0) ∈ B, for a given x0 ∈ N . Then Lb∨ lβ = q∗B〈β, b〉 and

(6.59) lβ(b0) = (Lb∨ lβ)(b0).

We now prove Proposition 6.4.

Proof. (of Proposition 6.4)
Let π = Lie(Π), and consider ξ1, . . . , ξk−1 ∈ Γ(A∗) and f ∈ C∞(M). Let us fix

u0 ∈ A, x0 = qA(u0) ∈M . By (6.50) and Lemma 6.6, we have

π(dlξ1 , . . . ,dlξk−1, dq
∗
Af)|u0 = ΠT (J dlξ1 , . . . ,J dlξk−1 ,J dq∗Af)|ιA(u0)

= ΠT (dl
ξ̃1

+ dh∨1 , . . . ,dlξ̃k−1 + dh∨k−1,d(t∗f)∨)|ιA(u0),(6.60)

with hi ∈ C∞(G), hi|M = 0, and ξ̃i as in (6.52) . We directly check from the
definition of ΠT that it is a linear multivector, ΠT ∈ X klin(TG), so (see footnote 6)

(6.61) idf∨1 idf∨2 ΠT = 0, ∀f1, f2 ∈ C∞(G).

Hence the expression in (6.60) agrees with

(6.62) ΠT (dl
ξ̃1
, . . . ,dl

ξ̃k−1 , d(t∗f)∨)|ιA(u0) = [ΠT , (t∗f)∨](dl
ξ̃1
, . . . ,dl

ξ̃k−1)|ιA(u0),

where [·, ·] is the Schouten bracket on X •(TG).
Let us consider the vertical lift operation X •(G) → X •(TG), Π 7→ Π∨: in co-

ordinates (zl) on G, it sends the vector field Y = Y l ∂
∂zl

to Y ∨ = Y l ∂
∂żl

, and this
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is extended to a graded algebra homomorphism of multivector fields. From the
Schouten bracket relations for vertical and tangent lifts, see e.g. [15], we obtain

[ΠT , (t∗f)∨] = [Π, t∗f ]∨ = ((δΠf)r)∨.

Letting x0 = qA(u0) ∈M , a direct computation in coordinates (6.51) shows that

((δΠf)r)∨(dl
ξ̃1
, . . . ,dl

ξ̃k−1)|ιA(u0) =
〈

(δΠf)r, ξ̃1 ∧ . . . ∧ ξ̃k−1
〉∣∣∣
ε(x0)

,

=
〈
δΠf, ξ

1 ∧ . . . ∧ ξk−1
〉∣∣∣
x0

,

from where it follows that

π(dlξ1 , . . . ,dlξk−1,dq∗Af)|u0 =
〈
δΠf, ξ

1 ∧ . . . ∧ ξk−1
〉∣∣∣
x0

= q∗A

〈
δΠf, ξ

1 ∧ . . . ∧ ξk−1
〉∣∣∣
u0

.

Comparing with (6.14), we conclude that δ (see (6.44)) and δΠ agree on C∞(M). It
remains to check that they agree on Γ(A).

We now consider ξ1, . . . , ξk ∈ Γ(A∗) and describe π(dlξ1 , . . . ,dlξk)|u0 in terms of
δΠ. By (6.50) and (6.54), we have (keeping the notation of Lemma 6.6)

π(dlξ1 , . . . ,dlξk)|u0 = ΠT (J dlξ1 , . . . ,J dlξk)|u0

= ΠT (dl
ξ̃1

+ dh∨1 , . . . ,dlξ̃k + dh∨k)|ιA(u0).(6.63)

From (6.61), we see that the expression ΠT (dl
ξ̃1

+ dh∨1 , . . . ,dlξ̃k + dh∨k) can be re-
written as

(6.64) ΠT (dl
ξ̃1
, . . . ,dl

ξ̃k
) +

k∑
j=1

ΠT (J dlξ1 , . . . ,J dlξj−1 , dh∨j ,J dlξj+1 , . . . ,J dlξk).

We claim that, for all j = 1, . . . , k, we have

(6.65) ΠT (J dlξ1 , . . . ,J dlξj−1 ,dh∨j ,J dlξj+1 , . . . ,J dlξk) = 0.

To see that, recall from Remark 6.5 that ΠT satisfies Π]
T ◦ Θ(k−1) = (JG)−1 ◦ TΠ],

and, since Π] : ⊕k−1
G T ∗G → TG is a groupoid morphism (see Remark 6.2),

TΠ] ◦ (ιA(T ∗G))
(k−1) ⊆ A(TG).

It follows from (4.7) and the definition of J that Π]
T ◦J (k−1) ⊆ TιA(TA) ⊂ ι∗AT (TG).

Relative to the adapted coordinates (xj , yd) in (6.51), elements in TιA(TA) ⊂
ι∗AT (TG) are combinations of ∂

∂xj
and ∂

∂ẏd
, whereas dh∨j |ιA(u) is in the span of dyd.

So (6.65) follows, and we conclude that

(6.66) π(dlξ1 , . . . ,dlξk)|u0 = ΠT (dl
ξ̃1
, . . . ,dl

ξ̃k
)|ιA(u0).

To proceed, we observe that ΠT (dl
ξ̃1
, . . . ,dl

ξ̃k
) defines a linear function on TG,

and, using (6.59) in Lemma 6.7 (with B = TG), we write

(6.67) ΠT (dl
ξ̃1
, . . . ,dl

ξ̃k
)|ιA(u0) = L(ur)∨(ΠT (dl

ξ̃1
, . . . ,dl

ξ̃k
))|ιA(u0),
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where u ∈ Γ(A) is such that u(x0) = u0. But

L(ur)∨(ΠT (dl
ξ̃1
, . . . ,dl

ξ̃k
)) =(L(ur)∨ΠT )(dl

ξ̃1
, . . . ,dl

ξ̃k
)

+
k∑
j=1

ΠT (dl
ξ̃1
, dl

ξ̃j−1 ,L(ur)∨(dl
ξ̃j

),dl
ξ̃j+1 , . . . ,dlξ̃k)),

and note that

L(ur)∨(dl
ξ̃l

) = d(ξ̃l(ur))∨, L(ur)∨ΠT = [ur,Π]∨ = −((δΠu)r)∨,

where we used the Schouten-bracket relations for tangent and vertical lifts in the
second equation. One can directly check that

((δΠu)r)∨(dl
ξ̃1
, . . . ,dl

ξ̃k
)|ιA(u0) =

〈
(δΠu)r, ξ̃1 ∧ . . . ∧ ξ̃k

〉∣∣∣
ε(x0)

=
〈
δΠu, ξ

1 ∧ . . . ∧ ξk
〉∣∣∣
x0

.

Thus L(ur)∨(ΠT (dl
ξ̃1
, . . . ,dl

ξ̃k
))|ιA(u0) equals

−
〈
δΠu, ξ

1 ∧ . . . ∧ ξk
〉∣∣∣
x0

+
k∑
j=1

ΠT (dl
ξ̃1
, . . . ,dl

ξ̃j−1 , d(ξ̃j(ur))∨,dl
ξ̃j+1 , . . . ,dlξ̃k)|ιA(u0).

Using local coordinates (xj , yd) as in (6.51), one can check the identity

d(ξ̃j(ur))∨|ιA(u0) = d(t∗
〈
ξj , u

〉
)∨|ιA(u0) + dh∨j |ιA(u0),

where hj ∈ C∞(G) vanishes on M ⊂ G. It follows that

ΠT (dl
ξ̃1
, . . . ,dl

ξ̃j−1 ,d(ξ̃j(ur))∨,dl
ξ̃j+1 , . . . ,dlξ̃k)|ιA(u0) =(6.68)

ΠT (dl
ξ̃1
, . . . ,dl

ξ̃j−1 , d(t∗
〈
ξj , u

〉
)∨,dl

ξ̃j+1 , . . . ,dlξ̃k)|ιA(u0)+

ΠT (dl
ξ̃1
, . . . ,dl

ξ̃j−1 , dh∨j , dlξ̃j+1 , . . . ,dlξ̃k)|ιA(u0).

Using the linearity of ΠT (see footnote 6) and (6.65), we see that

ΠT (dl
ξ̃1
, . . . ,dl

ξ̃j−1 , dh∨j , dlξ̃j+1 , . . . ,dlξ̃k)

= ΠT (J dl
ξ̃1
, . . . ,J dl

ξ̃j−1 , dh∨j ,J dl
ξ̃j+1 , . . . ,J dl

ξ̃k
) = 0.

A direct comparison with (6.60), (6.62) gives that

ΠT (dl
ξ̃1
, . . . ,dl

ξ̃j−1 ,d(t∗
〈
ξj , u

〉
)∨,dl

ξ̃j+1 , . . . ,dlξ̃k)|ιA(u0) =

(−1)k−jπ(dlξ1 , . . . , d̂lξj , . . . ,dlξk ,dq
∗
A

〈
ξj , u

〉
)|u0

Going back to (6.66), we finally conclude that

π(dlξ1 , . . . ,dlξk)|u0 =−
〈
δΠu, ξ

1 ∧ . . . ∧ ξk
〉∣∣∣
x0

+
k∑
j=1

(−1)k−jπ(dlξ1 , . . . , d̂lξj , . . . ,dlξk , dq
∗
A

〈
ξj , u

〉
)|u0 .

Comparing with (6.15), we conclude that δ = δΠ. �
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Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de
Janeiro, 22460-320, Brasil

E-mail address: henrique@impa.br



35

Department of Mathematics, University of Toronto, 40 St. George Street, Toronto,
Ontario, M5S 2E4 Canada

E-mail address: acabrera@math.toronto.edu


