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Abstract

Dans ce travail, nous présentons un nouveau schéma de subdivision de courbes non stationnaire et interpolatoire,
adapté a la conception des courbes sur les surfaces.

Nous montrons que le schéma converge et que la courbe de subdivision est continue. De plus, en commengant
avec une certaine parameétrisation naturelle du polygone initial on obtient une courbe de subdivision paramétréé
par un multiple de la longueur d’arc.

In this paper we present a hew non-stationary, interpolatory, curve subdivision scheme, suitable for designing
curves on surfaces.

We show that the scheme converges and the subdivision curve is continuous. Moreover, starting with a certain
natural parametrization of the initial polygon, we obtain a subdivision curve parametrized by a multiple of the
arc-length.

1. Introduction schemes. It is a member of the Dubuc-Deslauriers family of
subdivision schemes [DD89], where the new points lie on
a polynomial interpolating consecutive vertices of the con-
trol polygon. More precisely, starting from an initial poly-

onP? = {P% i € Z} the 4-point scheme is defined by the
equations

Subdivision curves are very important for several science
and engineering applications. In the Euclidean spate
they are easy to define by just selecting a small set of control
points. A drawing algorithm typically performs some subdi-
vision steps, thus approximating the limit curve by a polyg-

onal line in a matter of milliseconds. In this setting, there are p%'i“ — piJ'7 pzllil1 — gii (t%iill) 1)
many references on the convergence of these schemes. _

wheregiJ (t) is the cubic polynomial interpolating the points

Given their good properties and the advantages of using _; . . ) T
P, at uniform parameter valuel$: k/2! fork=i—1,i,i+

these curves, it is natural to extend them to non-euclidean o !
geometries, such as Riemannian manifolds, Lie groups or 1.i+2, andt}’; = (2i+1)/2/ "%

triangulations. l.n [PR95, RLJ05, PHO5] one may find some Several authors [KS98,DFH09] have noticed that the limit
of these extensions. curves of the 4-point scheme fit tightly to the long edges of
In this paper we propose a simple method to define a sub- the initial control polygon and loosely to the short edges, see
division scheme on a two dimensional manif8ithat is easy Figure 1, left. This is a result of the uniform parametrization
to be implemented on triangle meshes. Under mild condi- t0 =i for all i: the same time is used to travel between two
tions, the limit curve of the proposed scheme is a continuous consecutive pointE’iO, Pi°+l of the initial polygon, regardless
curve onS. Higher order continuity has not been explored in  of their distance. In other words, the limit curve of the uni-
this work, since it depends also on the smoothness of form 4-point subdivision scheme is far away from being arc-

The classical 4-point scheme [Dub86, DLG87] is one of length parametrized.

the earliest and most popular interpolatory curve subdivision ~ One way to address this problem is to use a non-uniform
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Figure 1: The limit curve of the 4-point subdivision scheme (1) with the initial parametrization (2)patl0 (left), B = 0.5

(middle) andB = 1 (right)

parameterization for®

0 0, o0 0
th1 =t0+ [P — PP 2

Then, the parameter values at the sjepl, are computed
from the parameters of the previous step as

i)
jrr G Aty
2i+1 — 2

3

J+1 _ 4]
ty =t

i

Taking this idea one step further, in [DFHO09], a reparame-
trization is introduced in each step, defined by the equation

(4)
s : - i1 _ pi pi+l _
Ppm'gs in the steg +1 are given byPy ™ = P',Pyl =
f (! +t/,1)/2), wheref] (t) is the cubic polynomial inter-
polating (t},R}) for k=i — 1,i,i+1,i +2. The limit curve

j_ 4] j j
tg=0 t =t/ +|P, PP

In this work, we take another way. We translate the geo-
metric ideas from [HEIMO9] to the geometry of the mani-
fold. Doing so, we are able to prove some properties of the
new curves, which are defined on the manifold, in a way
similar to [HEIMO9]. In the interpolatory scheme proposed
in this paper, the new points do not necessarily lie on the cu-
bic polynomial (1). Instead, starting from a parametrization
t0 of the original pongorPo computed from the arc-lengths
piO of thegeodesic curvesn Sjoining two consecutive ver-
tices P° and Pﬂl, we control the length of th¢-th subdi-
vision polygonsP! in such a way that, aftek subdivision
steps applied to the sid&/ P, ; of polygonP!, the length of
the obtained polygon tends to be proportional, Wit same
proportionality factorfor all i, to the length of the parame-

ter interval ti‘+1 —tiJ corresponding to the parametrization

] assigned t®’. Furthermore, the limit curve is continuous

of this nonlinear scheme is smooth and when the centripetal and it is parametrized by a multiple of the arc-length.

parametrization is used, it is relatively close to the initial
polygon and its shape is pleasing.

In Figure 1 we also show the limit curves of the 4-point
subdivision scheme corresponding to different value.of
Notice that the change in the parameterization of the initial
polygon affects the shape of the limit curve.

Motivated by the idea of keeping some control on the
geometry of the limit curves by means of a simple non-
linear subdivision scheme, in [HEIMQ9] is presented a non-
stationary, interpolatory, plane curve subdivision scheme,
whose limit curve is continuous and parametrized by a mul-
tiple of the arc-length. The itermediate polygd®isare pro-
vided with non-uniform parametrizations reflecting the rela-

tionship between the length of a siﬂ’éF’ijJrl of P! and the

length of the subpolygon ¢#*1 obtained applying the sub-

division scheme t@i' Pi'+1. Based on this result, it becomes a

natural idea to try to extend this scheme to a curved surface whereP2j

Sin the most intrinsic way, i.e., using the geometry of the
surfaceS.

The problem of designing curves on smooth manifolds has

A bound for the Hausdorff distance between the limit
curve and the initial polygon is also obtained.

The proposed scheme is nonlinear, hence we cannot study
its properties through the Laurent polynomials formalism
[Dyn92]. Instead, we rely on analytical and geometric ar-
guments that are particular to this type of schemes.

2. The subdivision scheme
2.1. General definitions

LetP? = {PP.i € Z} be an initial polygon with vertices on a
given surfaces, where three consecutive vertices are always
noncollinear. The equations giving the polygon at stepl
can be written as
i+1_ pi i+1 _ Jipl I ol
P2i - P. ) P2i+1 =0 (Pi+1vpi 7GJ) (5)
|++l1 is a point onSand the control paramete:ué >1

satisfy the condition

(6)

a::naj < oo
j

been addressed in several works [PR95, RLJO5, PHO5], and
also on triangulations [MCV07]. Some general frameworks For any pair of point)1,Q, € Sdenote bydg(Q1,Q7) the

for linear subdivision on smooth and discrete manifolds have arc-length of thegeodesiccurve onS ( we use the term
been defined [WP06, Wal06, WDO05, MVCO5] in the last geodesianeaning thdocally shortest curver shortest geo-
years. desic if Sis a triangulation, see [MMP87]) with initial point
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Q1 and final pointQy. In particular, for two consecutive ver-
tices of polygorP¥, PX, 1,PK € S, we denotely(PX, PX, ;) by

A gij(Pil;l,Pii,aj) is computed in

p',‘. The new vertexy’; =
such a way, that for a given parameter> 1

j+1 j+1

Py + Py = o ol (7)
Condition (7) means that the new po Jfl is in the set
Eg:={QeS/dg(QP) +dg(QP.y)=alpl} (8

due its similarity with the classical definition of an ellipse,
we will call this set thegeodesic ellipseon S with foci

P!,P! ; and eccentricityl/a’.

2.2. Convergence

To study the convergence of the subdivision scheme, we first
define the parametric values corresponding to each point on
the subdivision polygon.

For the initial a non-uniform parametrizati(b?l of polygon

PO, we set:
0 0 0, 0
to=0, 1=t +pi

©)

For the parametrizatioﬁ of polygon Pl we keep the para-
meters of the even indices at levie}l- 1 the same as at level

j» and set the new paramet%ff1 in the interval[tij ,tin] in
such a way that
j+1 j+1
Py Pai+1
I+1 ] i+1
t2i+1_ti ti+1_t2i+1
That is,
1 4 il _ siyd NS
LT =t =4t +(1-8)t, (10
ith & = _ Phii
with &' = Tl

Theorem 1 Consider the subdivision scheme (5)-(7) using
the parametrization (9)-(10). If the new poimgfl are se-

lected in such a way that, for allj

pitt<rpl for k=2i,2i+1 with F<1  (11)

then the subdivision schemmnvergesand the limit curve
c(t) is continuous

Proof: LetPj (t) be the piecewise linear function interpo-
lating (t/, P)). We will show thaf|P’ (t) — P! (t) || tends
uniformly toO whenj — co. We have
IP! (1) = PY (1)) oo
max max ||P!(t) P (t)| =
bty

j i+l j+1/j+1
max|[P(ty' 1) — P (i)

(12)

SinceP! (t) is linear in[t-j ! ] andtgij_ll is given by (10)

! i 41
we obtain,
N . o
Pl(t} 1) = 8/R +(1-8)P, (13)
Substituting (13) in (12), using the value 6|‘f in (10), and
recalling thatP) 1 (t};"}) = P} %, we obtain
o o . o
IP! =P oo = max|Py; — (§R + (1=8)RL) | =
PR Lo
max|3/ (P 3 —R')+ (1-8)) (P33 — Ryl <
C o
max{8] [P'7 —Pl|+ (1 8)IPyYT —PLyll} <
i+l i+l
max(8lpy~ +(1-8))pga} <
j+1 Jj+1
2max *2:1P2_} (14
i ol piJ
i K _ pktl kK pk . _
sincePf = P and ,||Pf ;1 — P, the euclidean distance

from PX to PrkH, is smaller than the geodesic distance $n

o from PK to PX, ;. Using (7) and the arithmetic-geometric
mean inequality, we get

j+1 j+1 j+1 j+1 j+1 j+1 i
SPa1Pa 5 PaivaPai - PayatPa a’pf
ool pyhey T 2 2
Therefore, from (14) we obtain,
PO P e < & max{ pl)
oo S o MAXLB
Assuming (11), we get
j j+1 ol j—1 2,0 j—2
IP7(0) =P (U)lloe <T(5 max{pi "}) <T*(5 max{p “})

2 2

gl
< < 0(G max{pl})

Observe thaf < 1and that (11) impliest’ < 2, therefore
passing to the limit we obtaitimj_, . P! — P/*Y[.c = 0.
The last expression means that the sequeiiét)} is a
Cauchy sequence in the sup norm and in consequence it
convergesSince we have proved thé®! (t)} converges uni-
formly, the limit functionc(t) has to becontinuous |

Remark 1 Notice that (11) is sufficient but not necessary
condition. In particular, if the hypothesis holds only after a
certain stepjo, the scheme still converges to a continuous
curve as we can see by applying the same proof to the poly-
gonPl,

3. Properties of the limit curve
3.1. Distance from the subdivision curve to the polygon

In this section a bound for the Hausdorff distance between
the limit curve and the initial pongoIE'?O is obtained.
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Lemma 1 Any vertekaj of the j-th subdivision of the edge
RPPC. ; belongs to the set

Rl € {Qe S/ dg(QR") +dg(QPL) < (%)) pfy

. (15)
i.e., Rl is inside thegeodesic ellipsavith foci P’, P’ ; and
eccentricity(o%a®. ..ol =171,

Proof: We haver? = P}, andP?; = szj(i+l).
tices in j-th step corresponding to the edg&r%; areP},

fork=2li,...,21(i+1) and

The ver-

dg(P’,P}) +dg(P.P%) =
dg(PZJJi ) P|i) + dQ(Pdv lej (i+1))

k-1 .
2 it
1=2i

IN

21(i+1)—

)-1
%

2(i+1)-1
pl =

1=2ii
) 121‘1(i+1)71 .-
i- -1 _
a o) =
=211

= a]_laj_z...aopio

Hence, the sum of the geodesic distances fFﬁrtD P|°,I =
i,i+ 1is smaller or equal to) ~*a/=2... o times the geo-
desic distance fromC to P, 1, p. O

Using Lemma 1, we obtain an upper bound of the Haus-
dorff distancedy between the segment of the limit curve

{c(t),t e [t'.t/ ,]} and the edg&’R’,;

Theorem 2 Let ¢(t) be the limit curve of the subdivision
scheme (5). Assume that= |‘|]-°§00(J is finite. Then

PO, — PV —1
i ({c(t).t € 10,1041, PPRL.y) < Pt =Pl
(16)
. . ap?
with w:= R

i+1

Proof: From Lemma 1, we know that all poirﬁ% ob-
tained at the j-th subdivision of the ed@®P_, ; are con-
tained in thegeodesic ellipsavith foci P, P ; and eccen-
tricity (a%a®---al=%)71, given by

{Qe S/ dg(Q,R) +dg(Q,P%1) = (aa™---al™1)p0

Let beQ a point on the curve segmeait’,t° ;], and de-
note byMgq the plane spanned 1y, P® andPS, ;. Since the

0
with = — 2P
IR =Rl o )
Observe that the length of the semiminor axis of the

0 — .0 A — . -
euclideanellipse Eq is w, while the euclid-

ean distance from each focus to the closest intersection point
between the semimajor axis Bf and the euclidean ellipse

0 0
Egis w. Sincew > 1, the first one is bigger

than the second one. Therefore, the Hausdorff distance from
the section of the limit curve corresponding to the parame-
ter interval[t®, t% | to the edge?’PC, ; is bounded above by
HF’.‘lrﬁ‘;Hx/uﬂfl 0

3.2. Parametrization

In this section we prove properties of the subdivision
scheme, whetf is the parametrization defined in (9).

Theorem 3 Consider the subdivision scheme (5)-(7) using
the parametrization (9)-(10) and assume that conditions (6)
and (11) hold. Denote by (P§,P!(t)) the length of the sub-

division curveP! in the stepj between point@é andP! (t).
Then, for anye > 0 existsjg, such that

R(io)

|jo+k Pio+k. pjo+k ) —

t|<e

holds, for allk > 0, whereR(k) := 1>k ol

Proof: Assume tha;jo <t< tijil. Then, it is not difficult

to show that using the recurrence (7) we obtain

jo+k piotk piotkoyy _  RU0) o
PO (P, POt ))_R(jo+k) t;
Therefore, the equality
' ' j R(jo)
| Jotk PJo+k’P]0+kt " t] =
1R ®) - Rogi !
jo+k otk oy piotk R(io j
e Pl ) i) — O ) 1)
holds for t/° <t <t12,.
Let bes,"’+k the sum of the geodesic distances between two

consecutive vertices of the subpolygoan'f’.+k that is ob-
tained afterk subdivision steps of the side’°R)?, of Plo,
Clearly, holds

|io+k(PJo+k(t,j0) pjo+k(t)) < 51]0+k (18)
1 b —=

On the other hand, if we takel® as initial polygon and/o
as initial parametrization, we get the same limit cucyg
as when we take” as initial polygon and® as initial para-

euclidean distance is smaller than the geodesic distance, thenyatrization. thus after a similar argument to the one used in

Qs in the interior of theeuclidearellipse onllg with foci
R?,PC.; and eccentricityl/w, defined by

Eq:={Re Mg/ [R—P’|+||R—P%1] = ap’}

otk

Lemma 1, we get th# has the upper bound

jo+k R(jo)

T Rio+k e

plo
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