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Subdivision curves on surfaces with arc-length control
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Abstract

Dans ce travail, nous présentons un nouveau schéma de subdivision de courbes non stationnaire et interpolatoire,
adapté à la conception des courbes sur les surfaces.
Nous montrons que le schéma converge et que la courbe de subdivision est continue. De plus, en commençant
avec une certaine paramétrisation naturelle du polygone initial on obtient une courbe de subdivision paramétréé
par un multiple de la longueur d’arc.

In this paper we present a new non-stationary, interpolatory, curve subdivision scheme, suitable for designing
curves on surfaces.
We show that the scheme converges and the subdivision curve is continuous. Moreover, starting with a certain
natural parametrization of the initial polygon, we obtain a subdivision curve parametrized by a multiple of the
arc-length.

1. Introduction

Subdivision curves are very important for several science
and engineering applications. In the Euclidean spaceRn,
they are easy to define by just selecting a small set of control
points. A drawing algorithm typically performs some subdi-
vision steps, thus approximating the limit curve by a polyg-
onal line in a matter of milliseconds. In this setting, there are
many references on the convergence of these schemes.

Given their good properties and the advantages of using
these curves, it is natural to extend them to non-euclidean
geometries, such as Riemannian manifolds, Lie groups or
triangulations. In [PR95, RLJ05, PH05] one may find some
of these extensions.

In this paper we propose a simple method to define a sub-
division scheme on a two dimensional manifoldSthat is easy
to be implemented on triangle meshes. Under mild condi-
tions, the limit curve of the proposed scheme is a continuous
curve onS. Higher order continuity has not been explored in
this work, since it depends also on the smoothness ofS.

The classical 4-point scheme [Dub86, DLG87] is one of
the earliest and most popular interpolatory curve subdivision

schemes. It is a member of the Dubuc-Deslauriers family of
subdivision schemes [DD89], where the new points lie on
a polynomial interpolating consecutive vertices of the con-
trol polygon. More precisely, starting from an initial poly-
gonP0 = {P0

i , i ∈ Z} the 4-point scheme is defined by the
equations

P j+1
2i = P j

i , P j+1
2i+1 = g j

i (t
j+1
2i+1) (1)

whereg j
i (t) is the cubic polynomial interpolating the points

P j
k at uniform parameter valuest j

k = k/2 j for k = i−1, i, i +
1, i +2, andt j+1

2i+1 = (2i +1)/2 j+1.

Several authors [KS98,DFH09] have noticed that the limit
curves of the 4-point scheme fit tightly to the long edges of
the initial control polygon and loosely to the short edges, see
Figure 1, left. This is a result of the uniform parametrization
t0
i = i for all i: the same time is used to travel between two
consecutive pointsP0

i ,P0
i+1 of the initial polygon, regardless

of their distance. In other words, the limit curve of the uni-
form 4-point subdivision scheme is far away from being arc-
length parametrized.

One way to address this problem is to use a non-uniform
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Figure 1: The limit curve of the 4-point subdivision scheme (1) with the initial parametrization (2) withβ = 0 (left), β = 0.5
(middle) andβ = 1 (right)

parameterization forP0

t0
i+1 = t0

i +‖P0
i+1−P0

i ‖β (2)

Then, the parameter values at the stepj + 1, are computed
from the parameters of the previous step as

t j+1
2i = t j

i , t j+1
2i+1 =

t j
i + t j

i+1

2
(3)

Taking this idea one step further, in [DFH09], a reparame-
trization is introduced in each step, defined by the equation

t j
0 = 0, t j

i+1 = t j
i +‖P j

i+1−P j
i ‖β (4)

Points in the stepj + 1 are given byP j+1
2i = P j

i ,P j+1
2i+1 =

f j
i ((t j

i + t j
i+1)/2), wheref j

i (t) is the cubic polynomial inter-

polating(t j
k ,P j

k ) for k = i−1, i, i + 1, i + 2. The limit curve
of this nonlinear scheme is smooth and when the centripetal
parametrization is used, it is relatively close to the initial
polygon and its shape is pleasing.

In Figure 1 we also show the limit curves of the 4-point
subdivision scheme corresponding to different values ofβ.
Notice that the change in the parameterization of the initial
polygon affects the shape of the limit curve.

Motivated by the idea of keeping some control on the
geometry of the limit curves by means of a simple non-
linear subdivision scheme, in [HEIM09] is presented a non-
stationary, interpolatory, plane curve subdivision scheme,
whose limit curve is continuous and parametrized by a mul-
tiple of the arc-length. The itermediate polygonsP j are pro-
vided with non-uniform parametrizations reflecting the rela-
tionship between the length of a sideP j

i P j
i+1 of P j and the

length of the subpolygon ofP j+1 obtained applying the sub-
division scheme toP j

i P j
i+1. Based on this result, it becomes a

natural idea to try to extend this scheme to a curved surface
S in the most intrinsic way, i.e., using the geometry of the
surfaceS.
The problem of designing curves on smooth manifolds has
been addressed in several works [PR95, RLJ05, PH05], and
also on triangulations [MCV07]. Some general frameworks
for linear subdivision on smooth and discrete manifolds have
been defined [WP06, Wal06, WD05, MVC05] in the last
years.

In this work, we take another way. We translate the geo-
metric ideas from [HEIM09] to the geometry of the mani-
fold. Doing so, we are able to prove some properties of the
new curves, which are defined on the manifold, in a way
similar to [HEIM09]. In the interpolatory scheme proposed
in this paper, the new points do not necessarily lie on the cu-
bic polynomial (1). Instead, starting from a parametrization
t0 of the original polygonP0 computed from the arc-lengths
ρ0

i of thegeodesic curveson S joining two consecutive ver-
ticesP0

i andP0
i+1, we control the length of thej-th subdi-

vision polygonsP j in such a way that, afterk subdivision
steps applied to the sideP j

i P j
i+1 of polygonP j , the length of

the obtained polygon tends to be proportional, withthe same
proportionality f actorfor all i, to the length of the parame-
ter interval t j

i+1− t j
i corresponding to the parametrization

t j assigned toP j . Furthermore, the limit curve is continuous
and it is parametrized by a multiple of the arc-length.

A bound for the Hausdorff distance between the limit
curve and the initial polygon is also obtained.

The proposed scheme is nonlinear, hence we cannot study
its properties through the Laurent polynomials formalism
[Dyn92]. Instead, we rely on analytical and geometric ar-
guments that are particular to this type of schemes.

2. The subdivision scheme

2.1. General definitions

Let P0 = {P0
i , i ∈ Z} be an initial polygon with vertices on a

given surfaceS, where three consecutive vertices are always
noncollinear. The equations giving the polygon at stepj +1
can be written as

P j+1
2i = P j

i , P j+1
2i+1 = g j

i (P
j

i+1,P
j

i ,α j ) (5)

whereP j+1
2i+1 is a point onSand the control parametersα j > 1

satisfy the condition

α := ∏
j

α j < ∞ (6)

For any pair of pointsQ1,Q2 ∈ Sdenote bydg(Q1,Q2) the
arc-length of thegeodesiccurve onS ( we use the term
geodesicmeaning thelocally shortest curveor shortest geo-
desic, if S is a triangulation, see [MMP87]) with initial point
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Q1 and final pointQ2. In particular, for two consecutive ver-
tices of polygonPk, Pk

r+1,P
k
r ∈ S, we denotedg(Pk

r ,Pk
r+1) by

ρk
r . The new vertexP j+1

2i+1 = g j
i (P

j
i+1,P

j
i ,α j ) is computed in

such a way, that for a given parameterα j > 1

ρ j+1
2i +ρ j+1

2i+1 = α j ρ j
i (7)

Condition (7) means that the new pointP j+1
2i+1 is in the set

Eg := {Q∈ S/ dg(Q,P j
i )+dg(Q,P j

i+1) = α j ρ j
i } (8)

due its similarity with the classical definition of an ellipse,
we will call this set thegeodesic ellipseon S with foci
P j

i ,P j
i+1 and eccentricity1/α j .

2.2. Convergence

To study the convergence of the subdivision scheme, we first
define the parametric values corresponding to each point on
the subdivision polygon.
For the initial a non-uniform parametrizationt0 of polygon
P0, we set:

t0
0 = 0 , t0

i+1 = t0
i +ρ0

i (9)

For the parametrizationt j of polygonP j , we keep the para-
meters of the even indices at levelj +1 the same as at level
j, and set the new parametert j+1

2i+1 in the interval[t j
i , t j

i+1] in
such a way that

ρ j+1
2i

t j+1
2i+1− t j

i

=
ρ j+1

2i+1

t j
i+1− t j+1

2i+1

That is,

t j+1
2i = t j

i , t j+1
2i+1 = δ j

i t
j
i +(1−δ j

i )t
j
i+1 (10)

with δ j
i = ρ j+1

2i+1

ρ j+1
2i +ρ j+1

2i+1

.

Theorem 1 Consider the subdivision scheme (5)-(7) using
the parametrization (9)-(10). If the new pointsP j+1

2i+1 are se-
lected in such a way that, for alli, j

ρ j+1
k ≤ Γ ρ j

i for k = 2i,2i +1 with Γ < 1 (11)

then the subdivision schemeconvergesand the limit curve
c(t) is continuous.

Proof: LetP j (t) be the piecewise linear function interpo-
lating (t j

i ,P j
i ). We will show that‖P j (t)−P j+1(t)‖∞ tends

uniformly to 0 when j →∞. We have

‖P j (t)−P j+1(t)‖∞ =

max
i

max
t j
i ≤tt j

i+1

‖P j (t)−P j+1(t)‖ =

max
i
‖P j (t j+1

2i+1)−P j+1(t j+1
2i+1)‖ (12)

SinceP j (t) is linear in[t j
i , t j

i+1] andt j+1
2i+1 is given by (10)

we obtain,

P j (t j+1
2i+1) = δ j

i P j
i +(1−δ j

i )P
j

i+1 (13)

Substituting (13) in (12), using the value ofδ j
i in (10), and

recalling thatP j+1(t j+1
2i+1) = P j+1

2i+1, we obtain

‖P j −P j+1‖∞ = max
i
‖P j+1

2i+1− (δ j
i P j

i +(1−δ j
i )P

j
i+1)‖ =

max
i
‖δ j

i (P
j+1

2i+1−P j
i )+(1−δ j

i )(P
j+1

2i+1−P j
i+1)‖ ≤

max
i
{δ j

i ‖P j+1
2i+1−P j

i ‖+(1−δ j
i )‖P j+1

2i+1−P j
i+1‖} ≤

max
i
{δ j

i ρ j+1
2i +(1−δ j

i )ρ
j+1
2i+1} ≤

2max
i
{ρ j+1

2i+1ρ j+1
2i

α j ρ j
i

} (14)

sincePk
r = Pk+1

2r and ,‖Pk
r+1−Pk

r ‖, the euclidean distance

from Pk
r to Pk

r+1, is smaller than the geodesic distance (onS)

ρk
r from Pk

r to Pk
r+1. Using (7) and the arithmetic-geometric

mean inequality, we get

2
ρ j+1

2i+1ρ j+1
2i

α j ρ j
i

= 2
ρ j+1

2i+1ρ j+1
2i

ρ j+1
2i+1 +ρ j+1

2i

≤ ρ j+1
2i+1 +ρ j+1

2i

2
=

α j ρ j
i

2

Therefore, from (14) we obtain,

‖P j (t)−P j+1(t)‖∞ ≤ α j

2
max

i
{ ρ j

i }

Assuming (11), we get

‖P j (t)−P j+1(t)‖∞≤Γ(
α j

2
max

i
{ρ j−1

i })≤Γ2(
α j

2
max

i
{ρ j−2

i })

≤ ·· · ≤ Γ j (
α j

2
max

i
{ρ0

i })

Observe thatΓ < 1 and that (11) impliesα j ≤ 2, therefore
passing to the limit we obtain,lim j→∞ ‖P j −P j+1‖∞ = 0.
The last expression means that the sequence{P j (t)} is a
Cauchy sequence in the sup norm and in consequence it
converges. Since we have proved that{P j (t)} converges uni-
formly, the limit functionc(t) has to becontinuous.

Remark 1 Notice that (11) is sufficient but not necessary
condition. In particular, if the hypothesis holds only after a
certain stepj0, the scheme still converges to a continuous
curve as we can see by applying the same proof to the poly-
gonP j0.

3. Properties of the limit curve

3.1. Distance from the subdivision curve to the polygon

In this section a bound for the Hausdorff distance between
the limit curve and the initial polygonP0 is obtained.



Estrada-Sarlabous, Hernández-Mederos, Martínez-Morera, Velho / Subdivision curves

Lemma 1 Any vertexP j
k of the j-th subdivision of the edge

P0
i P0

i+1 belongs to the set

P j
k ∈{Q∈S/ dg(Q,P0

i )+dg(Q,P0
i+1)≤ (α0α1 · · ·α j−1) ρ0

i }
(15)

i.e. ,P j
k is inside thegeodesic ellipsewith foci P0

i ,P0
i+1 and

eccentricity(α0α1 · · ·α j−1)−1.

Proof: We haveP0
i = P j

2 j i andP0
i+1 = P j

2 j (i+1). The ver-

tices in j-th step corresponding to the edgeP0
i P0

i+1 areP j
k ,

for k = 2 j i, ...,2 j (i +1) and

dg(P0
i ,P j

k )+dg(P
j

k ,P0
i+1) =

dg(P
j

2 j i ,P
j

k )+dg(P
j

k ,P j
2 j (i+1)) ≤

k−1

∑
l=2 j i

ρ j
l +

2 j (i+1)−1

∑
l=k

ρ j
l =

2 j (i+1)−1

∑
l=2 j i

ρ j
l =

α j−1
2 j−1(i+1)−1

∑
l=2 j−1i

ρ j−1
l =

· · ·
= α j−1α j−2 · · ·α0ρ0

i

Hence, the sum of the geodesic distances fromP j
k to P0

l , l =
i, i +1 is smaller or equal toα j−1α j−2 · · ·α0 times the geo-
desic distance fromP0

i to P0
i+1,ρ

0
i .

Using Lemma 1, we obtain an upper bound of the Haus-
dorff distancedH between the segment of the limit curve
{c(t), t ∈ [t j

i , t j
i+1]} and the edgeP0

i P0
i+1.

Theorem 2 Let c(t) be the limit curve of the subdivision
scheme (5). Assume thatα = ∏∞j=0 α j is finite. Then

dH({c(t), t ∈ [t0
i , t0

i+1]},P0
i P0

i+1)≤
‖P0

i+1−P0
i ‖
√

ω2−1

2
(16)

with ω := αρ0
i

‖P0
i+1−P0

i ‖
.

Proof: From Lemma 1, we know that all pointsP j
k ob-

tained at the j-th subdivision of the edgeP0
i P0

i+1 are con-
tained in thegeodesic ellipsewith foci P0

i ,P0
i+1 and eccen-

tricity (α0α1 · · ·α j−1)−1, given by

{Q∈ S/ dg(Q,P0
i )+dg(Q,P0

i+1) = (α0α1 · · ·α j−1)ρ0
i }

Let be Q a point on the curve segmentc[t0
i , t0

i+1], and de-
note byΠQ the plane spanned byQ, P0

i andP0
i+1. Since the

euclidean distance is smaller than the geodesic distance, then
Q is in the interior of theeuclideanellipse onΠQ with foci
P0

i ,P0
i+1 and eccentricity1/ω, defined by

EQ := {R∈ΠQ / ‖R−P0
i ‖+‖R−P0

i+1‖= αρ0
i }

with ω := αρ0
i

‖P0
i+1−P0

i ‖
.

Observe that the length of the semiminor axis of the

euclideanellipseEQ is
‖P0

i+1−P0
i ‖
√

ω2−1
2 , while the euclid-

ean distance from each focus to the closest intersection point
between the semimajor axis ofEQ and the euclidean ellipse

EQ is
‖P0

i+1−P0
i ‖(ω−1)
2 . Sinceω ≥ 1, the first one is bigger

than the second one. Therefore, the Hausdorff distance from
the section of the limit curve corresponding to the parame-
ter interval[t0

i , t0
i+1] to the edgeP0

i P0
i+1 is bounded above by

‖P0
i+1−P0

i ‖
√

ω2−1
2 .

3.2. Parametrization

In this section we prove properties of the subdivision
scheme, whent0 is the parametrization defined in (9).

Theorem 3 Consider the subdivision scheme (5)-(7) using
the parametrization (9)-(10) and assume that conditions (6)
and (11) hold. Denote byl j (P j

0,P j (t)) the length of the sub-

division curveP j in the stepj between pointsP j
0 andP j (t).

Then, for anyε > 0 exists j0, such that

| l j0+k(P j0+k
0 ,P j0+k(t))− R( j0)

R( j0 +k)
t |< ε

holds, for allk > 0, whereR(k) := ∏ j≥k α j .

Proof: Assume thatt j0
i < t ≤ t j0

i+1. Then, it is not difficult
to show that using the recurrence (7) we obtain

l j0+k(P j0+k
0 ,P j0+k(t j0

i )) =
R( j0)

R( j0 +k)
t j0
i

Therefore, the equality

| l j0+k(P j0+k
0 ,P j0+k(t))− R( j0)

R( j0 +k)
t |=

|l j0+k(P j0+k(t j0
i ),P j0+k(t))− R( j0)

R( j0 +k)
(t− t j0

i )| (17)

holds for t j0
i < t ≤ t j0

i+1.

Let besj0+k
i the sum of the geodesic distances between two

consecutive vertices of the subpolygon ofP j0+k that is ob-
tained afterk subdivision steps of the sideP j0

i P j0
i+1 of P j0.

Clearly, holds

l j0+k(P j0+k(t j0
i ),P j0+k(t))≤ sj0+k

i (18)

On the other hand, if we takeP j0 as initial polygon andt j0

as initial parametrization, we get the same limit curvec(t)
as when we takeP0 as initial polygon andt0 as initial para-
metrization, thus after a similar argument to the one used in
Lemma 1, we get thatsj0+k

i has the upper bound

sj0+k
i ≤ R( j0)

R( j0 +k)
ρ j0

i (19)
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Therefore, sustituting (18) and (19) in (17), we get the fol-
lowing inequalities,

| l j0+k(P j0+k
0 ,P j0+k(t))− R( j0)

R( j0 +k)
t | =

|l j0+k(P j0+k(t j0
i ),P j0+k(t))− R( j0)

R( j0 +k)
(t− t j0

i )| ≤
R( j0)

R( j0 +k)
(ρ j0

i − (t− t j0
i )) <

R( j0)
R( j0 +k)

ρ j0
i

Recall that (6) implies thatR( j0+k) →k→∞ 1. On the other
hand, after Theorem 1, the subdivision scheme (5)-(7) using
the parametrization (9)-(10) is convergent. Hence, existsj0,
such that

R( j0)
R( j0 +k)

< 2 and max
i
{ρ j0

i }< ε/2

hold, and substituting these inequalities in the last expression
above we get the desired result.

Remark 2 The above result means that for sufficiently
large j, the piecewise linear functionP j (t) interpolating
(t j

i ,P j
i ) is approximately parametrized by a multiple of

the arc-length. Indeed, letc(t) be the limit curve and as-
sume that conditions (6) and (11) hold. DefiningL(0, t) :=
limk→∞ l j0+k(P0

0 ,P j0+k(t)) as the arc-length of the section
of c(t) between pointsc(0) = P0

0 and c(t), we get that
L(0, t)' R( j0) t holds. Hence,c(t) is parametrized approx-
imately by a multiple of the arc-length.

4. Conclusions

We described a subdivision scheme with control over the
length of the limit curve, suitable for designing curves on
surfaces.
At each subdivision step, similarly to the classic 4-point
scheme, the existing vertices are retained, making the
scheme interpolatory.
Despite the parametrization is not uniform, it is possible
to compute a sequence ofm points approximately on the
subdivision curve, with approximately uniform arc-length
distribution. Recall that even when these points are not
exactly on the subdivision curve, a bound for the Hausdorff
distance between any point of the polygon in the last step
and the subdivision curve can be computed.
The formulation of the scheme is presented for general
two dimensional manifolds. In the particular case of
triangulated surfaces, we believe that the results obtained
in [MCV07, MVC08] will make it possible to obtain
efficient implementations. That should be discussed in detail
in a future work.
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