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Abstract. We address the problem of parametrizing the boundary data for reaction-diffusion partial differential equations
associated to distributed systems that possess rough boundaries. Using techniques from homogenization theory and multiple-
scale analysis we present the effective equation and boundary conditions that are satisfied by the homogenized solution. We
present numerical simulations that validate our theoretical results.
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INTRODUCTION

Reaction-diffusion systems model a large variety of process, such as physical, physiological and ecological phenom-
ena. However, the geometry of the domains where such systemsevolve may be quite complex. This poses serious
practical as well as theoretical challenges. For example, many sophisticated PDE solvers balk in handling the fine
scales of the boundary or the roughness may induce noise and uncertainty in measuring the state variables of the sys-
tem close to the boundary. Potential applications of the results presented here include ecological systems where one
finds a large spatial variability of limnological parameters in connection with boundary complexity [3, 4, 5].
One possible approach to these problems consists in generating an equivalent system, defined on a smoothed layer
containing the domain, whose the parameters near the boundary depend on the rough geometry and such that the so-
lution in the interior of the space domain is very close to theone of the original system . To this aim, a natural idea
would be analyze rough boundaries with homogenization methods [1, 2, 6].
In this work, a multiple scale analysis method is used to homogenize reaction-diffusion systems in domains with rough
boundaries. Our main concern is to develop the formal asymptotics and to validate it through numerical experiments.
The approach proposed here follows a previous work where complete proofs of theorems are presented for the scalar
case [7]. Convergence of the homogenized solution is then verified by numerical simulations.

THE MODEL

We consider a rectangular domainΩε whose boundary is partly rough with periodic roughness elementsΓε . To model
this boundary, we shall use the curvez= h(x/ε) in the (x,z) plane of periodε in x (see Figure 1). Hereε refers to
the basic scale where the boundary oscillation takes place and is assumed to be much smaller than the characteristic
dimensions of our domain. With [2], we assume that the boundary oscillates between the linesz = −A andz = 0.
Furthermore, we assume thatz= h(x/ε) is monotone in the semi-period and is a differentiable function.
We assume that the dynamics of the system is described as following:

∂tU−D∆U = G(U), (x,z) in Ωε & t ≥ 0 (1)

where each component of the vectorU = [U1(x,z,t), . . . ,Un(x,z,t)]′ represents the concentration of each sub-
stance,D = diag{σi}, i = 1, . . . ,n is the matrix of diffusion coefficients,∆ denotes the Laplace operator andG =
[g1(U1, . . . ,Un), . . . ,gn(U1, . . . ,Un)]

′ accounts for all local reactions. We consider appropriate boundary conditions of
Dirichlet or Neumann type. Namely,

Dirichlet: U = 0 , (x,z) onΓε , (2)
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FIGURE 1. Pictorial description of a boundary segment. The upper part(z> h(x/ε)) represent a subset of the internal domain,
the periodic curve (z= h(x)) is the boundary and the dashed line (z= −A) is the external lower boundary.

or

Neumann: DUn = 0 , (x,z) onΓε , (3)

and suitable smooth initial conditions.
We assume that the system under consideration admits solutions in an interval of time independent ofε and that the
nonlinear functionsgi(·) admit Taylor expansions at any point.

MAIN RESULTS

In this section we present the main results concerning the formal homogenization. In particular, two main theorems,
accounting for the formal asymptotic analysis of the Neumann and Dirichlet cases, are reported.
Following [2], we introducey = x/ε and writeUi as function ofx,y,z,t andε: Ui(x,z,t,ε) = ui(x,y,z,t,ε). Here,ui is
required to be periodic iny with period 1, which is the period of the curvez= h(y). Next, we assume thatui can be
expanded forε small in the form:

ui(x,x/ε,z, t,ε) =
2

∑
j=0

u( j)
i (x,x/ε,z,t,ε)+O(ε3). (4)

Moreover, let us introducey1(z) andy2(z) as two inverses ofz= h(y) over one period. The first,y1(z), increases
from y1 = 0 atz= 0 toy1 = y1(−A) atz= −A, andy2(z) increases fromy2(−A) = y1(−A) to y2(0) = 1 asz increases
from−A to 0.
We can then summarize the main result in the following:

Theorem 1 (Neumann b. c.) Let U = [U1(x,z,t,ε), . . . ,Un(x,z,t,ε)]′ satisfy the reaction-diffusion system (1) with
Neumann boundary condition (3) on z= h(y) a differentiable1-periodic function. Suppose that Ui = ui(x,y,z,t,ε)

has the asymptotic form (4), where ui is 1-periodic in y. Then, u(0)
i (x,z,t) is independent of y for−A≤ z≤ 0 and is a

solution of the problem:
∂tu(0)−D∆u(0) = F(u(0)), z> 0
∂tu(0)−Deff∂zzu(0) = F(u(0)), −A < z< 0
u(0),Deff∂zu(0) continuous at z= 0
∂zu(0) = 0, z= −A,



where u(0) = [u(0)
1 , . . . ,u(0)

n ], D = diag{σi}, Deff = diag{σi ∂z(y2(z) − y1(z))/(y2(z) − y1(z))} and F(u(0)) =

[ f1(u
(0)
1 , . . . ,u(0)

n ), . . . , fn(u
(0)
1 , . . . ,u(0)

n )]′ with fi(·) a Taylor expansion of gi(·) in (1).

Theorem 2 (Dirichlet b. c.) Let U = [U1(x,z,t,ε), . . . ,Un(x,z,t,ε)]′ satisfy the reaction-diffusion system (1) with
Dirichlet boundary condition (2) on z= h(y) a differentiable1-periodic function. Suppose that Ui = ui(x,y,z,t,ε)

has the asymptotic form (4), where ui is 1-periodic in y. Then, u(0)
i (x,z,t) is independent of y for−A≤ z≤ 0 and is a

solution of the problem:
∂tu(0)−D∆u(0) = F(u(0)), z> 0
u(0) = 0, −A≤ z≤ 0,

whereu(0) = [u(0)
1 , . . . ,u(0)

n ], D = diag{σi} andF(u(0)) = [ f1(u
(0)
1 , . . . ,u(0)

n ), . . . , fn(u
(0)
1 , . . . ,u(0)

n )]′ with fi(·) a Taylor
expansion of gi(·) in (1).

The proof of these results follow the one given in [7] for the scalar case and will not be reported for lack of space.
In the next section we apply the theorems to a model describing the dynamics of a predator-prey system. Numerical
experiments show thatui converges to its expansion of the form Equation (4) in Theorems 1 and 2 asε → 0.

NUMERICAL VALIDATION

In order to numerically validate the results, we apply the method to an ecological model in a rectangular domainΩε
representing a prototypical lake whose boundary is decomposed in∂Ωε = ΓL ∪ΓR∪ΓT ∪ΓB, whereΓT = hT(x/ε)
andΓB = hB(x/ε) are highly oscillating periodic functions (with periodε in x) (see left part of Figure 2) in which we
have Neumann or Dirichlet boundary conditions.
We take the dynamics to be described by the Rosenzweig-MacArthur model with a quadratic mortality term [9]:

∂U1

∂ t
−∇ · (σ1∇U1) = rU1

(

1−
U1

k

)

−q
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∂U2

∂ t
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U1U2

W+U1
−U2

2

The homogenized domain is described byΩh = ΩO∪ΩT ∪ΩB where the rough boundaries,ΓT andΓB in the original
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FIGURE 2. The original domain (left) with a partially rough boundary and the homogenized domain (right).

domain, are replaced by two equivalent layers where two modified systems hold (see right part of Figure 2). The
coefficients of the equations in these new systems are determined by solving a homogenized problem, as reported in
Theorems 1 and 2 for Neumann and Dirichlet boundary conditions, respectively.
Numerical simulations show that, asε → 0, U → u(0). Figures 3 reports the spatial MSE between homogenized and
exact solutions for each time instant and different values of ε for Neuman case. As we can see from Figure 4, the error
decreases asε → 0 when the system reaches the steady state.

In conclusion we remark that the present work validates, forcertain systems, the results we had obtained before [7]
for the case of scalar equations. The proposed approach increases the robustness and stability of the numerical solution
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FIGURE 3. MSE between original and homogenized solutionsU1 (left) andU2 (right) for Neumann boundary conditions.
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FIGURE 4. Steady state MSE between original and homogenized solutions U1 (left) andU2 (right) for Neumann boundary
conditions.

methods. Moreover, finding an effective description of the asymptotic behavior of the solutions may help in removing
a crucial source of instability.
The authors are currently developing identification techniques for the application of the proposed method to domains
with generic rough boundaries.
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