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Abstract. We address the problem of parametrizing the boundary dateeéation-diffusion partial differential equations
associated to distributed systems that possess rough &eesdJsing techniques from homogenization theory andiphed
scale analysis we present the effective equation and bogedaditions that are satisfied by the homogenized solutidm
present numerical simulations that validate our theaatisults.
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INTRODUCTION

Reaction-diffusion systems model a large variety of pregcssch as physical, physiological and ecological phenom-
ena. However, the geometry of the domains where such systeohge may be quite complex. This poses serious
practical as well as theoretical challenges. For exampémynsophisticated PDE solvers balk in handling the fine
scales of the boundary or the roughness may induce noisereedtainty in measuring the state variables of the sys-
tem close to the boundary. Potential applications of theltepresented here include ecological systems where one
finds a large spatial variability of limnological parameter connection with boundary complexity [3, 4, 5].

One possible approach to these problems consists in geneaat equivalent system, defined on a smoothed layer
containing the domain, whose the parameters near the boudepend on the rough geometry and such that the so-
lution in the interior of the space domain is very close todhe of the original system . To this aim, a natural idea
would be analyze rough boundaries with homogenization austfil, 2, 6].

In this work, a multiple scale analysis method is used to hgenize reaction-diffusion systems in domains with rough
boundaries. Our main concern is to develop the formal asytiegtand to validate it through numerical experiments.
The approach proposed here follows a previous work whergtEmproofs of theorems are presented for the scalar
case [7]. Convergence of the homogenized solution is thefieceby numerical simulations.

THE MODEL

We consider a rectangular domd&d whose boundary is partly rough with periodic roughness eldst .. To model

this boundary, we shall use the cuwe- h(x/¢) in the (x,z) plane of perioct in x (see Figure 1). Here refers to

the basic scale where the boundary oscillation takes pladésaassumed to be much smaller than the characteristic
dimensions of our domain. With [2], we assume that the bogndscillates between the lines= —A andz= 0.
Furthermore, we assume theat h(x/€) is monotone in the semi-period and is a differentiable fiomct

We assume that the dynamics of the system is described ewiiod:

4U-DAU=G(U), (x2)inQ¢&t>0 1)

where each component of the vector= [U1(x,zt),...,Un(x,2t)]" represents the concentration of each sub-
stanceD = diag{ai},i = 1,...,n is the matrix of diffusion coefficientd) denotes the Laplace operator a@d=
[91(U1,...,Upn),...,gn(Us,...,Un)] accounts for all local reactions. We consider appropriatenbary conditions of
Dirichlet or Neumann type. Namely,

Dirichlet: U=0,(x,zonlg, (2)



z=h(x)

FIGURE 1. Pictorial description of a boundary segment. The upper (@arth(x/¢€)) represent a subset of the internal domain,
the periodic curveZ= h(x)) is the boundary and the dashed lize<(—A) is the external lower boundary.

or
Neumann: DU, =0, (x,z)onl¢, 3)

and suitable smooth initial conditions.
We assume that the system under consideration admitsauditi an interval of time independentofind that the
nonlinear functiongji(-) admit Taylor expansions at any point.

MAIN RESULTS

In this section we present the main results concerning tiradbhomogenization. In particular, two main theorems,
accounting for the formal asymptotic analysis of the Neumamd Dirichlet cases, are reported.

Following [2], we introducey = x/& and writeU; as function ok, y,z,t ande: Ui(x,z,t, €) = ui(x,y,zt,€). Here,u; is
required to be periodic iy with period 1, which is the period of the curze= h(y). Next, we assume that can be
expanded foe small in the form:

Ui(X,X/€,2,t,€) = iufj)(x,x/s,z,t,s) +0(3). 4)
=

Moreover, let us introduce; (z) andy»(z) as two inverses af = h(y) over one period. The firsy;(z), increases
fromy; =0atz=0toy; =y1(—A) atz= —A, andy»(z) increases fromy,(—A) = y1(—A) to y»(0) = 1 aszincreases
from —Ato 0.

We can then summarize the main result in the following:

Theorem 1 (Neumann b. c.) Let U = [Ui(x,zt,¢),...,Un(X,2t,€)] satisfy the reaction-diffusion system (1) with
Neumann boundary condition (3) on=zh(y) a differentiablel-periodic function. Suppose that & ui(X,y,zt,¢)
has the asymptotic form (4), whergisi 1-periodic in y. Then, ﬁ?) (x,z,t) is independentofy forA<z<Oandis a
solution of the problem:

au® —pau® =Fu®), z>0

au® — Dga, @ =Fu?), —A<z<0

u@ Dgd,u®  continuous at z0

ou0 =0, z=-A



where u® = W, ul], D = diag{ai}, Dar = diag{ai d,(y2(2) — y1(2))/(v2(2) — v1()} and F(u®) =

[fl(ugo), " .,uﬁ,o)),..., fn(ugo),...,uﬁo))]’ with fi(-) a Taylor expansion ofi¢) in (1).

Theorem 2 (Dirichlet b. c.) Let U = [U1(x,zt,€),...,Un(X,z,t,€)]" satisfy the reaction-diffusion system (1) with
Dirichlet boundary condition (2) on z h(y) a differentiablel-periodic function. Suppose that & ui(x,y,zt,€)
has the asymptotic form (4), whergisi1-periodic in y. Then, ﬁ?) (X,z,t) isindependentofy forA<z<Oandis a
solution of the problem:

au©® —pau® =Fu®), z>0

u® =0 -A<z<O,

3

whereu©® = [ul? ... ul?], D = diag{oi} andF(u?) = [f, (U, ..., u), ... £ (UY,. .. u)) with f,(-) a Taylor
expansion ofd-) in (1).

The proof of these results follow the one given in [7] for ticalar case and will not be reported for lack of space.
In the next section we apply the theorems to a model desgribhie dynamics of a predator-prey system. Numerical
experiments show thai converges to its expansion of the form Equation (4) in Thewsr& and 2 as — 0.

NUMERICAL VALIDATION

In order to numerically validate the results, we apply thetrod to an ecological model in a rectangular don@jn
representing a prototypical lake whose boundary is decarpmdQ, = ' UFTrUI T UTg, wherel't = hy(x/¢)
andl'g = hg(x/¢€) are highly oscillating periodic functions (with periadn x) (see left part of Figure 2) in which we
have Neumann or Dirichlet boundary conditions.

We take the dynamics to be described by the Rosenzweig-MagAmodel with a quadratic mortality term [9]:

dUq Uy U;U,
== _ 0 (o4 = 1—-=—=)—

ot (010U1) rul( k) “Wru;
oU, UiU, 2

- D . |:| = -

ot (020U2) =1 Wiu; Uz

The homogenized domain is describedhy= Qo U Q1 UQp where the rough boundarids; andl g in the original

FIGURE 2. The original domain (left) with a partially rough boundanydsthe homogenized domain (right).

domain, are replaced by two equivalent layers where two fisalsystems hold (see right part of Figure 2). The
coefficients of the equations in these new systems are dietedrby solving a homogenized problem, as reported in
Theorems 1 and 2 for Neumann and Dirichlet boundary conditicespectively.

Numerical simulations show that, as— 0, U — u(9. Figures 3 reports the spatial MSE between homogenized and
exact solutions for each time instant and different valdesfor Neuman case. As we can see from Figure 4, the error
decreases as— 0 when the system reaches the steady state.

In conclusion we remark that the present work validatescéotain systems, the results we had obtained before [7]
for the case of scalar equations. The proposed approaaases the robustness and stability of the numerical solutio
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FIGURE 4. Steady state MSE between original and homogenized sofuttipr(left) andU, (right) for Neumann boundary
conditions.

methods. Moreover, finding an effective description of thgnaptotic behavior of the solutions may help in removing

a crucial source of instability.
The authors are currently developing identification teghas for the application of the proposed method to domains

with generic rough boundaries.
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