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Abstract. We consider a system coupling a multidimensional semilinear Schrödinger equation and a mul-

tidimensional nonlinear scalar conservation law with viscosity, which is motivated by a model of short

wave-long wave interaction introduced by Benney (1977). We prove the global existence and uniqueness of

the solution of the Cauchy problem for this system. We also prove the convergence of the whole sequence

of solutions when the viscosity ε and the interaction parameter α approach zero so that α = o(ε1/2). We

also indicate how to extend these results to more general systems which couple multidimensional semilinear

systems of Schrödinger equations with multidimensional nonlinear systems of scalar conservation laws mildly

coupled.

1. Introduction

We consider the Cauchy problem for the multidimensional system

iut + ∆u = |u|γu+ α g(v)h′
(

|u|2
)

u,

vt + a · ∇f(v) = α a · ∇
(

h
(

|u2|
)

g′(v)
)

+ ε∆v,

which is motivated by the model of short wave-long wave interaction introduced by Benney [3]. We prove
the global existence of a unique solution of this system in H1(RN ). We also analize the problem of the
convergence of the solutions when ε, α → 0. We prove the convergence of the whole sequence of solutions
when ε, α → 0 with α = o(ε1/2) to the solution of the corresponding pair of decoupled equations. We also
indicate how these results may be extended to systems coupling several semilinear Schrödinger equations
and several mildly coupled nonlinear scalar conservation laws.

We recall that in [7] many onedimensional systems coupling a semilinear Schrödinger equation with
nonlinear systems of conservation laws, including some of the most representatives, were analyzed. The
coupling with a particular type of scalar conservation law was addressed earlier in [6]. Other Benney type
models were studied in, e.g., [19], [20], [1] and [2].

The remaining of the paper is organized as follows. In Section 2, we prove the local and global existence
of a unique solution of the Cauchy problem. In Section 3, we prove the convergence of the solutions when
ε, α → 0, with α = o(ε1/2). In Section 4, we indicate how these results may be easily extended to more
general systems coupling several semilinear Schrödinger equations with several nonlinear mildly coupled
scalar conservation laws.

2. Existence and uniqueness of a global solution

We consider the following Cauchy problem

iut + ∆u = |u|γu+ α g(v)h′
(

|u|2
)

u,(2.1)

vt + a · ∇f(v) = α a · ∇
(

h
(

|u2|
)

g′(v)
)

+ ε∆v,(2.2)

u(x, 0) = u0(x), v(x, 0) = v0(x),(2.3)
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where u(x, t) ∈ C, v(x, t) ∈ R , x ∈ R
N , N ≥ 2, t ≥ 0, 0 ≤ γ < 4

N−2 . a is a velocity field such that

a ∈W 1,∞(RN )N

and

(2.4) div a = 0 in R
N .

f, g are C3 real functions, supp g′ ⊆ [−M0,M0], h : [0,+∞) → [0,+∞) is a nonnegative bounded C3 function
with supph′ ⊆ [0,M1] for certain positive constants M0,M1, and α, ε > 0. For simplicity we also assume
f(0) = g(0) = h(0) = 0.

We assume

(2.5) u0 ∈ H1(RN ), v0 ∈ H1(RN ) ∩ L∞(RN ),

with ‖v0‖∞ ≤M0 and M0 is as above.
Before starting the study of the Cauchy problem (2.1)–(2.3) we recall the Strichartz’s estimates which are

a powerful tool in the study of multidimensional nonlinear Schrödinger equations. We begin by recalling the
definition of an admissible pair.

Definition 2.1. We say that a pair (q, r) is admissible if

(2.6)
2

q
= N(

1

2
− 1

r
)

and

(2.7) 2 ≤ r ≤ 2N

N − 2
(2 ≤ r ≤ ∞ if N = 1, 2 ≤ r <∞ if N = 2).

We observe that if (q, r) is an admissible pair, then 2 ≤ q ≤ ∞. We also note that the pair (∞, 2) is
always admissible and the pair (2, 2N

N−2 ) is admissible if N ≥ 3.

We now state the well known Strichartz’s estimates, originally due to Strichartz [16] and generalized and
improved by Ginibre and Velo [9], Yajima [17], Cazenave and Weissler [5] and Keel and Tao [11]. We refer
to [4] for the proof and comments.

Let U(t) be the unitary group of operators in L2(RN ) associated with the Schrödinger operator i ∂
∂t + ∆,

that is, given ϕ ∈ L2, U(t)ϕ is the solution of iut + ∆u = 0, u(x, 0) = ϕ(x).

Theorem 2.1 (Strichartz’s estimates). The following hold:

(i) For every ϕ ∈ L2(RN ), the function t 7→ U(t)ϕ belongs to

Lq(R, Lr(RN )) ∩ C(R, L2(RN ))

for every admissible pair (q, r). Further, there exists a constant C such that

(2.8) ‖U(·)ϕ‖Lq(R,Lr) ≤ C‖ϕ‖L2 for every ϕ ∈ L2(RN ).

(ii) Let I be an interval of R (bounded or not), J = Ī, and t0 ∈ J . If (κ, ρ) is an admissible pair and

f ∈ Lκ′

(I, Lρ′

(RN )), where 1/κ′ + 1/κ = 1, 1/ρ′ + 1/ρ = 1, then, for every admissible pair (q, r),
the function

t 7→ Φf (t) =

∫ t

t0

U(t− s)f(s) ds, for t ∈ I,

belongs to Lq(I, Lr(RN )) ∩ C(J, L2(RN )). Further, there exists a constant C independent of I such
that

(2.9) ‖Φf‖Lq(I,Lr) ≤ C‖f‖Lκ′ (I,Lρ′ ), for every f ∈ Lκ′

(I, Lρ′

(RN )).

Next, we state what we mean by a solution of the Cauchy problem (2.1)–(2.3).
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Definition 2.2. For (u0, v0) as above, a pair (u, v) is said to be a solution of (2.1)–(2.3) in R
N × [0, T ] if

(u, v) ∈ C([0, T ], H1(RN )) ∩ C1([0, T ], H−1(RN )),

equations (2.1) and (2.2) are satisfied in H−1(RN ) and (2.3) holds. We say that a pair (u, v) is a solution
of (2.1)–(2.3) in R

N × [0, T ) (resp., R
N × [0,∞)) if (u, v) is a solution of (2.1)–(2.3) in R

N × [0, T0], for all
0 < T0 < T (resp., 0 < T0 <∞).

The following theorem establishes the existence and uniqueness of a local solution to (2.1)–(2.3).

Theorem 2.2. Let u0, v0 satisfy (2.5). Then, there exists T > 0 such that the Cauchy problem (2.1)–(2.3)
has a unique solution (u, v) ∈ C([0, T ];H1(RN )).

Proof. The following proof is an adaptation of a method due to T. Kato [10] which is based on a fixed
point argument using Strichartz’s estimates. We closely follow the lines of this method as exposed in [4],
section 4.4. For simplicity throughout this proof we make ε = α = 1.

Since
|(|u1|γu1) − (|u2|γu2)| ≤ C(|u1|γ + |u2|γ)|u1 − u2|,

and, by the assumptions on g and h,

|g(v1)h′
(

|u1|2
)

u1 − g(v2)h
′
(

|u2|2
)

u2| ≤ C(|u1 − u2| + |v1 − v2|),
by Hölder’s inequality, with r = γ + 2, we deduce that

(2.10) ‖(|u1|γu1) − (|u2|γu2)‖Lr′ ≤ C(‖u1‖γ
Lr + ‖u2‖γ

Lr )‖u1 − u2‖Lr ,

where 1/r′ + 1/r = 1, and

(2.11) ‖g(v1)h′
(

|u1|2
)

u1 − g(v2)h
′
(

|u2|2
)

u2‖L2 ≤ C(‖u1 − u2‖L2 + ‖v1 − v2‖L2).

From (2.10) and (2.11) we deduce

(2.12) ‖∇(|u|γu)‖Lr′ ≤ C‖u‖γ
Lr‖∇u‖Lr ,

and

(2.13) ‖∇
(

g(v)h′(|u|2)u
)

‖L2 ≤ C(‖∇u‖L2 + ‖∇v‖L2).

Fix M,T > 0 to be choosen later and let q be such that (q, r) is an admissible pair. Consider the set

E =
{

(u, v) ∈
(

L∞((0, T );H1(RN )) ∩ Lq((0, T );W 1,r(RN ))
)

×
(

L∞((0, T );H1(RN )) ∩ L∞(RN × (0, T ))
)

:

‖u‖L∞((0,T );H1) ≤M, ‖u‖Lq((0,T );W 1,r) ≤M, ‖v‖L∞((0,T );H1) ≤M, ‖v‖L∞(RN×(0,T )) ≤M
}

equipped with the distance

(2.14) d((u1, v1), (u2, v2)) = ‖u1 − u2‖Lq((0,T );Lr) + ‖u1 − u2‖L∞((0,T );L2) + ‖v1 − v2‖L∞((0,T );L2).

We easily see that that (E, d) is a complete metric space.

Let Λ1(u) denote the nonlinear operator u 7→ |u|γu, which by (2.10) is continuous Lr(RN ) → Lr′

(RN ), and
let Λ2(u, v) denote the nonlinear operator (u, v) 7→ g(v)h′(|u|2)u, which by (2.11) is continuous L2(RN )2 →
L2(RN ). We have the following: Λ1(u) ∈ Lq((0, T ),W 1,r′

(RN )), Λ2(u, v) ∈ L∞((0, T ), H1(RN )),

‖Λ1(u)‖Lq((0,T ),W 1,r′ ) ≤ C‖u‖γ
L∞((0,T ),Lr)‖u‖Lq((0,T ),W 1,r′ ),

‖Λ2(u, v)‖L∞((0,T );H1) ≤ C(‖u‖L∞((0,T ),H1) + ‖v‖L∞((0,T ),H1)),

and

‖Λ1(u1) − Λ1(u2)‖Lq((0,T ),Lr′ )

≤ C
(

‖u1‖γ
L∞((0,T ),Lr) + ‖u2‖γ

L∞((0,T ),Lr)

)

‖u1 − u2‖Lq((0,T ),Lr),

‖Λ2(u1, v1) − Λ2(u2, v2)‖L∞((0,T ),L2) ≤ C
(

‖u1 − u2‖L∞((0,T ),L2) + ‖v1 − v2‖L∞((0,T ),L2)

)

.
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From the embedding H1(RN ) → Lr(RN ), Hölder’s inequality in time and the above estimates we deduce

‖Λ1(u)‖Lq′ ((0,T ),W 1,r′ ) + ‖Λ2(u, v)‖L1((0,T ),H1) ≤ C(T + T
q−q′

qq′ )(1 +Mγ)M(2.15)

and

‖Λ1(u1) − Λ1(u2)‖Lq′ ((0,T ),Lr′ ) + ‖Λ2(u1, v1) − Λ2(u2, v2)‖L1((0,T ),L2)(2.16)

≤ C(T + T
q−q′

qq′ )(1 +Mγ)d((u1, v1), (u2, v2)).

Now, for (u, v) ∈ E, let H(u, v)(t) = (H1(u, v),H2(u, v)) be defined by

H(u, v)(t) = (H1(u, v),H2(u, v)) :=

(

U(t)u0 + i

∫ t

0

U(t− s) (Λ1(u)(s) + Λ2(u, v)(s)) ds ,

S(t)v0 −
∫ t

0

a · ∇K(t− s) ∗ (f(v(s)) − (h(|u|2)g′(v))(s)) ds
)

where U(t) is the unitary propagator of the Schrödinger operator as above, S(t)v0 := K(t) ∗ v0 is the

contraction semigroup associated to the heat equation, and K(x, t) := (4πt)−N/2e−|x|2/4t is the well known
heat kernell.

It follows from (2.15) and Strichartz’s estimates that

(2.17) H1(u, v) ∈ C([0, T ];H1(RN )) ∩ Lq((0, T );W 1,r(RN )),

and

‖H1(u, v)‖L∞((0,T );H1) + ‖H1(u, v)‖Lq((0,T );W 1,r) ≤ C ‖u0‖H1 + C (T + T
q−q′

qq′ ) (1 +Mγ)M.

Similarly, from (2.16) we deduce that

‖H1(u1, v1) −H1(u2, v2)‖L∞((0,T );L2) + ‖H1(u1, v1) −H1(u2, v2)‖Lq((0,T );Lr)

≤ C (T + T
q−q′

qq′ ) (1 +Mγ)M d((u1, v1), (u2, v2)).

We note that
q − q′

qq′
= 1 − 2

q
= N

4 − (N − 2)γ

2N(γ + 2)
> 0.

As to H2(u, v), using the well known facts about the heat kernell (cf.,e.g., [15])

‖K(t)‖L1(RN ) = 1, ‖∇K(t)‖L1(RN ) ≤
C√
t
,

and using the boundedness of h in C1([0,∞)) and the Lipschitz continuity of f and g it is easy to deduce
that

(2.18) H2(u, v) ∈ C([0, T ], H1(RN )) ∩ L∞(RN × [0, T ]),

‖H2(u, v)(t)‖H1 ≤ ‖v0‖H1 + C T 1/2M
(

‖u‖L∞((0,T );H1) + ‖v‖L∞((0,T );H1)

)

and

‖H2(u, v)(t)‖L∞ ≤ ‖v0‖L∞ + C T 1/2M‖v‖L∞(RN×(0,T )).

Therefore,

‖H2(u, v)‖L∞((0,T );H1)

≤ ‖v0‖H1 + C T 1/2M
(

‖u‖L∞((0,T );H1) + ‖v‖L∞((0,T );H1)

)

,(2.19)
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and

‖H2(u, v)‖L∞(RN×(0,T ))

≤ ‖v0‖L∞ + C T 1/2M‖v‖L∞(RN×(0,T )).(2.20)

Similarly, we deduce

‖H2(u1, v1)(t) −H2(u2, v2)(t)‖L∞((0,T );L2)(2.21)

≤ CT 1/2M
(

‖u1 − u2‖L∞((0,T );L2) + ‖v1 − v2‖L∞((0,T );L2)

)

≤ CT 1/2M d((u1, v1), (u2, v2)).

Now, given u0 ∈ H1(RN ) and v0 ∈ H1(RN ) ∩ L∞(RN ), we set

M = max{2C‖u0‖H1 , 2‖v0‖H1 , 2‖v0‖L∞},
and choose T small enough so that

max{C(T + T
q−q′

qq′ )(1 +Mγ), CT 1/2M} ≤ 1

2
.

In this way, for (u, v) ∈ E we obtain

‖H1(u, v)‖L∞((0,T ),H1) + ‖H1(u, v)‖Lq((0,T ),W 1,r) ≤M,

and

‖H2(u, v)‖L∞((0,T ),H1) + ‖H2(u, v)‖L∞(RN×(0,T )) ≤M,

so that H(u, v) ∈ E and for (u1, v1), (u2, v2) ∈ E,

d(H(u1, v1),H(u2, v2)) ≤
1

2
d((u1, v1), (u2, v2)).

In particular, H is a strict contraction and so Banach fixed point theorem implies the existence of a unique
fixed point (u, v) ∈ E. Moreover, by (2.17) and (2.18) we deduce that (u, v) is a solution of (2.1)–(2.3) which
concludes the proof.

�

To extend the local solution given by Theorem 2.2 to a global one we will make use of the following result,
which is the multidimensional analogue of Lemma 2.1 of [7]. The proof is entirely similar to that of the
corresponding onedimensional result in [7] and so we omit it.

Lemma 2.1. Let M2 > M0 so that supp g′ ⊆ (−M2,M2). Let (u, v) be a solution of (2.1)–(2.3) in R
N×[0, T )

and assume that ‖v0‖∞ < M2. Then

(2.22) ‖v‖L∞(RN×[0,T )) ≤M2.

We now establish the existence of a global solution to the Cauchy problem (2.1)–(2.3).

Theorem 2.3. Let (u, v) be a solution of the Cauchy problem (2.1)–(2.3) in R
N × [0, T ). Then, there exist

functions b1, b2 ∈ C([0,∞)), with b1 independent of α, ε ∈ (0, 1), such that

(2.23) ‖u(t)‖H1 ≤ b1(t), ‖v(t)‖H1 ≤ b2(t), t ∈ [0, T ).

In particular, (u, v) may be extended to a solution in R
N × [0,∞), which is unique.

Proof. As usual we first obtain some basic integral identities. The first one, the so called conservation of
charge, is easily obtained by multiplying (2.1) by ū, integrating by parts in R

N , and taking the imaginary
part, which gives

(2.24)
d

dt

∫

RN

|u|2 dx = 0.
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The second one, the conservation of energy for u, is obtained by first multiplying (2.1) by ūt, integrating in
R

N , and taking the real part, which gives

d

dt

∫

RN

{

1

2
|∇u|2 +

1

γ + 2
|u|γ+2 + αg(v)h(|u|2)

}

dx =

∫

RN

αh(|u|2)g(v)t dx.

Now, the right-hand side of the above equation is computed by multiplying the equation (2.2) by αh(|u|2)g′(v),
integrating in R

N , using integration by parts, to obtain
∫

RN

αh(|u|2)g(v)t dx =

∫

RN

{αf(v)a · ∇(h(|u|2)g′(v)) − αεg′(v)h′(|u|2)∇|u|2 · ∇v − αεh(|u|2)g′′(v)|∇v|2} dx

=

∫

RN

{f(v)(vt + a · ∇f(v) − ε∆v) − α εg′(v)h′(|u|2)∇|u|2 · ∇v − α εh(|u|2)g′′(v)|∇v|2} dx

=

∫

RN

{F (v)t + εf ′(v)|∇v|2 − α εg′(v)h′(|u|2)∇|u|2 · ∇v − α εh(|u|2)g′′(v)|∇v|2} dx,

which then gives the conservation of energy for u

d

dt

∫

RN

{

1

2
|∇u|2 +

1

γ + 2
|u|γ+2 + αg(v)h(|u|2) − F (v)

}

dx(2.25)

=

∫

RN

{εf ′(v)|∇v|2 − α εg′(v)h′(|u|2)∇|u|2 · ∇v − α εh(|u|2)g′′(v)|∇v|2} dx,

where F (v) =
∫ v

0
f(σ) dσ. The last integral identity, the conservation of energy for v, is obtained by

multiplying (2.2) by v and integrating in R
N , using integration by parts, which then gives

(2.26)
1

2

d

dt

∫

RN

v2 dx+ ε

∫

RN

|∇v|2 dx =

∫

RN

α g(v)h′(|u|2)a · ∇|u|2 dx.

Integrating (2.26) in time, recalling that h′(|u|2) = 0, for |u|2 > M1, we obtain the estimate

(2.27) ‖v(t)‖2
2 + ε

∫ t

0

‖∇v(s)‖2
2 ds ≤ C + Cα

∫ t

0

‖∇u(s)‖2 ds,

where we have used (2.22) and (2.24). Here, ‖ · ‖p denotes the norm in Lp(RN ), and, as it will be henceforth,
C denotes a positive constant possibly depending only on the initial data and f, g, h,a,M0,M1,M2.

Now, we are going to obtain an estimate for ‖∇u‖2
2 from (2.25) and (2.27). To this, observe that

|F (v(x, t))| ≤ C|v(x, t)|2, because F (0) = F ′(0) = 0 and (2.22), and |α g(v(x, t))h(|u(x, t)|2)| ≤ C α|u(x, t)|2,
because h(0) = 0 and g and h′ are bounded. Moreover, |α εg′(v)h′(|u|2)∇|u|2 · ∇v| ≤ Cαε|∇u||∇v| ≤
Cαε(|∇u|2 + |∇v|2), observing that C may change its value from one occurrence to another. Thus, from
(2.25) and (2.27) we get

(2.28) ‖∇u‖2
2 ≤ C + C

∫ t

0

(‖∇u(s)‖2 + ‖∇u(s)‖2
2) ds,

which from Gronwall’s inequality gives

(2.29) ‖∇u‖2
2 ≤ eC(t+1),

where C, as always in this proof, depends only on the initial data and f, g, h,a,M0,M1,M2. In particular,
(2.29) and (2.23) establish a bound for ‖u‖H1 independent of α, ε as claimed.

Now, from (2.2), using a well known fact about the non-homogeneous heat equation, we obtain that, for
each 0 ≤ t < T ,

‖vt‖L2([0,t],L2(RN )) , ε‖∆v‖L2([0,t],L2(RN )) ≤ C‖a · ∇(−f(v) + h(|u|2)g′(v))‖L2([0,t],L2(RN )),

which, from (2.27) and (2.29), gives

‖vt‖L2([0,t],L2(RN )) + ‖v‖L2([0,t],H2(RN ) ≤ b(t),
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with b ∈ C([0,∞)) depending on α, ε, which, by interpolation (see, e.g., Theorem 3.1 in [14]), gives

‖v(t)‖H1 ≤ b2(t),

for some b2 ∈ C([0,∞)), which concludes the proof of (2.23). The fact that (2.23) allows to extend (u, v) to
a solution of (2.1)–(2.3) in R

N × [0,∞) and the uniqueness follow in a standard way.
�

3. Vanishing viscosity and short wave long wave interaction coefficient.

In this section we analyze the problem of the convergence of the solutions of (2.1)–(2.3) when ε and α
approach 0.

We recall that a function v ∈ L∞(RN × [0,∞)) is said to be an entropy solution of the Cauchy problem
for the scalar conservation law

vt + a · ∇f(v) = 0,(3.1)

v(x, 0) = v0(x),(3.2)

if for any convex entropy-entropy flux pair, that is, any pair (η, q) ∈ C1(R)2 satisfying q′(v) = η′(v)f ′(v)
with η convex, we have

(3.3)

∫ ∞

0

∫

RN

{η(v)φt + q(v)a · ∇φ} dx dt+

∫

RN

η(v0(x))φ(x, 0) dx ≥ 0

for all nonnegative φ ∈ C∞
c (RN+1).

We also recall that a complex valued function u is a weak H1-solution of the Cauchy problem for the
nonlinear Schrödinger equation

iut + ∆u = |u|γu,(3.4)

u(x, 0) = u0(x),(3.5)

if

(3.6) u ∈ L∞
loc([0,∞), H1(RN )) ∩W 1,∞

loc ([0,∞), H−1(RN ))

is such that equation (3.4) is satisfied in H−1(RN ) for a.e. t ∈ [0,∞) and u(0) = u0. The latter makes sense
in L2(RN ) since (3.6) implies u ∈ C([0,∞), L2(RN )).

We recall that, by Kruzhkov [12], there is uniqueness of the entropy solution of (3.1)-(3.2) and, by Kato [10]
(cf. Proposition 4.2.1 in [4]), there is uniqueness of the weak H1-solution of the problem (3.4)-(3.5).

We have the following result.

Theorem 3.1. If ε→ 0 and α→ 0 so that α/ε1/2 → 0 also, that is, α = o(ε1/2), then the solutions (uε, vε)
of (2.1)–(2.3) converge to a pair (u, v) such that u is the weak H1-solution of (3.4)-(3.5) and v is the entropy
solution of (3.1)-(3.2).

Proof. From Theorem 2.3, uε is uniformly bounded in L∞
loc([0,∞), H1(RN )) as ε, α → 0, with α = o(ε1/2).

Also, |uε|γuε is uniformly bounded in Lloc([0,∞), H−1(RN )), which follows by Sobolev’s embeddingH1(RN ) →
Lr(RN ), r = γ + 2, N ≥ 2, and αg(vε)h′(|uε|2uε → 0 in L2

loc(R
N × [0,∞)), since h′ and g are bounded

and by (2.24). From (2.1) we then see that uε
t is uniformly bounded in L∞

loc([0,∞), H−1(RN )). From
Aubin’s lemma (see, e.g., [13]), we deduce that uε is precompact in L2

loc(R
N × [0,∞)), and so any se-

quence uεi possesses a subsequence converging to a complex valued function u ∈ L∞
loc([0,∞), H1(RN )),

which clearly satisfies (3.4) in the sense of distributions and |u|γu ∈ L∞
loc([0,∞), H−1(RN )). In particular,

∆u − |u|γu ∈ L∞
loc([0,∞), H−1(RN )). Hence, since u satisfies (3.4) in the sense of distributions, we deduce

that u ∈ W 1,∞
loc ([0,∞), H−1(RN )), and so u is the weak H1-solution of (3.4)-(3.5). This implies that the

whole sequence uε converges to u.
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To prove the convergence of vε to the entropy solution v of (3.1)-(3.2) we are going to apply DiPerna’s
theorem on the uniqueness of admissible measure-valued solutions of (3.1)-(3.2) (cf. [8]). We recall that an
admissible measure-valued solution of (3.1)-(3.2) is a measurable map (x, t) 7→ νx,t, from R

N × [0,∞) into
the space of probability measures on a compact K ⊆ R, which satisfies

(3.7)

∫ ∞

0

∫

RN

{〈νx,t, η(λ)〉φt + 〈νx,t, q(λ)〉a · ∇φ} dx dt ≥ 0,

for all convex entropy-entropy flux pairs (η, q) for (3.1) and all φ ∈ C∞
c (RN × (0,∞)), and such that

(3.8) lim
T→0

1

T

∫ T

0

∫

|x|<R

〈νx,t, |λ− v0(x)|〉 dx dt = 0 for all R > 0.

DiPerna’s theorem asserts that an admissible measure-valued solution of (3.1)-(3.2) must coincide a.e. (x, t) ∈
R

N × (0,∞) with δv(x,t), the Dirac measure concentrated at v(x, t), where v(x, t) is the entropy solution of

(3.1)-(3.2). We recall that when νx,t is a Dirac measure almost everywhere in R
N × (0,∞), the associated

subsequence converges in L1
loc(R

N × (0,∞)) (cf. [18]).
Now, we have that vε is uniformly bounded in L∞(RN × [0,∞)) because of Lemma 2.1. Therefore, we

can apply Tartar’s theorem on the existence of Young measures associated to subsequences of a sequaence
of uniformly bounded functions in L∞ (cf. [18]). So, let {νx,t : (x, t) ∈ R

N × (0,∞)} be the parametrized
family of Young measures associated to a subsequence vεi of vε, which we will keep denoting vε. Clearly,
supp νx,t ⊆ [−M2,M2], by Lemma 2.1.

By (2.26) and the fact that α = o(ε1/2), we deduce that

(3.9) αa · ∇(g′(vε)h(|uε|2)) → 0 in L2
loc(R

N × [0,∞)).

Now, given any convex entropy-entropy flux pair for (3.1), (η, q), and any nonnegative φ ∈ C∞
c (RN+1),

multiply equation (2.2), with uε, vε replacing u, v, by η′(vε)φ, integrate in R
N × (0,∞), using integration by

parts, and make ε→ 0 to obtain

(3.10)

∫ ∞

0

∫

RN

{〈νx,t, η(λ)〉φt + 〈νx,t, q(λ)〉a · ∇φ} dx dt+

∫

RN

η(v0(x))φ(x, 0) dx ≥ 0

In particular, νx,t satisfies (3.8) for nonnegative φ ∈ C∞
c (RN × (0,∞)).

Let us take in (3.10) φ(x, t) = ψ(x)χk(t) with 0 ≤ ψ ∈ C∞
c (RN ) and χk(t) = 1, for t ∈ (−T, T ),

χk(t) = max{1 − k|T − t|, 0}, for |t| ≥ T , where T is a Lebesgue point of
∫

RN 〈νx,t, η(λ)〉ψ dx, which we can
obviously do by a standard approximation argument. Then, letting k → ∞ we get from (3.10)

(3.11) −
∫

RN

〈νx,T , η(λ)〉ψ(x) dx+

∫ T

0

∫

RN

〈νx,t, q(λ)〉a · ∇ψ(x) dx dt+

∫

RN

η(v0(x))ψ(x) dx ≥ 0,

and so, making T → 0, we obtain

(3.12) lim sup
T→0

∫

RN

〈νx,T , η(λ)〉ψ(x) dx ≤
∫

RN

η(v0(x))ψ(x) dx

The above inequality is easily extended to 0 ≤ ψ ∈ L1(RN ) and η(v) = |v−ξ|, ξ ∈ R. Therefore, approaching

v0(x) in L1
loc(R

N ) by linear combinations of characteristic functions ϕν :=
∑N

j=1 ξjχEj
, using (3.12) with

η(v) = |v− ξj | and ψ = χEj
, adding up for j = 1, . . . , N , and passing to the limit when ϕν → v0 in L1

loc(R
N )

we get

(3.13) lim
T→0

∫

|x|<R

〈νx,T , |λ− v0(x)|〉 dx = 0, for all R > 0,

which implies (3.8). Hence, νx,t is an admissible measure-valued solution of (3.1)-(3.2) and by DiPerna’s
theorem we conclude that the subsequence vε converges in L1

loc(R
N × (0,∞)) to the entropy solution v(x, t)
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of (3.1)-(3.2). By the uniqueness of the limit, we finally conclude that the whole sequence vε converges to
v, which finishes the proof.

�

4. Final Remarks

The results of the previous sections may be easily extended to more general systems of the form

i∂tuj + ∆uj = uj |u|γk + αkgk(vk)h′k(|u|2)uj ,(4.1)

∂tvk + ak · ∇fk(vk) = αkak · ∇(g′k(vk)hk(|u|2)) +Bk(v)vk + εk∆vk, j = 1, . . . , r, k = 1, . . . , s,(4.2)

with uj , vk, αk, εkγk, fk, gk, hk satisfying the same hypotheses as u, v, α, ε, γ, f, g, h in (2.1)-(2.2), respectively,
Bk : R

s → R satisfying Bk ∈ C2(Rs) ∩ L∞(Rs), |u|2 = |u1|2 + · · · + |ur|2, v = (v1, . . . , vs).
The local existence follows as in the proof of Theorem 2.2, since it is based on Strichartz estimates for

the Schrödinger operator, and standard estimates for the heat operator, which may be easily extended to
system (4.1)-(4.2).

Concerning the global existence, it also follows as in the proof of Theorem 2.3. Clearly, now, instead of
(2.22), we have

(4.3) ‖vk(t)‖∞ ≤M2e
Ckt, t ∈ [0, T ), k = 1, . . . , s,

where Ck = ‖Bk‖∞. The analogues of (2.24), (2.25) and (2.26) are obtained in similar way and from the
corresponding identities one easily proves the necessary energy estimates which allow to prolong the local
solution to [0,∞).

Convergence of solutions when εk → 0 and αk = o(ε
1/2
k ), k = 1, . . . , s, is also proved by arguments

completely analogous to those in the proof of Theorem 3.1.
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