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Abstract. We show that there exists a C1 residual subset R ⊂ C1(M)\HT , such that for f ∈ R and C

an aperiodic class of f , C has a non-trivial partial hyperbolic splitting with 1-dimensional central bundle:

TCM = Es
i0
⊕ Ec

1 ⊕ Eu
i0+2 where Es

i0
(C), Eu

i0+2(C) 6= φ and C is an index i0 and i0 + 1 fundamental

limit. With [6]’s argument, we show C is Hausdorff limit of a family of non-trivial homoclinic classes.

As a corollary, we give a new proof for the following two results which have been proved in [37], [38]

respectively: suppose C is a non-trivial chain recurrent class of f , if C
⋂

P ∗0 6= φ or C is Lyapunov

stable, C is a homoclinic class.
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1. Introduction

In the middle of last century, with many remarkable work, hyperbolic diffeomorphisms have been un-

derstood very well, but soon people discovered that the set of hyperbolic diffeomorphisms are not dense

among differential dynamics, such non-hyperbolic example at first was given by Abraham-Smale and
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later more examples appeared, until now all the examples about non-hyperbolic systems (persist non-

hyperbolic) can be divided to two kinds of cases: one associates with homoclinic tangency and another

associates with heterdimensional cycle. In order to describe the non-hyperbolic diffeomorphisms, in 80’s

Palis gave the following famous conjecture:

Palis Conjecture Diffeomorphisms of M exhibiting either a homoclinic tangency or heterdimensional

cycle are Cr dense in the complement of the C1 closure of hyperbolic systems.

Palis conjecture gives the candidates of mechanists for us to understand the robust non-hyperbolic

examples. Now understanding the non-hyperbolic systems has become one of the most important aim

in modern dynamical system, one way to study it is try to understand every chain recurrent class of a

generic subset of diffeomorphisms, and such way has been proved to be very effective and powerful.

But different with hyperbolic case, a non-hyperbolic diffeomorphism can have infinite number of chain

recurrent classes, in fact in [4] they gave such an example, they showed that there exists an open set

U ⊂ HT 1 and R ⊂ U a residual subset such that every f ∈ R has infinite number of sinks or sources.

We call a diffeomorphism wild (tame) if f has infinite (finite) of chain recurrent classes. Since in [4]’s

example U ⊂ HT 1 and residual diffeomorphisms in U are wild, it means that the dynamics in HT 1 is

extremely complicated, so we just consider (HT 1)c in this paper, and for well known reason, we just

consider C1 topology here. The following result is the best thing we can hope for:

Tameness conjecture There exists a generic subset R ⊂ (HT 1)c such that any f ∈ R is tame.

But the above conjecture is still far away to be solved, in [38] I gave a weaker conjecture:

Conjecture 5: There exists a generic subset R ⊂ (HT 1)c such that for any f ∈ R, suppose C is any

aperiodic class of f , then C has a partial hyperbolic splitting TCM = Es ⊕ Ec ⊕ Eu where Es, Eu 6= φ

and dim(Ec) = 1.

The conjecture 5 played an important role in the proof of Palis weak conjecture which claims that for C1

residual diffeomorphisms either it’s Morse-Smale or the diffeomorphism contains non-trivial homoclinic

class. [6] proved conjecture 5 in 3-dimensional case and they showed that conjecture 5 implies Palis

weak conjecture. But in high dimensional manifold, Palis weak conjecture was proved by Crovisier finally

through the studying of minimal non-hyperbolic set with his remarkable central model argument.

In this paper I’ll prove the conjecture 5, more precisely statement is following:

Theorem 1: There exists a generic subset R ⊂ (HT 1)c such that for any f ∈ R, suppose C is an

aperiodic class of f , then C has a partial hyperbolic splitting TCM = Es ⊕ Ec ⊕ Eu where Es, Eu 6= φ

and dim(Ec) = 1.

The following corollary shows the relation between theorem 1 and Palis weakly conjecture:
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Corollary 1: f ∈ R, C is an aperiodic class of f , then C is Hausdorff limit of a family of non-trivial

homoclinic classes.

Proof : We just need the following lemma proved in [6]:

Lemma 1: For any f ∈ R, suppose C is an aperiodic class of f with partial hyperbolic splitting Es ⊕
Ec

1⊕Eu where dim(Ec
1) = 1 and Ec

1 is not hyperbolic, then C is Hausdorff limit of a family of non-trivial

homoclinic classes. ¤

Remark: [8] showed that for f ∈ R, C is an aperiodic class and Λ ⊂ C is a minimal non-hyperbolic

subset, then Λ is the Hausdorff limit of a family of non-trivial locally restricted homoclinic classes.

With theorem 1, we can easily prove the following two results, anyway they have been proved in [37],

[38] already and the statements there are stronger.

Theorem 2: Suppose f ∈ R, C is a Lyapunov stable chain recurrent class of f , then C is a homoclinic

class.

Theorem 3: Suppose f ∈ R, C is a chain recurrent class of f satisfying C
⋂

P ∗0 6= φ, then C is a

homoclinic class.

There is another conjecture given by Bonatti,

Index complement conjecture: (Bonatti) There exists a residual subset R ⊂ C1(M) such that for

any f ∈ R and C is a chain recurrent class of f , let I = {i : C is an index i fundamental limit}, then I

is an interval.

By theorem 1, we can prove index complement conjecture for diffeomorphisms which are far away from

tangency and when C is an aperiodic class.

Theorem 4: There exists a residual subset R ⊂ C1(M) \ HT 1 such that for any f ∈ R and C is an

aperiodic class of f , C has a non-trivial partial hyperbolic splitting Es
i0
⊕Ec

1⊕Eu
i0+2 and I(C) = {i0, i1}.

In §3 we’ll give two new generic properties which are proved in §6, 7 respectively. Theorem 1, 2 3,4

will be proved in §4, and in §5 we’ll introduce some properties for partial hyperbolic splitting set and

Crovisier’s central model.

After this preprint was written, we learned from S. Crovisier that he has some related results in a

preprint that should appear soon.
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Bonatti for very helpful remarks. Finally I wish to thank my wife, Wenyan Zhong, for her help and
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2. Definitions and Notations

Let M be a compact boundless Riemannian manifold, since when M is a surface [26] has proved that

hyperbolic diffeomorphisms are open and dense in C1(M) \ HT , we suppose dim(M) = d > 2 in this

paper.

Let Per(f) denote the set of periodic points of f , for p ∈ Per(f), π(p) means the period of p. If p

is a hyperbolic periodic point, the index of p is the dimension of the stable bundle. We denote Peri(f)

the set of the index i periodic periodic points of f , and we call a point x is an index i preperiodic point

of f if there exists a family of diffeomorphisms gn
C1

−→ f , where gn has an index i periodic point pn and

pn −→ x. P ∗i (f) is the set of index i preperiodic points of f .

Remark 2.1. It’s easy to know Pi(f) ⊂ P ∗i (f).

Let Λ be an invariant compact set of f , we call Λ is an index i fundamental limit if there exists a family

of diffeomorphisms gn C1 converging to f , pn is an index i periodic point of gn and Orb(pn) converge

to Λ in Hausdorff topology. So if Λ(f) is an index i fundamental limit, we have Λ(f) ⊂ P ∗i (f). Λ is

a minimal index i fundamental limit if Λ(f) is an index i fundamental limit and any invariant compact

subset Λ0  Λ is not an index i fundamental limit, we can also define maximal index i fundamental limit.

In [37] with Zorn lemma, we have proved the following result:

Lemma 2.2. Any index i fundamental limit contains a minimal index i fundamental limit.

In fact, it’s easy to show the following similar result is also true.

Lemma 2.3. Suppose Λ is an invariant compact set of f containing index i fundamental limit, then Λ

contains a maximal index i fundamental limit.

For two points x, y ∈ M and some δ > 0, we say there exists a δ-pseudo orbit connects x and y means

that there exist points x = x0, x1, · · · , xn = y such that d(f(xi), xi+1) < δ for i = 0, 1, · · · , n − 1, and

we denote it x a
δ

y. We say x a y if for any δ > 0 we have x a
δ

y and denote x à y if x a y and y a x.

A point x is called a chain recurrent point if x à x. CR(f) denotes the set of chain recurrent points of

f , it’s easy to know that à is a closed equivalent relation on CR(f), and every equivalent class of such

relation should be compact and is called chain recurrent class.

Let K be a compact invariant set of f , if x, y are two points in K, we’ll denote x a
K

y if for any δ > 0,

we have a δ -pseudo orbit in K connects x and y. If for any two points x, y ∈ K we have x a
K

y, we call

K a chain recurrent set. Let C be a chain recurrent class of f , we say C is an aperiodic class if C does

not contain periodic point.

Let Λ be an invariant compact set of f , for 0 < λ < 1 and 1 ≤ i < d, we say Λ has an index i− (l, λ)

dominated splitting if we have a continuous invariant splitting TΛM = E ⊕ F where dim(Ex) = i and

‖ Df l|E(x) ‖ · ‖ Df−l|F (f lx) ‖< λ for all x ∈ Λ. For simplicity, sometimes we just say Λ(f) has an index

i dominated splitting. A compact invariant set can have many dominated splittings, but for fixed i, the

index i dominated splitting is unique.
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We say a diffeomorphism f has Cr tangency if f ∈ Cr(M), f has a hyperbolic periodic point p

and there exists a non-transverse intersection between W s(p) and Wu(p). HT r denotes the set of the

diffeomorphisms which have Cr tangency, usually we just use HT denote HT 1. We call a diffeomorphism

f is far away from tangency if f ∈ C1(M) \HT . The following proposition shows the relation between

dominated splitting and far away from tangency.

Proposition 2.4. ([29]) f is C1 far away from tangency if and only if there exists (l, λ) such that P ∗i (f)

has index i− (l, λ) dominated splitting for 0 < i < d.

Usually dominated splitting is not a hyperbolic splitting, Mañé showed that in some special case, one

bundle of the dominated splitting is hyperbolic.

Proposition 2.5. ([21]) Suppose Λ(f) has an index i dominated splitting E⊕F (i 6= 0), let j0 = min
j
{j : Λ

contains index j fundamental limit}, if j0 ≥ i, then E is a contracting bundle.

3. Generic properties

In this section at first we’ll introduce some C1 generic properties, they are either well known or proved

in [37]; and then we’ll give two new generic properties lemma 3.5, 3.6 which will be proved in § 6, 7

respectively.

For a topology space X, we call a set R ⊂ X is a generic subset of X if R is countable intersection

of open and dense subsets of X, and we call a property is a generic property of X if there exists some

generic subset R of X holds such property. Especially, when X = C1(M) and R is a generic subset of

C1(M), we just call R is C1 generic, and we call any generic property of C1(M) ’a C1 generic property’

or ’the property is C1 generic’.

At first let’s state some well known C1 generic properties.

Proposition 3.1. There is a C1 generic subset R′0 such that for any f ∈ R′0, one has

1) f is Kupka-Smale (every periodic point p in Per(f) is hyperbolic and the invariant manifolds of

periodic points are everywhere transverse).

2) CR(f) = Ω = Per(f).

3) P ∗i (f) = Pi(f)

4) any chain recurrent set is the Hausdorff limit of periodic orbits.

5) any index i fundamental limit is the Hausdorff limit of index i periodic orbits of f .

6) any chain recurrent class containing a periodic point p is the homoclinic class H(p, f).

7) suppose C is a homoclinic class of f , and i0 = min{i : C
⋂

Peri(f) 6= φ}, i1 = max{i :

C
⋂

Peri(f) 6= φ}, then for any i0 ≤ i ≤ i1, we have C
⋂

Peri(f) 6= φ.

By proposition 3.1, for any f in R′0, every chain recurrent class C of f is either an aperiodic class or

a homoclinic class. If #(C) = ∞, we say C is non-trivial.

The following results are proved in [37]:

Theorem 3.2. There exists a generic subset R0 ⊂ C1(M) \HT , such that for any f ∈ R0 and C is a

non-trivial chain recurrent class of f , if C
⋂

P ∗0 6= φ, then C is a homoclinic class containing index 1

periodic points and C is an index 0 fundamental limit.
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Lemma 3.3. There exists a generic subset R0 ⊂ C1(M)\HT , such that for f ∈ R0 and C is a non-trivial

chain recurrent class of f , let j0 = min
j
{j : C

⋂
P ∗j 6= φ} and Λ is a minimal index j0 fundamental limit

in C, then

• either Λ is a non-trivial minimal set with partial hyperbolic splitting Es
j0
⊕ Ec

1 ⊕ Eu
j0+2

• or C contains a periodic point with index j0 or j0 + 1 and C is an index j0 fundamental limit.

Definition 3.4. f ∈ C1(M), {pn}∞n=1 is a family of index i hyperbolic periodic points and lim
n→∞

π(pn) −→
∞, we say {pn} is index stable if for any ε > 0, we have #{n| exists diffeomorphism g satisfying

dC1(g, f) < ε and Orbf (pn) is a hyperbolic periodic orbit of g whose index different with i} < ∞.

Lemma 3.5. (Shaobo Gan’s lemma) There exists a generic subset R0 ⊂ C1(M) \ HT , such that for

f ∈ R0, suppose {pn(f)} is a family of index i0 (i0 6= 0, d) periodic points of f which is index sta-

ble and satisfies lim
n→∞

π(pn) −→ ∞, then there exists a subsequence {pni} such that W s
loc(Orb(pni)) t

Wu
loc(Orb(pnj

)) 6= φ, so especially, if lim
n→∞

Orb(pn) = Λ and suppose C is the chain recurrent class which

contains Λ, then C contains an index i0 periodic point.

Now I give two basic generic properties whose proof will be given in §6, 7 respectively.

Lemma 3.6. For f ∈ R0

⋂
R′0 ⊂ C1(M) \ HT , C is a non-trivial chain recurrent class of f , Λ  C

is an invariant compact subset of f , denote i0 = min
i
{i : Λ contains an index i fundamental limit},

i1 = max
i
{i : Λ contains an index i fundamental limit}. Suppose Λ itself is an index i0 and index i1

fundamental limit and i1 > i0 + 1, then C contains an index i periodic point with i0 ≤ i ≤ i1.

Lemma 3.7. There exists a generic subset R ⊂ R0

⋂
R′0 such that for f ∈ R, suppose C is a non-trivial

chain recurrent class of f , C0 ⊂ C is a non-trivial chain recurrent set of f , denote j0 = min
j
{j : C0

contains an index j fundamental limit} and let Λ ⊂ C0 be a maximal index j0 fundamental limit of C0,

then if Λ has a partial hyperbolic splitting Es
j0
⊕Ec

1⊕Eu
j0+2 where Ec

1(Λ) = 1 and Ec
1(Λ) is not hyperbolic,

we have

• either C0 = Λ,

• or C contains index j0 or j0 + 1 periodic point.

We’ll show that the above residual subset R ⊂ (HT )c satisfies theorem 1, 2 3, 4.

4. Proof of theorem 1, 2, 3, 4

4.1. Proof of theorem 1.

Denote j0 = min
j
{j : C contains index j fundamental limit} and let C0 be a maximal index j0 fundamental

limit.

Denote j01 = max
j
{j : C0 contains index j fundamental limit} and let C01 be a maximal index j01

fundamental limit of C0.

Denote j010 = min
j
{j : C01 contains index j fundamental limit} and let C010 be a maximal index j010

fundamental limit of C01.

Define αn = (

n′01′︷ ︸︸ ︷
01 · · · 01) and βn = (

n−1′01′︷ ︸︸ ︷
01 · · · 010), repeat above induction, we can denote jβn = min

j
{j :

Cαn−1 contains index j fundamental limit} and let Cβn
be a maximal index jβn

fundamental limit of
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Cαn−1 ; denote jαn
= max

j
{j : Cβn

contains index j fundamental limit} and let Cαn
be a maximal index

jαn
fundamental limit of Cβn

.

It’s easy to know that

• j0 ≤ j010 ≤ · · · ≤ jβn
≤ jβn+1 ≤ · · · and j01 ≥ j0101 ≥ · · · ≥ jαn

≥ jαn+1 ≥ · · · ;
• jαn

≥ jβn
+ 1;

• C0 ⊃ C01 ⊃ · · · ⊃ Cβn
⊃ Cαn

⊃ · · · .
Let C∞ =

⋂
n

Cαn
=

⋂
n

Cβn
, denote i0 = lim

n→∞
jβn

and i1 = lim
n→∞

jαn
, then by above induction, we

can know that C∞ is an index i0 and index i1 fundamental limit and i0 = min
i
{i : C∞ contains index i

fundamental limit}, i1 = max
i
{i : C∞ contains index i fundamental limit}.

At first let’s note that i1 6= i0, since otherwise by proposition 2.4, 2.5, C∞ is a hyperbolic set,

by shadowing lemma, there exists periodic point in the same chain recurrent class with C∞, that’s a

contradiction with the fact that C is an aperiodic class. Now we divide the proof into two cases:

A) i1 > i0 + 1,

B) i1 = i0 + 1

Case A: Recall i0 = min
i
{i : C∞ contains index i fundamental limit}, i1 = max

i
{i : C∞ contains index i

fundamental limit}, lemma 3.6 shows that C contains a periodic point, it’s a contradiction since C is an

aperiodic class.

Case B: In this case C∞ ⊂ P ∗i0
⋂

P ∗i0+1, by the fact i0 = min
i
{i : C∞ contains index i fundamental limit},

i1 = max
i
{i : C∞ contains index i fundamental limit}, proposition 2.4, 2.5 show that C∞ has the following

partial hyperbolic splitting TC∞M = Es
i0
⊕ Ec

1 ⊕ Eu
i0+2 where dim(Ec

1(C∞)) = 1. Then there exists a

small neighborhood V of C∞ such that the maximal invariant set of V : Λ =
⋂
i

f i(V ) has the same kind

of partial hyperbolic splitting. Recall that C∞ = lim
n

Cαn = lim
n

Cβn , now we claim that there exists n0

such that for any n ≥ n0 we have C∞ = Cαn
= Cβn

and jαn
= i0 + 1, jβn

= i0.

Proof of the claim: We can choose n0 big enough such that Cαn0
⊂ V , then Cαn0

will has the partial

hyperbolic splitting TCαn0
M = Es

i0
⊕ Ec

1 ⊕ Eu
i0+2. By generic property 4) of proposition 3.1, there is

a family of periodic point {pn} satisfying lim
n→∞

Orb(pn) −→ Cαn0
, and we can suppose the family of

periodic points all have index i0 or i0 + 1, here we just suppose they all have index i0, then Cαn0
is an

index i0 fundamental limit. But from C is an aperiodic class, by Gan’s lemma we know that the family

of periodic points {pn} is not index stable, it means that for any ε > 0, there exists n big enough and

dC1(g, f) < ε such that Orbf (pn) is an index j periodic point of g where j 6= i0. Since Orb(pn) stays

near Cαn0
, and Cαn0

has the special partial hyperbolic splitting, we can know j = i0 + 1, so Cαn0
is also

an index i0 + 1 fundamental limit. By the construction of C∞ we have that

Cαn0
= Cβn0+1 = Cαn0+1 = · · · = C∞.

¤

From above claim we know that iαn0
= max

i
{i : Cβn0

= i0 +1 contains index i fundamental limit} and

Cαn0
is the maximal index i0 + 1 fundamental limit of Cβn0

, and Cαn0
= C∞ has the partial hyperbolic

splitting TCαn0
M = Es

i0
⊕ Ec

1 ⊕ Eu
i0+2, so by lemma 3.7, Cβn0

= Cαn0
= C∞.
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Repeat the argument, we can know that

C∞ = Cαn0
= Cβn0

= Cαn0−1 = · · · = C0 = C,

so C has the partial hyperbolic splitting Es
i0
⊕ Ec

1 ⊕ Eu
i0+2. Now we claim that i0 6= 0, d− 1.

Proof of the claim: Here we only need the following result in [6]:

Lemma 3: f ∈ R, C is a non-trivial chain recurrent class of f with partial hyperbolic splitting Ec
1 ⊕Eu

where dim(Ec = 1) and Ec
1 is not hyperbolic, then C is a homoclinic class. ¤

4.2. Proof of theorem 2, 3, 4.

Proof of theorem 2: It’s easy to know that theorem 2 is just a corollary of theorem 1 and the following

result has been proved in [6]:

Lemma 2: f ∈ R, C is a non-trivial chain recurrent class of f with partial hyperbolic splitting Es ⊕
Ec

1 ⊕ Eu where dim(Ec = 1) and Ec
1 is not hyperbolic, then C is a homoclinic class. ¤

Proof of theorem 3: Now we suppose C is an aperiodic class of f , then by theorem 1, C has partial

hyperbolic splitting Es⊕Ec
1⊕Eu where dim(Ec = 1) and Ec

1 is not hyperbolic, by C
⋂

P ∗0 6= φ, we know

that Es(C) = φ, so C has partial hyperbolic splitting Ec
1 ⊕ Eu, that’s a contradiction with theorem 1

since Es
( C) = φ here. ¤

Proof of theorem 4: By 4) of proposition 3.1 and f ∈ R, C is the Hausdorff limit of a family of periodic

points pn(f). In theorem 1 we’ve known that C has partial hyperbolic splitting Es
i0
⊕ Ec

1 ⊕ Eu
i0+2(C),

so I(C) ⊂ i0, i0 + 1 and we can suppose pn all have index i0 (since the other case is similar). By Gan’s

lemma, {pn(f)} is not index stable (since C doesn’t contain periodic point), that means for any ε > 0,

there exist n arbitrarily big and a diffeomorphism g satisfying dC1(f, g) < ε and Orbf (pn) is index i0 + 1

periodic point of g, so C is also an index i0 + 1 fundamental limit, that means I(C) = {i0, i0 + 1} ¤

5. Partial hyperbolic splitting and Crovisier’s central model

In order to do some preparation for the proof of lemma 3.6 given in § 6, in this section we’ll introduce

some basic facts about partial hyperbolic splitting and Crovisier’s central model. The main results are

lemma 5.2 and corollary 5.12.

5.1. Partial hyperbolic splitting. Suppose f ∈ R, Λ is a compact chain recurrent set of f with a

dominated splitting Ecs
i0
⊕Ec

1 ⊕Ecu
i0+2 where dim(Ec

1(Λ)) = 1, then we can choose a small neighborhood

V0 of Λ such that the maximal invariant set of V0: Λ0 =
⋂
j

f j(V0) has the same type of partial hyperbolic

splitting Ecs
i0
⊕Ec

1⊕Ecu
i0+2 also, in fact, we can extend such splitting to V0 (it’s not invariant anymore). For

every point x ∈ V0, we define some cones on its tangent space Ci
a(x) = {v|v ∈ TxM, there exists v′ ∈ Ei(x)

such that d( v
|v| ,

v′
|v′| ) < a}i=cs,c,cu,ccs,ccu where Eccs = Ecs

i0
⊕ Ec

1 and Eccu = Ecu
i0
⊕ Ec

1, and we call it
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an index i0-cone Ci
a. When a is small enough, Ci

a(x)
⋂

Cj
a(x) = φ (i 6=j=cs,c,cu), Cccs

a (x)
⋂

Ccu
a (x) = φ,

Cccu
a

⋂
Ccs

a = φ and Df(Ci
a(x)) ⊂ Ci

a(f(x)) i=cu,ccu, Df−1(Ci
a(x)) ⊂ Ci

a(f−1(x)) i=cs,ccs for x ∈ Λ0.

We say a submanifold Di (i = cs, c, cu, ccs, ccu) tangents with index i0 cone Ci
a when dim(Di) =

dim(Ei) and for any x ∈ Di, TxDi ⊂ Ci
a(x). For simplicity, sometimes we just call it an index i0 i-disk,

especially when i = c, we call Dc an index i0 central curve, and when the index i0 has been fixed, we

just call Di an i-disk. We say an index i0 i-disk Di has center x with size δ if x ∈ Di, and respecting the

Riemannian metric restricting on Di, the ball centered on x with radius δ is contained in Di. We say an

i-disk Di has center x with radius δ if x ∈ Di, and respecting the Riemannian metric restricting on Di,

the distance between any point y ∈ Di and x is smaller than δ.

We say an index i0 central curve γ is an index i0 central segment if f i(γ) ⊂ V0 and f i(γ) is an index

i0 central curve for any i ∈ Z, so if γ is a central segment, we have γ ⊂ Λ0, and it’s easy to know that

Txγ = Ec
1(x) for any x ∈ γ. We say a index i0 smooth central curve γ is an index i0 positive (negative)

central segment if f i(γ) ⊂ V0 and f i(γ) is an index i0 central curve for any i ≥ (≤)0, so if γ is an index

i0 positive (negative) central segment, γ ⊂
0⋂
−∞

f i(V0) (
∞⋂
0

f i(V0)).

Definition 5.1. We say Ec
1(Λ) has an f-orientation if Ec

1(Λ) is orientable and Df preserves its orien-

tation.

The following result has been stated and proved in [37], [38].

Lemma 5.2. Suppose Λ has dominated splitting Ecs
i0
⊕ Ec

1 ⊕ Ecu
i0+2, its neighborhood V0 and the set Λ0

are given above, then for a small open neighborhood V1 of Λ satisfying V1 ⊂ V0 and let Λ1 =
∞⋂

i=−∞
f i(V1),

Λ+
1 =

0⋂
i=−∞

f i(V1), Λ−1 =
∞⋂

i=0

f i(V1), there exist 0 < δ0 < 1, δ0/2 > δ1 > δ2 > 0 such that they satisfy the

following properties:

a) if Ec
1(Λ) has an f orientation, Ec

1(Λ1) has an f orientation also.

b) for any x ∈ V1, Bδ0(x) ⊂ V0 and Ec
1(Bδ0(x)) is orientable, so it gives orientation for any index

i0 central curve in Bδ0(x), and we choose δ0 small enough such that any index i0 central curve

in Bδ0(x) never intersects with itself.

c) for any x ∈ Λ1, there exists an index i0 central curve lδ1(x) with center x and radius δ1, such

that there exists a continuous function Φc : Λ1 −→ Emb1(I, M) satisfying Φc(x) = lδ1(x) where

x ∈ Λ1, and if let lδ2(x) ⊂ lδ1(x) be the central curve with center x and radius δ2, then f(lδ2(x)) ⊂
lδ1(f(x)) and f−1(lδ2(x)) ⊂ lδ1(f

−1(x)).

d) for any index i0 positive central segment γ satisfying length(f i(γ)) < δ1 for all i ≥ 0, every

x ∈ γ will have uniform size of strong stable manifold: W ss
δ1

(x) where W ss
δ1

(x) is an index i0-cs

disk tangent at x on Ecs
i0

(x), and W s
δ1

(γ) =
⋃

x∈γ
W ss

δ1
(x) would be an index i0 ccs-disk. For any

x ∈ Int(γ) and any δ > 0, then there exists δx > 0 such that for any y ∈ Bδx
(x)

⋂
Λ1, for any

index i0-cu disk Dcu(y) with center y and size δ, we’ll have Dcu
δ (y) t W s

δ1
(γ) 6= φ.

Remark 5.3. In d) of above lemma, if we have γ belongs to a chain recurrent class C and y is a periodic

point with Dcu(y) ⊂ Wu
loc(y), then we have y a x.
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5.2. Crovisier’s central model. Suppose Λ has dominated splitting Ecs
i0
⊕Ec

1⊕Ecu
i0+2, in this subsection,

let’s fix V0, V1,Λ1, δ0/2 > δ1 > δ2 > 0 given by lemma 5.2 and a small enough, we’ll introduce Crovisier’s

central model. By his work, we can get some dynamical property for the index i0 central curves of Λ1.

The main result in this subsection is corollary 5.12.

Definition 5.4. A central model is a pair (K̃, f̃) where

a) K̃ is a compact metric space called the base of the central model.

b) f̃ is a continuous map from K̃ × [0, 1] into K̃ × [0,∞)

c) f̃(K̃ × {0}) = K̃ × {0}
d) f̃ is a local homeomorphism in a neighborhood of K̃ × {0} : there exists a continuous map

g : K̃ × [0, 1] −→ K̃ × [0,∞) such that f̃ ◦ g̃ and g̃ ◦ f̃ are identity maps on g̃−1(K̃ × [0, 1]) and

f̃−1(K̃ × [0, 1]) respectively.

e) f̃ is a skew product: there exits two map f̃1 : K̃ −→ K̃ and f̃2 : K̃× [0, 1] −→ [0,∞) respectively

such that for any (x, t) ∈ K̃ × [0, 1], one has f̃(x, t) = (f̃1(x), f̃2(x, t)).

f̃ general doesn’t preserve K̃ × [0, 1], so the dynamic outside K̃ × {0} is only partially defined.

The central model (K̃, f̃) has a chain recurrent central segment if there is a segment I = {x} × [0, a]

contained in a chain recurrent class of f |K̃×[0,1].

A subset S ⊂ K̃ × [0, 1] of a product K̃ × [0,∞) is a strip if for any x ∈ K̃, the intersection S
⋂{x} ×

[0,∞) is a non-trivial interval.

In his remarkable paper [8], Crovisier got the following important result.

Lemma 5.5. ([8] Proposition 2.5) Let (K̃, f̃) be a central model with a chain transitive base, then the

two following properties are equivalent:

a) there is no chain recurrent central segment;

b) there exists some strip S in K̃ × [0, 1] that is arbitrarily small neighborhood of K̃ × {0} and it’s

a trapping region for f̃ or f̃−1 : either f̃(Cl(S)) ⊂ Int(S) or f̃−1(Cl(S)) ⊂ Int(S).

Remark 5.6. If the central model (K̃, f̃) has a chain recurrent central segment and K̃×{0} is transitive,

from Crovisier’s proof, we can know for any small neighborhood V of K̃ × {0}, there exists a segment

x× [0, a]a6=0 contained in the same chain recurrent class of f̃ |V with K̃ × {0}.

An open strip S ⊂ f̃ × [0, 1] satisfying f̃(Cl(S)) ⊂ Int(S) or f̃−1(Cl(S)) ⊂ Int(S) is called a trapping

strip, in the first case, we call the trapping strip is 1-step contracting, and the second case is called 1-step

expanding.

Definition 5.7. Let f be a diffeomorphism of a manifold M , Λ is a compact set with dominated splitting

Ecs
i0
⊕ Ec

1 ⊕ Ecu
i0+2, Λ1, V0, V1, a, δ0/2 > δ1 > δ2 > 0 are given in §5.1, where Λ1 also has a dominated

splitting Ecs
i0
⊕Ec

1 ⊕Ecu
i0+2. A central model (Λ̃1, f̃) is an index i0 central model for (Λ1, f) if there exists

a continuous map π : Λ̃1 × [0,∞) −→ M such that:

a) π semi-conjugate f̃ and f : f ◦ π = π ◦ f̃ on Λ̃1 × [0, 1]

b) π(Λ̃1 × {0}) = Λ1
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c) the collection of map t −→ π(x̃, t) is a continuous family of C1 embedding of [0,∞) into M ,

parameterized by x̃ ∈ Λ̃1;

d) for any x̃ ∈ Λ̃1, the curve π(x̃, [0,∞)) ⊂ U has length bigger than δ2 but smaller than δ1, it’s

tangent at the point x = π(x̃, 0) ∈ Λ1 to Ec
1 and it’s an index i0 central curve ( that means the

curve π(x̃, [0,∞)) tangents with the index i0 central cone Cc
a0

).

Remark 5.8. From now, if (Λ̃1, f̃) is an index i0 central model for (Λ1, f) and π is the projection map,

we’ll denote the central model as (Λ̃1, f̃ , π). Here I should notice the reader that π in this paper has

two different meanings, one denote the period of periodic point and another denote the projection map of

central model. If there exists any confusion, I’ll point out.

The following lemma shows that central model always exists.

Lemma 5.9. ([8]) Λ,Λ1, V0, U1 are given in §5.1, then there exists an index i0 central model (Λ̃1, f̃ , π)

for (Λ1, f). Let’s denote Λ̃ ⊂ Λ̃1 the set satisfying π−1(Λ)
⋂

(Λ̃1 × {0}) = Λ̃ × {0}, then (Λ̃, f̃ , π) is an

index i0 central model for (Λ, f), and if Λ is minimal (transitive, chain recurrent set), Λ̃ × {0} is also

minimal (transitive, chain recurrent set).

Remark 5.10. 1) When the cental bundle Ec
1(Λ1) has an f-orientation ( it means that Ec

1|Λ1 is

orientable and Df preserves such orientation), we call the orientation ’right’, then we can get

two index i0 central models (Λ̃+
1 , f̃+, π+) and (Λ̃−1 , f̃−, π−) for (Λ1, f), we call them the right

model and the left model, where πi
(i=+,−) is a bijection between Λ̃i

1 × {0} and Λ1, and for

x̃i ∈ Λ̃i
1, π(x̃i × [0,∞)) is a half of index i0 central curve at the right (i = +) or left (i = −) of

x = π(x̃i × {0}).
2) If f doesn’t preserve any orientation of Ẽc

1(Λ1), then π : Λ̃1 −→ Λ1 is two-one: any point x ∈ Λ1

has two preimages x̃− and x̃+ in Λ̃1, the homeomorphism σ of Λ̃1 which exchanges the preimages

x̃+ and x̃− of any point x ∈ Λ1 commutes with f̃ .

In § 5.1, we know that any point x ∈ Λ1 has a local orientation, then π(x̃+ × [0,∞)) is an

index i0 central curve on the right of x, π(x̃− × [0,∞)) is on the left of x, the union of them is

an index i0 central curve with central at x and radius δ1.

The following lemma is proved in [8].

Lemma 5.11. f ∈ R, Λ is a chain recurrent set with a dominated splitting Ecs
i0
⊕ Ec

1 ⊕ Ecu
i0+2 where

dim(Ec
1(Λ)) = 1 and Ec

1(Λ) is not hyperbolic. Let V, V1,Λ1 be given in §5.1, by lemma 5.9, (Λ1, f) has

an index i0 central model (Λ̃1, f̃ , π), let Λ̃ ⊂ Λ̃1 be the set satisfying Λ̃× {0} = π−1(Λ)
⋂

Λ̃1 × {0}, then

(Λ̃, f̃ , π) is a central model for (Λ, f) and we have

a) either (Λ̃1, f̃ , π) has a trapping region,

b) or (Λ̃, f̃ , π) has a chain recurrent central segment.

Corollary 5.12. f ∈ R, Λ is a chain recurrent set with a dominated splitting Ecs
i0
⊕ Ec

1 ⊕ Ecu
i0+2 where

dim(Ec
1(Λ)) = 1 and Ec

1(Λ) is not hyperbolic. Let V, V1,Λ1 be given in §5.1, by lemma 5.9, (Λ, f) has an

index i0 central model (Λ̃, f̃ , π). Suppose the central model (Λ̃, f̃ , π) has a chain recurrent central segment

γ̃x̃ where x̃ ∈ Λ̃, denote γx = π(γ̃x̃), then γx ⊂ Λ1 and it’s an index i0 central segment, in fact we have
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that length(f i(γx)) < δ1 for any i ∈ Z and γx is in the same chain recurrent set with Λ respecting the

map f |V1 .

6. Proof of lemma 3.6

Proof of lemma 3.6: By Gan’s lemma, we know that either Λ is an index i0 +1 fundamental limit or C

contains index i0 periodic point, so we can suppose Λ is always an index i0 + 1 fundamental limit. With

the same argument, we can suppose Λ is an index i1− 1 fundamental limit also, then by proposition 2.4,

2.5, Λ has the following dominated splitting TΛM = Es
i0
⊕ Ecs

1 ⊕ Ec ⊕ Ecu
1 ⊕ Eu

i1+1. Now we have two

kinds of index different central models: the index i0 central model and the index i1−1 central model. We

suppose the two central bundles Ecs
1 and Ecu

1 both have an f -orientation, since the proof for the other

case is similar. We give every central bundle an orientation and all it right, then we have two central

models (right or left) for every central bundle, at first, let’s deal with a simple case.

Claim: If one of the index i0 central model and one of the index i1 − 1 central model both have chain

recurrent central segment, then C contains an index i periodic point with i0 ≤ i ≤ i1.

Proof of the claim: By corollary 5.12, suppose γcs
x0

is the index i0 chain recurrent central segment and

γcu
y0

is the index i1−1 chain recurrent central segment, then there exists a chain recurrent set Λ∗ ⊂ V0 such

that Λ
⋃

γcs
x0

⋃
γcu

y0
⊂ Λ∗. Choose x ∈ γcs

x0
\ x0 and y ∈ γcu

y0
\ y0, according to 4) of proposition 3.1 there

exists a family of periodic orbits {Orb(pn)} in V0 satisfying lim
n→∞

Orb(pn) −→ Λ∗, then there exists in

and jn such that f in(pn) −→ x and f jn(pn) −→ y. Recall that
⋃
n

Orb(pn) ⊂ Λ0 and Λ0 has the following

partial hyperbolic splitting TΛM = Es
i0
⊕Ecs

1 ⊕Ecc⊕Ecu
1 ⊕Eu

i1+1, we know that every point q ∈ ⋃
n

Orb(pn)

will have a strong stable manifold W ss
loc(q) which is an index i0 cs disk and have a strong unstable manifold

Wuu
loc (q) which is an index i1 − 1 cu disk, by d) of lemma 5.2, γcs

x0
has an unstable manifold Wu

loc(γ
cs
x0

)

which is index i0 ccu disk and γcu
y0

has a stable manifold W s
loc(γ

cu
y0

) which is index i1−1 ccs disk, so when

n is big enough, we have W ss
loc(f

in(pn)) t Wu
loc(γ

cs
x0

) 6= φ and Wuu
loc (f jn(pn)) t W s

loc(γ
cu
y0

) 6= φ, by remark

5.3 we know pn a x0 and y0 a pn, by the fact x0 a y0, pn is in the same chain recurrent class with x0,

so Orb(pn) ⊂ C. Recall that Λ∗ ⊂ V0 has the special partial hyperbolic splitting and Orb(pn) stays near

Λ∗, we know that Orb(pn) has index i with i0 ≤ i ≤ i1. ¤

Now we can suppose that the two index i0 central models both don’t have chain recurrent central

segment, then there exist any small trapping regions for these two central models. Now we claim that

there always exists x0 ∈ Λ such that for the 0 < λ < 1 and l given in proposition 2.4 and 1 > µ > λ, we

have

(6.1)
n−1∏

j=0

‖Df l|Ecs
1 (fjl(x0))‖ ≤ µn for n ≥ 1.

Proof of the claim: Here we need the following lemma at first:

Lemma 6.1. ([31]) Assume f ∈ R, let Λ be an index i1 fundamental limit of f (1 ≤ i1 ≤ d− 1), and

Ecs
i1

(Λ)⊕ Ecu
i1+1(Λ) is an index i1 − (l, λ) dominated splitting on Λ given by proposition 2.4, then
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1) either for any µ ∈ (λ, 1), there exists c ∈ Λ such that
n−1∏
j=0

‖Df l|Ecs
i1

(fjlc)‖ ≤ µn for n ≥ 1,

2) or Ecs
i1

splits into a dominated splitting Ecs
i1−1⊕Ec

1 with dim(Ec
1) = 1 such that for any µ ∈ (λ, 1),

there is c′ ∈ Λ such that
n−1∏
j=0

‖Df l|Ecs
i1−1(f

jlc′)‖ ≤ µn for all n ≥ 1.

Lemma 6.2. Let Λ be an invariant compact set of f , with two dominated splitting Ecs ⊕ F cu and

Ẽcs ⊕ F̃ cu, if dim(Ecs) ≤ dim(Ẽcs), then Ecs ⊂ Ẽcs.

Since Λ is an index i1 fundamental limit, if 1) of lemma 6.1 is true for Λ, then there exists x ∈ Λ such

that
n−1∏
j=0

‖Df l|Eccs
i1

(fjlx)‖ ≤ µn
0 for n ≥ 1. On Λ we have another dominated splitting (Es

i0
⊕Ecs

1 )⊕Ei0+2
cu ,

since dim(Es
j0
⊕ Ec

1) = i0 + 1 < i1 = dim(Eccs
i1

), by lemma 6.2, Es
i0
⊕ Ecs

1 |Λ ⊂ Eccs
i1
|Λ, so we have

n−1∏
j=0

‖Df l|Es
i0
⊕Ecs

1 (fjlx)‖ ≤ µn
0 for n ≥ 1.

If 2) of lemma 6.1 is true for Λ, then there exists x′ such that
n−1∏
j=0

‖Df l|Ecs
i1−1(f

jlx′)‖ ≤ µn
0 for n ≥ 1,

recall that dim(Es
i0
⊕Ecs

1 ) = i0 + 1 ≤ i1 − 1 = dim(Ecs
i1−1), by lemma 6.2, Es

i0
⊕Ecs

1 |Λ ⊂ Ecs
i1−1|Λ, so we

have
n−1∏
j=0

‖Df l|Es
i0
⊕Ecs

1 (fjlx′)‖ ≤ µn
0 for n ≥ 1. ¤

Now we claim that for the x0 above, length(f i(γx0)) −→ 0+.

Proof of the claim: Here we just need the following lemma.

Lemma 6.3. ([26]) For any 0 < µ < 1, there exists ε > 0 such that for x ∈ Λ0 which satisfies
n−1∏
j=0

‖Df |Ẽ(fjx)‖ ≤ µn for all n > 0, then diam(fn(lcs
ε (x))) −→ 0, i.e. the central stable manifold of

x with size ε is in fact a stable manifold.

¤

So by the above two claims, we know that the trapping regions for the two index i0 central models are

always 1-step contracting.

Now choose a family of index i0 periodic point {pn} such that lim
n→∞

Orb(pn) −→ Λ, and consider

the central curves lcs
δ , by trapping region of the two central models (Λ1, f, π+) and (Λ1, f, π−), there

exist γcs,+
pn

and γcs,−
pn

and ε > 0 such that fπ(pn)(γcs,+
pn

) ⊂ Int(γcs,+
pn

), fπ(pn)(γcs,−
pn

) ⊂ Int(γcs,−
pn

) and

length(γcs,+
pn

\ fπ(pn)(γcs,+
pn

)) > ε, length(γcs,−
pn

\ fπ(pn)(γcs,−
pn

)) > ε. Now define γcs
pn

= γcs,+
pn

⋃
γcs,−

pn

and Γcs,i
pn

=
⋂
j

f jπ(pn)(γcs,i
pn

) for (i = +,−), hcs,i
pn

= γcs,i
pn

\ Γcs,i
pn

for i = +,−, and Γcs
pn

= Γcs,+
pn

⋃
Γcs,−

pn
.

Denote qcs,+
pn

the right extreme point for Γcs
pn

and qcs,−
pn

the left extreme point for Γcs
pn

, then by the 1-step

contracting property, we know that hcs,i
pn

⊂ W s(qcs,i
pn

) for i = +,−.

Now we claim that length(Γcs
Orb(pn)) −→ 0.

Proof of the claim Suppose there exists qn ∈ Orb(pn) and δ such that length(Γcs
qn

) > δ for all n, when

n big enough, there exists δn and i1,n < i2,n such that d(f i+i1,n(qn), f i(x0)) < δn for 0 ≤ i ≤ i2,n − i1,n

where δn −→ 0+ and i2,n − i1,n −→ ∞. Recall that length(Γcs
q ) < δ1 for any q ∈ Orb(pn), by (6.1) we

know that length(Γcs
fi2,n (qn)

) −→ 0+ (since from f i1,n(qn) to f i2,n(qn), by 6.1, f contracts the central curve

with exponential rate). Suppose qn −→ y0 and Γcs
qn
−→ Γcs

y0
, then Γcs

y0
⊂ γcs

y0
, length(Γcs

y0
) > δ and it’s an
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index i0 chain recurrent central segment (since length(Γcs
fi2,n (qn)

) −→ 0 and fπ(pn)−i2,n(Γcs
fi2,n (qn)

) = Γcs
qn

),

that’s a contradiction with our assumption. ¤

By lemma 6.1 and the argument following there, there exists in, l, 1 > µ > λ and qn = f in(pn) such

that
m−1∏
i=0

‖Df−l|Eu
i0+2(f

in−il(qn))‖ < µm for n ≥ 0 (since qn is periodic point with index i0, here we denote

Ec⊕Ecu
1 ⊕Eu

i1+1|Orb(pn) by Eu
i0+2(Orb(pn))), then by a similar result with lemma 6.3 for central unstable

manifold, qn has uniform size of strong unstable manifold which is an index i0 cu disk. In fact, for some

µ < µ0 < 1, by the property that lim
n→∞

length(Γcs
Orb(pn)) −→ 0, when n is big enough, every periodic point

q ∈ Γcs
qn

satisfies
m−1∏
i=0

‖Df−l|Eu
i0+2(f

in−il(q))‖ < µm
0 also, so every periodic point in Γcs

qn
will have uniform

size of strong unstable manifold which is an index i0 cu disk, then when n and m are big enough, for any

periodic point q ∈ Γcs
qn

, it has Wuu(q) t W s
loc(Γ

cs
qm

) 6= φ, (since W s
loc(Γ

cs
qm

) contains W s
loc(γ

cs), and by the

fact γcs is a positive central segment, W s
loc(γ

cs) is an index i0 cu disk with uniform size), so there exists

a periodic point q∗ ∈ Γfim (pm) such that Wuu(q) t W s(q∗) 6= φ, and we denote it q ≺ q∗, so we can

define a partial order for the periodic points in Γcs
qn

and Γcs
qm

, it’s easy to know that every equivalent class

belongs to a non-trivial chain recurrent class. If we suppose qn −→ y0 ∈ Λ and fix n0 big enough, we

know that for any n > n0, there exists a non-trivial homoclinic class containing periodic points in Γcs
qn0

and Γcs
qn

, then it’s easy to know that C contains a periodic point of Γcs
qn0

, and since the periodic orbit

stays near Λ, it has index i with i0 ≤ i ≤ i1. ¤

7. Proof of lemma 3.7

The basic idea of proof of lemma 3.7 is that when we suppose Λ  C0 and C doesn’t contain index

j0, j0 + 1 periodic points, we can find a family of periodic points stay a lot of time near Λ and whose

Hausdorff limit is contained in C0 and bigger than Λ, we denote their Hausdorff limit by Λ∗, then by the

definition of Λ we know Λ∗ is an index j fundamental limit with j ≥ j0 + 1. Since the periodic points

above stay almost all the time near Λ, we can get a measure µ with supp(µ) ⊂ Λ∗ and µ has index j0 +1

(in fact supp(µ) is contained in a small neighborhood of Λ), then by C1 Pesin theory given in [36], C

contains index j0 + 1 periodic point and that’s a contradiction.

In order to get the above sequence of periodic points, in lemma 7.10 we show that the orbits near

Λ have some good position, and then use connecting lemma and generic assumptions, we can get the

periodic points we need. A similar argument was used in the proof of ”the Technique lemma” ([38]).

In § 7.1 we introduce some new generic properties, in § 7.2 we introduce the connecting lemma because

we need a special property which just appears during the proof, in § 7.3 I’ll state lemma 7.6 and use it

to prove lemma 3.7, the proof of lemma 7.6 is given in § 7.4.

7.1. Some new generic properties. Choose {Uα}α∈A a topological basis of M satisfying that for any

ε > 0, there exists a subsequence {Uαi
}∞i=1 such that diam(Uαi

) < ε and
⋃
i

(Uαi
) is a cover of M . Fix

this topological basis, we’ll give some new C1 generic properties.

At first, let’s recall some definitions, suppose K is a compact set of M and f ∈ C1(M) has been given,

x, y ∈ K, x a
K

y means that for any ε > 0, there exists an ε-pseudo orbit in K beginning from x and

ending at y. If K = M , we just denote x a y.
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The following result has been proved in [7]:

Lemma 7.1. There exists a generic subset R∗1,0 such that any f ∈ R∗1,0 satisfies the following property:

suppose K is a compact set, W is any neighborhood of K, x0, x1, · · · , xn,∈ K satisfy x0 a
K

x1 a
K
· · · a

K
xn,

U0, U1, · · · , Un ⊂ W are neighborhoods of x0, x1, · · · , xn respectively, then there exists a segment of orbit

of f in W beginning from U0, passing Ui 1<i<n and ending in Un. More precisely, there exists a ∈ U0

and jn > ji > j0 = 0 (0<i<n) such that f ji(a) ∈ Ui for 0 ≤ i ≤ n and f j(a) ∈ W for 0 ≤ j ≤ jn.

Lemma 7.2. There exists a generic subset R∗1,1 such that any f ∈ R∗1,1 satisfies the following property:

for a sequence {st} where 0 < st < 1 and st −→ 1−, {Φi}K
i=1 ⊂ {Uα}α∈A and {Ot}J

j=1 ⊂ {Uα}α∈A, if

for t0 ∈ N there exist gn
C1

−→ f and gn has periodic point pn satisfying
#{Orbgn (pn)

⋂
(

K⋃
i=1

Φi)}
πgn (pn) > st0 and

Orbgn
(pn)

⋂
Oj 6= φ for 1 ≤ j ≤ J , then f itself has a periodic point p satisfying

#{Orb(p)
⋂

(
K⋃

i=1
Φi})

π(p) > st0

and Orb(pn)
⋂

Ot 6= φ for 1 ≤ t ≤ J . Especially if there exists {Ui}k
i=1 ⊂ {Uα}α∈A such that Orbgn

(pn) ⊂
k⋃

i=1

Ui for all n, then we can let Orb(p) ⊂
k⋃

i=1

Ui.

Proof : Here we just proof the first part, let’s consider the set {(Φβ1 , · · · ,ΦβN(β) ;Oβ1 , · · · , OβJ(β))}β∈B0

where Φβi
, Oβj

∈ {Uα}α∈A, it’s easy to know B0 is countable.

For any β ∈ B0, denote

• Hβ,t = {f | f ∈ C(M), f has a C1 neighborhood U such that for any g ∈ U , g has a periodic orbit

Orb(pg) satisfying
#{Orbg(pg)

⋂
(
N(β)⋃
i=1

Φβi
)}

πg(pg) > st and Orbg(pg)
⋂

Oβi 6= φ for 1 ≤ i ≤ J(β)},
• Nβ,t = {f | f ∈ C1(M), f has a C1 neighborhood U such that for any g ∈ U , g has no any periodic

orbit pg satisfying
#{Orbg(pg)

⋂
(
N(β)⋃
i=1

Φβi
)}

πg(pg) > st and Orbg(pg)
⋂

Oβi
6= φ for 1 ≤ i ≤ J(β)}.

It’s easy to know Hβ,t

⋃
Nβ,t is open and dense in C1(M). Let R∗1,0 =

⋂
t∈N

⋂
β∈B0

(Hβ,t

⋃
Nβ,t), we’ll

show R∗1,0 satisfies the property we need.

For any f ∈ R∗1,0 and any β∗ ∈ B0, t ∈ N, suppose there exists a family of C1 diffeomorphisms {gn}∞n=1

such that lim
n→∞

gn = f and any gn has a periodic orbit Orb(pn) satisfying
#{Orbgn (pn)

⋂
(
N(β∗)⋃

i=1
Φβ∗

i
)}

πgn (pn) > st

and Orbgn
(pn)

⋂
Oβ∗t 6= φ for 1 ≤ t ≤ J(β∗), then f /∈ Nβ∗,t. That means f ∈ Hβ∗,t, so we proved this

lemma. ¤

Now let R0 = R0

⋂
R∗1,0

⋂
R∗1,1, in §7.3 we’ll show this residual set satisfies lemma 3.7.

7.2. Introduction of connecting lemma. Connecting lemma was proved by Hayashi [16] at first, and

then was extended to the conservative setting by Xia, Wen [34]. the following statement of connecting

lemma was given by Lan Wen as an uniform version of connecting lemma.

Lemma 7.3. (connecting lemma [30]) For any C1 neighborhood U of f , there exist ρ > 1, a positive

integer L and δ0 > 0 such that for any z and δ < δ0 satisfying f i(Bδ(z))
⋂

f j(Bδ(z)) = φ for 0 ≤ i 6=
j ≤ L, then for any two points p and q outside the cube ∆ =

⋃L
i=1 f i(Bδ(z)), if the positive f-orbit of

p hits the ball Bδ/ρ(z) after p and if the negative f-orbit of q hits the small ball Bδ/ρ(z), then there is

g ∈ U such that g = f off ∆ and q is on the positive g-orbit of p.
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Remark 7.4. Suppose we have another point z1 ∈ M satisfying ∆1

⋂
∆ = φ where ∆1 =

⋃L
i=1 f i(Bδ(z1)),

then if we use twice connecting lemma in ∆ and ∆1 respectively, we can still get a diffeomorphism g in

U .

Now we’ll show the idea of the proof of connecting lemma, because we need some special property

which just appears in the proof.

In the proof, the main idea is Hayashi’s ’cutting’ tool, by it we can cut some orbits from p’s orig-

inal f -orbit and q’s original f -orbit, and then connect the rest part in ∆. More precisely descrip-

tion is following, suppose fsm(p) ∈ Bδ/ρ(z) and there exists 0 < s1 < s2 < · · · < sm such that

fsi ∈ Bδ(z) for 1 ≤ i ≤ m and fs(p) /∈ Bδ(z) for s ∈ {0, 1, · · · , sm} \ {s1, s2, · · · , sm}; for q, there exists

0 < t1 < t2 < · · · < tn such that f−ti(q) ∈ Bδ(z) for 1 ≤ i ≤ n, f−tn(q) ∈ Bδ/ρ(z) and f−t(q) /∈ Bδ(z)

for t ∈ {0, 1, · · · , tn} \ {t1, t2, · · · , tn}. By some rules, we can cut some f -orbits in p’s orbit like

{fsi+1(p), fsi+2(p), · · · , fsj (p)}j>i and cut some f -orbits in q’s orbit like {f−tj+1(q), f−tj+2(q), · · · , f−ti(q)}j>i,

then the rest segment looks like:

P ′ = (p, f(p), · · · , fsi1 (p); fsi2+1(p), · · · , fsi3 (p); · · · ; fsi(k(p)−1)+1(p), · · · , f
sik(p) (p)),

Q′ = (f−tjk(q)+1(q), · · · , f
−tjk(q)−1 (q); · · · ; f−tj3+1, · · · , f−tj2 (q); f−tj1+1(q) · · · , f−1(q), q).

Denote X = P ′
⋃

Q′, and π(X) the length of X, it’s easy to know X is a 2δ-pseudo orbits. Then we can do

several perturbations called ’push’ in ∆ and get a diffeomorphism g such that q is on the positive g-orbit

of p, in fact, we have gπ(X)(p) = q. It’s because after the push, we can connect fsi1 (p) and fsi2+L(p),

· · · ; f
sik(p)−2 (p) and f

sik(p)−1+L(p); f
sik(p) (p) and f

−tjk(q)+L(q); f
−tjk(q)−1 (q) and f

−tjk(q)−2+L(q); · · · ;
f−tj2 (q) and f−tj1+L(q) every time by L times pushes in ∆, we don’t cut orbits this time, and it’s

important to note that the supports of different pushes don’t intersect with each other, so we don’t

change the length of X, we just push the points of X in ∆ and get a connected orbit. By the above

argument, it’s easy to know g|M\∆ = f |M\∆ and g(∆) = f(∆). More details see [16], [30], [34].

Remark 7.5. a) In the above argument, suppose there exists an open set V such that f i(p) ∈ V for

0 ≤ i ≤ sm and ∆ ⊂ V , then after cutting and pushing, we can know {p, g(p), · · · , gπ(P ′)(p)} ⊂ V .

What’s more, we can show that #{{gi(p)}π(P ′)+π(Q′)
i=0

⋂
(V )c} < tn.

b) If there exists an open set V such that ∆ ⊂ V , f i(p) ∈ V for 0 ≤ i ≤ sm and f−j(q) ∈ V for

0 ≤ j ≤ tn, then after cutting and pushing, we can know gi(p) ⊂ V for 0 ≤ i ≤ π(X).

7.3. Proof of lemma 3.7. Let’s suppose the lemma is false, I’ll prove that Λ is included in a bigger

index j0 fundamental limit of C0.

Now choose y ∈ C0 \Λ and a small neighborhood V0 of Λ such that y /∈ V0 and the maximal invariant

subset Λ0 of V0 still has the partial hyperbolic splitting Es
j0
⊕ Ec

1 ⊕ Eu
j0+2. Choose a family of open

sets {Φi}N
i=1 ⊂ {Uα}α∈A such that Λ ⊂

N⋃
i=1

Φi ⊂ V0, choose an open neighborhood V1 of Λ such that

V1 ⊂
N⋃

i=1

Φi.

Now we need the following result whose proof will be given in §7.4.
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Lemma 7.6. Under the same assumption with lemma 3.7, suppose f ∈ R, C doesn’t contain index j0

and j0 + 1 periodic point and Λ  C0, then for sn −→ 1− given in lemma 7.2, there exists a family of

periodic points {pn(f)} such that Λ  lim
n→∞

Orb(pn) ⊂ C0 and
#{Orb(pn)

⋂ N⋃
1

Φi}
π(pn) > sn.

In the following proof we’ll show that we can always suppose that the above sequence of periodic points

all have index j0, that means lim
n→∞

Orb(pn) is an index j0 fundamental limit of C0 bigger than Λ, it’s a

contradiction with the assumption that Λ is the maximal index j0 fundamental limit of C0.

Denote j∗ = minj{j : j ≥ j0 and there exits a family of index j periodic points which satisfies lemma

7.6}, choose {pn} such a family of index j∗ periodic points, we claim that j∗ = j0.

Proof of the claim: Suppose j∗ ≥ j0 + 1, denote C∗1 = lim
n→∞

Orb(pn), then C∗1 ⊂ P ∗j∗ , by f ∈ R ⊂
C1(M) \ HT and proposition 2.4, C∗1 has the following dominated splitting Ecs

j∗ ⊕ Ecu
j∗+1. From the

definition of j∗, it’s easy to know that {Df |Ecs
j∗ (Orb(pn))} is stable contracting (or by Frank’s type of

small perturbation, we can change the periodic point’s index to j∗ − 1, with a generic argument like

what we do in § 7.1, f itself has a family of index j∗ − 1 periodic points satisfying lemma 7.6, it’s a

contradiction with the definition of j∗), then like the argument in [37] (lemma 4.9, 4.10, corollary 4.11),

there exist µ0 < 1, l ∈ N such that for any π(pn) big enough, there exists c′n ∈ Orb(pn) satisfying
n−1∏
j=0

‖Df l|Ecs
j∗ (fjlcn)‖ ≤ µn

0 for n ≥ 1, since lim
n→∞

π(pn) −→ ∞, we can suppose all the periodic orbits

Orb(pn) satisfies above property. Then choose 1 > µ1 > µ0, By Pliss lemma, there exists a subset

Pn ⊂ Orb(pn) such that #(Pn)
π(pn) > δ and for any c ∈ Pn we have

n−1∏
j=0

‖Df l|Ecs
j∗ (fjlc)‖ ≤ µn

1 for n ≥ 1. Since

#{Orb(pn)
⋂ ⋃N

i=1 Φi}
π(pn) > sn and lim

n→∞
sn −→ 1−, so there exist cn ∈ Pn

⋂⋃N
i=1 Φi and in −→ ∞ such that

f i(cn) ∈ ⋃N
i=1 Φi for −in ≤ i ≤ in. Let cn −→ c0, then Orb(c0) ⊂

⋃N
i=1 Φi, and

n−1∏
j=0

‖Df l|Ecs
j∗ (fjlc0)‖ ≤ µn

1

for n ≥ 1. Denote C1 = Orb(c0), we have C1 ⊂ lim
n→∞

Orb(pn) ⊂ C0, it means C1 also has index j∗

dominated splitting Ecs
j∗ ⊕ F cu

j∗+1. Because C1 is an invariant compact subset of
⋃N

i=1 Φi, C1 has the

partial hyperbolic splitting Es
j0
⊕ Ec

1 ⊕ Eu
j0+2. From the assumption we know j0 + 1 ≤ j∗, by lemma

6.2, Es
j0
⊕ Ec

1(x) ⊂ Ecs
j∗(x) for x ∈ C1, so we have

n−1∏
j=0

‖Df l|Ec
1(fjlc0)‖ ≤ µn

1 for n ≥ 1. It means there

is an ergodic measure ν with support in C1 and the central Lyapunov exponents is negative, so ν is a

hyperbolic ergodic measure with index j0 + 1.

Definition 7.7. A hyperbolic ergodic measure ν has index i if the number of negative Lyapunov exponents

is i.

Lemma 7.8. Suppose f ∈ C1(M) \ (HT ) and µ is an hyperbolic ergodic measure of f , then there exists

a periodic point in the same chain recurrent class with supp(µ) and the periodic point has the same index

with the hyperbolic ergodic measure.

By the above lemma, we can show that there exists a periodic point with index j0 + 1 in the same

chain recurrent class with C0. ¤

Now we know that lim
n→∞

Orb(pn) is an index j0 fundamental limit of C0 and Λ  lim
n→∞

Orb(pn), it’s a

contradiction with the fact that Λ is the maximal index j0 fundamental limit of C0. ¤
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7.4. Proof of lemma 7.6. Choose x0 ∈ Λ, then for any δn −→ 0+, there exists a δn-pseudo orbit in

C0 from y to x0, denote z+
n is the last time the pseudo orbit enters V1, suppose lim

n→∞
z+
n = z0, then

Orb+(z0) ∈ V1 and for any δn, we have z0 a
δn

x0 and all the pseudo orbits are in V1

⋂
C0, so we get

z0 a
V1

⋂
C0

x0. We can always suppose z0 is not a periodic point, since if z0 is a periodic point, by f is a

Kupka-Smale diffeomorphism and Orb+(z0) ⊂ V1, z0 should be a hyperbolic periodic point with index i0

or i0 + 1.

Now for {δn}∞n=1 satisfying δn −→ 0+, for every δn, there exists a δn-pseudo orbit in C0 from x0 to y,

denote z−n the first time the pseudo orbit leaves V1, suppose lim
n→∞

f−1(z−n ) = z1, then Orb−(z1) ∈ V1 and

x0 a
V1

⋂
C0

z1. With the same argument for z0, we can suppose z1 is not periodic point.

It’s easy to know that lemma 7.6 is equivalent with the following result:

Lemma 7.9. With the same assumption of lemma 3.7, suppose C doesn’t contain index j0 and j0 + 1

periodic point, then for 0 < s < 1, ε, δ > 0, and for any {Ui}k
i=1 ⊂ {Uα}α∈A an open cover for C0, denote

U =
k⋃

i=1

Ui and choose {x0, x1, · · · , xN0} an ε dense subset of Λ, there exists a periodic point {p(f)} such

that Orb(p) ⊂ U ,
#{Orb(p)

⋂ N⋃
1

Φi}
Φ(p) > s, Orb(p)

⋂
Bδ(xi) 6= φ for 0 ≤ i ≤ N0 and Orb(p)

⋂
Bδ0(z0) 6= φ.

Proof : The idea of the proof is following, at first use generic assumption, we can get an orbit in U

beginning from a small neighborhood of z1 and ending in a small neighborhood of z0, then we’ll find

another orbit in U
⋂ N⋃

i=1

Φi beginning from a small neighborhood of z0 passing a very small neighborhood

of Λ and ending in the small neighborhood of z1, more important, the second segment is far more longer

than the first segment and its orbit has some kind of good position. Then use twice connecting lemma

near z0 and z1, we can get a periodic orbit, and from the good position of the second orbit, we can

show that the new periodic orbit will preserve a long segment orbit which belongs to the original second

segment, so the new periodic orbit satisfies the density assumption, with another generic assumption, f

itself will have such kind of periodic orbit.

Now at first let’s show that the orbit in V0 will have some special kind of position, this property is the

key for us to get the density control.

Lemma 7.10. There exists 0 < δ0 < δ such that Bδ0(z0), Bδ0(z1), Bδ0(x0) ⊂ V0, and any segment orbit in

V0

⋂
Bδ0(C0) at the end entering Bδ0(x0) never passes Bδ0(z1); and any segment of orbit in V0

⋂
Bδ0(C0)

beginning from Bδ0(x0) never passes Bδ0(z0). More precisely:

a) for any a and i0 > 0 satisfying f i0(a) ∈ Bδ0(x0) and f i(a) ∈ V0

⋂
Bδ0(C0) for 0 ≤ i ≤ i0, we

have f i(a) /∈ Bδ0(z1) for 0 ≤ i ≤ i0,

b) for any b and j0 > 0 satisfying b ∈ Bδ0(x0) and f j(b) ∈ V0

⋂
Bδ0(C0) for 0 ≤ j ≤ j0, we have

f j(b) /∈ Bδ0(z0) for 0 ≤ j ≤ j0,

Proof :We just prove the case a), the proof for the other case is similar.

If a) is false, we’ll have x0 a
V0

⋂
C0

z0, recall that z0 a
V0

⋂
C0

x0, we know there exists a chain recurrent

set C1 ⊂ V0

⋂
C0 containing z0, x0 and Λ, by 4) or proposition 3.1, there exists a family of periodic

orbits {Orb(pn)} satisfying lim
n→∞

Orb(pn) −→ C1. Recall that C1 has the partial hyperbolic splitting
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TC1M = Es
j0
⊕ Ec

1 ⊕ Eu
j0+2, so Orb(pn) has index j0 or j0 + 1. If {pn} all have index j0, that means C1

is an index j0 fundamental limit of C0, it’s a contradiction with the fact that Λ is the maximal index j0

fundamental limit of C0. If {pn} all have index j0 + 1, then we have

1) either {Orb(pn)} are index stable,

2) or {Orb(pn)} are not index stable.

In the first case, by Gan’s lemma, C contains index j0 + 1 periodic point. In the second case, for any

ε > 0, there exist n big enough and a diffeomorphism gn such that Orbf (pn) is an index j0 periodic orbit

of gn and d(f, gn) < ε, it means that C1 is an index j0 fundamental limit, it’s a contradiction with the

fact that Λ is the maximal index j0 fundamental limit. ¤

Now we choose another family of open sets {U∗
i }k∗

i=1 ⊂ {Uα}α∈A which is an open cover of C0 such

that
k∗⋃
i=1

U∗
i ⊂ Bδ0(C0)

⋂
U , denote U0 =

k∗⋃
i=1

U∗
i . From now we just focus the orbits in U0, all the orbits

or pseudo orbits we consider in the following proof will locate in U0.

Now choose εn −→ 0+ and after replacing by a subsequence, we can suppose the {sn} fixed in lemma

7.2 satisfies s < sn −→ 1−, then by connecting lemma 7.3, the open set Bεn
(f) ⊂ C1(M) gives us a

family of parameters: δn −→ 0+, ρn −→∞, Ln.

At first, we choose a sequence δ0,n such that

A1 δ0,n < δ0, δ0,n+1 <
δ0,n

ρn
;

A2 f i(Bδ0,n
(z0))

⋂
f j(Bδ0,n

(z0)) = φ for 0 ≤ i 6= j ≤ Ln and f i(Bδ0,n
(z0)) ⊂

N⋃
i=0

Φi

⋂
U0 for

0 ≤ i ≤ Ln;

A3 define ∆0,n =
Ln⋃
i=0

f i(Bδ0,n(z0)), we have ∆0,n

⋂
Λ = φ.

A4 ∆0,n ⊂ U0.

Recall that z0 ∈ C0 \Λ is not a periodic point and Orb+(z0) ⊂ V1 ⊂
N⋃
1

Φi, so we can always choose such

sequence, with the same reason, we can also choose a sequence δ1,n such that

B1 δ1,n < δ0, δ1,n+1 <
δ1,n

ρn
;

B2 f−i(Bδ1,n
(z1))

⋂
f−j(Bδ1,n

(z1)) = φ for 0 ≤ i 6= j ≤ Ln and f−i(Bδ1,n
(z1)) ⊂

N⋃
i=0

Φi for 0 ≤ i ≤
Ln;

B3 define ∆1,n =
Ln⋃
i=0

f−i(Bδ1,n
(z1)), we have ∆1,n

⋂
Λ = φ;

B4 ∆1,n ⊂ U0.

Now by lemma 7.1 and z0, z0 ∈ C0 ⊂ U0, there exist a family of points an and numbers i0,n satisfying

the following property:

C1 an ∈ Bδ1,n/ρn
(z1) and f i0,n(an) ∈ Bδ0,n/ρn

(z0),

C2 f i(an) ∈ U0 for 0 ≤ i ≤ i0,n.

Then for every n there exists a sequence δ2,n −→ 0+ such that:

D1 δ2,n < δ0 and δ2,n+1 < δ2,n,

D2 for any x ∈ Λ, we have Bδ2,n
(x)

⋂
∆0,n = φ and Bδ2,n

(x)
⋂

∆1,n = φ,

D3 for any x ∈ Λ and any i satisfying f i(Bδ0,n(z0))
⋂

Bδ2,n(x) 6= φ, we have i0,n

i−Ln
< 1− sn,
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D4 for any x ∈ Λ and any i satisfying f−i(Bδ1,n
(z1))

⋂
Bδ2,n

(x) 6= φ, we have i0,n

i−Ln
< 1− sn.

Since Λ is an invariant compact subset not containing periodic point (that’s because C doesn’t contain

index j0 and j0 + 1 periodic point), we can always choose such sequence.

By the property z0 a
V1

⋂
C0

x0 a
V1

⋂
C0

x1 a
V1

⋂
C0

· · · a
V1

⋂
C0

xN0 a
V1

⋂
C0

z1 (the last relation comes from

xN0 a
V1

⋂
C0

x0 a
V1

⋂
C0

z1), there exists a family of points bn ∈ Bδ0,n/ρn
(z0) and 0 < ji,n < jN0+1,n (0 ≤

i ≤ N0) such that

E1 f ji,n(bn) ∈ Bδ2,n
(xi) for 0 ≤ i ≤ N0 and f jN0+1,n(bn) ∈ Bδ1,n/ρn

(z1),

E2 f j(bn) ∈
N⋃

i=1

Φi

⋂
U0 for 0 ≤ j ≤ jN0+1,n.

Denote J0,n = mini{ji,n, 0 ≤ i ≤ N0}, J1,n = maxi{ji,n, 0 ≤ i ≤ N0}, by the ’good’ position

given in lemma 7.10, f j(bn)
⋂

Bδ1,n
(z1) = φ for 0 ≤ j ≤ J1,n and f j(bn)

⋂
Bδ0,n

(z0) = φ for J0,n ≤
j ≤ jN0+1. Suppose j∗0,n the last time the orbit {f j(bn)}J0,n

j=0 leaves Bδ0,n(z0) and j∗1,n the first time

the orbit {f j(bn)}jN0+1,n

j=J(1,n) enters Bδ1,n
(z1). Then by D2, D4 and the ’good’ position, we know that

f j(bn)
⋂

Bδ0,n
(z0) = φ and f j(bn)

⋂
Bδ1,n

(z1) = φ for j∗0,n ≤ j ≤ j∗1,n, what’s more, we have j∗0,n + Ln <

J0,n, j∗1,n − Ln > J1,n, i0,n

J0,n−j∗0,n−Ln
< 1− sn and i0,n

j∗1,n−J1,n−Ln
< 1− sn.

In fact, we can split the orbit {f i(bn)}jN0+1,n

i=0 into three sub-segments: segment I, {f i(bn)}j∗0,n+Ln−1

i=0 ;

segment II, {f i(bn)}j∗1,n−Ln

i=j∗0,n+Ln
; segment III, {f i(bn)}jN0+1,n

j∗,n−Ln+1. The segment I doesn’t intersect with

∆1,n =
Ln−1⋃
j=0

f−j(Bδ1,n(z1)), segment III doesn’t intersect with ∆0,n =
Ln−1⋃
j=0

f j(Bδ0,n(z0)), segment II

doesn’t intersect with ∆0,n and ∆1,n. In the following proof, we’ll use connecting lemmas in ∆1,n and

∆0,n respectively, then the segment II is unchanged after the perturbation, and in fact we’ll get a new

periodic orbit which contains segment II.

Since now we’ll use twice connecting lemma near z0 and z1 and get a periodic orbit.

At first fix an n, we’ll do the connecting lemma in a neighborhood of z1, let’s consider the two points

f i0,n(an) and bn, we know the positive f -orbit of bn hits Bδ1,n/ρn
(z1) after bn and the negative f -orbit

of f i0,n(an) hits Bδ1,n/ρn
(z1) also, by connecting lemma and the fact ∆1,n ⊂

N⋃
i=1

Φi

⋂
U0, there exists

g∗n ∈ Bεn
(f) such that g∗n ≡ f off ∆1,n =

Ln−1⋃
i=0

f−i(Bδ1,n
(z1)) and there exists 0 < j∗2,n < j∗3,n such that:

F1 (g∗n)j(bn) = f j(bn) for 0 ≤ j ≤ j∗1,n − Ln,

F2 j∗2,n > j∗1,n > J1,n and (g∗n)j∗2,n(bn) ∈ Bδ1,n(z1), (g∗n)j∗3,n(bn) = f i0,n(an) ∈ Bδ0,n/ρn
(z0),

F3 (g∗n)j(bn) ∈
N⋃

i=1

Φi for 0 ≤ j ≤ j∗2,n and j∗3,n − j∗2,n < i0,n,

F4 (g∗n)j(bn) ∈ U0 for 0 ≤ j ≤ j∗3,n.

Remark 7.11. Above argument shows that #{{(g∗n)j(bn)}j∗3,n

j=0

⋂
(

N⋃
i=1

Φi)c} < i0,n, in the following proof,

we’ll use connecting lemma again in a neighborhood of z0 and we can get a new diffeomorphism g and a

periodic point pn(gn) such that they satisfy the following property:

• #{{Orbgn
(pn)

⋂
(

N⋃
i=1

Φi)c} < i0,n

• {f j(bn)}j∗1,n−Ln

j=j∗0,n+Ln
⊂ Orbgn

(pn),
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• Orbgn
(pn) ⊂ U0.

Now we’ll use connecting lemma in the neighborhood of z0, let’s consider f j∗1,n−Ln(bn), since f j(bn) =

(g∗n)j(bn) for 0 ≤ j ≤ j∗1,n−Ln we know that the negative g∗n-orbit of f j∗1,n−Ln(bn) hits Bδ0,n/ρn
(z0) after

f j∗1,n−Ln(bn), and by F2, the negative g∗n-orbit of f j∗1,n−Ln(bn) hits Bδ0,n/ρn
(z0) also. Using connecting

lemma, by the fact ∆0,n =
Ln⋃
j=0

f j(Bδ0,n
(z0)) ⊂

N⋃
i=1

Φi

⋂
U0, F4 and remark 7.4, there exists gn ∈ Bεn

(f)

such that gn ≡ g∗n off ∆0,n and there exists j0, j1 such that

G1 gj1
n (f j∗1,n−Ln(bn)) = g−j0

n (f j∗1,n−Ln(bn)) ∈ Bδ0,n(z0),

G2 f (j∗1,n−Ln)−j(bn) = (g∗n)−j(f j∗1,n−Ln(bn)) = (gn)−j(f j∗1,n−Ln(bn)) for 0 ≤ j ≤ j∗1,n − j∗0,n − 2Ln, it

means that #{Orbgn(f jN0,n(bn))
⋂ N⋃

i=1

Φi} ≥ j∗1,n − j∗0,n − 2Ln > j∗1,n − J1,n − Ln,

G3 #{Orbgn
(f jN0,n(bn))

⋂
(

N⋃
i=1

Φi)c} ≤ j∗3,n − j∗2,n ≤ i0,n,

G4 Orbgn
(f j∗1,n−Ln(bn)) ⊂ U0.

We denote the above periodic orbits for gn by Orb(pn) where pn = gj1
n (f j∗1,n−Ln(bn)), then we know

that lim
n→∞

pn −→ z0 and
#{Orbgn (pn)

⋂ N⋃
i=1

Φi}
πgn (Orbgn (pn)) = 1 −

#{Orbgn (pn)
⋂

(
N⋃

i=1
Φi)

c}
πgn (Orbgn (pn)) ≥ 1 − i0,n

j∗1,n−J0,n−Ln
> 1 −

(1 − sn) = sn. By G2 and j0,n + Ln < J0,n ≤ ji,n ≤ J1,n < j∗1,n − Ln for 0 ≤ i ≤ N0, f ji,n(bn) =

f ji,n−(j∗1,n−Ln)(f j∗1,n−Ln(bn)) = g
ji,n−(j∗1,n−Ln)
n (f j∗1,n−Ln(bn)) ⊂ Orbgn(pn), so Orbgn(pn)

⋂
Bδ2,n(xi) 6= φ.

Now we know that there exists a family of diffeomorphisms {gn} such that gn
C1

−→ f and gn has periodic

point pn such that Orbgn
(pn) ⊂ U0 ⊂ U ,

#{Orbgn (pn)
⋂ N⋃

i=1
Φi}

Orbgn (pn) > s, pn −→ z0 and Orbgn
(pn)

⋂
Bδ2,n

(xi) 6=
φ. Choose O0(x0), · · · , ON0(xN0), ON0+1(z0) ∈ {Uα}α∈A neighborhoods of x0, · · · , xN0 , z0 respectively

such that ON0+1(z0) ⊂ Bδ0(z0), and Oi(xi) ⊂ Bδ0(xi) for 0 ≤ i ≤ N0, then there exists n0 such that for

n > n0 we have Orbgn
(pn)

⋂
Oi 6= φ for 0 ≤ i ≤ N0 + 1, so by generic property lemma 7.2, f itself has

periodic point p such that Orb(p) ⊂ U ,
#{Orb(p)

⋂ N⋃
i=1

Φi}
Orb(p) > s and Orb(pn)

⋂
Oi 6= φ for 0 ≤ i ≤ N0 + 1,

since Oi(xi) ⊂ Bδ0(xi) ⊂ Bδ(xi) for 0 ≤ i ≤ N0 and ON0+1(z0) ⊂ Bδ(z0), we finish the proof. ¤

References

[1] F. Abdenur, C. Bonatti, S. Crovisier, L.J. Diaz and L. Wen, Periodic points and homoclinic classes, preprint (2006).

[2] R. Abraham and S. Smale, Nongenericity of Ω -stability, Global analysis I, Proc. Symp. Pure Math. AMS 14 (1970),

5-8.

[3] C. Bonatti and S. Crovisier, Recurrence et genericite(French), Invent. math., 158 (2004), 33-104
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