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Abstract. We show that for C1 diffeomorphisms far away from homoclinic tangencies, every ergodic

invariant measure has at most one zero Lyapunov exponent, and the Oseledets splitting corresponding to

positive, zero, and negative exponents is dominated. When the invariant ergodic measure is hyperbolic

(all exponents non-zero), then almost every point has a local stable manifold and a local unstable

manifold both of which are differentiable embedded disks. Moreover, a version of the classical shadowing

lemma holds, so that the hyperbolic measure is the weak limit of a sequence of atomic measures supported

on periodic orbits belonging to the same homoclinic class.

Together with a recent result of [7], this allows us to prove that there exists a residual subset R of

C1 diffeomorphisms far away from tangencies such that for any f ∈ R, either it’s Axiom A, or it has a

non-hyperbolic ergodic measure.

1. Introduction

In his famous paper [15], the first time Oseledets gave the definition and existence of Lyapunov

exponents for any invariant measure: for an ergodic measure µ of a diffeomorphism f , there exist k ∈ N,

real numbers λ1 > · · · > λk, and for µ−almost all x ∈ M , there exists a splitting TxM = E1
x ⊕ · · · ⊕ Ek

x

of the tangent space, such that the splitting is invariant under Df , and

lim
n→±∞

1
n

log ‖Dfn(x)vi‖ = λi, vi ∈ Ei
x \ {0}.

We call λi the Lyapunov exponent of µ and the splitting E1 ⊕ · · · ⊕ Ek Oseledets splitting. Usually the

splitting is just defined on a full measure subset, not continuous just measurable changed with the points.

In fact, for any measurable bundle on M , Oseledets proved the existence of Lyapunov exponents for any

invariant measure.

Since then, Lyapunov exponents have played a key role in studying the ergodic behavior of a dynamical

system, understanding the Lyapunov exponents also become to one of the classical problems of the theory

of differential dynamical systems. Especially when all the Lyapunov exponents are not vanishing, such

kind of ergodic measure is called hyperbolic measure and which attracts a lot of attention.

Here we prove that if the diffeomorphism is far away from homoclinic tangencies, the Lyapunov ex-

ponents of its ergodic measures can be given a good description. Here a diffeomorphism is far away

from homoclinic tangencies means that no diffeomorphism in a neighborhood exhibits a non-transverse

intersection between the stable manifold and the unstable manifold of some periodic point.

Theorem 1: Suppose f is far away from tangencies and µ is an ergodic measure of f , then
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• either µ is hyperbolic with index i and the index i Oseledets splitting is a dominated splitting,

• or µ has just one zero Lyapunov exponent, and the Oseledets splitting corresponding to negative,

zero and positive Lyapunov exponents is a dominated splitting.

Remark:The definition of dominated splitting is given in section 1, since dominated splitting is always

continuous, the above special kind of Oseledets splitting is always continuous.

By the definition, the tangent space of almost every point of a hyperbolic measure is splitted as the

sum of two subspaces which are exponentially contracted or expanded by all large enough iterated of the

derivative, it means the hyperbolic measure has some ’weak’ hyperbolic property on the tangent space.

Pesin showed that with some additional regularity assumption on the diffeomorphism (C2 or C1+Holder),

the hyperbolic ergodic measure shares many properties with hyperbolic set, for example, there exists

a family of local stable manifolds on a positive subset which is continuous and with uniform size, such

property is called the stable manifold theorem; Katok gave also a shadowing lemma, with it he proved that

the hyperbolic ergodic measure is the weak limit of a sequence of atomic invariant measures supported

on periodic orbits belonging to the same homoclinic class, such property is called Katok’s closing lemma.

Along this direction several deeper results have been proved, such as entropy formula, dimension theory

etc, all these results are called Pesin theory.

Now usually we call a hyperbolic measure together with the diffeomorphism a non-uniform hyperbolic

system, Pesin theory has been proved a very important and powerful tool to understand the non-uniform

hyperbolic system. But there is a restriction because the Pesin theory always needs the diffeomorphism

be C1+Holder, for C1 diffeomorphism the arguments fail to work (see [19]).

In [1], they begin to consider C1 Pesin theory, they proved that with a dominated assumption on the

tangent space, the stable manifold theorem is still true, and if the diffeomorphism is ’tame’, then there

exist a lot of hyperbolic ergodic measures.

In this paper we treat Pesin theory as a theory derives topological information from hyperbolic mea-

sure, it means that we just consider the stable manifold theorem and Katok’s closing lemma. With such

understanding, we show that when the diffeomorphism is C1 far from tangencies, C1 Pesin theory is still

true. The precisely statement is following:

Theorem 2: Suppose f ∈ Diff1(M) \HT and µ is a hyperbolic ergodic measure of f with i negative

Lyapunov exponents, then C1 Pesin theory is true:

a) almost every point has a local stable manifold and a local unstable manifold both of which are

differentiable embedded disks, and there exists a compact positive measure subset Λs(resp. Λu)

which has continuous and uniform size of stable (resp. unstable) manifolds.

b) µ is the weak limit of a sequence of invariant measures µn supported by periodic orbits pn with

index i, and the periodic orbits are homoclinic related with each other.

Remark:
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• The stable manifolds we get usually is not absolutely continuous, that’s because the absolutely

continuous property heavily depends on distortion which just holds under C1+α assumption.

• In fact, from the proof, it’s easy to see that the above theorem can be stated in the following

classical way of Pesin theory in the C1+α case:

Suppose f is far away from tangencies and µ is a hyperbolic ergodic measure of f with i negative

Lyapunov exponents, then there exists a family of compact set Λ0 ⊂ Λ1 ⊂ · · · with positive

measure such that f+(−)(Λi) ⊂ Λi+1, µ(
⋃
i

Λi) = 1 and they satisfy the following properties:

– for every Λi, there exist local continuous stable and unstable manifolds on it with uniform

size;

– for every Λi, there exist εi > 0, Li > 0 and Ni ∈ N, such that if there exist x ∈ Λi and

m > Ni satisfying fm(x) ∈ Λi and d(x, fm(x)) < εi, then there exists periodic point p with

period m and d(f j(x), f j(p)) < Li · d(x, fm(x)) for 0 ≤ j < m. Moreover, some point in the

periodic orbit has uniform size of local stable and local unstable manifolds and the size just

depends on Λi.

In [7], Dı́az and Gorodetski started to consider the generic existence of non-hyperbolic ergodic measure

and gave the following conjecture:

Conjecture 1: There exists a generic subset R in Diff1(M) such that for any f ∈ R, either f is Axiom

A or it has a non-hyperbolic ergodic measure µ.

With a result of [7], we prove conjecture 1 for diffeomorphisms far from tangencies:

Theorem 3: There exists a residual subset R in Diff1(M) \HT such that for any f ∈ R

• either f is hyperbolic,

• or f has a non-hyperbolic ergodic measure µ.

The structure of this paper is following: in § 2 we give some definitions and notations, theorem 1 is

proved in § 3, in § 4, we give the proof of theorem 2, in § 5 we give some basic C1 generic properties and

theorem 3 is proved in § 6.

After this preprint was written, we learned from S. Crovisier that he got some similar results in [6].
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2. Definitions and Notations

Let M be a compact boundlessness Riemannian manifold with dim(M) = d ≥ 2. Denote by Per(f)

the set of periodic points of f and Ω(f) the non-wondering set of f , for p ∈ Per(f), π(p) is the period of

p. When p is a hyperbolic periodic point, the index of p is the dimension of its stable bundle, Peri(f) is

the set of index i periodic points of f , and we call x ∈ M an index i preperiodic point of f if there exists

a family of diffeomorphisms gn
C1

−→ f , where gn has an index i periodic point pn and pn −→ x. Denote

by P ∗i (f) the set of index i preperiodic point of f , it’s easy to see Pi(f) ⊂ P ∗i (f).

An invariant compact set Λ is called index i fundamental limit if there exists a family of diffeomorphisms

gn C1 converging to f , pn is an index i periodic point of gn and Orb(pn) converge to Λ in Hausdorff

topology. By the definition, if Λ is an index i fundamental limit of f , then Λ ⊂ P ∗i (f).

For two points x, y ∈ M and δ > 0, if there exist points x = x0, x1, · · · , xn = y such that d(f(xi), xi+1) <

δ for i = 0, 1, · · · , n − 1, we say there is a δ-pseudo orbit connecting x and y and denote by x a
δ

y. If

x a
δ

y is true for any δ > 0, we denote x a y, and x à y if x a y and y a x. When x à x, it’s called

chain recurrent point, CR(f) is the set of chain recurrent points of f , it’s easy to see that à is an closed

equivalent relation on CR(f), every equivalent class of such relation should be compact and is called

chain recurrent class. Let K be a compact invariant set of f , for x, y ∈ K, we denote x a
K

y if for any

δ > 0, one has a δ -pseudo orbit in K connecting x and y. If x a
K

y is true for any x, y ∈ K, we call K a

chain recurrent set. Let C be a chain recurrent class of f , it’s called aperiodic class if C does not contain

periodic point.

Let Λ be an invariant compact set of f , for 0 < λ < 1 and 1 ≤ i < d, we say Λ admits an index

i− (l, λ) dominated splitting if there is a continuous invariant splitting TΛM = E⊕F where dim(Ex) = i

for any x ∈ Λ and ‖ Df l|E(x) ‖ · ‖ Df−l|F (f lx) ‖< λ for all x ∈ Λ. It’s well known that when Λ admits

a dominated splitting E⊕F , then the two bundles E, F are continuous bundles. A compact invariant set

can have many dominated splittings, but for fixed i, index i dominated splitting is unique. We also use

dominated splitting for several bundles, an invariant splitting E1⊕E2⊕· · ·⊕Ek on the tangent space of Λ is

called dominated splitting if there is l, λ such that for any x ∈ Λ and ‖ Df l|Ej(x) ‖ · ‖ Df−l|Ej+1(f lx) ‖< λ

for all x ∈ Λ and 1 ≤ j < k.

Remark 2.1. Suppose µ is an ergodic measure of diffeomorphism f , and supp(µ) admits an index i

dominated splitting E ⊕ F , because the bundles E, F are continuous, consider the Lyapunov exponents

for µ on bundle E and F respectively, denote λ1 ≤ · · ·λi ≤ λi+1 ≤ · · · ≤ λd the exponents of µ, by the

definition of dominated splitting, vectors of F expand faster than of E, so the exponents for µ on bundle

E are smaller than the exponents for µ on bundle F , it implies λ1, · · · , λi are the exponents for µ on

bundle E and λi+1, · · · , λd are the exponents for µ on bundle F .

We say an ergodic invariant measure µ of diffeomorphism f has type (i, k) if the number of negative

and vanishing Lyapunov exponents of µ is i and k respectively. And when k = 0, we say µ has index i.

For f ∈ Diffr(M), if there is a non-transverse intersection between the stable and unstable manifolds

of some hyperbolic periodic point p, we say f has Cr tangency. Denote HT r the set of diffeomorphisms

which have Cr tangency, usually we just use HT denote HT 1. And a diffeomorphism f is far away

from tangency if f ∈ Diff1(M) \HT . The following proposition shows the relation between dominated
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splitting and far away from tangencies.

Proposition 2.2. ([20]) f is C1 far away from tangencies if and only if there exists (l, λ) such that

P ∗i (f) has index i− (l, λ) dominated splitting for 0 < i < d.

Mañé showed that in some special case, one bundle of the dominated splitting is hyperbolic.

Proposition 2.3. ([14]) Suppose Λ(f) has an index i dominated splitting E⊕F (i 6= 0), if Λ(f)
⋂

P ∗j (f) =

φ for 0 ≤ j < i, then E is a contracting bundle.

3. Proof of theorem 1

Here we need the following special statement of ergodic closing lemma which is a little stronger than

the original statement given in [14] and whose proof will be given in Appendix.

Lemma 3.1. (New statement of Ergodic closing lemma) Suppose µ is a type (i, k) ergodic measure of

f , then for any i ≤ j ≤ i + k, supp(µ) is an index j fundamental limit. And there exists a family of

diffeomorphisms gn, such that:

1) : gn
C1

−→ f ,

2) : gn has periodic point pn with index j, denote by µn the invariant atom measure on Orbgn
(pn),

then µn
∗−weak−→ µ.

Proof of theorem 1: We divide the proof into two cases:

a) µ is hyperbolic with index i;

b) µ has type (i, k) where k 6= 0.

In case a), by lemma 3.1 and proposition 2.2, supp(µ) ⊂ P ∗i and supp(µ) has index i dominated splitting

Ecs
i ⊕ Ecu

i+1. By the definition of dominated splitting and remark 2.1, the Lyapunov exponents for µ on

bundle Ecs
i are strictly smaller than the Lyapunov exponents for µ on bundle Ecu

i+1, since the number of

negative exponents of µ is i, the Lyapunov exponents for µ on bundle Ecs
i are negative and the domi-

nated splitting Ecs
i ⊕Ecu

i+1 is the Oseledets splitting corresponding to the positive and negative exponents.

In case b), at first we show k = 1.

If k > 1, by lemma 3.1, supp(µ) ⊂ P ∗i
⋂

P ∗i+1

⋂ · · ·⋂ P ∗i+k, then by proposition 2.2 and f ∈ (HT )c,

supp(µ) admits index i dominated splitting Ecs
i ⊕Ecu

i+1; index i+1 dominated splitting Ecs
i+1⊕Ecu

i+2; · · · ,
and index i + k dominated splitting Ecs

i+k ⊕ Ecu
i+k+1. Let

Ec
i+1,1 = Ecs

i+1

⋂
Ecu

i , Ec
i+2 = Ecs

i+2

⋂
Ecu

i+1, · · · , Ec
i+k = Ecs

i+k

⋂
Ecu

i+k−1,

then supp(µ) admits a new dominated splitting

Tsupp(µ)M = Ecs
i ⊕ Ec

i+1,1 ⊕ Ec
i+2,1 ⊕ · · · ⊕ Ec

i+k,1 ⊕ Ecu
i+k+1.
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We denote λ1 ≤ λ2 ≤ · · · ≤ λd the Lyapunov exponents of µ, since µ has type (i, k), λi+1 = · · · = λi+k =

0, then for almost every point x and vx ∈ Ec
j,1(x) \ {0} (1≤j≤k), one has lim

n→±∞
1
n log ‖Dfn(x)vx‖ =

λj = 0. Since Ec
i+1,1 ⊕ Ec

i+2,1 is a dominated splitting, there exists l ∈ N and λ < 1 such that

‖Df l(vy)‖/‖vy‖ < λ‖Dlf(wy)‖/‖wy‖ for any y ∈ supp(µ) and vy ∈ Ec
i+1,1(y), wy ∈ Ec

i+2,1(y), then

‖Dfnl(vx)‖ < λn‖vy‖‖Dnlf(wy)‖/‖wy‖

0 = λi+1 = lim
n→±∞

1
nl

log ‖Dfnl(x)vx‖ < lim
n→±∞

1
nl

(n log λ + log ‖Dfnl(x)wx‖) = log λ + λi+2 < 0,

that’s a contradiction.

So µ has type (i, 1), by lemma 3.1, and above argument, supp(µ) admits the following dominated

splitting Tsupp(µ)M = Ecs
i ⊕ Ec

i+1,1 ⊕ Ecu
i+2, using remark 2.1, with the same argument in case (a), the

Lyapunov exponents for µ on bundle Ecs
i are smaller than the Lyapunov exponent for µ on bundle Ec

i+1,1,

and the Lyapunov exponent for µ on bundle Ec
i+1,1 is smaller than the Lyapunov exponents for µ on

bundle Ecu
i+2. Because µ has type (i, 1), the dominated splitting Ecs

i ⊕Ec
i+1,1⊕Ecu

i+2 is also the Oseledets

splitting corresponding to the negative, zero, positive exponents. ¤

4. Proof of theorem 2

Before we give the proof, we need the following lemma whose proof is given in § 4.1, which claims that

with a dominated assumption, the C1 Pesin theory stated in theorem 2 is true. Such idea was at first

given in [1]. Here we cite one of their result (the stable manifold theorem) and add another new property

(similar with Katok’s closing lemma in C2 case).

Lemma 4.1. Suppose f ∈ Diff1(M) and µ a hyperbolic ergodic measure of f with index i, if supp(µ)

admits an i-dominated splitting, then the following properties are true:

a) there exists a compact positive measure subset Λs(resp. Λu) such that every point in Λs (resp.

Λu) has continuous and uniform size of stable (resp. unstable) manifolds,

b) µ is the weak limit of a sequence of invariant measures µn supported by periodic orbits pn with

index i, and supp(µ) is contained in the homoclinic class H(pn, f).

a) was given in [1] at first, we state it here just in order to make the statement complete. b) generalizes

[13]’s result to C1, in the proof of b) we use Liao-Gan shadowing lemma (see [10]) which is similar with

the shadowing lemma in C1+α Pesin theory.

Proof of theorem 2: By lemma 3.1 and proposition 2.2, we know that supp(µ) ⊂ P ∗i (f), and supp(µ)

admits index i dominated splitting, recall that µ has index i, theorem 1 is a simple corollary of lemma

4.1. ¤

It’s easy to see that the following corollary is true:

Corollary 4.2. Suppose f is a diffeomorphism far from tangencies, and C is an aperiodic class of f ,

then any ergodic measure with support on C is not hyperbolic.
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4.1. C1 Pesin theory. In this subsection we’ll give the proof of lemma 4.1. a) of theorem 1 was given

in [1], but for completeness, we still give a proof here.

Proof of a): We just prove the stable manifold theorem, the proof for unstable manifold theorem is

similar. Denote Ecs⊕Ecu the index i dominated splitting on supp(µ), it’s easy to know that the Lyapunov

exponents on bundle Ecs (resp. Ecu) are negative (resp. positive), by sub-ergodic theorem, there exists

λ > 0 such that:

lim
n→∞

∫
1
n

ln ‖Dfn|Ecs(x)‖dµ(x) < −λ < 0,(4.1)

choose N big enough such that
∫

ln ‖DfN |Ecs(x)‖dµ(x) < −λ < 0, from Birkhoff ergodic theorem,

there exists a subset As with µ full measure such that for any x ∈ As one has:

lim
n→∞

1
n

n−1∑

j=0

ln ‖DfN |Ecs(fjN (x))‖ < −λ.(4.2)

Choose 0 < λ0 < λ, denote Λs the set of point y ∈ Λs satisfying 1
n

n−1∑
j=0

ln ‖DfN |Ecs(fjN (y))‖ < −λ0 for

all n > 0. It’s easy to see that Λs is a closed set.

Now we need the following well known Pliss lemma:

Lemma 4.3. (Pliss lemma) For K > 0 and λ < λ1, there exists δ > 0 such that for any sequence

{an} satisfying ‖an‖ < K and lim sup
n→∞

1
n

n∑
j=1

aj < λ, there exist {Nt} and a subsequence {ani} such that

1
m

m∑
j=1

ani+j < λ1 for any m ∈ N and lim inf
t→∞

#{ani
;1<ni≤Nt}
Nt

> δ.

In lemma 4.3 (Pliss lemma), let K = max{‖DfN
x ‖, x ∈ M}, and consider −λ < −λ0 < 0, we get δ > 0

and we’ll show that µ(Λs) > δ/N . The following result is well known.

Lemma 4.4. There exists a µ full measure subset As
0 such that for any x ∈ As

0, we have

lim
n→∞

1
n

n−1∑

j=0

δfj(x)
weaktoplogy−→ µ.

We can suppose As
0 ⊂ As always, for x ∈ As

0, consider {aj = ‖DfN |Ecs(fjN (x))‖}∞j=1 and −λ <

−λ0 < 0, by lemma 4.4,there is a subsequence {Nt}∞t=1 such that lim
t→∞

1
Nt

Nt−1∑
j=0

δfjN (x)(Λs) > δ, since Λs

is compact, µ(Λs) ≥ lim
t→∞

1
NtN

Nt−1∑
j=0

δfjN (x)(Λs) > δ/N > 0.

Now we’ll show that Λs has continuous and uniform size of stable manifolds.

Let I
s,(u)
1 = (−1, 1)i,(n−i) and I

s,(u)
ε = (−ε, ε)i,(n−i), denote by Emb1(Is(u),M) the set of C1-

embedding of I
s(u)
1 on M , recall by [12] that Λ̃ has index i dominated splitting Ẽ ⊕ F̃ implies the

following.

Lemma 4.5. There exist two continuous function Φcs : Λ̃ −→ Emb1(Is,M) and Φcu : Λ̃ −→
Emb1(Iu,M) such that, with W cs

ε (x) = Φcs(x)Is
ε and W cu

ε (x) = Φcu(x)Iu
ε , the following properties

hold:
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a) TxW cs
ε = Ẽ(x) and TxW cu

ε = F̃ (x),

b) For all 0 < ε1 < 1, there exists ε2 such that f(W cs
ε2

(x)) ⊂ W cs
ε1

(f(x)) and f−1(W cu
ε2

(x)) ⊂
W cu

ε1
(f−1(x)).

c) For all 0 < ε < 1, there exists δ > 0 such that if y1, y2 ∈ Λ̃ and d(y1, y2) < δ, then W cs
ε (y1) t

W cu
ε (y2) 6= φ.

The following lemma given by [18] shows that there really exists stable manifolds on Λs which are

continuous and with uniform size.

Lemma 4.6. ([18]) For any 0 < λ < 1, there exists ε > 0 such that for x ∈ Λ̃ which satisfies
n−1∏
j=0

‖DfN1 |Ẽ(fjN1x)‖ ≤ λn for all n > 0, then diam(fn(W cs
ε )) −→ 0, i.e. the central stable manifold

of x with size ε is in fact a stable manifold.

Proof of b): Here we should use a special shadowing lemma given by [10]:

Lemma 4.7. ([10], theorem 1.1): Let f ∈ Diff1(M), assume that Λ is a closed invariant set of f and

there is a continuous invariant splitting TΛM = E ⊕ F on Λ, i.e. Df(Ex) = Ef(x) and Df(Fx) = Ff(x)

for x ∈ Λ. For any λ1 < 1 there exist L > 0, δ0 > 0, N1 such that for any δ < δ0 if we have an orbit

segment (x, f(x), · · · , fnN1(x)) satisfies the following properties:

s−1∏

i=0

‖DfN1 |E(fjN1 (x))‖ ≤ (λ1)s for 0 ≤ s ≤ n− 1,

s−1∏

i=0

‖Df−N1 |E(f(n−j)N1 (x))‖ ≤ (λ1)s for 0 ≤ s ≤ n− 1,

d(x, fnN1(x)) < δ,

then there exists a periodic point p with period nN1 and Lδ-shadows (x, f(x), · · · , fnN1(x)).

Now from the proof of a), there also exists a positive measure subset Λu such that for any x ∈
Λu, lim

n→∞
1
n

n−1∑
j=0

ln ‖Df−N |Ecu(f−jN (x))‖ < −λ0. Since µ is ergodic, there exists n0 such that Λsu =

fn0(Λs)
⋂

Λu has positive measure, now from the proof of a), for any x ∈ Λsu,

1
n

n−1∑

j=0

ln ‖Df−N |Ecu(f−jN (x))‖ < −λ0;
1
n

n−1∑

j=0

ln ‖DfN |Ecs(fjN−n0 (x))‖ < −λ0.

Choose n1 big enough and 0 < λ1 < λ0, for N1 = n1 ·N and any x ∈ Λsu, we have

(4.3)
1
n

n−1∑

j=0

ln ‖DfN1 |Ecs(fjN1 (x))‖ < −λ1;
1
n

n−1∑

j=0

ln ‖Df−N1 |Ecu(f−jN1 (x))‖ < −λ1.

Now we need the following result:

Lemma 4.8. There exists a subset Λ0 ⊂ Λsu, such that µ(Λ0) = µ(Λsu) and for any x ∈ Λ0

(A) x is a recurrent point, i.e. there exists 0 < i1 < i2 < · · · in < · · · such that f inN1(x) ∈ Λsu and

lim
n→∞

d(x, f inN1(x)) −→ 0.
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(B) lim
n→∞

1
inN1

inN1−1∑
i=0

δfi(x) −→ µ.

Remark 4.9. Above lemma can be proved by Poincaré recurrence theorem and Birkhoff ergodic theorem,

it’s also easy to see that for any x ∈ Λ0, supp(µ) ⊂ Orb+(x).

Fix a point x ∈ Λ0, by (A) of lemma 4.8, we can choose in such that d(x, f inN1(x)) ¿ δ1, by

lemma 4.7 and (4.3), there is a periodic point pn with period inN1 which L · d(x, f inN1(x))-shadows

(x, f(x), · · · , f inN1(x)), by (B) of lemma 4.8, lim
n→∞

1
inN1

inN1−1∑
i=0

δfi(pn) −→ µ.

Now we claim that the above family of periodic points {pn} have uniform size of stable and unstable

manifolds.

Proof of the claim: Because supp(µ) admits index i dominated splitting, there is a small neighborhood

U of supp(µ) such that the maximal invariant set Λ̃ of U admits index i dominated splitting also. So

when n big enough, Orb(pn) ∈ U admits index i dominated splitting.

Choose 1 > λ2 > λ1, then there exists a δ0 such that for any two points y1, y2 ∈ Λ̃ and d(y1, y2) <

δ0, one has ln ‖DfN1 |Ecs(y1)‖ − ln ‖DfN1 |Ecs(y2)‖ < λ2 − λ1. Because Orb(pn) L · d(x, f inN1(x))-

shadows (x, f(x), · · · , f inN1(x)), by lim
n→∞

d(x, f inN1(x)) −→ 0 and (4.3), for n big enough, we have
m−1∏
j=0

‖DfN1 |Ẽ(fjN1pn)‖ ≤ λm
2 and

m−1∏
j=0

‖Df−N1 |Ẽ(f−jN1pn)‖ ≤ λm
2 for 0 ≤ m ≤ inN1, since pn is periodic

point with period inN1, we have

(4.4)
m−1∏

j=0

‖DfN1 |Ẽ(fjN1pn)‖ ≤ λm
2 ;

m−1∏

j=0

‖Df−N1 |Ẽ(f−jN1pn)‖ ≤ λm
2 for m ≥ 0

Now by lemma 4.5 and 4.6, pn has uniform size of stable manifold and unstable manifold. ¤

Since pn −→ x, and pn has uniform size of stable and unstable manifold, by (3) of lemma 4.5, when

n,m big enough, W s
loc(pn) t Wu

loc(pm) 6= φ and W s
loc(pn) t Wu

loc(pm) 6= φ, so pn and pm are homoclinic

related. Replace by a subsequence, we can suppose {pn} are all homoclinic related with each other, so

{pn} and x all belong to the same homoclinic class, by remark 4.9, supp(µ) ⊂ Orb+(x), so we get that

supp(µ) and {pn} all belong to the same homoclinic class. ¤

5. C1 Generic Properties

At first let’s state several well known C1 generic properties.

Lemma 5.1. There exists a C1 residual subset R such that for any f ∈ R, the following properties are

right:

1) (Kupka-Smale) all the periodic points are hyperbolic and the intersection between stable manifold

and unstable manifold of periodic points are always transverse,

2) ([5]) suppose C is a chain recurrent class of f , and it contains a periodic point p, then C =

H(p, f),

3) ([5]) suppose Λ is an index i fundamental limit of f , then there exists a family of index i periodic

points {pn} such that lim
n→∞

Orb(pn)
Hausdorff−→ Λ.
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4) ([7]) if C is a homoclinic class contains periodic points with different indexes, then there exists a

non-trivial non-hyperbolic ergodic measure with support in C.

The following result is given by Shaobo Gan, a proof can be found in [22].

Lemma 5.2. f ∈ Diff1(M) and {pn} is a family of index i periodic points of f satisfying lim
n→∞

π(pn) −→
∞, if {pn} is index stable, then there exists a subsequence {pin

} such that pim
and pin

are homoclinic

related for n 6= m.

Corollary 5.3. Suppose f ∈ R, C is a chain recurrent class of f and Λ ⊂ C is an index i fundamental

limit, if C doesn’t contain index i periodic point, then Λ is index i− 1 or i + 1 fundamental limit.

Proof : Suppose C doesn’t contain index i periodic point, then Λ is not an orbit of index i periodic

orbit. By 3) of 5.1, there exists a family of index i periodic points {pn} satisfying lim
n→∞

Orb(pn) = Λ and

lim
n→∞

π(pn) = ∞.

By lemma 5.2, the family of periodic points are not index stable, with the argument in [4], there

exists a subsequence of periodic orbits {Orb(pnj )} and a family of diffeomorphisms gnj

C1

−→ f such that

Orb(pnj
) is index i + 1 or i − 1 periodic points of gnj

. So Λ is also an index i + 1 or i − 1 fundamental

limit. ¤

Lemma 5.4. For f ∈ R, it satisfies Axiom A if and only if every chain recurrent class of f is hyperbolic.

Proof :

¤

6. Proof of theorem 3:

At first we need the following lemma whose proof is given in § 6.1:

Lemma 6.1. There exists a generic subset R in Diff1(M) \HT such that for any f ∈ R and C(f) is

a homoclinic class whose periodic points are all hyperbolic and have an unique index i, then

• either C is a hyperbolic set,

• or there exists a non-hyperbolic ergodic measure µ with supp(µ) ⊂ C.

Proof of theorem 3: Suppose f ∈ R and C is a chain recurrent class of f , we can always suppose C is

not trivial (#(C) = ∞) since if #(C) is finite, by 1) of lemma 5.1, it’s a hyperbolic periodic orbit, and

there is unique invariant measure with support on C and the measure is hyperbolic.

We divide the proof into three cases:

1) C is an aperiodic class;

2) C contains periodic points and all the periodic points in C have the same index;

3) C contains index different periodic point.

In case 1), Corollary 4.2 shows any ergodic measure µ with support on C is not hyperbolic and has

just 1 zero Lyapunov exponent.

In the case 2), lemma 6.1 shows that either C is hyperbolic or there exists a non-hyperbolic ergodic

measure µ with supp(µ) ⊂ C.
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In the case 3), we need the generic property 4) of lemma 5.1 which was proved in [7] shows that there

always exists a non-hyperbolic ergodic measure µ with supp(µ) ⊂ C. ¤

6.1. Proof of lemma 6.1.

Proof : Here we suppose that C is not hyperbolic and all the ergodic measures with support on C are

hyperbolic, we’ll show the contradiction.

Suppose C contains index i (i 6= 0, d) periodic point p, then C ⊂ H(p, f) ⊂ P ∗i , by proposition 2.2, C

has an index i dominated splitting Ecs
i ⊕Ecu

i+1. Since C is not hyperbolic, the splitting is not hyperbolic

splitting, we can suppose the bundle Ecs
i is not hyperbolic, by proposition 2.3, there exists j < i such that

C
⋂

P ∗j 6= φ, it means there exist gn
C1

−→ f and pn index j periodic points of gn such that pn
C1

−→ x ∈ C,

from the definition of chain recurrent class, it’s easy to know that lim sup
n→∞

Orb(pn) ⊂ C and the set is

an index j fundamental limit, denote i0 = min{j : C contains index j fundamental limit}, then we have

C
⋂

P ∗j = φ for j < i0.

Choose Λ0 ⊂ C an index i0 fundamental limit, by proposition 2.2, Λ0 has an index i0 dominated

splitting Ecs
i0
⊕Ecu

i0+1, by proposition 2.3 and the definition of i0, the bundle Ecs
i0

is contracting, we denote

Ecs
i0

by Es
i0

since now. By generic properties in lemma 5.1, there exists a family of index i0 periodic points

{pn} such that lim
n→∞

Orb(pn) −→ Λ0. By lemma 5.3, {pn} cannot be index stable and Λ0 is an index

i0 + 1 fundamental limit also, so Λ ⊂ P ∗i0+1. By proposition 2.2 again, Λ0 has index i0 + 1 dominated

splitting Ecs
i0+1 ⊕ Ecu

i0+2, denote Ec
i0+1,1 = Ecs

i0+1

⋂
Ecu

i0+1, then Λ0 has the following dominated splitting

Es
i0
⊕ Ec

i0+1,1 ⊕ Ecu
i0+2.

Since Λ0 is an index i0 fundamental limit, that means the bundle Ec
i0+1,1 is not contracting, now we

need the following lemma whose proof is easy and we just omit.

Lemma 6.2. suppose Λ is a compact invariant subset of f with dominated splitting E⊕F and the bundle

E(Λ) is not contracting, then there exists a point x ∈ Λ such that ‖Dfn|E(x)‖ ≥ 1 for n ≥ 0.

By the above lemma there exists x ∈ Λ0 such that
n−1∏
i=0

‖Df |Ec
i+1,1(f

i(x))‖ ≥ 1 for n ≥ 0 (since

dim(Ec
i+1,1) = 1), choose a converge subsequence from {

n−1∑
j=0

δfj(x)}∞n=1 and suppose lim
j→∞

n−1∑
j=0

δfj(x) −→ ν0,

then ν0 is an invariant measure with supp(ν0) ⊂ ω(x) ⊂ Λ0 such that
∫
Λ0
‖Df |Ec

i+1,1
‖dν0 ≥ 0. By er-

godic decomposition theorem on Λ0, we can suppose there exists an ergodic measure ν with support on

Λ0 satisfying
∫
Λ0
‖Df |Ec

i0+1,1
‖dν ≥ 0. Denote λ1 ≤ λ2 ≤ · · · ≤ λd the Lyapunov exponents of ν, then

λi0+1 =
∫
Λ0
‖Df |Ec

i0+1,1
‖dν ≥ 0. Recall that we have supposed ν is hyperbolic, so λi0+1 > 0, that means

ν has index smaller than i0 + 1, by f ∈ R ⊂ Diff1(M) \HT and theorem 1, C contains periodic points

with index smaller than i0 + 1. Recall that i0 < i, C contains index different periodic points, that’s a

contradiction. ¤

Appendix

Proof : Suppose the theorem is false, then there is a non-trivial measure and j with i ≤ j ≤ i + k

which don’t satisfy the theorem.
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In the following we’ll get the contradiction by showing that #{negative Lyapunov exponents of µ} >

j ≥ i or #{positive Lyapunov exponents of µ} > d− j ≥ d− (i+k). In order to prove this, we need show

that there is a positive measure subset such that for every point in this subset, on its tangent space, the

tangent map Df is exponentially contracting on a subspace with dimension larger than j or exponentially

expanding on a subspace with dimension larger than d− j.

Lemma 6.3. (Ergodic closing lemma) Suppose µ is an ergodic measure of f , then there exists a family

of diffeomorphisms gn, such that:

1) : gn
C1

−→ f ,

2) : gn has periodic point pn, let µn denote the invariant atom measure on Orbgn
(pn), we have

µn
∗−weak−→ µ.

From Mañé’s ergodic closing lemma, there always exists a family of diffeomorphisms gn
C1

−→ f where

gn has an invariant measure µn supported on periodic orbit pn(gn) and µn
∗−weak−→ µ, suppose the periodic

points’ indices are all the same and strictly bigger than j.

Denote j0 = min
t≥j

{t : exists a family of diffeomorphisms gn
C1

−→ f where gn has an invariant measure µn

supported on index t periodic orbit pn(gn) and µn
∗−weak−→ µ }, then by our assumption, j0 > j. Choose

such a family of diffeomorphisms {gn} which has periodic point {pn(gn)} with index j0 and Orbgn
(pn)

supports an invariant measure µn for gn satisfying µn
∗−weak−→ µ, since µ is not trivial, lim

n→∞
πgn(pn(gn)) −→

∞. Denote Es
j0,n(Orb(pn)) the contracting subspace on Orb(pn) with dimension j0, the family of periodic

linear maps {Dgn|Es
j0,n(Orb(pn))} over Rj0 is called uniformly periodic contracting if there exists ε > 0

such that for any n large enough and any periodic linear map {A1, · · · , Aπpn (gn(pn))} over Rj0 satisfying

‖Aj −Dgn|Es
j0,n(gj−1

n (pn))‖ < ε, we have all the eigenvalues of
πpn∏
j=1

Aj < 1.

Now we’ll show that the above sequence of periodic linear maps {Dgn|Es
j0,n(Orb(pn))} we’ve got is

uniformly periodic contracting. At first, we need the well known Franks lemma:

Lemma 6.4. gn
C1

−→ f , suppose pn is a periodic point of gn, A|Orb(pn) is an ε-perturbation of {Dgn|Orb(pn)},
then for any neighborhood U of Orb(pn), there exists g′n such that g′n ≡ gn on (M \ U)

⋃
Orb(pn),

dC1(gn, g′n) < ε and {Dg′n|orb(pn)} = {A|Orb(pn)}.

As a corollary of Franks lemma, we can show that the family of periodic linear maps is uniformly

periodic contracting:

Corollary 6.5. There exists ε > 0 such that for any periodic linear map {A1, · · · , Aπgn (pn)} over Rj0

satisfying ‖Aj −Dgn|Es
j0,n(gj−1

n (pn))‖ < ε, we have all the eigenvalues of
πpn∏
j=1

Aj < 1.

Proof : If the sequence is not uniformly periodic contracting, there exists εnj
−→ 0 and a sequence of pe-

riodic linear maps {(Anj ,1, · · · , Anj ,πgn
j
(gnj

(pnj
)))}j over Rj0 such that ‖Anj ,k−Dgnj |Es

j0,nj
(gk−1

nj
(pnj

))‖ <

εnj
and one eigenvalue of

πgn
j
(pnj

)∏
k=1

Anj ,k > 1.
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Now we claim that replace by another sequence of periodic linear maps over Rj0 , we can always sup-

pose
πgn

j
(pnj

)∏
k=1

Anj ,k has index j0 − 1.

Proof of the claim: We can choose a new sequence periodic linear map {(Bnj ,1, · · · , Bnj ,πgn
j
(gnj

(pnj
)))}j

over Rj0 such that ‖Bnj ,k−Dgnj
|Es

j0,nj
(gk−1

nj
(pnj

))‖ < εnj
, all the eigenvalues of

πgn
j
(pnj

)∏
k=1

Bnj ,k ≤ 1 except

one real or a couple of complex eigenvalues with norm 1.

If
πgn

j
(pnj

)∏
k=1

Bnj ,k has only one real eigenvalue with norm 1, after small perturbation, we get a new

periodic linear map {(Ãnj ,1, · · · , Ãnj ,πgn
j
(pnj

))}j over Rd such that
πgn

j
(pnj

)∏
k=1

Ãnj ,k has index j0 − 1.

If
πgn

j
(pnj

)∏
k=1

Bnj ,k has a couple of complex eigenvalues with norm 1, lemma 3.7 of [4] shows after small

perturbation, we can let the two complex eigenvalues to be real with norm 1, then by another perturbation,

we get a new periodic linear map {(Ãnj ,1, · · · , Ãnj ,πgn
j
(pnj

))}j over Rd such that
πgn

j
(pnj

)∏
k=1

Ãnj ,k has index

j0 − 1.

By above arguments, we can always get a new sequence of periodic linear maps {(Ãnj ,1, · · · , Ãnj ,πgn
j
(pnj

))}j

over Rj0 which satisfying ‖Ãnj ,k −Dgnj
(gk−1

nj
(pnj

))‖ < 2εnj
and

πgn
j
(pnj

)∏
k=1

Ãnj ,k has index j0 − 1.

Replace the sequence of periodic linear maps {(Anj ,1, · · · , Anj ,πgn
j
(gnj

(pnj
)))}j over Rj0 by the sequence

of periodic linear maps {(Ãnj ,1, · · · , Ãnj ,πgn
j
(pnj

))}j over Rj0 and finished the proof of the claim. ¤

Now use Franks lemma, by εnj
perturbation, we can get a new diffeomorphism g′nj

such that

Orbgnj
(pnj

(gnj
)) is an index j0 − 1 periodic orbit of g′nj

, that’s a contradiction with the definition of j0.

¤

For such kind of uniformly contracting periodic linear maps, [14] gave the following lemma:

Lemma 6.6. ([14] Lemma II.4): gn
C1−→ f , suppose pn is index j0 periodic point of gn and lim

n→∞
πgn

(pn) −→
∞. If the sequence of periodic linear maps {Dgn|Es

j0,n(Orb(pn))} is uniformly periodic contracting, then

there exist l > 0, N0 > 0 and λ < 1 such that for any periodic orbit pn with period π(pn) > N0, we have

(6.1)
[

π(pn)
l ]∏

i=0

‖Dgl|Es
j0,n(gil

n (pn))‖ < λ[
π(pn)

l ].

Remark 6.7. Under the same assumption with lemma 6.6, and l > 0, N0 > 0, λ < 1 given there, for

any periodic orbit pn with period π(pn) > N0 and any k > 0, we have

(6.2)
k[

π(pn)
l ]∏

i=0

‖Dgl|Es
j0,n(gil

n (pn))‖ < λk[
π(pn)

l ].

That’s because we can consider the new sequence of periodic linear maps

{(Dgn|Es
j0,n(Orb(pn))); (Dgn|Es

j0,n(Orb(gn(pn)))); · · · ; (Dgn|Es
j0,n(Orb(g

π(pn)−1
n (pn)))

)}.
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Then (6.1) is true for g
k·l·[ π(pn)

l ](pn)
n where k > 0.

For the uniformly contracting periodic linear maps {Dgn|Es
j0,n(Orb(pn))}, remark 6.6 gives parameters

l > 0, N0 > 0 and λ < 1, choose λ < λ0 < 1, by (6.2) and lemma 4.3 (Pliss lemma), with the fact

lim
n→∞

1
n

n−1∑
j=0

δgj
n(pn) −→ µn where µn is the ergodic measure on Orbgn

(pn), if denote Λn = {y ∈ Orb(pn) :

m∏
i=0

‖Dgl
n|Es

n,j0
(gil

n (y))‖ < λm
0 }, then for π(pn) big enough, there exists a uniformly number δ > 0, such

that µn(Λn) > δ.

Proposition 6.8. Suppose X is a compact metric space, denote CX = {K : K is compact subset of X},
the space CX with Hausdorff topology is still a compact space.

Since Λn is compact, with proposition 6.8, there is a compact set Λ such that lim
n→∞

Λn −→ Λ. It’s

easy to know that µ(Λ) > δ and for every point y ∈ Λ, there exists a j0 dimension space Ej0(y) in it’s

tangent space such that
m∏

i=0

‖Dgl
n|Ej0 (fil(y))‖ < λm

0 for m ≥ 0, so every point in Λ has at least j0 number

of negative Lyapunov exponents. Since the measure µ is ergodic and Λ has positive measure, µ has at

least j0 number of negative Lyapunov exponents. That’s a contradiction, since µ has just i number of

negative Lyapunov exponents and i ≤ j < j0. ¤
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