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Morita equivalence and characteristic classes of star products
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Belatedly to Giovanni Felder and Boris Tsygan on the occasion of their 50th birthday.

Abstract

This paper deals with two aspects of the theory of characteristic classes of star products:
first, on an arbitrary Poisson manifold, we describe Morita equivalent star products in terms of
their Kontsevich classes; second, on symplectic manifolds, we describe the relationship between
Kontsevich’s and Fedosov’s characteristic classes of star products.
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1 Introduction

Given a smooth real manifold M, consider the set FPoiss(M) of equivalence classes of formal
Poisson structures m = hmy + h?mg + ... € D(A2TM)[[h]] on M, and let Def(M) denote the set of
equivalence classes of star products x on M. The celebrated Kontsevich’s formality theorem [46] [47]
provides a bijective correspondence

K. : FPoiss(M) — Def(M), (1.1)

in such a way that if # = hmy + ... and * are related by K, then * is a deformation quantization,
in the sense of [I], of the ordinary Poisson structure 7;. In particular, any star product on M can
be assigned to an equivalence class of a formal Poisson structure via (I.1]), called the Kontsevich
characteristic class or simply the Kontsevich class of the star product.

For a given star product, finding the associated Kontsevich class is often a hard problem, to
which no effective solution is currently available. There are two main approaches to tackle this
problem: the first one makes use of algebraic index theorems, see e.g. [11], 12} 21, 28] 29 [50], while
the second is based on homological algebra arguments, such as the duality between Hochschild
cohomology and homology [10} 17, 26, [30, 37, 58].

The first goal of the present paper is to describe the Kontsevich classes of Morita equivalent
star-product algebras on a smooth real manifold M (in this paper, star products are defined on
the algebra of compler-valued smooth functions on M). As shown in [4, [6], two star products
on M are Morita equivalent if and only if they lie in the same orbit of a canonical action of the
group Diff (M) x Pic(M) on the moduli space Def (M) of equivalence classes of star products; here
Diff (M) denotes the group of diffeomorphisms of M, and Pic(M) =2 H?(M,Z) is the Picard group,
i.e., the group of isomorphism classes of complex line bundles over M. The action of Diff (M) on
star products is the natural one by pull-back, while the action of Pic(M) on Def(M) is defined in
a less obvious way [4]. Hence the problem of expressing Morita equivalent star products in terms
of their Kontsevich classes amounts to describing the action of Diff (M) x Pic(M) on the moduli
space of formal Poisson structures FPoiss(M) making the map K, in (L)) equivariant.

The group Diff (M) naturally acts on formal Poisson structures, and it follows from [20] [47] that
the map (L) is Diff (M )-equivariant; so in order to describe Morita equivalent star products one
only needs to focus on the action of the Picard group Pic(M). A key observation is that the set
of formal Poisson structures on M carries a natural action of the abelian group of closed (C[[h]]-
valued) 2-forms, defined by a formal version of the gauge transformations of [55], Sec. 3] (also known
as B-field transforms in the context of generalized complex geometry [39] 42]); moreover, we prove
that this action naturally descends to an action of the abelian group H?(M,C)[[h]] on the moduli
space FPoiss(M). Our first main result is Theorem B.I1] which asserts that two star products are
related by the action of a line bundle L, representing an element in Pic(M), if and only if their
classes in FPoiss(M) are connected by the action of the element 27icy (L), where ¢; (L) is the Chern
class of L. For a further discussion relating this result to Morita equivalence of Poisson manifolds,
we refer to [§].

Morita equivalent star products have been also considered in the physics literature in the context
of noncommutative gauge theory [43] [44] [54]. The essence of the statement of our Theorem [B.1T]
may be found in these works, as well as ideas concerning its proof; here we provide a complete
proof of this result based on the explicit globalization of Kontsevich’s formality quasi-isomorphism
constructed in [18, 20, [47] and some general facts about formal differential equations.

On a symplectic manifold (M, w), equivalence classes of star products quantizing the associated
non-degenerate Poisson bracket are classified by their Fedosov classes, which are elements in

L] + (M, ©) ], (12)



see, e.g., [3| 16l 15, 27, 28], 50, 51]. Hence to each star product * on (M,w) one may assign either
its Kontsevich class, defined by the class of a formal Poisson structure = = hm; + ..., where m
is the Poisson bivector field defined by the symplectic form w, or its Fedosov class in (I.2]). The
nondegeneracy of 71 implies that the series m = hmy; + ... can be formally inverted to a series
of closed 2-forms, defining an element in ([.2]), and the fact that this element agrees with the
Fedosov class of the star product % has been conjectured by A. Chervov and L. Rybnikov in [13]
Conjecture 4]. In this paper, we prove this conjecture, which allows us to recover the description of
Morita equivalent star products on symplectic manifolds of [7] as a particular case of our Theorem
BI1l The proof of this conjecture about the relationship between Fedosov’s and Kontsevich’s classes
in Theorem 4] also partially closes the project mentioned in item 1) of [46, Section 0.2].

We remark that the construction of the map K, in (LI]) involves choices. We prove in Theo-
rem [2.6] that the definition of the Kontsevich classes of star products does not depend on the choices
made in the globalization procedure of [20]. This definition may depend, however, on the specific
choice of formality quasi-isomorphism between polyvector fields and polydifferential operators on
R?. In this paper, we tacitly assume that the formality quasi-isomorphism on R is the one con-
structed by M. Kontsevich in [46] with the angle function defined via hyperbolic geometry of the
Lobachevsky plane.

Finally, we point out that there is an alternative construction of global star products in [9],
which we believe can also be used to study Morita equivalence as well as to relate Fedosov’s and
Kontsevich’s classes of star products on symplectic manifolds.

Let us briefly describe the organization of the paper.

In Section 2 we recall Fedosov’s resolutions and the globalization of Kontsevich’s formality
quasi-isomorphism [20], 18], which we use to define the Kontsevich classes of star products. We
verify in Theorem [2.6] (whose proof is deferred to Appendix[C)) that the definition of the Kontsevich
classes is independent of the choices made in the globalization procedure.

Section B is devoted to the description of the Kontsevich classes of Morita equivalent star
products. The key step consists in verifying that the map K, in (I.I]) satisfies an equivariance
property with respect to appropriate actions of the Picard group, as explained in Theorem B.111

In Section ] we describe the relationship between Fedosov’s and Kontsevich’s classes of star
products on symplectic manifolds. The main result of this section is formulated in Theorem 4.1}, and
its proof is divided into several parts. First, we introduce a modification of Fedosov’s construction
[27]. Second, we describe a version of the Emmrich-Weinstein connection [25], which is then used
to show that Kontsevich star products are equivalent to the star products constructed using the
modified Fedosov construction. Finally, we show that the original Fedosov star products coincide
with the star products obtained using the modified Fedosov construction.

In the end of the paper, Appendix [Al collects the necessary facts about formal differential
equations, Appendix [B] recalls some key facts about DGLAs, Maurer-Cartan elements and L -
morphisms. Finally, Appendix [( contains the somewhat technical proof of Theorem
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1.1 Notation and conventions

Throughout this paper M is a smooth real manifold, Oy is the sheaf of smooth complex-valued
functions on M, and O(M) is the algebra of its global sections. The algebra of smooth complex-
valued polyvector fields is denoted by X*(M); it is equipped with the Schouten-Nijenhuis bracket
[, ]sv, which is a degree 0 Lie bracket for the shifted grading X**!(M). The space of complex-
valued differentiable forms is denoted by Q°(M). For a sheaf of Op/-modules G and an open subset
U C M, we denote by I'(U,G) the vector space of global sections of G and by O(U) the algebra
of smooth complex-valued functions on U . Furthermore, we denote by Q°*(U, G) the graded vector
space of exterior forms on U with values in G.

For a vector v in a graded vector space or a cochain complex V', its degree is denoted by |v].
By the suspension sV of a graded vector space (or a cochain complex) V we mean ¢ ® V, where
¢ is a one-dimensional vector space placed in degree +1. The desuspension s~V is the inverse
operation. Throughout this paper we use the Koszul rule of signs. If V is a graded vector space,
we denote its symmetric algebra by S(V), whereas S*(V) is the k-th component of this algebra.

For a unital associative algebra A, we denote by C*®(A) the (normalized) Hochschild cochain
complex of A with coefficients in A,

C*(A) = Hom((A/C1)*, A). (1.3)
The coboundary operator 1°" on (3] is given by

(8H°°hP)(a0,a1, ..,a) =agP(ay,...,ar) — P(apay,...,ax)+
P(ao, aiaz,as,. .. ,ak) — e+ (—1)kP(a0, e, Qk—2, ak_lak)—i— (1.4)

(=" P(ag, . .., ar—a, ax—1)ax,
where P € C*(A) and a; € A. In particular, for a degree-zero cochain P € CY(A) = A, we have
(8H0Chp)(a0) = qyg P— Pao . (15)

The Hochschild cochain complex with the shifted grading C*T!(A) carries the structure of a
differential graded Lie algebra (or DGLA for short). The differential is exactly the Hochschild
coboundary operator 9*1°? () and the Lie bracket is the well-known Gerstenhaber bracket] [33],

k1

[Qb Q2]G = Z(_l)(i+kl)k2Ql(a07 cee aQQ(aiy cee aai-i-kz)v cee aak1+k2) - (_1)k1k2(1 — 2) 3 (16)

1=0

where Q; € C**1(A), and a; € A.

As usual in this subject, we use adapted versions of Hochschild (co)chains for the algebra O(M);
we denote by C*(Oys) the proper subcomplex of polydifferential operators in the full Hochschild
cochain complex of O(M).

In this paper every DGLA (L,d,[, |z) is equipped with a complete descending filtration

e DFAOF LA Lo F LD ..., L=limL/FL. (1.7)

In most cases this filtration will be bounded from the left. We will often use a formal deformation
parameter i to obtain a complete descending filtration on £. For example, extending the field of
scalars C to the ring C[[A]] of formal power series, we obtain from the DGLA C**1(A) (resp. the

!Note that our sign convention for the Gerstenhaber bracket differs from the standard one.



graded Lie algebra X**1(M)) the DGLA C**'(A)[[A]] (resp. the graded Lie algebra X**1(M)[[R]]);
the descending filtrations are

FRCHH A [A] = nEC U A)R), FEXSTH )[R = REX T (a0)([1]).

We assume that every morphism « : £ — L of two such DGLAs is compatible with the filtrations.
In addition, every quasi-isomorphism & : £ = L is assumed to satisfy the following:

Condition 1.1 The restriction of a quasi-isomorphism k to each filtration subcomplex F™L®

K L FLS - L
f’mﬁo

1S a quasi-isomorphism.

We will also need L, morphisms and L, quasi-isomorphisms of DGLAs. We recall them in
Appendix [Bl see Definitions and [B.3l For L., morphisms or L., quasi-isomorphisms between
DGLASs, we reserve the arrow =—.

2 Global formality and star products

2.1 Fedosov’s resolutions

We now briefly recall Fedosov’s resolutions (see [I8, Chapter 4]) of polyvector fields, and Hochschild
cochains of O(M). This construction has various incarnations, and it is referred to as the Gelfand-
Fuchs trick [31]], or formal geometry [32] in the sense of Gelfand and Kazhdan, or mixed resolutions
[61] of Yekutieli.

We denote by ! local coordinates on M and by ¥’ fiber coordinates in the tangent bundle TM.
We denote by SM the formally completed symmetric algebra of the cotangent bundle T*M. We
regard SM as a sheaf of algebras over Oj;, whose sections can be viewed as formal power series in
tangent coordinates 3. In particular, C*(SM) is the sheaf of normalized Hochschild cochains of
SM over Oy;. Namely, sections of C*(SM) over an open subset U C M are O(U)-linear mapﬂ

P:T(USM)®* - (U SM), (2.1)
which are continuous in the y-adic topology on I'(U,SM) and satisfy the normalization condition
P(...,1,...)=0. (2.2)

We let ’];)'Oly be the sheaf of fiberwise polyvector fields, which is the cohomology of the complex of
sheaves C'*(SM) (see [I8, page 60]). The grading convention for 7., coincides with the one for
X*(M).
It is shown in [I8, Theorem 4] that the algebra Q°*(M,SM) can be equipped with a differential
of the form
D=V -§+A, (2.3)

where

V= da:iii — da'T(z)y’ 0 (2.4)

O yk

2The sheaf C*(SM) is the y-adic completion of the sheaf Dy, of fiberwise polydifferential operators. It is the
latter sheaf that was used in [18] (see Definition 12 on page 60), and it is not hard to see that the sheaf D}, can be

poly
replaced by its completion C'*(SM) in all the constructions of [18].



is a torsion free connection with Christoffel symbols I‘fj (z),

; 0

6= .
oyt’

and

i i 0
A= dekAfm @yt pa—yj € QNT,,) - (2.6)

Remark 2.1 Although the construction of the differential (2.3)) is very similar to the construction
of the Fedosov differential in [27], they are not be confused; we refer to the differential (2.3]) as a
geometric Fedosov differential while the original Fedosov differential is referred to as a quantum
Fedosov differential.

Note that ¢ in (Z3]) is also a differential on Q°*(M,SM), and (Z.3]) can be viewed as a deformation
of § via the connection V. Let us recall from [I§] the following operator on Q*(M,SM):

§ 5

1
dt
V'3 /a T ty,td:z:) , ifa e QPO9(M,SM),
0

6 (a) = (2.7)

0, otherwise .

The arrow over 0 in (2.7]) means that we use the left derivative with respect to the “anti-commuting”
variable da*. The operator ([Z.7)) satisfies the following properties:

5—1 o 5—1 — 07 (28)
a=oc(a)+65a+ 6 6a, VacQ(M,SM), (2.9)

where
ola) =al i’ (2.10)

Remark 2.2 Following [I8, Chapter 4], we extend the operators 6, 6! and o to Q®*(M, T vyy) and
Q*(M,C*(SM)) so that ([229) holds also for all @ € Q*(M, 7T, ), and for all a € Q*(M,C*(SM)).

’ “poly/?
According to [18, Prop. 10] the sheaves 73, and C*(SM) are equipped with a canonical action
of the sheaf of Lie algebras 7 ol and this action is compatible with the corresponding DGLA

structures. Using this action in [18 Chp. 4], the Fedosov differential (2.3)) is extended to differentials

on Q°(M,T5,,) and Q°(M,C*(SM)). Propositions 13 and 14 in [I8] provide us with a quasi-

isomorphism from the graded Lie algebra X**1(M) to the DGLA
(Q°(M, Tt ), D, [, Jsn), (2.11)
and a quasi-isomorphism from the DGLA C*T1(Oy;) to the DGLA
(Q*(M, C*THSM)), D 4 91N [ ]5). (2.12)

To construct these quasi-isomorphisms we recall that the restriction of the map ¢ (2.10) to the
subspace of D-flat sections I'(M,SM) Nker D gives a bijection

I'(M,SM)Nker D — O(M) (2.13)



onto the algebra of functions O(M). The inverse map
T7:0OM)—T(M,SM)Nker D (2.14)
is defined by iterating the equation

T(f)=f+0 (Vr(f) +A-7(f),  feO), (2.15)

in degrees in the fiber coordinates y’s.
One may verify that the map 7 satisfies

Z?jil ajip 7(f) o Oyiy - . Oyip f(x) + lower order derivatives of f. (2.16)

To proceed further, we need the subspace
Ds(M,C*THSM)) = T'(M,C*™ (SM)) Nker § (2.17)

of §-flat cochains of the sheaf SM . This subspace consists of Oy-linear polydifferential operators
on SM whose coefficients do not depend on the fiber coordinates y’s. The graded vector space
[s(M,C*T(SM)) is, in fact, isomorphic to the subspace

(M,C*T(SM)) Nker D
of D-flat sections of C**1(SM). The corresponding isomorphism,
0:Ts(M,C* T (SM)) = T'(M, C*tH(SM)) Nker D, (2.18)
is defined by iterating the equation
o(P)=P+6 1 (Vo(P) +[A 0(P)le), P eTs(M,C*H(SM)) (2.19)

in degrees in the fiber coordinates y’s.
On the other hand, using 7 (2.14]) we construct the map

v:Ts(M,C**H(SM)) — C**(Own), (2.20)

v(P)(ag,a1,...,ax) = P(1(ag),7(a1),...,7(ax)) 4o’

for a; € O(M) and P € T's(M,C*1(SM)). Due to property (ZI6)), the map v is also an isomor-
phism of graded vector spaces.
Composing o with v~1, we get the isomorphism

Text = 00 v~ 1 C*TH(On) — T'(M, C*tH(SM)) Nker D, (2.21)
as well as the following embedding (for which we keep the same notation):
Text = T oV L C*THOY) — Q°(M, C*T(SM)). (2.22)

Restricting (Z21) and ([222) to the graded Lie algebra X**t1(M) of polyvector fields, we get the
isomorphism

Text + X*TH(M) = T(M, T3 1) Nker D (2.23)
and the embedding (for the both maps we keep the same notation 7oy )
Text : X*TH (M) — QN(M, T 1) (2.24)



respectively. According to [I8, Chapter 4] both maps ([2:22]) and (2.24]) are compatible with the
corresponding DGLA structures. Furthermore, the acyclicity of D in positive exterior degrees
implies that the maps (222]) and (2.24]) are quasi-isomorphisms.

To simplify our notation, we shall denote all three maps (2.14]), (2:22)), and ([2:24]) simply by 7,
avoiding the notation 7.y henceforth. This simplification does not lead to confusion because the
restriction of 7oy (2.22)) to

O(M) = CY(Op) = XO(M)

coincides with 7.

2.2 A sequence of quasi-isomorphisms between X**1(M) and C*™1(Oy)

We now outline the construction of a sequence of quasi-isomorphisms between the DGLAs X*+1 (M)
and C*T1(Oy;). The construction makes use of Kontsevich’s L.-quasi-isomorphism [46] K from
the DGLA X**1(R?) of polyvector fields on R to the DGLA C**1(Oga) of Hochschild cochains of
Oga (see Remark 2.7)). Let us list some key properties of the structure maps

®n
K, (X’+1(Rd)> S O Opa)[Ll —n], n>1 (2.25)
of this L..-quasi-isomorphism K:

P1K,(..,v,7%,...) = —(=D)MI2lK, (... 49,71,...), where || is the degree of ; in the
vector space X*T1(R?) with the shifted grading.

P 2 The map K; : X*T1(RY) — C*+1(Oga) coincides with the canonical embedding of the space
of polyvectors into the space of polydifferential operators.

P 3 The maps K, are gl; equivariant.

P4 K,(v,...) =0if n > 2 and v is a vector field which depends linearly on the coordinates of
R¢.

P 5 If v, vy,...,v, are vector fields and n > 2 then K, (vi,...,v,) =0.

P 6 For every n > 2 we have K,(...,c) = 0 if ¢ is a constant viewed as a degree-zero polyvector
field ¢ € XO(RY) = O(RY).

Properties P 11— P [ allow us to construct an L..-quasi-isomorphism

K" (QT*H, D, [, lsn) =— (Q*(C*THSM)), D + 81 [ 1) (2.26)

poly

as follows. For every coordinate neighborhood U the part

. 9
ud = —ala:llji-‘tj(a:)y]a—y,C -0+ A (2.27)

of the geometric Fedosov differential (2.3]) may be viewed as a Maurer-Cartan element of the DGLA

(Q.(U7 7;-0.0—;;/1)7 d7 [7 ]SN)a

where d is the de Rham differential. Kontsevich’s L, quasi-isomorphism [46] for R? may be viewed
as an Lo, quasi-isomorphism

K (QU, T, d, [, Jsw) == (U, C*TH(SM)), d + 0", [, ]a). (2.28)



Using this Ly, quasi-isomorphism and equation (B.I7) from Appendix[Bl we can send the Maurer-
Cartan element N%]) to the Maurer-Cartan element

of the DGLA (Q*(U,C*TY(SM)),d + oMo [, |g) . Properties P Bland P [l imply that

MU?MUa"'aug)

3|}—t

— 1
ZHKTL MU7M57’M5) :Mg

n=1

Therefore, twisting K by the Maurer-Cartan element ,ug (see Appendix [B]) we get an Lo, quasi-
isomorphism

KM« (Q*(U, Tt 1), D1, Jsn) == (Q°(U,C*TH(SM)), D + 0", [, ]g). (2.29)

Properties P Bl and P M imply that K G does not depend on the choice of trivialization of the
tangent bundle TM over U. Hence we get an Lo, quasi-isomorphism (2.20]) by setting

D
K:Lw(717727 s 7'7n) U = K;LLU (717'727 s 7'7n) . (230)

Combining K™ with the maps (2.22) and (2.24]), we obtain a sequence of quasi-isomorphisms
Ktw -
XN M) = QM T ) == QN(M,C*HH(SM)) «— C*TH(Ow). (2.31)

Using [19, Lemma 1], we can reduce the sequence (2.31]) to a single Lo, quasi-isomorphism
K:x (M) =— Cc*(0n) (2.32)

between the DGLAs X**1(M) and C**1(O)). More precisely, in [I8, Chapter 4, Eq. (4.36)] a
chain homotopy is constructed which contracts the complex (Q*(M,C*t(SM)), D + 9Hoh) to its
sub-DGLA

(D(M, C*tH(SM)) Nker D, 0% [ ]q). (2.33)

Using this chain homotopy and [19] Lemma 1], one constructs an L, quasi-isomorphism
K: XY M) =— (Q°(M,C* H(SM)), D + 8" [ 15) (2.34)

satisfying two properties: first, all the structure maps /En of K take values in the sub-DGLA 233);
second, K is homotopy equivalent to the composition

Ktw oT . X.+1(M) - (Q.(Mv C.+1(‘SM))7D +8H0Ch7 [7 ]G) :

Composing K with the inverse of the isomorphism ([2.21]) we get the desired Lo, quasi-isomorphism
K 232)). Going through details of this construction and using the fact that the structure maps
([2:25) land in normalized Hochschild cochains, one verifies the following;:

Proposition 2.3 For every constant c, viewed as a degree zero polyvector field ¢ € X°(M) =
O(M), we have
Ki(c)=¢, and Kp(...,c)=0, Vn>2.



Remark 2.4 From now on we extend the field of scalars C to the ring C[[%]] in all our constructions.
In other words, we replace the DGLAs X*+1(M), Q°*(M, ’Z;)'Ofyl), Q*(M,C*TH(SM)), and C*T1(Oyy)
in (2.31)) with

X OR), QXM Ty IR, QM CHHSM)([A]], T Om)([A], (2.35)

’ “poly
respectively. We also replace the connection form I" in (2.4]) by a general formal Taylor power series
in A
Pﬁ:P0+hP1+h2P2+...,

where 'y is an ordinary torsion free connection form and I'y, I'o, ... are global sections of TM ®
S%(T*M) . Finally, we allow A (2.6) to have the more general form:

A= i dz*nr A7 (x)yil...yipa%eszl(M,Tl IA] (2.36)

riki1...ip poly
p=2,r=0

It is not hard to see that the constructions described in Subsection 1] and in this subsection can
be generalized to this setting. Furthermore, the resulting Lo, quasi-isomorphisms (2.31]) connecting
the DGLAs in (235]) agree with the h-adic filtration and satisfy Condition [T

Remark 2.5 We will need the following complete descending filtration on the sheaf of algebras
SM][[h]] (see Appendix [C]):

SM([R]] = FOSMI[[h)] > F'SM([h]] > FASMI[R]] D ..., (2.37)

where local sections of F™SM|[[h]] are the series

a= Z R apiy (@) Yy oyt
2k+1>m

2.3 Star products and their equivalence classes

A star product [Il, 2] on a manifold M is a C[[A]]-linear associative product on O(M)[[A]] of the
form

frg="rfg+> RIL(f.9), (2:38)
k=1

where f,g € O(M)[[h]] and 1T, € C%(Oyy), i.e., II;, are normalized bidifferential operators. Because
we deal with normalized Hochschild cochains (L3, star products satisfy

Fal=1xf=f. (2.39)

Since f x g = fg mod A, star products should be viewed as an associative (but not necessarily
commutative) formal deformation of the ordinary product of functions on M.

Two star products * and *' are equivalent if there exist (normalized) differential operators
T;: OM) — O(M), i =1,2,..., so that the formal series T' = id + ATy + h*T, + ... intertwines
the star products,

T(f +g) = T(f) + T(g). (2.40)

We denote the set of equivalence classes of star products on M by Def(M).
The associativity property of a star product ([2:38]) can be equivalently expressed as the Maurer-
Cartan equation

1
o | e =0
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for the formal series of bidifferential operators IT := >3 | A*Il;, € C?*(Op)[[A]]. Thus Maurer-
Cartan elements of the DGLA C*T1(Oy)[[h]] (see Appendix [B) are exactly the star products on
M. Furthermore, one can verify that equivalent Maurer-Cartan elements of C**(Oy)[[h]] (in the
sense of (B.4) correspond to equivalent star products.

Maurer-Cartan elements in X***(M)[[h]] are formal series of bivector fields in £,

7 = hry + hme + -+ € h X2 (M)[[1]] (2.41)

satisfying the equation
[, 7]sny = 0. (2.42)

We refer to Maurer-Cartan elements in X**1(M)[[R]] as formal Poisson structures, by analogy with
the usual definition of Poisson structures in geometry (cf. [23],[48] [60]); further properties of formal
Poisson structures are discussed in Section

As recalled in Appendix [Bl the prounipotent group of formal diffeomorphisms,

S(X*FH(M)[[R)]) = exp (hX (M)[[R]]) , (2.43)
acts on Maurer-Cartan elements of X**!(M)[[A]] according to

7PX) — exp([-, X]gn ), (2.44)
where X € hXY(M)[[h]]. Two formal Poisson structures 7 and 7 are said to be equivalent if they lie
in the same orbit of this action. We denote the set of equivalence classes of formal Poisson structures
by@ FPoiss(M). The equivalence class of a star product * and of a formal Poisson structure 7 will
be denoted by

[] € Def(M) and [r] € FPoiss(M),

respectively.
The Lo quasi-isomorphism K in ([2.32]) establishes, according to (B.17), a correspondence be-
tween formal Poisson structures and star products on M,

mo kg, where frxg=fg+ Y Kalmm,...,7)(f,9), (2.46)

n=1

for f,g € O(M)[[h]]. We refer to xx as the Kontsevich star product associated with w. By
Proposition [B.4] the correspondence (2.46]) induces a bijection

K. : FPoiss — Def (M), (2.47)

associating to each equivalence class of formal Poisson structures an equivalence class of star prod-
ucts. We call the class [r] = K;!([#]) in FPoiss Kontsevich’s class of the star product .

Regarding the choices involved in the definition of Kontsevich’s classes, we first observe that the
bijection /C, agrees with the bijection induced by the sequence of Lo, quasi-isomorphisms (2.37);
indeed, the fact that shortening the sequence (Z31)) using [19, Lemma 1] does not change the
correspondence between equivalence classes of Maurer-Cartan elements follows from Lemma [B.5]in
Appendix[Bl On the other hand, as discussed in Section 2.2 the middle L., quasi-isomorphism in
the sequence (2.31]) requires the choice of a Fedosov differential (2.3]). As shown by the next result,
this choice does not affect the Kontsevich class of a star product.

3In the notation of Appendix [B]

Def (M) = mo(MC(C* ™ (Oa)[[1]])), FPoiss(M) = mo(MC(X* T (M)[[R]])). (2.45)
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Theorem 2.6 The map K, in [2:47) does not depend on the choice of the Fedosov differential.
The proof of Theorem is in Appendix [Cl

Remark 2.7 We note that the constructions in Section (and hence the notion of Kontsevich’s
class) are based on Kontsevich’s Lo, quasi-isomorphism K [46] from X**1(R?) to C*T!(Oga), which
is fixed throughout this paper. It is known [45] that there are other L, quasi-isomorphisms from
X*TH(RY) to C**1(Oga) which are not homotopy equivalent to K; In fact, Tamarkin’s proof [22,
41, 57) of Kontsevich’s formality theorem indicates that homotopy equivalence classes of such L,
quasi-isomorphisms are acted upon by the Grothendieck-Teichmiiller group introduced by Drinfeld
in [24].

3 The characteristic classes of Morita equivalent star products

Two unital rings are called Morita equivalent if they have equivalent categories of modules [49].
We view star-product algebras on a manifold M as unital algebras over the ground ring C[[A]]
and consider the problem of describing their Morita equivalence classes. Following [4l, [6], this
classification is given by the orbits of a canonical action of Diff (M) x Pic(M) on the space Def(M).
Here Diff(M) is the group of diffeomorphisms of M, and Pic(M) = H?(M,7Z) is its Picard group,
i.e., the group of isomorphism classes of complex line bundles over M; Diff (M) x Pic(M) is the
semi-direct product group with respect to the action of Diff (M) on Pic(M) by pull-back. We will
briefly recall how this action is defined, and then give its explicit description in terms of Kontsevich’s
classes.

3.1 An action of the Picard group on star products
Given a diffeomorphism ¢ : M — M and a star product *, we obtain a new star product x,,
Freg= ()" (" f*g),
where f,g € O(M), and this induces an action
Diff (M) x Def(M) — Def(M), (¢, [¥]) — [*,]. (3.1)

It is known [40] that every isomorphism between two star-product algebras on M is a composition
of an equivalence (Z40]) with an element in Diff (M) (viewed as an automorphism of O(M) via
pull-back). This gives a simple interpretation of the action ([B.I]): the classes of * and *" in Def (M)
are in the same Diff (M )-orbit if and only if the two star-product algebras are isomorphic.

The space Def (M) also carries a natural action of Pic(M) [4]. Given a complex line bundle L —
M, we view I'(M, L) as a right module over O(M). We denote by End(I'(M, L)) = I'(M,End(L))
the algebra of endomorphisms of this module, noticing that there is a canonical identification

End(T(M, L)) = O(M). (3.2)

As shown in [5], for a given star product * on M, there is a unique way (up to equivalence) of
deforming this module structure to make I'(M, L)[[A]] a right module over the star-product algebra
(O(M)[[R]],*). For s e (M, L), f € O(M) we denote the deformed module structure by

se f=sf mod h,

and write End(I'(M, L)[[A]], ®) for the algebra of endomorphisms of this module. One can always
find an identification of O(M)[[Rh]] with End(I'(M, L)[[]], ®) as C[[h]]-modules, in such a way that
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for h = 0 one recovers the natural identification (3.2)). As a consequence, we obtain a star product
*" on M for which
(O(M)[[A]], ") 2= End(T (M, L)[[]], o) (3.3)

is an isomorphism of C[[h]]-algebras deforming (3.2]). This construction defines an action
® : Pic(M) x Def(M) — Def(M), (L,[*]) — ®L([*]) = [¥], (3.4)

where *' is characterized, up to equivalence, by (B.3]).

The actions (B.1) and (84]) provide a convenient characterization of Morita equivalence for star
products [4]: Two star products * and %’ on M are Morita equivalent if and only if their classes in
Def(M) are related by the actions [B.I)) and (34, i.e., [«'] = ®1([*,]) for some line bundle L and
diffeomorphism .

It will be useful to describe the action (B.4]) in terms of transition functions. Let us consider
a star product #, a line bundle L — M, and a deformed right-module structure e on I'(M, L)[[A]]
over (O(M)[[h]],*). Let {U,} be a cover of M by contractible open subsets. We can define
local O(U,)-linear trivialization isomorphisms 1, : I'(Uy, L) — O(U,) and transition functions
gap € O(Uy NUg) such that wa(wﬁ_l)(f)(m) = gap(z) f(z), which satisfy goé_ﬁ1 = gpo and, on triple
intersections, the cocycle condition

9aB98v9va = 1.

As shown in [7], one can always find C|[[h]]-linear deformed trivialization isomorphisms ¥, =
o mod h: T'(U,, L)[[R]] — O(U,)[[h]] satistying

Va(se f)=Wals)* f,
and define deformed transition functions Gog = gos + mod h € O(U, N Up)[[h]] such that
Vo (s) = Gapg * Va(s).
Since 1 is the unit for = (see (2.39)), it is clear that
Goa =1, Gap*xGpa =1, Gop*GpyxGyq =1 (3.5)
Let us consider a C[[A]]-algebra isomorphism
T : (O(M)[[R]], ") — End(I'(M, L)[[h]] ®),

coinciding with ([B.2) at the classical limit 2 = 0. The isomorphism 7" is totally determined by a
collection of local equivalences T, : (O(Uy)[[h]],*") — (O(Uy,)[[h]], *) satisfying

Tang_l(f) :Gaﬁ*f*Gﬁom (3'6)
for f € O(Uy NUg). One recovers T' from the collection {7, } by

T(f)(s) = U (Ta(f) * Yals)), s €T (U, L). (3.7)

Proposition 3.1 Let x and ¥ be star products on M. The following are equivalent:

(i) The star products * and %' are related by [B.4), i.e., there exists a line bundle L — M for
which @1 ([%]) = [¥];
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(i) There exists an open cover {Uy} of M, with trivialization maps vV, and transition functions
gap for L — M, as well as deformed transition functions Goz = gog mod h € O(U,NUg)[[K]]
satisfying the cocycle conditions (B3] and a collection of equivalences Ty, : (O(Uy)|[[R]], *') —
(O(U)[[A]], %) for which the compatibility ([B.6]) holds.

Proof. The implication (i) = (ii) was already discussed. We explain how (i) implies (i). We
first show that we can find local deformed trivializations ¥, = v, mod A such that

U U5 (f) = Gap * f (3.8)

for all f € O(U, NUg)[[R)]. We know from [7] that we can find deformed trivializations ¥/, =
Yo mod fi; let us define Gf 5 by G5 f = \I/;(\I/’ﬁ)_l(f) We now modify ¥/ to obtain ¥,
satisfying ([B.8)). Let {x.} be a partition of unity on M subordinated to {U,}. Consider

Sa = ZG;W * Xy * G’yay
v

viewed as an element in O(U,)|[[h]] (note that each summand has a natural extension from O(U, N
Up)[[h]] to O(Uy)[[R]]). Note also that S, is invertible with respect to *, since S, = 1 mod h.
Finally note that, using the cocycle conditions for Gﬁlﬁ and Gg, we have

Sa*Gaﬁ:ZG;V*XW*GW*GQB:ZG;B*G’BV*XW*GW:G&Q*SB.
vy Y

In other words, Gos = Syt * G\, * Sp. Let us now define ¥, by W,(s) = S %W (s). Then
Wa W' (f) = Sa' % Gogx Spx f = Gag + f,
as desired. We now use the local equivalences Ty, and ¥, to define an isomorphism 7" : (O(M), ')

End(I'(M, L)[[H]], ) via @0 0

3.2 An action of closed 2-forms on formal Poisson structures

The description of how formal Poisson structures are acted upon by closed 2-forms is a simple
adaptation of the discussion of gauge transformations in [55, Sec. 3]; in the context of generalized
complex geometry, the same operation appears under the name of B-field transform, see e.g. [39]
Sec. 3]. We start by recalling standard facts and alternative views of formal Poisson structures.
Given a formal bivector field 7 = Y22, A¥m, € hA2(M)[[h]], we consider the C-bilinear brackets

and the induced C[[A]]-bilinear bracket {-,-}. : O(M)[[A]] x O(M)[[A]] — O(M)[[A]], uniquely
determined by

{f,9}r = m(df,dg) =D _W{f. g}k,  f.g€O(M). (3.9)
k=1
Let Jacy : O(M)[[h]] x O(M)[[h]] x O(M)][[h]] — O(M)[[h]] be given by

Jacr(f,g.h) = {f,{g:h}r}r + {0, {f, g}z }x + {9, {h. f}r}n. (3.10)
We also consider the O(M)[[A]]-linear map

QMR — hX M)A, €)= D R (E), (3.11)
k=1

14



where Wﬁ(& ) = igmy for £ € Q1(M), and its unique extension (as an algebra homomorphism)

7t QY (M)[[R] — hX*(M)][[A]]. (3.12)

Proposition 3.2 Let m € hxX?(M)([[h]] and 0, = [r,-]sn. Then

& r, 7l (df, dg, dh) = Jacx (1,9,h) = 92(/)(dg, dh). (313)

for f.g,h € O(M)[[h]].

Proof. It suffices to verify (BI3) for f,g,h € O(M). Given bivector fields 7, m € X?(M), let
Jacg; : O(M) x O(M) x O(M) — O(M) be defined by

Jack(f,g,h) = {f g, hte e + {h A S gte e + {g. {h, flehi-
The Schouten bracket satisfies (see e.g. [23])
[ﬂ'k, Wl]SN(df, dg, dh) = Jack,l(f, g, h) + JaClJf(f, g, h)

As a result, the n'-order term in A of 1[r, 7](df,dg, dh) is

n—1
Z Jaci,n—i(f) g, h)v (314)
i=1

which agrees with the n'-order term in h of {f,{g,h}} + {h,{f,g}} + {9, {h, f}}, proving the first
equality in (3I3]). For the second equality, recall that the Schouten bracket satisfies

[m1, flsy = —mi(df),  [m, X)sn = —Lxm, (3.15)

for f € O(M), X € X*(M). A direct computation shows that

7k, (71, flsn]sn(dg, dh) = {f,{g, R} }i + {h, {f, g}t + {9, {h, f}i}es

and, as a consequence, the n'"-order term in h of 62(f)(dg,dh) coincides with (B.I3). O

Corollary 3.3 If [r,7]lsy = 0, then the map w* in BI12) satisfies 7t o d = —0, o wh.

Proof. Tt suffices to verify that 7% o d = —8, o 7! holds on elements f and df, for f € O(M). The
fact that 7#(df) = —0, f directly follows from the first equation in ([I5). On the other hand, since
[m,m]sn = 0, we have

—0-(m*(df)) = O« ([, flsn) = 92(f) = 0,

which agrees with m(d?f) = 0. O
To describe the action by closed 2-forms, it is convenient to have an alternative viewpoint to
formal Poisson structures, in the spirit of Dirac geometry [14]. We consider the bundle

E:=TM®T"M,
equipped with the symmetric O(M)-bilinear pairing (-,-) : I'(M, E) x I'(M, E) — O(M),

((X,8), (Yym)) = n(X) +£(Y), (3.16)
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and the C-bilinear bracket [-,-] : I'(M, E) x I'(M, E) — I'(M, E),
[[(X,g),(Y,U)]] - ([X7Y]7£X77_Z'Yd£)v (317)

known as the Courant bracket. Here X,Y € X1 (M) and &,1 € Q'(M). Using h-linearity, we extend
these operations to
() : T(M, E)[[R]] x T'(M, E)[[r]] — O(M)[[R], 5.18)
[--] : T(M, E)[[A]] x T'(M, E)[[h]] — T'(M, E)[[h]. |

The following is a straightforward observation.

Lemma 3.4 A O(M)[[h]]-linear map T : Q' (M)[[R]] — XY(M)[[R]] is of the form 7t for a formal
bivector field m € X2(M)[[h]] if and only if

(T(€),€),(T(n),n)) =0, ¥ &neQ(M).

We can characterize formal Poisson structures using ([BI8]) as follows.

Lemma 3.5 Given a formal bivector field m € hX%(M)[[h]], we have

Jaca(f,9,h) = ([(x*(df),df), (*(dg), dg)], (* (dh), dh) ), (3.19)
for all f,g,h € O(M)[[h]].

Proof. It suffices to verify the lemma for f,g,h € O(M). It is clear from B.9) that L 549 =
{f, g}, and it immediately follows from the definitions ([3.16]) and (3.17) (extended to formal power
series) that the right-hand side of (819 is

dh([x*(df ), 7 (dg)]) + d(Lops(ap)9) (7 (dR)) = (ﬁnﬁ(df)ﬁnﬁ(dg) - Ewﬁ(dg)ﬁnﬁ(df)> b+ Lot (an) Lt ar) 9

which is Jac(f, g, h). O
Given any B = By+hBy +--- € Q?(M)[[R]], there is an associated automorphism of O(M)[[R]]-
modules given by

The following properties of Ap are proven analogously as e.g. in [39].
Lemma 3.6 The following holds:
1. (Ap(X,8), A (Y,m)) = (X, €), (Y, n)) for all (X,€),(Y,n) € T(M, E)[[n]].

2. [[)‘B(va)v)‘B(Ya 77)]] = )‘B([[(ng)?(yv 77)]]) fOT’ all (ng)v(yv 77) € P(M7 E)[[h]] Zf and Only Zf
dB = 0.

Let us consider the O(M)][[h]]-linear map
B XN (M)[[R)] — QY(M)[[R)], BYX)=ixB,
associated with B € Q?(M)[[A]]. For any formal bivector field 7 € hX*(M)[[R]], the operator
id + Bfx® : Q1 (M)[[A]] — @ (M)[[7]
is necessarily invertible; its inverse is given by

(ia+ Bir?) oo i(—l)” (B5r4)",

n=0

which gives a well-defined formal series in A since 7 = 0 mod #.
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Proposition 3.7 Let m € hxX?(M)[[A]] and B € Q?(M)][[h]]. Then:
1. There exists a unique a(B, ) € hX?(M)[[A]] such that a(B,7)* = 7 o (id + Bir#)~1.
2. If dB =0 and [r,7|sn = 0, then [a(B,n),a(B, )]sy = 0.

Proof. Let T = nf o (id 4+ Bfn*)~! and set ¢’ = (id + Bin#)~1(¢), for ¢ € Q'(M). Then

(T(€),8) = (7€), + igs(enB) = Ap(7*(€), €).

Lemma implies that

so the first statement follows from Lemma 3.4l If dB = 0, we can use Lemmas and to

conclude that Jacy(f,g,h) = Jacypr)(f,g,h) for all f,g,h € O(M). The second statement easily

follows from Prop. O
Since Ap4+p = Ap(Ap/), an immediate consequence of Prop. B.7is that the operation

m— a(B,7),

for 7 € hX%(M)[[h]] and B € Q%(M)[[R]], defines an action of the abelian group of closed formal
2-forms Q2 (M)[[h]] on formal Poisson structures. We will now see that this action descends to an
action of H?(M,C)[[h]] on the set FPoiss(M). For that, it will be convenient to view a(B,7) as a
solution of a formal differential equation.

Let us consider the space A(X*(M)[t])[[h]] of formal power series in i with coefficients being
polynomials in t. An element 7; € h(X2(M)[t])[[]] defines, as in [B12)), a map wf : Q*(M)[[h]] —
(& (M)[E)[[R]-

Lemma 3.8 Given a formal bivector field = € hX?(M)[[R]] and a 2-form B € Q*(M)[[h]], then
7 = a(tB, ) € M(X2(M)[t])[[R]] is the unique solution to the formal differential equation
d b

E T =T, (B), e o =, (321)

In particular, a(B, ) = m|i=1, where m; is the unique solution to (3.21]).

Proof. The fact that (3.2I) admits a unique solution follows from Prop. [A]lin Appendix[Al Note
that m; is a solution to (3:21) if and only if 7/ satisfies
d_j ¢

fhadped t ot
T, = —m; o B¥ o},

dt
1

with initial condition 7} = nf. A direct computation shows that

d
E7rﬁ(id + B = —rf(id + tBfAH) T Bi Rt (id + tBRAF) 7Y,

so the result follows. O
Let 7 € hAX%(M)[[R]] be a formal Poisson structure, let X (¢) € A(X1(M)[t])[[A]], and consider
the equation

Lr(t) = ), X(O]sw, 7(0) = (3.22)

in A(X2(M)[t)[[R]]. The following result is proven (in more generality) in Section [B.3] of Ap-
pendix [Bl
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Lemma 3.9 If7(t) € h(X?(M)[t])[[R] is the solution to B.22)), then 7(1) satisfies [w(1),7(1)]sn =
0, and 7 and (1) are equivalent formal Poisson structures (i.e., they lie in the same orbit of (2.44)) ).

We can now prove the main result of this section.

Proposition 3.10 The action of closed 2-forms Q% (M)[[h]] on the space of formal Poisson struc-
tures, (B, ) — a(B, ), descends to an action

H(M,C)[[1]] x FPoiss(M) — FPoiss(M), ([B[x]) > [B]-[r] = [a(B,7)],  (3.23)
on the set of equivalence classes of formal Poisson structures.

Proof. Let us first show that for cohomologous 2-forms B, B’ € Q. (M)][[h]], the formal Poisson
structures a(B,7) and a(B’,7) are equivalent. It suffices to show that if B = d¢ is exact, then
a(B, ) is equivalent to .

Suppose that ¢ € Q' (M)[[h]], and let B = d¢. We know that a(tB,7) is a path of formal Poisson
structures connecting a(B,7) and 7, and that it satisfies ([3:2I]). By Corollary B3]

a(tB, ) (d¢) = —[a(tB, ), a(tB, m) (€)]sn-

So, in this case, equation ([B.2I]) can be rewritten as

% Cl(tB 7T) = _[a(tB7 7T)7 Cl(tB, W)ﬁ(g)]SN‘

Now Lemma 3.9 implies that 7 and a(B, ) are equivalent.
Next, we should prove that if B € Q%(M)[[h]] and the Poisson structures m and 7 are equivalent,
then so are the formal Poisson structures a(B,7) and a(B, 7). Let us assume that

7 = exp([-, X]sn), (3.24)
for X € hRXY(M)[[R]]. Since m; = a(tB,n) is the solution to ([B:21), exp([-, X]sn )7 satisfies the

differential equation

%exp([ Xlgn)me = exp([-,X]SN)%m = (exp([, X]sn)m)f (exp(—Lx) B). (3.25)

This equation implies that
a(exp(_ﬁ)() B, 77.) = eXp(['? X]SN)a(B7 7T)’

On the other hand, the 2-form exp(—Lx)B is always cohomologous to B, as a consequence of the
Cartan-Weil formula for the Lie derivative,

1
exp ﬁX :Zk_ dZX B B — d(ZHZX dlx)k 1B)
k=0

k=1

Hence a(exp(Lx)B, ) is equivalent to both a(B,7) and a(B, 7). This concludes the proof of the
proposition. ]
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3.3 Kontsevich’s classes of Morita equivalent star products

As discussed in Section B, the groups Diff (M) and Pic(M) naturally act on the space Def(M) of
equivalence classes of star products on a manifold M, and their orbits characterize Morita equivalent
star products. We now describe the corresponding actions on the moduli space of formal Poisson
structure FPoiss(M), making the bijection

K. : FPoiss(M) — Def (M)

equivariant. In other words, we will describe the equivalence relation in FPoiss(M) which is quan-
tized to Morita equivalence under the Kontsevich map IC,.
The group Diff (M) acts on formal Poisson structures in a natural way by push-forward,

(0, ) = Qo = Bpum + B2@uma + ...,

and it descends to an action of Diff (M) on FPoiss(M). As a result of [I8, Thm. 1], the map K,
respects this action, i.e.,

Ke([pa]) = [l-
So we focus on the description of the action ® of Pic(M) on Def (M) ([B4) in terms of Kontsevich’s
classes, which is given by the next result.

Theorem 3.11 Let L be a line bundle over M representing an element in Pic(M), and suppose
that [*] = Ky ([r]). The action ® : Pic(M) x Def(M) — Def(M) satisfies

O ([+]) = Ku([a(B,m)]) (3.26)

where B € Q?(M) is a curvature 2-form of L (i.e., B represents 2micy (L), where ¢ (L) is the Chern
class of L).

This result extends the semi-classical description of ® in [4] and, as we will see in Section [,
agrees with [7] in the case of symplectic star products.

Before moving to the proof, we need an auxiliary technical statement. Let us consider an open
subset U C M for which

Bl =db, 0cQ\U).
Due to Corollary B3] the restriction of m; = a(¢B, ) to U is the unique solution to
d

=, (3.27)

— Tt = [7Tt,’Ut]SN, Tt =0 —

dt

where v! = —ﬂf (0) € H(XYU)[t)[[A]]. We use the formality K to quantize v’ to a series of differential
operators V! € A(CY(Op)[t])[[h]] given by

o
1
Vvt = Z E’C”“(m’ N AN (3.28)
n=0

Let us define the family of transformations 7% : O(U)[[h]] — O(U)[[h]] as the solution to the
differential equation (see Proposition [A.T]in Appendix [Al)

At oy ot ot t .
ST =TV, T =i (3.29)
It is not hard to see that

T' €id + W(CH(O)[t])[[7]
and, in particular,

t .
T ‘h;o = id. (3.30)
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Lemma 3.12 Let x and *; be the Kontsevich star products associated with w and 7y, as in (2.40).
If T* is the solution of the initial value problem (3.29) then T is an equivalence between the star-
product algebras (O(U)[[R]], *¢) and (O(U)[[A]], *), i.e., T* =1id mod h and

T'(f* g) =T"(f)*T'(g), forall f,g€OU)[[H].
Proof. By definition, f %, g = fg + IL(f, g), where

— 1
Ht = ZEK"(W“W“‘”’M)‘ (331)
n=1
Using (3:27)), we have
th = i i]cn_i_l(ﬂ't ceey T [ﬂ't Ut]SN) = 8H0Ch(vt) (332)
dt ~ n' ) ) ) ’ *¢ ’

where the last equality follows from the identity (B:2I)) in Appendix B} here 9f1°M is the Hochschild
coboundary operator corresponding to *;. It follows from (3.32]) that, for all f,g € O(U)[[A]], we
have

d OC.
g rt9) =0 WVO(F,9) = VI(f) s g+ 4 Vig) = VI(f 50 9). (3:33)
Combining this equation with ([3:29), we get

DTS o g) = THVA(S) w0 9) + TS V! (0)). (3.34)

Therefore the cochain Dt € (C?(Op)[t])[[A]],

D'(f,9) =T"(f*cg9) = T'(f) * T'(9), (3.35)
satisfies the following differential equation:

d
EDt =D'(V'®id+id @ V?).
Taking into account the initial condition D!|;—g = 0 we deduce that D! is identically zero. This

completes the proof of the lemma. O

Proof of Theorem B.IIl Let * be a Kontsevich star product on M associated with the formal
Poisson structure 7. We consider a complex line bundle L — M equipped with a connection V%,
and let B € Q2(M) be the curvature of VZ. We denote by #; the Kontsevich star product of
m = a(tB, 7). We must show that

O ([+]) = [xl,

and for that we will use the local criterium proved in Proposition 311

Let us consider a cover {U,} of M by contractible open subsets with contractible intersections
Uo NUg. We fix a set of local trivializations of L, defining transition functions gog € O(Uy N Up).
Then V¥ is described by a collection of connection 1-forms 6, € Q(Uy,), satisfying

03 — 0o = 9,34905, 00 = Blu,. (3.36)
By Lemma B.12] we know that over each U, there is an equivalence

Tolf =1 9) = To(f) = Ta(g)
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for f,g € O(U,)[[h]]. By ([B.38]), the difference between the local vector fields vf, = —7r§ (0,) and

vh = —715 (03) is hamiltonian:

vl — vl = m}(d1og(gap)) = —[m,10g(gas)]sN-

Note that log(gas) is well-defined since U, N Ug is contractible. It follows that the corresponding
operators (B.28) satisfy

— 1
Vi-Vi==>" a1 (e, 7 [, 10g(gap)]s )
n=0

By (B.2I)), we can write
V- Vgt = —OEOChhaﬁ(t) = ady, (hag(t)), (3.37)

where 9]1°" denotes the Hochschild coboundary operator () of *;, ad., (f)(g) :== f . g — g *¢ [,
and

1
hap(t) = K1 (T, 71,108 (gag)). (3.38)
n=0

We will be interested in the operators
TO! - Té‘t=17

which are local equivalences between *; and *. According to Proposition[3.1], to prove the theorem it
suffices to define deformed transition functions G5 = gog mod h, satisfying the cocycle conditions

B3) as well as
To(Tp) ' (f) = Gap* [+ G5 forall fe OUaNUg)[[h]). (3.39)

We will do that by constructing a family of functions G,g(t) that will satisfy the desired properties
for t = 1.

Claim 3.13 The operator Té(Té)_l s a self-equivalence of x satisfying

d _ _ - .
ET;(Tg) Y= ad (TLhap)TL(TEH) ™Y, TL(TH) im0 = id.
Proof. Tt is clear that Tj(T5)~" = id mod h, that it is an automorphism of (O(Ua N Up)[[A]], %),
and that it equals id when ¢t = 0. Since T! satisfies (3.29)), differentiating the identity T2 (7T%)~! =1
implies that

d
- (Tt

dt Oc)_l = _Vat(Téf)_l

Using (3.37)), we obtain

d _ _ _ _
L1 (T) = VAT~ TV = Th(ade, (ha))(T)
Since T, is an algebra homomorphism from (O(Uy)[[1]], *¢) to (O(Ua)[[1]], *), we have the identity
Ttad,,(a) = ad. (T a)T, from which the claim follows. v

Using Prop. [A.4] in Appendix [Al, we can define the family of functions Gop(t) as the unique
solution to the differential equation

0 Gap(t) = (Tehap(0) * Coslt),  Gas(0) = 1. (3.40)
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The solution of ([3.40) is *-invertible, and its *-inverse satisfies

d _ _
Z7(Gap() ™! = =(Gap(t)) ™" * (Tohap(1)). (3.41)
From (338]), we see that hog(t) = cop mod h, where cop = log(gas). When i = 0, the differential
equation (3.40) becomes

d 0, (0)
where .
GUN(t) = Gap(t) .
Hence Ggﬁ (t) = ef%s and, in particular
Gop(l) = gop mod h. (3.42)
Claim 3.14 If G,3(t) is a solution to (B.40) then
TLTE) T (f) = Gap(t) « [+ G 5(t)  for all  f € O(Us N Up)[AI. (3.43)

Proof. Let Ad.(Gas(t)) be the conjugation operator with respect to *,

Adu(Gap())(f) = Gap(t) * [+ Gap(t) ™",
for f € O(Us NUg)[[R]]). Then from (3.40) and (3.41I]) we see that

%Ad*(Gaﬁ(t))(a) = (Tohap(t)) * Gap(t) * [ * Gap(t) ™ — Gap(t) * f * (Gap(t)) ™" * (Tohap(t))

= adu (T hap(t)Adi(Gap(1))(f)

Since Ad.(Gap(t))|t=0 = id, we conclude from Claim B.I3] that T (Tﬁ) = Ad.(Gup(t)). v
The next clalm implies that the functions

Gaﬁ = Gaﬁ(l)
satisfy the desired cocycle conditions.

Claim 3.15 The following identities hold: Goo =1, Gog * Gga = 1, Gog * Ggy ¥ Gyo = 1.
Proof. Since haqo(t) =0, it is clear from (3:40) that G, = 1. For the second identity, we have

o (Gap(t) * Gpalt)) = <Tt hag(t)) * Gas(6) * Gialt) +

)
ap(t) * (Tghga(t)) * Gaalt
= (Téhaﬁ( ) * Gap(t) * Gaal(t
Gap(t) * Gpalt) * (Tohpa(t)) * Gza(t) * Gpalt)
= ad*(Tfihaﬁ(t))(Gaﬁ(t) * Ga(t)),

where we have used ([B3.40), (B43) and hag(t) = —hga(t). Note that Gapg(t) * Gga(t) = 1 is the
unique solution with initial condition G,(0) * Gga(0) =1

)
)
)+
) *
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We proceed similarly to prove that Gag * G, * Go = 1. Using ([8.40) and (3.43]), we obtain:

@ Gapt) G (1) ¢ Cralt) = (Thhas (1)) * Cunpl1) # Gy 1) # Gl

)
+Gap(t) * (Thhp, (1)) * Gpy (1) % Gra(t)
+Gap(t) % Gay(t) * (Tohya(t)) * Gral(t)

= (Thhap(t)) * Gap(t) * Gy (1) ¥ Gra(t)
+Gap(t) * G (1) % (Tahgy (1)) * Gap(t) * Gy (t) * Gralt)
FGaplt) = Gpn(t) * G5 (1) * (Thhra(t)) * G (1) * Gra(t)
— (Tthaplt) * Gaplt) * Gy () * Gt
(T hoy(t)) * Gap(t) * Gay(t) * Gyal(t)
+(Tohra(t) * Gag(t) * Gy (t) * Gralt)
= (T4 (hap(t) + by () + haa (1)) * Gap(t) * Gy (t) ¥ Gaalt)

Using Proposition 23], we see that

(3.44)

haﬁ(t) + hﬁ“{ + h'yoe Z ]Cn—i-l Tty ooy, Tty Cap +Cay + C'ya) = Cap + C3y + Cyas

where co3 = log(gag). Since gagggygya = 1, we have that cag + gy + Cya = 2TiNagy, for neg, € Z
(note that nqgy is the Cech cocycle in H? (M Z) representing the line bundle L). Hence the unique
solution of (3.:44]) with initial condition 1 is

Gop(t) * Gao(t) % G (t) = €XFMast, 3.45
&) By Y

In particular, for ¢ = 1 we have Gog * Ggy * Gy = 1. v
This finishes the proof of Theorem [B.111 O

4 Fedosov’s classes versus Kontsevich’s classes

In this section we focus on formal Poisson structures @ = hmy + h2me + ... on a manifold M for
which the leading term 71 € X2(M) is a nondegenerate bivector field, i.e., we assume that the
associated vector-bundle map 7r§ :T*M — TM, 7t(¢) = i¢m, is an isomorphism. In this case, m

corresponds to a symplectic form w_; € Q?(M), uniquely defined by
. . 1
Zﬂg(f)w—l - 67 v g € (M)7

and the Kontsevich star product (2.46]) defines a deformation quantization of the symplectic man-
ifold (M, w_1).

The fact that 7 is nondegenerate implies, more generally, that the O(M)[[A]]-linear map =¥ :
QYM)[[A])] — hX1(M)[[h]] (see BI1) is an isomorphism, and its inverse uniquely defines a formal
series of 2-forms

1
w:ﬁw_1+wo+hw1+h2w2+---. (4.1)

The integrability condition |7, 7]gn = 0 is equivalent to dw; =0,V j = —1,0,1,.... This gives us a
1-1 correspondence between formal Poisson structures m = hmy + ... for which 71 is nondegenerate
and series of closed 2-forms w as in ([@.1]) for which w_; is symplectic (cf. [40, Sec. 3]). Furthermore,
under this correspondence, the action of the group (2.43]) boils down to the action

wr—w+de,
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where € = g9 + hey + ... € QY (M)[[A]] is an arbitrary formal power series of 1-forms. In particular,
for a fixed nondegenerate Poisson structure 7y, the set of equivalence classes [7] € FPoiss(M) such
that m = hmy + ... is in bijective correspondence with H?(M,C)[[h]] (cf. [40, Prop. 13]).

On the other hand, Fedosov’s construction [27] leads to a parametrization of the set of equiv-
alence classes of star products on a given symplectic manifold (M,w) by elements Z]O'io Iw;] €

H?(M,C)[[h] (see e.g. [3, 15, 50]); the elements #[w] + > 720 Iw;] are known as Fedosov classes.

Theorem 4.1 Let m = hmy + h2mo + ... be a formal Poisson structure such that w1 is a nondegen-
erate bivector field, and let w be the associated formal series of closed 2-forms as in (A1)). Then
the Fedosov class of the Kontsevich star product (2.46]) of 7 is represented by w.

It directly follows from this result that the description of Morita equivalent star products in
terms of Kontsevich’s classes of Theorem B.ITlreduces, in the symplectic case, to the description of
[7, Theorem 3.1] in terms of Fedosov’s classes.

The plan of the proof is depicted on the following diagram:

Kontsevich’s N modified Fedosov’s _ original Fedosov’s (4.2)
star product *g star product * star product *p ’

This diagram will be turned into a proof of Theorem [4.1]in this section. In Subsection 4.1 we
construct the modified Fedosov’s star product *. The difference between the constructions of *
and the original Fedosov’s star product xp is that for % we use the fiberwise multiplication (£.3)),
which involves the whole series 7, whereas to construct xr we use only the first term Am;. In Sub-
section we introduce a version of the Emmrich-Weinstein differential. Using this differential in
Subsection 4.3 we show that Kontsevich’s star product g (2.46]) is equivalent to *. Finally, in Sub-
section [41.4] we prove that * coincides with the original Fedosov’s star product *r whose equivalence
class is represented by w (@I). In following these steps, it will be important to recall (see Subsec-
tion [2.3)) that the bijective correspondence between equivalence classes of Maurer-Cartan elements
induced from the direct Lo, quasi-isomorphism K (232]) and the sequence of quasi-isomorphisms
in (231)) coincide and are independent of the choice of the connection/Fedosov’s differential.

4.1 The modified Fedosov construction

In this subsection we consider a modification of Fedosov’s construction based on the following
associative product on the sheaf SM|[A]] of Oys[[h]]-modules:

a1 3 az = aj exp <7rij(;p)azi E;;Z) as, (4.3)

where 7 = Amy + ... is a formal Poisson structure (in particular, the coefficients 7/ are series in h)
and 7 is nondegenerate. Recall that the sheaf SM[[A]] is equipped with the descending filtration
of Remark 2.5] and one can check that the product ([4.3]) is compatible with this filtration. We may
view the product (£3]) as a quantization of the fiberwise Poisson structure

)
oyt Oyl

Since 71 is a non-degenerate Poisson bivector field, there exists a torsion-free connection form

THp — 7Tij (LZ') (4.4)

dxj(Fh)§k(x) = dxjf§k(x) + dxjh(Fl)ék(x) + dxjh2(F2)§-k(a:) +oeey
satisfying the compatibility condition

V{ala a2}7‘(ﬁb - {Va17 a2}7rﬁb + {a17 Va2}7‘(ﬁb7 (45)
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where

i A (TR (e Y
Oz du (Fﬁ)zg(‘r)y DYk’ (4.6)
and, for ay,as local sections of SM[[A]],
aal 8@2
{a’17a2}7Tﬁb = 7'(' ( )ay ay] (47)

is the fiberwise Poisson bracket on SM|[[h]] coming from the fiberwise Poisson structure mg;,. Note
that (A3]) implies that the connection V is also compatible with the product (£3), i.e.,

V(al S CLQ) = (Val) Sag+a; (VCLQ). (48)

In general, the connection V is not flat. In fact,

1
V2 = E[R7 ]57
where 1
R = —dxi da:jRij kl(x)ykyl, (4.9)

Rij (%) = hwgm(z)R;;" (), and R,;;"(x) are the components (possibly depending on %) of the
curvature tensor. Even though R is not vanishing in general, we can modify V to the following flat
connection:

1
where 7 is an element of Q!(M, F3SM][[h]]) obtained by iterating the equation
-1 -1 1
r=0 "R+ <VT+ [r, ]> (4.11)
2h
It can be shown that by iterating (@I1]) we get an element r € Q' (M, F3SM|[h]]) satisfying
1
— = 4.12
R+ Vr 5r+2h[ rls = 0, (4.12)

and this equation implies that (Df)? = 0. Notice that the derivation § (23] of the algebra
Q°(M,SM]|[A]]) is inner. More precisely,

§ = [da'wij(z, h)y?, 5. (4.13)

As a consequence, the differential (4.10) can be rewritten as

|
Dy =V + 5[5, (4.14)

where ' ‘
b=1r— hdx'w;j(z,h)y’. (4.15)
It follows from (4.12]) that the element b satisfies

ﬁR+ th+ 2h2[

As already used in Section 2] we have the obvious map

b,bls = —w. (4.16)

D(M,SM)[[h]] Nker D — O(M)[[H]], o(c)=¢| (4.17)
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from the C[[h]]-module of D¥'-flat sections of SM[[A]] to the C[[A]]-module O(M)[[A]]. The map
(I7) turns out to be an isomorphism, and the inverse map

7 O(M)[[h])] — T'(M,SM)[[]] Nker DE. (4.18)
is defined by the following iterative procedure:
7(f) = [+ VF() + [ 7()]s), (4.19)

where f € O(M)[[h]] and the iteration in (£19]) goes with respect to the filtration (2.37]).
Using the isomorphism (AI8]), we obtain the modified Fedosov star product *:

fix fo=0(7(f1) ¢ 7(f2)), (4.20)

where f1, fo € O(M)[[A]]. In Subsectiond.4lwe will show that % coincides with the original Fedosov’s
star product whose equivalence class is represented by w (4.1]).

4.2 The Emmrich-Weinstein differential

The compatibility between the “deformed” connection V (48] and the fiberwise Poisson bracket
{, }rg (@D allows us to construct the Emmrich-Weinstein differential [25]

1
DEV v _ 54+ ﬁ{rcl, S —_— (4.21)
where 7 is the element of Q'(M, F3SM][[h]]) obtained by iterating the equation
1
rl =6 IR+ 671 (VTCI + ﬁ{rdard}mib) ) (4.22)

where R is defined in (@&3). By iterating (£22)), we obtain an element ¢ ¢ QY(M, F3SM][A]])
satisfying the equation

1
R+ VTCl —5rct + %{Tdﬂﬁl}ﬂﬁb =0, (4'23)

and this equation implies that (DFW)2? = 0. Similarly to equation @I3]), we have
§ = {dr'wij (2, W)y, gy

Therefore we can rewrite (L.21)) as

1
DV =V + ﬁ{bdv '}Wﬁbv (4.24)
where ' '
b = —hda'wqj(x, h)y’ + re. (4.25)
Equation (4.23) implies that
1 1 cl 1 cl pcl

We remark that the differential D¥W (@2T]) differs from the original one introduced by Emmrich
and Weinstein in [25, Sect. 8]. The fiberwise Poisson bracket considered in [25] does not involve
h, whereas mgp (4.4]) is a series in . So, even though the recursion for r looks “classical”, the
element r° does contain higher orders of . In particular, ° is not just obtained by setting & = 0
in the element r ([AI1]). However we have the following:
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Proposition 4.2 Let r and v be the elements of Q' (M, F3SMI[[h]]) defined by iterating equations

(4-11) and (4.29), respectively. Then
r—r=0 mod h?. (4.27)

Proof. Let 7 (resp. r¢!) be the approximation of 7 (resp. r° ) which we obtain on the k-th step of
the iterative procedure @II) (vesp. [@22)). Namely, ro = 7§ = 'R and ry, is related to rx_; via
the equation

1
rp=0TR+6" <V7”k 1+%[Tk 15 Th— 1]> (4.28)

while r is related to rk , via the equation

rk —5 1R+5_ <V7"]§l_1+ 2h{rk 1,7"k. 1 ﬂ—hb) . (429)

Let us show by induction that
rp— 7 =0 mod h? (4.30)

for all k. For k = 0, this is obvious. To perform the inductive step, we observe that
[a1,a2)s — {a1,a2}rs, =0 mod A3 (4.31)
for all aj,as € I'(M,SM)][h]]. This observation and the inductive hypothesis imply that

1

e — 1 =671 <V(rk_1 - )+ 2_71[

Th—1,Tk—1]5 — {Tk 17Tk 1 7rﬁb>
_ 51 i[r Te—1)3 ! [rCl el Is mod h?
= op k=1 Tk=1]6 = 5p{Tk—1:Tk—1]5 :

On the other hand,

1 I I
271[7% 1,Tk—1)5 — 2h[7"icc—1a7"13—1]<~>
1 1 I 1 I 1 y y
= %[Tk—lyrk—l]é - 271[%—1#“1?—1]5 + 2—71[7"1@—1,7“1?—1]5 - 2—71[7"12_177"169—1]5
1

— [, Py — 2 D]s + = [(re—1 — 7L ), 78 ] =0 mod K2

" 2h 2h
Therefore Equation (4.30) holds for all £ and the proof is concluded.

4.3 The Kontsevich star product *j is equivalent to

Since the differential D*W (@21)) has the formf] [23]), we may use it to construct the Kontsevich
star product as in [20]. The class of the star product does not depend on this particular choice of
differential due to Theorem In particular, we denote by 7EW the corresponding map Z22).

We will use the sequence of L., quasi-isomorphisms (Z31)) with D = DFW to the obtain the
Kontsevich star product *x corresponding to w. Going through details of this construction, we will
produce an equivalence transformation between g and * (4.20]).

Let us consider the (fiberwise) Poisson-Lichnerowicz differential on Q°(M, 753, )[[A]],

aﬂ'ﬁb = [Trﬁba ']SN7 (432)

4See Remark 24
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corresponding to the fiberwise Poisson structure mgy, (@4). We can then rewrite D®W ([@24)) as

DPV _y_ 1y (). (4.33)

h Tfib
Combining this last equation with the compatibility between V and g, we conclude that
DWW, = 0. (4.34)

In other words, the lift 75W(7) of the formal Poisson structure (Z4I) to a D¥W-flat section of
’Z;%ly[[h]] takes the following simple form:

TEW(r) = 79 (2)0yi A Oy
An important consequence of this observation is that the components of 7%V (7) do not depend on

the fiber coordinates y’s.
Following Subsection 22 we consider the “tail” of the differential DFW,

1
pEWV = Ty — — 8, b7, (4.35)

FL Tfib
as a Maurer-Cartan element of the DGLA

Q*(0, 7;).0?_311)[[}1“7 d,[,-]sw), (4.36)

where U is a coordinate open subset of M. Then twisting the L., quasi-isomorphism K (2:28]) by
,ugw, we obtain the L., quasi-isomorphism

K6 QU T VIR DPY, [ Jsw) == (Q(U, C*HSM))[[R]], DPY + 9Mom [ 6). (4.37)

? “poly

As explained in Subsection 2.2 the L., quasi-isomorphism K 15" does not depend on the choice
of local coordinates on U. Hence we get a global L., quasi-isomorphism

K (Q0(M, Ty DAL DPY, [ Jsn) =— (Q°(M, C*H(SM))[[A]], DPVY + 91, [ ]g).  (4.38)

? “poly

Let us denote by p the Maurer-Cartan element of the DGLA

(e @ar,co (SR, DPY + 01t [, ] ) (4.39)
obtained from 7°W(7) = 7, via the Lo, quasi-isomorphism K*:
o0 1 "
p = 30 LR Y (), 7 (). (), (1.40)
n=1

A simple degree bookkeeping shows that p€ = /Lé( + ,u{( + /Lg( , where /Lé( is a 0-form with values
in C2(SM)[[A]], u¥ is a 1-form with values in C*(SM)[[A]], and pu& is a 2-form with values in
C°(SM)[[h]] = SM[[R]]. More precisely,

oo
1
/L([){ = ZmKn(ﬂ'ﬁb,ﬂ'ﬁb,...,ﬂ'ﬁb), (4.41)
n=1
K > 1 1 cl
M = Z HKTH-I T'fib, Tfiby - - - » TTfib, _Fh - ﬁaﬂ'ﬁb (b ) 5 (442)
n=1
K > 1 1 cl 1 cl
py =y —5 Ktz ( i, o - Wb~ = 50, (07), =T = 50, () ) (4.43)

3
Il
—_
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It is known that Kontsevich’s star product corresponding to the constant Poisson structure
coincides with the Moyal star product, see e.g. [62]. Therefore, since the components of g}, do not
depend on the fiber coordinates ¥’s, we conclude tha

8 0
/LO al,ag aq Z’I’L' < 8y ay]) a9 (4.44)

where a1, as are local sections of SM][A]].
Using property P @ from Subsection 22 we simplify u& and p£ as follows:

[e.e]

1 1
peo=— e <7Tﬁba77ﬁb, <o Tib, ﬁ&rﬁb(bd)> ; (4.45)
n=1
— 1 1
pk = Z:l mKn+2 <7rﬁb, Tfiby « - s Tbs ﬁ@rﬁb(bd) haﬂﬁb (bd)> . (4.46)
n=

Due to property P 2l from Subsection 2.2, we can write

1 . 1 . 1 .
_Eaﬂﬁb(b l) + M{( = _ﬁKl 7Tﬁb b ! Z n+1 <7Tﬁb7ﬂ-ﬁb7 -+ Tfib, ﬁaﬂﬁb(b l))

= — Z %Kn—i-l <7Tﬁba77ﬁb7 . 77Tﬁb787rﬁb(bd)> .
n=0 ’

In other words,
1 C 1 s C
— O, (b1) + 1 = =5 BT (O, (b ) (4.47)

h Tfib

where K™ is the Lo, quasi-isomorphism obtained from

K (Q°(M, Ty D[R], 0) =— (Q°(M, C*TH(SM)[[R]], 07°")

7 “poly

via twisting by mgp (£4)). Using (B2I)) from Appendix [B] the map KT intertwines the Poisson-
Lichnerowicz differential 0™ (&32) with the Hochschild differential 9H°h corresponding to the
product (43]). Hence ([4.47) can be rewritten as

!
0

L1k 0, 3. (4.48)

lagOChKfﬁb(bCl) — -

87Tﬁb (bd) + ﬂ{{ - h

Since the components of 7g, do not depend on the fiberwise coordinates y’s, it follows that, for
every n > 1,

K1 (Tfibys Thibs - - - » T, b9) = 0
Hence
KT (b = pe! (4.49)
and
1 cl cl
- ﬁaﬂ'ﬁb(b ) FL[b ]~ (450)

Let us now find a simpler expression for y& ([@48]). Property P [ from Subsection implies that

1 Ci Ci
K (5@%(5 '), 3 0r b l)> —0.

5Due to ([E44), the product & can be written as a1 & a2 = araz + p,é{ (a1, a2).
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Hence

1 1
1y = Ko (h@rﬁb(bd) h&rﬁb(bd > + Z 13 K2 <7Tﬁb77Tﬁba -+ Tib, ﬁ&rﬁb(bd) hanﬁb(bd)>
.- 1 C C
= Z 572 'Kn+2 (ﬂ'ﬁb,ﬂ'ﬁb, oo Tiby Oy, (D l),({)ﬂﬁb(b l)) .

"0
In other words,

1 Us Ci Ci
15 = 3 K™ (Ors (5, 0 (b)) (4.51)

Since K3 (b, 0y, (b)) vanishes for degree reasons, the component ;& can be written as

oc| ™ (¢ C 1 7T c ©
Iué( = ﬁaH hK ﬁb(b ! aﬂ'ﬁb(b l)) + ﬁl(éﬁb (87Tﬁb(b l)’aﬂﬁb(b l))

Using Equation (B.16) from Appendix [Bl we obtain

+ o K5 (0, (000,207
= 5 <K{rﬁb <{bd,3ﬂﬁb(bd)] SN) _ [K{Tﬁb(bd),K{rﬁb(aﬂﬁb(bd))} G) ' (4.52)

Thus, due to Equation (449,

K __ cl 1cl cl 1.l
%) 2h2{b b }ﬂ'ﬁb_ﬁ[b b5 . (4.53)

Combining equations (4.16]) and ([4.26]), we deduce that

2h2 b, b]s — T {bd b e + hV(b— b = 0.

Therefore, Equation (£53]) can be rewritten as

pk = %V(b b + —[b bls — [bd bs. (4.54)

2h?
Combining this equation with (£50), we obtain

2n2

_ cl — cl cl - cl pcl K
hamb Iy + h[b s + hV(b b)) + %2 [b,b]5 — %2 (b7, 0%s + g - (4.55)
The left-hand side of (£55]) is a Maurer-Cartan element of the DGLA
(Q.(U7 C.+1(SM))[[h]]7 d+ aHoch’ ['7 ']G)v (456)

where U is a coordinate open subset of M.

The next step in the construction of the star product on M is to eliminate the components ,ué(
and pff via an equivalence transformation. Our goal is to show that the component pk can be
eliminated in a way that gives us a Maurer-Cartan element which combines both the defining part

1
of the quantum Fedosov differential D (@I4]) and the defining part pf (@Z44) of the fiberwise

product & ([£3]). We have the following result:
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Proposition 4.3 There exists an element & € hQY(M,SM)([R]] such that

Lo Js + uls (4.57)

DN G
<—rh—ﬁawﬁbb + > = —Tn+

in the DGLA ({.56]) for every coordinate open subset U of M.
Proof. Let us denote by i the left-hand side of (Z55):

~K

1
5 = —Th — 0, b + . (4.58)

h

As we have remarked, /i is a Maurer-Cartan element of the DGLA (@&58]) for every open coordinate
subset U. According to the formula in (B.4) in Appendix[B], we have

~K\ ex ~ expll, oc
[’7 &]G

Since the Gerstenhaber bracket is zero if both arguments take values in C°(SM), we conclude that
only the first two terms 1 + %[-,{]G of the series % contribute to the right-hand side of
(£59). Hence,

~ ex ~ 1 ocC

()" ="+ (Him ) (de -+ otohe + [7, ¢l ) (4.60)
Using (4.55), we write (4.60) as follows:

~K\exp(§) 1 cl 7. 1 cl - o cl cl K

FVE+ 0PN 4 2, €5 + [ €l + [aHOChsﬂuo o€

Using (LH) and (£44), we combine 9Moh¢ + [uf, €] into —[€, ]s. Thus (75)*P *P©) can be further
simplified as

~K\exp(§) o 1 cl e pel K
=-T b 5 b—1b —[b,bls — = [b“,b
1 C
FVE 16T + 116, 8ls — 516 8ls (4.61)
One can now show that, by plugging
1
£ = ﬁ(bd —b) (4.62)
into (4.61]), we obtain the desired identity
~ ex 1
(7)™ =~y + 710l + o -
Equations (AI5]) and (£25) imply that
1
§= E(Td —r)
By Proposition [4.2] it follows that & = 0 mod £, and this concludes the proof. O
Let us denote the right-hand side of (£57) by fuy:
. 1
pu =—In+ ﬁ[bv ]5 + /L([){’ (463)
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where b is defined in (ZI5), and an expression for uff is given in ([@44]). As we remarked above, jiy/
is a Maurer-Cartan element of the DGLA (4.56)), and Proposition [L.3]says that fi;y is equivalent to
the Maurer-Cartan element .

Twisting the DGLA (@56) by jiy ([@63), we get the DGLA Q°*(U,C**1(SM))[[A]] with differ-
ential DI + 9ot where DI is given in (ZI4)). Since the differential DE + 98t does not depend
on the choice of coordinates on U, twisting by iy (£63) gives us the DGLA

(@ (g, c*H(SM)) ], DF + 5, [ o ) (4.64)

To obtain Kontsevich’s star product we need to further modify the Maurer-Cartan element (£.63))
by an equivalence transformation of the form

T =exp(&), with & € hQY(M,CHSM))[[A], (4.65)

to get the Maurer-Cartan element@
1
py = —Thp—06+ ﬁ{rd, [ | (4.66)

where ITX € QO(M, C?(SM))[[A]] . Then the element IT¥ € QO(M, C2(SM))[[A]] is a Maurer-Cartan
element of the DGLA

(e @ar,cH(SM)) A, DPV + 010 [, ] ) (4.67)

which is, in turn, quasi-isomorphic to C*+1(Oy)[[A]] via the map 7°W in [Z22)). Since IT¥ has zero
exterior degree, the Maurer-Cartan equation for II¥ is equivalent to two equations:

1
o | 5[HK 5 =0, (4.68)
DEWTIK — . (4.69)

The last equation implies that II lies in the image of 78V Z21)), i.e., IIX = 7EW(II) for a unique
II € hC%*(On)[[R]]. Then (E68) implies that the product

fix fo= fifa + U(f1, fo) (4.70)

on O(M)[[h]] is associative. This is exactly Kontsevich’s star product corresponding to the formal
Poisson structure 7 ([2.41]).

A more explicit way to get the star product (@70) from the element IT¥ is to use the isomorphism
of C[[h]]-modules 7V : O(M)[[A]] — T'(M,SM)[[h]] N ker DEW. This isomorphism is obtained by
iterating the following equation in degrees in the fiber coordinates y’s:

PV = £ (V) 4 LY (D)) for fEOQDIR] (A7)
Equation (4.68)) implies that the formula
a1 ¢ ay = ajas + HK(al,ag), for ay,ae € T'(M,SM)[[R]], (4.72)

defines an associative product on SM|[A]]. Equation (£.69]), in turn, implies that the differential
DEW is a derivation of the product (Z72). Thus the formula

fixfo=o (TWV(f1) o ™V(f2)) for f1, fo € OM)[[R] (4.73)

Recall that the differential D (23] we use for the construction of Kontsevich’s star product is D*W @Z1)).
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W

defines an associative product on O(M)[[h]]. According to the construction of the map 7V (see

Subsection 2.1)) the star product (4.73) coincides with (4.70).

To construct an equivalence transformation between the star products (£20) and ([{.73]), we
recall that the Maurer-Cartan elements fiy (4.63]) and ppy (4.66]) are connected by the equivalence
transformation (4.65)):

e['ysl]G —1

p = v + S (dg + 07 + [, &) (4.74)
[ &la
This equation can be rewritten as
1 1 el+éile —q
—Tn et S by T = —Tot 2o s + il + S (DF& +08be) . (4.75)
h h ['7 gl]G

Since &; has zero exterior degree, (L70) is equivalent to the pair of equations

1. 1 el Gile _ 1
b L Yem —Th=—Th+ 710 ]s + T Ela Di &, (4.76)
['761}G — 1
€ ocC
HK = /Lg + W 6? hfl. (477)

Equation (£76]) says that the transformation (£65)) intertwines the differentials D¥WV and DE':
DEeS (a) = 5 DEW(a), for a € T(M,SM)[[H], (4.78)

and Equation ([AT7) implies that the transformation (465 intertwines the fiberwise products &

from (@3) and ¢ as in [@T2):
e (ay) 3 € (ag) = €' (ay 0 ap), with a1, a9 € D(M,SM)[[A]]. (4.79)
Let us consider the map E : O(M)][[h]] — O(M)][[H]],
B(f) =0 (¢2r™V(f)) for fe O[] (4.80)
Since e intertwines the differentials DI and DEW we conclude that
LoV (f) =Fo E(f), for fe OWM)[H], (4.81)

where the map 7 is defined in (£19]). Using the definition of % (£20)) and equations (4.79) and
(AZT)), we get the following identities:

B(fix fo) = o (87 (fix o)) = o (8 (7Y (1) 0 7PV (12)) )
= o (B (rPY(11) e (TP (1)) = o (F(E(f1)) & F(E(f2)))
= E(f1) * E(f2)

for all f1, fo € O(M)[[R]]. Since E starts with the identity in the zeroth order in i, Kontsevich’s
star product ([£73) is indeed equivalent to the modified Fedosov star product (£20) via E.
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4.4 The star product * coincides with the original Fedosov star product

The construction of the original Fedosov star product *g is based on a fiberwise product different
from & (43), namely, one uses the following product on SM|[A]]:

a1 OF G = a1 exp (hwij(;p)aii ((;;Z) as. (4.82)

We will show that the product op can be connected to the product & (£3]) by an equivalence
transformation of a specific form:

Lemma 4.4 The products & and op are fiberwise equivalent,
P(ay) or P(az) = P(a1 ¢ a), (4.83)
via an equivalence transformation of the form
P =exp(x) with x = (hxi+ B2xg + - ); yjayi, (4.84)
where x, € T(M,TM & T*M) for each r.

Proof. The statement is fiberwise so it suffices to consider the following situation on R*". Let x be
the ordinary Weyl-Moyal star product, i.e.,

f1 % fo = po o exp (i’nrij(‘)yi ® (9yj> (f1® fa),

where 1g(f1 ® f2) = fi1f2 denotes the ordinary commutative product on O(R??)[[A]], and Fij is a
constant antisymmetric nondegenerate 2n x 2n-matrix (with complex entries). We must construct
a specific equivalence transformation intertwining the product x with the star product

fl;f2 = g © exXp (leayz & 8yj) (fl b2y f2)7 (485)

where 7 is a formal power series of constant antisymmetric 2n x 2n-matrices (with complex entries)
starting with hmy N N N
7 = hr + Ry + B3 + -
Let us consider the following sets of operators,

B={BY9,®0, | BY e hC[[h]]}, A={x®id+id®x|x =x}y’9, with x} € hC[[n]]},

acting on the tensor product of two copies of O(R?")[[h]]. Note that A is a subalgebra, while B
is an abelian subalgebra of the Lie algebra of all endomorphisms of O(R*")[[A]] @c(pm OR*™)[[A]].
The property

[A,B] C B

implies that .
exp(A) o exp(B) o exp(—A) = exp(elt1(B)) = exp(B) (4.86)

with B = B+ [A, B] + - -- € B. Let us suppose that the matrix 7% in (&3] has the form (m > 2)
7 = hrl? 4+ B 4 hmﬂwzﬂ + hm+27rfi+2 +-e
In other words, 7% — hﬂ'ij =0 mod A™. Consider an equivalence transformation P, of the form

Py = exp (R (Xm) 597 0y) (4.87)

34



where (Xm); is a constant 2n x 2n matrix. Due to (4.80]), we have
Po(Pr f1 % Pryt f2) = o 0 exp(x @ id +id @ x) o exp(m) o exp(—x @ id — id @ x)(f1 © f2)
= po o exp(’) o (f1 ® fa),
where
() = hd + 1 (i = 74 o)l + 7 ) + B 4 R

Since the matrix 7}’ is nondegenerate, we can choose the matrix (X )’

% in such way that

4 = 1 (X + 711 O ) = 0.

The new product fi, fo — Py, (P, ! fi* P! f2) has the form
Po(Py f1% Pt f2) = po o exp(n) o (f1 ® f2)

where 7/ = hm; mod A™t!. Thus the desired equivalence transformation P is obtained as an
infinite product
P=...PLP3 P,

where the m-th transformation P, has the form (Z87). This infinite product converges in the
h-adic topology, and it is clear that P has the form

P = exp(x)

where x is a linear vector field. This concludes the proof. ([l
Since the exponent of P is a vector field, it is also an automorphism of the undeformed product:

P(a1)P(az) = P(a1az), (4.88)

for all aj,ay € I'(M,SM)[[R]]. Furthermore, P preserves the degree in y’s and transforms the
differential D" ([@14) to

1
DY =pDEpt=pvplq 7 [P(); o (4.89)

with the element b defined in (4.I5]). Since P has the form (4.84]), the operator
Vo=PVP!

is again a connection (possibly with Christoffel symbols depending on k). Furthermore, Vj is a
derivation of op because V is a derivation of . As for the curvature form (4.9), we have

1 1
(Vo) =PV?P ! = =P[R, s Pt = +[P(R), Lo
Since the operator P preserves the degree in y’s, we have
1 . .
P(R) = §d$z dx’ RY; 1y ()y*y/, (4.90)

where R% () are components (possibly depending on /) of the curvature tensor for V.
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Applying the operator P to Equation (4.I0]), and using the fact that the components of w (4.1])
do not depend on the fiber coordinates y’s, we have that

1 1 1
—P(R)+ =VoP() + —
S P(R) + £ VoP(b) + |
Thus DY in ([&83J) is the quantum Fedosov differential from the original construction in [27], and
the Fedosov class of the resulting star product is represented by w (4.1).

Let 7F be the isomorphism

7 O(M)[[h]] — T(M,SM)[[h]] N ker DY (4.92)

P(b), P(b)]or = —w, (4.91)

which lifts functions on M to D¥-flat sections of the sheaf SM[[h]]. Similarly to 7, the isomorphism
7% is defined by iterating the equation

a)=a+6"! (VOTF(a) + [rF, TF(a)]QF) , (4.93)

where a € T'(M,SM)[[A]] and r¥ = P(b) + hdz'w;j(z,h)y?. The (original) Fedosov star product is
defined in terms of 7F and the fiberwise product o for f1, fo € O(M)[[R]] as

frxe fo=0 (r7(f1) op 77 (f2)) - (4.94)
Since the transformation P (&84) intertwines the differentials D¥ and DI, we conclude that
Po7™(f) is DF-flat for every f € O(M)[[R]]. On the other hand, since the transformation P

preserves the degree in the fiber coordinates y’s, we have that P o 7( f )‘ .= f. Hence
y:

Po#(f)=7"(f). (4.95)

Combining the last equation with (4.83]), and using the fact that P preserves the degree in fiber
coordinates y’s, we get the following series of identities: for fi, fo € O(M)][[h]],

frar fa =0 (TF(f1) or 7" (f2)) = o (P o 7(f1) or P o 7(f2))
= o (P(7(f1) 2 7(f2))) = o ((7(f1) © 7(f2)))
= f1* fa.

Thus the star product * (£20]) coincides with the original Fedosov product xp (£94]), and Theo-
rem 4.1l is proved.

A Formal differential equations

In this appendix we collect some results on differential equations in C[[A]]-modules which are needed
throughout Section [Bl Most of the material is well-known or can be easily reconstructed from well-
known results, see e.g. the textbook [59, Sect. 3].

Let us consider the following purely algebraic situation. We fix a commutative ring C containing
Q, let V be a C-module, and let D C Endc(V) be a unital sub-algebra. In our case we usually
have C=C, V = O(M) or I'(M, E) for some vector bundle E — M, and D being the differential
operators on V. Let us also consider the h-adically complete C-module (V'[t])[[h]], i.e., in each order
of i we have a polynomial in ¢ with coefficients in V. Note that this is different from (V[[A]])[¢],
which is a proper sub-module of (V'[t])[[h]]. Let D(t) € A(D]t])[[R]] and w(t) € A(V[t])[[h]] be given,
and consider the differential equation

d
Z0(t) =w(t) + DH)(t) (A1)

with initial condition v(0) = vy € V[[A]].
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Proposition A.1 For each initial condition v(0) = vy equation (AJ]) has a unique solution v(t) €
(VIED[R]. Moreover, if w = 0 then the flow map vy — v(t) is a formal series id + Y .2 A" D, (t)
with D,.(t) € D[t].

Proof. First we rewrite (A.1]) as the integral equation

v(t) =v(0) + /0 (w(T) + D(7)v(T))dT, (A.2)

incorporating the initial condition. Since in each order of i, w(t) and D(7)v(7) are polynomials in T,
the integral operator is a purely algebraic gadget defined by linear extension of fot ThdT = %HT”“
(this is also the reason why we require Q C C). Since by assumption D(t) and w(t) are at least
of order A, the right-hand side of ([A.2]) is directly shown to be a contracting endomorphism in the
h-adic topology of the complete module (V[t])[[#]]. It follows from the usual fixed point argument
that there is a unique solution of (A2]) which is the unique solution of ([AJ]) with correct initial
condition, see e.g. [59, Sect. 6.2.1]. When w = 0, the iteration clearly produces a flow map of the

specified type. O

Example A.2 Let A be a C-algebra and let * be an associative deformation of A, so that A[[R]] is
a C[[h]]-algebra with respect to . The product x extends to (A[t])[[A]] in the obvious way, making
it a C[[h]]-algebra. Let d(t) € h(A[t])[[#]] be given. Then for every ag € A[[h]] the differential

equation

d .
Ea(t) =d(t) *a(t) with a(0)=ao (A.3)

has a unique solution by Proposition [A.1l

Example A.3 Let A = DiffOp(I'(M, E)) be the differential operators on some vector bundle
E — M and let x be the undeformed multiplication of differential operators. Then for any
D(t) € K(DiffOp(I'(M, E))[t])[[R]] the equation

d
ZA(t) = D(t) = A(1) (A4)

has a unique solution for every initial condition A(0) = Ay € DiffOp(I'(M, E))[[A]]. The important
point here is that the solution is again in (DiffOp(I'(M, E))[t])[[#]]. This is the situation which we
encountered in Section [3 frequently.

Another situation refers to C = C and smooth functions on a manifold only. Let D(t) €
R(DiffOp(M)]t])[[h]] be a formal series of differential operators depending polynomially on ¢ at each
order of h. Let dy € O(M) be a function and consider the differential equation

%f(t)Z(doJrD(t))f(t) with f(0)=h (A.5)

with some invertible h € O(M)[[R]]. Note that h is invertible iff the zeroth order hg is invertible.
Proposition [A.1] does not directly apply in this case due to the non-trivial zeroth order contribution
coming from dy. But the following holds.

Proposition A.4 For any invertible h € O(M)[[A]], (AH) has a unique solution f(t), for allt € R,
of the form

() = e hog(t), (A.6)
where g(t) = 14> > h"gn(t) with g, (t) € O(M)[t]. In particular, f(t) is invertible for all t € R.
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Proof. We write f(t) = 300 ;A" f,(t). Then in order h° (AH) reads

d .
afo(t) = dofo(t) with fQ(O) = hg,
so fo = e!®hg is the unique solution. Making the Ansatz f(t) = e'%hgg(t), we see that f(t) is a

solution of (A.H]) if and only if g(t) satisfies

Sa(t) =90 D(e) (e hag(t)) = D(D)g (0,

with initial condition g(0) = h—f; Note that D € h(DiffOp(M)[t])[[1]] since every differentiation in
D(t) reproduces the exponential function, which in the end cancels. Thus only polynomials in ¢
remain. We can now apply Proposition [A.T] and obtain a unique solution g(t) € (O(M)[t])[[R]]-
Since the solution is obtained by iteration, we have go(t) = 1, for all ¢, in zeroth order. The
invertibility of f(t) follows since its zeroth order is invertible. O

Example A.5 Let dy € O(M) and di(t) € KW(O(M)[t])[[h]] be given. Then we have a unique
invertible solution f(t) to the equation

CH0) = d)x (1) with f(0) =1, (A7)

where d(t) = dy + d4(t) and * is a star product on M. If d(t) = d is time independent then f(t) is
the x-exponential Exp, (td) as in [1], [T, App. A], and [59, Thm. 6.3.4]. Moreover, f(t) is x-invertible
for all ¢ and the %-inverse f(¢)~! is determined by the equation

% FO = —f() " xd(t) with f(0) =1, (A.8)

so we also can apply Proposition to this situation.

B Maurer-Cartan elements and the twisting procedure

In this section we recall some general facts about Maurer-Cartan elements and the twisting proce-
dure. Further details can be found in Sections 2.3 and 2.4 in [18] and in [19].

B.1 Maurer-Cartan elements in DGLAs
Recall that every DGLA (L, d, [, -] 2) in this paper is equipped with a complete descending filtration

e DFPLOFILOFLOoF LS., L=lmL/F'L, (B.1)

which means, in particular, that F'£ is a projective limit of nilpotent DGLAs.
By definition, a is a Maurer-Cartan element of L if « € F1L! (i.e., o € F'L and has degree 1
in £) and satisfies the equation

1
dea+ 5[04,04]5 =0. (B.2)

Notice that g(£) = F'L£Y forms an ordinary (not graded) Lie algebra which is the projective
limit of nilpotent Lie algebras. Hence g(£) can be exponentiated to the group

B(L) = exp( FL L), (B.3)
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and this group acts on Maurer-Cartan elements of £ via

. -1
o a6 = exp([. gl)a + SRLEE Z g (B.4)
[’7 f]ﬁ
where £ € F1£°, and the expression
exp([,€]c) — 1
['7 g]ﬁ
is defined via the Taylor expansion of the function % around the point z = 0. Both terms on

the right-hand side of (B.4)) are well defined because the filtration on £ is complete. We remark
that (B.4) defines a right action, i.e., for all £,7 € F1£? we have

(aexp(g))exp(n) — oP(CH(n) ’ (B.5)

where CH(&, n) is the Campbell-Hausdorff series:

CH(¢,n) = log(egen) =&+n+ %[5,7}] +.... (B.6)

We let MC(L) denote the transformation groupoid of the action (B4, called the Goldman-
Millson groupoid [38]: its objects are the Maurer-Cartan elements of £ and morphisms between
two Maurer-Cartan elements o and «q are elements of the group & (B.3]) which transform «; to
ag. We call Maurer-Cartan elements equivalent if they are isomorphic in MC(L) and denote by
mo(MC(L)) the set of equivalence classes of Maurer-Cartan elements.

Every morphism f : £ — £ of DGLAs defines a functor

fi : MC(L) — MC(L). (B.7)
According to [35], 38| 53], we have the following result.

Theorem B.1 If f : £L — L is a quasi-isomorphism of DGLAs, then the functor (B.7) induces a

bijection from mo(MC(L)) to mo(MC(L)).

Every Maurer-Cartan element o of £ can be used to modify the DGLA structure on £. This
modified structure is called the DGLA structure twisted by the Maurer-Cartan o« [52]. The Lie
bracket of the twisted DGLA structure is unchanged, and the differential is given by

dz =dc +[a, ]z (B.8)
The DGLA resulting from twisting £ by « will denote by L.

B.2 L, -morphisms of DGLAs

Two DGLAs £ and £ are called quasi-isomorphic if there is a sequence of quasi-isomorphisms f,
f1, f2, ..., fn connecting £ with L:

N LN S L N (B.9)

It follows from Theorem Bl that a sequence of quasi-isomorphisms (B.9) between the DGLAs £
and L defines a bijection between the sets of equivalence classes of Maurer-Cartan elements.
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We will need to extend the class of morphisms between DGLAs to L, morphisms. To this end,
we need the Chevalley-Eilenberg complex C(L£) of a DGLA L. As a graded vector space, C'(L) is
the direct sum of all symmetric powers of the desuspension (see Subsection [LT)) s~'£ of L:

c(L) = é Sk(s7iL). (B.10)
k=1

The space C(L£) is equipped with the following cocommutative comultiplication:

A:CL)—CL)y®C(L), (B.11)
defined by
A(vy) =0,
n—1
Avy,vg, ... 0p) = Z Z F(Vo(1)s -+ 5 Vo(k)) @ Wo(kg1)s - -+ Vo(n)) s (B.12)
k=1 oeSh(k,n—k)
where vy, ..., v, are homogeneous elements of s™*£, Sh(k,n — k) is the set of (k,n — k)-shuffles in

Sn , and the signs are determined using the Koszul rule.
It can be shown that every coderivation @ of the coalgebra C(L£) is uniquely determined by its
composition p o @ with the natural projection

p:C(L) —sIL. (B.13)

This statement follows from the fact that C'(£) is a cofree cocommutative coalgebraﬁ. A similar
statement holds for cofree coalgebras of other types, see [36, Prop. 2.14].

We define the coboundary operator @ of the complex C'(£) by requiring that @ is a coderivation
of the coalgebra structure and by setting

pOQ('U) :—dﬁ'l), pOQ('Ul,'UQ): (_1)‘01“—1[”17@2]57 pOQ('Uh'UQw"aUk) :0 (k>2)7

where v,v1,...,v;, are homogeneous elements of £. The equation Q% = 0 readily follows from
the Leibniz rule and the Jacobi identity. Thus to every DGLA (L,dg, [, ]z) we assign a DG
cocommutative coalgebra

(C(£),Q)

without counit.

Definition B.2 An L., morphism B
F:L-—L

from a DGLA L to a DGLA Lisa (degree zero) morphism of the corresponding DG cocommutative
coalgebras:

F:(C(£),Q) — (C(L),Q).

The compatibility of F' with the comultiplication A (B.II)) implies that F' is uniquely determined
by its composition p o F' with the projection

p:C(L) —s'L.

"In fact, C(L) is a cofree cocommutative coalgebra without counit.
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We denote by F;, the following restriction of p o F:

_ n(o—1 —-1p
F,=poF Sn(s*lc)s (sTL)—s L. (B.14)

The maps F},’s are the structure maps of the Lo morphism F'. The presence of the desuspensions
in (B.14) simply means that the map F;, can be thought of as a map from L®" to L of degree 1 —n
with the following symmetry in the arguments:

Fn("wfylu’}?w") = _(_1)|A/1HPYQ|F7L('"7’)/27717"')7

where |7;] is the degree of «; in L. We tacitly use this identification in our paper.
The compatibility of F' with the codifferentials @) and @ is equivalent to a sequence of quadratic
relations on Fj,. The first of these relations says that the map

F:L— L
intertwines the differentials d, and d:
Pi(dey) =dzFi(y), ~v€L. (B.15)
The second relation says that Fj is compatible with the brackets up to homotopy:
dz Fa(m1,72) + Fa(den, v2) + (~ )M Fy(m,deye) = Fi(ly, vle) — [Fi(n), Fi()lz,  (B.16)

where v1,7v2 € L.
Condition (B.I5) motivates the following definition:

Definition B.3 An Lo, morphism F : L =— L is an Lo quasi-isomorphism if Fy induces an
isomorphism from H®(L,d.) to H*(L,dz).

Just as ordinary quasi-isomorphisms, an L, quasi-isomorphism between DGLAs induces a
bijection between the sets of equivalence classes of Maurer-Cartan elements. More precisely, if F
is an Ly, morphism from £ to £ then, for every Maurer-Cartan element « of L,

Z ni .,Q) (B.17)

is a Maurer-Cartan elementd of the DGLA £. Furthermore, if « is equivalent to o’ in £, then 3 is
equivalent to the Maurer-Cartan element

- L
zz: ; cad)
of £. As a result, the correspondence
a— (= ii Y (B.18)
= nl
induces a map

F, : mo(MC(L)) — mo(MC(L)) . (B.19)
Due to [I8] Prop. 4] we have:

®The infinite series in (BI7) is well defined since a € F'£ and £ is complete with respect to its filtration.
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Proposition B.4 If F : £ ~— L is an Lso quasi-isomorphism, then the map (B19) is a bijection.

Given a Maurer-Cartan element o € £, any Ly, morphism F' : L =— L can be modified to
an L., morphism F'® between the twisted DGLAs £ and ol , where (3 is as in (B.I7), see [I8|
Prop. 1]. We say that the Lo, morphism F® : L% »— LP is twisted by the Maurer-Cartan element
«a; its structure maps F; are given by

oo
1
Ff(%,w,---ﬁn E k‘_ k+n "aaa717727"'a7n)7 (BZO)
k=0

where 7; € £. In particular, F}* intertwines the differentials in £% and L5

o0 [e.e] 1
Zk’_ k—l—l y & d£7+ ZE d + /87 )F;H_l(a,a,...,oz,’y). (B21)
k=0 k=0

According to [18] Prop. 1], twisting an L., quasi-isomorphism by a Maurer-Cartan element gives
an Ly, quasi-isomorphism. B

One can identify Lo, morphisms from a DGLA £ to a DGLA £ with Maurer-Cartan elements
of another DGLA, denoted by H. As a graded vector space,

H = Hom(C(L), L). (B.22)

The differential dy and the bracket [-, -]y are given by the formulas:
dn¥ = dz0 — (-1)VvQ, (B.23)
[0, 0x(X) =Y (-1)I¥lw(x;), 0X))] 7, (B.24)

where AX =3, X; ® X/, and @ is the codifferential on C'(£). The DGLA H is equipped with the
following descending filtration:

H=F'HOF’H>D---DFH>...
Fry = {f € Hom(C(£), £) | flgerop) = 0} : (B.25)

The DGLA structure defined by (B:23)) and (B.24]) is compatible with this filtration, and the DGLA
H is complete with respect to this filtration. Thus the group &(H) is defined for H and acts on
Maurer-Cartan elements of H according to (B.4]).

Following [19, 56], the correspondence

Fr—poF. (B.26)

identifies an Lo, morphism F': £ »=— £ with a Maurer-Cartan element of the DGLA H. Moreover,
for two Lo, morphisms F' and F the Maurer-Cartan elements p o F' and p o F are connected by
the action (B.4)) of the group &(H), and the structure maps Fy and F} are chain homotopic. As
a result, if the Maurer-Cartan elements p o F' and p o F' are equivalent and F' is an Lo quasi-
isomorphism, then so is F. We say that two Lo morphisms F' and F are homotopy equivalent if
the corresponding Maurer-Cartan elements p o F' and p o F' are connected by the action (B.4]) of
the group B(H) .

It is natural to ask whether two homotopy equivalent L., morphisms induce the same map from
mo(MC(L)) to mo(MC(L)). The following lemma gives a positive answer to this question.
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Lemma B.5 Let £ and L be DGLAs, and let F and ﬁNbe two Lo, morphisms from L to L. If
the corresponding Maurer-Cartan elements po F and po F' of the DGLA 'H (B.22) are equivalent,
then F' and F induce the same map from mo(MC(L)) to mo(MC(L)) .

Proof. We need to show that for every Maurer-Cartan element « of £, the Maurer-Cartan elements

Zni ..,a), and Zni L,Q)

are connected by the action (B.4) of the group @(E) Let us denote by f (resp. f) the composition
po F (resp. po F): N N

f=poF, f=poF.
We know that f and fare equivalent Maurer-Cartan elements of the DGLA H. Hence there exists
an element 1) € F'HO such that

f:emﬂyﬂnﬁ4fmmbd%0_ldnw (B.27)

Let us consider the element

=1
Z—'(a,a,... , Q) (B.28)

in the completion of the coalgebra C'(L£) with respect to the natural filtration coming from £. A
direct computation shows that applying both sides of equation (B.27) to the element (B.28) and
using the Maurer-Cartan equation (B.2]), we obtain

. exp([- €)1

B =exp([,¢{]7)B + nd, dz¢,

where the element £ € F 170 is defined by

It follows that 3 is connected to the Maurer-Cartan element 8 by the action (BA) of the group
& (L), concluding the proof. d

B.3 The case of h-adic filtration

If (£,d,[-,"]) is a DGLAH which is not equipped with a descending filtration then, extending the
differential d and the Lie bracket [-, -] by C[[h]]-linearity, we get the DGLA L[[h]] over the ring C[[A]]
with the obvious descending filtration

FrL = rEL([n]). (B.29)

The new DGLA L[[A]] is clearly complete with respect to this filtration. This case is of central
importance in our paper and, here, we will give an alternative description of (iso)morphisms in the
Goldman-Millson groupoid MC(L[[A]]).

Let o € RLY[A]] and & € A(LY[t])[[A]]. Due to Proposition [A1] the differential equation

Ea(t) =d¢ + [a(t), €] (B.30)

9Tn this subsection we omit the subscript £ for the differential dz and for the bracket [, -]z .
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with initial condition

a(0) =« (B.31)
has a unique solution in A(L'[t])[[A]] . We claim that if o satisfies the Maurer-Cartan equation
1
do + E[a,a] =0,

then so does «(t) . Indeed, let
U(t) = da(t) + %[Ox(t), a(t)].

Taking a derivative in ¢ and using (B.30)), we have

d 1 1
E(da(t) + 5[04(75)7 a(t)]) = [da(t) + 5[@(15), a(t)], &,
that is,
Ly = [w(e).g
dt a (el

Note that ¥(0) = 0, since « satisfies the Maurer-Cartan equation. Then Proposition [AT] implies
that U(t) =0, i.e., a(t) satisfies the Maurer-Cartan equation for all ¢.

If ¢ does not depend on ¢ (that is & € hL°[[h]] ) then the initial value problem (B.30), (B.31)
can be solved explicitly. Indeed, in this case we have

exp(tl€) -1,
['7 5][,
In other words, if £ does not depend on ¢, then the evaluation of «(t) at ¢ = 1 is connected with «
by the action (B.4]) of the group &(L[[h]]) .
We will now show that, for an arbitrary element ¢ € A(L°[t])[[A]], the evaluation (1) is also
connected with a by the action of the group &(L][[A]]). We need the following technical statement:

aft) = exp(t[, {])o + £

Lemma B.6 Consider a Maurer-Cartan element o of L[[R]], let & be an element of h(LC[t))[[R]],
and a(t) be the unique solution of (B.30) with initial condition (B.31). Then for everyn € hL°[[R]]
and every monnegative integer k, the element

k1
A(t) = exp <I:k_:11 [-,n]) at) + = <k+[17 [177] 77]) : dn (B.32)
satisfies the differential equation
D) = dE + A1), (B.33)
where N el
§=tt+ o (ol €

Proof. We compute the derivative explicitly and obtain

A0 =t exp (bl ) a0+ exp (bl ) de

dt k+1 k+1
tk-i—l & tk-l—l
roxp (o) a0+ hexp (bl )
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The latter can be rewritten as

th( t) = [ Xp (;kjl [-,77]> a(t), t*n 4+ exp (;kill [.717]> 5]

oo () e,

tk+1 tk+1 tk+1
o () dexp (— gl ) e (o) €
tk-i-l k-i-l
—dexp<k+1[ >£+dexp< )

=d ( 1+ exp < Hll [‘ﬂ?]) §>
k-i-l

e o)

+<ex (k ])dexp< 5 1[,n]>—d>exp<,§+1[-,n]>£

[exp kT[ _ 1dn,exp (k :11 [-m]) £l -

Thus, in order to prove the proposition, we need to show that

+d(t*n) + [, 7]

Hence

+
tk

k41

- < s} [.777]) [d,exp <_ s} [-,n]ﬂ _ {exp (ZH [.,n]) - 1dn, ] | B1)

E+1 E+1 [-, 7]

One now verifies that both sides of (B.34]) satisfy the same differential equation:

d k k
Z6(t) = [Tl 0(8)] + 1 [an. )
with the same initial condition
©(0) = 0.
Therefore, by Proposition [A.1l (B.34)) holds and the result follows. O

We can now prove the main result of this subsection.

Proposition B.7 Let a be a Maurer-Cartan element of L[[h]], & be an element of h(LO[t])[[R]],
and a(t) be the unique solution of (B.30) with the initial condition (B.31)). Then the Maurer-Cartan
element a(1) is connected with « by the action (B.4) of the group &(L[[h]]) .

Proof. Let us denote by E(§, ) the evaluation of «(t) at t = 1:

E(,a) =at)| (B.35)

t=1

where «(t) is the solution of the differential equation (B.30]) satisfying a(0) = «. In general, we
have & € B (L[t])[[R]], where m is a positive integer, and

E=t"nmE g A+ TR i TR o+ VR, mod BT (B.36)
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&m,j € L0, for some nonnegative integers k and N with k < N . Lemma [B.6] implies that

exp {_ —hmgm’k
(E(¢ a)) MU =B, ), (B.37)
where ¢ € 1™ (£°[t])[[7i] and
&=t e L AR+ VR, mod AT (B.38)

with £, . € L0,
Repeating this argument N —k — 1 times, we see that there exists elements & € A™ 1 (LO[t])[[A]]
and 1, € A" L°[[A]] such that

B(&,0) = (E(& ) ™" (B.39)
Therefore we have an infinite series of elements 7,,4,_1 € A™T" 1 £O[[R]] and elements
bn € ML), n21,
such that B N
E(&,a) = (E(§,a)) ™™, (B.40)
where

Ann = explnim] exp[m+1] - exp[nmin-1] -
Since for large n the element 7,1 lies in the deeper filtration subalgebra A™+"~1£O[[A]], the
infinite product
A = exp[nm] expNm+1] - - - exp[man] - - -

is a well defined element of &(L[[%]]) . Furthermore, due to (B.40]), we have

o= (a(l))A

and the proposition follows. O

C Independence of Fedosov’s differential: proof of Theorem

This section presents the proof of Theorem 2.6] asserting that the correspondence between equiv-
alence classes of star products and equivalence classes of formal Poisson structures induced by the
sequence of Lo, quasi-isomorphisms (2Z.31]) does not depend on the choice of the connection/Fedosov
differential.

We would like to emphasize that we prove (and use) Theorem in the setting where the
ground field C is replaced by the ground ring'd C[[R]]. In particular, the connection form I'" in (2.4))
is replaced by a general formal Taylor power series in h:

Pﬁ:P0+hP1+h2P2+...,

and the element A (2.0]) is allowed to have the more general form:

G rAJ 7 i 0
A= " dafw Al eyt y "5y © Q' (M, TR
p=2,r=0

109ee Remark 241
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Although the proof is long and technical, the general idea is simple. The key point is observing
that changing the geometric Fedosov differential corresponds to twisting the DGLAs Q* (M, ’Z;;lryl) [[A]]
and Q*(M,C**1(SM))[[h]] by a Maurer-Cartan element which is equivalent to zero. What makes
the proof intricate is that one needs filtrations on these DGLAs which are more subtle than the
h-adic ones.

Proof of Theorem Let us introduce the following descending filtrations on the DGLAs
Q° (M, ’Z;)'jyl)[[h]] and Q*(M,C**(SM))[[h]]: The m-th subspace §™Q*(M,C*(SM))[[h]] of the
filtration on Q°®(M,C*(SM))[[h]] consists of the elements P of Q*(M, C*(SM))[[h]] satisfying

P (FPSMh)] @ F2PSMA)] @ --- @ FP*SM[[h]]) C @ Q5(FISMIR)]), (C.1)

st+t=m+p1+p2+--+pk

where the filtration F*SM][[h]] is defined in Remark 25 the m-th subspace F"Q*(M,TF, )[[}]]

» “poly

of the filtration on Q°(M, ’Z;’f)ly)[[h]] is specified by the same condition: for v € Q°*(M, ’Z;]f)ly)[[h]],
viewed as a element of Q®(M,C*(SM))[[A]],
v (FPLSMI[h)] ® FP2SMI[h]] ® - -- @ FPSMI[h]]) C a Q¥ (FISMIA]]). (C.2)

s+t=m-+p1+p2+--+pk

The filtrations F*Q* (M, T*T1[[A]] and F*Q*(M,C*(SM))[[H]] assign to y', dat, 0y and h the

? “poly
degrees 1, 1, —1, and 2, respectively. For the filtration §* on Q°*(M, ’Z;)’;[yl)[[h]] we have
O (M, Tt D[R] = lim Q*(M, T3t D[R] / 3™ Q0 (M, Ty D[] (C.3)
and
O(M, Typ IIR)] = 370 (M, Tui )I[A]], (C.4)

where d is the dimension of M. Although the filtration §* on Q*(M,C*T'(SM))[[A]] is unbounded
in both directions, we still have the following important properties:

Q* (M, C*H(SM))[[]] = lim Q* (M, C*FH(SM))[[1]] / §7Q* (M, C*FH(SM))[[A] (C.5)
Q* (M, C*H(SM))[[A]] = 3§ (M, C* T (SM)|[A]- (C.6)

Property (C.5) follows from the fact that the local sections of the sheaf C*(SM) are continuous
(O(U)-polylinear) maps from I'(U,SM)®* to I'(U,SM) in the y-adic topology on I'(U, SM) .
Let us consider two different geometric Fedosov differentials
D=V —-0+A, D=V—5§+A4A, (C.7)
and let 7, 7 be the corresponding isomorphisms (see (2.23))),

7 X*(M)[[R]] = T(M, T, )[[h]] Nker D,

’ “pol
. ro - (C.8)
7 XA = T, T, ) )] Aer D
The geometric Fedosov differential D can be rewritten as
D=D+H, where HeFQ'(MT),)H]. (C.9)
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Since D? = 0, the element H satisfies the Maurer-Cartan equation

1
DH + 3[H, Hsy = 0.

Let us consider the natural extension of the map o (2.10) to Q°(M, Ty, )[[A]],

o(y) =2 a0

For example, the subspace Q°(M, ’Z;)poly)[[h]] Nker o consists of fiberwise polyvectors of the form

v = ZZh “’ﬁ];”]q )y Yy oy Oy A Oyin N A Oy

k>0 g>1

(with summation in ¢ starting with 1). The element H (C.9)) is a Maurer-Cartan element of the

the following truncation of the DGLA (Q*(M, ’Z;';[yl) s Jsw):
Lr =P WM, T[] nkero & @ Q7N (M, TE DA (C.10)
k>0 k>0

At the level of the associated graded complex

S5 Lr /5 Lr,

m

the differential D (C.7) boils down to —§. Due to (29) and Remark [22] the associated graded
complex of L7 is acyclic. Using properties (C.3]) and (C.4]), we conclude that, for all m, the sub
DGLAs §" L7 and the sub DGLA L7 are acyclic. Theorem [B.1] then implies that every Maurer-
Cartan element of the DGLA (CI0) can be brought to zero via the action of the group

exp (gl QO(M, T,1y, ) [A]] N ker a). (C.11)

Since H is a Maurer-Cartan element, it follows that there exists an element

XegF o', 1!

poly

)[R} Nker o (C.12)

such that
exp([, X]sn) — 1

['7 X]SN
Since components of H have degrees in y greater than or equal to 1 and the contracting ho-

motopy 0! for § raises the degree in y by 1, we conclude that one can find the element X (C.12])
satisfying (C.13) as well as the additional property

H= DX. (C.13)

0y X o 0, forall . (C.14)

In other words, we can find X whose components have degrees in fiber coordinates y greater than
or equal to 2 N
It follows from (C.I3) that the operator eX intertwines the differentials D and D:

D=e¢XoDoe¥. (C.15)

Furthermore, combining equation (CI5) with property (CI4) we deduce that, for every formal
Poisson structure ,

exp(=[-, X]sn)7(m) = 7(m). (C.16)
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Indeed, (C.13) implies that both sides of (C.16]) are D-flat. Then, (C.14)) implies that
o(r(m)) = o(exp(=[, X]sn)7(7) ).

Therefore, since every D-flat section «y is uniquely determined by its image o(7), we conclude that
(C16)) holds. Combining equations (C.I3) and (C.I6]), we deduce that

exp([, X]sn) — 1
['7 X]SN
Hence the Maurer-Cartan elements 7(7) and H + 7(7) of the DGLA (Q*(M, T* )[[A], D, [, ]sn)

» “poly
are equivalent.
Let K* be the L., quasi-isomorphism

H +7(m) = exp([, X]sn)7(m) +

DX. (C.17)

K™ (M, T3 D[R, D, [ sn) =— (Q8(M,C*H(SM)[[R]], D + 0", [, )

of Subsection 2.2] and let K™ be the analogous L., quasi-isomorphism obtained by replacing D
with the other geometric Fedosov differential D (see (C1)). Let p be the Maurer-Cartan element
of the DGLA

(Q* (M, C*HH(SM))[[]], D + 81, [ |g) (C.18)

corresponding to the Maurer-Cartan element 7(7) via the Lo, quasi-isomorphism K™ i.e.,
= 1
Z; (1), ..., 7(7)). (C.19)

Similarly, we let i be the Maurer-Cartan element in (Q°*(M, C*t1(SM))[[A]], D + oHoch [ 114 cor-
responding to the Maurer-Cartan element 7(7) via K™:

=Y if?f}" (7(n),7(x),...,7(n)). (C.20)

Combining i with H = D — D, we get a Maurer-Cartan element H + i of the DGLA (C.I])).

Claim C.1 The Maurer-Cartan element H+ i corresponds to the Maurer-Cartan element H+7(m)
via the Loy quasi-isomorphism K™, that is,

Zi (H+7(r),H+7(n),....,H+7(m)). (C.21)

3

Proof. We notice that K™ is obtained from K™ via twisting by the Maurer-Cartan element H.
Therefore the right hand side of (C.2I]) can be rewritten as

Z%Kﬁw (H +7(m), H +7(x),..., H + 7(m))

1 S .
:Z;EKZ (H,H,...,H)%—Z:laKfl (7(m), 7(m),...,7(m)).

Using the properties P 2 and P Bl we rewrite the first sum in the previous equation as
> L
Z - ...,H)=H.
= n!

49



This proves Claim [C.1l v
Since the Maurer-Cartan elements 7(m) and H + 7(w) are equivalent in the DGLA

(@ (M, Tt DAL D, [ 1sw), (C.22)

Claim [C] and Proposition [B:4] from Appendix [B] imply that the Maurer-Cartan elements p and
H + ji are equivalent in the DGLA (C.I8). Furthermore, since the Lo, quasi-isomorphism K™ is
compatible with the filtrations (C]) and (C2]), we conclude that the transformation connecting
and H + g has the form

exp(n), (C.23)

where 7 is an element of F'Q®(M, C*1(SM))[[R]] of total degree 0.
In general the element p (CI9) have components in exterior degrees 0, 1, and 2. Let us show
that the components of exterior degrees 1 and 2 can be eliminated by a transformation of the form

(C23).

Claim C.2 There exists an element n € FQ*(M,C*TH(SM))[[R]] of total degree O such that the
Maurer-Cartan element

iy, = exp([-7))p + —eXp([[:’ 77]]2) —L (D + Moy (C.24)

belongs to Q°(M, C3(SM))[[h]] -

Proof. Let us denote by py (resp. by pe) the component of p of exterior degree 1 (resp. 2).
According to the definition of K* (230)), we have

- Z %KHH (2, (), (), ... () (C.25)
Z Kn+2 ity i, 7 (), 7 (), - ,7(m)) s (C.26)
where pl) is defined in (Z27). Since the series 7 (Z.41]) starts with &, we have
m=3 %K,m( Cdat OV, ) mod  FQN(M,C(SM))[H] (C.27)
_ Z % Koo — daidy, —daid; 7V, 7%, a%) mod FQ2(M,COSM))[H], (C.28)

where

0,0
oyt Oyl

(Note that since 7 is a series in A, the coefficients 7% are h-dependent.) We claim that

¥ = 7' (x)

Knp1(—da'dy,n¥ 7%, 7¥) =0, Kppo(—da'd,, —dald,, 7%, a%,... ,7¥) =0

for all n > 1. The latter equality follows from the fact that the components of the vector dxi(?yi
and the bivector ¥ do not depend on y. As for the former equality, we note that every term in

Knp1(—d2'y, ¥, 7%, ..., 7¥)(a), a € T(M,SM)

contains a y-derivative of the expression 7 ()0,:0,:a(x,y) as a factor, and 7 (2)9,:0,,a(x,y) = 0
due to the antisymmetry of . Thus both components 3 and pg belong to §1Q* (M, C*T(SM))[[A]].
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On the other hand, the differential D+ 9M°°" boils down to —3& + 07N at the level of the associated
graded complex

P yres @, co T (SM)[[A)/FH Q0 (M, o (S M))[[A]).

m

Thus Claim [C.2] follows from the fact that the differential § is acyclic in positive exterior degree. V
Since g, (C24) has exterior degree 0, the Maurer-Cartan equation for Ilg,

1
DIgy, + oMM TIgy, + §[Hﬁba gple = 0,

is equivalent to the pair of equations
Dllg, =0 (C.29)

1
oMot Igy, + 5 [Ma, ) = 0. (C.30)
Equation (C.30)) implies that Ilgp, gives us a new associative product on SM[[A]]:
a1 ¢ as = aijaz + Hﬁb(al, ag), (C.31)

where a1, az € T'(M,SM)[[h]]. Equation (C29) implies that D is a derivation of the product ¢ .
Similarly, the Maurer-Cartan element g is equivalent to a Maurer-Cartan element Ilg, €
QO(M,C%*(SM))[[R]] of the DGLA

(Q*(M, C*HSM))[[A)], D + 0™, [, ]e). (C.32)
Just as IIgp, the element Tlgy, gives us an associative product on SM[A]] by
a1 S as = ajag + ﬁﬁb(al, ag), (033)

and the differential D is a derivation of 3.
To explain how Ilg, and Ilg, are related to the corresponding star products * and % on M,
recall that we have the isomorphisms

7: O(M)[[A]] = T(M,SM)[[h]] Nker D and 7 :O(M)[[h]] — T'(M,SM)][[h]] N ker D. (C.34)
These isomorphisms are constructed by iterating the following equations:

T(f)=f+0 V() +A-7(f),  feOM)H], (C.35)
()= f+6HVF(H+AF(f),  feOMH], (C.36)

in degrees in the fiber coordinates y’s, respectively. The star products #, corresponding to Ilgp,
and #’, corresponding to Ilgy,, are defined by

fix fa = fife +an(7(f1), 7(f2)) o and  f1¥fo = fifo + U (F(f1), 7(f2)) 4o’ (C.37)

respectively, where f1, fo € O(M)[[A]]. Our final goal is to show that  is equivalent to .

Let us combine I, with the difference H = D —D to get a Maurer-Cartan element H + Ilg,
of the DGLA (CI8). Next, we will show that the Maurer-Cartan elements Ilg, and H + Ig, of
the DGLA (C.I8]) are connected by an equivalence transformation of a special form.
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Claim C.3 There exists an element 1 € '+ QO(M,CH(SM))[[h]] such that

exp([, ¢le) — 1
['7¢]G

Proof. Since i is equivalent to Ilg, in the DGLA (C.32)), one can check that the Maurer-Cartan
element H + Ji is equivalent to H + Ilg, in the DGLA (CI8). Using that the Maurer-Cartan
element p is equivalent to Ilg, and H + 1 in (C.18), we conclude that the Maurer-Cartan elements
gy, and H + g, are also equivalent. In addition, using Claim [C.2] we see that the equivalence
transformation which connects the Maurer-Cartan elements Ilg, and H + I, has the form

H + gy, = exp([-, ¥]e)Hap + (Dt + 9Mochy). (C.38)

exp(v),
where 9 is an element of F1Q*(M,C*TH(SM))[[h]] of total degree 0.

In general 1) may have two non-zero components,

Y=o + Y1,

where vy € F1QV(M, CH(SM))[[A]] and 1 € FQHM,CO(SM))[[R]]. Our purpose is to show that
11 can be eliminated by adjusting ¢ via the following transformatio L1}

¢+ CH(DO + 09 + [Ty, 0, ), (C.39)

where 0 € L Q°(M, C°(SM))[[A]] and CH is the Campbell-Hausdorff series (B.6]). The key point is
that the element exp(D6 4 9Hohg 4 [IIgy, 8] ) leaves the Maurer-Cartan element ITg, unchanged.
Hence the element ¢ in (C38)) can always be replaced by the right-hand side of (C.39)).

Let us suppose that
g1 € QN (M, CO(SM))[[A]], (C.40)

for m > 1. Combining the contributions to Q?(M, C°(SM))[[h]] in (C:38) we see that
1 =0 mod  F"TQEM,CY(SM))[[H]. (C.41)
Using the acyclicity of § in positive exterior degrees, we conclude that there exists a
Om € §Q (M, CO(SM))[[]

such that
Y1 — 00y, € I QN (M, CO(SM))[[H]).

The latter means that the Q'-component of CH (D9 4 oMochg 4 (Mg, ) 1/1) lies in the “smaller”
filtration subspace §" ! QY (M,C°(SM))[[R]]. Iterating this argument infinitely many times and
using the completeness of the filtration §°, we conclude that there exists an element

0 €F' Q(M,CO(SM))[[n]]

such that
CH(DO + 9"°"0 + gy, 0], 1) € QO(M, CH(SM))[[A]].
This completes the proof of Claim [C.3]. v

HEollowing E. Getzler [34] [35] the Goldman-Millson groupoid of the DGLA (CI8]) can be upgraded to a 2-groupoid.
The transformation (C.39)) is an example of a 2-morphism in this 2-groupoid.
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Since the element v has zero exterior degree, equation (C.38)) splits into its homogeneous exterior
degree components:

_exp([,¥]e) —1
H = TR n e Dy, (C.42)
Ui, = exp([, ¢le) s, + exp([:’ Yo) 1 ooy, (C.43)
[ 7¢]G

Equation (C.42]) implies that the operator
Ty = exp() : T(M, SM)[[h]] — T'(M, SM)[[h]]
intertwines the geometric Fedosov differentials D and D:
TyoD=DoTy. (C.44)
Similarly, (C.43) implies that T, intertwines the fiberwise products (C.31]), (C.33)):
a1 Say =T_y(Ty(ar) 0o Ty(az)) for ay,ax € T'(M,SM)[[R]]. (C.45)
Using Ty, we define a C[[h]]-linear map
T: OM)[[Al] — OM)[[Al], T(f) = o(Ty o 7(f)), (C.46)

for f € O(M)][[h]], where o is defined in (2I0) and 7 is defined in (C.36). Just as 7, the map
7 satisfies property (2.I6]). Combining this observation with the fact that ¢ belongs to the first
filtration subspace, it follows that

T =id + Ty + BTy + - -,

where T7,T5,... are differential operators on M. Since Ty, intertwines the geometric Fedosov
differentials D and D, we get that
DTyo7(f) =0, (C.47)

for all f € O(M)[[A]]. On the other hand, every D-flat section v of SM[[A]] is uniquely determined
by its image (7). Hence (C.46) and (C.4T) imply that

Ty7(f) = 7(T(f)) (C.48)

for all f € O(M)[[h]]. Combining this observation with (C.45]), we conclude that 7" intertwines the

star products (C.37):
T(f1) «T(f2) =T(f1*[f2), f1, f2 € O(M)[[n]].

Thus we proved that the correspondence between equivalence classes of star products and
equivalence classes of formal Poisson structures produced by the sequence of L., quasi-isomorphisms
([231)) does not depend on the choice of the connection/Fedosov differential.

O
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