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1 Introduction

We consider a mathematical program with complementarity constraints (MPCC)

min f(x) s.t. G(x) ≥ 0, H(x) ≥ 0, 〈G(x), H(x)〉 = 0, (1.1)

where f : IRn → IR is a smooth function and G, H : IRn → IRm are smooth mappings
(precise smoothness requirements would be specified when needed). Additional equality and
inequality constraints can be added to our problem setting without any principal difficulties.
We shall consider the form of (1.1) for simplicity.

MPCC is an important example of a mathematical program with equilibrium constraints
[17, 20]. As is well known, feasible points of MPCC inevitably violate standard constraint
qualifications, and thus the problem often requires special analysis and special algorithmic
developments. Concerning the latter, it should be noted that there exists some numerical
evidence of good performance of the usual sequential quadratic programming (SQP) algo-
rithms when applied to MPCC [6]. Also, [7] gives some partial theoretical justification for
local superlinear convergence of SQP when applied to MPCC. However, it is very easy to
provide examples satisfying all natural in MPCC context requirements and such that SQP
does not possess superlinear convergence; see, e.g., the example in [7, Sec. 7.3], discussed also
in detail in [10, Sec. 6]. Therefore, developing special algorithms, which take into account
MPCC structure and have guaranteed attractive convergence properties, is still worthwhile.

The following idea, called “lifting MPCC”, had been proposed in [28]. Consider the set
in the space IR2 of variables (a, b) defined by the basic complementarity condition:

D = {(a, b) ∈ IR2 | a ≥ 0, b ≥ 0, ab = 0}.

This set is “nonsmooth”, in the sense that it has a kink at the origin. Introducing an artificial
variable c ∈ IR, consider a smooth curve S in the space IR3 of variables (a, b, c) such that the
projection of S onto the plane (a, b) coincides with the set D. This can be done, for example,
as follows:

S = {(a, b, c) ∈ IR3 | a = (−min{0, c})s, b = (max{0, c})s}, s > 1.

In [28], it is suggested to use the power s = 3. This leads to a reformulation of the original
problem (1.1) given by

min f(x) s.t. − (min{0, y})3 −G(x) = 0, (max{0, y})3 −H(x) = 0, (1.2)

where the operations of taking minimum, maximum, and applying power are understood
component-wise. As is easy to see, a point x̄ ∈ IRn is a (local) solution of (1.1) if, and
only if, the point (x̄, ȳ) ∈ IRn × IRm is a (local) solution of (1.2) with ȳ uniquely defined
by x̄. At the same time, the constraints in the reformulation (1.2) are twice differentiable
equalities, which appear much simpler than the original complementarity constraints in (1.1).
Of course, this does not come for free – a closer look reveals that the Jacobian of the Lagrange
optimality system of the reformulation (1.2) is inevitably degenerate whenever the lower-
level strict complementarity does not hold at x̄, i.e., if Gi(x̄) = Hi(x̄) = 0 for some i ∈
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{1, . . . , m}. In fact, at any feasible point of (1.2) the derivatives of the Lagrangian with
respect to yi for indices i that fail strict complementarity are zero, and thus the Jacobian
matrix has zero rows. To deal with degeneracy, in [28] an approach somewhat similar in
spirit to relaxation/regularization schemes for MPCC [27, 25] is suggested. Geometrically,
degeneracy arising in the lifted reformulation means that the tangent of the smooth curve
S (regardless of the power s used in its definition) at the point (0, 0, 0) is always vertical.
It is proposed in [28] to add to the objective function of (1.2) a certain regularization term
(linear in y) which shifts the point corresponding to the solution from (0, 0, 0) to some other
nearby point on S where the tangent to S is not vertical. This point is obtained by solving
the regularized problem and is then used to initialize the method for solving (1.2) itself,
the hope being that such “pre-processing” may prevent the method from getting stuck at
nonoptimal weakly stationary points. However, one still needs to solve problem (1.2), whose
Lagrange optimality system is likely degenerate. Also, the numerical experience reported in
[28] indicates that the starting point used to initialize the method for the regularized version
of (1.2) must already be feasible, which is a limitation in general.

The issue of degeneracy of smoothed lifted MPCC is similar in nature to degeneracy of
smooth equation-based reformulations of nonlinear complementarity problems (NCP) in the
absence of strict complementarity [12]; see also [8] for a detailed discussion. At the same
time, it is known that nonsmooth equation-based reformulations of NCP, such as based on
the Fischer-Burmeister function [5, 1] or the min-function, can have appropriate regularity
properties without strict complementarity and are thus generally preferred for constructing
Newton-type methods for NCP. Drawing on this experience for NCP, in this work we propose
to use, instead of power s = 3 which leads to degeneracy of the Lagrange optimality system
of the lifted MPCC reformulation, the power s = 2 which leads to its nonsmoothness but can
be expected to have better regularity properties. Specifically, consider the reformulation of
(1.1) given by

min f(x) s.t. (min{0, y})2 −G(x) = 0, (max{0, y})2 −H(x) = 0. (1.3)

As we shall show, nonsmoothness of the Lagrange optimality system of (1.3) is structured
and allows application of the semismooth Newton method [14, 15, 22, 23] under reasonable
assumptions. Moreover, it turns out that the squared residual of the Lagrange optimality
system of (1.3) is actually continuously differentiable, even though the system itself is not.
This opens the way to a natural globalization of the local semismooth Newton method. The
latter is again similar to the nonsmooth Fischer-Burmeister equality-based reformulation
of NCP, for which the squared residual becomes smooth and can be used for globalization
[5, 1, 11, 2].

The rest of the paper is organized as follows. In Section 2 we collect some preliminary
material and terminology from MPCC literature, needed for further developments. Section 3
contains the statement of the semismooth Newton method for the lifted reformulation of
MPCC and the proof of its local superlinear/quadratic convergence. A comparison with
some alternatives is also given in this section. Globalization issues are discussed in Section 4
and numerical results are reported in Section 5.

Some final words about our notation. For u, v ∈ IRq, by 〈u, v〉 we denote the Euclidean
inner product between u and v, and by ‖·‖ the associated norm. If u ∈ IRq and I ⊂ {1, . . . , q},
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then uI stands for the subvector of u with components ui, i ∈ I. By diag(u) we define the
quadratic q × q-matrix with the components of the vector u ∈ IRq on the diagonal and
zeroes elsewhere. For an arbitrary matrix A, we denote by AT its transpose. Finally, we
say that Φ : IRq → IRr is locally Lipschitz-continuous with respect to the point ū ∈ IRq if
‖Φ(u)− Φ(ū)‖ ≤ `‖u− ū‖ for some ` > 0 and all u ∈ IRq close enough to ū.

2 Some basic facts about MPCC and lifted MPCC

Our notation and definitions are standard in MPCC literature, e.g., [26, 7, 9]. Let x̄ ∈ IRn

be a feasible point of problem (1.1). We define the sets of indices

IG = IG(x̄) = {i = 1, . . . , m | Gi(x̄) = 0},
IH = IH(x̄) = {i = 1, . . . , m | Hi(x̄) = 0},

I0 = IG ∩ IH ,
(2.1)

where IG ∪ IH = {1, . . . , m}, and I0 is called the set of degenerate indices. If I0 = ∅, we say
that lower-level strict complementarity holds at x̄. This condition, however, is considered as
restrictive in MPCC literature. We emphasize that it would not be assumed anywhere in our
developments.

The special MPCC-Lagrangian for problem (1.1) is given by

L(x, µ) = f(x)− 〈µG, G(x)〉 − 〈µH , H(x)〉,

where x ∈ IRn and µ = (µG, µH) ∈ IRm × IRm. A point x̄ which is feasible in (1.1) is called
weakly stationary if there exists µ̄ = (µ̄G, µ̄H) ∈ IRm × IRm such that

∂L
∂x

(x̄, µ̄) = 0, (µ̄G)IH\IG
= 0, (µ̄H)IG\IH

= 0. (2.2)

The point x̄ is called strongly stationary if, in addition to (2.2),

(µ̄G)I0 ≥ 0, (µ̄H)I0 ≥ 0. (2.3)

When conditions (2.2) and (2.3) hold, µ̄ is called an MPCC-multiplier associated to the
strongly stationary point x̄ of problem (1.1).

It is said that the special MPCC linear independence constraint qualification (MPCC-
LICQ) holds at a feasible point x̄ if

G′
i(x̄), i ∈ IG, H ′

i(x̄), i ∈ IH are linearly independent. (2.4)

If a local solution x̄ of problem (1.1) satisfies MPCC-LICQ, then x̄ is a strongly stationary
point and the associated MPCC-multiplier µ̄ is unique [26, Theorem 2].

The usual critical cone for problem (1.1) at the point x̄ is given by

C(x̄) =

{
ξ ∈ IRn

∣∣∣∣∣
G′

IG\IH
(x̄)ξ = 0, H ′

IH\IG
(x̄)ξ = 0, G′

I0
(x̄)ξ ≥ 0, H ′

I0
(x̄)ξ ≥ 0,

〈f ′(x̄), ξ〉 ≤ 0

}
. (2.5)
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The following cone takes also into account the second-order information about the last con-
straint in (1.1):

C2(x̄) =

{
ξ ∈ IRn

∣∣∣∣∣
G′

IG\IH
(x̄)ξ = 0, H ′

IH\IG
(x̄)ξ = 0, G′

I0
(x̄)ξ ≥ 0, H ′

I0
(x̄)ξ ≥ 0,

〈f ′(x̄), ξ〉 ≤ 0, 〈G′
i(x̄), ξ〉〈H ′

i(x̄), ξ〉 = 0, i ∈ I0

}
.

(2.6)
Evidently, it holds that

C2(x̄) ⊂ C(x̄).

If x̄ is a strongly stationary point, then for any associated MPCC-multiplier µ̄ = (µ̄G, µ̄H) it
holds that

C(x̄) =

{
ξ ∈ IRn

∣∣∣∣∣
G′

IG\IH
(x̄)ξ = 0, H ′

IH\IG
(x̄)ξ = 0, G′

I0
(x̄)ξ ≥ 0, H ′

I0
(x̄)ξ ≥ 0,

(µ̄G)i〈G′
i(x̄), ξ〉 = 0, (µ̄H)i〈H ′

i(x̄), ξ〉 = 0, i ∈ I0

}
(2.7)

and

C2(x̄) =





ξ ∈ IRn

∣∣∣∣∣∣∣

G′
IG\IH

(x̄)ξ = 0, H ′
IH\IG

(x̄)ξ = 0, G′
I0

(x̄)ξ ≥ 0, H ′
I0

(x̄)ξ ≥ 0,

(µ̄G)i〈G′
i(x̄), ξ〉 = 0, (µ̄H)i〈H ′

i(x̄), ξ〉 = 0,
〈G′

i(x̄), ξ〉〈H ′
i(x̄), ξ〉 = 0, i ∈ I0





,

(2.8)
respectively.

The special MPCC second-order sufficient condition (MPCC-SOSC) is said to hold at a
strongly stationary point x̄ with an associated MPCC-multiplier µ̄, if

〈
∂2L
∂x2

(x̄, µ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C(x̄) \ {0}. (2.9)

The weaker piece-wise second-order sufficient condition consists of saying that
〈

∂2L
∂x2

(x̄, µ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C2(x̄) \ {0}. (2.10)

Condition (2.10) (and, consequently, (2.9)) is indeed sufficient for local optimality of x̄, see
[9]. In general, (2.10) is a more natural condition than (2.9). This is because condition (2.10)
with the strict inequality replaced by non-strict is a necessary condition for optimality under
MPCC-LICQ [26, Theorem 7], while (2.9) does not have any necessary counterpart.

We say that the upper-level strict complementarity condition (ULSCC) holds for some
MPCC-multiplier µ̄ associated to x̄ if

(µ̄G)I0 > 0, (µ̄H)I0 > 0. (2.11)

Under ULSCC, it holds that C(x̄) = C2(x̄) = K(x̄), where

K(x̄) = {ξ ∈ IRn | G′
IG

(x̄)ξ = 0, H ′
IH

(x̄)ξ = 0}. (2.12)

In that case, conditions (2.9) and (2.10) become equivalent and can be stated as
〈

∂2L
∂x2

(x̄, µ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ K(x̄) \ {0}. (2.13)
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Let us now turn our attention to the lifted MPCC reformulation (1.3). Note first that
the value ȳ of the artificial variable y that corresponds to any given feasible point x̄ of the
original problem (1.1) is uniquely defined: the point (x̄, ȳ) is feasible in (1.3) if, and only if,

ȳIH\IG
= −(GIH\IG

(x̄))1/2, ȳIG\IH
= (HIG\IH

(x̄))1/2, ȳI0 = 0. (2.14)

Furthermore, it is immediate that x̄ is a (local) solution of the original problem (1.1) if, and
only if, (x̄, ȳ) is a (local) solution of the lifted MPCC reformulation (1.3). In addition, it is
also easy to see (as in [28]) that MPCC-LICQ at a point x̄ feasible in (1.1) is equivalent to
linear independence of constraints gradients of (1.3) at the point (x̄, ȳ).

Let us define the usual Lagrangian of the lifted problem (1.3):

L(x, y, λ) = f(x) + 〈λG, (min{0, y})2 −G(x)〉+ 〈λH , (max{0, y})2 −H(x)〉,

where (x, y) ∈ IRn × IRm and λ = (λG, λH) ∈ IRm × IRm. The Lagrange optimality system
characterizing stationary points of (1.3) and the associated multipliers is given by

∂L

∂x
(x, y, λ) = 0,

∂L

∂y
(x, y, λ) = 0, (min{0, y})2 −G(x) = 0, (max{0, y})2 −H(x) = 0,

where
∂L

∂x
(x, y, λ) =

∂L
∂x

(x, λ), (2.15)

∂L

∂yi
(x, y, λ) = 2(λG)i min{0, yi}+ 2(λH)i max{0, yi}, i = 1, . . . , m. (2.16)

Observe that for any i = 1, . . . , m, the right-hand side in (2.16) is not differentiable at points
(x, y, λ) such that yi = 0.

The following correspondence between stationary points and multipliers for the original
problem (1.1) and its lifted reformulation (1.3) can be checked by direct verification, as in
[28].

Proposition 2.1 Let f , G and H be differentiable at a point x̄ ∈ IRn which is feasible in
problem (1.1).

If x̄ is a strongly stationary point of (1.1) and µ̄ = (µ̄G, µ̄H) is an associated MPCC-
multiplier, then the point (x̄, ȳ) with ȳ given by (2.14) is a stationary point of problem (1.3)
and λ̄ = µ̄ is an associated Lagrange multiplier.

Conversely, if (x̄, ȳ) is a stationary point of problem (1.3), then x̄ is a weakly stationary
point of problem (1.1). In addition, if there exists a Lagrange multiplier λ̄ = (λ̄G, λ̄H)
associated to (x̄, ȳ) and such that (λ̄G)I0 ≥ 0 and (λ̄H)I0 ≥ 0, then x̄ is a strongly stationary
point of problem (1.1) and µ̄ = λ̄ is an associated MPCC-multiplier.

3 Semismooth Newton method for lifted MPCC

We start with reminding the reader some basic facts of nonsmooth analysis and the semis-
mooth Newton method (SNM), see [14, 15, 22, 23] and [4, Chapter 7].
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Consider a mapping Φ: IRq → IRr which is locally Lipschitz-continuous around a point
u ∈ IRq. The B-differential of Φ at u ∈ IRq is the set

∂BΦ(u) = {Λ ∈ IRr×q | ∃{uk} ⊂ DΦ: {uk} → u, {Φ′(uk)} → Λ (k →∞)},

where DΦ is the set of points at which Φ is differentiable (under the stated assumptions Φ
is differentiable almost everywhere around u). Then the Clarke generalized Jacobian is given
by

∂Φ(u) = conv ∂BΦ(u),

where conv X stands for the convex hull of the set X.
Furthermore, Φ is said to be semismooth [19] at u ∈ IRq if it is locally Lipschitz-continuous

around u, directionally differentiable at u in every direction, and satisfies the condition

sup
Λ∈∂Φ(u+v)

‖Φ(u + v)− Φ(u)− Λv‖ = o(‖v‖).

If the stronger condition

sup
Λ∈∂Φ(u+v)

‖Φ(u + v)− Φ(u)− Λv‖ = O(‖v‖2)

holds, then Φ is said to be strongly semismooth at u.
For our purposes, the following basic facts would be needed. If Φ1, Φ2: IRq → IRr are

(strongly) semismooth at u ∈ IRq, then so are the mappings (Φ1(·) + Φ2(·)), 〈Φ1(·), Φ2(·)〉,
min{Φ1(·), Φ2(·)}, max{Φ1(·), Φ2(·)}, and (Φ1(·), Φ2(·)).

Recall finally that Φ: IRq → IRq is said to be BD-regular at a point ū ∈ IRq if all the
matrices Λ ∈ ∂BΦ(ū) are nonsingular.

The SNM iterative scheme for the equation

Φ(u) = 0, (3.1)

where Φ: IRq → IRq, is then given by

Λk(uk+1 − uk) = −Φ(uk), Λk ∈ ∂BΦ(uk), k = 0, 1, . . . . (3.2)

The following is the basic local convergence result for SNM.

Theorem 3.1 Let Φ: IRq → IRq be semismooth at ū ∈ IRq. Let ū be a solution of the equation
(3.1) such that Φ is BD-regular at ū.

Then any starting point u0 ∈ IRq sufficiently close to ū uniquely defines SNM iterative
sequence {uk} satisfying (3.2), and this sequence converges to ū. The rate of convergence is
superlinear, and it is quadratic if Φ is strongly semismooth at ū.

We shall next consider SNM applied to the Lagrange optimality system of the lifted
MPCC reformulation (1.3). Taking into account the relation (2.15), this system takes the

6



form of the equation (3.1) if we define Φ: IRn× IRm× (IRm× IRm) → IRn× IRm× (IRm× IRm)
by

Φ(u) =




∂L
∂x (x, λ)

∂L
∂y (x, y, λ)

(min{0, y})2 −G(x)
(max{0, y})2 −H(x)


 , (3.3)

where u = (x, y, λ), λ = (λG, λH).
Using (2.16) and (3.3), by direct calculations it follows that the B-differential of Φ at an

arbitrary point u = (x, y, λ) ∈ IRn × IRm × (IRm × IRm) consists of all matrices of the form

Λ =




∂2L
∂x2 (x, λ) 0 −(G′(x))T −(H ′(x))T

0 2A(y, λ) 2Bmin(y) 2Bmax(y)
−G′(x) 2Bmin(y) 0 0
−H ′(x) 2Bmax(y) 0 0


 , (3.4)

where

A(y, λ) = diag(a(y, λ)), Bmin(y) = diag(min{0, y}), Bmax(y) = diag(max{0, y}), (3.5)

and the vector a(y, λ) ∈ IRm is defined by

ai =





(λG)i, if yi < 0,
(λG)i or (λH)i, if yi = 0,
(λH)i, if yi > 0,

i = 1, . . . , m. (3.6)

SNM for the Lagrange optimality system of the lifted MPCC reformulation (1.3) is therefore
given by the following

Algorithm 3.1 Choose u0 = (x0, y0, λ0) ∈ IRn × IRm × (IRm × IRm) and set k = 0.

1. Compute a matrix Λk = Λ according to (3.4)–(3.6) with (x, y, λ) = (xk, yk, λk). Com-
pute uk+1 = (xk+1, yk+1, λk+1) ∈ IRn × IRm × (IRm × IRm) as a solution of the linear
system

Λku = Λku
k − Φ(uk), (3.7)

where Φ is defined in (3.3).

2. Increase k by 1 and go to Step 1.

Let x̄ be a strongly stationary point of the original problem (1.1) and let µ̄ be an associated
MPCC-multiplier. Let ȳ be given by (2.14). According to Theorem 3.1, local superlinear
(quadratic) convergence of Algorithm 3.1 to the solution ū = (x̄, ȳ, µ̄) of the equation (3.1)
would be established if we show (strong) semismoothness and BD-regularity of Φ at ū. The
semismoothness properties easily follow from calculus of (strongly) semismooth mappings
summarized above. We thus omit the proof.
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Proposition 3.1 Let f : IRn → IR and G, H : IRn → IRm be differentiable around the point
x̄ ∈ IRn, with their derivatives being semismooth at this point.

Then for any λ = (λG, λH) ∈ IRm × IRm and y ∈ IRm, the mapping Φ defined in (3.3) is
semismooth at the point (x̄, y, λ). Moreover, if f , G and H are twice differentiable around x̄,
with their derivatives being locally Lipschitz-continuous with respect to x̄, then Φ is strongly
semismooth at (x̄, y, λ).

Now, according to (3.4)–(3.6), and taking also into account (2.3) and (2.14), we obtain
that the B-differential of Φ at the point ū = (x̄, ȳ, µ̄) consists of all matrices of the form

Λ =




∂2L
∂x2 (x̄, µ̄) 0 −(G′(x̄))T −(H ′(x̄))T

0 2A 2Bmin 2Bmax

−G′(x̄) 2Bmin 0 0
−H ′(x̄) 2Bmax 0 0


 , (3.8)

where
A = diag(a), Bmin = diag(bmin), Bmax = diag(bmax), (3.9)

with the vector a ∈ IRm given by

ai =

{
0, if i ∈ {1, . . . , m} \ I0,
(µ̄G)i or (µ̄H)i, if i ∈ I0,

(3.10)

and the vectors bmin and bmax given by

(bmin)IH\IG
= −(GIH\IG

(x̄))1/2, (bmin)IG
= 0, (3.11)

(bmax)IG\IH
= (HIG\IH

(x̄))1/2, (bmax)IH
= 0. (3.12)

We next show that the mapping Φ is BD-regular under reasonable assumptions.

Proposition 3.2 Let f , G and H be twice differentiable at the point x̄ ∈ IRn which is strongly
stationary for problem (1.1) and satisfies MPCC-LICQ (2.4). Let µ̄ be the (unique) associ-
ated MPCC-multiplier. Assume finally that ULSCC (2.11) and the second-order sufficient
condition (2.13) hold.

Then Φ defined by (3.3) is BD-regular at ū = (x̄, ȳ, µ̄), where ȳ is given by (2.14).

Proof. Suppose that for some matrix Λ ∈ ∂ΦB(ū) and some ξ ∈ IRn, η ∈ IRm, ζG ∈ IRm

and ζH ∈ IRm it holds that Λv = 0, where v = (ξ, η, ζG, ζH). According to (3.8)–(3.12),
taking into account also (2.11), we then conclude that

∂2L
∂x2

(x̄, µ̄)ξ − (G′(x̄))TζG − (H ′(x̄))TζH = 0, (3.13)

(ζG)IH\IG
= 0, (ζH)IG\IH

= 0, ηI0 = 0, (3.14)

−〈G′
i(x̄), ξ〉 − 2(Gi(x̄))1/2ηi = 0, i ∈ IH \ IG, G′

IG
(x̄)ξ = 0, (3.15)
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−〈H ′
i(x̄), ξ〉+ 2(Hi(x̄))1/2ηi = 0, i ∈ IG \ IH , H ′

IH
(x̄)ξ = 0. (3.16)

The second relations in (3.15) and (3.16) mean that ξ ∈ K(x̄), see (2.12). Moreover,
multiplying both sides of the equality (3.13) by ξ and using the first two relations in (3.14)
and the second relations in (3.15) and (3.16), we obtain that

0 =

〈
∂2L
∂x2

(x̄, µ̄)ξ, ξ

〉
− 〈ζG, G′(x̄)ξ〉 − 〈ζH , H ′(x̄)ξ〉

=

〈
∂2L
∂x2

(x̄, µ̄)ξ, ξ

〉
.

Hence, by (2.13), we conclude that ξ = 0.
Substituting now ξ = 0 into (3.13) and using the first two relations in (3.14), we have

that
(G′

IG
(x̄))T(ζG)IG

+ (H ′
IH

(x̄))T(ζH)IH
= 0.

From the latter and (2.4), it follows that

(ζG)IG
= 0, (ζH)IH

= 0. (3.17)

In addition, using ξ = 0 in the first relations of (3.15) and (3.16), we have that

ηIH\IG
= 0, ηIG\IH

= 0. (3.18)

Combining (3.14), (3.17) and (3.18) gives that η = 0, ζG = 0, ζH = 0, i.e., v = 0.
We have thus shown that any matrix Λ in question has only zero in its null space. It

follows that all the matrices are nonsingular.

Given Theorem 3.1 and Propositions 3.1 and 3.2, we immediately obtain local convergence
and rate of convergence for Algorithm 3.1.

Theorem 3.2 Let f : IRn → IR and G, H : IRn → IRm be twice differentiable in a neighbour-
hood of a strongly stationary point x̄ ∈ IRn of problem (1.1), and let their second derivatives
be continuous at x̄. Let MPCC-LICQ (2.4) be satisfied at x̄, and let µ̄ be the (unique) MPCC-
multiplier associated to x̄. Assume, finally, that ULSCC (2.11) and the second-order sufficient
condition (2.13) are satisfied.

Then any point (x0, y0, λ0) ∈ IRn× IRm× (IRm× IRm) close enough to (x̄, ȳ, µ̄) uniquely
defines SNM iterative sequence of Algorithm 3.1, and this sequence converges to (x̄, ȳ, µ̄).
The rate of convergence is superlinear, and if the second derivatives of f, G and H are locally
Lipschitz-continuous with respect to x̄ then the rate is quadratic.

We next comment on how our local convergence result in Theorem 3.2 compares to some
alternatives in MPCC literature.

As already discussed above, using the lifted reformulation (1.2), suggested in [28], gives a
Lagrange optimality system which is smooth but inherently degenerate (at least in the absence
of lower-level strict complementarity). Nevertheless, this degeneracy is again structured and
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can be tackled, in principle, by the tools for solving degenerate equations and reformulations
of complementarity problems developed in [8]. But careful consideration of the approach of
[8] applied to the lifted reformulation (1.2) shows that it would require the same assumptions
as those for Algorithm 3.1 in Theorem 3.2, while the approach itself is quite a bit more
complicated. In addition, methods in [8] do not come with natural globalization strategies.
In Section 4 below we shall show that Algorithm 3.1 allows natural globalization by linesearch
for the squared residual of the Lagrange optimality system for (1.3).

Another possibility is to apply the usual SQP directly to the original problem (1.1),
perhaps introducing slacks so that the complementarity condition is stated for simpler bound
constraints. In practice, this approach appears to work rather well [6]. There is also some
local analysis showing superlinear convergence of SQP applied to MPCC [7], although it is
not quite complete. In any case, the assumptions used in [7] are stronger than those for
Algorithm 3.1 in Theorem 3.2. Specifically, in addition to the hypotheses of Theorem 3.2, in
[7, Theorem 5.7] it is assumed that all MPCC multipliers are non-zero (Assumption [A4]), that
the active-set QP solver applied to SQP subproblems always picks a linearly independent basis
(Assumption [A5]) and, perhaps most importantly, that the exact complementarity always
holds from some iteration on (Assumption [A6]). Strict complementarity is dropped in [7,
Theorem 5.14] but it is additionally assumed that the constraints of SQP subproblems remain
consistent along iterations (Assumption [A7]). (Also, it is not clear which dual solution µ∗

[7, Theorem 5.14] refers to.) Note also that, unlike SQP, Algorithm 3.1 solves linear systems
of equations rather than quadratic subproblems. On the other hand, SQP comes with well-
developed globalization strategies which may be preferable to the one based on linesearch for
the squared residual of the optimality system suggested in Section 4.

Finally, local superlinear convergence of piecewise-SQP in [17, 24], and of an active-set
Newton method in [9], had been shown under assumptions weaker than those for Algo-
rithm 3.1 in Theorem 3.2. Specifically, those methods do not require ULSSC (2.11). But,
just as in the case of [8], the methods in question come without ready-to-use globalization
strategies, while a reasonable globalization scheme for Algorithm 3.1 would be proposed next.

We complete this section with an observation that the mapping Φ defined in (3.3) is
piecewise smooth, and SNM specified in Algorithm 3.1 can be interpreted as the piecewise
Newton method developed in [13]. However, the semismooth approach is more general and
could possibly be used for other (semismooth but not piecewise smooth) lifting MPCC refor-
mulations.

4 Globalization of the local method

In this section, we propose to globalize the local SNM of Algorithm 3.1 by introducing
linesearch for the merit function ϕ: IRn × IRm × (IRm × IRm) → IR,

ϕ(u) =
1
2
‖Φ(u)‖2, (4.1)

where Φ is defined in (3.3). It turns out that this merit function ϕ is continuously differen-
tiable, even though Φ itself is not. Moreover, the gradient of ϕ is explicitly computable using
any element of the B-differential of Φ. It is interesting to point out that those properties are
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similar to the popular equation-based reformulation of NCP based on the Fischer–Burmeister
function and its squared residual [5, 1, 11, 2].

Proposition 4.1 Let f : IRn → IR and G, H : IRn → IRm be twice differentiable at a point
x ∈ IRn.

Then for any y ∈ IRm and λ = (λG, λH) ∈ IRm × IRm, the function ϕ defined by (4.1)
and (3.3) is differentiable at the point u = (x, y, λ) and it holds that

ϕ′(u) = ΛΦ(u) ∀Λ ∈ ∂BΦ(u). (4.2)

Moreover, if f , G and H are twice continuously differentiable on IRn, then the function ϕ is
continuously differentiable on IRn × IRm × (IRm × IRm).

Proof. Nonsmoothness of ϕ can only be induced by the components of Φ that correspond
to partial derivatives of L with respect to y (see (3.3)); all the other components of Φ are
sufficiently smooth under the stated assumptions.

Observe that for any t ∈ IR it holds that

min{0, t}max{0, t} = 0.

Therefore, for each i = 1, . . . , m, from (2.16) it follows that
(

∂L

∂yi
(x, y, λ)

)2

= 4((λG)2i (min{0, yi})2 + (λH)2i (max{0, yi})2), (4.3)

where the right-hand side is a differentiable function in the variables y ∈ IRm and λ =
(λG, λH) ∈ IRm × IRm. This shows that ϕ has the announced differentiability properties.

Furthermore, from (4.3) it follows that

(
1
2

∥∥∥∥
∂L

∂y
(x, y, λ)

∥∥∥∥
2
)′

=




0
4((λG)21(min{0, y1}) + (λH)21(max{0, y1}))

· · ·
4((λG)21(min{0, ym}) + (λH)2m(max{0, ym}))

4(λG)1(min{0, y1})2
· · ·

4(λG)m(min{0, ym})2
4(λH)1(max{0, y1})2

· · ·
4(λH)m(max{0, ym})2




=




0
2A(y, λ)
2Bmin(y)
2Bmax(y)




∂L

∂y
(x, y, λ), (4.4)

where the last equality is by (2.16), (3.5) and (3.6). Differentiating the other parts of ϕ and
combining the result with (4.4) and with (3.3)–(3.6), gives the equality (4.2).
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Recall that according to (3.4)–(3.6), all the matrices Λ ∈ ∂BΦ(u) are symmetric at any
u ∈ IRn × IRm × (IRm × IRm). Using this fact, as well as (4.2), for any such matrix and for
any direction v ∈ IRn × IRm × (IRm × IRm) computed as a solution of the linear system

Λv = −Φ(u),

it holds that

〈ϕ′(u), v〉 = 〈ΛΦ(u), v〉 = 〈Φ(u), Λv〉 = −〈Φ(u), Φ(u)〉 = −‖Φ(u)‖2 = −2ϕ(u). (4.5)

In particular, if the point u is not a solution of the equation (3.1) or, equivalently, is not a
global minimizer of the function ϕ, then v is a descent direction for ϕ at the point u. This
immediately suggests a natural globalization strategy for the local SNM in Algorithm 3.1.
We next state our globalized algorithm, which is similar to the method in [11] for the refor-
mulation of NCP based on the Fischer–Burmeister function. The latter, however, assumes
existence and boundedness of Newton directions along the iterative process.

Algorithm 4.1 Choose parameters ε ∈ (0, 1/2), τ ∈ (0, 1), M > 0, θ > 0, and a starting
point u0 = (x0, y0, λ0) ∈ IRn × IRm × (IRm × IRm). Set k = 0.

1. If Φ(uk) = 0, stop. Otherwise, compute some matrix Λk = Λ according to the formulas
(3.4)–(3.6) with (x, y, λ) = (xk, yk, λk). Compute ũk+1 ∈ IRn × IRm × (IRm × IRm) as
a solution of the linear system (3.7), where Φ is defined in (3.3). If ũk+1 exists and

‖ũk+1 − uk‖ ≤ max{M, 1/(ϕ(uk))θ}, (4.6)

then set vk = ũk+1 − uk; otherwise set vk = −ΛkΦ(uk). If vk = 0, stop.

2. Compute the stepsize value αk by the Armijo rule: αk = τ j , where j is the smallest
nonnegative integer which satisfies the inequality

ϕ(uk + τ jvk) ≤ ϕ(uk) + ετ j〈ϕ′(uk), vk〉. (4.7)

Set uk+1 = (xk+1, yk+1, λk+1) = uk + αkv
k.

3. Increase k by 1 and go to Step 1.

If Φ(uk) = 0 for some iterate, we stop since the equation is solved. Note that if we do
not stop according to this test, then neither vk = 0 nor ϕ′(uk) = 0 can happen when the
Newton direction exists, because of (4.5). If vk = 0 is the gradient direction at the point
where the Newton direction does not exist, then uk is a stationary point of ϕ and we stop
since no further progress is possible. We assume, from now on, that Algorithm 4.1 does not
stop, which means that vk 6= 0 and ϕ′(uk) 6= 0 for all k.

The test (4.6) for the size of the Newton direction (where M > 0 and θ > 0 should be
chosen large to allow more Newton directions) can be checked within the inner solver for the
Newton system, and plays the same role as detecting its inconsistency – i.e., that something
is wrong. In such cases, we resort to the back-up gradient direction and proceed.
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Theorem 4.1 Let f : IRn → IR and G, H : IRn → IRm be twice continuously differentiable
on IRn.

Then Algorithm 4.1 is well-defined, and any accumulation point ū of any sequence {uk}
generated by this algorithm is a stationary point of the function ϕ, i.e.,

ϕ′(ū) = 0. (4.8)

Proof. First note that linesearch is always in a direction of descent, because the Newton
direction satisfies (4.5) and otherwise the direction is the negative gradient, and thus, in any
case,

〈ϕ′(uk), vk〉 < 0 (4.9)

for all k. By the standard facts concerning the Armijo linesearch, it follows that the sequences
{αk} and {uk} are well-defined. Furthermore, by (4.7) we have that the sequence {ϕ(uk)}
is monotonically nonincreasing. Since it is bounded below (by zero), it converges. Then, by
(4.7), we have that

lim
k→∞

αk〈ϕ′(uk), vk〉 = 0. (4.10)

Let ū be an accumulation point of the sequence {uk}, and let {ukj} be a subsequence con-
vergent to ū. Consider the two possible cases:

lim sup
j→∞

αkj > 0 or lim
j→∞

αkj = 0. (4.11)

In the first case, passing onto a further subsequence if necessary, we can assume that the
entire {αkj

} is separated from zero:

lim inf
j→∞

αkj > 0.

Then (4.10) implies that
lim

j→∞
〈ϕ′(ukj ), vkj 〉 = 0. (4.12)

If within this subsequence the Newton direction is used for infinitely many indices j, by (4.5)
we have in (4.12) that

〈ϕ′(ukj ), vkj 〉 = −2ϕ(ukj )

for infinitely many j. Then (4.12) implies that ϕ(ū) = 0, i.e., ū is a global minimizer of
ϕ, which certainly implies (4.8). On the other hand, if Newton directions are used only for
finitely many indices j, then

〈ϕ′(ukj ), vkj 〉 = −〈ϕ′(ukj ), ϕ′(ukj )〉 = −‖ϕ′(ukj )‖2

for all j large enough, and we conclude by (4.12) that (4.8) holds.
It remains to consider the second case in (4.11). Suppose first that the sequence {vkj} is

unbounded. Note that this can only happen when the Newton directions are used infinitely
often (because otherwise vkj = −ϕ′(ukj ) for all j large enough, and hence, {vkj} converges
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to −ϕ′(ū)). But then the condition ‖vkj‖ ≤ max{M, 1/(ϕ(ukj ))θ} implies that ϕ(ukj ) → 0
so that ϕ(ū) = 0, and hence, ū is again a global minimizer of ϕ, and (4.8) follows.

Let finally {vkj} be bounded. Taking a further subsequence, if necessary, assume that
{vkj} converges to some v̄. Since in the second case in (4.11) for each j large enough the initial
stepsize value had been reduced at the current point ukj at least once, the value αkj/τ > αkj

does not satisfy (4.7), i.e.,

ϕ(ukj + (αkj/τ)vkj )− ϕ(ukj )
αkj/τ

> ε〈ϕ′(ukj ), vkj 〉.

Employing the Mean-Value Theorem and the fact that αkj
→ 0 as j →∞, and passing onto

the limit as j →∞, we obtain that

〈ϕ′(ū), v̄〉 ≥ ε〈ϕ′(ū), v̄〉,

which may only hold when
〈ϕ′(ū), v̄〉 ≥ 0.

Combining this with (4.9), we obtain that

〈ϕ′(ū), v̄〉 = 0.

Considering, as above, the two cases when the number of times the Newton direction had
been used is infinite or finite, the latter relation implies that (4.8) holds.

According to the proof of Theorem 4.1, if along a subsequence convergent to ū = (x̄, ȳ, λ̄) ∈
IRn × IRm × (IRm × IRm) the Newton direction had been used infinitely many times, then
Φ(ū) = 0, i.e., (x̄, ȳ) is a stationary point of problem (1.3) and λ̄ is an associated Lagrange
multiplier. By Proposition 2.1, it then follows that x̄ is a weakly stationary point of (1.1).
Convergence to a stationary point of ϕ which is not its global minimizer can only happen
when Newton directions are not used along the corresponding subsequence from some point
on at all. But even in that case, since for any stationary point ū of the function ϕ it holds
that ΛΦ(ū) = 0 for each matrix Λ ∈ ∂BΦ(ū) (see (4.2)), if among those matrices at least one
is nonsingular we immediately obtain that Φ(ū) = 0. Thus we can expect global convergence
of Algorithm 4.1 to weakly stationary points of (1.1).

Finally, we show that Algorithm 4.1 preserves fast local convergence of Algorithm 3.1
under the relevant assumptions.

Theorem 4.2 Let f , G and H be twice continuously differentiable on IRn, and let a sequence
{uk} generated by Algorithm 4.1 have an accumulation point ū = (x̄, ȳ, µ̄), where x̄ is a
strongly stationary point of the problem (1.1), ȳ is given by (2.14), and µ̄ is an MPCC-
multiplier associated to x̄. Assume that MPCC-LICQ (2.4), ULSCC (2.11), and the second-
order sufficient condition (2.13) hold.

Then the whole sequence {uk} converges to (x̄, ȳ, µ̄). The rate of convergence is superlin-
ear, and if the second derivatives of f, G and H are locally Lipschitz-continuous with respect
to x̄ then it is quadratic.
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Proof. Let uk be close to ū, and let ũk+1 be computed as in Algorithm 4.1. According to
Theorem 3.2, for uk be close to ū, this point is well-defined and

‖ũk+1 − ū‖ = o(‖uk − ū‖). (4.13)

As a consequence, ũk+1 would be accepted by the test (4.6).
Furthermore, according to Proposition 3.2, under the stated assumptions the mapping Φ

is BD-regular at ū. It is well known [21] that BD-regularity implies the error bound of the
form

‖u− ū‖ = O(‖Φ(u)‖).
Employing this error bound and (4.13), and also taking into account Lipschitz-continuity of
Φ near ū (see Proposition 3.1), we obtain that

ϕ(ũk+1) =
1
2
‖Φ(ũk+1)− Φ(ū)‖2

= O(‖ũk+1 − ū‖2)
= o(‖uk − ū‖2)
= o(‖Φ(uk)‖2)
= o(ϕ(uk)).

Setting vk = ũk+1 − uk, the above relation implies that if uk is close enough to ū then

ϕ(uk + vk) = ϕ(ũk+1)
≤ (1− 2ε)ϕ(uk)
= ϕ(uk)− ε‖Φ(uk)‖2

= ϕ(uk) + ε〈ϕ′(uk), vk〉,

where the last equality is by (4.5) (recall also that ε ∈ (0, 1/2)). Therefore, αk = 1 will
be accepted by the Armijo rule: inequality (4.7) holds with j = 0. This shows that itera-
tions of Algorithm 4.1 reduce to the (local) Algorithm 3.1. The assertions now follow from
Theorem 3.2.

5 Numerical results

In this section, we present some preliminary numerical experience with two versions of SNM
applied to the lifted MPCC, SNM applied to the optimality conditions of the original MPCC,
and SQP with linesearch for the original MPCC. We use small test problems derived from
MacMPEC [16]. Our selection of test problems is the same as in [9]. Specifically, we select
all the problems in MacMPEC satisfying the following criteria: they have no more than
10 variables, and they do not have any inequality constraints apart from complementarity
constraints. We also ignore simple bounds when there are any (which sometimes affects the
solutions and stationary points of these problems). We end up with 38 problems.
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Figure 1: Lifted SNMs vs SNM-FB.
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Figure 2: Lifted SNMs vs SNM-FB:
convergence to solution.

We consider two versions
of SNM for lifted MPCC. One
is Algorithm 4.1 as stated, and
we refer to it as Lifted SNM.
The other is a quasi-Newton
version of Algorithm 4.1, with
the Hessian in (3.4) replaced
by its SR1 approximations [18,
(6.24), (18.13)], and we call
it Lifted SNM SR1. SR1 up-
dates were chosen because in
the context of SNM we do not
need to care about positive
definiteness of approximations
of the Hessian, but we want to
keep them symmetric.

We first compare both methods with SNM-FB, which is the natural linesearch version
of the semismooth Newton method applied to the Fischer-Burmeister reformulation of the
first-order optimality conditions of the original MPCC (1.1); see [9] for details of the spe-
cific implementation. Another algorithm chosen for comparison is SQP BFGS, which is the
quasi-Newton version of the SQP algorithm, with BFGS approximations of the Hessian com-
plemented by Powell’s modification, and with linesearch for the l1 penalty function (e.g., see
[18, Section 18], and also [9] for details of our implementation). The latter method was imple-
mented without any tools for tackling possible infeasibility of subproblems and for avoiding
the Maratos effect.

The parameters of Algorithm 4.1 were chosen as follows: ε = 10−4, τ = 0.5, M = 105,
θ = 1. All computations were performed in Matlab environment, with the QP-subproblems
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of SQP BFGS solved by the built-in Matlab QP-solver. For Lifted SNM and Lifted SNM SR1,
we used the stopping criterion of the form

‖Φ(xk, yk, λk)‖ < 10−6,

where Φ is defined in (3.3). SNM-FB and SQP BFGS were stopped when the Fischer-Burmeister
residual of the the first-order optimality conditions of the original MPCC (1.1) becomes
smaller than 10−6. Failures were declared when the needed accuracy was not achieved after
500 iterations or when the method in question failed to complete an iteration, for whatever
reason.

SNM−FB 72%

Lifted SNM 14%

Lifted SNM SR1 14%

Best objective value achieved

(a) Best objective value achieved

SNM−FB 49%

Lifted SNM 28%

Lifted SNM SR1 23%

Non−worst objective value achieved

(b) Non-worst objective value achieved

Figure 3: Lifted SNMs vs SNM-FB.

We performed 100 runs for each algorithm under consideration from the same sample of
randomly generated starting points. Primal starting points for each algorithm were generated
in a cubic neighborhood around the solution (the “solutions” were found in the course of
experiments), with the edge of the cube equal to 20. For the lifted reformulation, we defined
the starting value y0 of the auxiliary variable as follows:

y0
i =

{
|Hi(x0)|1/2, if Hi(x0) ≥ Gi(x0),
−|Gi(x0)|1/2, if Hi(x0) < Gi(x0),

i = 1, . . . , m,

where x0 is the primal starting point. Dual starting points for all algorithms were generated
the same way as primal ones but around 0, and with additional nonnegativity restrictions for
their components corresponding to inequality constraints (this concerns SNM-FB and SQP BFGS
which are applied to the original problem (1.1)). In the case of a successful run, “convergence
to solution” was declared when the distance from the last primal iterate to the solution was
smaller than 10−3.

Fig. 1 reports on the average numbers of iterations and evaluations of constraint functions
and derivatives values for Lifted SNM, Lifted SNM SR1 and SNM-FB over successful runs, in
the form of a performance profile [3]. (Note that these methods do not require objective
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function values). For each algorithm, the value of the plotted function at τ ∈ [1, +∞)
corresponds to the part of the problems in the test set for which the achieved result (the
average iteration count, or the evaluation count) was no more than τ times worse (bigger)
than the best result among the three algorithms. Failure is regarded as infinitely many times
worse than the best result. Thus, the value at τ = 1 characterizes “pure efficiency” of the
algorithm (that is, the part of problems for which the given algorithm demonstrated the best
result), while the value at τ = +∞ characterizes robustness of the algorithm (that is, the
part of problems which were successfully solved by the given algorithm). It is evident that
both Lifted SNM and Lifted SNM SR1 seriously outperform SNM-FB both in robustness and
efficiency. Lifted SNM SR1 is less efficient (and somewhat less robust) than Lifted SNM,
which is a natural price for not computing the true Hessian. Of course, the former has its
usual advantages when computing second derivatives is too costly or simply impossible.

Apart from robustness and efficiency, another important characteristic of any algorithm
is the quality of the output produced, i.e., the percentage of those cases when the algorithm
converges to a true solution rather than to some nonoptimal stationary point. Fig. 2 reports
on this aspect of behavior of Lifted SNM, Lifted SNM SR1 and SNM-FB. Here, for each al-
gorithm we look at the inverse of the number of convergences to solution. Note that this
result equals to +∞ when the given algorithm gave no convergences to the solution for a
given problem, and this adds to the cases of failure. That is why the values on the right end
are smaller than in Fig. 1. One can see that SNM-FB has in principle a stronger tendency of
convergence to the solution than Lifted SNM and Lifted SNM SR1, but the picture becomes
different when this data is combined with robustness.
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Figure 4: Lifted SNMs vs SQP BFGS.

Diagrams in Fig. 3 are intended to give some impression of the ability of Lifted SNM,
Lifted SNM SR1 and SNM-FB to achieve smaller values of the objective function in the cases
of successful runs when, in particular, the last produced iterate is (nearly) feasible. We
report on percentage of those problems for which each algorithm demonstrated the best
(smallest) and the non-worst average of the achieved objective function values over successful
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(a) Evaluations of constraints
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Figure 5: Lifted SNMs vs SQP BFGS.

runs among the three SNM-based algorithms. The results were regarded as equal when the
difference was less than 10−3. Note that for some particular problems the algorithms can
fall into both “best” and “worst” categories, if all three algorithms give the same result.
SNM-FB demonstrates better ability in decreasing the objective function. Note, however, that
comparative robustness of the algorithms is not reflected in Fig. 3
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Figure 6: Lifted SNMs vs SQP BFGS:
convergence to solution.

We proceed with com-
parisons of Lifted SNM and
Lifted SNM SR1 with SQP BFGS.
The information in Figs. 4–7 is
produced similarly to Figs. 1–
3. Some special features are
the following.

First, Fig. 4 reports sep-
arately on major and mi-
nor iteration counts. For
Lifted SNM and Lifted SNM SR1
these two counts are the same,
since these algorithms are QP-
free and each major iteration
consists of solving one lin-
ear system, followed by line-
search. SQP BFGS subprob-
lems are general QPs with inequality constraints. Solving each of these subproblems by the
active set QP-solver usually requires more than one minor (inner) iteration, and each minor
iteration includes solving a certain linear system. One can see from Fig. 4 that Lifted SNM
and Lifted SNM SR1 are comparable with SQP BFGS in terms of major iterations, but out-
perform the latter in terms of minor iterations. Moreover, lifted SNMs are even somewhat
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more robust than our simple implementation of SQP BFGS.

SQP BFGS 72%

Lifted SNM 14%

Lifted SNM SR1 14%

Best objective value achieved

(a) Best objective value achieved

SQP BFGS 49%

Lifted SNM 28%

Lifted SNM SR1 23%

Non−worst objective value achieved

(b) Non-worst objective value achieved

Figure 7: Lifted SNMs vs SQP.

Fig. 5 reports separately on the numbers of evaluation of constraint functions and of
derivatives, since these two counts are not the same for SQP BFGS. This method requires
less evaluations than both Lifted SNM and Lifted SNM SR1. Note, however, that SQP BFGS
requires also evaluations of the objective function, not needed in SNMs.

Figs. 6 and 7 demonstrate that SQP BFGS has better properties of convergence to solution
and of reducing the objective function value. This is quite natural, since SQP is clearly
more optimization-related. Somewhat surprisingly, Fig. 3 and Fig. 7 turn out to be exactly
the same. Most likely, this happened accidentally (recall that we round off the averages of
achieved objective function values up to the accuracy 10−3).

We do not report here on the comparisons of Lifted SNM and Lifted SNM SR1 with the
active-set Newton methods developed in [9] (these combine SNM and SQP with active-set
strategies). The reason is that numerical results in [9] on the same test set indicate that
the active-set phase can be beneficial in certain situations but does not seriously change the
behavior “on average”.

Numerical results presented in this section allow for the following (very preliminary)
conclusions. The idea of lifting can be useful. For example, lifted SNM algorithms outperform
in efficiency and robustness SNM applied to the original MPCC. They also compare quite
favorably in the same indicators even with SQP (at least in its simple implementations).
On the other hand, the quality of the output of lifted SNMs with respect to optimality is
generally lower than that of more traditional (especially SQP-based) algorithms.

6 Concluding Remarks

We have shown that the Lagrange optimality system of the lifted reformulation (with power
s = 2) of MPCC, although nonsmooth, can be regular in an appropriate sense. Sufficient
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conditions for its regularity are reasonable: MPCC-LICQ, upper-level strict complementarity
(ULSCC), and the second-order sufficiency. Under these assumptions, the Lagrange system
can be solved by a fast semismooth Newton method. Moreover, it turns out that the squared
residual of this system is actually smooth, which allows for a natural globalization strategy.
The resulting globalized algorithm preserves fast local convergence under the relevant as-
sumptions. Preliminary numerical experience suggest that the approach developed in this
work has some potential.

We note, in passing, that Proposition 3.2 and Theorems 3.2 and 4.2 remain valid with
the strong stationarity assumption replaced by weak stationarity, and with ULSCC replaced
by the assumption that the I0-components of the corresponding multiplier are not equal to
zero (allowed to be negative).
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