. A structural theorem for
codimension one foliations on P", n > 3,

with application to degree three foliations.

by D. Cerveau & A. Lins Netol

Abstract. Let F be a codimension one foliation on P" : to each point p € P" we set
J(F,p) = the order of the first non-zero jet jg(w) of a holomorphic 1-form w defining F
at p. The singular set of F is sing(F) = {p € P* | J(F,p) > 1}. We prove (main theorem
2) that a foliation F satisfying J(F,p) < 1 for all p € P" has a non-constant rational
first integral. Using this fact, we are able to prove that any foliation of degree three on P™,
n > 3, is either the pull-back of a foliation on P2, or has a transverse affine structure with
poles. This extends previous results for foliations of degree < 2.
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Notations.

1. O, : the ring of germs at 0 € C™ of holomorphic functions. O} = {f €
2. flg: f,g €my\ {0} and f divides g.

3. f1g: f,g€my\ {0} and f does not divide g.

4. [f,glo : the intersection number of f,g € ms \ {0}, when f and g have
no common factor.

5. < f,g > : the ideal generated by f,g € O,.

6. Dif f(C™, p) : the group of germs at p € C" of biholomorphisms f with
f(p) =p.

e 7. ix(w) : the interior product of the vector field X and the form w.

e 8. Lx : the Lie derivativative in the direction of the vector field X.

e 9. jk : the k™-jet at the point p.

1. INTRODUCTION.

In a previous paper [Ce-LN 1] we have proved that the space of holomorphic
codimension one foliations on P™, n > 3, has six irreducible components. A conse-
quence of the classification is that we have two possibilities for a degree two foliation

1This research was partially supported by Pronex.
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F on P? n > 3 : either F is defined by a meromorphic closed 1-form on P™, or
F = g*(G), where g: P"— — P? is a linear map and G a degree two foliation of
P2. A foliation defined by a meromorphic closed 1-form admits a special projective
tranverse structure with poles, namely a translation structure. On the other hand,
a foliation of the form ¢*(G) admits such a structure if, and only if, G admits (cf.
[G-C]), which is not always the case : a foliation of P? which admits a projective
or affine transverse structure has always algebraic leaves, whereas for any d > 2,
there are degree d foliations on P? without algebraic invariant curves.

The following conjecture is attributed to different authors (Brunella, Lins Neto,
Main Conjecture. Any codimension one holomorphic foliation F on P", n > 3,
is either a pull-back of a foliation G on P? by a rational map ®: P"— — P2, or
admits a transverse projective structure with poles on some invariant hypersurface.

In the first case, the leaves of F are sub-foliated by the levels of ® and the
dynamic properties of F are essentialy given by G. In the second, we can associate
a triple of meromorphic 1-forms (wg,ws,ws) such that wy defines F outside its set
of poles |wp|eo and the triple satisfies the s¢(2,C) structural relations :

dwo :(.L)Q/\wl
dw1 :wo/\WQ
dwy = wa A wq

inducing the projective structure.

For instance, when w; = ws = 0, that is wq is closed, then the integration of
wp on simply connected open sets U C P™ \ |wp|oo gives wy = dfy, and defines the
transverse translation structure : when U NV # @ then fy = fv + cyy, where
cyy € C. On the other hand, if ws = 0 and w; # 0 then the transverse structrure
is affine.

The main conjecture seems to be reasonable (at least for foliations of small
degree) by the following reasons : first of all, if K is a field of positive characteristic
every foliation on a projective manifold over K, in particular on Pg, is defined by
a closed 1-form (cf. [C-L-L-P-T]). On the other hand, if F is a foliation on P™ and
p is a prime number then it is possible to define F,, the reduction modulo p of
F. There is a conjecture of Grothendieck-Katz type which says that if for almost
all p the foliation F, has a non-constant rational first integral then F itself has a
non-constant rational first integral. Recently F. Touzet has communicated to one
of the authors the following result :

Theorem. (F. Touzet) The Grothendieck-Katz conjecture implies that any foliation
of degree < n — 1 on P™, either admits a projective transverse structure, or is a
pull-back of some foliation on P*, k < n, by some rational map.

Concerning the main conjecture, note that the first interesting case which is not
covered by the above conditional result are the foliations of degree three on P3.
In fact, one of the goals of this paper is to prove that the conjecture is true for
foliations of degree three.

Theorem 1. Let F be a holomorphic codimension one foliation of degree three on
P*, n>3. Then :

o cither F has a rational first integral,
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e or F has an affine transverse structure with poles on an invariant hyper-
surface,

o or F = g*(G), where g: P"— — P? is a rational map and G a foliation on
P2,

One of the tools of the proof will be a result of [C-L-L-P-T] concerning foliations
which admit a finite Godbillon-Vey sequence. This result says essentially that such
a foliation is either a pull-back of a foliation on a surface or has a transversely
projective structure. Let us explain briefly how we can apply the result.

By definition, a degree d foliation F on P™ has d tangencies with a generic
straight line of P™. This implies that F can be represented in an affine coordinate
system C™ ~ E C P™ by a polynomial integrable 1-form wg = ji(l) wj, where the
coeffitients of the 1-form w; are homogeneous polynomials of degree j, 0 < j < d+1,
and ip(wgy1) =0, with R = Z?:l 2j 0,;, the radial vector field. The form wg can
be considered as a meromorphic 1-form on P™ with poles of order d + 2 at the
hyperplane of infinity of . Given p € F, we set

J(F,p) =min{k >0|j;(wp) # 0} .

It can be proved that J(F,p) depends only of p and F and not of E and wg. The
singular set of F is defined as
sing(F)={peP"|J(F,p) >1}.
This set is algebraic and has always irreducible components of codimension two (cf.
[LN]).
Given a degree three foliation F of P", we will consider two cases :

1. There exists p € sing(F) such that J(F,p) > 2.

2. For all p € sing(F) we have J(F,p) = 1.

Case (1) will be studied in section 2. We will see that F admits a finite Godbillon-
Vey sequence in this case and we can apply the result of [C-L-L-P-T)]. In case (2)
we will see in section 3 that F has a meromorphic first integral. In fact, we will
prove a kind of generalization of a recent result of Omegar Calvo (cf. [CA 2]) and
M. Brunella (cf. [B 2]).

In section 3 we will introduce the Baum-Bott index of an irreducible compo-
nent, say I', of codimension two of sing(F), which we will denote BB(F,I'). As
a consequence of the Baum-Bott theorem we will see that sing(F) has always a
codimension two irreducible component I" with BB(F,T") # 0.

Theorem 2. Let F be a codimension one holomorphic foliation on P™, n > 3.
Assume that sing(F) has an irreducible component of codimension two T' such that
e BB(F,T') #0.
o J(F,p)=1 forallpel.
Then F has a rational first integral.

As a consequence, we will get the following result :

Corollary 1. Let F be a codimension one holomorphic foliation on P™, n > 3. If
J(F,p) <1 for all p € P™ then F has a rational first integral.

Remark 1.1. Recall that p € sing(F) is of Kupka type if F can be represented
in a neighborhood of p by a holomorphic 1-form w such that dw(p) # 0. We define
K(F) = {p € sing(F)|p is of Kupka type}. If p € K(F) then J(F,p) = 1. We



would like to observe that if sing(F) has a smooth irreducible component, say T,
with I' C K (F), then a theorem due to Calvo Andrade and M. Brunella says that
F has a rational first integral (cf. [Ce-LN 2], [CA 1], [CA 2] and [B 2]). In this
sense, theorem 2 is a generalization of Calvo’s theorem.

Remark 1.2. We would like to observe that the result in corollary 1 is not true
when we consider codimension one foliations on more general complex manifolds.
For instance, let M = P? x P* k > 1, and F = II}(G), where II; : P? x P* — P2 is
the first projection and G is a foliation on P? of degree > 2 without non-constant
rational first integral and with J(G,p) < 1 for all p € P2. Then F satisfies the
hypothesis of corollary 1 but not its conclusion. A natural question which arises is
the following :

Problem 1. For which compact complexr manifolds of dimension > 3 corollary 1
is true ¢

Remark 1.3. There are examples of foliations on P2, the so called Hilbert modular
foliations, satisfying the following properties (cf. [C-L-L-P-TJ) :

e (a). They admit a projective transverse structure with poles.

e (b). They do not admit affine transverse structures with poles.

e (c). They are not pull-back of foliations on P2.

We will say that a foliation with properties (a) and (b) admits a purely projective
transverse structure (briefly p.p.t.s.). In fact, these examples have degree at least
five. On the other hand, as a consequence of the proof of theorem 1 it is possible
to prove that any p.p.t.s. degree three foliation on P™, n > 3, is the pull-back of
a Riccati foliation on P* x P! (see the third case in the proof of lemma 2.1). We
would like to observe that there are p.p.t.s. Riccati equations on P2 of the form

(1) z(x —1)dy — (ap(x) + ay(x) y + az(z)y*)dz =0 ,

where ag, a; and ay are degree one polynomials. If G is a p.p.t.s. foliation defined
by (1) on P? then it has degree three. In particular, if IT: P"— — P2 is linear then
I1*(G) is a p.p.t.s. degree three foliation on P".

It seems reasonable to hope that theorem 1 will give a clue to a classification of
the irreducible components of the space of degree three foliations on P™ which are
not pull-back by rational maps of foliations on P?. However, the analysis of the
components of rational pull-back type seems to be more delicate, since we have no
control on the degrees of the objects that appear in our proofs.

Problem 2. Classify the irreducible components of the space of foliations of degree
three on P™, n > 3.

2. PROOF OF THEOREM 1.

The aim of this section is to prove theorem 1 by admitting theorem 2. In section
2.1 we will analyse the case where there exists p € P™ such that J(F,p) > 2 and
in section 2.2 we will finish the proof.

2.1. The case J(F,p) > 2 for some p. Let F be a codimension one holomorphic
foliation on a complex manifold X. A Godbillon-Vey sequence (briefly G-V-S)
associated to F is a sequence of meromorphic 1-forms on X, say (w;);>0, such that
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e 1. F is defined by wg outside its set of poles, |wp|eo. In particular, wg is
integrable, that is wy A dwy = 0.
e 2. The 1-form defined by the formal power series

2

z 27
(2) Q:dz+wo+zw1+?wg+zﬁwj
i>3

is integrable.

When there exists NV such that wy # 0 but w; = 0 for all j > N then we say that
F admits a finite G-V-S of lenght N. In this case, the form in (2) is meromorphic
and can be extended meromorphically to X x P!. Since it is integrable, it defines
a codimension one foliation H on X x P! such that Hlxx{oy = F.

Remark 2.1. Let F and G be foliations on complex manifolds X and Y, respec-
tively. Assume that G admits a finite G-V-S of lenght N and that F = ®*(G),
where ®: X— — Y is a rational map. Then F also admits a G-V-S of lenght N
(cf. [C-L-L-P-T7J).

Remark 2.2. When F admits a G-V-S of lenght N < 2 then F has a transverse
projective structure with poles in a hypersurface. When N = 1 then the structure
is in fact affine (cf. [Go] and [Sc]).

On the other hand, if it admits a finite G-V-S of lenght N > 3 then we have the
following

Theorem 2.1. ([C-L-L-P-T]) Let F be a foliation on a compact holomorphic man-
ifold X admiting a finite G-V-S of lenght N > 3. Then
o cither F is transversely affine,
e or there ewist a compact Riemann surface S, meromorphic I1-forms
ag, ...,an on S and a rational map ¢: X— — S x P! such that F is defined
by the meromorphic 1-form w = ¢*(n), where

(3) n=dz+ao+zoq+ ...+ 2N ay .

When X = P", n > 3, necessarilly S = P! and (3) can be written as
n=dz— P(t,z)dt,

where P € C(t)[z] and F = ¢*(G), where G is defined on P* x P! by the differential

equation % = P(t,z). Since P! x P! is birrational to P? we get the following

consequence :

Corollary 2.1. If F is a codimension one holomorphic foliation on P™, n > 3,
which admits a finite G-V-S then, either it has a tranverse projective structure, or
it is a pull-back of foliation on P? by a rational map.

Now, let us consider a degree three codimension one foliation F on P™ and
assume that there exists p € P™ such that J(F,p) > 2. In this case, if we take an
affine coordinate system C™ C P™ such that p = 0 € C™ then F|cn is defined by a
polynomial 1-form w = ag + a3 + a4, where the coefficients of o; are homogeneous
polynomials of degree j, 2 < j <4, and ig(ay) = 0, R the radial vector field.

Lemma 2.1. In the above situation we have three possibilities :
(a) F has an affine transverse structure with poles in a hypersurface.



(b) F is the pull-back by a rational map of a foliation on P2.
(c) F is the pull-back by a linear map w: P"— — P*~! of a foliation of degree
three on P"~1,

In particular, if n = 3 then F satisfies (a) or (b).

Proof. With the previous notations, set a; = > | Pj;(z)dz; and Fj(z) =
ir(oj_1) =Y i z.Pji(2), j = 3,4. We will divide the proof in three cases :

1%¢. ig(w) = 0, which is equivalent to F3 = F;, = 0. In this case, we will prove
that w = a4 and we will get (c).

2nd [y # 0. In this case, we will prove that there exists a birrational map
®: P"— — P, an affine coordinate system (z,2) € C" 1 x C ~ C" C P" and
meromorphic 1-forms 31, B2 B3, with ip_(8;) = 0 and Ly_(5;) =0, 1 < j < 3, such
that ®*(w) = g.n, where

(4) n=dz+zp1+2" B2 +2"fs .
We will show that we can apply theorem 2.1 to prove that F satisfies (b) or (c).

374, F3 =0 and F,; # 0. In this case, we will prove that, either F is the pull-back
of a Ricatti equation on P! x P!, or it admits an affine transverse structure, or w

has an integrating factor, that is there exists a meromorphic function h # 0 such
that d(hw) = 0.

Analysis of the 1% case. First of all, note that ay # 0, for otherwise F would
have degree < 2. The integrability condition gives

wAdw=0 = wAir(dw)=0.
On the other hand,
ip(dw) = Lr(w) —d(ir(w)) = Lr(w) =3 as+4as+ 504 =
0= (oo + as+ as) AN(Bag +4as +5ay) =agAag+2as Aag+asAay .
Since the coefficients of a; are homogeneous of degree j, 2 < j < 4, we get
(5) g Nos=oag Aoy =a3Noy =0 .

Since a4 # 0, relations (5) imply that there are meromorphic functions f;, j = 2,3,
such that o; = f;. au. If f; # 0 for some j € {2, 3} then the foliation F would have
degree less than three. Therefore, ag = az = 0.

In particular, we get w = ay. Since a4 is integrable, it defines a foliation of
degree three, say F,_1, on P»~!. If we consider P"~! as the set of lines through
0 € C" C P*and 7: P*\ {0} — P"! is the natural projection then F = 7*(F,_1).
This finishes the analysis of the 15 case.

In the analysis of the two other cases, we consider first a blowing-up : P" — P"
at 0 € C* C P". Let us compute the foliation 7*(F). In the chart

(T1, s Tno1,2) = (1,2) €EC" P x C 5 (v.7,2) = (21, . 2n) €EC" C P
we get

(6) ™ (w) = 2® [20s + 205 + 2 04 + (F3(7, 1) + 2 Fy(7,1))dz] ,



where
Hj:ZPji(T,l)dTi s 2§j§4,

depends only of 7.
Analysis of the 2** case. Since Fy # 0 we have two possibilities :

2.a. Fy = 0. In this case, if we set §; = ﬁ 042 then we can write 7*(w) =
22 F3(7,1).n , where ip, (3;) = 0, Lo, (3;) = 0,1 < j <3, and

n=dr+z0+a*Pa+2° 0.
Therefore, we get (4).
2.b. Fy # 0. In this case, 7*(F) is defined in this chart by
vi=a at(w) = 20y + 2?05 + 2304 + (Fs(7,1) + 2 Fy(7,1))dx

and we need one more birrational transformation. Consider the birrational map

F3(7,1)
Y(r,2) = | T, EACEI (7,z) with inverse ¢! (1,z) = | 7, _r
-2 x4 F3(r,1)
F4(T,1)
2
A straightforward computation gives ¢*(v) = ?i ((:i)) n, where

n=dz+ 201+ 2% P2+ 2° Bs

with iFsrd)  dFa(r)
_ 1 Fa(r,1 Fa(r,1
bh=mrn 2t BeD ~ BeD

_ 1 1 dFy(r,1)  dF3(r1,1)
Pr=rmen 0 2Ren 2 T BED T BeD .

_ F3(7,1) 1
Bz = F%(m) 04 — Fa(r,1) 03 + Fs(lnl) 02

Therefore, in both sub-cases we obtain (4).

At this point we should mention that, in order to use theorem 2.1, we have to
assure that the G-V-S is of lenght > 3. If 5 is like in (4) then the integrability
condition of the form n implies that it admits the G-V-S (n = 1o, 1,72, 73), where
n; = ng) (n) (cf. [C-L-L-P-T]). The lenght is three if 3 = 6 83 # 0. On the other
hand, if #3 = 0 then F has an affine transverse structure.

In fact, if we set z = 1/w in (4) with 83 = 0 then we get n = —w ™2, where

Q:dw—ﬁg—wﬂl .
Therefore, Q2 admits the G-V-S of lenght one (2, —31). Note that dQ = (1 A Q

and df; = 0. Hence, F has an affine transverse structure with poles in some
hypersurface.

Analysis of the 3¢ case. In this case, after the blowing-up 7, we get 7*(w) =
x3. Fy(7,1).n, where

1

(7) n:dm+ﬂo+mﬁ1+x2ﬂz,ﬂj=m

9j+270§j§2



8

In particular, n admits a G-V-S of lenght < 2, (n = 10,71, 72), where n; = L(a]z)(n),
j = 1,2. A foliation defined by a meromorphic form like in (7) has always a
projective transverse structure, but in general has no affine transverse structure.
Therefore, we have to work more to conclude the proof in this case.

We begin by recalling that 7 (ag) = 22 (x 02+ F3(7, 1) dx) = 23 65. When ap =0
we get Bp = 0 and (7) becomes similar to (4) with 83 = 0, which we have already
considered and has an affine transverse structure. Let us assume as #Z 0. The
integrability condition w A dw = 0 implies that as A dae = 0. In particular, either
cod(sing(az)) > 2 and ay defines a foliation of degree one on P"~! or as = h.ay,
where a; defines a foliation of degree zero on P”~!. In both cases, it is known that
a9 has an integrating factor. In other words, there exists a homogeneous polynomial
[ # 0 of degree three such that d(f~!az) = 0 (cf. [Ce-LN 1]). This implies

7T* % _ 92 92 _ F4(’7', ].) > _
o = (F)=gen = () =0 = (Fenm) o
Set F(r) := f(r,1)/F4(r,1) and consider the birrational map &(r,z) =

(1, F(1).2) = (1,2). If  is like in (7) then a straightforward computation gives
®*(n) = F. 7, where

) - . - B _ dF -
f=dz+Po+z201+22 P2, Boi=F 1~60a51:ﬂ1+?7ﬁ2:F-52-

In this situation it is convenient to consider the birrational map U(r,w) =
(1,1/w) = (7,2). We have U*(7j) = —w~2. 17, where

ﬁ:dw*@*wﬁ} *wzléo .
Since ig,, (3;) = 0 and Ly, (3;) = 0, 0 < j < 2, the integrability of 7 implies

Ao = By 1 By
(9) Ay =20 A B2
dP2 = f1 A B2

Note that df, = 0. Therefore, the first relation in (9) implies N :~dﬁo =0.
Let us denote by M, the set of meromorphic functions on P*. Since Bo AB1 =0
there exists g € M,,_1 such that 31 = g. 8. The second relation in (9) gives

Ay =dgNPo=20o NP = (dg+2P)ABo=0 =
8 _ 1
dhe M,_1 suchthatﬁgzh.ﬁo—idg.

The third relation in (9) implies
~ - - -1 1 -
dh A\ Bo = dB2 = 1 A P2 = —g Bo A (hﬁo— 2d9) = §9d9A50 ==
1, ~
(10) d(h-19")nGo=0.

Let us denote by G the foliation defined by Bo on P"~1. We have two possibilities :

3.a. G has no non-constant meromorphic first integral. We assert that w has an
integrating factor.



In fact, relation (10) implies that
Lo Ly
d h_zg =0 — h:zg +C’C€C7

for otherwise h — % g2 would be a non-constant first integral of G. From the above
relations we get

f):dw+%dg—(g2/4+c+g.w—|-w2)[30=d(w+g/2)—([w+g/2]2+c)ﬁo.

In particular, if we set p = ((w + ¢/2)? + ¢) 1.7 then

_ d(w+g/2)
(w+g/2)* +c

This implies that w has an integrating factor, as asserted.

*B() = du=20.

3.b. G has a non-constant meromorphic first integral. We assert that F is the
pull-back of a Riccati equation on P! x P! by a birrational map.

In fact, by Stein’s fatorization theorem G has a meromorphic first integral, say
f, with connected fibers : if ¢ € M,,_1 and d¢ A df = 0 then there exists ¥ € M,
such that ¢ = ¥(f), where ¥(f) := ¥ o f. Since f is a first integral of G we have
Bo = ¢1.df, for some ¢; € M,,_1. This implies déy A df = 0, and so ¢; = v1(f),
where ¢, € Mj \ {0}. On the other hand, relation (10) implies that there exists
1y € M1 such that h = %gz + ¢2(f). In particular,

i =dw+g/2) — (g°/4+ gw +w* + Yo (f) Y1 (f) df =

= d(w+9/2) - ([w+g/2* +¥a2(f)) ¥r(f) df .

Consider the rational map @1 : P"~!xP1— — P! xP! given by ®;(7,w) = (f(7), w—
g(7)) := (z,y). Then 1) = ®*(0), where

0 =dy — (y* +2(2)) Y1 (x) do .

Since # = 0 defines a Riccati equation on P! x P! this finishes the proof of 3.b and
of lemma 2.1. |

2.2. End of the proof of theorem 1. The proof is by induction on n > 3. If
n = 3 then theorem 1 follows from lemma 2.1. Let us assume that theorem 1 is
true for n — 1 > 3 and prove that it is true for n.

Let F be a codimension one foliation of degree three on P"*, n > 4. It follows
from lemma 2.1 and theorem 2 that, either F satisfies one of the conclusions of
theorem 1, or F is the pull-back by a linear map m: P"— — P"~! of a foliation of
degree three on P"~!. In this last case, since theorem 1 is true for n — 1, then one
the three possilities bellow is true :

(i). Fn_1 has a rational first integral, say F': P"~!— — P!, In this case, F o is
a rational first integral of F and we are done.

(ii). Fn—1 = ®*(G), where G is a foliation on P? and ®: P"~'— — P? a rational
map. In this case, we get F = (P o 7)*(G) and we are done.

(iii). F,—1 has an affine transverse structure. In this case, F,,_1 admits a G-V-S
of lenght one. Therefore, F also admits a G-V-S of lenght one by remark 2.1.

This finishes the proof of theorem 1.
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3. PROOF OF THEOREM 2.

First we state some general facts about the Baum-Bott index that will be used
in the proof. After that we give the proof of theorem 2 in dimension three and at
the end we will see the proof in dimension n > 4.

3.1. The Baum-Bott index. We begin by recalling briefly the proof of [LN] that
sing(F) has components of codimension two. This proof is based in the Baum-Bott
theorem for foliations on compact holomorphic surfaces.

Theorem 3.1. Let G be a foliation on a compact surface with isolated singularites.
Then

(11) >, BB(G.p)=N;,

pEsing(G)
where Ng is the normal bundle of the foliation G and BB(G,p) the Baum-Bott
index of G at the point p.

A proof of theorem 3.1 and the definition of Ng can be found in [B 1]. The
Baum-Bott index BB(G,p) is defined as follows : let (U, (z,y)) be a holomorphic
chart around p such that x(p) = y(p) = 0 and sing(G) NU = {0} and w =
P(z,y) dy — Q(x,y) dx be a holomorphic 1-form representing G|y. Let n be a C*
(1,0)-form on U \ {0} such that dw = n A w. For instance, one can take

oP el
()
T IPP QP
Then the 3-form n A dn is closed and

- B0 = s [ o

(Pdz +Qdy) .

where B is a closed ball containing p = 0 in its interior with sing(G) N B = {p} (ct.
[B 1]). In particular, the integral in (12) does not depend on the form 7 chosen.
We will also use the notation BB(w, p) := BB(G,p).

Remark 3.1. We would like to point out some consequences of (12).

1. BB(G,p) is invariant by local analytic equivalences.

e 2. If the foliation G has a holomorphic first integral in a neighborhood of
the singular point p with an isolated singularity at p then BB(G,p) = 0.
3. If the foliation G is represented in a neighborhood of p by a vector field
X such that DX (p) is non-degenerate then

(DX (p))?
det(DX(p)) ’

where tr denotes trace and det determinant.
4. If (gt)te(ck,o) is a germ of holomorphic deformation of G such that Gg = G

and sing(G;) Nint(B) = {p1(t), ..., px(t)} then

BB(G,p)

k
Lim Z} BB(Gy,p;(t)) | = BB(G,p) .
=
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Let us prove that the singular set of the codimension one foliation F with
dg(F) = d on P" has at least one irreducible component of codimension two. If
not, then there exists a linear embedding i: P2 — P" such that :

(i). Ensing(F)=0.

(ii). The tangencies of F with E := i(P?) are generic (of Morse type, see [LN]).

Let G = i*(F). Note that (ii) implies that dg(G) = d. Moreover, (i) and (ii)
imply that if p € sing(G) then G has a local holomorphic first integral of Morse
type in a neighborhood of p. In particular, we get from (2) in remark 3.1 that

Y. BB(G,p)=0
pEsing(G)
On the other hand, Ng = (d + 2)H, where H is the class of a hyperplane (cf. [B
1]), so that the Baum-Bott theorem gives :

> BB(G.p)=(d+2)°>0,
pEsing(G)

a contradiction.

We will denote singz(F) the union of the codimension two irreducible compo-
nents of sing(F). Let I' be an irreducible component of singz(F). Given a smooth
point p € I' and a germ of embedding i: (C2,0) — (P",p), transverse to I', define
BB(F,~,i,p) := BB(i*(F),0). The following result can be proved :

Theorem 3.2. There exists a proper analytic subset I'y C T such that :

(a). If p € T\ I'y then BB(F,I,i,p) does not depend on the embedding
i: (D2,0) — (P",p), transverse to I'. We then denote BB(F,T',p) :=
BB(F,T,i,p).

(b). The map p e I'\T'1 — BB(F,I',p) € C is constant.

We then denote BB(F,T') := BB(F,T,p), where p e T'\T';.

The proof in the general case can be done by using the results of J. F. Mattei
about the equiresolution of integrable families of foliations of (C2,0) (cf. [Ma]) and
also the fact that the Baum-Bott indexes of two germs of foliations on (C2,0) are
the same if their Seidenberg resolutions of singularities are C'°® isomorphic with
corresponding singularities with the same Baum-Bott index (cf. [B 1]). We give
the proof of theorem 3.2 in the case we are interested.

Lemma 3.1. Let w be a holomorphic integrable 1-form in a neighborhood of 0 €
U cC" n >3, such that w(0) = 0 and j)(w) # 0 for all p € U. Assume that
sing(w) is connected and smooth of codimension two. Then for any p,q € sing(w)
and any two transverse sections to sing(w) through p and q, say £, and X, then
BB(w, sing(w), Xy, p) = BB(w, sing(w), 24, q).

Proof. Denote by F the foliation defined by w on U. We will prove that
for any p € sing(w) there is a neighborhood V of p in sing(w) such that for
any two transverse sections X, and ¥, through p and ¢ € V, respectively, then
BB(w, sing(w), ,,p) = BB(w, sing(w), X4, q).

Fix p € sing(w). Assume first that p is a Kupka singularity, that is dw(p) # 0. In
this case, the distribution defined by E, = {v|i,(dw(¢)) = 0} has codimension two
and is integrable in some neighborhood W of p, defining a codimension two foliation
& on W. Moreover, sing(w)NW is a leaf of £. If ¥ is a germ of embedded two plane
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transverse to sing(w) at p, we can define a germ of submersion g: (C", p) — (X3, p)
by following the leaves of £. It can be proved that w = ¢*(w|x), so that F|w is
product of a singular foliation on ¥ by the regular foliation of codimension two &.
This implies (i), (ii) and that, if ¥’ is another transverse section through a point
p' € sing(w) near p then BB(w, sing(w), ¥, p) = BB(w, sing(w),X’,p’) (cf. [K]).

When dw(p) = 0 the 1-jet wi = jj(w) is exact (dw; = 0). Since wy # 0 and
codim(sing(w)) = 2 we must have 1 < codim(sing(w1)) < 2. Hence, after a change
of variables we can suppose that p = 0 and, either wy = xdy + ydz, or w1 = x dzx.
In the case w; = xdy + ydx with cod(sing(w)) = 2, the situation is similar to the
Kupka case. It is proved in [C-M] that F is equivalent in a neighborhood of p to
the product of a dimension one foliation in a transversal section by regular foliation
of codimension two. Hence, if ¥ and ¥/ are transverse sections to sing(w) we have
again BB(F, sing(w),X,p) = BB(F, sing(w), %', p’).

In the case w; = x dx we use a result due to F. Loray. Since this case will appear
before in the proofs, we give a formal definition.

Definition 1. We say that a singularity p of the foliation F is nilpotent if there
exists an integrable holomorphic 1-form w defining F in a neighborhood of p such
that jj(w) = xdz, in some coordinate chart (x,y) € C x C*~! around p such
that x(p) = 0. Remark that this fact does not depend on the particular 1-form
representing F in a neighborhood of p.

The next result is a consequence of corollary 3 in [Lo] page 710.

Theorem 3.3. ([Lo]) Let 0 be a germ at (0,0) € Cx C™ of holomorphic integrable
1-form, where

0 =g(w,z)dw+ ij(w,z) dzj , (w,2z) = (w,21,....,2m) € CxC™ .
j=1
Denote by F the germ of foliation defined by 0. Assume that ji(0) = wdw. Then

there exist local analytic coordinates (x,() € CxC™, a germ f € O, with f(0) =0,
and germs g,h € Oy such that F is defined in the chart (x,() by the 1-form

(13) w=wdr+[g(f(C) +xh(f(C)]df(C) -
In particular, F = ¢*(G) where p: (C x C™,0) — (C2,0) is given by o(z,() =
(z, f(¢)) and G is the germ at (C2,0) of foliation defined by

n:=xdr+ [g(t) +zh(t)]dt .

Let us finish the proof of lemma 3.1. Note that if w is like in (13) then
sing(w) C (z = 0). Since we are assuming that sing(w) is smooth and has codimen-
sion two, after a holomorphic change of variables involving only (, we can assume
that sing(w), = (r = {1 = 0), where sing(w), is the germ of sing(w) at p = 0.
Therefore,
sing(w)p = (r = ¢ =0) = (z = g(f(Q)) = 0)U(x = 0f/0C = ... = 0f /01 = 0) .
Hence, either g(0) =0 and ¢; | f, or g(0) # 0 and (1 |0f/0(; forall j =1,...,n—1.
In any case, we get (1 | f and so f(¢) = ¢F.G(¢), where G € O,,, k€ Nand (; 1 G.

We have two possibilities :
1%t G(0) # 0. In this case, after the holomorphic change of variables

(I)(xaC) = (xaCLGl/k(C)aCQ»'“aCn) = (xvyaCQ,'",Cn) )
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where G/¥ is a branch of the k" rooth of G, we get fo ®~! =¢* and
(14)  Pu(w) =zdo+[g(y") + 2z (") ky* dy = do + [91(y) + 2 (y)] dy -

Hence, in this case F is locally the product of a singular foliation on (C2,0) by a
regular foliation of codimension two and the argument is similar to the preceding
cases.

24, G(0) = 0. Since sing(w), = (zr = (1 = 0) and
w=zdz+ (g Q)+ xh(cF.G) 1 (¢G.dG +kG.dG)

we get

2.1. g(0) # 0, for otherwise sing(w), = (z=(.G(() =0) D (x = =0).

2.2. k > 2, for otherwise (1 | G.
Recall that w = ¢*(n), where n = zdzx + (9(t) + 2 h(t)) dt and (z,{) = (, f(()).
Since ¢g(0) # 0 we have 1(0,0) # 0 and the foliation defined by 7 has a non-
constant holomorphic first integral, say H(z,t), in a neighborhood of 0 € C2,

with H(0,0) = 0, 22£(0,0) # 0, 22£(0,0) = 0 and %113(0,0) # 0. This implies
that Hi(x,¢) := H(x,(F.G(¢)) is a non-constant holomorphic first integral of w
in a neighborhood of 0 € C". By using that 22(0,0) # 0, 2£(0,0) = 0 and
%121 (0,0) # 0, it can be checked that for any ¢ € sing(w), and any transverse
section X, through ¢ then Hi|x, has an isolated singularity at ¢. It follows from
(2) in remark 3.1 that BB(w, sing(w), X4, ¢q) = 0. This finishes the proof of lemma

3.1. (]

Remark 3.2. Let F be a codimension one foliation on P™, n > 3. It follows
from the argument of [LN] that sings(F) has at least one irreducible component of
codimension two, say I', such that BB(F,T") # 0.

Assume that J(F,p) = 1 for all p € T'. Denote by I the smooth part of sing(w)
contained in I'. We would like to remark that for any p € I then the germ JFp, of
F at p, is equivalent to the product of a singular foliation on (C2,0) by a regular
foliation of codimension two. In fact, we have seen in the proof of lemma 3.1 that the
unique case in which perhaps this fact is not true is the 2"¢, where BB(F,T') = 0.

Note that the irreducibility of I' implies that [ is connected. In particular, there
exists a germ of holomorphic 1-form 7 at (C2,0) such that for any p € I then there
is a germ of submersion ¢: (P",p) — (C?,0) such that F,, is defined by ¢*(n).

Definition 2. The normal type of F along I is, by definition, the equivalent class
of the foliation defined by n on (C2,0).

Since in the proof of theorem 2 we will deal with nilpotent 1-forms, before closing
this section we would like to state a result in which we compute the Baum-Bott
index for this type of form.

Lemma 3.2. Let U C C be an open set and g1,h1 € O(U), g1 £ 0. Consider the
foliation G of C x U defined by n = 0, where

n=adr+ (g1(t) +zhi(t))dt .
Then for any t, € U such that ¢1(t,) = 0 we have

(15) BB(G,(0,t,)) = Res ((};11(8))2 dt,t = to) .
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Proof. The vector field X = —(x h1(t) + ¢1(t)) Or +x O; also defines G. Let £ > 1
be the multiplicity of g1 at ¢,, so that g1 (t) = (t — t,).¢(t) and ¢(t,) # 0.
Assume first that £ = 1. In this case g{(t,) = ¢(t,) # 0 and (0,%,) is a
non-degenerate singularity of X. Therefore, by computing the jacobian matrix
of DX(0,t,) we get from (3) in remark 3.1 that
(tr(DX(0,t0))* _ ha(to)? ((hl(t))2 )
BB(G,(0,t,)) = = = Res dt,t, | .
GO = DX 0.t~ et o
Suppose now that £ > 1. Consider the family (Gs)sec of foliations defined by
2
ne = xdr + (g1(t) — s* + xhi(t))dt and set 0, = ;?(lt()tl)s[ dt. For small |s| # 0,
the equation g;(t) = s’ has exactly ¢ roots near t,, say t1(s),...,t¢(s), such that
iin% ti(s) = t, and g{(¢;(s)) # 0 for s # 0. Therefore, the first case implies that

BB(Gs,(0,t(s))) = Res(0s,tj(s)), 1 < j < ¥, |s| # 0 and small. On the other
hand, by (4) in remark 3.1 we have

J4
BE(G,(0.t,)) = lim | 3" BB(G.. (0,;(5)) | =

¢
o PR O
= i% E Res(0s,t;(s)) | = Res ( ) dt,t = t0> . O

3.2. Proof of theorem 2 in dimension three. Let F be a codimension one
holomorphic foliation on P? and assume that sings(F) has an irreducible component
I' with BB(F,T") # 0 (see remark 3.2) and J(F,p) = 1 for all p € T. Since we
are working in dimension three, the irreducible components of sing(F) are either
curves, or points. As a consequence, the connected component A of sing(F) which
contains I is of pure dimension one, and so is a finite union of irreducible algebraic
curves. We denote sing(A) the singular set of A and I' = T'\ sing(A). Note that
any point of I is a smooth point of I'. Let 7 a germ at 0 € C? of 1-form representing
the normal type of F along T

j=1

Remark 3.3. Any point p € T\ I is a nilpotent singularity of . Moreover, the
normal type n of F along I is, either Kupka, or nilpotent. In other words, either
dn(0) # 0, or 7 is nilpotent.

Proof of the remark. As we have seen in the proof of lemma 3.1, for any ¢ € T’
we have two possibilities :

(i). The germ of F at ¢ is equivalent to a product of a singular foliation on

(C2%,0) by a regular foliation of dimension one.

(ii). ¢ is a nilpotent singularity of F.

In case (i) the germ of sing(F) at ¢ is smooth of codimension two and so ¢ € T.
This proves the first assertion.

On the other hand, if the normal type is not Kupka then dn(0) = 0 and 7; =
J&(n) # 0 is exact. If n; is not nilpotent, then 7; = 2 dy + y dz in some chart. But,
this implies that BB(F,T") = 0, which contradicts BB(F,T") # 0. O

Definition 3. A separatrix of F along I is a germ of hypersurface ¥ along I' which
is F-invariant. In other words, given p € T" there exists a germ u, € m, \ {0} such
that :
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. The ideal of the germ X, of ¥ at p is generated by wu,,.

. The germ I', of I'' at p is contained in ¥,.

. If F is represented by a holomorphic 1-form w in a neighborhood of p then
du, A w = u,. O, where © is a germ of holomorphic 2-form. This condition
is equivalent to the F-invariance of X.

(d). If u is a representative of u, in a small neighborhood U of p then, for any

q € T'NU there exists g € O such that u, = g. (u),, where (u), denotes

the germ of u at q.

We say that X is smooth if du,(p) # 0 for all p € T'.

o~ o~
o T
S— N

Consider now the normal type n = P(z,y) dy — Q(z,y) dx of F along I'. Assume
that n has a smooth separatrix ¢ = (u(z,y) = 0), u € ma \ {0}, du(0) # 0. Let
II: (M,D) — (C2,0) be the minimal Seidenberg’s resolution of singularities of 1
by blowing-ups, in the sense of [C-LN-S] or [B 1]. Denote by G be the foliation on
(M, D) defined by the strict transform of IT*(n). We would like to recall that :

(A). D= U?Zl Dj, where each divisor D; is biholomorphic to P!. Moreover, if

i # jand D; N D; # 0 then D; N D; = {p} and D; cuts D; tranversely
at p. The divisor D; is dicritical if it is not G-invariant. Otherwise, it is
non-dicritical.

(B). All singularities of G in D are simple, in the sense that if p € sing(G) N D

and G is represented by a holomorphic vector field X in a neighborhood of

p then the eigenvalues A1, Ao of DX (p) satisfy one the conditions bellow :

(B.1). If one of the eigenvalues is zero then the other is non-zero. In this
case, p is a saddle-node of G.

(BQ) )\1,)\2 7£ 0 and Ag/)\l ¢ Q+.

Definition 4. Let o be a smooth separatrix of  and II: (M, D) — (C2,0), D =
\U; Di, and G be as above. Let ¢ be the stric transform of o by II, where 6ND = {p}.
We say that o is a distinguished separatrix of n if for any other smooth separatrix,
say o1, of n, with strict transform 67 and 61N D = {q} (p # ¢) then there is no local
biholomorphism ®: (M, p) — (M, q) such that ®*(G,) = G,, where G, denotes the
germ of G at x € D.

Remark 3.4. We would like to remark the following facts :

(I). When 0 is already a simple singularity of 7 then 7 has at least one and at
most two analytic separatrices through 0, all smooth (cf. [C-S]). In case (B.2) it
has exactly two, each one tangent to an eigendirection of DX (0). In case (B.1) it
has always one, which is tangent to the non-zero eigenvalue of DX (0). Sometimes
it has also another tangent to the eigendirection of the eigenvalue 0. We would like
to observe that all separatrices of ) are distingueshed, except when A\; = —Xy # 0.
However, in this last case we have BB(n,0) = 0.

(IT). If ® € Dif f(C?,0) preserves the foliation defined by 1 and ¢ is a distin-
guished separatrix of n then ®(0) = 0. In other words, if ®*(n) = h.n, where
h € O; then ®(0) = o. This follows from the fact that there is a germ of biholo-
morphism ®: (M, D) — (M, D) such that I1o & = & o II.

(IIT). When the strict transform & of o cuts transversely some dicritical divisor
in a regular point ¢ of G then it is not distinguished. This follows from the fact that
there exists a chart (W, (u,v)) around ¢ such that WND = (v =0), WNs = (u = 0)
and G|w is defined by du = 0.
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We will say that a separatrix ¥ of F along I' extends a separatrix o of 7, if for
some transverse section A through a point p € T', where F|, is defined by n (up to
equivalence), then o coincides with ¥ N A. We will say also that o can be extended
to X.

Lemma 3.3. If the normal type n = P(x,y)dy — Q(z,y) dz has a dintinguished
smooth separatriz o then it can be extended to a smooth separatriz 2 of F along I.

_ Proof. Let us prove first that o extends to a germ of separatrix Y of F along
I. It follows from the definition of the normal type that there exists a covering
(Wa)aca by polydiscs of T' with the following properties :

(i). Wq AT is connected and non-empty for all o € A. If Wap :=WaNWg #0
then W,g N I is connected and non-empty.
(ii). For all @ € A there is a chart (Za,¥Ya,Zza): Wa — C3 such that Fly is
represented by 1, = P(Za, Ya) AYa — Q(Ta, Yo ) dxs and rNnw, = (o =
Yo = 0).
Let u(z,y) = 0 be an equation of o and define u, (T, Yas2a) = (T, Ya) €
O(Wy). Set X, = (uq = 0). Since o is smooth we have du(0) # 0, which implies
due (0,0, z4) # 0, so that X, is smooth along rNnw,.
Fix Wog # (0. Since Flw,, is represented by nq|w,, and by ns|w,, there exists
¢ € O*(Wygp) such that 1, = ¢.73. Let A be a transverse section through a point
q € f‘ﬂWaﬂ. Then X, NA and ¥gNA are separatrices of 1, |a and 7|4, respectively.
Since they correspond to o, which is distinguished, they must coincide, by (IT) in
remark 3.4. This implies ¥, N Wyog = X3 N Wyg. In particular, there exists a germ
of hypersurface I, which extends o, and such that T N W, =T, for all o € A.

This finishes the proof when I' = I'. Assume that I‘\f‘ # () and let us prove that
¥ extends to a smooth separatrix ¥ of F along T'.

Fix a point p € T' N sing(A) = I'\ T'. Since p is a nilpotent singularity of F,
by Loray’s normal form, we can find a chart (x,s,t): U — C3 such that F|y is
represented by

w = dz+ (g(f(5,8)) + 7 h(F(s,0)) df (5,
and TNU = (z = f(s,t) = 0). As we have seen before, given ¢ € T N U there is a
local chart (W, (x,y,2)) with W C U, z(q) = y(q) = 2(q) =0, flw = y*, k > 1,
and

wiw = wdz + (9(y*) + xh(y")) ky* ' dy == e de + (§(y) + x h(y)) dy -
Let A be the transverse section (z = 0) and set
0 =wlr =zdz+ (G(y) +zh(y))dy .
Note that §(0) = 0, because (0,0) is a singularity of 6.

Let &« € A be such that ¢ € W, and z(q) = y(q) = z(¢) = 0. If we cut
Yo = X N W, by the transverse section A = (z = 0), then we find a smooth
separatrix 6 := X, N A of the differential equation n,|y = 0, which is also a
separatrix of # = 0 and corresponds to the separatrix ¢ of 7.

The idea is to prove that ¢ admits an equation in the chart (z,y) of the form
x = 1(y*), ¥ € my. Since f|w = y*, this will imply that the form w has a smooth

separatrix with equation z = 1(f(s,t)) which extends ¥ to a neighborhood of p.
This will finish the proof of lemma 3.3.
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We assert that ¢ is not tangent to the xz-axis. This will imply that ¢ admits an
equation of the form = = ¢(y), ¢ € mq, because it is smooth.

In fact, assume by contradiction that & is tangent to the z-axis. In this case, it
admits an equation of the form y = ¢(x), where ¢(0) = ¢’(0) = 0. Since & satisfies
0 =0, we get

z+(9(¢(x)) + 2 h((x))) ¢'(z) =0
Since g(0) = ¢(0) = ¢'(0) = 0, the above relation implies

z = jo [z + (§(6(x)) + xh(é(x)) ¢ (2)] =0,

a contradiction. Therefore, & admits an equation of the form z = ¢(y) with ¢ € m;.
When k = 1 this already proves that ¥ can be extended to a smooth surface in
a neighborhood of p. When k > 1 we consider the automorphism ®: (C2 0) —
(C2%,0) given by ®(z,y) = (z,(.y), where ( is a primitive k*"-root of unity. Since
0 = zdx+(g(y*)+xh(y®)) d(y*) we get ®*(0) = 6. This implies ®(5) = &, because
®(5) is a separatrix of 6 and & is distinguished. On the other hand,

®(0) =P(r—d(y) =0) = (2—-8(C.y) =0) = (z—9¢(y) =0) = (z—9¢((.y) =0)

= 0(Cy)=0(y), Yy (C,0) = o(y) =vH*), pem .
This finishes the proof of lemma 3.3. O

The next result will be used several times in the rest of the proof.

Proposition 3.1. Let v be an irreducible curve of P3. Assume that there exists
a germ X of smooth surface along v. If Ny denotes the normal bundle of ¥ and
c1(Ny) its the first Chern class then

[/cl(Ng) >0.

In particular, the above integral is a positive integer.

Proof of proposition 3.1. According to the definition, by taking a representative
of ¥ in a sufficiently small neighborhood W of v and a covering U = (Uy)aca of
W by polydiscs, we can say that there exist

I. A collection (uq)aca, where u, € O(Uy), Eg := XNU, = (uq = 0) and
due(q) £ 0 for all ¢ € X,
II. A multiplicative cocycle (Aap)u, 20, Uas := Ua N Up, such that u, =
Aunp.ug for any U,z # 0.
The cocycle (Aag)u, ,20 represents the normal bundle Ny, of ¥ in H'(U,0*). Let
¢1(Nyx) be the first Chern class of Ny, considered as an element of H3 5 (W).

Denote by X3 the set of holomorphic vector fields on P2, It is well known that
dim(X3) = 15. Given X € A5 let Tang(X,X) C X be the divisor of tangencies of
X with X. This divisor can be expressed as follows in the covering i : if g € U,NX
then g € |Tang(X,X)|NU,, if, and only if, X (uq)(q) = ua(q) = 0. Set T, := UsNX
and

Jo = X (uq)|z,, -
Let B={ac A|X, #0}. If o, € B and X3 # () then

X(ua) = X(Aag.ll,ﬁ) = Aaﬁ.X(Ug) + UQ.X(AQQ) = Jo = GapB-93
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where an5 = Aqpgls. Hence, (aap)s, ,»0 is a multiplicative cocycle and (ga)acn
defines the divisor Tang(X,X) of X.

If X is not completely tangent to X then (g4 )acn is effective (g, Z 0 for all @),
which implies that Tang(X,X).[y] > 0.

A straightforward computation in affine coordinates shows that, given p # ¢ € y
there exists X € X3 such that X (p) € T,X and X (q) ¢ T,%, where T,,¥ denotes
the tangent space of ¥ at x € X. Let us fix such vector field. Since X(q) ¢ T,%,
Tang(X,X) is effective. Since X(p) € T,X we have p € [Tang(X,X)| N+, which
implies Tang(X,¥).[y] > 0. On the other hand, it is known that

Tang(X,X).[y] = /

o(Tang(X, %)) —> / e1(Tang(X, %)) > 0 .

Since the cocycle associated to Tang(X,X) in the covering (X4)aep I8 (Gag =
Aaﬂ|2)o¢ﬂy we get

c1(Tang(X, %)) = c1(Ny)|ly = /cl(NE) >0. O

Lemma 3.4. The normal type n is not nilpotent.

Proof. The proof will be by contradicition. Assuming that all points of I" are
nipotent, we will prove that F has a smooth separatrix 3 along I'. After that we

will see that
/ C1 (NZ) = 0 B
r

which contradicts proposition 3.1.

In the proof of the existence of the smooth separatrix we will need the resolution
of singularities of a nilpotent 1-form on (C2%,0) with BB(#,0) # 0. The following
consequence of lemma 3.2 will be usefull.

Corollary 3.1. Let

(16) n=wdr+(9(y) +zh(y)dy ,
where BB(6,0) # 0. Then h £ 0 and
(17) v(g,0) 2 2v(h,0)+ 1,

where v(.,0) denotes the multiplicity at 0 € C.
Proof. 1t follows from lemma 3.2 that

h(y)?
9(y)

This implies h Z 0 and v(g,0) > 2v(h,0), because otherwise }Z((y;; dy would be

holomorphic at 0 € C and the residue would vanish. (I

O#BB(Q,O):Res( dy,y:O) .

Ezistence of the smooth separatriz along I'. According to lemma 3.3 it is sufficient
to prove that the normal type has a dintinguished smooth separatrix. We can
assume that 7 is like in (16), where v(g,0) := m and v(h,0) := n. Note that n > 1,
because otherwise 1 would not be nilpotent. Since BB(n,0) = BB(F,T") # 0 we
get from corollary 3.1 that h 20 and m > 2n +1 > 3.
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Let us give a brief description of the Seidenberg resolution of singularities of 7
(cf. [Me]). Write g(y) = y™. Gi(y) and h(y) = y". (2(y), where (;(0) # 0, j = 1,2,
so that

n=zdr+(y" Q) +zy" Gy)dy .

After the (n+ 1) step of this resolution we find a chain of divisors D1, ..., Dy, 11

and a blowing-up map II: (M, D) — (C2,0), D = U; Dj = I1-%(0), where :
(I) D]D1201f]<7,—1 andDj.Dj_H =1, 1§]<ZS7’L+1

(I). D3 = —2if1<j<nand D2 =1
Let us denote by G the strict transform of the foliation defined by II*(n). It can be
proved that (cf. [Me]) :

(III). All the divisors Dy, ..., D41 are G-invariant.

(IV). If j < n+ 1 then sing(G) N D; = D; N Dj4q = {p;}. Moreover, if X;
is a vector field representing G around p; then DX;(p;) has eigenvalues
A{, )\% # 0 with )\]i / )\% € Q_. In particular, p; is a simple singularity of
X; and G has only two separatrices through p;, which are contained in the
divisors D; and D;q.

(V). The divisor D,y appears after the (n + 1)** blowing-up. Moreover, there
is a chart (u,y) € C? around D, 41 \ {pn}, where Il(u,y) = (y" L, y) =
(z,y). In this chart, we get D,y1 \ {pn} = (y = 0) and II*(n) = y*" . «,
with

a=uydu+ ((n +1) u? + Cay)u+ ym7(2"+1) G (y)) dy .

The idea is to prove that G has a distinguished smooth separatrix ¢ transverse
to D,41 admitting an equation of the form u = ((y), where ¢ € OF and ({(0),0) is
a singularity of G. In this case, if o = II(6) then o admits an equation of the form
x =y " u =yt ((y). In particular, o will be a smooth distinguished separatrix
of 7.

The foliation G is defined around D;, 11 \ {pn}, in the chart (u,y), by the vector
field

2= ((n+ )2 + Gl ut v G ) . —uyd,

If weset a = (2(0) #0,b=0if m > 2n+1 and b = (;(0) if m = 2n+1, then, in this
chart, the singularities of Z along (y = 0) C D41, are ¢1 = (u1,0) and ¢2 = (u2, 0),
where w1, ug are the roots of (n+1)u?+au+b = 0. The eigenvalues of DZ(q;) are
Al =2(n+1)u; +a and X, = —u;, where X! corresponds the eigendirection of the
separatrix (y = 0), ¢ = 1,2. Since Z is not nilpotent at ¢;, i = 1,2, we can apply
the classification of non-nilpotent singularities. According to the values of a and b,
we have three possibilities :

15t b # 0 and a?/b = 4(n + 1). In this case, ¢1 = g2 = (—a/2(n + 1),0). The
singularity is a saddle-node, A} = 0 and A\l = a/2(n+ 1) # 0. It follows that G has
an unique separatrix ¢ through g1, which is smooth and transverse to the divisor.
The separatrix o = II(§) is the unique one of 1 and so it is distinguished.

274 h £ 0 and a?/b # 4(n + 1). In this case, q1 # g2 and A, Al # 0,7 = 1,2.
Since \i = 2(n + 1)u; + a and N}, = —u;, it follows that AL /Al # A2 /A2, On the
other hand, a straightforward computation, using the values of A\i and A\, i = 1,2
(or the Camacho-Sad theorem [C-S]), shows that :

AL a2 1

N Than
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Since AL/A} # A2/A2, either AL/A ¢ Q, or A2/0\? ¢ Q4. In particular, if
we assume AL /Al ¢ Q. then G has an unique smooth separatrix ¢ through g,
transverse to the divisor (y = 0), with

CS(G.6) = A\ /A, ¢ Qi

where C'S(G, &) denotes the Camacho-Sad index of the separatrix & with respect to
G (cf. [C-S]). If i has another smooth separatrix, say o, then its strict transform
&' must satisfy 6’ N (y =0) = {¢g2} and

CS(G,0") = A /A2 #CS(G,6) .

Since the Camacho-Sad index is an analytic invariant of the pair (G, separatrix), it
follows that o = II(6) is a dinguished separatrix of .

374, b = 0. In this case, we can take uy = 0 and u; = —a/(n + 1) # 0, which
give \2 =0, \? =a # 0and \}/A\L = —(n+1) ¢ Q. In particular, ¢z is a
saddle-node and G has an unique separatrix 6 through ¢;. In this case, o = I1(§)
is a distinguished separatrix of 17 because g2 is saddle-node and ¢; is not.

This proves the existence of the smooth separatrix 3 of F along T'.

Proof of f»y,- ¢1(Ny) = 0. We have seen that given p € I" then :

(i). There exists a germ of local chart 1) = (x,y,2): (P%,p) — (C3,0) such that
the germ Ty, of T at p, satisfies '), C (z = 0).

(ii). There exist (1,(2 € OF and f € my, depending only on (y, z), such that F,
is represented by

w=wzdr+ (" G(f)+zf" ¢(f)df .

In particular T'), is defined by (x = f = 0).

(iii). The germ ¥,, of ¥ at p, is defined by x — "1 (y, 2) ((f(y,z)) = 0, where
¢ € Of. Set () = t"TL((2).

(iv). When p € T then we can choose the chart in such a way that T, = (z =
y=0)and f(y,z) =y"* k> 1.

When we consider the change of variables ¥(u,y, 2) = (u+ ¢(f(y, 2)), y, z) then

a straightforward computation shows that :

U (w) = (u+ o(f(y,2)) du+u [f"(y, 2). C(f(y, 2)) + &' (f(y,2))] df (y, 2) -

In particular, in the new chart we have ¥, = (v = 0). This implies that, if we
choose a small neighborhood U of I', where the germ X has a representative, then
we can find a finite covering U = (Uy)aca of U by polydiscs with the following
properties
(v). Ua NT # 0 for all , and Uy NT # 0 for all Uyp # 0.
(vi). If Uy N (D\T) # 0 then U, N (I'\ T) contains just one point. Moreover, if
Ua N (T\T) = {p} then p ¢ Up for all § € A with § # a.

(vii). For all a € A there exists a holomorphic chart ¥,, = (U, Ya, 2a): Ua — C3,
such that ¥, (U,) = D? and X NU, = (uq = 0), so that ¥ (U, NYX) =
{0} x D2.

(viii). For all @ € A there exist f, € O(D?) and ¢, € O(f,(D?)), with ¢, (t) =
t" T (1), Co € OF(fo(D?)), such that Fly, is represented in the chart
(Uas ¥a) by

Wa = (Ua + @a(fa)) dua +ua (fo-G(fa) + ¢a(fa)) dfa -
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(ix). If Uy N (C\T) = 0 then fo(Ya, 2a) = yE.
(x). If Uy, N (I'\T) = {p} then ¥,(p) = 0. Moreover, if ¢ € I'\ {p} then there
exists a chart (W, (uq, Vo, ws)) around ¢ such that fu|w = vk.

It follows from (vii) that there exists a multiplicative cocycle G = (gag)u, ;-0
such that u, = gag.ug on Uyg # 0. The cocycle G represents Ny, in H'(U, O*).
The idea is to prove that ga.g|rnu,, is locally constant for all Uyg # (. This will
imply that [.ci(Ns) = 0.

Since w, represents F|y, , there exists a multiplicative cocycle (pas)u, ;20 sSuch
that wa = pag.wg on Uag # 0. Fix Usp # 0 and ¢ € ' N Uyp. Let us prove that
ga5|meQﬁ is constant in a neighborhood of q.

Note that ¢ € T, because (I'\T) N U,p = @ by (vi). On the other hand, (ix)
and (x) imply that we can find germs of charts (uq, Ve, wa): (P3,q) — (C3,0) and
(ug,vg, wg): (P3,q) — (C3,0) such that

(xi). Ty = (ta =v4 =0) = (ug =v3 =0) and E; = (uq =0) = (ug = 0).

(xii). If i € {a, 3} then F, is represented by the germ at 0 € C3 of

wi = (s + ¢i(vF)) dui + u; (V] G(vF) + ¢ (vF)) d(vf) -

In particular, we get from (xi) that u, = gog-ug and ve, = heg.ug + kag-vs,
where hag, kag € Og and gag.kap € Oy. 1f we substitute these relations in w, then
we get the expression of w, in the other coordinate system

(18)  wa = (gap-us + Ga((has-us + kas.v5)")) (gas dup + g dgas)+
+9a5up (hasup+kasvs)®- C2(va) + ¢ (hapup+kapvs)*)) d(hap-us+kap.vp)"
= A(ug, v, wp) dug + B(ug, vg, wp) dvg + C(ug, vg, wg) dwg .
Since wq, = @qp.ws and wg has no term with dwg, we get C = 0. Write
C(ug,vg,wg) = Z Cij(wg) u% vg .
i,j>0
It follows from (18) that Coo(wg) = Cio(wg) = Co1(wg) = 0 and

agocﬁ(o’ 0, wﬁ) -0 8904[3((); 0, wﬁ)

6wﬁ 8wﬁ =0 =

C20(wg) = gap(0,0,wp).

= gap|U.snr is locally constant.

Recall that ¢; (N,)|r can be obtained from the additive cocycle of (2922,
o op UQB#(D

dgea )
anﬁﬂ‘FmUa[i = 0 we get fp c1(Ny) = 0. This

finishes the proof of lemma 3.4. O

by taking a fine resolution. Since

Remark 3.5. Lemma 3.4 implies that T C K (F), the set of singularities of Kupka
type of F.

Corollary 3.2. If I'\T = () then theorem 2 is true in dimension three.

Proof. If T =T then it is smooth and T' C K (F). Therefore, F has a meromor-
phic first integral by [CA 2] and [B 2]. O

In view of corollary 3.2, from now on we will assume that I'\ T’ # (. Another
consequence of lemma 3.4 is the following :
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Corollary 3.3. Fiz p € T\ I and consider a germ of holomorphic chart
(z,y,2): (P3,p) — (C3,0) such that F, is represented in this chart by the form

w=wxdr+ (f"(y,2)-Q(f(y,2) + 2 ["(y.2). (f(y, 2))) df (y, 2) ,
where f € mg and (1,2 € OF. Then :

(a). n=0 and m > 1.
(b). 0 € C? is a singularity of f and f reduced in Os.

Proof. Note that
dw = f"(y,2).-C(f(y,2)) dz N df(y,2) =

= 1"(5,2)- (3, 2) [afgyy’ o ndy+ 202

Since I' € K(F) we must have (w = dw = 0) = {0}. Therefore, n = 0, m >
2n+1 =1 and (%ZZ) = % = 0) = {0}, which implies that f is reduced

in Oy. Finaly, 0 must be a singular point of f because p € T\ I is a nilpotent
singularity of F. ]

dz N dz

Lemma 3.5. The normal type of F along T is linearizable and can be defined by
the germ of 1-form on (C2,0) :

n=maxdy —nydz,
where m,n € N, ged(m,n) =1 and m,n # 1.

Proof. Let n = P(x,y)dy — Q(x,y)dx be a germ at 0 € C? of holomorphic
1-form defining the normal type. Set 11 = j4(n). Since dn(0) # 0 we get dn; # 0
and, after a linear change of variables, we have four possibilities :

(a). m = zdy (saddle-node).

(b) m = /\1 J)dy—)\g ydl‘, where )\1,/\2 7é 0, )\1/)\2,)\2//\1 ¢ N and )\1 +/\2 75 0.

(¢). m =xdy —nydz, where n € N.

(d). m =xdy — (z+y)dx.

We will consider first cases (a) and (b). In case (b) we will show that Ay/A; € Q4.
With the same type of computation we will show that case (a) is not possible in our
situation. As a consequence, we will get that always A1, s # 0 and A2/A\ € Q4.
Concerning the linearization, we will use Poincaré-Dulac’s normal form : when
A2/A1,A1/A2 € Q4 \ N then 7 is linearizable, whereas if A3/A; € N, for instance,
then it is not linearizable in general. We will prove by contradiction that cases (d)
and (c) non-linearizable are not possible.

Cases (a) and (b). In case (a) the following normal form is known (cf. [M-R])
n=[z(14+Ay") + h.ot]dy —y" " dx

where n > 1. The separatrix o := (y = 0) is the unique one tangent to the direction
of y = 0 and it is distinguished. Therefore, by lemma 3.3 it can be extended to a
smooth separatrix ¥; of F along T'. In this case, we will see that [.c1(Ng,) =0
and so it is not possible, by proposition 3.1.

On the other hand, in case (b), if X is the dual vector field of the normal type
7 then the eigenvalues of DX (0) are A\; and Ag. Since A;/A2, A2/A1 ¢ N the vector
field X has only two smooth separatrices through 0 : one, say o1, tangent to the
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eigenspace correspondent to A1, and the other, say o2, tangent to the eigenspace
correspondent to A\y. Both separatrices are distinguished because

CS(X,O’l) = )\2/)\1 75 )\1//\2 = CS(X,O’Q) .

Therefore, o; extends to a smooth separatrix ¥; of F along I', j = 1,2. We will
see that

(19) /Fcl(N22) :A/Cl(Ngl), )\:/\2/>\1 .

r
This will imply A € Q. , because fr c1(Ny,) € N, i = 1,2, by proposition 3.1.

In both cases, we will construct a covering U = (U, )aca of I' satisfying (v) and
(vi) of the proof of lemma 3.4. In particular, if Uys # 0 then Uag N (T'\T) = 0.
Let us analyse first case (b).

After a holomorphic change of variables, we can assume that oy = (y = 0) and
o2 = (x = 0). After dividing n by some ¢ € O3, we can assume that the normal

type is
0:=¢ '.n=xdy— Ay(l+ R(z,y))dx , v(R,0)>1.

Therefore, we can assume that :
(b.1) f U, NT\ ' = 0 then there is a chart (Tov, Yo, 20) 2 Uq — C3 such that
(20) Wa = Ta dYa — AYa (1 + R(Za,Ya)) dzq -

In particular, ¥1 N U, = (z, = 0) and X3 N U, = (yo = 0). We take z, and y, as
defining equations of X1 N U, and X5 N U,, respectively.

Now, given p € I'\T there is a chart (U, (u, v, w)), around p, where F|y is defined
by
(21) w=udu+ (f".GQ(f) +u.C(f)df , f=[flv,w),
where f is reduced, 7 > 1 and ¢;(0) # 0, i = 1,2. If we fix some point g € UNT
then there is a chart (W, (u,y, 2)) such that f|y =y, and so

wlw =udu+ (y" ¢ (y) +ula(y)) dy -

Since q € f‘, the form 6; := w|w is analytically equivalent to 6. This implies r = 1
and
(A +1)2

\ .

G2 _ o (GWdy
¢(0) =f <yC2(y)

In particular, we can assume that :

(b.2). If @ # U, N(D\T) = {p} then there is a chart (uq, Vo, wa): Uy — C?
such that p = (0,0,0) and F|y,, is defined by

(22) Wo = Uq dua + (faCl(x(fa) +ua4‘2a(fa))dfa ) fa = fa(vavwa) .

As we have seen before, in this chart we can set 2;NUy = (ua—@ia(fo(Va, Wa)) =
0), where ¢io(t) = t(ia(t), i = 1,2, and (14(0) and (2,(0) are the roots of
22 4+ ((0) 2z + G1(0) = 0. We take 24 = Us — 10(fa(Va,ws)) and y, =
U — D20 (fa (Va, Wa)) as the defining equations of X1 NU, and ¥oNU,, respectively.

,0> = BB(6,,0) = BB(6,0) =
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Let (9ap)Uas#0> (kap)u.s-0 and (¢ap)u, ;-0 be the multiplicative cocycles such
that To = gus-28, Yo = kap-ys and wy = @ag.ws on Uyg # 0. We assert that
Qb dos
kap 9B |y, snr
Note that (23) implies (19).

(23) =0,V UssNT # 0.

Proof of (23). Fix a, 3 € A such that U,g N T # (. Since Uys N (I'\T) = 0, we
can assume that U, N (I'\ T') = @, so that w, is like in (20). When we substitute
To = Gap-Tg and Yo = kop.yg in w,, we get the expression of wa|UQB in the other
chart :
(24)  wa = gap-rp d(kapyp) = Mkap-ys (1 + R(gap-25, kap-ys)) d(gop-vp) -

We have two possibilities :

15t Ug N (T'\T) = 0. In this case, wg is also like in (20) and we get :

9ap-23 dkap-ys) = AMkap-ys (1 + R(gap-2, kap-ys)) d(gas-15) =
= Adxg+ Bdys + Cdzg = pap (xgdys — Ayg (1 + R(xs,ys)) dzg) .
Since wg does not contain terms with dzg, we get C' = 0. If we set C(zg,yg, 23) =
Zijzo Cij (zg)x%yi, then
akaﬁ(o, 0, zg)
325

6ga5(0, 07 Zﬁ)

=0.
82’5

C11(25) = 9a5(0,0, 25). — A kap(0,0, z5).

Since Uap NT = (23 = yg = 0), the above relation implies (23).

274 Usg N (T'\T) = {p}. In this case, wy is like in (22) and the substitution of
To = gap-zg and Yo = kop.ys in (24) becomes more complicated. However, if we
fix ¢ € Uy NT then we can find a chart (W, (u, s,t)) around ¢ such that ug = u
and fs(vg, wg)|w = s. In this new chart, wg does not contain terms in dt. Since
To = gap-(u—p1(8)) and yg = kop.(u—¢23(s)) in this chart, a direct computation
shows that the term in dt of w,, after the substitution, is C(u, s,t) =

Ok, 09y
= (0= ona9) (0 dma(o)) {05 2o A1+ Rl s 2} =0 —
gag(0,0,t)W - )\kag(070,t)w =0 = (23).

This finishes the analysis of case (b). Let us analyse case (a), in which, a priori,
F has just the separatrix .

We can take the covering ¢ in such a way that :

(a.1). If U, N(T'\T') = 0 then there is a chart (2o, Ya, za): Us — C? such that
Flu, is represented by :
(25) Wa = [ya(l +X23) + R(a, ya) dra — 25" dya
where v(R,0) > n + 2. In particular, ¥; N U, = (z, = 0) and we take z,, as the
defining equation of X N U,,. R

(a.2). U, N(C\T) # 0 and U, N (I'\T') = {p} then there is a chart
(Uevs Vv, Wa ) : Uy — C3 such that F|y, is represented by a form like in (21) :

Wo = Uq AU + (f;'gla(fa) + Uq. <2a(fa))dfa y fa= fa(vaawa) )

where r > 1, f, is reduced and ¢;(0) # 0, j =1,2.
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Let (¢ap)u. ;-0 be the multiplicative cocycle such that wa = pas.wp on Uss # 0.

We would like to observe that r =n+1 > 1 in the situation (a.2). In fact, if we
take 3 € A such that 8 # o with T'N Uap # 0 and ¢ = (0,v,,w,) € rn Uag, then
fa(vo,w,) = 0 and there is a chart (W, (u,y, z)) around ¢ such that v = u, and
falw = y. In particular, in this chart

Wo = udu~+ (Y Ca(y) + u. Ga(y)) dy

Therefore, the multiplicity (Milnor number) of the singularity 0 of w, (in a trans-
verse section) is p(wa, 0) = [, ¥" C1a(y) +u (20 (y)]o = r. Since wy, = @ap.wg, where
wg is like in (25), we get r = p(wg,0) = n + 1.

In particular, a straightforward computation shows that the equation of 3 in
the chart (u,y, z) is of the form u+ ¢, (y) = 0, where ¢, (0) = 0 and ¢/ (0) = (2(0).
This implies that the equation of X1 N Uy is ua + da(fa(Va,wa)) = 0. We take
T 1= Uy + o fa(Va,ws)) as the defining equation of 3, N U, in the situation
(a.2).

Note < g, Ty >=< Uq, fo >, because ¢, (0) =0 and ¢/ (0) # 0. In particular,
I'NU, is defined by the ideal < ug,zq >.

Let G = (9ap)u., be the multiplicative cocycle such that x4 = gag. 25 on Usg #
0. We will see that gag|rnu,,, is locally constant and this will imply ;. ¢1(Nx,) = 0.

Fix a, f € A such that T'NU,p # 0. By the construction of the covering U, we can
assume that (I'\T')NU, = 0, so that w, is like in (25) and TNU, = (24 = ya = 0).
We have two possibilities :

1°t. Usg N (D\T) = . In this case, wp is also like in (25) and T' N Uyp = (24 =
Yo = 0) = (23 = yg = 0). This implies that yo = hap.23 + kag-ys on Uag,
where gog.kap € O (Uag).

27, Us N (L\T) # 0. In this case, wg is like in (21) and TNUap = (2o = Yo =
0) = (zg = f3 = 0). This implies that yo = hag.zg+kag.fs on Usg, where
9ap-kap € O (Uap)-

In the 2" case, if ¢ € Uag NT then dzg A dfs(q) # 0. Hence, we can find a
chart (W, (z3,yg, 23)) around some point g € Uyg NI such that falw = yz. In
both cases, we have y, = hog.23 + kag.ys and wg do not contain terms with
dzz. On the other hand, if we write w, in the coordinates (x3,yg, 23), using the
relations o = gag.2g and Yo = hap- T3 + kag-yg, we get wo = A(xg,ys, 23) drg +
B(zg,y8,28) dysg + C(x3,ys, 23) dzg, where we can write

Clzp.yp.2p) = > Cij(zp)ahy, =0 = Cyj(2s) =0, Vi,j > 0.
4,520
By substituting explicitly o = gag-23 and yo = hag.2g + kap.ys in (25) we get

0903(0,0, 23) _o 0905(0,0, 25)

aZg 825 =0

C11(28) = kap(0,0, zg).

Hence, gas|rnu,; is locally constant and this finishes the analysis of case (a).

Cases (c) and (d). In case (d) we have mn; = = dy—(z+y) dz, and so, Poincaré’s
linearization theorem implies that 7 is linearizable. Therefore, we can assume that
n=ady—(x+y)dz. Incase (c) with n > 2, we use Poincaré-Dulac’s Normal form.
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After a change of variables we can assume that
n=xdy— (ny+azx™)dz.

Moreover, 7 is linearizable if, and only if, a = 0. When a # 0 we can assume that
a=1.

Remark 3.6. When I'\ T # (), then case (c¢) with n = 1 is not possible.

Proof of the remark. In fact, fix p € T'\ T and a chart (U, = (z,v, z)) around
p such that ¥(p) = 0 and F|y is represented by

w=ade+ (M) +xG(H)d , f=1lyz2),

where f is reduced, r > 1 and ¢(;(0),(2(0) # 0. As before, fix ¢ € UNT, and a
chart (W, (u,v,w)) around ¢ such that + = u and f(y,z) = v. In this chart F|w
is represented, in a normal section to T’ through ¢ by udu + (v" (1 (v) +u Ca(v)) dv.
The dual vector field of this form is X = (v" (1 (v) + ul2(v)) 0y — ud, and the
jacobian matrix of DX (0) in these coordinates is

_ (6(0) a a=0 ifr>1
A‘<2—1 0> » Where {a_Cl(O) ifr=1"

On the other hand, if the normal type was equivalent to z dy — ydx + h.o.t. the

matrix A should be of the form A = <g g) , 0 # 0, which is not possible. 0
In view of remark 3.6, to conclude the proof of lemma 3.5, it is sufficient to prove
that the normal type cannot be of the form

(26) n=xady— (ny+a")dr, wheren > 1.
Let us prove this fact.

Remark 3.7. Tt is well-known that the foliation defined by 7 as in (26) satisfies
the following properties :

(a). It has no meromorphic non-constant first integral in a neighborhood of 0 €
C2%. This implies that F has no meromorphic non-constant meromorphic
first integral in a neighborhood of any point p € T.

(b). The separatrix o = (x = 0) is the unique analytic separatrix of 7 through
0 € C2. In particular, it is distinguished and can be extended to a smooth
separatrix > of F along I'.

Note also that d(z~ ("t 5) = 0 and

(27) 2~ (D) n=d (i) — dz .

xn x

Set § = d () — 4,

Let us sketch the proof. First of all, we will prove that the closed meromorphic
1-form 6, on some transverse section A, can be extended from the transverse section
to a closed meromorphic 1-form © on some connected neighborhood U of G, in such
a way that :

(i). The divisor (0)s, of poles of O, is (0)y = ()" F1.

(ii). © defines F on U \ X.

(iii). Res(©,%) = —1.
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By using an extension theorem of meromorphic functions on U (cf. [Ba] and
[Ro]), the form © can be extended to a global closed meromorphic 1-form. The
contradiction will be a consequence of (i) and (iii), as we will see.

Extension of 0 to a neighborhood of T'. Fix a covering (Ua)aea of I such that,
for all a € A, there is a chart (Tq, Yo, 2a): Us — C? such that F|y, is represented
by o = Ta dYa — (Yo +2L) dz,. We can assume also that, if Uyg # () then Uaﬂﬂf
is connected and non-empty. Note that ¥ N U, = (z, = 0) for all & € A.

Set ©, = d (}L’—ﬁ) — ”ff—:, a € A. We assert that, if U,z # 0 then ©, = ©5 on
Uap. ’

In fact, fix Uyg # 0 and g, € O*(Uap) such that z, = g.25 and 7, = ¢.13
on Uyp. From O, = x;("ﬂ).na and ©g = xg("ﬂ).mg we get O, = ¢. Og, where
¢ =/g" € O*(U,p). Since O, and O are closed, we get

0=dO,=dpNOg = dopAng=0 =

¢ is a holomorphic first integral of 7|y, ,. This implies that ¢ is a constant, because
Uap NI # § and F has no non-constant holomorphic first integral in a neighborhood
of any point ¢ € T (see remark 3.7). Now, observe that

Res(©q,%) = Res (_dma’ Z) = Res (_dxa7 (xq = O)> =-1.

To
Similarly, Res(©g,%) = —1. Since ¢ is a constant, we get
—1 = Res(04,%) = ¢.Res(0p,8)=—¢p = ¢=1,

which proves the assertion.

It follows that there exists a meromorphic 1-form O on the neighborhood U=
U, Ua of T, such that (:)\Ua =0, for all & € A. Let us extend © to a neighborhood
U>DU of T.

Euxtension of © to a neighborhood of T'. Fixp € P\f‘ and a chart (u, s,t): V — C3,
around p, such that F|y is defined by

w=udu+(f.G(f)+ul(f)df, f=f(s1).

Choose a point ¢ € TNV and a chart (W, (u,v,w)), around ¢, such that v = f(s,t),
PNV =(u=v=0)and w = udu+ (v¢(v) + ula(v))dv. Since Oy defines
F on W\ %, there exists a meromorphic function h = h(u,v,w) on W such that
O = h.w. We assert that g—g =0, so that h = h(u,v).

In fact, since © is closed, we get

0=d0=dhAw+hdo = Cz(v)du/\dv:dw:—%/\w =

dh oh
—C2(v)du A dv = o Audu+ (v (v) +ula(v))dv] = Yo 0,
which proves the assertion. It follows that the meromorphic 1-form h(u, f(s,?)).w
is closed and extends © to some neighborhood of p. Hence, ©® can be extended to
a closed meromorphic 1-form ©, on some connected neighborhood U of ', which

satisfies (i), (ii) and (iii).

Now, we use the following result :
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Theorem 3.4. ([Ba/, [Ro]). Let Y be a connected analytic subset of P™, n > 2,
with dim(Y') > 1. Then any meromorphic function in a connected neighborhood of
Y extends to a meromorphic function on all of P™.

As a consequence of theorem 3.4, the form © can be extended to a global mero-
morphic 1-form on P2. In fact, consider an affine coordinate system (z,y, z) € C* C
P3, such that I' ¢ L., where L., denotes the plane at infinity of C3. We can write

Olcsny = A.dx + Bdy+ Cdz

where A, B and C are meromorphic functions on C3> N U. Since dx, dy and dz
can be extended to meromorphic forms on P3, the functions A, B and C can be
extended to meromorphic functions on U. In particular, they can be extended to
meromorphic functions on P3, by theorem 3.4. Therefore, © can be extended to a
closed meromorphic 1-form on P3. Denote the extension again by ©. Let |0, be
the set of poles of O.

Note that |O], is an algebraic hypersurface of P3. Since |O],, NU = X, the
separatrix ¥ extends to an irreducible algebraic hypersurface of P2, which we still
denote 3. On the other hand, if S is an irreducible component of |0|., then

SNT#0 = SNU#0 = SNU=XNU = S=Y = |0|=X.

We have seen that Res(0,%) = —1. If we take a line P! ~ ¢ C P? cutting &
transversely in dg(X) points, then } ., Res(©|,,p) = —dg(X) # 0, a contradiction.
This contradiction ends the proof of lemma 3.5. (|

End of the proof of theorem 2 in dimension three. We have proved that the
normal type of F along T is given by n = mady — nydz, where m,n € N and
m # n. We can assume that ged(m,n) =1 and m < n. Let us give the idea of the
proof.

Consider a meromorphic integrable 1-form € on P2 representing F outside its
set of poles. We will prove that there exists a closed meromorphic 1-form A, on
some connected neighborhood U of T, such that dQ = A A Q on U. The extension
theorem of [Ba] and [Ro] will imply that A can be extended to a closed meromorphic
1-form A on P? with dQ2 = A A€. Next, working with the pole divisors and residues
of A, we will see that A = %, where F' is meromorphic on P3. In particular, we
\gill get d (%) = 0, that is, F' is an integrating factor of 2. Finally, by studing the

7 around I', we will show that F has a rational first integral of the form f3"/f7",

where m.dg(f2) = n.dg(f1).

Remark 3.8. Since m < n, the separatrix 0 = (z = 0) is distinguished. In
particular, it extends to a smooth separatrix 3; of F along I'' When 1 < m < n
the other separatrix, oo = (y = 0), is also distinguished and can be extended to
another separatrix, say o, of F along T'.

Fix an affine chart (z,y,z) € C3 C P3 and a polynomial integrable 1-form 2 on
C3 which represents F|cs. Without lost of generality, we can assume that I' cuts
transversely the line of infinity of the chart L., = P3\ C? in dg(T") points.

Construction of A in a neighborhood of T'. Let (Ua)aca be a covering of [ with
the following properties :

(a). Uy NT is connected and non-empty for all a € A.

(b). If Uyp # 0 then Uap NT is connected and non-empty.
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(c). For all a € A there is a chart (74, Yo, 2a): Us — C3 such that rnu, =
(o = Yo = 0) and F|y, is represented by n, = mzq dyo — N Yo dq.
In particular, 31 N Uy = (xo = 0), fo := yi'/z} is a meromorphic first integral of
Flu, and
m—1

Y
28 dfa = 2% ny , VaeA.
(28) I, el !

Fix Uyp # 0 and let pop € OF(Uyp) and gog € O*(Uyp) be such that 7, =
Yap-Np and T = gog- T o0 Uyg. From (28) we get

m—1
YalY,
dfa = aaﬁ-df,@ , Qap = %@aﬁ

9ap

Note that ang € O*(Uag). In fact, if m = 1 this is clear. On the other hand, if
1 <m < nthen Yo NUys = (Yo = 0)NUs = (ys = 0) N U, and there exists
hag € O*(Uag) such that yo = hag. ys. Hence, aap = hiy ' pap/gns' € OF(Uap).

From df, = ang.dfg we get

daag Ndfg =0 = daagAng=0 =

aqg is a holomorphic first integral of F in a neighborhood of U,s NT'. This implies
that aqng € C*, because F has no non-constant holomorphic first integral in a
neighborhood of any point of T.

Given o € A, Q|y, and df, represent F in the complement of their poles.

Hence, there is a meromorphic function g, on U, such that Q = g,.df,. Since
dfe = aap.dfg on Usg # 0, we get
Q = go.Afa = go-0ap-dfg = gs.dfs = g3 = aag-ga , 00 Uy =
90 _ dgs
Yo B 9s
there exists a meromorphic 1-form A on U := U,, Ua such that A|UQ = % for all
a € A. Finally, dQ) = A A Q because

yonUyg =

dge, o
A0, = dga Adfa = 22 AQly, = AAQy, .
9a

Euxtension of A to a neighborhood of T\ T. Fix p € T\ T and a local chart
(V, (u, s,t)) around p such that F|y is represented by

w=udu+ (f.G(f)+uG()d , f=[(s1)

and TNV = (u= f(s,t) = 0). Choose ¢ € VNT and a chart (W, (u,v,w)) around
g with W C V and f(s,t) = v, so that

wlw =udu+ (v (v) +ule(v))dv .

Let o € A be such that ¢ € U,. We can assume that W C U,. Since 7,|w and
w|w represent Fly there is ¢ = ¢(u,v,w) € O*(W) sucht that n, = p.w on W.
This implies dfa|w = h.w|lw, where h(u,v,w) = @.y™~! /22" is meromorphic on
W. It follows that

oh

h
dW|W:_ﬁ/\W|W — %EO - h:h(u,v).

Therefore, the closed 1-form 6 := h(u, f(s,t)).w is meromorphic in some neighbor-
hood U, of p and extends df, to this neighborhood. As before, we have 2 = ¢.0,
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where g is meromorphic on U, and is an extension of g, to Uy,. This implies that
% extends A to U,. In particular, A can be extended meromorphically to some
connected neighborhood U of I'. Theorem 3.4 implies that this extension can be
extended to a closed meromorphic 1-form A on P? with dQ2 = A A Q.

Poles and residues of A. Let |A|o be the set of poles of A. Fix pe T and a € A
such that p € U,. Note that Lo, = P3\ C? is a pole of  of order d + 2, where
d=dg(F) (cf. [B1]). Let (uq = 0) be a reduced equation of Lo, NU,. Since Q|y,
and 7, represent F|y, there is ¢, € O*(U,) such that

Da Po.x ! Pzt

Qu, = dy2 e = W2 m=1 dfa = go = u a2 m=1 =
U Yo Yo
dga dya dua | doa

dxg,
o (n * 1) Loy (m 1) Ya <d + 2) * Qboz
We have two possibilities :

158, 1 < m < n. In this case, |Aloo NUy = (26 = 0) U (Yo = 0) U (uq = 0).
Since X1 NUy = (zq = 0) and Lo NUy = (Yo = 0), they extend to global algebraic
irreducible surfaces, which we call again ¥; and Y5 respectively. In particular,
[Aloo D X1 UXa U Ly. We assert that [Als = X1 UXo U Lo

Let S be an irreducible component of |A|sx, S # Lo, and let us prove that
S C X1 UXs. We assert that S is F-invariant.

In fact, fix a smooth point p € S\ (Lo U sing(F)). Consider a local chart
Y = (x1,m2,23): W — C3 around p such that ¢(p) = 0, W N (Lo U sing(F)) =0
and SNW = |Alec "W = (z3 = 0). We can write

A|W = ;ik s 9:A1d$1 +A2d.’£2+A3dl‘3 s
3
where A4, € O(W),i=1,2,3, 2351 A; for some i =1,2,3, and k > 1. From dA =0,
we get

(29)  Aly, =

dxs
Ty kdg— kx3(k+1 desN0 =0 = di=k 3/\6? = x3|A;, Az and z31 A3 .

Therefore, we can write § = z3 o + As dzs, where « is holomorphic on W. Since
dQ=ANQ, we get

.’E§ dQ‘W =0 A Q|W = Asdzs A Q‘W = $3($§71dQ|W —a Q|W) -

‘%3 A Q|w = B is holomorphic. This implies that dzs A Q| = 23 3, where ( is
holomorphic. Hence, S is F-invariant.

Since S is F-invariant and I'NS # @), S must contain some separatrix of F along
I'. In particular, SN U, # 0, which implies that SN U, C (x4 = 0) U (yo = 0).
Therefore, either S = 31, or S = 3.

Let f1, fo, f3 be irreducible homogeneous polynomials on C*, f3 of degree one,
such that f; = 0 is an equation of ¥;, i = 1,2, and f3 = 0 is an equation of L., (in
homogeneous coordinates).

It follows from (29) that the residues of A are n+ 1 (on 1), —(m — 1) (on
¥9) and —(d + 2) (on Loo). This implies that A can be written in homogeneous
coordinates as dF/F, where

s

T pm—1 pd+2
2 *J3
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27?1 =m < n. In this case, |Aloo NUy = (24 = 0) U (u, = 0). With a similar
argument to that done in the 1% case, we get |Aloo = ¥1 U Loo. Let fi, f3 be
irreducible homogeneous polynomials on C*, f3 of degree one, such that f; = 0 is
an equation of ¥; and f3 = 0 is an equation of L, (in homogeneous coordinates).

It follows from (29) that the residues of A are n+ 1 (on X;) and —(d + 2) (on
Loo). This implies that A can be written in homogeneous coordinates as dF/F,

where
n+1
_ 1
F= d+2 -
3

The first integral. Let II1: C*\ {0} — P3 be the canonical projection and
(zo,x1,x2,x3) be homogeneous coordinates such that Lo, = (o = 0) and the
affine chart C* C P? considered before is (r¢ = 1). In this chart we have

T Ty X
H(.’I?Q,xl,(EQ,.’I}?,) = (17 727 3) .
Lo To Lo
This implies that II*(Q2) = m"% w, where the coeflicients of w are homogenous of
0

degree d + 2 and ip(w) =0, R =Y, 2;0,,. It m =1 we set f3"~' := 1. With this
convention, the relation d2 = A A  implies

0(5) =0 () = w MBI

xg+2 F $g+2 fiﬂ-i-l/f;n—l

m—1 m—1
. dfx h
d| 22 w>0 — =22 _—wisclosed — u)\+d<> ,
< T i fi I

where A € C, h is a homogeneous polynomial and dg(h) = ndg(f1).

Since 0 = ir(p) = Adg(f1), we get A = 0. It follows that h/f* is a rational
first integral of F. If m > 1 then ¥o = (fy = 0) is F-invariant. Hence, there
exists b € C such that (fs = 0) C (h+bf{ = 0). In particular, there exist
k € N and a homogeneous polynomial g such that g.f§¥ = h +bfI', fi,f> 1 g and
dg(g) + kdg(f2) = ndg(f1). This implies

m—1 k

h .
2n+1w_d< n)zd(gnffl)
1 fi 1

S tw=fy (i fedg Fh frgdfe —ng f2dft) = m=k
and g is a constant, because otherwise in a point ¢ € (g = f1 = fo =0)NT we
would have j!(w) > 1. This implies that F has a first integral of the form f5"/f{".
When m = 1, then h is irreducible and we take fo = h. This finishes the proof of
theorem 2 in dimension three.

3.3. Proof of theorem 2 in dimension n > 4. The idea is to use the case of
dimension three and the following known result (cf. [C-LN-S 1]) :

Theorem 3.5. Let G be a codimension one holomorphic foliation on P, n > 3.
Assume that there is a k-plane E ~ P¥, 2 < k < n such that E is in general
position with G and G|g is represented by a closed meromorphic 1-form w on E
outside its poles. Then w can be extended to a closed meromorphic 1-form Q on P™
representing G outside its poles. In particular, if G|g has a rational first integral
then it can be extended to rational first integral of G.

Recall that E is in general position with G if :
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(a). E is not G-invariant.
(b). The divisor of tangencies between G and F has codimension > 2 in E.

Moreover, the set of k-planes in general position with G is a Zariski open and
dense subset of the respective grassmanian (cf. [C-LN-S 1]).

Let F be a codimension one foliation on P™, n > 4, such that sings(F) has an
irreducible component I" with BB(F,T") # 0 and J(F,p) < 1 for all p € T". Set
Nt = {p € T'|p is a nilpotent singularity of } and Kr = {p € I'|p is a singularity
of Kupka type of F}. We have seen that

(i). T = Nr UKr.

(ii). Either I' = Np, or Kr is a Zariski open and dense subset of T'.

When Nt = ) then I' C K(F) and so theorem 2 is true by [C-LN 2], [CA 2] and [B
2]. Therefore, from now on we will assume that Nt # (). In view of theorem 3.5,
the next result will reduce the problem to the case n = 3.

Lemma 3.6. In the above situation, there is a (n — 1)-plane P"~! ~ E C P" in
general position with F and such that :

(a). TN E C sing2(FlEg)-

(b). J(Flg,p) <1 forallpeTNE.

(c). If T is an irreducible component of T N E then BB(F|g,T'’) # 0.

Proof. Fix an affine chart (z1,...,2,) € C* C P"™ and a polynomial 1-form €
representing F in this chart. Given p € C" NNt there is ¢, € C[z1, ..., 2,,], of degree
one, such that ¢,(p) = 0 and

j;(Q) =/{,dl, .

Note that the hyperplane H,, = (¢, = 0) € P" does not depend on the affine chart
containing p. As a consequence, the correspondence p — H,, defines an analytic
map H: Nr — P". Since dim(Nt) < n — 2, we get dim(H(Nr)) < n—2. In
particular, the set

A:=P"\ H(Np)
is a Zariski open and dense subset of P*. Let B = {F € A| F is in general position
with F}.

Note that B is a Zariski open and dense subset of P". Moreover, if F € B then
all points of N1 N E are nilpotent singularities of F|g. In fact, fix p € N\r N E,
an affine coordinate system z = (21, ..., z,) € C* C P" and a polynomial 1-form
representing F in this chart, such that z(p) =0 and ENC" = (2, = 0). Let ¢, be
a degree one polynomial with £,(p) = 0, H, NC" = (£, = 0) and j}(Q) = £, dl,.
Since £,(0) = 0 and E # H, we can set £,(z) = >_7_, a;j zj, where a; # 0 for some
j€{1,...,n —1}. The polynomial Zp := lp| Encr 1s non-constant. In particular,

Jo(Qe) =ty dl, # 0.
Therefore, p is a nilpotent singularity of F|g.

Now, consider an algebraic stratification sing(F) := Sg D S1 D ... D S, = 0,
where dim(S;41) < dim(S;) and S; \ Sj41 is a smooth manifold, for all 0 < j < r.
By transversality theory, there exists E € B transverse to all manifolds S; \ Sj1,
0 < j < r. We assert that E satisfies properties (a), (b) and (c).

In fact, since I' C singz(F) we must have T'\ Sy # 0, and so cod(I' N E) = 2,
which implies (a), because I' N E C sing(F|g). On the other hand, since Kr is
smooth of codimension two, we get Kr C Sp \ Si. In particular, E is transverse
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to Kr and this implies that Kt N E C K(F|g). Therefore, J(F|g,p) < 1 for all
p € P'NE. Finally, if ' is an irreducible component of 'NE then BB(F|g,'’) can
be computed in any dimension two transverse section, say A, through any point in
the smooth part of ' N E. If we take such a point in the smooth part of I' then we
see that A is also transverse to I' at this point, which implies

BB(F|g,T')=BB(F,T)#0. O
By using lemma 3.6 inductively n — 3 times we get

Corollary 3.4. In the situation of lemma 3.6 there is a 3-plane P2 ~ E C P", in
general position with F, with J(F|g,p) <1, for allp e T'NE, and BB(F|g,I'") #
0, for all irreducible components of '’ of TN E.

In particular, F|g has a rational first integral of the form f{*/f}, where
ged(m,n) = 1, 1 < m < n, mdg(fi1) = ndg(f2) and f1, fo are irreducible. By
theorem 3.5 this first integral can be extended to a rational first integral of F. This
finshes the proof of theorem 2. O
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