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Abstract. In this paper, we give the explicit construction of certain components of the space
of holomorphic foliations of codimension one, in complex projective spaces. These components are
associated to some algebraic representations of the a±ne Lie algebra Aff(C). Some of them, the so-
called exceptional or Klein-Lie components, are rigid, in the sense that all generic foliations in the
component are equivalent (example 1 of x2.2). In particular, we obtain rigid foliations of all degrees.
Some generalizations and open problems are given the end of x1.

x1. Introduction

It is known that the space F(º; n) of singular holomorphic codimension one foliations of degree
º ¸ 0 on CP(n); n ¸ 3; can be considered as an algebraic subset of the space of 1-forms on Cn+1

whose coe¯cients are homogeneous polynomials of degree º +1 (cf. [Ce-LN1], [Ce-LN3] and [CA]).
Some of the irreducible components of this algebraic subset have been described; for example, the
logarithmic components, which correspond to foliations de¯ned by closed meromorphic 1-forms
(cf. [CA]). Other components are the rational (cf. [Ce-LN1]) and the pull-back components (cf.
[Ce-LN3]). For º = 0; 1; 2 the complete decomposition of F(º; n) in irreducible components was
obtained in [Ce-LN1].

In this paper, we present new components of F(º; n), n ¸ 3, related with some special repre-
sentations of the a±ne Lie algebra aff(C) := fe1;e2; [e1;e2] = e2g in the algebra of polynomial
vector ¯elds of an a±ne chart C3 ½ CP(3). These new components include as a particular case the
"exceptional component" of F(2; n), described in [Ce-LN1].

To obtain our result we follow three steps:

(1) We construct families of foliations FP ½ F(º; 3), where P denotes a discrete invariant,
arising from representations of the a±ne algebra.

(2) We ¯nd su±cient conditions in order to prove stability under deformations of some of these
families, i.e. we prove that for certain values of P the deformation of a generic foliation
F 2 FP is still a foliation in FP.

(3) We get codimension one foliations in CP (n), n ¸ 4, by pull-back of the foliations just
constructed, and prove that we also have irreducible components in F(º; n).

The description of the families in the ¯rst step can be geometrically described. To do that, we
consider the so called Klein{Lie curves. They are characterized by the fact of being the rational
projective curves ¯xed by an in¯nite group of projective automorphism. In CP(3) such curves, up
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to an automorphism in PGL(4; C), can be parameterized by ¡(t : s) = (tp : tqsp¡q : trsp¡r : sp);
where 1 · r < q < p are positive integers with gcd(p; q; r) = 1.

For each ` 6= 0 such that ` + r 2 f0g [ N, we have a representation of the a±ne Lie algebra
½` : aff(C) ! X(C), determined by the two vector ¯elds s` := 1

`
t @

@t
; and x` := t`+1 @

@t
: Consider the

linear semi-simple vector ¯eld on C3

S = px
@

@x
+ qy

@

@y
+ rz

@

@z
:

Suppose that there is another polynomial vector ¯eld X on C3 such that [S; X] = `X, and so that

°¤
¡
s`

¢
=

1

`
S

¡
°(t)

¢
; °¤(x`) = X

¡
°(t)

¢
;

where °(t) = (tp; tq; tr) is the a±ne curve ¡ \ C3. Then, the algebraic foliation F = F(S; X) on
C3, de¯ned by the 1{form ­ = iSiX(dz1 ^ dz2 ^ dz3) is associated to a representation of the a±ne
algebra in the algebra of polynomial vector ¯elds in C3, and it can be extended to a foliation on
CP(3) of certain degree º.

We give explicitly several examples in Section 2, all in the case r = 1. Note also that both
s` and x` are complete vector ¯elds on C just in case ` = 1. This is what happens in Example
1, where S and X are complete and the °ow of S is periodic: both necessary conditions for the
existence of an action of the a±ne group on C3 associated to the foliation.

We de¯ne

F
¡
(p; q; r); `; º

¢
:= fF 2 F(º; 3)jF = F(S; X) in some a±ne chartg

and we will show that they are irreducible subvarieties of F(º; 3). We also show that if F 2
F

¡
(p; q; r); `; º

¢
then the tangent sheaf TF is isomorphic to O © O(2 ¡ º).

In order to carry on the second step, we will need some technical results. Let us ¯rst give some
de¯nitions.

De¯nition 1. Let ! be an integrable 1-form de¯ned in a neighborhood of p 2 C3. We say that
p is a generalized Kupka (brie°y g.K.) singularity of ! if !p = 0 and, either d!p 6= 0, or p is an
isolated zero of d!.

The local structure of a foliation near a g.K. singularity is well known by now. When d!p 6= 0 it
is of Kupka type and it is locally the product of two foliations: a singular one in dimension two and
a nonsingular one of dimension 1, as in ¯g. 1 (cf. [K, Me]). When p is an isolated singularity of
d!, the singularity is quasi-homogeneous (cf. Theorem A and [LN1]) or logarithmic (cf. Remark
1 and [C{LN2]).



IRREDUCIBLE COMPONENTS OF THE SPACE OF FOLIATIONS

We also prove that g.K. singularities are stable under deformations, (cf. [C-LN] and Proposition
1).

De¯nition 2. A codimension one holomorphic foliation F in a complex three manifold M is
strongly generalized Kupka (brie°y s.g.K.), if all the singularities of F are g.K.

We will show, as a consequence of the stability of g.K. singularities, that s.g.K foliations are
stable under deformations. In fact, we ¯rst note that the local structure of g.K. singularities
implies that the analytic tangent sheaf of a s.g.K foliation is locally free. Using well-known results
on holomorphic vector bundle theory (Theorem B), we can prove the following

Theorem 1. Suppose that F
¡
(p; q; r); `; º

¢
contains some s.g.K foliation. Then F

¡
(p; q; r); `; º

¢

is an irreducible component of F(º; 3).

Theorem 1 and Example 1 in Section 2, give for any º ¸ 3 a new irreducible component of
the space of foliations of degree º. This component is, in fact, the closure of a natural action of
PGL(4; C) on F(º; 3). In particular, a foliation corresponding to a generic point in the component,
is linearly stable. On the other hand, given (p; q; r) positive integers such that p > q > r, the
set f(`; º)g such that F

¡
(p; q; r); `; º

¢
contains some s.g.K foliation is ¯nite (Theorem 3). This

motivates the following problem :

Problem 1 Given three positive integers p > q > r ¸ 1, are there (`; º) such that F
¡
(p; q; r); `; º

¢

contains a s.g.K foliation ?

The examples in x2.2 are s.g.K foliations in CP(3), all of them belonging to some F
¡
(p; q; r); `; º

¢
.

Consequently, the tangent sheaf for these examples splits. This motivates the following questions :

Problem 2 Is it true that TF splits for any s.g.K foliation F on CP(3) ? More generally, let F
be a codimension one foliation on CP(3) such that for any p 2 CP(3) the sheaf of germs of vector
¯elds at p tangent to F is free with two generators. Does TF split ?

We observe that all examples that we have of s.g.k. foliations on CP(3) have at most two
quasi-homogeneous singularities. A natural question is the following :

Problem 3. Are there s.g.K foliations on CP(3) with more than two quasi-homogeneous singu-
larities?

Finally, concerning the third step, in x3.2 we will consider foliations on CP(n), n ¸ 4, which are
pull-back of s.g.K foliations on CP(3) by a generic linear rational map f :CP(n) ¡! CP(3). Denote
by F

¡
(p; q; r); `; º; n

¢
½ F(º; n) the set of foliations so obtained from F((p; q; r); `; º),

F
¡
(p; q; r); `; º; n

¢
:= fFj F = f ¤G; G 2 F((p; q; r); `; º)g

We prove the following:

Theorem 2. Let F be a foliation on CP(n); n ¸ 4 and i:CP(3) ! CP(n) be a linear embedding
of a 3{plane in general position with respect to F . Suppose that G = i¤(F) is a s.g.K foliation in
F(º; 3) and that it is generated by two one{dimensional foliations on CP(3). Then there exists a

linear rational map f :CP(n) ¡! CP(3) such that F = f¤(G). In particular F
¡
(p; q; r); `; º; n

¢
is

an irreducible component of F(º; n).

x2 Preliminary results and examples

Notation. Through out the paper, we will consider (z1 : z2 : z3 : z4) as homogeneous coordinates
in CP(3). The basic a±ne open subsets, will be E1 = f(1 : w : v : u)j(u; v; w) 2 C3g ; E2 = f(r : 1 :
s : t)j(r; s; t) 2 C3g; E3 = f(r : s : 1 : t)j(r; s; t) 2 C3g and E0 = f(x : y : z : 1)j(x; y; z) 2 C3g.
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x2.1 Generalized Kupka and quasi-homogeneous singularities. Let p ¸ q ¸ r > 0 be
relatively prime integers and S be the semi-simple vector ¯eld on C3 de¯ned as in (1) by S =
px @

@x + qy @
@y + rz @

@z . We say that a vector ¯eld X, holomorphic in a neighborhood of 0 2 C3,

is S-quasi-homogeneous of weight `, if we have the following Lie bracket identity : [S; X] = `X .
Remark that necessarily `+r is a non-negative integer and X is a polynomial vector ¯eld. In fact, if
X = P1

@
@x

+ P2
@

@y
+ P3

@
@z

, the condition that X is S-quasi-homogeneous of weight ` is equivalent
to the fact that, after giving weights p, q and r to the variables x, y and z, respectively, the
polynomials P1, P2 and P3 are weighted homogeneous of degrees `+p, `+ q and `+r, respectively.

Moreover, S and X give a representation of the a±ne Lie algebra in the algebra of polynomial
vector ¯elds. If we suppose that S and X are linearly independent at generic points, then these
vector ¯elds generate an algebraic foliation on C3, which is given by the integrable 1-form ­ =
iS iX(dx ^ dy ^ dz) . Since ­ is a polynomial 1-form, this foliation can be extended to a singular
foliation of CP(3), which will be denoted by F(­) or by F(S; X). Observe that S extends to a
holomorphic vector ¯eld on CP(3) and that its trajectories are contained in the leaves of F(­). On
the other hand, in general, the vector ¯eld X is meromorphic in CP(3), but the foliation de¯ned
by it on C3 extends to a foliation on CP(3), which will be denoted by G(X), whose leaves are also
contained in the leaves of F(­). Remark that the singular set of F(­), denoted by sing(F(­)), is
invariant by the °ow of S, exp(tS) := St. This follows from the relation

(2) LS(­) = m:­ ; m = ` + tr(S) = ` + p + q + r ;

as the reader can check. Relation (2) implies also that, if po =2 sing(S), then F(­) is, in a
neighborhood of po, equivalent to the product of a foliation in dimension two by a one-dimensional
disk, like in ¯g. 1. In fact, let (U; (u; v; w)) be a holomorphic coordinate system such that SjU = @

@u .
Then, it is not di±cult to see that, the integrability condition and (2) imply that

­(u; v; w) = emu:­(0; v; w) = emu:(A(v; w)dv + B(v; w)dw) ;

which proves the assertion.

In the a±ne chart C3 ½ CP(3), where S is like in (1), the leaves of F(­) are "S-cones" with vertex
at 0 2 C3, that is, immersed surfaces invariant by the °ow of S. If sing(F(­)) has codimension
two, then each one of its components is the closure of an orbit of S. Now, we impose a condition
which implies the local stability of this kind of singularity by small perturbations of the form
de¯ning the foliation.

Let ! be an integrable 1-form in a neighborhood of po 2 C3 and ¹ be a holomorphic 3-form
such that ¹po 6= 0. Then d! = iZ(¹), where Z is a holomorphic vector ¯eld. It is not di±cult to
see that po is a g.K. singularity of ! if, and only if, po is an isolated singularity of Z.

De¯nition 3. We say that po is a quasi-homogeneous (brie°y q.h.) singularity of ! if po is an
isolated singularity of Z and the germ of Z at po is nilpotent (as a derivation in the local ring of
formal power series at po).

This de¯nition is justi¯ed by the following result (cf. [LN]):

Theorem A. Let po 2 C3 be a quasi-homogeneous singularity of an integrable 1-form !. Then
there exist two holomorphic vector ¯elds S and X and a local chart (U; (x; y; z)) around po such
that x(po) = y(po) = z(po) = 0 and :
(a). ! = iSiX(dx ^ dy ^ dz).
(b). S = px @

@x + qy @
@y + rz @

@z , where p; q and r are positive integers with gcd(p; q; r) = 1.

(c). po is an isolated singularity for X, X is a polynomial in the chart (U; (x; y; z)) and [S; X ] = `:X,
where ` ¸ 1.
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De¯nition 4. Let po 2 C3 be a q.h. singularity of !. We say that it is of type (p; q; r; `), if for
some local chart and vector ¯elds S and X , then properties (a), (b) and (c) of Theorem A are
satis¯ed.

Remark 1. If the singularity po is g.K. but the germ of Z at po is semi-simple, then the foliation
F(!) can be de¯ned locally by an action of C2. More precisely, there exists a germ of vector ¯eld
X at po such that [Z; X] = 0 and

iX iZ(dx ^ dy ^ dz) = f:! ;

where f(po) 6= 0. This fact is a consequence of the results of [Ce-LN-2]. We call this type of
singularity a logarithmic type singularity.

Remark 2. Let po be a q.h. singularity of type (p; q; r; `) of an integrable 1-form !. If S and X
are as in Theorem A, then the multiplicity of X at the singularity po (the Milnor number) is given
by

¹(X; po) =
(` + p)(` + q)(` + r)

p:q:r
:

In particular, p:q:r must divide (` + p)(` + q)(` + r). The proof of this fact can be found in [LN].

We can now state the stability result :

Proposition 1. Let (­s)s2§ be a holomorphic family of integrable 1-forms de¯ned in a neighbor-
hood of a compact ball B = fz 2 C3; jzj · ½g, where § is a neighborhood of 0 2 Ck. Suppose that
0 2 B is a q.h. singularity of ­0 of type (p; q; r; `). There exists ² > 0 such that if jsj < ², then ­s

has a q.h. singularity z(s) in B, of type (p; q; r; `). Moreover, the function s 7! z(s) is holomorphic
and z(0) = 0.

The arguments of the proof of Proposition 1 are contained in the proof of Lemma 6 of x4.3 of
[Ce-LN-1]. We leave the details for the reader.

As a consequence of Proposition 1 and of Theorem 5 of [C-LN], we get the following :

Corollary. Let F0 be a codimension one s.g.K foliation on a compact complex threefold M . Then
there exists a neighborhood U of F0 in the space of codimension one foliations, such that any
F 2 U is s.g.K.

We use Theorem 5 of [C-LN] to guarantee the stability of the singularities of Kupka and loga-
rithmic types.

Remark 3. If po is a g.K. singularity of a foliation F , then the sheaf of germs of vector ¯elds at
po tangent to F , is locally free and has two generators.

In fact, if F is de¯ned by ! in a neighborhood of po and d! = iZ¹, where ¹po
6= 0, then the

germ of Z at po has an isolated singularity at po. The integrability of ! implies that iZ(!) = 0,
so that, by De Rham's division Theorem (cf.[DR] and [C-LN]), we can write ! = iZ(µ), where
µ is a 2-form. Since we are in dimension three, we have µ = ¡iY (¹), where Y is a vector ¯eld.
This implies that ! = iY iZ(¹). Now, if X is a germ of vector ¯eld such that iX(!) = 0, we have
X = a:Y + b:Z where a and b are holomorphic outside sing(!). Since sing(!) has codimension
two, it follows from Hartog's Theorem that a and b can be extended to a neighborhood of po, which
proves the assertion.

Remark 4. Let po be an isolated singularity of a codimension one foliation F on a threefold (for
instance a Morse singularity). Then the sheaf of germs of vector ¯elds at po tangent to F is not
locally free. In fact, it follows from Malgrange's Theorem (cf. [M]), that F has a local holomorphic
¯rst integral. This implies the assertion, as the reader can check (see also [LN-1]).
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Remark 5. If F is a s.g.K foliation on M , we can associate to F a rank two vector bundle over
M , the tangent bundle of F , which will be denoted by TF , as follows. Take a covering (U®)®2A

of M by open sets such that for any ® 2 A there are two holomorphic vector ¯elds on U , say X®

and Y®, such that the sheaf of vector ¯elds tangent to FjU® is generated by these vector ¯elds. If
U®¯ := U® \ U¯ 6= ;, then in U®¯ we can write

(3)

½
X¯ = a®¯X® + b®¯Y®

Y¯ = c®¯X® + d®¯Y®
,where the matrix A®¯ =

µ
a®¯ b®¯

c®¯ d®¯

¶
is in SL(2; O(U®¯)):

Clearly, (A®¯)U®¯ 6=; is a cocycle of matrices, that is, if U®¯° := U® \ U¯ \ U° 6= ;, then
A®¯ :A¯°:A°® = Id on U®¯°.

Let W be the disjoint union ]®(U® £ C2) and » be the equivalence relation on W de¯ned by

(4) U® £ C2 3 (x®; v®) » (x¯; v¯) 2 U¯ £ C2 , x® = x¯ = x 2 U®¯ and v® = v¯:A®¯(x);

where in the above relation, we consider v® and v¯ as line vectors. We de¯ne TF = W= » and
¼: TF ! M by ¼[x; v®] = x, where [x; v®] is the quotient class of (x; v®) 2 W . It is not di±cult to

prove that TF is a complex manifold and TF
¼! M is a vector bundle.

We observe that to any holomorphic (resp. meromorphic) section of TF on some open set
U ½ M corresponds an unique holomorphic (resp. meromorphic) vector ¯eld tangent to F . In
fact, given a section ¾: U ! TF , we can write on U \ U® 6= ;, ¾j(U\U®) = (¸®; ¹®): U \ U® ! C2.
De¯ne Z® = ¸a:X® + ¹®:Y®. The reader can check, by using (3) and (4), that if U \ U®¯ 6= ; then
Z® ´ Z¯ on U \ U®¯ , which implies that there exists a vector ¯eld Z on U , tangent to F , such
that Zj(U\U®) = Z® for any ® 2 A.

Conversely, to any vector ¯eld Z, holomorphic (resp. meromorphic) on U and tangent to F ,
there exists a holomorphic (resp. meromorphic) section ¾: U ! TF , such that the associated vector
¯eld is Z. We leave the details for the reader. Before stating the next result, we need a de¯nition.

De¯nition 5. We say that a codimension one foliation F on a complex threefold M is generated
by two foliations of dimension one, say G1 and G2, if for any p 2 M there exists a neighborhood U
of p and holomorphic vector ¯elds X1 and X2 on U such that :
(a). Gj is de¯ned in U by Xj , j = 1; 2.
(b). FjU is de¯ned by the 1-form ! = iX1

iX2
¹, where ¹ is a nonvanishing 3-form on U . In

particular, we have that G1 and G2 are tangent to F and that
(b.1). If p 2 M n (sing(G1) [ sing(G2)) and TpG1 6= TpG2 ½ TpM , then TpF = TpG1 © TpG2.
(b.2). sing(F) = sing(G1) [ sing(G2) [ D, where

D = fp 2 M n sing(G1) [ sing(G2)j TpG1 = TpG2g :

Proposition 2. Let F be a s.g.K foliation on M and TF be its tangent bundle. Then :
(a). To any line sub-bundle L of TF , corresponds a foliation by curves GL on M with the following
properties :
(a.1). GL is tangent to F .
(a.2). sing(GL) ½ sing(F).
(b). TF splits as a sum of two line bundles if, and only if, F is generated by two foliations of
dimension one.

The proof of the proposition is straightforward and is left for the reader.

In the next section we will see some examples of s.g.K foliations on CP(3). In all examples the
bundle TF splits. This has motivated problem 2 in x1.
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x2.2 Examples. This section is devoted to describe some examples of strongly generalised Kupka
foliations on CP(3). Each example will be generated by two foliations of dimension one, G1 and
G2, in the sense of de¯nition 5. One of these one-dimensional foliations, say G1, will be generated
by a global vector ¯eld S on CP(3), which in some a±ne coordinate system (x; y; z) 2 C3 ½ CP(3)
is like in (1) : S = px @

@x
+ qy @

@y
+ rz @

@z
; where p; q; r 2 N, g:c:d(p; q; r) = 1 and p > q > r. On the

other hand, G2 will be of degree d ¸ 1, so that the foliation will be of degree º = d + 1.

Being foliations in F(p; q; r; d + 1; l), all the examples that we give share a geometrical pattern
that we now explain. As the singular locus of the foliation is invariant by a global vector ¯eld in
CP(3), it is globally ¯xed by an in¯nite group of projective automorphisms: the one given by the
°ow of S. Each curve in the singular locus has to be of a very special type.

Klein and Lie showed (see, e.g. [E-C]) that a curve CP(n) ¯xed by the action of an in¯nite
group of projective automorphisms is rational algebraic. If it is of degree p (¸ n), it is obtained as
an adequate linear projection of the rational normal curve ¡p ½ CP(p), i.e. CP(1) embedded as
¡p(s : t) := (tp : tp¡1s : : : : : tsp¡1 : sp). For n = 3, they showed that the projected curve could be
written, after a change of coordinates, as (in the a±ne open set E4)

°p;q;r(t) := (tp; tq; tr)

where p > q > r ¸ 1 are positive integers. A curve so parametrized is ¯xed by the projective
transformations x0 = ®px, y0 = ®qy, z0 = ®rz that correspond to changing t by ®t, and ¯x the
points A = (1 : 0 : 0 : 0) and B = (0 : 0 : 0 : 1). Finally, note that if the numbers p; q; r admit a
greatest common divisor k > 1, then the curve (KL) is a degree p

k one, counted k times. One can
in this case substitute the parameter t by a new parameter t0.

Let us write ¡p;q;r := °p;q;r ½ CP(3). Observe that, when r = 1, ¡p;q;r is smooth if and only
if p = 3 (in this case it is the rational normal curve in CP(3)), and it has the point B as its only
(cuspidal) singularity if p ¸ 4. On the other hand, if r > 1, A is also a singular point of °p;q;r .

Let us insist in the fact that not every cuspidal rational algebraic curve is a KL curve. In
particular, not all the cuspidal rational curves with the same degree and number of cusps are
projectively equivalent (see, e.g. [E-H]).

Let t be the coordinate on C, and consider the vector ¯eld on C, t @
@t . The vector ¯eld

(°p;q;r)¤(t
@
@t) can be extended to C3 as : S = px @

@x + qy @
@y + rz @

@z : On the other hand,

(°p;q;r)¤(t`+1 @
@t ), ` + r ¸ 0, can be extended as a polynomial vector ¯eld X which is S-quasi-

homogeneous, if certain arithmetical relations hold among p; q; r and `. When r = 1, which is
the case that we will consider in the examples, this extension can be done so that X is S-quasi-
homogeneous of weight `. Thus we can de¯ne a foliation generated by the subfoliations given by
S and X, which will be of degree d if the foliation generated by X is of degree º = d ¡ 1.

Example 1. Klein{Lie foliations with one quasi-homogeneous singularity. We give examples that
extend one found in [Ce-LN-1], giving origin to the so-called exceptional components. They appear
in a family that we will denote as Klein{Lie (KL, for short) foliations in CP(3). KL foliations are
not always s.g.K, but for each degree there is exactly one which is s.g.K, and that has just one q.h.
singularity.

KL foliations in C3 and actions of Aff(C). Recall that if t is the coordinate on C, the two basic
complete vector ¯elds on C, that are the in¯nitesimal generators of the action of Aff(C), are t @

@t

and @
@t . As noted above, the vector ¯elds (°p;q;1)¤(t

@
@t) and (°p;q;1)¤(

@
@t), can be extended as

S = px
@

@x
+ qy

@

@y
+ z

@

@z
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and

X¿ = p
X

i+aj=p¡1

¿ijziyj @

@x
+ qzq¡1 @

@y
+

@

@z
where

X

i+qj=p¡1

¿ij = 1:

The vector ¯elds S and X¿ are complete, linearly independent outside the curve °p;q;1, and they
satisfy the relation [S ; X¿ ] = ¡X¿ , thus they generate a local action of Aff(C). To de¯ne a
foliation associated to it, we consider the polynomial 1{form !¿

p;q;1 = iSiX¿ dz ^ dy ^ dx, i .e. the
1{form

q(y ¡ zq¡1)dx + p
³X

¿ijzi+1yj ¡ x
´

dy + pq
³

zq¡1x ¡
X

¿ijziyj+1
´

dz:

The relation d!¿
p;q;1 = (p + q) iX¿ dx ^ dy ^ dz implies that °p;q;1 is the Kupka set of the foliation

represented by !¿
p;q;1, and it has transversal type ´ = ¡pvdu+qudv. Moreover, the di®eomorphism

Á¿(v; u; t) =

µ
v + p

X
¿ij

Z t

0

si(u + sq)jds; u + tq; t

¶

which is the time t of the °ow of the vector ¯eld X¿ , with initial condition (v; u; 0), satis¯es the
relation Á¤

¿ (!¿
p;q;1) = ¡p vdu + q udv. Therefore, the foliation has a rational ¯rst integral

H¿ =
(y ¡ zq)p

(x ¡ Ã¿(z; y))q

where Ã¿ is a polynomial of degree p on the variable z and depending on the parameters ¿ij .

Now we study the extension to CP(3) of the foliations obtained above. It is given by the
homogeneous 1{form !¿

p;q;1 = !1dz1 + !2dz2 + !3dz3 + !4dz4, obtained from !¿
p;q;1. Note that, by

means of the action of PGL(4; C) on !¿
p;q;1, we get a family of foliations: we will refer to all of

them as KL foliations in CP(3).

A natural question is, given an integer d ¸ 1, are there Klein{foliations in CP(3) of degree d+1?

Note that the degree of the KL foliation de¯ned by !¿
p;q;1 is d + 1 = maxfq; i + j + 1 j ¿i;j 6= 0g.

Then we have

!1 =qz4(z
d
4z2 ¡ zd¡q+1

4 zq
3)

!2 =pz4

³X
¿ijzd¡i¡j

4 zi+1
3 zj

2 ¡ zd
4z1

´

!3 =pqz4

³
zd¡q+1
4 zq¡1

3 z1 ¡
X

¿ijzd¡i¡j
4 zi

3zj+1
2

´

!4 =
³

p(q ¡ 1)
X

¿ijzd¡i¡j
4 zi+1

3 zj+1
2 + (p ¡ q)zd

4z2z1 ¡ q(p ¡ 1)zd¡q+1
4 zq

3z1

´

with 1 < q · d + 1 < p · qd + 1 · d(d + 1) + 1, and one of the following possibilities holds:

(1) q = d + 1, and i + j < d, if ¿ij 6= 0;
(2) q = d + 1, and there is a unique pair (i0; j0) with ¿i0j0 6= 0 and j0 = d ¡ i0;
(3) q < d, and there is a unique pair (i0; j0) with ¿i0j0

6= 0 and j0 = d ¡ i0.

Observe that the hyperplane fz4 = 0g is invariant by the foliation de¯ned by !¿
p;q;1. Concerning

its singular locus, it is the union of ¡p;q;1 and the set fz4 = !4(z1; z2; z3; z4) = 0g which, according
to the possibilities discussed above, is:

(1) fzd+1
3 = z4 = 0g [ fz1 = z4 = 0g;

(2) fzi0+1
3 = z4 = 0g [ fz4 = p(q ¡ 1)¿i0;d¡i0zd¡i0+1

2 ¡ q(p ¡ 1)z1zd¡i0
3 = 0g;

(3) fzi0+1
3 = z4 = 0g [ fzj0+1

2 = z4 = 0g.
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To study the foliation around the point (1 : 0 : 0 : 0), we choose its a±ne open neighbourhood
E1 and calculate the rotational of the form which represents the foliation ´¿

p;q;1 := !¿
p;q;1jE1

´¿
p;q;1 = ¡

³
p(q ¡ 1)

X
¿ijud¡i¡jwi+1vj+1 + (p ¡ q)udv ¡ q(p ¡ 1)ud¡q+1wq

´
du

+ p(
X

¿ijud¡i¡j+1wi+1vj ¡ ud+1)dv + pq(ud¡q+2wq¡1 ¡
X

¿ijud¡i¡j+1wivj+1)dw:

Its exterior derivative is d´¿
p;q;1 = Q

(p;q;¿)
uw du ^ dw + Q

(p;q;¿)
wv dw ^ dv + Q

(p;q;¿)
vu dv ^ du, where

Q(p;q;¿)
uw =q(p(d + 2) ¡ q)ud¡q+1wq¡1 + p(p ¡ q(d + 1))

X
¿ijud¡i¡jwivj+1;

Q(p;q;¿)
wv =p(q + p ¡ 1)

X
¿ijud¡i¡j+1wivj ;

Q(p;q;¿)
vu =(p ¡ q + p(d + 1))ud ¡

X
p(d ¡ p ¡ q + 3)¿ijud¡i¡jwivj ;

and the rotational is given by

R´¿
p;q;1

= Q(p;q;¿)
wv

@

@u
+ Q(p;q;¿)

vu

@

@w
+ Q(p;q;¿)

uw

@

@v
:

The only case in which the rotational above has isolated singularities is when q = d + 1 and
there is just one ¿ij di®erent from zero (case 2), the one corresponding to i = 0 and j = d, which
is 1. In that case, the KL foliation is s.g.K. By changing to the a±ne coordinates E2 = f(r : 1 :
s : t)j(r; s; t) 2 C3g and E3 = f(r : s : 1 : t)j(r; s; t) 2 C3g, it can be shown that all points in
CP(3) n f(1 : 0 : 0 : 0)g are of Kupka type and that sing(F) is the union of ¡p;q;1 with the two

curves fzi0+1
3 = z4 = 0g and fz4 = p(q ¡ 1)¿i0;d¡i0zd¡i0+1

2 ¡ q(p ¡ 1)z1zd¡i0
3 = 0g. We leave the

details for the reader.

Recall that the foliation has a meromorphic ¯rst integral F , which in the a±ne chart E0 can be
written as

F (x; y; z) =
(y ¡ zq)p

(x + zp h(y=zq))q
; where h(t) =

dX

j=0

hjtj

is the solution of q(t ¡ 1)h0(t) = p(td + h(t)).

In all the other cases, one can check that there is a one dimensional set of singular points on
which the rotational vanish, so the corresponding KL foliation is not s.g.K.

Finally, and motivated by the previous study, we now analyse when there is just one pair (i; j)
with ¿ij 6= 0: that is, there is a unique determination of vector ¯eld X¿ , and of the form !¿

p;q;1.
For this to be the case, certain relations must hold between p; q and the degree d + 1:

(1) if q = d + 1, and d + 1 divides p ¡ 1, then i = 0 and j = p¡1
d+1 .

(2) if q < d + 1, and p ¡ 1 = qd, then i = 0 and j = d.

Example 2. Let us consider the curve °3;2;1 and the extension of the vector ¯eld (°3;2;1)¤(t
@
@t ) as

S = 3x @
@x +2y @

@y +z @
@z and the polynomial vector ¯eld X = P +z3R, where R = x @

@x +y @
@y +z @

@z

is the radial vector ¯eld on C3, and P = P1
@

@x + P2
@

@y + P3
@

@z , with

(5)

8
<
:

P1(x; y; z) = ax2 + bxyz + cy3

P2(x; y; z) = dxy + exz2 + fy2z
P3(x; y; z) = gxz + hy2 + iyz2
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We consider this set of polynomials parametrized by (a; b; c; d; e; f; g; h; i) 2 C9. It is not di±cult
to see that [S; X] = 3X, so X is a weighted S-quasi homogeneous degree 3 polynomial vector ¯eld
extending (°3;2;1)¤(t4 @

@t ). The foliations de¯ned by S and X on CP(3) generate a codimension one
foliation of degree four on CP(3), which will be denoted by F(P ).

We take P in such a way that d(iP (dx ^ dy ^ dz)) = 0, which is equivalent to div(P ) :=
P1x + P2y + P3z = 0, or to 2a + d + g = b + 2f + 2i = 0. In this case, if ­P = iS iX (dx ^ dy ^ dz),
then ­P de¯nes F(P ) in the a±ne chart E0. A straightforward calculation (using div(P ) = 0),
gives d­P = iZP (dx ^ dy ^ dz), where

ZP = 9P + z3R ¡ 6S:

As the reader can check, the set

A0 = fP j 2a + d + g = b + 2f + 2i = 0 and ZP has a nonisolated singularity at 0 2 E0 ' C3g ;

is an algebraic subset of codimension three of C9. Therefore, if P =2 A0 then F(P ) has a q.h.
singularity at 0 2 E0. Moreover, sing(F(P )) \ E0 contains seven integral curves of S, say ¡j ,
j = 1; :::; 7, where ¡6 = (y = z = 0), ¡7 = (x = y = 0) and the others are generic trajectories of S
of the form ¡j = f(®jt3; ¯jt2; t)j t 2 Cg, ®j ; ¯j 6= 0.

Now, let us see how FP looks like in the chart E1 = f(1 : w : v : u)j (u; v; w) 2 C3g. In this
chart we have S = ¡S1, where

(6) S1 = 3u
@

@u
+ 2v

@

@v
+ w

@

@w
:

Since X has a pole of order two at (u = 0), the foliation F(P ) is generated in this chart by S1 and
X1 := u2:X . Observe that

[S1; X1] = ¡[S; x¡2X] = ¡S(x¡2)X ¡ x¡2[S; X] = 3X1 :

This implies that X1 is of the same type of X, that is X1 = Q + m:w3R, where Q = Q1
@

@x +

Q2
@

@y + Q3
@

@z and Q1; Q2; Q3 are as in (5) (by changing x ! u, y ! v, z ! w and the parameters

(a; :::; i) ! (a0; :::; i0)). In other words, the point (1 : 0 : 0 : 0) 2 E1 is a q.h. singularity of F(P )
for a generic P . It is possible to verify, by taking other a±ne charts, that F(P ) is a s.g.K foliation
with two q.h. singularities, the points p0 := (0 : 0 : 0 : 1) 2 E0 and p1 := (1 : 0 : 0 : 0) 2 E1.
Moreover, sing(F(P )) = [7

j=0¡j , where ¡0 = f(1 : w : v : u) 2 E1j u = v = 0g and the points in
sing(F(P )) n fp0; p1g are of Kupka type. We leave the details for the reader.

Example 3. In this example we take again the curve °3;2;1 and S = 3x @
@x + 2y @

@y + z @
@z , as in

the Example 2, and

(7) X = (a y2 + b xz)
@

@x
+ (c x + d yz)

@

@y
+ (e y + fz2)

@

@z
;

so that [S; X] = X.
The foliation generated by S and X on CP(3) has degree three in this case. It is de¯ned in the

chart E0 by the form ­ = iS iX (dx ^ dy ^ dz) . We will denote this foliation by F(S; X). If we
take X in such a way that div(X) = 0, that is b + d + 2f = 0, then d­ = iZ(dx ^ dy ^ dz), where
Z = 7X . As the reader can verify, if we take X =2 A, where

A = fX j X is as in (7) and abcdef(acf + bde) = 0g ;
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then 0 2 E0 ' C3 is an isolated zero of d­, that is a q.h. singularity of F(S; X). For generic
X =2 A, sing(F(S; X)) \ E0 has three components : ¡0 = (x = y = 0) and ¡1, ¡2, which are the
closure of two trajectories of S, not contained in the coordinate planes.

If we change coordinates to the chart E1 = f(1 : w : v : u)j (u; v; w) 2 C3g, we ¯nd that F(S; X)
is generated in E1 by S = ¡S1, where S1 is like in (6), and

X1 = u:X = (¡b uv ¡ a uw2)
@

@u
+ (e uw + (f ¡ b)v2 ¡ a vw2)

@

@v
+ (c u + (d ¡ b)vw ¡ a w3)

@

@w
:

Therefore, F(S; X) is represented in this chart by ­1 = iS1 iX1 (du ^ dv ^ dw). On the other hand,
we have d­1 = iZ1(du ^ dv ^ dw), where Z1 = 8X1 ¡ div(X1):S1. As the reader can check, this
implies that under generic assumptions on the coe±cients a; b; c; d; e; f , the point 0 = p1 2 E1 is
an isolated singularity of Z1, so that it is a q.h. singularity of F(S; X). In this chart, the plane
(u = 0) is invariant for F(S; X) and

sing(F(S; X)) \ E1 = (¡1 n fx = 0g) [ (¡2 n fx = 0g) [ ¡3 [ ¡4 [ ¡5

where ¡3 = (u = v = 0), ¡4 = (u = w = 0) and ¡5 is a parabola in the plane (u = 0) of the form
f(0; ®t2; ¯t)j t 2 Cg.

We observe that the curves ¡0, ¡4 and ¡5 meet at the point (0 : 0 : 1 : 0), which is a singularity
of logarithmic type for F(S; X). It can be proved, by changing variables to other a±ne charts, that
sing(F(S; X)) = [5

j=0¡j and all points in sing(F(S; X))nf(0 : 0 : 0 : 1); (1 : 0 : 0 : 0); (0 : 0 : 1 : 0)g
are of Kupka type.

x2.3 Some remarks about the construction of the examples. In this section we discuss the
possibility of constructing families of foliations s.g.K in CP(3), generated by two one-dimensional
foliations, say G1 and G2, as in x2.2. We suppose that G1 is the foliation de¯ned in the a±ne chart
E0 = f(x : y : z : 1)j (x; y; z) 2 C3g by the linear vector ¯eld S = px @

@x + qy @
@y + rz @

@z , where

p; q; r 2 N, p ¸ q ¸ r > 0 and gcd(p; q; r) = 1. If p = q = r = 1, then it is possible to construct
s.g.K foliations of any degree. Take a homogeneous vector ¯eld of degree d on E0, say X, so that
[S; X] = (d ¡ 1)X. The foliation generated by S and X in CP(3) is de¯ned on E0 by the form
­ = iS iX (dx ^ dy ^ dz). This type of example is considered in [C-LN] and for generic X it is
s.g.K. On the other hand, in the case where the integers p, q and r are not equal, the situation is
not so clear and we don't have a complete picture of all possibilities, if we ¯x p,q,r. Nevertheless,
in the case where p > q > r, the number of possible families of foliations is ¯nite, as we will see.

Consider S as in (1) and p > q > r > 0. Let us suppose that there is a one-dimensional
foliation G2 of degree d, which in the chart E0 is de¯ned by a polynomial vector ¯eld X such that
[S; X] = `:X, where ` > 0. We denote by F(S; X) the foliation on CP(3), which in the chart E0 is
generated by S and X . Observe that F(S; X) 2 F(p; q; r; d + 1; `).

Theorem 3. If p > q > r > 0 are ¯xed, then the set

P = f(d; `)j d ¸ 0; ` > 0 and F(p; q; r; d + 1; `) contains a s.g.K foliationg

is ¯nite.

Proof. Observe that S has four singularities in CP(3), the points p0 = (0 : 0 : 0 : 1) 2 E0,
p1 = (1 : 0 : 0 : 0) 2 E1, p2 = (0 : 1 : 0 : 0) and p3 = (0 : 0 : 1 : 0). The eigenvalues of S at these
points are respectively (p; q; r), (¡p; q ¡ p; r ¡ p), (p ¡ q; ¡q; r ¡ q), (p ¡ r; q ¡ r; ¡r). Note that
only in the ¯rst two sets the eigenvalues have the same sign. As a consequence, the points p2 and
p3 can not be quasi-homogeneous singularities for a foliation F 2 F(p; q; r; d + 1; `).
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The idea is to use the formula for the multiplicity of an isolated singularity of a q.h. vector ¯eld
in Remark 2. We will prove that the existence of a s.g.K foliation F 2 F(p; q; r; d + 1; `) implies
the existence of a one-dimensional foliation G of degree d with the following properties :
(i). p0 and p1 are isolated singularities of G.
(ii). G is de¯ned in the chart E0 by a vector ¯eld Y such that [S; Y ] = `:Y .

Let us suppose the existence of G satisfying properties (i) and (ii) and prove the theorem. Since
p0 is an isolated singularity for Y , it follows from Remark 2 that

(8) ¹0 = ¹0(d; `) := ¹(Y; p0) =
(` + p)(` + q)(` + r)

p:q:r
:

On the other hand, G is de¯ned in the chart E1 = f(1 : w : v : u)j (u; v; w) 2 C3g, by the vector
¯eld Y1, where Y1 = ud¡1:Y = x¡d+1:Y in E0 \ E1. It follows that

[S; Y1] = S(x¡d+1):Y + x¡d+1:[S; Y ] = (` ¡ p(d ¡ 1)):Y1 :

Note that, in the chart E1, we have

S = ¡pu
@

@u
¡ (p ¡ r)v

@

@v
¡ (p ¡ q)w

@

@w
;

so that, if we set S1 = ¡S then [S1; Y1] = (p(d ¡ 1) ¡ `):Y1. Set q1 = p ¡ r, r1 = p ¡ q and
`1 = p(d ¡ 1) ¡ `. We assert that `1 ¸ 0.

In fact, suppose by contradiction that `1 < 0. Let Y1 = A @
@u + B @

@v + C @
@w . Since p1 = (0; 0; 0)

is an isolated singularity of G, we must have C 6´ 0, so that there is a non-zero monomial of the
form uavbwc in C. Now, the relation [S1; Y1] = `1:Y1 implies that S1(C) = (`1 + r1):C, and so

p:a + q1:b + r1:c = `1 + r1 < r1 :

But the above relation is not possible if a; b; c ¸ 0 and p > q1 > r1 ¸ 1. This contradiction implies
that `1 ¸ 0.

In this case, we get from Remark 2 that

(9) ¹1 = ¹1(d; `) := ¹(Y1; p1) =
(`1 + p)(`1 + q1)(`1 + r1)

p:q1:r1
:

Since G has degree d, we must have (cf. [LN-S]) :

(10) ¹0 + ¹1 · d3 + d2 + d + 1

Let us see how (10) implies the Theorem. First of all we write (10) as a function of ` and `1. Since
` + `1 = p(d ¡ 1) we have

d3 + d2 + d + 1 = (d ¡ 1)3 + 4(d ¡ 1)2 + 6(d ¡ 1) + 4 =

=
1

p3
[(` + `1)

3 + 4p(` + `1)
2 + 6p2(` + `1) + 4p3] :=

1

p3
G(`; `1) :

Therefore, (10) is equivalent to F (`; `1) · 0, where

F (`; `1) = p2q1r1(` + p)(` + q)(` + r) + p2q r(`1 + p)(`1 + q1)(`1 + r1) ¡ q q1r r1:G(`; `1)
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Note that F (`; `1) is a degree three polynomial in (`; `1) and its homogeneous term of degree three
is

F3(`; `1) = p2q1r1 `3 + p2q r `3
1 ¡ q q1r r1(` + `1)

3 :

Assertion . If p > q > r > 0, then there exists C > 0 (which depends only on p; q; r) such that
F3(`; `1) ¸ C(` + `1)3 if `; `1 ¸ 0.
Proof. Suppose that `1 > 0, ` ¸ 0 and set y = `=`1. Then F3(`; `1) = `3

1:f(y), where f (y) =
p2q1r1y3 + p2q r ¡ q q1r r1(y + 1)3. Observe that f(0) = qr(p2 ¡ q1r1) > 0 and

1

3
f 0(y) = p2q1r1y2 ¡ q q1r r1(y + 1)2

so that f 0(0) < 0 and f 0(y) = 0 has an unique positive root : y0 =
p

qr
p¡p

qr . As the reader can check,

by calculating f 00 and f 000, the point y0 is the positive minimum of f(y). Since

f(y0) =
2p3q r

(p ¡ p
qr)2

(
q + r

2
¡ p

qr) > 0 ;

we have f (y) ¸ f (y0) = ® > 0 for all y ¸ 0, so that F3(`; `1) ¸ ®:`3
1. Similarly, there exists ¯ > 0

such that F3(`; `1) ¸ ¯:`3, if and `; `1 ¸ 0. It follows that

F3(`; `1) ¸ 1

2
®:`3

1 +
1

2
¯:`3 ¸ C(` + `1)

3

for some C > 0 and `; `1 ¸ 0. ¤
Now, since F (`; `1) ¡ F3(`; `1) is a degree two polynomial in (`; `1), there exists ½ > 0 such

that if `; `1 ¸ 0 and ` + `1 ¸ ½, then jF (`; `1) ¡ F3(`; `1)j · C
2 (` + `1)

3, which implies that

F (`; `1) ¸ C
2 (` + `1)

3, if `; `1 ¸ 0 and ` + `1 ¸ ½. It follows that the number of pairs (`; `1) 2 N2

which are solutions of F (`; `1) · 0 is ¯nite. Since `+ `1 = p(d ¡ 1), the number of pairs (`; d) 2 N2

which are solutions of (10) is also ¯nite.

It remains to prove the existence of a foliation G satisfying (i) and (ii). We will prove that
there are two foliations G0 and G1 of degree d such that :
(iii). pj is an isolated singularity of Gj , j = 0; 1.
(iv). Gj is de¯ned in the chart Ej by a vector ¯eld Xj such that [Sj ; Xj ] = `j :Xj , where S0 = S
and `0 = `.

If we have two foliations like above, then the generic foliation in the pencil G® = G0 + ® G1

satis¯es (i) and (ii), as the reader can check. Recall that G® is the foliation that in the chart E0

is de¯ned by X® = X0 + ® xd¡1:X1.

Let us construct G0. Consider a foliation F 2 F(p; q; r; d + 1; `). Then it has degree d + 1 and
is de¯ned in the chart E0 by an integrable 1-form ­ such that d­ = iZ(dx ^ dy ^ dz), p0 = 0 is
an isolated singularity of Z and [S; Z] = `:Z. Since F has degree d + 1, the form ­ has degree
d + 2, so that d · dg(Z) · d + 1. If dg(Z) = d, then the foliation G(Z) on CP(3) de¯ned in the
chart E0 by Z has degree d and we take G0 = G(Z). Let us suppose that dg(Z) = d + 1. In this
case we must have div(Z) = 0, so that, if Zd+1 is the homogeneous part of Z of degree d + 1,
then div(Zd+1) = 0 and [S; Zd+1] = `:Zd+1. As the reader can check, these relations imply that
Zd+1 = g (m R¡n S), where R is the radial vector ¯eld on C3, m = `+p+ q +r, n = d+3 and g is
a homogeneous polynomial of degree d such that S(g) = `:g. Let us write Z = P + g (m R ¡ n S),
where dg(P ) · d, P = A @

@x + B @
@y + C @

@z and

Z = (A + (m ¡ np)x g)
@

@x
+ (B + (m ¡ nq)y g)

@

@y
+ (C + (m ¡ nr)z g)

@

@z
:
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Observe that if ¸ is small then 0 is an isolated singularity of Z + ¸ g R. Take ¸ in such a way that
m ¡ np + ¸; m ¡ nq + ¸; m ¡ nr + ¸ 6= 0. In this case, the vector ¯eld

X0 =
¡ A

m ¡ np + ¸
+ g x

¢ @

@x
+

¡ B

m ¡ nq + ¸
+ g y

¢ @

@y
+

¡ A

m ¡ nr + ¸
+ g z

¢ @

@z

has an isolated singularity at 0. Moreover, [S; X0] = `:X0 and the foliation de¯ned by X0 on CP(3)
has degree d. The construction of G1 is similar and this ¯nishes the proof of Theorem 3. ¤
Remark 6. When p = 3, q = 2 and r = 1, then the unique possibilities are those of examples 1
(with d = 1), 2 and 3 of x2.2. In fact, in this case if we set k = d ¡ 1 ¸ 0, we have `1 = 3k ¡ ` and

(11) F (`; 3k ¡ `) = 3[A(k)`2 ¡ B(k)` + C(k)] ;

where A(k) = 3k + 4, B(k) = 12k + 9k2 and C(k) = 7k3 + 10k2 ¡ k ¡ 4. On the other hand, the
inequality F (`; 3k ¡ `) · 0 implies that for a solution (k; `) we must have B2 ¡ 4AC ¸ 0. Since

B2 ¡ 4AC = ¡(k ¡ 2)(k + 2)(k + 4)(3k + 4)

we get that the unique possible solutions are k 2 f0; 1; 2g, that is d 2 f1; 2; 3g. If we substitute
these values of k in (11) we get the following possibilities for ` and `1

8
<
:

k = 0 =) `; `1 2 f0; 1g
k = 1 =) `; `1 2 f1; 2g
k = 2 =) ` = `1 = 3

which give exactly the values of (d; `; `1) of the examples.

The above result has motivated problem 1 in x1.

x3 Proofs of Theorems 1 and 2

x3.1 Proof of Theorem 1. Let F 2 F(p; q; r; º; `) be a s.g.K foliation on CP(3). Observe that
F is generated by two one-dimensional foliations of CP(3), say G1 and G2, the foliations de¯ned
in the chart E0 by the vector ¯elds S and X , respectively. As we have seen in Proposition 2, this
implies that its tangent bundle TF splits as the sum of two line bundles : TF = L1 © L2, where
L1 corresponds to the foliation G1 and L2 to G2. Moreover, the Corollary of Proposition 1 implies
that there exists a neighborhood U of F such that any foliation in U is s.g.K, so that its tangent
bundle is well de¯ned.

Remark 7. Since S is a global vector ¯eld in CP(3), we have that L1 is a trivial line bundle, that
is L1 ' CP(3) £ C = O(0). On the other hand, if d is the degree of G2, we have L2 ' O(1 ¡ d) (cf
[Br]) and that the degree of F is º = d + 1.

Since F(d + 1; 3) is ¯nite dimensional, it is su¯cient to prove that for any holomorphic curve
§ 3 t 7! Ft 2 F(d + 1; 3), such that 0 2 § ½ C and F0 = F , then Ft 2 F(p; q; r; d + 1; `) for small
jtj.

Let (Ft)t2§ be a holomorphic family of foliations on F(d + 1; 3), parametrized in an open set
0 2 § ½ C, where F0 = F . We take § so small that for any t 2 §, Ft is s.g.K and TFt is well
de¯ned. Moreover, (TFt

)t2§ is a holomorphic family of rank two vector bundles over CP(3). We
will prove ¯rst that TFt

is isomorphic to TF = TF0
, if jtj is small. To do that, we essentially use

Theorem B. (Horrock's splitting criterion, see [O-S-S]) A holomorphic bundle E over CP(n) splits
precisely when Hi(CP(n); E(k)) = 0 ; for i = 1; : : : ; n ¡ 1and allk 2 Z:
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Note that, as TF0 splits, then H1(CP(3); TF0(k)) = H2(CP(3); TF0(k)) = 0 for every integer k.
But, as TFt

is a holomorphic family of vector bundles over CP(3), the dimension of the vector spaces
Hi(CP(3); TFt

(k)) is upper semicontinuous. We conclude, by using again the splitting criterion
above, that TFt splits for small jtj.

In order to conclude that for small jtj, it is TFt ' TF0 , we make use of the well known fact
(see, [S]) that the in¯nitesimal deformations of TF0 = O © O(1 ¡ d) are given by the vector space
H1(CP(3); End TF0 ), where End TF0 is the sheaf of endomorphisms of TF0 . But, the dimension of
that vector space is zero, as End TF0

= T ¤
F0

­ TF0
, where T ¤

F0
= O © O(d ¡ 1) is the dual bundle

of TF0
.

Now, let (Ft)t2§ be a holomorphic family of foliations such that F = F0 2 F(p; q; r; d + 1; `) is
s.g.K. It follows from Remark 7 and the results above that, if § is a small neighborhood of 0 2 C,
then TFt ' O(0) © O(1 ¡ d) for all t 2 §. On the other hand, (b) of Proposition 2, implies that
Ft is generated by two foliations of dimension one, say G1(t) and G2(t), where G1(t) corresponds to
the factor O(0) and G2(t) to the factor O(1 ¡ d). As a consequence, G1(t) is generated by a global
vector ¯eld S(t) on CP(3). Now, Proposition 1 of x2.1, implies that S(t) has a singularity whose
eigenvalues, say ¸1; ¸2; ¸3, are multiples of p; q; r, so that we can suppose without lost of generality
that ¸1 = p, ¸2 = q and ¸3 = r. Consider an a±ne coordinate system (U (t) = C3; (x; y; z)) where
S(t) = px @

@x + qy @
@y + rz @

@z . Let ­(t) be a polynomial integrable 1-form which de¯nes Ft in this
chart. We assert that

(12) LS(t) ­(t) = (` + p + q + r)­(t) :

In fact, since G1(t) is tangent to Ft, we have iS(t) ­(t) = 0. This implies that LS(t) ­(t) =
iS(t)d­(t). On the other hand, it follows from the integrability condition, ­(t) ^ d­(t) = 0, that
­(t)^ iS(t) d­(t) = 0, which implies that LS(t) ­(t) = ¸(t):­(t), where ¸:C3 ! C ¤ is holomorphic.
Now, the eigenvalues of the operator ! 7! LS(t)! are integers, so that ¸(t) is a constant. Since
­(0) = ­ = iS iX(dx^dy^dz) , where [S; X] = `:X, we have LS ­ = (`+tr(S))­ = (`+p+q+r)­,
which proves that ¸(0) = ` + p + q + r ´ ¸, and the assertion.

Now, let Z(t) be the vector ¯eld in C3 = U(t) de¯ned by iZ(t)(dx ^ dy ^dz) = d­(t) . It follows
from (12) that

¸:iZ(t)(dx ^ dy ^ dz) = ¸:d­(t) = LS(t) d­(t) = LS(t)(iZ(t)(dx ^ dy ^ dz)) =

= i[S(t);Z(t)](dx ^ dy ^ dz)) + iZ(t)(LS(t)(dx ^ dy ^ dz)) = i[S(t);Z(t)](dx ^ dy ^ dz) + tr(S(t))d­(t)

=) [S(t); Z(t)] = (¸ ¡ tr(S(t))):Z(t) = `:Z(t)

This implies that Ft 2 F(p; q; r; d + 1; `) for small jtj and ¯nishes the proof of Theorem 1 as

F(p; q; r; d + 1; `) is an irreducible algebraic subset of F(d+1; 3). Indeed, recall from the description
of the foliations in F(p; q; r; d + 1; `) that in order to de¯ne such a foliation we need choosing an
a±ne open C3 ½ CP(3) (or equivalently a point in the dual projective space CP¤(3)), ¯xing linear
coordinates on it and choosing (up to multiplication by the same constant) the coe±cients of
the vector ¯eld X . This shows that there is a surjective map from a dense open subset U ½
CP¤(3) £ GL(3; C) £ CN onto F(p; q; r; d + 1; `), for a certain N . So the irreducibility of the last
algebraic subset follows from that of U .

Furthermore, to parametrize F(p; q; r; d + 1; `), we should analyse the map above in order to
detect which elements in U give rise to the same foliation. Note that for a ¯xed a±ne open, a linear
change of coordinates of the form x0 = ®x, y0 = ¯y, z0 = °z takes S to S0 = px0 @

@x0 +qy0 @
@y0 +rz0 @

@z0

and X to an S0-quasi-homogeneous vector ¯eld X 0 of weight ` + 1. As the open a±ne C3, the
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coordinates (x0; y0; z0) and the vector ¯elds S0, X0 de¯ne the same foliation, we should factor the
group GL(3; C) by the subgroup of diagonal invertible matrices. ¤

For KL foliations we have the following result, extending the existence of the exceptional com-
ponent in [Ce-LN1], that corresponds to the case d = 1:
Corollary . Let d ¸ 1 be an integer. There is a 13-dimensional irreducible component

F(d(d + 1) + 1; d + 1; 1; d + 1; ¡1)

of the space F(d+1; 3) whose general point corresponds to a s.g.K Klein{Lie foliation with exactly
one q.h. singularity. Moreover, this component is the closure of a PGL(4; C) orbit on F(d + 1; 3).
Proof. It is an immediate consequence of Theorem 1, the study of KL foliations in Example 1,
and the analysis of the parametrizations of the sets F(p; q; r; d + 1; `). Indeed, if F is a foliation in
F(d(d + 1) + 1; d + 1; 1; d + 1; ¡1), then in an a±ne open subset we have that it is determined by
the vector ¯elds

S = (d(d+1)+1)x
@

@x
+(d+1)y

@

@y
+

@

@z
and X®¯ = ®(d(d+1)+1)yd @

@x
+¯(d+1)zd @

@y
+

@

@z
:

Note that X, the S-quasi-homogeneous vector ¯eld of weight 0, is uniquely de¯ned up to the choice
of the nonzero constants ® and ¯ (we take the last coordinate, which is necessarily a constant, to
be 1). The dependence locus of S and X , which is the singular set of the foliation F in C3, is the
Klein{Lie curve (®td(d+1)+1; ¯td+1; t). After the linear change of coordinates given by x = ®x0,
y = ¯y0, z = z0, the foliation in C3 is exactly the one described in Example 1, whose singular locus
is the curve °d(d+1)+1;d+1;1(t) = (td(d+1)+1; td+1; t). The extended foliation in CP(3) is s.g.K was
studied in Example 1, it has just one q.h. singularity, an invariant hyperplane (that at in¯nity,
CP(3) n C3), and we also know its singular locus. ¤
x3.2 Proof of Theorem 2. We observe that the second statement of the Theorem is a direct
consequence of the ¯rst and of Theorem 1, so that we will prove only the ¯rst.

We will do the arguments in homogeneous coodinates. Let ¼: Cn+1 n f0g ! CP(n) be the
natural projection. Given a codimension one holomorphic foliation F on CP(n) of degree d, then
the foliation F¤ = ¼¤(F), on Cn+1 n f0g, extends to a foliation on Cn+1, which can be de¯ned by
a polynomial 1-form ­ =

Pn
j=0 Aj(z) dzj satifying the following properties (cf. [Ce-LN-1]) :

(i). Aj is a homogeneous polynomial of degree º = d + 1 for all j = 0; :::; n.
(ii).

Pn
j=0 zj :Aj(z) ´ 0.

(iii). ­ ^ d­ = 0 (integrability condition).
(iv). ¼(sing(­)) = sing(F) and cod C(sing(­)) ¸ 2.
(v). If U® is the a±ne chart (z® = 1) then FjU® is de¯ned by ­® = ­jU® .

Moreover, if CP(k) ' E ½ CP(n) is a linearly embedded k-plane, 2 · k < n, non-invariant for
F , where ¼¡1(E) = E¤, then
(vi). ¼¤(FjE) = F¤jE¤ is de¯ned by ­jE¤ .

Now, suppose that n = 3 and that F is generated by two one dimensional foliations, say Gj of
degree dj , j = 1; 2. We have the following :

Lemma 1. In the above hypothesis, let ­ be as before. Then there exist polynomial vector ¯elds
Xj on C4, j = 1; 2, with the following properties :
(a). The components of Xj are homogeneous of degree dj .
(b). The two-dimensional foliation on C4 n f0g, ¼¤(Gj), extends to C4 and is generated by Xj and

the radial vector ¯eld on C4 : R =
P3

j=0 zj
@

@zj
.



IRREDUCIBLE COMPONENTS OF THE SPACE OF FOLIATIONS

(c). ­ = iR iX1 iX2(dz0 ^ dz1 ^ dz2 ^ dz3).

Proof. The existence of vector ¯elds Xj , j = 1; 2, satisfying (a) and (b), is well known (cf.
[LN-S]). Since G1 and G2 generate F , we must have iXj ­ = 0, j = 1; 2. We have also iR(­) = 0
(from (ii)). Let £ = iR iX1 iX2(dz0 ^ dz1 ^ dz2 ^ dz3). It follows from De¯nition 5 and (b), that
cod C(sing(£)) ¸ 2 and that for any p 2 C4 n sing(£) we have Tp(F¤) = ker(£(p)) = ker(­(p)),
where Tp(F¤) denotes the tangent space to the leaf of F¤ through p. This implies that £ = ¸:­
outside sing(£), where ¸ 6´ 0 is some holomorphic function on C4 nsing(£). Since cod(sing(£)) ¸
2, ¸ extends to a holomorphic function on C4, which of course is a homogeneous polynomial. Now,
it follows from dg(Gj) = dj , that dg(F) = d1 + d2, and so dg(­) = d1 + d2 + 1 = dg(£). This

implies that ¸ is a constant. Now, if ~X1 = ¸¡1:X1, then ­ = iR i ~X1
iX2

(dz0 ^ dz1 ^ dz2 ^ dz3),
which proves the Lemma. ¤

We have the following consequences :

Corollary 1. Let F , F¤ and ­ = iR iX1
iX2

(dz0 ^ dz1 ^ dz2 ^ dz3) be as in Lemma 1. Then for
any p 2 C4 the sheaf of germs of holomorphic vector ¯elds at p which are tangent to F¤ is free and
generated by the germs of R, X1 and X2 at p.

The proof is similar to the proof of Remark 3 of x2.1 and is left for the reader.

Corollary 2. Let F , F¤ and ­ be as in Lemma 1. Let (V®)®2A be a covering of C4 n f0g by Stein
open sets and (X®¯)V®¯ 6=; be an additive cocycle of holomorphic vector ¯elds such that for any
V®¯ 6= ; X®¯ is tangent to F¤, that is iX®¯ ­ = 0. Then for any ® 2 A there exists a holomorphic
vector ¯eld X® on V® such that X® is tangent to F¤ and X®¯ = X¯ ¡ X® on V® \ V¯ := V®¯ 6= ;.

Proof. Let X1 and X2 be as in Lemma 1, so that ­ = iR iX1 iX2(dz0 ^ dz1 ^ dz2 ^ dz3). It follows

from Corollary 1 that if V®¯ 6= ; then there exist fj
®¯ 2 O(V®¯) , j = 0; 1; 2, such that

X®¯ = f 0
®¯ R + f 1

®¯ X1 + f2
®¯ X2 :

Clearly, (f j
®¯)V®¯ 6=; is an additive cocycle for j = 0; 1; 2. Since H1(C4 n f0g; O) = 0, there exist

collections (fj
®)®2A, where fj

® 2 O(V®), j = 0; 1; 2, such that fj
®¯ = fj

¯ ¡ f j
® on V®¯ 6= ;. If we set

X® = f0
® R + f1

® X1 + f2
® X2, then X® is tangent to F¤ and X®¯ = X¯ ¡ X®. ¤

Now, we consider the case in which FjE is s.g.K.

Lemma 2. Let F be a codimension one foliation of degree d on CP(n). Suppose that there exists
a 3-plane E like in (vi) before Lemma 1 and that FjE is s.g.K. Let F¤, E¤ and ­ be as before.
Then, for any p 2 E¤ nf0g, there exists a local coordinate system around p, say (U; (t; u; v)), where
t: U ! C, u = (u1; u2; u3): U ! C3 and v = (v1; :::; vn¡2): U ! Cn¡3, such that t(p) = 0, u(p) = 0,
v(p) = 0 and
(a). E¤ = (v = 0).

(b). ­jU = et(d+2)
P3

j=1 ®j(u) duj .

In particular, F¤jU is locally equivalent to the product of a codimension one foliation on C4 by
a non-singular foliation, say P , of dimension n ¡ 3, which is given in this chart by (t; u) = cte.

Proof. The Lemma is a consequence of [K] and [C-LN]. First of all, observe that LR(­) = (d+2)­,
because ­ is homogeneous of degree d + 1. This implies that

(13) R¤
s(­) = es(d+2):­ ;

where Rs(q) = es:q is the °ow of R. Let p = (p0; :::; pn) 2 E¤ n f0g. After a linear change of
variables in Cn+1, we can suppose that E¤ = (z4 = ::: = zn = 0) and p = (1; 0; :::; 0) 2 E¤. Let H
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be the hyperplane (z0 = 1) of Cn+1. Since R is transversal to H, there exists coordinate system
(t; x): V ! D £ Cn, where V = fRs(q)j s 2 D ; q 2 Hg, such that R = @

@t
, H = (t = 0) and p = 0,

in this chart. It follows from (13) that

(14) ­(t; x) = et(d+2):! , where ! =
nX

j=1

!j(x) dxj

depends only on x = (x1; :::; xn). We can suppose also that E \ H = E¤ \ H is the plane
E0 = (x4 = ::: = xn = 0). Note that (v) and the hypothesis, imply that all singularities of !jE0

are generalized Kupka. We have three possibilities :
(I). ­(p) = !(0) 6= 0. In this case, we have !jE0 (0) 6= 0, that is F¤ is transversal to E0 at 0.
In fact, since !(0) 6= 0, F has a holomorphic ¯rst integral in a neighborhood of 0, say f , so that
! = g:df , where g(0) 6= 0. Now, !jE0

(0) = 0 implies that df jE0
(0) = 0, and so f jE0

has an isolated
singularity at 0, which is not possible (see Remark 4 of x2.1). As the reader can check, this implies
the Lemma in this case.
(II). !jE0(0) = 0 and d!jE0(0) 6= 0. In this case, 0 is a Kupka singularity of !jE0 and of !. The
Lemma follows from the arguments in [K] or in [Me], in this case.
(III). !jE0(0) = 0, d!jE0(0) = 0 and 0 is an isolated zero of d!jE0 . In this case, the Lemma
follows from Theorem 4 of [C-LN]. ¤

Now, Lemma 2 implies that there exists an open covering (U®)®2A of E¤ nf0g with the following
properties :
(vii). U® = V® £ W®, where V® is a Stein open subset of E¤, and W® is a polydisk in Cn¡3.
(viii). F¤jU®

is the product of a codimension one foliation on V® by a non-singular foliation P®

of dimension n ¡ 3, transversal to E¤.

We will suppose that E¤ = (z4 = ::: = zn = 0) and use the notation z = (x; y), where
x = (x1; :::; x4) = (z0; :::; z3) and y = (y1; :::; yn¡3) = (z4; :::; zn). Since P® is non-singular of
dimension n ¡ 3 and transversal to E¤, by taking a smaller U® if necessary, we can suppose that
it is generated by n ¡ 3 holomorphic vector ¯elds, say Y 1

® ; :::; Y n¡3
® , of the form

(15) Y j
®(x; y) =

@

@yj
+ Xj

®(x; y) , where Xj
®(x; y) =

4X

i=1

Aj
®;i(x; y)

@

@xi
and Aj

®;i 2 O(U®) :

Lemma 3. For any j = 1; :::; n ¡ 3, there exists a constant vector ¯eld Zj on Cn+1 of the form

(16) Zj =
@

@yj
+

4X

i=1

a j
i

@

@xi

such that iZj
­(q) = 0 for any q 2 E¤ and any j 2 f1; :::; n ¡ 3g.

Proof. Fix j 2 f1; :::; n ¡ 3g and consider the covering (U® = V® £ W®)®2A and the vector
¯elds Y j

® as in (15). Consider the additive cocycle of vector ¯elds (X®;¯)V®¯ 6=; on E¤ n f0g, where

X®;¯(x) = Y j
¯ (x; 0) ¡ Y j

®(x; 0) = Xj
¯(x; 0) ¡ Xj

®(x; 0). Clearly, X®¯ is tangent to F¤jE¤ if V®¯ 6= ;.
It follows from Corollary 2 of Lemma 1 that we can write X®;¯ = T¯ ¡T®, where T® is holomorphic
on V® and tangent to F¤jE¤ . Since Y j

®(x; 0) + T®(x) = Y¯(x; 0) + T¯(x) on V®¯ 6= ;, there exists a
holomorphic vector ¯eld Z along E¤ n f0g, such that Z(x) = Y j

® (x; 0) + T®(x) if x 2 V®. It follows
from Hartog's Theorem that we can extend Z to a vector ¯eld on E¤, which we shall denote by Z
again. Let Z(x) =

P1
k=0 Zk(x) be Taylor series of Z at 0 2 E¤, where Zk(x) is a vector ¯eld with
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polynomial coe±cients homogeneous of degree k. Since Y j
® is tangent to F¤ and Z® is tangent to

F¤jV®
, we have iZ(q) ­(q) = 0 for any q 2 E¤. Now, since the coe±cients of ­ are homogeneous of

the same degree, we get that iZ0 ­(q) = 0 for any q 2 E¤. Finally, observe that Z0 is a constant
vector ¯eld as in (16), which proves the lemma. ¤

Let us ¯nish the proof of the ¯rst part of Theorem 2. We will prove that there exists a linear
change of variables on Cn+1 of the form (x; y) = L(u; v) = (u + b(v); v) such that

L¤(­) =
4X

j=1

!j(u) duj :

This clearly implies the ¯rst part of Theorem 2.

Let Zj , j = 1; :::; n ¡ 3, be as in (16). Consider the linear change of variables (x; y) = L(u; v)

as above, given by y = v and xj = uj +
Pn¡3

i=1 ai
j vi, j = 1; :::; 4. As the reader can check, we have

L¤(Zj) = @
@vj

for all j = 1; :::; n ¡ 3. Therefore, returning to the old notation, we can suppose that

Zj = @
@yj

.

Assertion. Let (x; y) 2 C4 £ Cn¡3 be a linear coodinate system such that E¤ = (y = 0) and

Zj = @
@yj

, j = 1; :::; n ¡ 3. Then ­ =
P4

j=1 !j(x) dxj in this coordinate system.

Proof . Let us suppose ¯rst that n = 4, so that y 2 C and Z1 = @
@y . Write

­(x; y) =
ºX

k=0

yk ­k(x)

where º is the degree of ­ and the coe±cients of ­k are homogeneous polynomials of degree º ¡ k
in x. We can write

­k(x) = ­0
k(x) + fk(x) dy , where ­0

k(x) =
4X

i=1

gi
k(x) dxi :

and fk, gi
k are homogeneous polynomials of degree º ¡ k, i = 1; :::; 4. We want to prove that

­ = ­0
0. First of all, observe that f0 = 0, because f0(x) = iZ1

­(x; 0) = 0. Let us suppose by
induction that ­j = 0 for j = 1; :::; k ¡ 1, k < º, and prove that ­k = 0. In this case, we have

­ = ­0
0 + yk(­0

k + fk dy) (mod yk+1) and d­ = d­0
0 + kyk¡1dy ^ ­0

k (mod yk) ;

so that, the integrability condition gives us

0 = ­ ^ d­ = ­0
0 ^ d­0

0 + kyk¡1 ­0
0 ^ dy ^ ­0

k (mod yk) :

Since ­0
0 = ­jE¤ , it is integrable; ­0

0 ^ d­0
0 = 0, and we get ­0

0 ^ dy ^ ­0
k = 0. But, the forms

­0
j do not contain terms in dy, and so ­0

0 ^ ­0
k = 0. This implies that ­0

k = ¸:­0
0, where ¸ is

holomorphic, because cod(sing(­0
0)) ¸ 2. On the other hand, the fact that the coe±cients of ­0

k

are homogeneous polynomials of degree º ¡ k, while the coe±cients of ­0
0 are of degree º > º ¡ k,

implies that ¸ = 0, and so ­0
k = 0.

Let us prove that fk = 0. We will use the vector ¯elds Y 1
® = @

@y + X1
®, ® 2 A, as in (15). We

can write for (x; y) 2 V® £ W® that

Y 1
® (x; y) = Z1 +

1X

j=0

yj X®;j(x)
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where the vector ¯elds X®;j contain only terms in @
@xi

, i = 1; :::; 4. Since iY 1
®
­ = 0 and iZ1 ­0

0 = 0,
we get

0 ´ iY 1
®(x;y)­(x; y) = iZ1

­(x; y) +
1X

j=0

yj iX®;j(x) ­(x; y) =

= yk fk(x) +
kX

j=0

yj iX®;j(x) ­0
0(x) (mod yk+1) ;

as the reader can check. This implies that iX®;j ­0
0 = 0 for j = 0; :::; k ¡ 1 and fk + iX®;k ­0

0 = 0.
For V®¯ 6= ;, set X®¯(x) = X¯;k(x)¡X®;k(x). Clearly, (X®¯)V®¯ 6=; is an additive cocycle of vector

¯elds. Moreover, iX®¯ ­0
0 = 0, so that we can apply the Corollary 2 of Lemma 1 to obtain vector

¯elds T® on V® such that X®¯ = T¯ ¡ T® on V®¯ 6= ; and iT® ­0
0 = 0 for all ® 2 A. This implies

that there exists a vector ¯eld X on E¤ n f0g such that XjV®
= ¡(X®;k + T®) for all ® 2 A. By

Hartog's Theorem X can be extended to E¤. On the other hand, as the reader can check

(17) iX ­0
0 = fk

But, fk is homogeneous of degree º ¡ k and ­0
0 homogeneous of degree º > º ¡ k, so that (17)

implies that fk = 0. This ¯nishes the case n = 4.

The general case can be reduced to the above one by taking sections. In fact, since iZj
­(x; 0) =

0, j = 1; :::; n ¡ 3, we can write

­(x; y) = ­0
0(x) +

X

1·j¾j·º

y¾ ­0
¾(x) +

n¡3X

i=1

X

1·j¾j·º

y¾ f i
¾(x)dyi ;

where ¾ = (¾1; :::; ¾n¡3), y¾ = y¾1
1 :::y

¾n¡3

n¡3 , j¾j = ¾1 + ::: + ¾n¡3, f i
¾ and the coe±cients of ­0

¾

are homogeneous polynomials of degree º ¡ j¾j and ­0
¾ contains only terms in dx1; :::; dx4. Let

v = (v1; :::; vn¡3) be a non-zero vector of Cn¡3 and consider the linear immersion L: E¤ £ C !
E¤ £ Cn¡3 ' Cn+1 given by L(x; w) = (x; w:v). We have

L¤(­) = ­0
0(x) +

ºX

k=1

wº
£ X

j¾j=k

v¾ ­0
¾(x) +

¡ n¡3X

i=1

X

j¾j=k

v¾ vi f i
¾(x)

¢
dw

¤
:

It follows from the case n = 4 that

X

j¾j=k

v¾ ­0
¾(x) = 0 ; 8 v 2 Cn¡3 ; 8 1 · k · º =) ­0

¾ = 0 ; 8 ¾ 6= 0 :

This implies that

­(x; y) = ­0
0(x)+

X

i;¾

y¾ f i
¾(x) dyi =) d­(x; y) = d­0

0(x)+
X

i;¾

y¾ df i
¾(x)^dyi +

X

i<j

!i;j dyi ^dyj

Now, by using the integrability condition and collecting in ­^ d­ = 0 the coe±cients of the terms
containing only the factors dxi ^ dxj ^ dy`, we get that

X

i;¾

y¾
¡
­0

0 ^ df i
¾ + f i

¾ d­0
0

¢
^ dyi = 0 =) df i

¾ ^ ­0
0 = f i

¾ d­0
0 ; 8 i; ¾ ; 1 · j¾j · º ; 1 · i · n ¡ 3 :
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The last relation implies that, f i
¾ = 0, for all i; ¾. In fact, we have seen in the proof of Lemma 2

that LR(­0
0) = (º + 1)­0

0, so that iR(d­0
0) = iR(d­0

0) + d(iR ­0
0) = LR(­0

0) = (º + 1)­0
0. Hence

iR(df i
¾ ^ ­0

0) = iR(f i
¾ d­0

0) =) (º ¡ j¾j)f i
¾ = (º + 1)f i

¾ =) f i
¾ = 0 ;

because f i
¾ is homogeneous of degree º ¡ j¾j. This ¯nishes the proof of the assertion and of the

Theorem. ¤
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