ASYMPTOTIC STABILITY OF RIEMANN SOLUTIONS FOR
A CLASS OF MULTI-D VISCOUS SYSTEMS OF
CONSERVATION LAWS

HERMANO FRID

ABSTRACT. We prove the asymptotic stability of two-states nonplanar Rie-
mann solutions under initial and viscous perturbations for a class of multi-
dimensional systems of conservation laws. The class considered here is con-
stituted by those systems whose flux-functions in different directions share a
common complete system of Riemann invariants, the level surfaces of which are
hyperplanes. In particular, we obtain the uniqueness of the self-similar L en-
tropy solution of the two-states nonplanar Riemann problem. The asymptotic
stability to which the main result refers is in the sense of the convergence as

t — oo in L of the space of directions £ = x/t. That is, the solution u(%,x)

of the perturbed problem satisfies u(t,t€) — R(€) as t — oo, in Li (R™),

loc
where R(€) is the self-similar entropy solution of the corresponding two-states

nonplanar Riemann problem.

1. INTRODUCTION

We consider solutions of initial-value problems for multidimensional viscous sys-
tems of conservation laws given by

(L.1) 0w+ 0p, f'(u) = Au,  (t,%) € (0,00) x R",

where X = (z1,...,2,), u € R™, f{(u) € R™, is a smooth vector field, i = 1,...,n,
A =92 +---+ 82 is the Laplacian operator, and we adopt the convention of
summation for repeated indices.

We form the initial value problem for (1.1) by prescribing an initial condition

(12) u(t,x)|t:0 = ’LLO(X), X € Rn,

where, here, we will assume uy € L>®(R").

In this paper we are concerned with the asymptotic behavior of the solution
of (1.1), (1.2), u(t,x), when the initial condition is a perturbation of a nonplanar
two-states Riemann data. Namely, we assume that ug satisfies

(1.3) uo(x) = Ro(x) +9(x),

where

(1.4) Ro(x) = ur, ifz; <0, for somei e {1,...,n}
' M7 Yug, ifz; >0, forallie {1,...,n}

)
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and ¢ € L*°(R"™) with
(1.5) lim (Tx) =0 in L]

T—o0 loc(Rn)-

We will consider systems (1.1) where the fi(u) are in the class of the so called
Temple fields, after [29], and we further impose some additional conditions over the
ft. Namely, we will assume that the fields f? satisfy the following conditions on a

region O of the phase space where the solutions of (1.1)-(1.2) take values:

(H1) There exists a system of smooth functions {w;(u)}7x,, Riemann invariants,
satisfying

(1.6)  Vw;(u)Vfi(u) = )\j-(u)ij(u), u e O, i=1,...,n, j=1,...,m,

where the ) are then the eigenvalues of V%, i =1,...,n,j=1,...,m;
(H2) For each u € O, {Vw;(u)}j, is a linearly independent set and the level
surfaces {w; = constant} are hyperplanes;
(H3) For each i € {1,...,n}, there exist constants ki < k} < --- < k|, such

that
1.7 ki< A(u) < kb <-o- < kD <A (u) < Ky, for all u € O.
1 1 m m m—+

(H4) There exists a common system of unit right-eigenvectors {r; (u)}7-, for V f*(u),
i =1,...,n, such that

(1.8) VX (u) -rj(u) >0, weO, i=1,...,n, j=1,...,m.

An example of Temple field is given by f(u) = ﬁ(klul,...,kmum)T, 0<
ki < -+ < kp, D(u) =1+ uy + -+ + U, which is found in a model system in
chromatography (see [1]). One-dimensional systems in which the flux functions are
Temple fields have been studied by many authors after the first analysis carried
out in [29], followed by [23, 26]. The class of systems for which our result applies
clearly includes the case where fi(u) = a‘f(u), a* > 0,i=1,...,n, and f is any
Temple field in R™ satisfying (H3) and (H4). For m = 2, it was proved in [29] (see
also [26]) that the Temple fields whose Riemann invariants are wi (u), wa(u), are
given by

hi(w1) — ha(w2) _ wahy(wy) — wihy(ws)

19) Al =—7——"  fa(u) ;

w1 — w2 W2 —wy

where hy and ho are arbitrary smooth functions of one variable. This shows that, at
least for i = 2, it is possible to give examples of systems (1.1) with flux functions
satisfying our assumptions, beyond the simplest case when all of them are positive
multiples of one only field.

In analyzing the asymptotic behavior of the solution u(t,x) of (1.1), (1.2) we will
prove the existence of a piecewise continuous self-similar solution of the multi-D
Riemann problem for

(1.10) Osu + 8y, fi(u) = 0, (t,x) € (0,00) x R,
with Riemann data given by (1.4), v(t,x) = R(§), with & = x/t, for which we have
(1.11) u(t, t€) — R(£), ast — oo, in Li . (R™).

The result for planar Riemann data was announced in [17]; in that case, conditions
(H3) and (H4) need only to be imposed on the first field f!, which corresponds to
the direction of propagation of the waves.
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We recall that a pair (p(u),q(u)) is an entropy-entropy flux pair for (1.10) if
(1.12) Va(u) = Vn(u)VE(u),

where we denote f = (f1,..., f7).
As usual, by an entropy solution of (1.10), (1.2), we mean a bounded measurable
function u(t, x) satisfying the integral inequality

(1.13) /R )y + alu) - Vadxdt + /R ()0, %) dx > 0,

for all entropy-entropy flux pair for (1.10), (n(u),q(u)), with 5(u) convex, and for
any nonnegative ¢ € C5°(R™!). For an account on the basic concepts and recent
developments of the theory of conservation laws we refer to [10, 25].

We remark that our hypotheses (H1)-(H4) imply, in particular, that the system
(1.10) is hyperbolic, in the sense that given any ¢ = ((1,...(,) € R the matrix
GVfi(u) + -+ + ¢ Vf*(u) is diagonalizable (cf., [10, 26]). Moreover, it is well
known that Temple systems admit strictly convex smooth entropies (cf., [26]), and
(1.12) implies that the matrices V2n(u)V fi(u) are symmetric, i = 1,...,n. In
particular, (1.10) is symmetrizable (cf., [19, 18, 2]). Hypothesis (H1) implies that
the Jacobian matrices V f¢(u) commute. In this connection, we recall that Brenner
[3] proved that commutation of the Jacobian matrices is a necessary condition for
the stability of LP norms of solutions of (1.10) in the case where the fi’s are linear
(see also [24]). Conversely, in the 2x 2 case, using Riemann invariants and entropies,
Dafermos [11, 12] proved the stability of the L norms of entropy solutions of (1.10),
provided they are close to a constant state.

We now state our main theorem.

Theorem 1.1. Let fi, i =1,...,n, satisfy hypotheses (H1)-(H4). Then, there ex-
ists one and only one self-similar entropy solution R(€) of the two-states nonplanar
multi-D Riemann problem (1.10), (1.4). Moreover, if ug € L¥(R™) satisfies (1.3),
(1.4), (1.5), the only solution of (1.1), (1.2) verifies (1.11).

We remark that no smallness condition is needed, neither for the initial data nor
for the perturbation. For the latter the only requirement is the one given by (1.5).
The main feature of Theorem 1.1, of course, is not the existence of R(£), which due
to the assumptions could be easily constructed directly, but rather its uniqueness
and the property (1.11).

1.1. Brief outline of the proof of Theorem 1.1. The method for obtaining
(1.11) is motivated by the general approach in [4].
#1. The main point in the strategy is to prove the relation

1.14 lim ~ ) t,t€) — R(€)|dt =0, in L (R"
(114 m [ (e t€) = Rt =0, in L, (B,

#2. Animportant aspect of (1.14) is its equivalence to the convergencein LL (R?)
of the scaling sequence {ul}, given by u’(t,x) = u(Tt,Tx), to R(x/t), when
T — +o0o. The latter is equivalent to the fact that, given any sequence T} — oo,
as k — 00, one can find a subsequence, T; = T}, — o0, as [ — oo, such that
uTi(t,x) — R(x/t) in L} (R}*!) as | — oco. This fact is frequently useful when
trying to prove (1.14). Once (1.14) is proved, a standard procedure established in
[4] is then used to strengthen (1.14) into (1.11). This strengthening is similar to

the ones encountered in [5, 22].
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#3. Uniform boundedness of u(x,t), due to existence of bounded invariant regions,
plus existence of a strictly convex entropy give (see Proposition 2.2 below)

1 T
lim T/ \Vau(et, t)]dt = 0, ae. € € R".
0

#4. We recall that in the one-dimensional case the idea was (cf. [16], [4]) to integrate
the entropy inequality

(1.15) n(u) + q(w)e < n(u)zz,

in a region of the type
OF(T) = {(z,t) : +(z—£t) >0,0<t < T},

where + or — depends on whether n(ur) = 0 or n(ug) = 0, respectively. Integration
by parts gives, respectively,

: e
(1.16) lim sup :ET/O (=&n + q@)(u(ét, 1)) dt < 0.

T—o0

#5. Defining, for g € C(R™),

1 /7
Wlogtw) = 7 [ olutet.o) e,
0
inequality (1.16) combined with properties of Temple systems eventually leads to
u;‘r — dp(e), as T — o0, ae. £ € R,

which gives (1.11) in the 1D case. The latter is similar in spirit to the usual
procedure in the theory of compensated compactness, since the pioneering papers
of Tartar [28] and DiPerna [13], although here the probability measures have nothing
to do with Young measures.

#6. In the multi-D case we try to adapt the above procedure. We decompose Rfrl
by a one-parameter family of hypersurfaces, which now replace the role of the rays
z/t = €. The regions of integration become more complicated. In the 2D case, they
look like in the picture below.

Q . Q

\ 4
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#7. Following a reasoning similar to the above, for the multi-D case we get the
following analogue of (1.16) (see Lemma 2.1 below)

(1.17) lim sup + Z / / (=&in + ') (u(t, %)) dH™ 'dt <0,
T—o00 " Jo Jsier) V1+&

where + or — depends on whether n(ur) = 0 or n(ug) = 0, respectively, and
the S;(€,T) correspond to the plane pieces of the shaded part of the boundary of
Q*(¢,T) in Figure 1.1 .

#8. Let S;(§) = S;(€,00) and S(§) = UL, S;(&). We define a curve € — £ = h({),
€ € R, and decompose R}t = UgerS(h(€)). We define R(€) in such a way that
R(&) = R(h(¢)) if (£,1) € S(h(£)). We also define the measures

T — C—l i T u(t.x n—1
19 los =t O [ [ gttt auar

i=1,...,n, where ¢;(§) is a normalizing positive constant such that <:“Z§= 1)=1.
#9. Using (1.17) and properties of Temple systems we eventually get to prove that,
given any sequence T} — 0o, we can obtain a subsequence T; = T}, — oo such that

,uz?g — OR(n(e), a8 T} » 00, i=1,...,n, for a.e. £ € R,

which, then, implies (1.14) and, by #1., concludes the proof of (1.11).
#10. The uniqueness of the self-similar entropy solution R(£) of the Riemann
problem follows immediately from (1.11).

1.2. Brief description of the contents. The remaining of this paper is organized
in the following way. In Section 2 we state some results concerning more general
systems (1.1). The goal of the section is to establish Lemma 2.1 which enables
us to reduce the proof of (1.14) to a problem of analysing the supports of certain
probability measures and showing that they consist of just one point, as mentioned
above. In Section 3 we then specify our discussion to systems (1.1) in which the
flux functions satisfy (H1)-(H4). We prove (1.14) which requires to recall some
results valid for Temple fields. We also recall through a brief outline the procedures
to pass from the time asymptotics given by (1.14) to the stronger one given by
(1.11). Finally, we finish the proof of Theorem 1.1 by discussing the uniqueness of
the self-similar Riemann solution.

2. RESULTS FOR GENERAL SYSTEMS (1.1)

In this section we state some results which are valid for more general systems
of the form (1.1). We start with a result concerning the regularity in the large of
solutions of (1.1) which are uniformly bounded in the half-space R**.

Proposition 2.1. Suppose that u(t,x) is a solution of (1.1), (1.2), uniformly
bounded in R’_}_H, with

ug € WN-1o (R, R™) |
for some N € ZT. Then,
u € L' (0,T; WN> (R"; R™)) ,
for any T > 0. More precisely, we have for o] <N —1
(2.1) ||6,‘§u||Lm(R1+1) < +o0,
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and, if |a| = N, for to > 0 sufficiently small, there exists C = C(to) > 0 such that

(22) ”6)?11/(7:)”00 S Ca fOT t> th
and
(2.3) 10%u®lle <-Z. foro<t<t

- x [e ol \/%7 >~ b0,

where we adopt the multi-indice notation |a| = oy +--- + @y, Of = 951 ...0%".

Proof. The proof is based on an integral representation valid for smooth solutions
of (1.1)-(1.2), and properties of the heat kernel (cf., e.g.,[21]). Let K (¢,x) be the
fundamental solution of the heat operator 0; — A,

K(t,x) = (47t)~"/? exp(—|x[?/4t).
The important fact to keep in mind about K, in the present discussion, is the
following estimate for the L! norm of its derivatives in the space variables
Clo)
tlal/2’
for any a € N*, where C(a) > 0 is a constant depending only on a. The solution
of (1.1), (1.2) is a fixed point of the operator

(2.5) LO)) = KO xuo— Y /0 Ko (t— 8) * fi(u(s)) ds.

(2.4) 162K (Bl <

We assume the operator £ defined on
Gr ={v:[0,T] = L= (R R™) [ [lv(®)llo <7},

for some r > ||ul| . Tt is then easy to show that £ is a contraction in Gr,

Lo (RYH)
for T sufficiently small, so that the solution of (1.1), (1.2), u(t,x), is the only fixed
point of £ in Gr. For ug € WN=1> (R?; R™) one can easily show that, for 7 > 0

sufficiently small, there exists a constant C' > 0 such that if v € Gr satisfies
(2.6) 105v(®)lloe < CllOg 0|0,

then L£(v) also satisfies (2.6), for o] < N — 1. From this and the fact that u(t,x)
is the only fixed point of £ one easily obtains that 03w is uniformly bounded in
[0,T] x R*, for |a]| < N —1, for T > 0 sufficiently small. Since the argument for
proving the above assertions is similar to the one for proving (2.2), (2.3) we content
ourselves in sketching the procedure for the proof of these last estimates. We now
prove the estimates (2.2), (2.3). We first consider the case N = 1. We begin by
showing that, for 7' > 0 sufficiently small, there exists C' > 0 such that if v € Gr
satisfies

@7 12 0()lloo < %nwnm, 0<t<T,

for any i € {1,...,n}, then L(v) also satisfies (2.7). So, assume v € Gr satisfies
(2.7). Differentiating (2.5) with respect to z;, for any ¢ € {1,...,n}, and using
(2.4) one obtains

Co /t 1 1
) < — + .
1£(v)z: ()|loo < \/z”UO”oo C1Cluol| o o Vi—s 5\/§d8

< (Co + CQCVT)%,

Vi
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where Cy, C1, Cy are constants depending only on r, f and K. In order to have
that £(v) satisfies the same estimate for v in (2.7), it suffices then to choose

Co

c>—2
T 1-CyVT

which is possible if T is small enough. Now, the solution u is the limit in Gr, with
the L™ topology, of the sequence u* given by v® = 0, u* = L(u* 1), k=1, ....
We conclude by standard arguments in the theory of distributions that u satisfies
(2.7), and this gives (1.2), for N = 1. To get the uniform bound given in (1.1), for
Oz, u(t), for t > to, and any ¢ € {1,...,n}, we argue as follows. For a given ¢, > 0,
we consider the operator

n oot
L(v)(t) = K(t —t.) x u(ts) — Z/ Ko, (t — ) * f'(u(s)) ds,
i=1 7t

defined on
Gr.,r = {0t [ti,te + T] = L¥R™;R™) [ [lo@)]| <7}

Then, arguing exactly as above, we obtain that

c
(2.8) 10z u(t)|loo < ﬁ|lu(t*)||m7

te <t<t.+T,

with the same C and T as in (2.7). Thus, making successively t. = T/3,2T/3, ...,
kT/3, ..., and taking to = 27'/3, using the fact that u is uniformly bounded by r,
since the intervals [t«, t. + T are overlapping, given any ¢ € (to, 00) one can find ¢,
in that sequence such that t. + (T/3) <t < t. + (27/3) and so, from (2.8) we get

CV3
||8wzu(t)”oo < WHUOHOOJ

for all t € (t9,00). This gives (2.2) in the case N = 1. The proof of (2.1), (2.2),
(2.3), for an arbitrary N € ZT now follows easily by induction applying the above
arguments. O

For the next results we shall need to assume that (1.1) is endowed with a strictly
convex entropy 1 with associated entropy flux q = (¢1,.--,¢n)-

We next introduce several notations defining sets which will play a role in the
forthcoming developments. So, let K, M, Ty be given fixed positive numbers. We
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denote:

Q) = {(t,x) : 21 > &t,..., 3 > Ent},
Q7 (&) ={(t,x) : z; <&, for some i € {1,...,n}},
|X|oo = max{|z;| : i =1,...,n},
QT) ={(t,x%) : |X|oo < MTYT + K(ToT — t), 0 <t <ToT},
QE(€,T) = Q%) N Q(T),
V'€ = (&,0,..., \—’14 ,0,...,0),
(i 4 1)-th
Sa(€) C v°[€]" such that Q™ (€) = UL, Si(),
Si(€,T) = Si(€§) NT),
0°* (€, T) = UL, Si(§, ),
Si(&T) = S8:(&T)N{(t,x) : t =7},
Q-(T) =UT) N {(t,x) : t =7},
QFEET) =05 T)n{(t,x) : t =1}
An important feature of our method for obtaining (1.14), for the systems (1.1)

satisfying the hypotheses of Theorem 1.1, is the use of the Gauss-Green formula
after an integration of the entropy inequality

(2.9) O¢n(u) +V - q(u) < An(u),
over domains laterally bounded by surfaces whose intersections with the hyper-
planes t = 7 are unions of hypersurfaces in R of the form S7(¢,7),4=1,...,n,

together with a surface of the form Q (£)NOQ, (T'). As usual, the entropy inequality
(2.9) is obtained by multiplying (1.1) by V5 (u), using (1.12) and the convexity of 7.
The integration procedure is intended to produce boundary terms, the interesting
ones being those involving the integration of the normal trace of the entropy vector
(n,q) over hypersurfaces whose sections by ¢ = 7 are of the type S7(§,T). The
two following propositions are used to show that we may discard the uninteresting
boundary terms resulting from the integration process.

Proposition 2.2. Suppose that there is a strictly conver entropy associated with
(1.1) and u € L>® (R}H) is solution of (1.1), (1.2). Then, for a.e. £ € R™, we have

1 /7
2.1 im — =0.
(2.10) Jim £ [ (9t en]d =0
In particular, for a.e. £ e R, M, K, Ty > 0,
1 (T
(2.11) lim —/ dt/ Vau(t,x)|dH" =0, i=1,...,n.
T— o0 Tn 0 S:(E,T)

Proof. For x € R® and i € {1,...,n} we denote X! = (x1,...,7;_1), if i > 2, and
X = (Tig1,...,Tpn), if i <n—1. Fori =1 (resp., i = n) we simply ignore X' (resp.,
X) wherever it appears. Let (n,q) be an entropy-entropy flux pair for (1.1), with
7 strictly convex. Multiplying (1.1) by V7 one obtains

(2.12) dm(u) + V - q(u) = An(u) — V2n(Vxu, Viu).
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Let  satisfy 0 < 6 < 1. Following [16], we divide (2.12) by (1+¢)"*? and integrate
over

Qr = { (&%) | [X|oo < Mt,0< ¢t <T}.

One obtains

timee o [ e
/|X|oo§MT( +T n+0d X+ 1+t"+9+1 dxdt

" —&n(u) + ¢t (u) — o)1=,
+ dt/ [ dx'd’
Z/ (ii i) 0o <Mt (L +t)mt e

§i=—M
2
/ V2n(u)(Vt, V) o

—|—t n+0

From Proposition 2.1 it follows that the left-hand side of the above equation is
bounded independently of 7" > 0. We then deduce that the right-hand side is also
bounded independently of 7' > 0, and, so, from the strict convexity of 1 we get

dt Vxu dx < 00
Ix|oo <t ( L+ emt? '

Therefore, changing coordinates, one has

|qu|2
d€ < o0
/ /g < (1+1)° ¢

Hence, for a.e. £ € R", with |€| < M, we have

| Vxul*(t, &)

But, given £ satisfying (2.13), one obtains, for T' > 1,

L 2 [ |Vxu(t:£2)
T x ) < )
T/o |Vxu| (tﬁt)dt_Tl_G/ 1+ 1) dt
and then, using (2.13), we get
1
lim —/ |Vxul?(t, &) dt
T—oo T
which by Jensen’s inequality implies (2.10).
To prove (2.11), we first observe that it suffices to prove
(2.14) lim —/ dt/ |qu (t,x |d7{" 1 - i=1,...,n,
T—oo T St(€,T)

for any €9 > 0, due to Proposition 2.1. We also observe that (2.10) and Fubini’s
theorem imply that for a.e. £ € R, we have, for all M > 0,

(2.15)

lim —/ dt/ |Vxu(t, €, &t, *Et)| dE'd '€ = 0, i=1,...,n.
Toeo T [GRGINSY
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Now, again by Proposition 2.1, given any € > 0, we can take My > 0 large enough
so that,

(2.16)

1 T
lim —n/ dt/ |qu(15,x)|d”;'-£"71 <eg i=1,...,n.
Tooo T Joy  J{I(RE,1%) 00> Mot}N1SE(€,T)

Since € > 0 is arbitrary (2.14) follows, which in turn gives (2.11).
O

Proposition 2.3. Suppose the hypotheses of Proposition 2.2 hold. Then %quT —
0asT — o in L}OC(R1+1). In particular, for fired K,Tog > 0, and My > 0 suf-
ficiently large, given any subsequence Ty — 0o, there exists a further subsequence

T, = Ty, = o0, such that, for a.e. £ € R™ and M > My > 0, we have

1 T

(2.17) lim —n/ dt/ |qu(t,x)| dH™ 1 = 0.
Timeo T Jo Jouem)

Proof. We notice that if v € L' ((0,T); L°(R")), for any T > 0, then the self-

similar scaling sequence v™ converges to 0 in L]  (R7t") if and only if

1 T
lim T/ lv(t, &)|dt =0, in LIIOC(RZL),
0

T—oo

as observed in [16]. Now, setting v(t,x) = Vxu(t,x), it is easy to see that
1
ol (t,x) = TVXUT(t, x), (t,x) € R,

Therefore, the fact that 4+ Vxu? — 0as T — oo in LL (R}*") follows immediately
from Proposition 2.2. Hence, given any subsequence Ty — oo, we can then extract
a further subsequence T; = Ty, — oo, such that v7'(¢,x) — 0 a.e. in R*™'. By
Fubini’s theorem we then have that vt — 0 a.e. in 90 (€) for a.e. £ € R?, and also
vTt = 0 ae. in (1) N {0 < t < Ty} for a.e. M > My, which imply that vTt — 0
a.e.in 00(&,1)N{0 <t < Ty} for a.e. £ € R* and M > M. Since (2.17) may be

rewriten as

T;— 00

To
lim dt/ [o"t (¢, x)| dH™ ! =0,
0 004 (§,1)

the result follows by dominated convergence.
O

Proposition 2.4. Assume again that the hypotheses of Proposition 2.2 are valid,

and that ug satisfies (1.3), (1.5). Then, for My > 0 large enough, we have uT — up,

in L}, (2 (=Mo)), and ul' — ug in L}, (2" (Mo)), as T — oo, where Mg =
Oyvry My).

Proof. We prove the assertion for Q~(—My); the proof for Q% (M) is completely

analogous. We consider the Dafermos entropy associated with the strictly convex

entropy 7, defined by taking its quadratic part around ur. That is, we take

() = n(u) —n(ur) — Vn(ur)(u — ur),
for which the corresponding entropy-flux is

Q. (u) = q(u) = q(ur) = Vn(ur)(f(u) - £(ur)).
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For simplicity of notation we denote (7.,qs) also by (n,q). The strict convexity
guarantees the existence of My such that

M,
(218) Ao < ().
Since u” is uniformly bounded, it suffices to prove that u7 (¢, ), for any fixed ¢ > 0,

corverges to ug, as T — oo in L, (€7 (—Mp)), where
Q- (=My) = O~ (=Mo) N {(t,%) : t = 7}.

Equivalently, we shall prove that, given any subsequence T}, — oo, we can find a
further subsequence Ty, = T} such that, for any fixed ¢ > 0, u?t(t,-) converges to ur,
in L10C (Qt_ (—Mo)). So, let a subsequence T, — oo be given. By Proposition 2.3, we
can choose a further subsequence T}, = T} such that T%quT’ converges a.e. to zero

in Ri*". So, we take this subsequence and fix an arbitrary £ > 0. Given any point
(t,%) € Q7 (~My), we take r > 0 such that {(,x) | |x — %| < 7} C Q7 (=My).
Actually, we can choose r > 0 in such a way that % leuTl converges to zero H"-a.e.
over the hypersurface

S ={t,x)||x—%=r+My(t—1t), 0<t<t},
as follows easily from Fubini’s Theorem. Set

To={tx)||x—%|<r+Myt-t), 0<t<t}.
Now, for T > 0 fixed, u” satisfies

(2.19) amu®) + Vx - qul) = %An(uT) - %Vzn(uT)(quT,quT).

Integrating (2.19) over 7, and applying Green’s formula (where we use the fact that
uT(t,") = ud'(-) as t — 0) we obtain

(2.20) /| o ) i / n(ud (x)) dx

|x—%|<r+Mot

+ [ o) + vy ane

< = Vx - Vx ( )YdH"™ — / V2 qu,quT)dxdt,

id

where (v, vx) represents an outward unity vector normal to S,.. Now, to get rid of
the third term in (2.20), we use the fact that |v,,| < My ‘v, i = 1,...,n, together
with (2.18). It follows that

ey [ auTEx)dxs [ wuf o) dx+ 2 [ 9| i
[x—%|<r |x—%|<r+Mof T Sr

Now, since n(u) < clu—ug|?, for some ¢ > 0, u§ — uy in L' ({x | [x—%| < r+Myt})
and TLleuT’ converges to 0 H"-a.e. on S, we conclude that

(2.22) lim [Tt (£, %) — ug|dx = 0.

Ti—oo Jix—x|<r

From (2.22) one readily gets that u” converges to uz, in Lj,.(Q; (=My)), which,
by the arbitrariness of ¢ > 0, implies the convergence of u’* in Llloc (2 (-My)),
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and, then, by the arbitrariness of the subsequence T} from which we departed, we
arrived at the desired conclusion. O

The following lemma is an important tool which allows to reduce the study of
the asymptotic behavior of the solution to a question of proving that the supports
of certain probability measures are concentrated in the state corresponding to the
exact value of the Riemann solution.

Lemma 2.1. Suppose 1 is a nonnegative convex entropy for (1.1), with associated
entropy fluz q, and u € L (RYY) is solution of (1.1), (1.2). Let T; be a subse-
quence as in Proposition 2.3 and My as in Proposition 2.4 such that u™* — uy, a.e.
in Q7 (—My), and u'* — ug a.e. in QY (My). Then, for a.e. £ € R", and K > 0
such that

(2.23) la(u)|eo < Kn(w),

and any M > 0 we have:
(a) if n(ur) =0,

(2.24) limsupz / " /S t (=6in + a) (%) pn-i gy <

Ti—o0 (&1 V1+E&
(b) if n(ur) =0,
1T (&n — @) (u(t,x)) 1
(2.25) limsup ) — / / L dH™ Tt < 0.
Ty—oo ;T o Jstemy V14§

Proof. We consider first the domain Q~ (¢, T) where K is as in the statement of the
lemma, M and £ are choosen so that (2.11) and (2.17) hold. The choice of such &
and M is possible due to Propositions 2.2-2.3. So, integrating (2.12) over Q~(&,T;)
one obtains

/ dx+Z/T' / fm+1qz+;u(t %) gayn1

Qz,(6,T1) Si&T)

T,
+ / / (vgn + vx - Q) o u(t, x) dH™ "
0

09, (&, T)NoQ:(Th)

= / n(u) dx + /OTI / Vn(u) - ve dH™ ™ — / V20 (u)(Vxu, Vi) dxdt.

Qq (&Th) 09, (§,T1) Q= (&,Th)

From the above equation we obtain

i T / (_6177 + Qz) o U(t, X) dHn_l
V14 €
St(¢,T1) &

< / n(u)der/OTl / Vin(u) - v dH L.

Q, (&,10) o, (&,11)

i=1

Then, we divide the above inequality by 7" and take limsup when T; — oc. So,
from our choice of €, M and (1.3), (1.5), we get (2.24). The relation (2.25) is proved



ASYMPTOTIC STABILITY OF SOLUTIONS OF MULTI-D CONSERVATION LAWS 13

by an entirely analogous procedure, this time integrating (2.12) over Q*(&,T;). This
concludes the proof of the lemma. O

3. PROOF OF THEOREM 1.1

In this section we give the proof of Theorem 1.1. So, we specify our discussion
to systems (1.1) whose flux functions f? satisfy hypotheses (H1)-(H4).

A crucial step in the proof of Theorem 1.1 is as follows. Let an increasing
sequence T} — oo be given. We consider the probability measures defined for all
g9 € C(0) by

(3.1)

1 T
(s g(w)) = ¢ (6, K, M, To) — / / o (u(t,x)) dH™'dt, i=1,....n,
’ T Jo Jsie,m)

where ¢;(&, K, M, Tj) is a normalizing positive constant such that (uf,T, 1)=1.

We prove the existence of a piecewise continuous function R : R — R™ and a
function h : R — R™, h(&) = (h1(£),---,hn(£)), such that each h; : R —» R is a
strictly increasing bi-Lipschitz homeomorphism of R, independent of K, M, Ty and
of the sequence Ty — 0o, for which, we have

(3.2) uz}.:%c) = OR(e) as Ty — oo, forae. E€R i=1,...,n.

Here and in what follows J,, denotes the Dirac measure with unit mass concentrated
at v. We then define

R(&) = R(¢),  if (t,t€) € 09 (h(€)).
We observe that

1 - h(e)
3.3 — u(t,x)) dH™ ! = G o g(u)),
(3.3) T oo ety g (u(t, x)) ; (&) (s> 9(w)
where we omit the dependence of ¢; on K, M, Ty, as will be frequently done hence-
forth. Hence, (3.2) implies, in particular, that

(3.4) lim

— / lu(t,x) — R(§)|dH"™ =0, for a.e.{€R.
Timvoo Ti! Jooo+(n(e),Ti)

The point is that (3.4) implies that u”*(¢,x) converges to R(¢) in L},.(R}*"), and

since the increasing sequence T}, is arbitrary, we obtain that u”(¢,X) converges to
R(¢) in L} (RYH!). Indeed, let ¥ : RYTT — R be defined by

loc
(t,x)=¢& i (t,x) € 09T (h(()).

One can eagily see that

Vx| =t (h;") (h;(€)),  if (t,x) € S;(h(€)).

Now, let a compact set I C ]Rfrl be given. For K, M, Ty sufficiently large, we have
K C Q, where

0 = Q*(h(=K)) N (h(K)) N Q(1).
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Hence, using the coarea formula (see, eg., [15]), we have

[t %) = R@ldxae < [ Ju™(1,x) - R@)| dx
K Q
T K
_ / dt / ds / T (¢, %) — R(&)||VA¥|~" dH"
o ok Jevarmen
T K
< c/ tdt/ de (/ (T (¢, %) — R(E)| d%"1>
0 -K 8°Qf (h(¢),1)
1 ToTy K
<C— dt/ d¢ </ |u(t,x) — R(&)| d’H"l)
T3¢ Jo K 8907 (h(€),Ti)

k
K11

<c| (] ut, )~ BE|dH") dE >0, as k- oo
& \T¢" Jooa+m(e),m)

which proves the assertion.

We will need the following three lemmas concerning fields in the Temple class,
that is, fields satisfying hypotheses (H1) and (H2) in Section 1. The first is due to
D. Serre [26], the second to A. Heibig [20] and the third to Chen-Frid [4]; we refer
to the corresponding cited papers for the proofs.

Lemma 3.1. (D. Serre [26]) For a Temple field f: O C R™ — R™, defined in a
convex domain O C R™, let l;(u) be the vector with the same direction as Vw;(u),
satisfying l;(u) - rj(u) = 1. We have

L) (—v) =0=> ;) - (fw) — F@)) =0,  j=1,...,m,
(u,v) € O x O. In particular, if (1.1) satisfies the hypotheses of Theorem 1.1 for
u € O, then, for any v € O, the following are entropy-entropy fluz pairs for (1.1):

(75, 45) = (i) - (w =)+ ,

(3.5) H(l;(v) - (u—0))lj(v) - (£(u) - £(v))),
(> af) = (L) - (v —w)s
(3.6) H(l;(v) - (v —u))l;(v) - (£(v) — £(u))),
(nj, ) = (L) - (w =),
(3.7) sgn(lj(v) - (u —v))l;(v) - (£(u) — £(v))),
forj=1,...,m. Here, H(s) is the well-known Heaviside function and we use the

notation (s)y = sH(s).

Lemma 3.2. (A. Heibig [20]) If f: O CR™ — R™ is a Temple field, defined in a
O CR™ conver, then there exists an unique map A: O X O = My, wm(R) such that
(i) For all (u,v) € O x O,

fu) = f(v) = Ay, v)(u —v),
A(u,u) = A(u), where A(u) = V f(u) is the Jacobian matriz of f;
(ii) for all (u,v) € O x O, A(v) and A(u,v) have the same (left and right) eigen-
vectors;
(iii) A is a smooth function.
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Lemma 3.3. (Chen-Frid [4]) Let \;(u,v) be the j-th eigenvalue of the matriz A(u,v),
given by Lemma 3.2 and suppose O has the form

(3.8) 0= (ueR™ : |w;(u) —w;(@)] < M},
j=1
for certain M; >0, j =1,...,m. Then,
(3.9 Lréig Aj(u) < Aj(u,v) < max Aj(u), (u,v) € O x O.

We begin now the proof of Theorem 1.1, properly said. Let O be as in Lemma, 3.3
and assume that ug(x) € O for all x € R™. Since, as is well known, (H1) and (H2)
imply that O is positively invariant under the flow of (1.1) (cf. [9]), the solution
of (1.1)-(1.2), u(t,x), can be defined for all ¢ > 0 and we have u(t,x) € O, for
(t,x) € R¥"'. We then assume that fi, i =1,...,n, in (1.1) satisfy (H1)-(H4) of
Section 1 over a bounded region containing O.

We start the definition of h by setting hi1(§) = & & € R, and hi(§) = &,
i=2,...,n, for |§] > My, where My is as in Proposition 2.4. We will complete
the definition of h;, i = 2,...,n, along the proof, in such a way that h;([— My, k1]) =
[—Mo, K’i]: hi([""‘}n-{-la Mo]) = [Kfn—i-la Mo], and hi([”’}a "‘7}+1]) = [Iﬂ];-, n§'+1]7j =1,...,m.
So, we next define h; in the intervals [—Mo, 1] and [k, 1, Mo] as the only affine
map preserving orientation such that h;([— Mo, £1]) = [- Mo, k%] and hi([k}, 1, Mo]) =
[k, 11, Mo]. Observe that Proposition 2.4 implies that (3.1) holds for [¢| > M. In
what follows we split the remaining of the proof into several steps.

#1. £ € (—Mo, k1) U (Kpq1, Mo). Let us consider first { € (—Mp, k1). From
the weak compactness of the probability measures with support in O, we have that

,u:’%c) - ,u?, for some probability measure ,uf, with support in O, by passing to
a subsequence if necessary, for i = 1,...,n. We apply (a) of Lemma 2.1 to the

(n} (u,ur),q}(u,ur)), given by (3.7). We then get

n

(310) D ei(h(€)) (s, —hi(E)ll(ut) - (u —uz)]

) T sgn(ly(u) - (u—wp))lj(ug) - (Fi(u) — Flun))) <O,

for j =1,...,m. Using Lemma 3.2, we may write (3.10) in the form

n

D eim©))(uf, 11 (ur) - (u—wr)|(=hs(€) + A (u,ur)) <0, j=1,...,m,

i=1

where X! (u,ur) is as in Lemma 3.3. Thus, since ;(§) < ki < Xi(u,v),i=1,...,n,
i=1...,m,u,v €O, we get

Zci(h(f))(uﬁ, li(uz) - (u = wr)|(=hi(€) + Nj(u,ur)) =0, j=1,...,m.

Therefore, we must have

suppuff C{ueO:ljur) (u—wur)=0,j=1,...,m} ={ur}.
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We then conclude p§ = Jy, - Since this holds for all weakly convergent subsequence
of “?,%3’ we conclude u:"(Ti) — 6, , for £ € (=M, k}). So, we define R(¢) = uy, for
€ < k1). The case & € (k},, |, Mo) is analogous from (b) of Lemma 2.1 applied to
(n}(u,ur), q}(u,ugr)), j =1,...,m. We then define R({) = ug, for £ > k7, ;.

Now we consider the more difficult cases when & € (kj,kj, ), j =1,...,m. Let
w = (w1, ..., W), where the w;’s are the Riemann invariants of hypothesis (H2).
In the Cartesian space of the w-coordinates, we set w(!) = w(ug), w™*tY = w(ug),
and

wd = (wi(ur),...,wj—1(ur),w;(ur), ..., wn(ur)), j=2,...,m.

We then let v = u(w?), j=1,...,m+ 1.
For a function h with the properties described above and ¢ € (kj,k},,), with
j € {1,...,m}, we again consider the probability measures '“?,(752 which, after a

passage to a subsequence, satisfy “Z(Ti) - ,uﬁ, for a certain probability measure pf..

#2. We claim that
(3.11) supppé CLi={ue O : u=u? +5r;(u?), s € R}.

Indeed, we have

L;= h{ue(’) tlo(uR) - (u—ug) =0} N ﬂl{ue(’) 2 lo(ur) - (u—wug) =0}
a=1 a=j+

Thus we apply again (2.25) with (n,q) = (n%(u,ur),d’ (u,ur)), a =1,...,5 — 1,
and (2.24) with (n9,q) = (nk(u,uL),ql(u,ur)), @« = j+ 1,...,m. As above, the
application of (2.25) gives

(3.12) Zci(h(f))%, lla(ur) - (u—ur)|(hi(€) = X, (u,ur))) <O,
- a=1,...,j—1,

while the application of (2.24) gives

(3.13) Zcz'(h(f))w,g; lla(ur) - (u —ur)|(=hi(€) + X, (u,ur))) <0,
- a=j+1,...,m.

Since hi([k},kj1]) = [k;’kjﬁﬂ]’ we have h;(£) > Khir > Ai(u,ug), for a =
1,...,5 =1, and hi(§) < &, < A (u,ur)), for « = j+ 1,...,m. Hence, the
equality holds in both (3.12) and (3.13), and this is possible only if (3.11) holds.

Next we give a precise definition of h in the intervals (k},kj,;), j = 1,...,m,
and verify (3.2) in these intervals. Since henceforth j € {1,...,m} will be kept
fixed throughout, we will ommit it in the subscript of the special entropies given in
(3.5), (3.6) and (3.7).

#3. Let £ € (k},m}) U (M}, k},,), where mi = min{Ai(u?), Xé(u(+D)} and
M} = mgX{Ag(u(j)),/\;'-(u(j“))}. We also denote mi; = infyco Aj(u) and M, =
sup,co As(u). Let us first address the case £ € (kj,mj). We define h; in the
interval [k}, my;] as the only affine function which applies this interval onto the

interval [r%,m’;] preserving the orientation. For & € (k},ml;), again p:',%c) N
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for some probability measure p?, by passing to a subsequence if necessary. We take
the entropy pair (n*(u, ), q*(u,u?)), observing that n*(ur,u?)) = 0 because
w;(ur) = wj(u?). We then apply (2.24) to obtain

(3.14) Zci(h(ﬁ))wzga |13 - (u = ul)|(=hi(€) + Aj(u,u?))) <0,

where

)\;(u,v) = /01 A;-(Gu + (1—6)v)do

is the j-th eigenvalue of f; V fi(@u + (1 —8)v)dé if u,v € L;. Now, foru € L; N O
inequality (3.14) is possible only if equality holds, which implies uf = §,) . Hence,
p:t(g) — J, in this case.

For £ € (my;, m}) we proceed as follows. Let ug be such that A} (ug) = €. Define
hi(€) = \¢ %(ug), i =2,...,n. We first take the entropy pair (n* (u,u¢), q*(u, ug))
and observe that 9 (ug,ue) = 0, which holds because l;(u¢) and ug — ug point
inward the same half-space determined by the hyperplane w; = w;(u¢). The latter
holds since w;(ug) = w;(u+Y) > w;(ug) and A} is an increasing function of w;
over L;. Considering again probability measures uf- obtained as above and applying
(2.25), we get

(3.15) Zc, )1 s (1 (ug) - (g — )4 (hi(€) = Ni(u, ug))) < 0.

We notice that (I;(ug) - (ug — u))4 = (8¢ — )4, where s¢ is given by ue = ul¥) +
serj(u?). We also observe that Al (u,ug) < hi(€) = Nj(ug) if u = u® + sr;(u))
and s < s¢. These observations lead to

(3.16) suppps C{u € L : u=u? +sr;(u?), s> s¢}.

To complete the analysis for £ € (my;,m}) we again take the pair (n* (u, ul?),
q*(u,u?)) and apply (2.24) obtaining (3.14). Since Aj(u,u(?))) > Xi(ug,ul?)) >
Ai(ug) = hi(€) if u = ul) + sr;(u?) and s > s¢, we conclude i = 3,0, and so
we get i T, (5) — 0, for £ € (my;,m}). Accordingly, we define R(&) = u®, for
¢ € (K )

For § € ( J ) K Jrl) we follow analogous procedures to define h; in this interval,

¢ = 2,...,n, and obtain similarly u, r. (5)

R(&) = wltY for & € (M}, K},4).

#4. We now come to the most interesting case, which is when £ € (m},M Jl)
Due to (H4) we have just two possibilities:

(i) Ai(u@) < X(uUtD) i=1,...,n

(i) Ai(u@) > Aty i=1,...,n

Let us analyze (i) first. As above, we let ug be such that \j(ug) = &, and
define hi(§) = Xi(ug), i = 2,...,n. We also define R({) = ug. In order to
prove that uf’Tk — Op(¢), we consider the entropy pairs (7% (u, ug),q" (u, ug)) and
(n®(u,ue), q°(u,ue)). We notice that n*(ugr,ue) = 0 and n°(ur,u¢) = 0, the
first because ur — u¢ and [;(u¢) point inward the same half-space determined by

— J,G+n in this case. So, we define
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w; = wj(ug), and the second because the same holds for ug —ur, and I (u¢). Apply-
ing (2.25) to (n*(u,ue),q” (u,ue)) and (2.24) to (n°(u,ue),q°(u, u¢)), we obtain,
respectively, (3.15) and the analogous one

(3.17) > cih(©)) s, (U (ug) - (u— ug))+(=hi(€) + X (u, ug))) < 0.

i=1
From (3.15) it follows as above that (3.16) holds. Similarly, from (3.17) it follows
(3.18) supppé C{u € Lj : u=u9 4+ sr;(u?), 5 < s¢}.

Hence, we conclude u§ = dg(e) and so ung = OR(e)-
We finally consider the alternative (ii). Let )\j- (u,v) be as above, and set

0;’_ = ,\z',( @) )y = ,\i_( G (), i=1,...,n

We then define h;(€) in the interval [A}(u(+1), 51] as the only affine map carrying
this interval onto [} (U)o o}], preserving the orientation; similarly, we define
hi(€) in the interval [0}, A}(u))] as the only affine map carrying this interval
onto [aj,)\;(u(’))] preserving the orientation. We also define R(¢) = w9, for
A (D) < € <ot and R(E) = ulHD), for o} < € < A(ul?). Let p§ be obtained
as above. We first show that

(3.19) supppé C{u e Lj : u=u" + sr;(u?), s(*V) <5< 0}.

where s(utY) is such that u*+) = 4 + s(uU+D)r;(u)). To this, we con-
sider the pairs (% (u, 1Y), q¥(u,uUt1)) and (n°(u, u?)), q¢(u,u)), observing
that n*(ug,u¥tY) = 0 and 7¢(ug,u) = 0. Applying (2.25) to (n¥(u,utit1),
q® (u,utD) and (2.24) to (n°(u,u), q¢(u,u))), we obtain, respectively,

(3.20) Z ci(h(€))(u, (1) - (WU — u)) 4 (hi(€) — Xi(u,ult1))) <0,
and )
(3.21) Zcz (1w - (u = uD)) 1 (=hs(€) + A (u,u))) < 0.

Now, (,(60)- (U043~ = (%) ) and (69)- () = .
Hence, (3.20) implies
supp if € {u € Lj = u=ul +sr;(u?), 5 > s},
and (3.21) implies
suppuf C{ueL;:u=u9 +sr;u?), s <0},
which together give (3.19).

Now, for A}(ul+1)) < £ < o}, we take the entropy pair (n°(u,u?)), q%(u,u?)),
apply (2.24) to get (3.21). Since h; (f) < of < Ni(u,u?), for u = ul?) + sr;(ul?)
and s > s(ul*Y), we must have ,uz = 0, and then pu, (E) — §, . Similarly, for
o} < & < A(u)), we take the entropy pair (1% (u ,u(f‘H)),q (u, uTD)Y), apply
(2.25) to obtain (3.20). Since h;(£) > o} > A (u,ul?), for u = ul + sr;(u?)) and
s < 0, we must have ,uz = 0,6+ and then ph(g) )
proof of (3.2).

w+1. This concludes the
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#5. As it was shown above, (3.2), holding for K > 0 sufficiently large, Ty > 0,
and almost all M > My, with M, sufficiently large, implies the convergence of
u(t,x) to R(x/t) in L}, (R7). The latter, in turn, implies (1.14). As it was
mentioned in Section 1, (1.14) can be improved to (1.11). The latter is achieved
using a method established in [4], motivated by [22]. The strategy is similar to
the one for obtaining the decay of periodic solutions in L} ., from the decay in
time-average along rays (see [5]), and is based on the existence of a strictly convex
entropy for (1.10). Namely, we use the entropy inequalities, the convergence in time-
average, and a result connecting both resembling a continuous version of Hardy’s
convergence theorem (cf. [30], p.156), to get the usual convergence in time (1.11).
The details of the one dimensional case are given in [4], while the multidimensional
case can be seen in [7]. The basic steps are as follows. Given a smooth strictly
convex entropy 7(u) for (1.10), we consider its quadratic part around v

a(u,v) = n(u) —n(v) — Vi) (u - v).

In the space of the variables £, we take any ball B over which R(£) is Lipschitz.
Using the equations (1.1), (1.10), for u(t,t€) and R(&), respectively, we obtain,
after integration over B,

G | atutete). R e < G

for some constant C' > 0, independent of . Now, (1.14) implies

1 [T
Jim = [ ( /| a(u(t,ts),R(s»ds) dt =0,
Therefore, the nonnegative function Y (t) = [ a(u(t,t€), R(£)) d€ satisfies

d c
3.22 —Yit) < —
(3:22) SY(0) <2,
and

.17
(3.23) Jim /0 Y(#)dt = 0,

and an easy argument shows that (3.22) and (3.23) imply
(3.24) lim Y (#) = 0.

Now, by Besicovitch’s covering theorem, any compact set £ C R™ can be covered
by a finite number of disjoint countable families of balls B where R(€) is Lipschitz,
and so (3.24) implies (1.11).

#6. It remains only to prove the uniqueness of the self-similar L™ entropy
solution R(&) of the two-states Riemann problem (1.10), (1.4). To this we make
the important remark that the methods developed above are also applicable to L™
entropy solutions of (1.10),(1.2), whose initial data satisfies (1.3)-(1.5), with flux-
functions satisfying (H1)-(H4). The only nontrivial adaptation to be made is that
the use of the classical Gauss-Green formula must now be justified by appealing to
the theory of L™ divergence-measure fields developed in [8]. So, if R(€) is another
self-similar > entropy solution of that problem, (1.11) holds with u(t, t£) replaced
by R(&). Since both R(£) and R(£) are independent of ¢, we conclude R(¢) = R(£),
a.e. in R”.
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