EXCEPTIONAL FAMILIES OF FOLIATIONS AND THE POINCAR田 PROBLEM

Abstract

A. Lins Net o*

A bstract. A 1-parameter family of foliations $\left(F_{\circledR}\right)_{\circledR 2} x$ on a compact complex surface M is called exceptional and elliptic if it satis es the following properties: (a). The family has singularities of ${ }^{-}$xed analytic type; (b). The set $E=f ® 2 X j F_{\circledR}$ has $a^{-} r$ rt integral g is countable and non-discrete; (c). There is $® 2 E$ such that the generic ${ }^{-}$bre of the ${ }^{-}$rst integral is elliptic. In this paper we show that, if a surface M admits an exceptional and elliptic family of foliations, then M is algebraic and biholomorphically equivalent to a torus, to a $K 3$ surface, or to $\mathrm{CP}(2)$ (Theorem 3). In the case of $C P(2)$ we classify all possible equireducible and exceptional families such that the singularities of the generic foliations in the family are non-degenerate (Theorem 2). This classi cation is connected to the Poincar§ problem of deciding if an algebraic foliation on $\mathrm{CP}(2)$ has a ${ }^{-}$rst integral (cf. [P-1]).

x1 Introduction

A round 1891, Poincar§ asked the following question (cf. [P-1]): "Is it possible to decide if an algebraic di ®erential equation in two variables is algebraically integrable?" (in the sense that it has a rational ${ }^{-}$rst integral). In [$\left.P-2\right]$ he starts, by observing that it is su \pm cient to bound the degree of a possible algebraic solution. In fact, in $[P-2]$ and $[P-3]$ he tries to bound this degree, in terms of the degree of the equation and some local invariants associated to the singularities. He supposes that all the singularities of the equation are non-degenerate and that the equation has a ${ }^{-}$rst integral around each singularity of the type $u^{p}=\nabla^{q}=c$ e, where $p 2 \mathrm{~N}$ and $\mathrm{q} 2 \mathrm{Znf0g}$ are relatively primes and depend only on the singularity. When $q>0$ the ${ }^{-}$rst integral is meromorphic and he calls the singularity "dicritical" or node" ("noed"). W hen $\mathrm{q}<0$, the ${ }^{-}$rst integral is holomorphic and he calls the singularity a " saddle" (" col"). In [P-2] he solves the problem in the particular case where in all the saddles we have $p=1$ and $q=i 1$.

In a previous paper (cf. [LN]) we have given some examples of one parameter families of foliations in CP(2), of any degree d, 2, which show that the Poincar $\$$ problem of bounding the degree of an algebraic solution in terms of d and of local data involving the analytic type of its singularities, does not have solution. These examples, in degree d, 5, provide also a negative answer for the analogous Painlev problem of bounding the genus of the generic level of a pencil which gives origin to a degree d foliation. The main purpose of this paper is to classify these families in special cases. In order to state properly our results, we give some de- nitions which synthetize some properties of the families of [LN].

First of all, let us recall the de- nition of the tangent line bundle associated to a foliation on a complex compact surface. A holomorphic singular foliation F on a compact complex surface M, with isolated singularities, can be de ${ }^{-}$ned by local holomorphic vector ${ }^{-}$elds or 1 -forms. M ore precisely, let $U=\left(U_{j}\right)_{j 2 J}$ be an open covering of M. In each U_{j}, the foliation is de ned by a holomorphic vector ${ }^{-}$eld X_{j} with isolated singularities. If $U_{i} \backslash U_{j} G$; , we require that X_{i} and X_{j} are multiple in $U_{i} \backslash U_{j}$, that is there exists $f_{i j} 2 O^{a x}\left(U_{i} \backslash U_{j}\right)$ such that $X_{i}=f_{i j} X_{j}$. This means

[^0]that the local integral curves of X_{i} in U_{i} and of X_{j} in U_{j} glue together, up to reparametrization, in the intersection $U_{i} \backslash U_{j}$. The collection $\left(f_{i j}\right)_{U_{i} \backslash U_{j}}{ }^{\prime}$; is a multiplicative cocycle and therefore de ${ }^{-}$nes a line bundle on M, which is called the cotangent bundle of F. The class of this bundle in $H^{1}\left(M ; O^{\mathbb{x}}\right)$ is denoted by T_{F}^{\sharp}. The tangent bundle of F is the dual, T_{F}, of T_{F}^{\sharp}. When $M=C P(2)$, the tangent bundle of a foliation F is related with the degree d of F by $T_{F}=(1 ; d) H$, where H is the line bundle associated to a line in $\mathrm{CP}(2)$ (cf. [Br$]$). Given a line bundle L on M, we will use the notation
$$
F(M ; L)=f H ; H \text { is a foliation on } M \text { such that } T_{H}=L g \text { : }
$$

It is well known that, if $\mathrm{F}(\mathrm{M} ; \mathrm{L})$ is not empty, then it has a natural structure of holomorphic manifold (cf. [G-M]). A holomorphic family of foliations on M , is a holomorphic map $\mathrm{t} 2 \mathrm{X} \mathrm{\nabla}$ $F_{t} 2 \mathrm{~F}(\mathrm{M} ; \mathrm{L})$, for some line bundle L and some complex manifold X. We will use the notation $\left(F_{t}\right)_{t 2 x}$ for such a family. Given two foliations F and G on M such that $T_{F}=T_{G}$, de ${ }^{-}$ned by collections of holomorphic vector ${ }^{-}$elds $\left(X_{j}\right)_{j 2 j}$ and $\left(Y_{j}\right)_{j 2 \jmath}$, respectively, associated to the same covering $\left(U_{j}\right)_{j 2 j}$ of M and the same cocycle $\left(f_{i j}\right)_{U_{i} \backslash U_{j} ;}$, we de ${ }^{-}$ne the pencil of foliations generated by F and G as the family $\left(F_{\circledR}\right)_{\circledR 2} \bar{C}$, where $F_{1}=G$ and F_{\circledR} is de ned by the collection of vector ${ }^{-}$elds $\left(X_{j}+\circledR_{j}\right)_{j 2 j}$, if $\circledR 2 C$.

We say that F has a ${ }^{-}$rst integral, if there exists a non-constant map $f: M_{i}!S$, where S is a Riemann surface, such that any level of $f, f^{i}(\mathrm{c}), \mathrm{c} 2 \mathrm{~S}$, is an union of leaves and singularities of F. In this case, we will say also that f is tangent to F. We will suppose that the generic level curve of f is irreducible. It is well known that, the genus of two di ßerent generic levels of f are the same. This genus will be denoted by $g(f)$. For the basic de- nitions of the theory of foliations such as leaf, holonomy, etc..., we recomend [C-LN]. Given a family of foliations $P=\left(F_{t}\right)_{t 2 x}$, we will use the notation

$$
E(P)=f t 2 X j F_{t} \text { has a }{ }^{-} \text {rst integralg : }
$$

1.1 De- nition. Let M be compact complex surface and X be a Riemann surface. We say that a family of holomorphic foliations $P=\left(F_{t}\right)_{t 2 x}$ is exceptional if :
(a). There exists a discrete subset $F \underline{1} 2 \mathrm{X}$, such that if $\mathrm{t}_{1} ; \mathrm{t}_{2} 2 \mathrm{XnF}$, then for any singularity p of $F_{t_{1}}$, there is a singularity q of $F_{t_{2}}$, such that the germs of $F_{t_{1}}$ at p and of $F_{t_{2}}$ at q are analitically equivalent. In this case, we will say also that the family has singularities of ${ }^{-}$xed analytic types. In the case where all singulatities of $F_{t}(t Z F)$ are non-degenerate we will say that the family is non-degenerate. Recall that the singularity p of F_{t} is non-degenerate if $\operatorname{det}(D X(p)) \in 0$, for some (and so for any) holomorphic vector ${ }^{-}$eld X which represents F_{t} in a neighborhood of p.
(b). The set $E(P)$ is an in ${ }^{-}$nite, countable and non-discrete subset of X.

We will say that the family is weakly exceptional, if $E(P)$ is at most countable and contains at least two di ®erent points.

Given $t 2 E(P)$, let us denote by $f_{t}: M_{i}$! \bar{X}_{t} a rational ${ }^{-}$rst integral of F_{t}, whose generic level curve $f_{t}^{i}(c)$ is irreducible. We say that the exceptional family $\left(F_{t}\right)_{t 2 x}$ has unbounded genus, if for any $k>0$, the set $\mathrm{ft} 2 \mathrm{E}(\mathrm{P}) ; \mathrm{g}\left(\mathrm{f}_{\mathrm{t}}\right) \cdot \mathrm{kg}$ is ${ }^{-}$nite.

We can resume the results of [LN] in the following :
Theorem.[LN]. For any $d, 2$ there exists a non-degenerate exceptional pencil $P^{d}=\left(F_{t}^{d}\right)_{t 2 \bar{C}}$ on $C P(2)$ of degree d. Given $t 2 E\left(P^{d}\right)$, let $f_{t}: C P(2) i \quad$! \bar{C} be ${ }^{-}$rst integral, whose generic levels are irreducible, and denote by $d(t)$ the degree of a level of f_{t}. Then, for any $k>0$, the set ft $2 \mathrm{E}\left(\mathrm{P}^{\mathrm{d}}\right) ; \mathrm{d}(\mathrm{t}) \cdot \mathrm{kg}^{-1}{ }^{-}$nite. In particular, we can ${ }^{-}$nd in the family foliations with rational ${ }^{-} \mathrm{rst}$ integrals of arbitrarily large degrees. M oreover, if $d, 5$ then the family has unbounded genus.
1.2 Remark. We would like to observe that the families contructed in [LN] have the following additional properties :
(I). For any ${ }^{-}$xed family $\left(F_{t}^{d}\right)_{t 2} \overline{C^{\prime}}$, the blowing-up process used to reduce the singularities of F_{t}^{d} (in the sense of Seidemberg [Se]) is the same for all t $2 \overline{\mathrm{C}}$. A 1-parameter family of foliations which satis- es this property will be called equireducible.
(II). For $d=2 ; 3 ; 4$ and $t 2 E\left(P_{d}\right)$, if f_{t} is as before, then $g\left(f_{t}\right)=1$. An exceptional family which satis ${ }^{-}$es this property will be called elliptic.

M oreover, in the families of degrees $2 ; 3$ and 4 of [LN], the generic level (after normalization) of a^{-}rst integral is biholomorphic to the torus $\mathrm{C}=<1 ; \mathrm{e}^{21 / 4}=3>$. Here, $\langle 1 ; \mathrm{b}\rangle$ denotes the lattice of C generated by 1 and b BR. In $\times 2.4$ we will describe an exceptional pencil of degree three on CP (2) such that the generic level (after normalization) of a ${ }^{-}$rst integral is biholomorphic to the torus $\mathrm{C}=<1 ; \mathrm{i}>, \mathrm{i}=\overline{\mathrm{i} 1}$.

When the family $\left(F_{t}\right)_{t 2 s}$ is equireducible, then after the blowing-up process we obtain a rational surface M and a bimeromorphism $1 / 2 \mathrm{M}$! $\mathrm{CP}(2)$ such that for all t 2 S , all singularities of the strict transform F_{t} of F_{t} by $1 / 4$ are reduced in the sense of Seidemberg.
1.3 De^{-}nition. Let M be a compact connected complex surface, S a Riemann surface, and $\mathrm{f}: \mathrm{M}$! S be an elliptic ${ }^{-}$bration, that is a holomorphic map such that the generic level $\mathrm{f}^{\mathrm{i}}{ }^{1}$ (c) is irreducible. We say that a foliation F in M is turbulent with respect to f, if F is transverse to some level curve of f.

The main facts about turbulent foliations, that will be used here, are the following : let F be a foliation on a surface M, turbulent with respect to some elliptic ${ }^{-}$bration $f: M!S$. Then the set $A=f c 2 S ; F$ is not transverse to $f^{1}(c) g$ is ${ }^{-}$nite. Moreover, if $V=f^{i}(S n A)$, then $\mathrm{g}:=\mathrm{f} \mathrm{j}_{\mathrm{v}}: \mathrm{V}!\mathrm{SnA}$ is a bre bundle locally holomorphically trivial. In particular, if $\mathrm{c}_{1} ; \mathrm{C}_{2} 2 \mathrm{SnA}$, then the ${ }^{-}$bres $f^{i 1}\left(c_{1}\right)$ and $f^{i}{ }^{1}\left(c_{2}\right)$ are biholomorphic. In this case, we will say that the ${ }^{-}$bration f is isotrivial (cf. [$\mathrm{Br}-1$] and $[\mathrm{Br}-2]$). Note that the leaves of the restricted foliation $\mathrm{F} \mathrm{j}_{\mathrm{v}}$ are transverse to the ${ }^{-}$bres of $f j_{V}$, so that we can use the theory of foliations transverse to the ${ }^{-}$bres of a^{-}bration (cf. [Eh] and [C-LN]).
1.4 Remark. Let $\left(F_{t}^{d}\right)_{t 2} \bar{c}$ be one of the families in [LN], of degree $d 2 f 2 ; 3 ; 4 \mathrm{~g}$. Since it is equirreducible, there exists a rational surface M_{d} and a bimeromorphism $1 / 4: M_{d}!C P(2)$ (a composition of blowing-ups), which reduce the singularities of all foliations $\mathrm{F}_{\mathrm{t}}^{\mathrm{d}}$ simultaneously. Denote by F_{t}^{d} the strict transform of the foliation F_{t}^{d} by $1 / 4$. Then, in each case ($d=2 ; 3 ; 4$), for any $t_{0} 2 E$, if $F_{t_{0}}$ is the rational ${ }^{-}$rst integral of $F_{t_{0}}^{d}$ as in (c) of De nition 1.1, then $f_{t_{0}}:=$ $F_{t_{0}} \pm 1 / a: M_{d}!\bar{C}$ extends to an elliptic ${ }^{-}$bration. Moreover, if $t \in t_{0}$, then the foliation F_{t}^{d} is turbulent with respect to $f_{t_{0}}$.

We need one more de- nition.
1.5 De^{-}nition. Let V and W be compact complex surfaces and $\left(\mathrm{F}_{\mathrm{t}}\right)_{\mathrm{t} 2 \mathrm{~T}},\left(\mathrm{G}_{5}\right)_{\mathrm{s} 2 \mathrm{~s}}$ be holomorphic families of foliations on V and W respectively, where T and S are Riemann surfaces. We say that $\left(F_{t}\right)_{\mathrm{t} 2 \mathrm{~T}}$ immerges (resp. immerges bimeromorphicaly) in $\left(G_{5}\right)_{\mathrm{s} 2 \mathrm{~s}}$, if there exists a map $\mathbb{C}=$ ($\dot{A}_{1} ; \dot{A}_{2}$):T£V! S£ W such that:
(a). A_{1} depends only on $t 2 T$ and $\dot{A}_{1}: T!S$ is holomorphic.
(b). For each t $2 T$, if $f_{t}: V!W$ is de ned by $f_{t}(p)=A_{2}(t ; p)$, then f_{t} is a biholomorphism (resp. bimeromorphism).
(c). For each t 2 T , we have $\mathrm{f}_{\mathrm{t}}^{\mathfrak{g}}\left(\mathrm{G}_{\dot{A}_{1}(t)}\right)=\mathrm{F}_{\mathrm{t}}$.

If A_{1} is a biholomorphism, we will say that the families are equivalent (resp. bimeromorphicaly equivalent).

We now state our ${ }^{-}$rst result :
Theorem 1. There are exactly three holomorphic pencils of foliations, say $\mathrm{P}^{\mathrm{j}}=\left(\mathrm{G}_{\circledR}\right)_{@ 2 \bar{C}}$, on three rational surfaces, say $\mathrm{M}_{\mathrm{j}}, \mathrm{j}=1 ; 2 ; 3$, such that any elliptic, equireducible, exceptional family of
foliations on CP(2) immerges bimeromorphicaly in one of them. These pencils satisfy the following properties :
(a). For any $\circledR^{\circledR 2} E\left(P^{j}\right)$, the ${ }^{-}$rst integral is an isotrivial elliptic ${ }^{-}$bration $f_{\circledR}^{j}: M_{j}$! \bar{C}, with three singular ${ }^{-}$bres. The generic ${ }^{-}$bre of of $f_{(0)}^{j}$ is biholomorphic to $C_{7 j}$, where $i_{j}=<1 ; \mathrm{e}^{21 / 4}=3>$ for $j=1 ; 2$ and $i 3=<1 ; i>(i=\overline{i 1})$.
(b). For any $s_{0} 2 E\left(P^{j}\right)$, if $s \in s_{0}$, then the foliation G_{s}^{j} is turbulent with respect to $f_{s_{0}}^{j}$.
(c). If $s_{1} ; S_{2} 2 E\left(P^{j}\right)$, then there exist biholomorphisms $\bigcirc: M_{j}!M_{j}$ and $A \bar{C} \bar{C}!\bar{C}$ such that Á $\pm f_{S_{1}}^{j}=f_{S_{2}}^{j} \pm \mathbb{C}$.
(d). $E\left(P^{j}\right)=Q: i_{j}\left[f 1 g, j=1 ; 2 ; 3\right.$ where $Q: i_{j}=f x: y j \times 2 Q$ and $y 2 i j g$. In particular, $E\left(P^{j}\right)$ is countable and dense in \bar{C}.

FIG. 1.c

We will call the family $\left(\mathrm{G}_{5}^{j}\right)_{\mathrm{s} 2 \overline{\mathrm{C}}}$ the family of type $\mathrm{j}, \mathrm{j}=1 ; 2 ; 3$. In the sections $2.2,2.3$ and 2.4, we will give examples of equirreducible exceptional families of foliations on CP(2), such that after the resolution we get these families. In the ${ }^{-}$gures 1.a, 1.b and 1.c, we sketch the typical ${ }^{-}$brations $\mathrm{f}_{\mathrm{s}}^{\mathrm{j}}, \mathrm{j}=1 ; 2 ; 3, \mathrm{~s} 2 \mathrm{E}_{\mathrm{j}}$. The singular ${ }^{-}$bres which appear in the ${ }^{-}$brations are the following :
Fibres of the type $I \nabla$.. This ${ }^{-}$bre is composed of four rational irreducible components. Three of these components have multiplicity one and self-intersection ; 3, as in - gure 1.a. The reason for the notation is that it is obtained from the K odayra - bre of type IV (cf. [K] and [BPV]) by doing one blowing-up at the intersection of the three rational components, as it is sketched in the ${ }^{-}$gure 2.a.

Fibre of the type IT. This ${ }^{\text {ºn }}$ bre is composed of four rational irreducible components. The multiplicities and self-intersections of the components are sketched in ${ }^{-}$gure 1.b. The reason for the notation is that it is obtained from the K odayra ${ }^{\text {º }}$ bre of type II (cf. [K]) by doing the blowing-up process sketched in the - gure 2.c.
Fibres of the type IM. This ${ }^{\text {ºne }}$ bre is composed of four rational irreducible components. The multiplicities and self-intersections of the components are sketched in ${ }^{-}$gure 1.c. The reason for the
notation is that it is obtained from the K odayra ${ }^{`}$ bre of type II (cf. [K]) by the doing blowing-up process sketched in the ${ }^{-}$gure 2.b.
Fibres of the type $\mathrm{I}_{0}^{\mathrm{x}}$. This ${ }^{`}$ bre appears in the ${ }^{`}$ brations of types 2 and 3 .

As a consequence of Theorem 1, we will prove the following :
Theorem 2. There are exactly four elliptic non-degenerate exceptional pencils on CP (2) such that any elliptic, exceptional, equireducible and non-degenerate family of foliations in CP (2) immerges in one of them.

In x2 we will describe the families stated in Theorems 1 and 2. The prototypes of the families of T heorem 2 are given below.
1.6 Example. Each pencil, say $\left(\mathrm{F}_{\circledR}\right)_{\circledR 2} \overline{\mathrm{C}^{\prime}}$, of Theorem 2 is de ${ }^{-}$ned in an appropriate $a \pm$ ne coordinate system ($\mathrm{x} ; \mathrm{y}$) $2 \mathrm{C}^{2}$ by polynomial vector ${ }^{-}$elds X and Y , in such a way that X de ${ }^{-}$nes $\mathrm{F}_{0}, \mathrm{Y}$ de ${ }^{-}$nes F_{1} and $X+® Y$ de ${ }^{-}$nes F_{\circledR}. There are two pencils of degree three, one of degree two and one of degree four.
(1.6.1). The pencil of degree two. In this case, the vector ${ }^{-}$elds X and Y are the following $X(x ; y)=\left(4 x ; 9 x^{2}+y^{2}\right) \frac{@}{@}+(6 y ; 12 x y) @$ and $Y(x ; y)=(2 y ; 4 x y) @+3\left(x^{2} ; y^{2}\right) @$ @
(1.6.2). The pencil of degree four. In this case, the vector ${ }^{-}$elds X and Y are the following $X(x ; y)=x\left(x^{3} ; 1\right) @+y\left(y^{3} ; 1\right) \frac{\varrho}{\varrho}$ and $Y(x ; y)=y^{2}\left(x^{3} ; 1\right) @+x^{2}\left(y^{3} ; 1\right) \frac{\varrho}{\varrho}$.
(1.6.3). The ${ }^{-}$rst pencil of degree three. In this case, the vector ${ }^{-}$elds X and Y are the following $X(x ; y)=\left(i x+2 y^{2} ; 4 x^{2} y+x^{4}\right) @+y\left(; 2 ; 3 x y+x^{3}\right) @$ and $Y(x ; y)=\left(2 y ; x^{2}+\right.$ $\left.x y^{2}\right) @+\left(3 x y i x^{3}+2 y^{3}\right) @$ @
(1.6.4). The second pencil of degree three. In this case, the vector ${ }^{-}$elds X and Y are the

The proofs of Theorems 1 and 2, will be based in the following :
Theorem 3. Let M be a complex compact surface and F, G, be two foliations on M such that $T_{F}=T_{G}$ and $P=\left(F_{\circledR}\right)_{\circledR 2} \bar{C}$ be the pencil generated by F and G. Suppose that:
(i). $F \in G$.
(ii). The singularities of F are reduced in the sense of Seidemberg.
(iii). F and G have holomorphic ${ }^{-}$rst integrals, say $f: M!S_{1}$ and $g: M!S_{2}$, respectively, where f is an elliptic ${ }^{-}$bration.
Then :
(a). The pencil $\left(F_{\circledR}\right)_{\circledR 2} \bar{C}$ is a non-degenerate and elliptic weakly exceptional family.
(b). For any foliation H on M, such that $T_{H}=T_{F}$, there exists $® 2 \bar{C}$ such that $H=F_{\circledR}$. In particular $F\left(M ; T_{F}\right)=f F_{\circledR j}{ }_{\circledR}{ }^{\circledR} 2 \bar{C} g$.
(c). If $K_{M} \in 0$, then M is a rational surface. In this case, the pencil is exceptional and bimeromorphically equivalent to one of the families of types 1,2 or 3 . Moreover, we have $\mathrm{E}(\mathrm{P})=$, $\mathrm{Q}: \mathrm{ij}_{\mathrm{j}}$ [f1 g), where , $2 \mathrm{C}^{\text {a }}$ and j 2 f1;2;3g. In particular, $\mathrm{E}(\mathrm{P})$ is countable and dense in $\overline{\mathrm{C}}$.
(d). If $K_{M}=0$ then, either M is a complex algebraic torus, or M is an algebraic $K 3$ surface. M oreover, the family is exceptional if, and only if, $\mathrm{E}(\mathrm{P})$ contains at least three elements.

As a consequence of (c) of Theorem 3, we have the following :
1.7 Corollary. Let $P=\left(F_{\circledR}\right)_{\circledR 2} \overline{\mathrm{C}}$ be a pencil of foliations bimeromorphically equivalent to the pencil of type j, where $2 \mathrm{f} 1 ; 2 ; 3 \mathrm{~g}$. Let ij be as before. If $1 ; \mathbb{B}_{1} ; \mathbb{B}_{2} 2 \mathrm{E}(\mathrm{P})$, where $\mathbb{®}_{1} ; \mathbb{B}_{2} 2 \mathrm{Q}: i \mathrm{j}$ and $\circledR_{1} G \circledR_{\text {, }}$, then $E(P)=Q: i j$ f 1 g .

In x2.1 we will describe two exceptional pencils of foliations, the ${ }^{-}$rst one in a complex 2-torus and the second in a K ummer surface (which is a special type of K 3 surface). In x2.2, 2.3 and 2.4, we will describe, without details, the resolutions of the pencils in the examples 1.6.1,...,1.6.4. We will see also that they satisfy the hypothesis of Theorem 3 . Theorem 3 will be proved in $\times 3.2$, Theorem 1 in $\times 3.3$ and Theorem 2 in $\times 3.4$. Before ${ }^{-}$nishing this section, we would like to make some remarks and state some problems.
1.8 Remark. We would like to observe that the fact that $E(P)=,: Q: i j[f 1 \mathrm{~g}$ in assertion (c) of Theorem 3, can be proved by using a result of [McQ] (see also [$\mathrm{Br}-2] \mathrm{pg}$. 110), once we know that the generic ${ }^{-}$bre of a ${ }^{-}$rst integral is biholomorphic to $\mathrm{C}_{\mathrm{j}}^{\mathrm{j}}$. This result says that if $\operatorname{kod}(F)=0$, which is the case, then it is possible to ${ }^{-}$nd a rami ${ }^{-}$ed covering $1 / 4 \mathrm{~N}!\mathrm{M}$ and a birational morphism p : N ! K such that $p_{s}\left(1 / \frac{1}{4}(F)\right)$ is de ned by a global holomorphic vector - eld on K, say X. Once we know some of the informations given in the proof of Theorem 3, it is possible to prove that $p_{\Omega}(1 / / 4(G))$ is also de ${ }^{-}$ned by a global holomorhic vector ${ }^{-}$eld, say Y, in such a way that $p_{\Omega}\left(1 / 8\left(F_{\circledR}\right)\right)$ is de ${ }^{-}$ned by $X+\circledR$. Y. These facts imply that K is a torus (see $\times 2.1$). In this paper we give a di ®erent proof, more adapted for our situation.
1.9 R emark. In the proof of our results we use strongly that the families are equireducibles. A natural question is if Theorems 1 and 2 are true for exceptional families, not necessarily equireducibles a priori. We would like to pose the following :
Problem 1. Let $\left(F_{n}\right)_{n, 1}$ be a sequence of foliations on $C P(2)$ with the following properties :
(i). All F_{n} have the same degree, say d.
(ii). For all $n, 1$, the singularities of F_{n} are non-degenerate. M oreover, for any singularity p of F_{n}, there is a singularity q of F_{1}, such that the germs of F_{n} at p and of F_{1} at q are analitically equivalent.
(iii). For all $n, 1, F_{n}$ has a meromorphic ${ }^{-}$rst integral $f_{n}: C P(2)_{i}!\bar{C}$, such that $g\left(f_{n}\right)=1$, the general level curve $\mathrm{f}_{\mathrm{i}}{ }^{1}(\mathrm{c})$ is irreducible and $\lim _{n!1}\left(\operatorname{deg}\left(\mathrm{f}_{\mathrm{n}}\right)\right)=+1$.

Is it possible to immerge the sequence $\left(F_{n}\right)_{n, 1}$ in one of the families of Theorem 2 ? In other words, is there a sequence of automorphisms of CP(2), say (' $n)_{n, 1}$, such that ' ${ }_{n}^{n}\left(F_{n}\right)$ is in one of these families, for all $\mathrm{n}, 1$?
1.10 Remark. In our results we deal only with elliptic families of foliations. A natural question is the following:
Problem 2. Is it possible to classify all equireducible non-degenerate exceptional families of foliations on CP (2) ?

We would like to observe that the exceptional families in CP (2) of [LN], with unbounded genus, are obtained from the elliptic families by pulling back the elliptic families with ${ }^{-}$xed endomorphisms of $C P(2)$ of topological degree, 2. Since the endomorphims used in this construction are more or
less arbitrary (generic), we can not expect to obtain a - nite list of models, like in Theorem 2, for the general case.

x2 Description of the models

In this section we will describe some examples of non-degenerate, exceptional, elliptic families of foliations, including the four families in CP (2), one of degree two, two of degree three and one of degree four, which give origin to the three exceptional families of the statement of Theorem 1. Three of these families were already described in [LN], so that we will only give an idea of their construction and properties.
x2.1 Examples in a complex 2-torus and in a K ummer surface.
Let $M=T_{1} £ T_{2}$, where $T_{j}=C_{j}$ is an elliptic curve, such that i_{j} is the lattice in C generated by 1 and $a_{j} \quad R, j=1 ; 2$. We will take coordinates $(x ; y) 2 M$, where $x 2 C=1$ and y $2 C 72$. Let F and G be the foliations generated by the non-vanishing vector ${ }^{-}$elds $X=\frac{\varrho}{@}$ and $Y=\frac{\varrho}{\varrho}$, respectively. If $P=\left(F_{\circledR}\right)_{\circledR 2} \bar{C}$ is the pencil generated by F and G, then F_{\odot} is de- ned by the vector ${ }^{-}$eld $X_{\circledR}=X+®, Y$, for every ${ }_{\circledR}{ }^{\circledR} 2 C$. This pencil is weakly exceptional in all cases, but it is not exceptional, in general. In fact, the set $E(P)$ contains at least two points, $®=0$ and $\circledR=1$. On the other hand, as the reader can check, the following assertions are equivalent :
(a). ®2 E (P) nf0;1 g.
(b). If ${ }_{i 1}\left({ }^{\circledR}\right)$ is the lattice $<®_{\circledR} \circledR_{\circledR} a_{1}>=f$ \& $\left.m+n: a_{1}\right) j m ; n 2 Z g$ and D is a fundamental domain of i_{2}, then $\mathrm{i}_{1}(\mathbb{®}) \backslash \mathrm{D}$ is ${ }^{-}$nite.
(c). There exists $\mathrm{k} 2 \mathrm{~N} \mathrm{nf0g}$ such that $k: \mathrm{i}_{1}\left(\mathbb{R}^{\text {® }} 1 / 2 \mathrm{i} 2\right.$.

A ssertion (c) implies that:
(d). $E(P) n f 0 ; 1 \mathrm{~g} \boldsymbol{\mathrm { G }}$; if, and only if, there exists $\mathrm{h} 2 \mathrm{PSL}(2 ; Q)$ such that $a_{1}=h\left(a_{2}\right)$.

In this case, we can write $a_{1}=\frac{k+{ }^{\prime}: a_{2}}{m+n: a_{2}}$, where $k ;{ }^{`} ; m ; n 2$ and $k n i m^{`} G 0$. It is easy to see that

$$
E(P) 3 / 4 f ® 2 C j \text { there exists } p 2 Z \text { such that } p: ®=m+n: a_{2} \text { and } p: \circledR a_{1}=k+`: a_{2} g:
$$

Under assumption (d), this last set is in ${ }^{-}$nite and countable, so that the pencil is exceptional. In particular, if $T_{1}=T_{2}$, the pencil is exceptional. On the other hand, if $a_{1} \mathrm{fh}\left(\mathrm{a}_{2}\right) \mathrm{j} \mathrm{h} 2 \mathrm{PSL}(2 ; Q) \mathrm{g}$, then $E(P)=f 0 ; 1 \mathrm{~g}$, and so the pencil is not exceptional.

Given the torus M as above, it can be de- ned the K ummer surface $K m(M)$. This surface
 is of the form $I(x ; y)=(i x ; i y)$. This involution has sixteen ${ }^{-} x e d$ points, say $p_{1} ;:: ; p_{16}$, so that $M_{1}=M=<I>$, is a singular surface with sixteen singularities, say $q_{1} ;: \ldots ; q_{16}$. When we resolve these singularities, we obtain the Kummer surface $\mathrm{K} \mathrm{m}(\mathrm{M})$, which contains sixteen rational curves with self-intersection $; 2$, say $C_{1} ; \ldots: ; C_{16}$, where C_{j} corresponds to $q, j=1 ;:: ; 16$ (for the details see [BPV] pg. 170). Note that $\mathrm{Km}(\mathrm{M}) \mathrm{n}\left(\left[{ }_{j} \mathrm{C}_{\mathrm{j}}\right)\right.$ is naturally biholomorphic to $M_{1} n f p_{1} ;:: ; p_{16} g$ and the quotient map by the involution, induces a covering map of degree two, say $P: M$ nf $p_{1} ;::: ; p_{16} g!K m(M) n\left(\left[{ }_{j} C_{j}\right)\right.$. On the other hand, $I_{k}(X)=j X$ and $I_{k}(Y)=i Y$, so that $I_{a}(X+® Y)=i(X+® Y)$ and the foliation F_{\circledR} is invariant by the involution. This implies that there exists a foliation G_{\circledast} on $K m(M) n\left(\left[{ }_{j} C_{j}\right)\right.$ such that $P^{\bowtie}\left(G_{\circledR}\right)=F_{\circledR}$. Since the curves C_{j} are-2-curves, this foliation extends to a foliation on $K m(M)$, which we denote also by G_{\circledR}. This de ${ }^{-}$nes a pencil of foliations $Q:=\left(G_{\circledR}\right) ® 2 \bar{C}$. Note that $E(Q)=E(P)$, so that the pencil Q is always weakly exceptional and it is exceptional if, and only if, P is exceptional. We observe that if $® 2 E(Q)$, then the ${ }^{-}$rst integral of G_{\circledR} is a ${ }^{-}$bration $f_{a}: K m(M)!\bar{C}$ which has four critical -bres of type $\mathrm{I}_{0}^{\mathrm{x}}$. This last fact will be proved in $\times 3.2$.
x2.2 The type 1 exceptional family.
The exceptional family of type 1 can be obtained by the resolution of the singularities of an equirreducible family of degree four in $C P(2)$, which will be denoted by $P^{4}=\left(F_{\circledR}^{4}\right){ }_{\circledR 2} \overline{\mathrm{C}}$. This family is characterized by the fact that the lines in CP(2) de- ned in homogeneous coordinates by the equation
(1) $\left(y^{3} ; x^{3}\right)\left(z^{3} ; y^{3}\right)\left(x^{3} ; z^{3}\right)=0$:
are invariant for the foliation $\mathrm{F}_{\bigotimes}^{4}$, for all $® 2 \overline{\mathrm{C}}$. If $\mathrm{j}=\mathrm{e}^{2^{1 / 2} /=3}$, then these lines, in the $a \pm n e$
 $1 \mathrm{~g},{ }_{5}:=\mathrm{fy}=\mathrm{j} g, \mathrm{f}{ }_{6}:=\mathrm{y}=\mathrm{j}^{2} \mathrm{~g}$, ${ }_{7}:=\mathrm{fy}=\mathrm{xg},{ }_{8}:=\mathrm{fy}=\mathrm{j}: \mathrm{xg}$ and ${ }_{9}:=\mathrm{fy}=\mathrm{j}^{2}: \mathrm{xg}$. They intersect in twelve points, that we will denoted by $p_{1} ;::: ; p_{12}$. These sets of lines and points de ne a con ${ }^{-}$guration of lines and points $C:=(L ; P)$, where $L:=f{ }_{1} ;:::{ }^{\prime} g \mathrm{~g}$ and $P:=f p_{1} ;::: ; p_{12} g$. We observe that each line ${ }_{j} 2 L$, contains four points in the set P, and each point $p_{i} 2 P$ is contained in three lines of L.

In the above $a \pm$ ne coordinate system, the foliation F_{\circledR} is de ${ }^{-}$ned by the vector ${ }^{-}$eld $X+\circledR^{\circledR} Y$, where $X(x ; y)=x\left(x^{3} ; 1\right) @+y\left(y^{3} ; 1\right) @$ and $Y(x ; y)=y^{2}\left(x^{3} ; 1\right) \frac{\varrho}{@}+x^{2}\left(y^{3} ; 1\right) \frac{\varrho}{\varrho}$. This pencil is described in $\times 2.2$ of [LN], so that we will only resume its main properties. B efore the description, let us ${ }^{-} x$ a notation.
2.2.1 N otation. Let F be a foliation on a surface M. We say that a singularity P of F is of the type $p: q$, where $p ; q 2 Z^{\mathbb{a}}$ and $\operatorname{gcd}(p ; q)=1$, if in suitable holomorphic coordinate system $(x ; y)$ around P with $x(P)=y(P)=0$, the foliation F is represented by the vector ${ }^{-}$eld $X(x ; y)=$ $\mathrm{px} \frac{\varrho}{\varrho}+\mathrm{qy} \frac{\varrho}{\varrho}$. Note that this vector ${ }^{-}$eld has the ${ }^{-}$rst integral $x^{q} \neq \mathrm{j}^{p}$. For this reason, we will say also that a singularity of type $1: 1$ is a radial singularity. In the notation $p: q$ we will identify $p: q^{\prime} q: p^{\prime} i p: i q^{\prime}$ iq:ip.

If $® z F=f 1 ; j ; j^{2} ; 1 \mathrm{~g}$, then $\mathrm{F}_{\circledR}^{4}$ has twelve radial singularities at the points of P and nine singularities of the type 1 : ; 3 , say $q_{1}(®) ;:: ; q_{p}(®)$, where $q_{k}(®) 2{ }_{k}$. We observe that, for each $k=1 ;::: 9$, the map $® 2 \bar{C} \bar{\square} q_{k}(®) 2{ }_{j}$, is a regular parametrization of ${ }_{k}$. When $® 2 \mathrm{f} 1 ; \mathrm{j} ; \mathrm{j}^{2} ; 1 \mathrm{~g}$, then the point $\mathrm{q}_{k}(\mathbb{B})$ coincides with some point in P, and so the foliation F_{\circledR}^{4} has a degenerate singularity at this point. In [LN]it is proved that the pencil is elliptic and exceptional. M oreover, $\mathrm{f} 0 ; 1 ; 1 \mathrm{~g} 1 / 2 \mathrm{E}\left(\mathrm{P}^{4}\right)$, so that $\mathrm{E}\left(\mathrm{P}^{4}\right)=\mathrm{Q}:<1 ; j>[\mathrm{f} 1 \mathrm{~g}$, by the C orollary of Theorem 3. In fact, in $\times 2.2$ of [LN] it is proved that, for ®2 $\mathrm{f} 0 ; 1 ; 1 \mathrm{~g}, \mathrm{~F}_{\circledR}^{4}$ has the following ${ }^{-}$rst integrals

$$
f_{0}(x ; y)=\frac{x^{3}\left(y^{3} ; 1\right)}{y^{3}\left(x^{3} ; 1\right)} ; f_{1}(x ; y)=\frac{\left(x i j^{2}\right)(y i j)\left(y i j^{2} x\right)}{(x ; j)\left(y ; j^{2}\right)(y ; j x)} ; f_{1}(x ; y)=\frac{y^{3} ; 1}{x^{3} ; 1}
$$

The process of reduction of the singularities for $\mathrm{F}_{\circledR}^{4}$ involves twelve blowing-ups at the points of P. Let us denote by M_{1} the surface obtained from $C P(2)$ by doing one blowing-up at each point of P, and by $1 / 4 M_{1}!C P(2)$ the composition of these blowing-ups. The family of type 1 is de ned
 the ${ }^{-}$bration f_{\circledR} tangent to G_{\circledR}^{1} is like in ${ }^{-} \mathrm{g}$. 1.a. M oreover, the strict transforms ${ }_{1} ;$;::; ${ }_{9}$ of the lines ${ }_{1} ;$;::.; ${ }_{9}$, are the unique curves in M_{1} that are invariant for all foliations in the family Q^{1}. Each curve $\check{\mathrm{K}}_{\mathrm{k}}$ contains an unique singularity of $\mathrm{G}_{\mathbb{B}}^{1}$, say $q_{k}(\mathbb{R})$, such that $1 / 4 q_{k}(\mathbb{R})=q_{k}(\mathbb{R})$. This singularity is of the type 1 : ; 3 .

x2.3 The type 2 exceptional family.

In this section we will describe two non-degenerate families of foliations on $\mathrm{CP}(2)$ which give origin two the type 2 exceptional family. The ${ }^{-}$rst one is a family of degree three, which is obtained from the family of $\times 2.2$ by using that the di ®erential equations which de- ne it, are invariant with
respect to the change of variables $S(x ; y)=(y ; x)$. In $x 2.3$ of $[L N]$, it is proved that there exists another family of foliations, say $P^{3}=\left(F_{\circledR}^{3}\right)_{\circledR 2} \bar{C}^{\prime}$, such that for every ${ }^{\circledR} 2 \bar{C}$ we have $F_{\circledR}^{4}=T^{x}\left(F_{\circledR}^{3}\right)$ where $\mathrm{T}: \mathrm{CP}(2)$! $\mathrm{CP}(2)$ is the rational map which in the coordinate system ($\mathrm{x} ; \mathrm{y}$) of x 2.2 is expressed as $T(x ; y)=(u ; v)=(x+y ; x: y)$. The foliation F_{\circledR}^{3} is de ned in the a \pm ne coordinate system ($u ; v$) by the vector ${ }^{-}$eld $X+{ }^{\circledR}, Y$, where the expresssions of X and Y are given in the example 1.6.3 (in terms of x and y). The main facts about the pencil P^{3} are the following :
2.3.1. $E\left(P^{3}\right)=E\left(P^{4}\right)$.
2.3.2 Invariant curves. There are ${ }^{-}$ve curves in $C P(2)$ which are invariant for all foliations in the family. These curves are the images by T of the lines in the con ${ }^{-}$guration L :
(I). The lines $\left(x=j^{k}\right)$ and $\left(y=j^{k}\right)$ are sent by T into the line $\left(v i j^{k} u+j^{2 k}=0\right), k=0 ; 1 ; 2$. This implies that the foliation F_{\oplus}^{3} has three invariant lines; ${ }_{k}:=\left(v_{i} j^{k} u+j^{2 k}=0\right), k=0 ; 1 ; 2$. (II). The line $(y=x)$ is sent by T into the conic $C_{1}:=\left(v=\frac{1}{4} u^{2}\right)$.
(III). The lines $(y=j x)$ and $\left(y=j^{2} x\right)$ are sent by T into the conic $C_{2}:=\left(v=u^{2}\right)$.

In ${ }^{-}$gure 3 we sketch this con ${ }^{-}$guration of curves. Denote by ϕ^{3} the union of these curves.

Fig. 3
2.3.3 Singularities. Observe that the singular points of ϕ^{3} are singularities of all foliations in the pencil P^{3}. The conics C_{1} and C_{2} are tangent at the points $q_{1}=[0: 0: 1]$ and $q_{2}=[0: 1: 0]$, the lines ${ }_{k}{ }_{k} k=0 ; 1 ; 2$, intersect at the points $p_{01}=\left[i j^{2}: j: 1\right] 2{ }^{\circ}{ }_{0} \backslash{ }^{\prime}{ }_{1}, p_{02}=\left[\mathrm{ij}: \mathrm{j}^{2}: 1\right] 2$ ${ }^{\circ}{ }_{0} \backslash{ }_{2}$ and $p_{12}=[i 1: 1: 1] 2{ }_{1} \backslash{ }_{2}$ 2 and the lines are tangent to the conic C_{1} at the points $p_{0}=[2: 1: 1] 2{ }_{\mathrm{o}} \backslash \mathrm{C}_{1}, \mathrm{p}_{1}=\left[2 \mathrm{j}: \mathrm{j}^{2}: 1\right] 2{ }_{1} \backslash \mathrm{C}_{1}$ and $\mathrm{p}_{2}=\left[2{ }^{2}: \mathrm{j}: 1\right] 2{ }_{2} \backslash \mathrm{C}_{1}$. Observe also that $p_{01} ; p_{02} ; p_{12} 2 C_{2}$. In Proposition 7 of [LN], it is proved that, if $® Z f 0 ; 1 ; j ; j^{2} ; 1 \mathrm{~g}:=\mathrm{F}$, then the singularities of F_{\circledR}^{3} are non-degenerate of the following types :
(IV). The points p_{01}, p_{02} and p_{12} are radial singularities.
(V). The points $p_{1}, p_{2}, p_{3}, q_{1}$ and q_{2} are of the type 2:1.
(VI). E ach one of the ve curves contains another singularity, say $\mathrm{P}_{1}\left({ }^{\circledR}\right) 2 \mathrm{C}_{1}, \mathrm{P}_{2}\left(®^{\circledR}\right) 2 \mathrm{C}_{2}$ and $Q_{k}(®) 2{ }_{k}, k=0 ; 1 ; 2$. They are of the following types: $P_{1}(®)$ is of the type $1: ; 6$, the others are of the type $1: ; 3$.

The reduction of the singularities of the elements of the family is done with a total of thirteen blowing-ups, as follows : one blowing-up at each of the three radial singularities and two blowingups at each of the ${ }^{-}$ve singularities of the type $2: 1$. Denote by M_{2} the rational surface obtained from $C P(2)$ by this blowing-up process, by $1 / 4 M_{2}$! $C P(2)$ the blowing-up map and let $G_{\circledR}^{2}:=$ $1 / \frac{8}{4}\left(F_{\circledR}^{3}\right)$. The pencil $Q^{2}:=\left(G_{\circledR}^{2}\right)_{\circledR 2} \bar{C}$ will be called the type 2 family. In $\times 2.3$ of [LN] it is proved that this pencil satis ${ }^{-1}$ es properties (a) and (b) of Theorem 1. Property (c) will be proved in x3.2. The
typical elliptic ${ }^{\text { }}$ bration which appears in this case is sketched in ${ }^{-} \mathrm{g} .1 . \mathrm{b}$. This ${ }^{\text {}}$ bration appears, for instance, as a ${ }^{-}$rst integral of the foliation $G_{1}^{2}=1 / 4\left(F_{1}^{3}\right)$. The foliation F_{1}^{3} has the following rational ${ }^{-}$rst integral :

$$
R(u ; v)=\frac{\left(u^{2} ; 4 v\right)\left(v i u^{2}\right)^{2}}{\left(u^{3} ; 3 u v i 2\right)^{2}}:
$$

The reader can check that $g=R \pm 1 / 4 M_{2}$! \bar{C} is an elliptic ${ }^{`}$ bration with three critical levels, namely $\mathrm{fg}=0 \mathrm{~g}, \mathrm{fg}=1 \mathrm{~g}$ and $\mathrm{fg}=1 \mathrm{~g}$, as sketched in ${ }^{-}$gure 1.b.

There is another non-degenerate family of foliations on $\mathrm{CP}(2)$ which gives origin to the type 2 family. This family is obtained from the family $\left(\mathrm{F}_{\circledR}^{3}\right)_{\circledR 2 \overline{\mathrm{C}}}$ by a Cremona transformation as ilustrated in Fig. 4 (see alsn I emma 3.4.14)

Fig 4
In this ${ }^{-}$gure, we denote by $1 / 4$ the blowing-up at the three points p_{01}, p_{02} and p_{12} (see ${ }^{-}$gure 3). After this blowing-up process, we obtain three divisors, not invariant for the strict transform $1 / \frac{8}{4}\left(F_{\circledR}^{3}\right)$, because p_{01}, p_{02} and p_{12} are radial singularities ($® Z f 0 ; 1 ; j ; j^{2} ; 1 \mathrm{~g}$). M oreover, the strict transforms of ${ }_{0},{ }_{1}{ }_{1}$ and ${ }_{2}$, say $\hat{\mathrm{N}}_{0} \hat{1}_{1}$ and ${ }_{2}$, have self-intersection $; 1$, so that, we can blowdown these three curves. The map indicated by $1 / 2$ in Fig. 4, is the blowing-up associated to this blowing-down process. The curve indicated by $\widehat{\mathrm{C}_{1}}$ is the strict transform of the curve C_{1}. This curve is sent by $1 / 2$ in the curve Q of Fig. 4.3, which is a quartic with three cuspidal points, which we denote by J, K and L. We call $1 / 4$ the bimeromorphism $1 / 2 \pm(1 / 4)^{i 1}$. This type of blowing-up-blowing-down process is known in the literature as a "Cremona transformation". It is well known that the manifold, obtained after a Cremona transformation in $C P(2)$, is again $C P(2)$. The curve C_{2} is transformed by $1 / 4$ in a straight line, say R, which meets Q in two tangent points, which we denote by M and N. The pencil $P^{2}:=\left(F_{\circledR}^{2}\right)_{\circledast 2} \bar{C}$ is de ned by $F_{\circledR}^{2}=1 / 4\left(F_{\circledR}^{3}\right)$. The main facts about the pencil P^{3} are the following (see $\times 2.4$ of [LN]):
2.3.4. Any foliation F_{\circledR}^{2} in the pencil has degree two. M oreover, $E\left(P^{2}\right)=E\left(P^{3}\right)$.
2.3.5 Invariant curves. The algebraic invariant curves for all foliations in the pencil are the quartic Q and line R.
2.3.6 Singularities. For $®_{\mathbb{Z}} \mathrm{f} 0 ; 1 ; \mathrm{j}_{\mathrm{j}}{ }^{2} ; 1 \mathrm{~g}$ the singularities of $\mathrm{F}_{\circledR}^{2}$ are non-degenerate of the following types :
(VII). The cuspidal points of Q are of the type 3:2.
(VIII). The tangency points M and N between Q and R are of the type 2:1.
(IX). The quartic Q contains a singularity $\mathrm{P}_{1}\left(®^{\circledR}\right)$ of the type 1 : i 6 .
(X). The line R contains a singularity $\mathrm{P}_{2}(\mathbb{B})$ of the type 1 : 3 .
Finally, we would like to observe that it is possible to ${ }^{-}$nd an $a \pm$ ne coordinate system ($\mathrm{C}^{2} ;(\mathrm{x} ; \mathrm{y})$) in $C P(2)$ such that $F{ }_{\circledR}^{2}$ is de ned by $X+® Y$, where $X(x ; y)=\left(4 x ; 9 x^{2}+y^{2}\right) \frac{@}{@}+(6 y ; 12 x y) \frac{@}{@}$
and $Y(x ; y)=(2 y ; 4 x y) @+3\left(x^{2} ; y^{2}\right) @$. In this coordinate system, the line R is the line at in ${ }^{-}$nity, the quartic Q is given by $F(x ; y)=0$, where $F(x ; y)=4 y^{2}(1 ; 3 x) ; 4 x^{3}+\left(3 x^{2}+y^{2}\right)^{2}$, $P_{1}(®)=\left(\frac{4\left(1+®^{2}\right)}{\left(3+®^{2}\right)^{2}} ; \frac{i 8 ®}{\left(3+®^{2}\right)^{2}}\right)$ and $P_{2}(®)=[1: ®: 0]$. M oreover, the foliations F_{1}^{2}, F_{1}^{2} and $F_{i 1}^{2}$ have the following ${ }^{-}$rst integrals :

$$
g_{1}(x ; y)=\frac{F(x ; y)}{(2 x ; 1)^{3}} ; g_{1}(x ; y)=\frac{F(x ; y)}{(y ; x)^{3}} \text { and } g_{i}(x ; y)=\frac{F(x ; y)}{(y+x)^{3}}
$$

respectively, as the reader can check. This implies that $E\left(P^{2}\right)=Q:<1 ; j>[f 1 \mathrm{~g}$. $\times 2.4$ The type 3 family.

In this section we show an example of an exceptional non-degenerate family, for which, the elliptic ${ }^{-}$bration which appear after the reduction of singularities has elliptic ${ }^{-}$bres biholomorphic to $\mathrm{C}=\langle 1 ; \mathrm{i}\rangle$, where $\mathrm{i}=\overline{\mathrm{i} 1}$. This family is obtained as the set of foliations of degree three which leave invariant all curves of the con ${ }^{-}$guration sketched in ${ }^{-}$gure 5 . The ${ }^{-}$ve curves in this - gure, in some $a \pm$ ne coordinate system ($C^{2} ;(x ; y)$), are :
(a). The circle $C_{1}:=f(x ; 1)^{2}+y^{2}=1 g$.
(b). The circle $C_{i 1}:=f(x+1)^{2}+y^{2}=1 g$.
(c). The line $L_{1}:=f y=1 g$.
(d). The circle $L_{i 1}:=\mathrm{fy}=\mathrm{i} 1 \mathrm{~g}$.
(e). The line at in^{-}nity in this $a \pm$ ne system, denoted by L_{1}.

Fig. 5
The two circles are tangent at origin, $O=(0 ; 0)$. The line L_{1} is tangent to the circle $C_{i 1}$ at the point $A=(; 1 ; 1)$ and to the circle C_{1} at the point $B=(1 ; 1)$. The line $L_{i 1}$ is tangent to the circle $C_{i 1}$ at the point $D=(; 1 ; i 1)$ and to the circle C_{1} at the point $C=(1 ; j 1)$. The two circles intersect in two more points, $\mathrm{E}=[1: \mathrm{i}: 0]$ and $\mathrm{F}=[1: \mathrm{i} \mathrm{i}: 0]$, which belong to L_{1}. Finaly, the three lines intersect at the point $G=[1: 0: 0] 2 L_{1}$. We will denote by $\phi^{3: 1}$ the union of these curves.

The reader can check that any foliation of degree three which leaves invariant the ${ }^{-}$ve curves in (a), (b), (c), (d) and (e), is de- ned the polynomial vector ${ }^{-}$eld $X+{ }^{\circledR} Y$, where $X(x ; y)=$ $\left(; 4 x+x^{3}+3 x y^{2}\right) @+2 y\left(y^{2} ; 1\right) @$ and $Y(x ; y)=\left(x^{2} y ; y^{3}\right) @+2 x\left(y^{2} ; 1\right) @$ @ ${ }^{@}$. The pencil de- ned in this way will be denoted by $P^{3: 1}=\left(F_{\circledR}^{3: 1}\right)_{\circledR 2} \overline{\mathrm{C}}$. Next we will see that this family is equirreducible and that after the desingularisation process we obtain a pencil of foliations which satis ${ }^{-}$es the hypothesis of T heorem 3.
2.4.1 Lemma. If $® Z f 1 ; i 1 ; i ; i ; 1 g$, then $F_{\circledR}^{3: 1}$ has 13 non degenerated singularities :
(I). The points E, F and G are radial singularities.
(II). The points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and O are singularities of the type $2: 1$.

Each irreducible component of $\phi^{3: 1}$ contains a singularity outside sing($\phi^{3: 1}$). They are the following:
(III). Thepoints $P_{i 1}(®):=\left(®_{i} 1\right) 2 L_{i 1}, P_{1}(®):=(i ® 1) 2 L_{1}, Q_{i 1}(®):=\left(\frac{i}{1+®_{2}} ; \frac{2 ®}{1+®_{2}}\right) 2 C_{i 1}$ and $\mathrm{Q}_{1}(®):=\left(\frac{2}{1+®^{2}} ; \frac{2 ®}{1+®^{2}}\right) 2 \mathrm{C}_{1}$. These singularities are of the type $1: \mathrm{i} 4$.
(IV). The point $P_{1}(®):=[®: 1: 0] 2 L_{1}$. This singularity is of the type $1: ; 2$.

Proof. The fact that $\operatorname{sing}\left(F_{\mathbb{B}}^{3: 1}\right)$ has thirteen points as described in (I),...,(IV), can be proved as follows: by solving the system of algebraic equations given by $X(x ; y)+\circledR Y(x ; y)=0$ we ${ }^{-}$nd the - nite singularities, which are $A, B, C, D, O, P_{i 1}(®), P_{1}(®), Q_{i 1}(®)$ and $Q_{1}(®)$. The four singularities at the line L_{1} can be found by solving the homogeneous equation of degree four $y\left[A_{3}(x ; y)+®_{3}(x ; y)\right] i \quad x\left[B_{3}(x ; y)+®_{3} D_{3}(x ; y)\right]=0$, where $A_{3} \frac{\varrho}{@}+B_{3} \frac{\varrho}{\varrho}$ and $C_{3} \frac{\varrho}{@}+D_{3} @$ are the homogeneous parts of degree three of X and Y, respectively (see [LN 1]). As the reader can check, this equation gives $y\left(x^{2}+y^{2}\right)(x ;$ ®. $y)=0$. The solution of this equation gives the points E, F, G and $P_{1}(\mathbb{R})$. The fact that $® 1 ; i 1 ; i ; i ; 1 \mathrm{~g}$ implies that these thirteen points are distinct.

Let us prove (I) and (II). Observe ${ }^{-}$rst that, since $\mathrm{F}_{\circledR}^{3: 1}$ is of degree three and has $13=3^{2}+3+1$ singularities, then these singularities are non-degenerate (see [LN] or 3.1.6). The following result implies (I) and (II) (see x2.3 of [LN] for the proof):
2.4.2 Lemma. Let Z be a holomorphic vector ${ }^{-}$eld de- ned in a neighborhood of $02 C^{2}$. Suppose that :
(a). 0 is a non-degenerate singularity of Z and the quotient of the eigenvalues of of $\mathrm{DZ}(0)$ are rational and positive, say $p=q$, where $p ; q 2 \mathrm{~N}$ are relatively primes.
(b). Either p; q, 2 or Z has at least two distinct local analytic separatrices through 0.

Then there exists a holomorphic coordinate system (W ; $(\mathrm{u} ; \mathrm{v})$) with $02 \mathrm{~W}, \mathrm{u}(0)=\mathrm{v}(0)=0$, in which Z can be written as

$$
Z(u ; v)=k\left(q: u \frac{@}{@}+p: v \frac{@}{@}\right) ;
$$

where $\mathrm{k} 2 \mathrm{C}^{\mathrm{x}}$. In particular, $\frac{\mathrm{u}^{\mathrm{p}}}{\mathrm{v}^{q}}$ is a meromorphic ${ }^{-}$rst integral of Z in a neighborhood of 0 .
Let us consider a point P 2 fA;B;C;D;Og. The curve $\phi^{3: 1}$ has two smoth branches through P with an ordinary tangency at P. It follows from Lemma 2.4.2 that there exists a holomorphic coordinate system ($u ; v$) in a neighborhood U of P, such that $u(P)=v(P)=0$ and $F_{\circledR}^{3: 1}$ is represented on U by the vector ${ }^{-}$eld $\left.Z(u ; v)=q: u @+p: v \frac{\varrho}{\varrho}\right)$, where $1 \cdot p<q$ and $\operatorname{gcd}(p ; q)=1$. Since $\frac{u^{p}}{v^{q}}$ is a ${ }^{-}$rst integral of $F_{\circledR}^{3: 1}$ and the invariant branches of $\phi^{3: 1}$ have an ordinary tangency at P, then $p=1$ and $q=2$, so that P is of the type $2: 1$. In the case $P 2 f E ; F ; G g$, the argument is similar and uses that the curve $\phi^{3: 1}$ has three smooth branches throgh P, two by two transverse. We leave the details for the reader.

In the proof of (III) and (IV) we use the desingularization process for the foliation $\mathrm{F}_{\Phi}^{3: 1}$. This process involves thirteen blowing-ups : one blowing-up at each radial singularity and two blowingups at each singularity of the type $2: 1$ (see $\times 3.4$). In the - gure 6 we sketch the resolution process for a singularity of the type $2: 1$.

Note that the divisor which appears after the ${ }^{-}$rst blowing-up is invariant for the new foliation, whereas the second divisor is not. Let M_{3} be the rational surface obtained from $\mathrm{CP}(2)$ after this blowing-up process, $1 / 4 \mathrm{M}_{3}$! $\mathrm{CP}(2)$ be the blowing-up map, $\mathrm{G}_{\circledR}^{3}$ be the strict transform of $\mathrm{F}_{\mathrm{a}}^{3: 1}$ by $1 / 4$ and $\Sigma_{i 1}, \Sigma_{1}, \Sigma_{1}, C_{i 1}$ and C_{1} be the strict transforms of the rational curves $L_{i 1}, L_{1}$, $L_{1}, C_{i 1}$ and C_{1}, respectively. Denote by D_{P} the invariant divisor which appears after the two
blowing-ups at P 2 fA;B;C;D;Og. Note that the curves $L_{i 1}, \tau_{1}, \tau_{1}, C_{i 1}, C_{1}$ and D_{P}, P 2 fA;B;C;D;Og, are disjoint, smooth, rational and invariant for G_{\circledR}^{3}.

Each one of these ten curves contain one singularity of $\mathrm{G}_{\circledR}^{3}$: the ${ }^{-}$ve singularities $1 / 4{ }^{1}\left(\mathrm{P}_{\mathrm{k}}\left({ }^{\circledR}\right)\right.$), $\mathrm{k}=1 ; \mathrm{i} 1 ; 1,1 /{ }^{1}{ }^{1}\left(\mathrm{Q}_{\mathrm{m}}\left(\mathbb{}(\mathbb{)}), \mathrm{m}=1 ; \mathrm{i} 1\right.\right.$, and one in each of the divisors $\mathrm{D}_{\mathrm{P}}, \mathrm{P} 2 \mathrm{fA} ; \mathrm{B} ; \mathrm{C} ; \mathrm{D} ; \mathrm{Og}$ (the singularity m in Fig. 6). Denote by $M_{P}(®)$ the singularity of G_{\circledR}^{3} in the divisor $D_{P}, P 2$ fA;B;C;D;Og. For the singularities ${ }^{1 / 4}{ }^{1}\left(P_{k}(®)\right), k=1 ; i 1 ; 1$, and $1 / 4{ }^{1}\left(Q_{m}(®)\right), m=1 ; i 1$, we keep the same notation of before: $P_{k}(®), k=1 ; i 1 ; 1$, and $Q_{m}(\mathbb{®}), m=1 ; i 1$. Observe that sing $\left(\mathrm{G}_{\circledR}^{3}\right)$ consists exactly of these ten singularities. The analytic type of these singularities can be obtained by using Camacho-Sad index T heorem (see [C-S] and 3.1.9) and a Lemma of linearization of M attei-M oussu $[\mathrm{M}-\mathrm{M}$]. Let C be one of the ten rational invariant curves and q be the singularity of $\mathrm{G}_{\circledR}^{3}$ on C. Let Z be a holomorphic vector ${ }^{-}$eld which represents $\mathrm{G}_{\circledR}^{3}$ in a neighborhood of q and, n and, t be the eigenvalues of $D Z(q)$, where, t is the eigenvalue in the tangent direction to C and, n in the normal direction. According to Camacho-Sad Theorem, $\frac{n n}{n}=C^{2}$, that is the self-intersection number of C. On the other hand, since $C n f q g$ is a leaf of \dot{G}_{\bullet}^{3} biholomorphic to C, the holonomy of G_{B}^{3} in a transverse section to C is the identity. It follows from [$M-M$], that the vector ${ }^{-}$eld Z is linearizable at q. M oreover, if $\frac{n}{t}=C^{2}=j n$, then there exists a coordinate system $(U ;(z ; w)$) in a neighborhood of q such that $z(q)=w(q)=0, U \backslash C=(w=0)$ and $Z(z ; w)=k\left(z \frac{@}{@} ; ~ n w @\right)$, where $k 2 C^{\sharp}$. In particular, $z^{n}: w=c t e$, is a local ${ }^{-}$rst integral of $G_{@}^{3}$. In particular, q is a singularity of the type $1: \mathrm{i} \mathrm{n}$. It follows that:
(i). $P_{1}(®), M_{A}(®), M_{B}(®), M_{C}(®), M_{D}(®)$ and $M_{O}(®)$ are of the type 1 ; ; 2, because the curves $L_{1}, D_{A}, D_{B}, D_{C}, D_{D}$ and D_{D}, have self-intersection ; 2 in M_{3}.
(ii). $P_{i 1}(®), P_{1}(®), Q_{i 1}(®)$ and $Q_{1}(®)$ are of the type $1: i 4$, because the curves $L_{i 1}, \tau_{1}, C_{i 1}$ and C_{1} have self intersection ; 4.

In the proof of (i) and (ii), we can use the following fact : let S be a smooth curve on a surface N and $1 / 4 N$! N be a blowing-up at a point p 2 S . If, S is the strict transform of S by $1 / 4$ then $S^{2}=S^{2}$; 1 . So, for instance, \leftarrow_{1} has self-intersection ; 2 because $L_{1}^{2}=1$ and the process involves three blowing-ups at points of L_{1}. A nother way is to calculate explicitly the quotient of the eigenvalues at the singularities P_{j} (\circledR^{\circledR}) and $Q_{k}\left({ }^{\circledR}\right)$, by using the expression of $X+{ }^{\circledR} Y$. We leave the details for the reader. \propto

Let $1 / 4 M_{3}!C P(2)$ be as in the proof of Lemma 2.4.1. The pencil of foliations $Q^{3}=\left(G_{\circledR}^{3}=\right.$ $\left.1 / 4\left(F_{\circledR}^{3: 1}\right)\right)_{\circledR 2 \bar{C}}$ will be called the family of type 3 .
2.4.3 Corollary. The family of type 3 satis $^{-}$es the hypothesis (ii) and (iii) of Theorem 3. M oreover, $F_{1}^{3: 1}, F_{1}^{3: 1}$ and $F_{i}^{3: 1}$ have the following ${ }^{-}$rst integrals :

$$
f_{1}(x ; y)=\frac{C_{1}(x ; y): C_{i 1}(x ; y)}{4 L_{1}(y): L_{i 1}(y)} ; f_{1}(x ; y)=\frac{L_{i 1}(y): C_{1}(x ; y)}{L_{1}(y): C_{i 1}(x ; y)} ; f_{i 1}(x ; y)=\frac{L_{1}(y): C_{1}(x ; y)}{L_{i 1}(y): C_{i 1}(x ; y)}
$$

respectively, where $C_{1}(x ; y)=x^{2}+y^{2} ; 2 x, C_{i 1}(x ; y)=x^{2}+y^{2}+2 x, L_{1}(y)=y ; 1$ and $L_{i}(y)=$ $y+1$. M oreover, $f_{1} \pm$ /is an elliptic ${ }^{-}$bration. In particular, $E\left(P^{3: 1}\right)=E\left(Q^{3}\right)=Q:<1 ; i>[f 1 \mathrm{~g}$.

Proof. Lemma 2.4.1 implies that it satis ${ }^{-}$es the hypothesis (iii). The fact that f_{\circledR} is a ${ }^{-}$rst integral of $F_{\circledR}^{3: 1}$, for $® 2 \mathrm{f} 1 ; \mathrm{i} 1 ; 1 \mathrm{~g}$, can be proved by checking that $(\mathrm{X}+\circledR \mathrm{B})\left(\mathrm{f}_{\circledR}\right)=0$ in each case. We leave the details for the reader. Note that, since all singularities of the foliation $\mathrm{G}_{\circledR}^{3}$ are reduced, then for any ${ }^{\circledR} 2 E\left(Q^{3}\right)$, we can suppose that the ${ }^{-}$rst integral of G_{\circledR}^{3} is a ${ }^{-}$bration. Let us prove that $h:=f_{1} \pm$ /is an elliptic ${ }^{-}$bration. Consider the generic level curve $f f_{1}=\mathrm{cg}$, which in homogeneous coordinates, can be written as $F_{c}(x ; y ; z):=\left(x^{2}+y^{2}+2 x z\right)\left(x^{2}+y^{2} ; 2 x z\right) ; 4 z^{2}\left(y^{2} ; z^{2}\right)=0$. An easy calculation, shows that, if $c Z f 0 ; 1 ; 1 \mathrm{~g}$, then the curve F_{c} is irreducible and that its singular set consists of two nodal singularities at the points $[1: \mathrm{i}: 0]$ and $[1: \mathrm{i} \mathrm{i}: 0]$, so that it is elliptic, because $g\left(F_{c}\right)=\frac{(4 i)(4 i 2)}{2} ; 2=1$, by the genus formula. Since in the resolution process we have done one blowing-up at the each one of the points [1:i:0] and [1: ; i:0], the level curves of $h=f_{1} \quad \pm 1 / 4$ are all disjoint, so that h is a ${ }^{-}$bration. x

x3. Proofs

x3.1. Basic facts. In this section we state some facts that will be used in the proofs of T heorems 1,2 and 3. Let F a foliation on the surface M de ${ }^{-}$ned in a covering $\left(U_{j}\right)_{j 2 j}$ of M by a collection of holomorphic vector ${ }^{-}$elds, say $\left(X_{j}\right)_{j 2 j}$. Suppose that each U_{j} is a domain of a holomorphic chart $\left(x_{j} ; y_{j}\right): U_{j}!\quad C^{2}$ and consider the 2 -form $\mu_{j}:=d x_{j} \wedge d y_{j}$ and the 1 -form $!_{j}=i_{x_{j}} \mu_{j}$. Note that the di ®erential equation $!_{j}=0$ also de ${ }^{-}$nes F on U_{j}. If $U_{i} \backslash U_{j} G ;$, then $!i=g_{j}!_{j}$, where $g_{i j} 2 O^{a}\left(U_{i} \backslash U_{j}\right)$. The cocycle $\left(g_{j}\right) U_{i} \backslash U_{j} \xi_{;}$de ${ }^{-}$nes a line bundle on M, called the normal bundle of F. The class of this bundle in $\mathrm{H}^{1}\left(\mathrm{M} ; \mathrm{O}^{\mathbb{y}}\right)$ is denoted by N_{F}. The conormal bundle of F is the dual, $N_{F}{ }_{F}$, of N_{F}. Given another foliation G on M such that $T_{G}=T_{F}$, de ${ }^{-}$ned by collections of vector ${ }^{-}$elds $\left(Y_{j}\right)_{j 2 j}$, consider the pencil generated by F and G, that is, the family $(F)_{\circledR 2} \bar{C}$ of foliations, where F_{\circledR} is de" ned by the collection $\left(X_{j}+\circledR_{\circledR} Y_{j}\right)_{j 2 j}$, if ${ }^{\circledR} 2 C$, or $\left(Y_{j}\right)_{j 2 \jmath}$, if $\circledR^{\circledR}=1$. Note that $\mathrm{T}_{\mathrm{F}_{\odot}}=\mathrm{T}_{\mathrm{F}}$ for all ${ }^{\circledR 2} \overline{\mathrm{C}}$.
3.1.1 Remark. Even if the singularities of F and G are isolated, for some values of $® \in 0 ; 1$, the singularities of F_{\circledR} could not be isolated. Since we are considering always foliations with isolated singularities, when ®2 \bar{C} is such that $\operatorname{sing}\left(F_{\circledR}\right)$ is not isolated, that is contains a curve with divisor $\left(f_{j}\right)_{j 2 J}, f_{j} 2 O\left(U_{j}\right)$, then we rede ${ }^{-}$ne F_{\circledR} as the foliation given by the collection of vector ${ }^{-}$elds $\left(f_{j}{ }^{1}\left[X_{j}+®_{\mathbb{M}} Y_{j}\right]\right)_{j 2 j}$. Note that, in this case, $T_{F_{\oplus}} i T_{F}$ is an e®ective divisor, that is

$$
T_{F_{\oplus}} i \quad T_{F}={ }_{k=1}^{X} n_{k}: C_{k} ;
$$

where $n_{k} 2 N$ and $\left[{ }_{k} C_{k}\right.$ is the curve de ${ }^{-}$ned in U_{j} by $f f_{j}=0 \mathrm{~g}$. We will consider the set

$$
B(F ; G)=f ® 2 \bar{C} j T_{F_{\odot}}=T_{F}=T_{G} g:
$$

Observe that the set $\bar{C} n B(F ; G)$ is always ${ }^{-}$nite.
In the sequel, we will recall some known facts about foliations on surfaces that will be used in the proof of the above result. The proofs and de- nitions of some concepts involved can be found $[\mathrm{Br}]$, [$\mathrm{Br}-1]$, $[\mathrm{Br}-2$], [BPV] and [S]. Let M be a compact surface and F be a foliation on M with isolated singularities. Suppose that F is de ${ }^{-}$ned by a collection of holomorphic vector ${ }^{-}$elds $\left(X_{j}\right)_{j 21}$, or 1-forms $\left(!_{j}\right)_{j 2 j}$, associated to a covering $\left(U_{j}\right)_{j 2 j}$ of M, as before.
3.1.2 Seidenberg's Theorem. (cf. [Se] or [M-M]) In order to state Seidenberg's Theorem, we recall the concept of reduced singularity. Let p be an isolated singularity of a foliation F on a surface M and X be a holomorphic vector ${ }^{-}$eld which represents F in a neighborhood of p. Let
, 1 and , 2 be the eigenvalues of $D X(p)$. We say that p is a reduced singularity of F, if one of the following condictions holds :
(I). p is a non-degenerate singularity, that is, $1 ;, 2 \in 0$, and the charachteristic values, ,2=,1 and , $1=2$, are not rational positive.
(II)., $1=0$ and, $2 \in 0$, or vice-versa. In this case, we say that p is a saddle-node for F.

These condictions do not depend on the vector ${ }^{-}$eld X.
Theorem. ([Se] or [M-M]). For any foliation F, with isolated singularities, on a surface M, there exists a surface N and bimeromorphism $1 / 4 N$! M, which is a sequence of blowing-ups, such that all singularities of the strict transform foliation, $1 / \frac{1}{4}(F)$, are reduced.

In the sequel, we resume other results that will be used, involving the bundles associated to the foliation F.
3.1.3. If Y is a meromorphic non-vanishing vector ${ }^{-}$eld on M tangent to F (that is $!_{j}(Y)=0$, 8j 2 J) then

$$
T_{F}=(Y)_{0} i(Y)_{1} ;
$$

where $(\mathrm{Y})_{0}$ and $(\mathrm{Y})_{1}$ denote the divisors of zeroes and poles of Y respectively. A nalogously, if ! is a meromorphic non-vanishing 1 -form on M such that $!\left(Y_{j}\right)^{\prime} 0,8 \mathrm{j} 2 \mathrm{~J}$, then

$$
N_{F}^{\mathfrak{x}}=(!)_{0} i(!)_{1} ;
$$

where $(!)_{0}$ and $(!)_{1}$ denote the divisors of zeroes and poles of Y respectively.
The relation between N_{F} and T_{F} is the following:
3.1.4. $K_{M}=N_{F}^{a}+T_{F}^{q}$, where K_{M} denotes the canonical bundle of M.

In the case of a foliation F of degree d on $\mathrm{CP}(2)$ we have the following:
3.1.5. $T_{F}^{d}=\left(d_{i} 1\right) H, N_{F}=(d+2) H$ and $K_{C P(2)}={ }_{i} 3 H$, where H denotes the divisor associated to a line.
R Given two line bundles L_{1} and L_{2} on M, we will use the notation $L_{1}: L_{2}$ for the number ${ }_{M} C_{1}\left(L_{1}\right)^{\wedge} C_{1}\left(L_{2}\right)$, where $C_{1}\left(L_{j}\right) 2 H_{D R}^{2}(M)$ is the ${ }^{-}$rst Chern class of $L_{j}, j=1 ; 2$. When $L_{1}=L_{2}$ we will use the notation $L_{1}: L_{1}=L_{1}^{2}$.

If we denote by ${ }^{1}(F)$ the number of singularities of F counted with multiplicities, then :
3.1.6. ${ }^{1}(F)=C_{2}\left(T_{F}^{\mathbb{Z}}+T M\right)=C_{2}(M)+T_{F}^{d}: C_{1}(M)+\left(T_{F}^{\mathbb{d}}\right)^{2}=C_{2}(M)+T_{F}: K_{M}+T_{F}^{2}$. In particular, if $M=C P(2)$ and F has degree d the ${ }^{1}(F)=d^{2}+d+1$. M oreover, the singularities are nondegenerate if, and only if, F has $d^{2}+d+1$ singularities.

Now, let C be a curve on M. We say that C is not invariant for F, if $C \backslash U_{j}$ is not a solution of $!_{j}=0$ for any j 2 J such that $\mathrm{C} \backslash \mathrm{U}_{\mathrm{j}} G_{;}$, where $!_{\mathrm{j}}$ de nes F on U_{j}. We say that C is invariant for F, if $C \backslash U_{j}$ is a solution of $!_{j}=0$ for any $j 2 J$ such that $C \backslash U_{j} G ;$. Given a reduced curve C, which is not invariant for F, and $p 2 C$, the order of tangency between F and C at p is

$$
\operatorname{tang}(\mathrm{F} ; \mathrm{C} ; \mathrm{p}):=\operatorname{dim}_{\mathrm{C}} \frac{\mathrm{O}_{\mathrm{p}}}{\langle\mathrm{f} ; \mathrm{X}(\mathrm{f})\rangle}=[\mathrm{f} ; \mathrm{X}(\mathrm{f})]_{\mathrm{p}} ;
$$

where $f=0$ is a reduced equation of C, X is a holomorphic vector ${ }^{-}$eld which de ${ }^{-}$nes F in a neighborhood of p and $[f ; X(f)]_{p}$ denotes the intersection number of f and $X(f)$ at p. Observe that, since f is reduced and not invariant for X, then f and $X(f)$ have no common components at p, so that $0 \cdot \operatorname{tang}(F ; C ; p)<+1$. M oreover, $\operatorname{tang}(F ; C ; p)=0$ if, and only if, the leaf of F through p is transverse to C at p. This implies that

$$
0 \cdot \operatorname{tang}(\mathrm{~F} ; \mathrm{C}):=\mathrm{X}_{\mathrm{p} 2 \mathrm{C}}^{\mathrm{X}} \operatorname{tang}(\mathrm{~F} ; \mathrm{C} ; \mathrm{p})<+1:
$$

3.1.7. Let C be a reduced curve on M, not invariant for F. Then :

$$
N_{F}: C=X(C)+\operatorname{tang}(F ; C) \text { and } T_{F}: C=C^{2} i \operatorname{tang}(F ; C) ;
$$

where $X(C)=\mathrm{i}_{\mathrm{M}}: \mathrm{C}_{\mathrm{i}} \mathrm{C}^{2}$ is the virtual Euler characteristic of C (cf. [Br-1]). We observe that, if C is a smooth curve, then $\mathrm{X}(\mathrm{C})$ coincides with the topological Euler characteristic of C . On the other hand, if C is not smooth, then $\mathrm{X}(\mathrm{C})$ is the Euler characteristic of a smoothing of C (cf. [BPV]).

In order to compute $N_{F}: C$ and $T_{F}: C$ when C is invariant for F, we have to introduce another local index involving F and a point p $2 C$. This index is denoted by $Z(F ; C ; p)$ in $[B r-1]$ and $[B r-2]$. W hen C is smooth at $p, Z(F ; C ; p)$ is the Poincar Hopf index of the "restricted" foliation at p, which is de ${ }^{-}$ned as follows. Let p2 C be smooth point of C and X be a holomorphic vector ${ }^{-}$eld which de ${ }^{-}$nes F in a neighborhood of p. Since C is smooth at p and C is invariant for X, there exists a holomorphic coordinate system ($U ;(x ; y)$) in a neighborhood of p such that $C \backslash U=(y=0)$, $x(p)=y(p)=0$ and $X j u \backslash c=x^{k}: u(x) @$, where $u(0) \in 0$. In this case, $Z(F ; C ; p)=k$, 0 . This index can be de- ned also when C is not smooth at p, but since we will use it only in the smooth case, we refer the general de- nition for $[\mathrm{Br}-1]$ or $[\mathrm{Br}-2$]. Given a reduced curve C , de- ne

$$
Z(F ; C)={ }_{p 2 C}^{X} Z(F ; C ; p):
$$

We have the following :
3.1.8. Let C be a reduced curve on M, invariant for F. Then :

$$
N_{F}: C=C^{2}+Z(F ; C) \text { and } T_{F}: C=X(C) ; Z(F ; C):
$$

When C is an invariant reduced curve for F and $p 2 C \backslash \operatorname{sing}(F)$, it is de- ned the so called Camacho-Sad index of p with respect to C. In the case where C is smooth at p and p is a nondegenerate singularity of F, this index can be expressed in terms of the eigenvalues of $D X(p)$, where X is a holomorphic vector ${ }^{-}$eld which represents F in a neighborhood of p. If,t is the eigenvalues of $D X(p)$ relative to the eigendirection tangent to C at p and, n is the other eigenvalue, then the Camacho-Sad index of F at p with respect to C is $I(F ; C ; p)=\frac{n}{s}$. In the case where p is not a singularity of F we have $I(F ; C ; p)=0$. In the general case, the de- nition can be found in $[B r-2]$ or [S]. Set $I(F ; C)={ }_{p 2 C} I(F ; C ; p)$. The main fact about this index is that
3.1.9 Camacho-Sad Theorem. We have $I(F ; C)=C^{2}$, the self-intersection number of C.

A nother ingredient that will be used is the divisor of tangency between two foliations. Let F and G be two foliations on the surface M. Let $(U)_{j 2 j}$ be a covering of M by open sets and let $F_{j} u_{j}$ be de ${ }^{-}$ned by the vector ${ }^{-}$eld X_{j} and G_{j} by the 1-form ${ }_{j}$, where $X_{i}=f_{i j} X_{j}$ and ${ }_{i}=g_{j}{ }^{\prime}{ }_{j}$ on $U_{i} \backslash U_{j} G ;$. Set $f_{j}=i_{X_{j}}\left({ }_{j}\right) 2 O\left(U_{j}\right)$. Then the foliations are tangent along the curve $\phi_{j}=\left(f_{j}=0\right) 1 / 2 U_{j}$. M oreover, since $f_{i}=f_{i j}: g_{i j}: f_{j}$, on $U_{i} \backslash U_{j} G ;$, the curves ϕ_{i} and ϕ_{j} glue togheter on $U_{i} \backslash U_{j}$, and this gives origin to a divisor on M, which we denote by $\downarrow(F ; G)$. We have 3.1.10. $[\phi(F ; G)]=T_{F}^{q}+N_{G}=T_{G}^{q}+N_{F}$.

In the particular case of $C P(2)$, we get from (3.1.5) that if F and G are foliations on $C P(2)$ of degrees k and ` respectively, then \([\phi(F ; G)]=(k+` ; 1) H\).

Finally, we will see how the line bundles above change when we do a blowing-up at a point p 2 M . Let us denote by \hat{M} the surface obtained from M by performing this blowing-up, by $1 / 4 \hat{M}$! M
the blowing-up map, by D the excepcional divisor $1^{1 / 4}(\mathrm{p})$ and by $\hat{F^{1}}$ the strict transform of the foliation F by $1 / 4$ Let! be a holomorphic 1 -form which de ${ }^{-}$nes F in a neighborhood of p. If p is a singularity of !, then D is in the divisor of zeroes of the 1 -form $1 / \frac{x}{(}$ (!) with some multiplicity, say $m(p)$. By using the de ${ }^{-}$nitions, it is possible to prove that (cf. [$\left.\mathrm{Br}-1\right]$):
3.1.11. $N_{F^{\alpha}}^{\alpha}=1 / 4\left(N_{F}^{\alpha}\right)+m(p)[D]$ and $T_{F}=1 / \frac{4}{4}\left(T_{F}\right)+(m(p) ; 1)[D]$.
x3.2. Proof of T heorem 3. Let M be a complex surface and F and G be holomorphic foliations on M such that $T_{F}=T_{G}$. We will denote by T the class of $T_{F}=T_{G}$ in $H^{1}\left(M ; O^{\mathbb{a}}\right)$ and by $F(M ; T)$ the set
$f H ; H$ is a foliation on M such that $T_{H}=T g$:
Suppose that F has a holomorphic ${ }^{-}$rst integral f:M ! S, where S is some compact Riemann surface. Denote by $g(f)$ the genus of the regular level curves, $f^{i}(c)$, of f.
3.2.1 Lemma. Let M, F, G, f and $g(f)$ be as above. Then :
(a). If $g(f)=0$ then $F^{\prime} G$. In particular $F(M ; T)=f F g$.
(b). If $g(f)=1$ and $F \in G$, then G is turbulent with respect to f.
(c). If $g(f), 2$, then for any regular ${ }^{-}$bre $F=f^{i 1}$ (c) of f, which is not invariant for G, we have $\operatorname{tang}(\mathrm{G} ; \mathrm{F})>0$.

In particular, if $F \in G$, then G is transverse to some regular ${ }^{-}$bre of f if, and only if, $g(f)=1$. M oreover, in this case, G is turbulent with respect to f.
Proof. Let $F=f^{1}$ (c) be a regular ${ }^{-}$bre of f. Since F is invariant for F and F has no singular points on F, we get from 3.1.8 that

$$
\mathrm{T}: \mathrm{F}=\mathrm{T}_{\mathrm{F}}: \mathrm{F}=\mathrm{X}(\mathrm{~F}) \mathrm{i} \mathrm{Z}(\mathrm{~F} ; \mathrm{F})=\mathrm{X}(\mathrm{~F}):
$$

On the other hand, if F is not invariant for G , we get from 3.1.7 that

$$
\mathrm{T}: \mathrm{F}=\mathrm{T}_{\mathrm{G}}: \mathrm{F}=\mathrm{F}^{2} \mathrm{i} \text { tang }(\mathrm{G} ; \mathrm{F})=\mathrm{i} \operatorname{tang}(\mathrm{G} ; \mathrm{F}) ;
$$

so that, $X(F)=i \operatorname{tang}(G ; F)$. 0 . In particular, if the ${ }^{-}$bres of f are rational curves, then $X(F)=2>0$ and F is invariant for G. In this case, all regular ${ }^{-}$bres of f are invariant for G, which implies that, $G^{\prime} F$. On the other hand, G is transverse to F if, and only if, $\operatorname{tang}(G ; F)=0=X(F)$. This implies (b) and (c). a

Now, let us suppose $T_{F}=T_{G}$, but $F \in G$, that the singularities of F are reduced in the sense of Seidemberg and that F is tangent to an elliptic ${ }^{-}$bration $f: M!S$. Let C be a smooth irreducible component of a critical ${ }^{-}$bre $F=f^{i}(c)$ of .
3.2.2 Lemma. In the above situation, we have :
(a). If $F=m: C$, for $m, 2$, then $g(C)=1$ and, either C is a leaf of G, or G is transverse to C.
(b). If C is rational then $C^{2}<0$. M oreover, if C is not invariant for G, then $Z(F ; C), 3$.
(c). G is turbulent with respect to f and $\operatorname{sing}(G) 1 / 2 f^{i}(A)$, where

$$
A=f c 2 S ; c \text { is a critical value of } f \text { such that } f^{i}(c) \text { is not smoothg : }
$$

Proof. Lemma 3.2.1 implies that G is turbulent with respect to f. Suppose that the critical ${ }^{\text {- }}$ bre $F=m: C, m, 2$, so that F, as a subset of M, is smooth. It follows from K odaira's classi ${ }^{-}$cation of critical ${ }^{-}$bers in $[K]$, that C is an elliptic curve and the ${ }^{-}$bre F is of the type $\mathrm{m}_{0}, \mathrm{~m}, 2$. In particular, F is a multiple - bre. Since C is smooth, given p 2 C, there exist holomorphic coordinate systems ($\mathrm{U} ;(\mathrm{x} ; \mathrm{y})$) in M and $(\mathrm{V} ; \mathrm{z})$ in S , such that $\mathrm{p} 2 \mathrm{U}, \mathrm{C} \backslash \mathrm{U}=(\mathrm{x}=0), \mathrm{f}(\mathrm{p}) 2 \mathrm{~V}$,
$z(f(p))=02 C$ and $z \pm f(x ; y)=x^{m}$. This implies that $F j_{u}$ is $d e^{-}$ned by $d x=0$. In particular $Z(F ; C)=0$. Therefore, if $F=m: C(m, 1)$, we have

$$
\mathrm{T}: \mathrm{C}=\mathrm{T}_{\mathrm{F}}: \mathrm{C}=\mathrm{X}(\mathrm{C}) ; \mathrm{Z}(\mathrm{~F} ; \mathrm{C})=0 \text { : }
$$

If C is invariant for G, we have

$$
0=\mathrm{T}: C=\mathrm{T}_{\mathrm{G}}: \mathrm{C}=\mathrm{X}(\mathrm{C}) \mathrm{i} \mathrm{Z}(\mathrm{G} ; \mathrm{C})=\mathrm{i} Z(\mathrm{G} ; \mathrm{C}) \Rightarrow \mathrm{Z}(\mathrm{G} ; \mathrm{C})=0:
$$

On the other hand, if C is not invariant for G , then

$$
\mathrm{T}: \mathrm{C}=\mathrm{T}_{\mathrm{G}}: \mathrm{C}=\mathrm{C}^{2} \mathrm{i} \operatorname{tang}(\mathrm{G} ; \mathrm{C})=\mathrm{i} \operatorname{tang}(\mathrm{G} ; \mathrm{C})=0:
$$

Therefore, if $F=m: C$, where C is smooth and $m, 1$ then, either G is transverse to C, or C is invariant for G and $Z(G ; C)=0$. This implies (a) and (c). Let us prove (b). First of all, observe that sing $(F) \backslash C \in ;$. In fact, if $\operatorname{sing}(F) \backslash C$ was empty, then Reeb's stability Theorem would imply that there exists a neighborhood V of C, saturated for F, such that all leaves of F in V are rational curves (cf. [C-LN]), which is not possible, because f is an elliptic ${ }^{-}$bration. Let $p_{1} ;::: ; p_{k}$ be the singularities of F on C. For each $j=1 ;:: ;$; let I_{j} be the Camacho-Sad index of F with respect to C at p_{j}. It follows from Camacho-Sad Theorem that $C^{2}={ }_{j=1}^{k} I_{j}$. On the other hand, for each $\mathrm{j} 2 \mathrm{f} 1 ;::: \mathrm{kg}, \mathrm{p}_{\mathrm{j}}$ is a reduced singularity of F and f is tangent to F . This implies that there exist holomorphic coordinate systems ($U ;(x ; y)$) in M and $(V ; z)$ in S, such that $p_{j} 2 U$, $x\left(p_{j}\right)=y\left(p_{j}\right)=0, C \backslash U=(y=0), f\left(p_{j}\right) 2 V, z\left(f\left(p_{j}\right)\right)=02 C$ and $z \pm f j_{u}(x ; y)=x^{m_{j}} \cdot y^{n_{j}}$, $m_{j} ; n_{j}>0$, so that F is represented in U by the vector ${ }^{-}$eld $X(x ; y)=n_{j} x @$ @ $m_{j} y \frac{\varrho}{\varrho}$. Hence $\mathrm{I}_{\mathrm{j}}=\mathrm{i} \frac{\mathrm{m}_{\mathrm{j}}}{\mathrm{n}_{\mathrm{j}}}<0$. It follows that $\mathrm{C}^{2}<0$.

Now, let us suppose that C is not invariant for G . In this case, it follows from 3.1.7 that

$$
\mathrm{T}: \mathrm{C}=\mathrm{C}^{2} \mathrm{i} \text { tang }(\mathrm{G} ; \mathrm{C})<0:
$$

On the other hand, since C is invariant for F, it follows from 3.1.8 that

$$
\mathrm{T}: \mathrm{C}=\mathrm{X}(\mathrm{C}) \mathrm{i} \mathrm{Z}(\mathrm{~F} ; \mathrm{C})=2 \mathrm{i} \mathrm{Z}(\mathrm{~F} ; \mathrm{C}) \Rightarrow 2 ; \mathrm{Z}(\mathrm{~F} ; \mathrm{C})<0 \Rightarrow \mathrm{Z}(\mathrm{~F} ; \mathrm{C}), 3:
$$

»
Before stating the next result we need a de- nition.
3.2.3 De^{-}nition. Let F be a holomorphic foliation on a surface M . We say that a smooth rational curve $\mathrm{C} 1 / 2 \mathrm{M}$ is contractible for F if :
(a). $C^{2}=; 1$ and C is invariant for F.
(b). When we blow down C, thus obtaining a surface N and a blowing-down map $1 / 4 \mathrm{M}$! N, where $1 / 4 \mathrm{C})=\mathrm{p} 2 \mathrm{~N}$, then, either p is not a singularity for the transformed foliation $1 / 4(\mathrm{~F})$, or it is a reduced singularity for $1 /(F)$.
3.2.4 Remark. If C is contractible for F as in de ${ }^{-}$nition 3.2.3, then we have three possibilities (cf. [Br-2]):
$\left.1^{\text {st }}\right)$. p is a non-singular point for $1 / 4(F)$. In this case, F has just one non-degenerate singularity, say q, on C, such that $I(F ; C ; q)=i 1$. We have also that $Z(F ; C ; q)=Z(F ; C)=1$.
$\left.2^{\text {nd }}\right) . p$ is a non-degenerate singularity of $1 /(F)$. In this case, F has two non-degenerate singularities and $Z(F ; C)=2$. If the characteristic numbers of $1 / 4(F)$ at p are, and, ${ }^{i 1}$, where
,$;,^{i} Z Q_{+}$(because p is a reduced singularity), then the Camacho-Sad index of the singularities with respect to C at the two singularities are $\frac{1}{1_{i}}$ and $\frac{1}{\frac{1}{1} 1}$.
$3^{r d}$). p is a saddle node of $1 /(F)$. In this case F has two singularities on C, one saddlenode, say q_{1}, and the other non-degenerate, say q_{2}. M oreover, $I\left(F ; C ; q_{1}\right)=0, I\left(F ; C ; q_{2}\right)=; 1$, $Z\left(F ; C ; q_{1}\right)=Z\left(F ; C ; q_{2}\right)=1$ and $Z(F ; C)=2$. We observe that this case does not occur if F (or $1 / 4(F))$ is tangent to a ${ }^{-}$bration.

Let F, G and $f: M!S$ be as in Lemma 3.2.2, and $\left(F_{\circledR}\right)_{\circledast 2 \bar{C}}$ be the pencil of foliations on M generated by F and G, where $F_{0}=F$ and $F_{1}=G$. Set $T_{F}=T_{G}=T$ and let $B=B(F ; G)$ be as in Remark 3.1.1. Recall that $\bar{C} n B$ is ${ }^{-}$nite.
3.2.5 Lemma. Let $F \in G, f: M!S,\left(F_{\circledR}\right)_{\circledR 2} \bar{C}$ and B be as before. Suppose that $F_{®_{0}}$ has a contractible curve C, for some $®_{0} 2 \mathrm{~B}$ nf0g. Let $1 / 4 \mathrm{M}$! N be the blowing-down map obtained by contracting C , where $1 / 4 \mathrm{C})=\mathrm{p} 2 \mathrm{~N}$. Then :
(a). C is invariant for F_{\circledR} and $1 \cdot Z\left(F_{a} ; C\right)=Z(F ; C) \cdot 2$, for all $\circledR^{\circledR} 2 B$.
(b). Suppose that $F_{®_{1}}$ is tangent to some ${ }^{-}$bration $f_{1}: M!S_{1}$, for some $\circledR_{1} 2 B$. Then $f_{1} \pm$ $1 / 41$: N ! S_{1} is a - bration.
(c). C is contractible for $F_{0}=F$. In particular, all singularities of $1 /(F)$ are reduced and f $\pm 1 / 4^{1}$: N! S is a bration.
(d). There exists ${ }^{2}>0$ such that if $j ®<^{2}$ then p is a reduced singularity for $1 /\left(F_{\circledR}\right)$ and $T_{1 / 4\left(F_{\odot}\right)}=T_{1 / 4(F)}$.
(e). If $B^{0}=B(1 / k(F) ; 1 /(G))$, then $\bar{C} n B^{0}$ is ${ }^{-}$nite.

Proof. By de nition we have $T_{F_{\oplus}}=T$ for all $\circledR_{2} B$. Since C is rational and invariant for $F_{®_{0}}$, it follows from (a) and (b) of Lemma 3.2.2 that $1 \cdot Z(F ; C) \cdot 2$. Note that (b) of Lemma 3.2.2 also implies that C is invariant for F_{\circledR}, for all $\circledR^{\circledR 2 B n f 0 g}$, because $F_{\circledR} G F$ if $\circledR_{\circledR \in 0} 0$. This implies that C is also invariant for F, so that it is contained in a critical ${ }^{-}$bre of f. Moreover, if $\circledR 2 B$ then

$$
\mathrm{Z}\left(\mathrm{~F}_{\circledR} ; \mathrm{C}\right)=\mathrm{X}(\mathrm{C}) \mathrm{i} \mathrm{~T}: \mathrm{C}=2 \mathrm{i} \mathrm{~T}: \mathrm{C} ;
$$

so that $Z\left(F_{\circledR} ; C\right)$ does not depends on $® 2 B$. Hence $1 \cdot Z(F ; C)=Z\left(F_{\circledR} ; C\right) \cdot 2$, which proves (a). Let us prove (b). Since C is invariant for $F_{B_{1}}$, which is tangent to the ${ }^{-}$bration f_{1}, we must have that $f_{1} j_{c}$ is constant, say $f_{1}(C)=a 2 S_{1}$. Now, $1 / 4{ }^{1}$ is a biholomorphism outside C, so that $f_{1} \pm 1 / 4^{1}$ is holomorphic outside p and hence in N, by Hartog's Theorem, so that it is also a -bration.

Let us prove (c). Since 1-Z(F;C) •2, F has one or two singularities on C. Given q 2 sing $(F) \backslash C$, denote by $I(F ; q)$ the Camacho-Sad index of F at q with respect to C. Since the singularities of F are reduced, as we have seen in the proof of Lemma 3.2.2, they are non-degenerate and if $q 2 \operatorname{sing}(F) \backslash C$ then $I(F ; q) 2 Q_{i}$ and $Z(F ; C ; q)=1$. We have two possibilities:
(i). $Z(F ; C)=1$. In this case, if q is the singularity of F on C, then $I(F ; q)=C^{2}=i$, and p is not a singular point of $1 / 4(F)$.
(ii). $Z(F ; C)=2$. In this case, if q_{1} and q_{2} are the singular points of F on C, then $I\left(F ; q_{1}\right)+$ $I\left(F ; q_{2}\right)=i 1$. Set $I\left(F ; q_{1}\right)=i,<0$, so that $I\left(F ; q_{2}\right)=, i l<0$. In this case, the point p will be a non-degenerate singularity of $1 / 4(F)$ with negative characteristic numbers $\frac{i 1}{}$ and $\frac{11}{\sim}$, so that it is reduced for $1 / 4(F)$. This implies (c).

Let us prove (d). We have seen above that F has one or two non-degenerate singularities on C . For each one of these singularities the Camacho-Sad index of F with respect to C is negative. It follows from the facts that non-degenerate singularities are stable by small perturbations and the characteristic values vary continuously with parameters (cf. [Ar]), that:
(iii). There exists ${ }^{2}>0$ such that, if $j{ }^{\circledR}<{ }^{2}$ then ${ }^{\circledR} 2 B$ and F_{\circledR} has the same number of singularities as $\mathrm{F}=\mathrm{F}_{0}$ on C , all of them non-degenerate with Camacho-Sad indexes with respect to C negative.

Let ! \circledR_{\circledR} be a 1 -form representing $1 /\left(F_{\circledR}\right)$ in a neighborhood of p. If $j ®<{ }^{2}$, we have two possibilities, according to (i) or (ii) :
C ase (i). Since F_{\circledR} has just one singularity on C, say q we must have $I\left(F_{\circledR} ; C ; q\right)=i 1$. In this case, p is a regular point of $1 / \notin\left(F_{\circledR}\right)$, so that $!{ }_{\circledR}(p) \sigma 0$ and the multiplicity of C in the divisor of zeroes of $1 / \frac{1}{4}\left(!{ }_{\circledR}\right)$ is zero. It follows from $T_{F}=T_{F_{\oplus}}$ and from 3.1.11 that

$$
T_{F}=1 / \frac{1 / 4}{4}\left(T_{1 / 4}\left(F_{a}\right)\right) i[C]=1 / 4\left(T_{1 / 4}(F)\right) i[C] \quad \Rightarrow \quad T_{1 / 4\left(F_{a}\right)}=T_{1 / 4(F)}
$$

Case (ii). In this case, if $q_{1}(®)$ and $q_{2}(®)$ are the singularities of F_{\circledR} on C and $I\left(F_{\circledR} ; C ; q_{Z}(®)\right)=$, (®) <0, then the charachteristic numbers of $1 /\left(F_{\circledR}\right)$ at p are $\left.{ }^{1}(\mathbb{B}):=\frac{(®)}{1_{i},(®)} ;^{1}(\Omega)\right)^{1}<0$, so that p is a reduced singularity of $1 /\left(F_{\circledR}\right)$. M oreover, the multiplicity of C in the divisor of zeroes of $1 / 4\left(!{ }_{\circledR}\right)$ is one (see $[B r-2]$). It follows from $T_{F}=T_{F_{\oplus}}$ and from 3.1.11 that

$$
T_{F}=1 / \frac{1}{4}\left(T_{1 / 4}\left(F_{a}\right)\right)=1 / \sqrt{4}\left(T_{1 / 4}(F)\right) \quad \Rightarrow \quad T_{1 / 4}\left(F_{a}\right)=T_{1 / 4}(F)
$$

Note that this implies (e), because the pencil generate by $1 /(F)$ and $1 / 4(G)$ coincides, up to reparametrization, with the pencil generate by $1 / \&(F)$ and $1 / \notin\left(F_{\circledR}\right)$, if $® \in 0$. \&
3.2.6 Corollary. Let $F \in G$ be foliations on a surface M such that $T_{F}=T_{G}$. Suppose that all singularities of F and G are reduced and that F and G are tangent to ${ }^{-}$brations, say $f: M$! S and $\mathrm{g}: \mathrm{M}!\mathrm{S}_{1}$, where f is elliptic. Then there exist a complex surface N and a bimeromorphism Á: N! M such that:
(a). f $\pm A ́: N!S$ and $g \pm A ́: N!S_{1}$ are ${ }^{-}$brations.
(b). All the singularities of $A^{\alpha}(F)$ are reduced and $A^{\alpha}(F)$ has no contractible curves.
(c). $T_{\hat{A}^{x}(F)}=T_{\hat{A}^{x}(G)}$.

Proof. Note that in the proof that $T_{1 / 4(F)}=T_{1 / 4\left(F_{\odot}\right)}$ in (d) of Lemma 3.2.5, we have used only that the singularities of F_{\circledR} on C are reduced. Therefore, the proof of the Corollary can be done by induction. We leave the details for the reader. a

Consider now two foliations F and G on a complex compact surface M, such that $F \in G$, $T_{F}=T_{G}=T$, all singularities of F and G are reduced, F and G are tangent to ${ }^{-}$brations $f: M$! S and $\mathrm{g}: \mathrm{M}$! S_{1}, respectively, where f is elliptic. It follows from Lemma 3.2.1 that G is turbulent with respect to f, so that f is isotrivial. On the other hand, the Corollary 3.2.6 implies that there exists a bimeromorphism Á: N! M such that $A^{x}(F)$ is reduced, has no contractible curve, $f \pm A$ and $g \pm A$ are ${ }^{-}$brations and $T_{A^{\sharp}(F)}=T_{A^{\sharp}(G)}$. Hence, in this situation, after applying Corollary 3.2.6, we can suppose that :
(I). All singularities of F are reduced and F has no contractible curves.
(II). f is isotrivial.
(III). $\mathrm{T}_{\mathrm{F}}=\mathrm{T}_{\mathrm{G}}=\mathrm{T}$.
3.2.7 Lemma. In the above situation, any critical ${ }^{-}$bre of f is of one of the following types : $\mathrm{m} \mathrm{I}_{0}$ ($\mathrm{m}, 2$), $\mathrm{I}_{0}^{\mathrm{Z}}, \mathrm{I} \uparrow$, IM or IV.
 [K], K odaira classi ${ }^{-}$es the possible ${ }^{-}$bres of an elliptic ${ }^{-}$bration h , which satis ${ }^{-}$es the following hypothesis: if C is a smooth rational curve contained in a critical ${ }^{-}$bre, then $C^{2} \sigma_{;} 1$. Although F has no contractible curve, the -bration f could have some. More precisely, it could happen that there are ; 1 rational smooth curves contained in some critical ${ }^{-}$bres of f, but when we blowdown one of these curves the singularity of F which appears is not reduced. However, after a

- nite number of blowing-downs, we can obtain a new surface N, a bimeromorphism Á: M ! N (a composition of blowing-downs) and a bration $f_{1}=f \pm A ́{ }^{1}: N!S$, such that f_{1} has no contractible ${ }^{-}$bres. According to [K] or [BPV], the critical ${ }^{-}$bres of f_{1} could be of the following types: $m I_{0}(m, 2), I_{0}^{\infty}, I I, I I I, I V, I I^{a}, I I I^{x}, I V^{a}, m I_{b}$ or $I_{b}^{a}(c f$. pages 564 and 604 of $[K]$, or page 159 of [BPV]). The ${ }^{-}$bres of the types m_{b} and $\mathrm{I}_{\mathrm{b}}^{\mathrm{b}}$ can not occur in isotrivial ${ }^{-}$brations,
 or IV ${ }^{\text {a }}$. The ${ }^{-}$bre of type $\mathrm{I}_{0}^{\mathrm{a}}$ is sketched in ${ }^{-}$gures 1.b and 1.c, and the ${ }^{-}$bres II, III and IV are sketched in ${ }^{-}$gure 2.

V. *

III*

FIG. 7

In ${ }^{-}$gure 7 we sketch the ${ }^{-}$bres of types $I I^{\infty}, I I^{\infty}$ and $I V^{\circledR}$. In that ${ }^{-}$gure, the lines represent smooth rational components of the - bre and the numbers the multiplicity of the component. The self intersection of each component is ; 2 . M oreover, if two components C_{1} and C_{2}, of multiplicities m_{1} and m_{2}, respectively, intersect in a point p, then there are coordinate systems $(U ;(x ; y))$ in N and (V;z) in S such that $x(p)=y(p)=0, C_{1} \backslash U=(x=0), C_{2} \backslash U=(y=0)$, $f_{1}(U) 1 / 2 V$, and $z \pm f_{1}(x ; y)=x^{m_{1}}: y^{m_{2}}$. This implies that $A_{s}(F)$ is represented in U by the vector ${ }^{-}$eld $X(x ; y)=m_{2} x \frac{\varrho}{@ x} ; m_{1} y \frac{\varrho}{\varrho}$, so that p is a non-degenerate, reduced singularity of F and $Z\left(F ; C_{1} ; p\right)=Z\left(F ; C_{2} ; p\right)=1$. On the other hand, the singularities which appear in the ${ }^{-}$bres of types II, III or IV, are not reduced for F, but if we perform some blowing ups in such a way that the ${ }^{-}$bres become of types IT, IM or IV, respectively, then the singularities of the new foliation become reduced and non-degenerate for the transformed foliation. This last foliation has no contractible curve, and so it coincides with F. Therefore, the critical levels of f are of one of the following types: $m I_{0}(m, 2), I_{0}^{x}, I \uparrow, I M, I \forall, I I^{\infty}, I I^{\infty}$ or $I V^{x}$.

Let us prove that f has no critical ${ }^{-}$bres of the types $I I^{\infty}, I I I^{\infty}$ or I $V^{\text {a }}$. Suppose by contradiction that there is a critical ${ }^{-}$bre, say $F_{c}=f^{1}{ }^{1}(c)$, of one of these types. Observe ${ }^{-}$rst that F_{c} has only one component, say C_{0}, such that $Z\left(F ; C_{0}\right)=3$ (see - gure 7). If C is another component of F_{C}, then $Z(F ; C) \cdot 2$. It follows from Lemma 3.2.2 that the unique component of F_{c} that could be not invariant for G is C_{0}. Here we use that $T_{G}=T_{F}, F \in G$ and g is a - bration tangent to G. Let $C_{0}, C_{1} ;::: ; C_{k}$ be the components of F_{c}, where C_{0} is as above. Since C_{1}, \ldots, C_{k} are invariant for G, the function g must be constant in each $C_{j}, j=1 ;: .: ; k$. Set $b=g\left(C_{j}\right), j=1 ; \ldots ; k$. Since $G \in F$, almost all regular ${ }^{-}$bres of g are not invariant for F. Let $G_{b}=g^{1}{ }^{1}(b)$ be a regular ${ }^{-}$bre of g, not invariant for F, such that $b \in b, j=1 ;:: ; k$. Since the map $h=f j_{G_{b}}: G_{b}!S$ is holomorphic and non constant, it is surjective, so that $h(p)=c$ for some $p 2 G_{b}$. This implies that $F_{c} \backslash G_{b} G$; and the leaf G_{b} of G cuts F_{c} at the point p. Since $b \in b, j=1 ;:: ; k$, we must have that $p 2 C_{0}$. We have found a leaf G_{b} of G, which is not invariant for F, such that $p 2 C_{0} \backslash G_{b} G$; and $p Z C_{1}\left[:::\left[C_{k}\right.\right.$. Therefore C_{0} is not invariant for G. If we apply 3.1.7 and 3.1.8 to G, F
and C_{0} we get

$$
\mathrm{T}: \mathrm{C}_{0}=\mathrm{T}_{\mathrm{G}}: \mathrm{C}_{0}=\mathrm{C}_{0}^{2} \mathrm{i} \operatorname{tang}\left(\mathrm{G} ; \mathrm{C}_{0}\right)=\mathrm{i} 2 \mathrm{i} \operatorname{tang}\left(\mathrm{G} ; \mathrm{C}_{0}\right)
$$

and
i $2 \mathrm{i} \operatorname{tang}\left(\mathrm{G} ; \mathrm{C}_{0}\right)=\mathrm{T}: \mathrm{C}_{0}=\mathrm{T}_{\mathrm{F}}: \mathrm{C}_{0}=\mathrm{X}\left(\mathrm{C}_{0}\right) \mathrm{i} \mathrm{Z}\left(\mathrm{F} ; \mathrm{C}_{0}\right)=2 \mathrm{i} 3=\mathrm{i} 1 \Rightarrow \quad \operatorname{tang}\left(\mathrm{G} ; \mathrm{C}_{0}\right)=\mathrm{i} 1$;

Let F be a ${ }^{-}$xed foliation, tangent to an elliptic ${ }^{-}$bration f as in Lemma 3.2.7. We will use the following notations:
(A). A_{0}^{m} for the set of $\mathrm{ml}_{0}{ }^{-}$bres, $\mathrm{A}_{0}=\left[\mathrm{m} \mathrm{A}_{0}^{m}\right.$.
(B). A_{0}^{α} for the set of $I_{0}^{\alpha-}$ bres.
(C). A_{2} for the set of ${ }^{-}$bres of type It, A_{3} for the set of ${ }^{-}$bres of type IM and A_{4} for the set of -bres of type $I \forall$.

Denote by $\mathrm{F}_{1} ;::: ; \mathrm{F}_{\mathrm{r}}$ the ${ }^{-}$bres of f in $\mathrm{A}_{0}^{\mathrm{x}}\left[\mathrm{A}_{2}\left[\mathrm{~A}_{3}\left[\mathrm{~A}_{4}\right.\right.\right.$.
(D). Given $F_{j} 2 A_{0}^{\alpha}\left[A_{2}\left[A_{3}\left[A_{4}\right.\right.\right.$, let $C_{j ; i}, j=0 ; 1 ;:: ; ; k_{j}$, be the rational irreducible components of F_{j}. By convention, $C_{j ; 0}$ will be ${ }^{-}$bre which contains more than two singularities of F. Denote by $\mathrm{m}_{\mathrm{j} ; \mathrm{i}}$ the multiplicity of f in the component $\mathrm{C}_{\mathrm{j} ; \mathrm{i}}$ (see - gure 1). The divisor of F_{j} can be written as

$$
F_{j}={ }_{i=0}^{x_{c}} m_{j ; i} C_{j ; i} ;
$$

Observe that $F_{j}^{2}=0$ (see $\left.[K]\right)$. M oreover, if $F_{j} 2 A_{0}^{x}$ then $Z\left(F ; C_{j ; 0}\right)=4$ and $C_{j ; 0}^{2}=i 2$, whereas in the other cases we have $Z\left(F ; C_{j ; 0}\right)=3$ and $C_{j ; 0}^{2}=i 1$.

From now on, we will consider the following situation : F, G will be two foliations on M such that $T_{F}=T_{G}$ and $\left(F_{\circledR}\right)_{\circledR 2 \bar{C}}$ will be the pencil of foliations generated by F and G, where $F_{0}=F$ and $F_{1}=G$. Denote by $B:=B(F ; G)$ the set $f ® 2 \bar{C} T_{F_{\oplus}}=T_{F} g$ and by $\phi=\phi(F ; G)$, the divisor of tangency between F and G (see Remark 6 and 3.1.10). Suppose that:
(I). F and G are tangent to ${ }^{-}$brations $\mathrm{f}: \mathrm{M}!\mathrm{S}$ and $\mathrm{g}: \mathrm{M}!\mathrm{S}_{1}$.
(II). f is an elliptic ${ }^{-}$bration such that any critical ${ }^{-}$bre is of one the types $m: I_{0}(\mathrm{~m}, 2), \mathrm{I}_{0}^{\mathrm{x}}, \mathrm{It}$, $I M$ or $I \nabla$.
(III). F G G.
3.2.8 R emark. In the above situation, the surface M is algebraic, because its algebraic dimension is two (cf. [BPV] pg. 127). In fact, if $f: M!S$ and $g: M!S_{1}$ are as in (I) and Á: S ! $\overline{\mathrm{C}}, A_{1}: \mathrm{S}_{1}!\overline{\mathrm{C}}$ are non-constant holomorphic functions, then we can de${ }^{-}$ne two meromorphic functions $f_{1} ; g_{1}: M!\bar{C}$ by $f_{1}=A \in f$ and $g_{1}=A_{1} \pm g$. These functions are algebraically independent, because $F \in G$,

In the Lemma below, we keep the notations of (A), (B), (C) and (D).
3.2.9 Lemma. In the situation considered, we have $B:=B(F ; G)=\bar{C}$ and :
(a). If $F_{C}=f^{1}$ (c) is a regular level or a critical ${ }^{-}$bre of type $m l_{0}$, then, for any $® 2 \bar{C}, \circledR \in 0, F_{C}$ is not invariant for F_{\circledR} and $\operatorname{tang}\left(F_{\circledR} ; F_{C}\right)=0$, so that F_{\circledR} is transverse to F_{C}.
(b). If $\mathrm{F}_{\mathrm{j}} 2 \mathrm{~A}_{0}^{\mathrm{x}}\left[\mathrm{A}_{2}\left[\mathrm{~A}_{3}\left[\mathrm{~A}_{4}\right.\right.\right.$ then the curves $\mathrm{C}_{\mathrm{j} ; 1} ;::: ; \mathrm{C}_{j ; \mathrm{k}_{j}}$ are invariant for F_{\circledR}, for any ${ }^{\circledR} 2 \overline{\mathrm{C}}$. On the other hand, if $® \in 0$, then $\mathrm{C}_{\mathrm{j} ; 0}$ is not invariant for F_{\circledR} and $\operatorname{tang}\left(\mathrm{F}_{\circledR} ; \mathrm{C}_{\mathrm{j} ; 0}\right)=0$, so that F_{a} is transverse to $\mathrm{C}_{\mathrm{j} ; 0}$.
(c). For all $® 2 \bar{C}$, the singularities of F_{\circledR} are reduced and

$$
\operatorname{sing}\left(F_{a}\right)^{1 / 2}\left[{ } _ { j = 1 } ^ { i } \left[i>0 C_{j ; i}{ }^{\Phi}:\right.\right.
$$

M oreover, for each j $2 \mathrm{f} 1 ; \ldots$; rg and $\mathrm{i}>0, \mathrm{~F}_{\circledR}$ contains exactly one singularity on the $\mathrm{C}_{\mathrm{j} ; \mathrm{i}}$, denoted by $\mathrm{q}_{\mathrm{i} \text {; }}(\mathbb{®})$, such that :
(c.1). The map ®2 $\bar{C} 7 q_{; i}(®) 2 C_{j ; i}$ is a regular parametrization of $C_{j ; i}$.
(c.2). If $C_{j ; i}^{2}=i m<0$, then the singularity $q_{; i}(®)$ is of the type $1: i m$ and $I\left(F_{\circledR} ; C_{j ; i} ; q_{; i}(®)\right)=$ i m (see 3.1.9).
(d). If $\circledR_{2} \bar{C}$ is such that F_{\circledR} is tangent to a ${ }^{-}$bration $f_{\circledR}: M$! S_{\circledR}, then f_{\circledR} is elliptic. M oreover, if $A_{0}^{x}\left[A_{2}\left[A_{3}\left[A_{4} \sigma\right.\right.\right.$; then $S_{®}=\bar{C}$.
(e). The divisor of tangencies is

$$
\phi={\underset{j i \in 0}{X} C_{j ; i}: ~}_{C_{j}}
$$

Proof. Let us prove ${ }^{-}$rst that G is transverse to any ${ }^{-}$bre $F_{c}=f^{i}{ }^{1}(c)$ ($A_{0}^{x}\left[A_{2}\left[A_{3}\left[A_{4}\right.\right.\right.$. In this case, we have $F_{c}=m: C$, where $m, 1$ and C is smooth and elliptic. If $m=1$, then F_{c} is a regular ${ }^{\text {² }}$ bre of f , whereas it is of the type m_{0}, if $\mathrm{m}, ~ 2$. According to (a) of Lemma 3.2.2, either C is a leaf of G, or G is transverse to C. Suppose by contradiction that C is a leaf of G. The idea is to prove that this implies that $G^{\prime} F$. Since g is tangent to $G, g j c$ is constant, say $g(C)=b$ In fact, we must have $\mathrm{g}^{1}(\mathrm{~b})=C$, because the generic levels of g are irreducible. Let D and D^{0} be a small neighborhoods of $c 2 S$ and $b 2 S_{1}$, respectively. Set $V=f^{1}{ }^{1}(D) \backslash g^{1}(D 9$. Note that, if C_{1} is near c in S, then $F_{c_{1}}=f^{i}{ }^{1}\left(c_{1}\right)^{1 / 2} V$. On the other hand, $\mathrm{gj}_{\mathrm{F}_{1}}: F_{\mathrm{c}_{1}}$! S_{1} is a holomorphic map, and so it is, either surjective, or constant. Since $g\left(F_{c_{1}}\right)^{1 / 2} D^{0}, \mathrm{gj}_{\mathrm{c}_{1}}$ is constant. This implies that f and g have the same ${ }^{-}$bres in a neighborhood of C, and so $F=G$.

Now, ${ }^{-} \mathrm{xa}{ }^{-}$bre $F_{j} 2 A_{0}^{x}\left[A_{2}\left[A_{3}\left[A_{4}\right.\right.\right.$ and let $C_{j ; i}, i 2 f 0 ; 1:: ; k_{j} g$, the irreducible components of F_{j}, as in (D). Note that $Z\left(F ; C_{j ; i}\right)=1$ if $i>0$ (see ${ }^{-}$gure 1). It follows from (b) of Lemma 3.2.2 that $C_{j ; i}$ is invariant for G, if $i>0$. Let us prove that G is transverse $C_{j ; 0}$. First of all, observe that $\mathrm{C}_{\mathrm{j} ; 0}$ is not invariant for G . The proof of this fact is similar to the argument in the proof of Lemma 3.2.7 that almost all levels of g must cut the singular ${ }^{-}$bre. These intersections must be on $\mathrm{C}_{\mathrm{j} ; 0}$, because the other components are invariant for G . It follows from 3.1.7 that

$$
\mathrm{T}: \mathrm{C}_{\mathrm{j} ; 0}=\mathrm{T}_{\mathrm{G}}: \mathrm{C}_{\mathrm{j} ; 0}=\mathrm{C}_{\mathrm{j} ; 0}^{2} \mathrm{i} \text { tang }\left(\mathrm{G} ; \mathrm{C}_{\mathrm{j} ; 0}\right) \text { : }
$$

On the other hand, since $C_{j ; 0}$ is invariant for F, we get from 3.1.8

$$
\mathrm{T}: \mathrm{C}_{\mathrm{j} ; 0}=2 \mathrm{i} \mathrm{Z}\left(\mathrm{~F} ; \mathrm{C}_{\mathrm{j} ; 0}\right) \quad \Rightarrow \quad \operatorname{tang}\left(\mathrm{G} ; \mathrm{C}_{\mathrm{j} ; 0}\right)=\mathrm{Z}\left(\mathrm{~F} ; \mathrm{C}_{\mathrm{j} ; 0}\right)+\mathrm{C}_{\mathrm{j} ; 0}^{2} \mathrm{i} \quad 2:
$$

Since $Z\left(F ; C_{j ; 0}\right)=4, C_{j ; 0}^{2}=i 2$ if F_{j} is of the type I_{0}^{n} and $Z\left(F ; C_{j ; 0}\right)=3, C_{j ; 0}^{2}=i 1$ in the other cases, we get that tang $\left(G ; C_{j ; 0}\right)=0$ in all the cases. This implies that G is transverse to $C_{j ; 0}$.

Let $W:=M n^{i}{ }_{j}\left(\left[{ }_{i>0} C_{j ; i}\right)^{\Phi}\right.$. The above facts and the de- nition of pencil of foliations, imply that:
(i). If ${ }^{\circledR} G^{-}$and $p 2 \mathrm{~W}$, then F_{\circledR} and F - are transverse in a neighborhood of p .

The fact that $C_{j ; i}, i>1$, is invariant for both foliations, F and G, implies that:
(ii). The curve $C_{j ; i}, i>0$, is invariant for F_{\circledR}, if ${ }^{\circledR} 2 B$. M oreover, $Z\left(F_{\circledR} ; C_{j ; i}\right)=1$ for all ${ }^{\circledR} 2 B$, $j=1 ;:: ; r$ and $i>0$. In particular, F_{\circledR} has just one singularity on $C_{j ; i}$, if $i>0$ and $\circledR_{2} B$.

Let us prove the last relation. Since $C_{j ; i}$ is invariant for both foliations and $T_{F}=T_{F \oplus}=T$, we get from 3.1.8, that

$$
1=2 i \quad Z\left(F ; C_{j ; i}\right)=T: C_{j ; i}=2 i \quad Z\left(F_{\circledR} ; C_{j ; i}\right) \quad \Rightarrow \quad Z\left(F_{\circledR} ; C_{j ; i}\right)=1:
$$

(iii). Suppose that for ${ }^{-}$xed pair $(\mathrm{j} ; \mathrm{i})$, $\mathrm{i}>0$, and for some ${ }^{\circledR} 2 \mathrm{~B}$, the singularity $\mathrm{q}:=\mathrm{q}_{; \mathrm{i}}\left({ }^{(®)}\right.$ is non-degenerate. Let $\mathrm{C}_{\mathrm{j} ; \mathrm{i}}^{2}=\mathrm{i} \mathrm{m}<0$. Then q is a singularity of the type $1: \mathrm{i} \mathrm{m}$ for F_{\odot} and $\mathrm{I}\left(\mathrm{F}_{\circledR} ; \mathrm{C}_{\mathrm{j} ; \mathrm{i}} ; \mathrm{q}\right)=\mathrm{i} \mathrm{m}$. In particular, there exists a coordinate system ($\mathrm{U} ;(\mathrm{x} ; \mathrm{y})$) around q , such that $x(q)=y(q)=0, U \backslash C_{j ; i}=(y=0)$ and F_{\circledR} is represented on U by the vector ${ }^{-}$eld $X_{\circledR}=x \frac{@}{@} \mathrm{i} \mathrm{my}$ @ .

In fact, since q is the unique singularity of F_{\circledR} on $C_{j ; i}$, the Camacho-Sad index of F_{\circledR} at q with respect to $C_{j ; i}$ is $; m=C_{j ; i}^{2}$. Therefore, if Y is a vector ${ }^{-}$eld representing F_{\circledR} is a neighborhood of q and , $1,, 2$ are the eigenvalues of $D Y(q)$, where, 1 corresponds to the direction tangent to $C_{j ; i}$, then ,2 $=1=i \mathrm{~m}$. On the other hand, since the curve $\mathrm{C}_{\mathrm{j} ; \mathrm{i}}$ is rational, we have that the leaf $C_{j ; i} n f q g$ of F_{\circledR}, is homeomorphic to C, so that its holonomy is trivial. It follows from a Lemma of M attei and M oussu (cf. [M-M]), that the foliation is linearizible at q, that is represented by a linear vector ${ }^{\text {- }}$ eld in some coordinate system in neighborhood of q. Since, $2_{1}=\mathrm{i} \mathrm{m}$, we can choose the coordinate system $\left(\mathrm{U} ;(\mathrm{x} ; \mathrm{y})\right.$) in such a way that the linear vector ${ }^{-}$eld is given by x @ $\mathrm{i} \mathrm{my} \frac{\varrho}{@}$ and that $U \backslash C_{j ; i}=(y=0)$. This proves (iii).

Let us prove that $B=\bar{C}$ and that the singularity of F_{\circledR} on $C_{j ; i}, i>0$, is non-degenerate for every $® 2 \overline{\mathrm{C}}$. First of all, observe that if $® 2 \overline{\mathrm{C}} \mathrm{nB}$, then there exist q 2 M and holomorphic vector ${ }^{-}$elds X and Y representing F and G, respectively, in a neighborhood U of q such that $\operatorname{sing}(X+® Y)$ contains a holomorphic curve through q (see Remark 3.1.1). Denote by P the set of such points. In order to prove that $B=\bar{C}$, it is su \pm cient to verify that $P=;$. Note that (i) implies that $P 1 / 2\left[{ }_{j}\left(\left[i>0 C_{j ; i}\right)\right.\right.$. M oreover, if $P G ;$, then P contains at least a curve. Since P is an analytic subset of M, it follows that if $C_{j ; i} \backslash P G$; then $C_{j ; i} 1 / 2 P$. Suppose by contradiction that $C_{j ; i} 1 / 2 P$ for some $2 \mathrm{f} 1 ;::: ; r g$ and some $i>0$. Let $\mathrm{q}_{\mathrm{b}}:=\mathrm{q}_{\mathrm{i}}\left(\mathrm{i}(0)\right.$ and X and Y be vector ${ }^{-}$elds representing F and G, respectively, in a neighborhood U of ϕ_{0} such that F_{\circledR} is represented by $X{ }_{\circledR}:=X+® Y$ on U. If we take U small, we can suppose that there exists a coordinate system ($\mathrm{U} ;(\mathrm{x} ; \mathrm{y})$) such that $U \backslash C_{j ; i}=(y=0), x\left(q_{0}\right)=y\left(q_{0}\right)=0$ and $X=x @$ @ $m y @, C_{j ; i}^{2}=i m$. Since $C_{j ; i}$ is invariant
 $b \in 0$ and $k, 1$. Hence, $X_{\circledR}{ }_{\circledR} c_{j} ; i \quad$ can be written as
(x) $\left.X_{\circledR}(x ; 0)={ }^{i} x+\circledR b+x^{k}: u(x)\right)^{\Phi} \frac{@}{@}:$

Since $C_{j ; i}{ }^{1 / 2} P$, it follows that $\left.x+\mathbb{@} b+x^{k}: u(x)\right)^{\prime} 0$ on $U \backslash C_{j ; i}$, for some ${ }^{-} x e d ~ ® 2 C$. But this is impossible, so that $P=$; It follows from (ii) that $Z\left(F_{\circledR} ; C_{j ; i}\right)=1$ for all $\mathrm{i}>0$ and all $\circledR_{2} \bar{C}$. In particular, F_{\circledR} has just one singularity on $C_{j ; i}, q_{; i}(®)$, and if X_{\circledR} is a vector eld representing F_{\circledR} in a neighborhood of $q_{; i}\left(®_{\text {® }}\right.$, then the eigenvalue of $D X_{\circledR}\left(q_{; i}{ }^{(®)}\right)$ relative to the eigendirection tangent to $C_{j ; i}$, say, $1(\mathbb{Q})$, is non-zero. M oreover, if, $2(\circledR)$ is the other eigenvalue, then, $2(®)=1(®)=I\left(F_{\circledR} ; C_{j ; i} ; q_{; i}(®)\right)=C_{j ; i}^{2} \in 0$ (see 3.1.9). This implies that, $2(\mathbb{B}) \in 0$, so that $\left.\mathrm{q}_{; i} \mathrm{~B}^{\circledR}\right)$ is a non-degenerate singularity of F_{\circledR}.

We have already proved assertion (a), (b) and (c.2) of the statement of the Lemma. Let us prove (c.1). Observe ${ }^{-}$rst that, for ${ }^{-}$xed $C_{j ; i}, i>0$, the map $® 2 \bar{C} \overline{7} q_{; i}(®) 2 C_{j ; i}$ is holomorphic. This follows from the general theory of di ®erential equations (see [Ar]). In order to prove that it is a regular parametrization of $\mathrm{C}_{\mathrm{j} ; \mathrm{i}}$, it is su \pm cient to verify that it has no critical point. We will prove that ${ }^{\circledR}=0$ is not a critical point of the map $q_{; i}\left({ }^{\circledR}\right)$ and leave the general case for the reader. Represent F_{\circledR} in a neighborhood U of $q_{; i}(0)$ by a vector ${ }^{-}$eld X_{\circledR} such that $\mathrm{X}_{\circledR} \mathbb{J} \cup \backslash \mathrm{c}_{\mathrm{j} ; i}$ has an expression as in (*). In the coordinate system ($\mathrm{x} ; \mathrm{y}$) considered, we have that $q_{; i}(0)=(0 ; 0)$ and that, for $j ® j$ small, $q_{; i}(®):=(x(®) ; 0)$, where $x(®)$ is the solution of the equation $\left.A ́(x ; ®):=x+® b+x^{k}: u(x)\right)=0$. Since $\frac{@ A}{@}(0 ; 0)=1$ and $\frac{@ A}{@ ®}(0 ; 0)=b \in 0$, we get that $x^{9}(0)=\mathrm{i} b \in 0$, so that $\mathbb{B}=0$ is not a critical point of $q_{; i}(\mathbb{®})$.

Let us prove assertion (d). Suppose that F_{\circledR} is tangent to a ${ }^{-}$bration $f_{\circledR}: M!S_{\circledR}$, where ${ }^{\circledR} \in 0$. Let $G_{b}=f_{\circledR}^{1}{ }^{1}(b)$ be a generic ${ }^{-}$bre of f_{\odot}. We have seen that $G_{b} \backslash F_{j}{ }^{1 / 2} C_{j ; 0}$, for any $j=1 ;:: r$. It follows from (a) and (b) that F is transverse to G_{b}, so that G_{b} is an elliptic curve, by Lemma 3.2.1. Let us suppose that $A_{0}^{x}\left[A_{2}\left[A_{3}\left[A_{4} G\right.\right.\right.$; and prove that $S_{\circledR}{ }^{\prime} \bar{C}$. Let $F_{j} 2 A_{0}^{x}\left[A_{2}\left[A_{3}\left[A_{4}\right.\right.\right.$. Since F_{\circledR} is transverse to $C_{j ; 0}$ it follows that $f_{\circledR} \mathrm{C}_{j ; 0}: C_{j ; 0}!\mathrm{S}_{\circledR}$ is a non-constant holomorphic map. This implies that $S_{®^{\prime}}{ }^{\prime} \bar{C}$, because $C_{j ; 0}$ is a rational curve.

Finally, let us prove (e). It follows from (a) and (b) that, as a set, $¢$ is contained in ${ }_{[j}\left(\left[i>0 C_{j ; i}\right)\right.$. This implies that, as a divisor we must have

$$
\phi=\underset{j}{X} \underset{i>0}{\mathrm{i}} \mathrm{n}_{\mathrm{j} ; \mathrm{i}} C_{j ; i}{ }^{\Phi} \text {; }
$$

where $n_{j ; i} 2 N$. Since $C_{j ; i}: C_{k ;}{ }^{\prime}=0$ if, either $j \in k$, or $j=k$ and $0 \in i \epsilon^{`} \in 0$, we have

$$
\phi: C_{j ; i}=n_{j ; i} C_{j ; i}^{2}, \text { for } i \in 0:
$$

By using 3.1.10 and 3.1.8, we have $[\phi]=T_{G}^{d}+N_{F}$ and $T_{G}^{d}: C_{j ; i}=Z\left(G ; C_{j ; i}\right) i \quad X\left(C_{j ; i}\right)=i 1$, $N_{F}: C_{j ; i}=C_{j ; i}^{2}+Z\left(F ; C_{j ; i}\right)=C_{j ; i}^{2}+1$, so that

$$
n_{j ; i} C_{j ; i}^{2}=\phi: C_{j ; i}=C_{j ; i}^{2} \Rightarrow n_{j ; i}=1 ;
$$

because $C_{j: i}^{2} \in 0 . \propto$
3.2.10 Corollary. In the situation considered, let

$$
F\left(M ; T_{F}\right)=f H ; H \text { is a foliation on } M \text { such that } T_{H}=T_{F} g \text { : }
$$

Then $F\left(M ; T_{F}\right)=f F_{\circledR} ;{ }^{\circledR} 2 \bar{C} g$, where $\left(F_{\circledR}\right)_{\circledR 2} \bar{C}$ is the pencil generated by F and G. In particular, $\operatorname{dim}\left(F\left(M ; T_{F}\right)\right)=1$ and if $\left(H_{S}\right)_{s 2}$ s is a holomorphic family of foliations on $F\left(M ; T_{F}\right)$, then there exists a holomorphic map Á: S! \bar{C} such that $H_{s}=F_{\dot{A}(s)}$ for all s 2 S .
 and $N_{H}=N_{F_{\odot}}$, which implies that $\left[\phi\left(H ; F_{\circledR}\right)\right]=[\phi(G ; F)]=[\phi]$ (as an element of $H^{1}\left(M ; O^{\circledR}\right)$). Let us prove that, as a curve, we have also

$$
\Phi\left(H ; F_{\circledR}\right)=\varnothing=\left[{ }_{j=1}^{r}{ }^{i}{ }_{i=1}^{k_{j}} C_{j ; i}{ }^{\dagger}:\right.
$$

Write

$$
\phi\left(H ; F_{\circledR}\right)={ }_{i=1}^{X^{s}} m_{i}: S_{i}+{ }_{j=1}^{X^{v}} k_{j}: V_{j} ;
$$

where $\mathrm{S}_{1} ;::: \mathrm{S}_{\mathrm{s}}$ are the components of $\phi\left(\mathrm{H} ; \mathrm{F}_{\circledR}\right)$ which are not contained in ${ }^{-}$bres of $\mathrm{f}, \mathrm{V}_{1} ;:: ; \mathrm{V}_{\mathrm{V}}$ are the components contained in ${ }^{-}$bres of f and $m_{1} ;:: ; m_{s} ; k_{1} ;:: ; k_{v}$ are non negative integers. Since $\left[\phi\left(H ; F_{\circledR}\right)\right]=[\phi]$, we must have $\phi\left(H ; F_{\circledR}\right): C=\phi: C$ for any curve C on M. Let $F=f^{i}{ }^{1}(c)$ be a regular ${ }^{-}$bre of f . We have, $\mathrm{F}_{\mathrm{F}}: \mathrm{S}_{\mathrm{s}}>0$ for all i $2 \mathrm{f} 1 ;:: ;$ sg and $\mathrm{F}: \mathrm{V}_{\mathrm{j}}=0$ for all $\mathrm{j} 2 \mathrm{f} 1 ;:: ;$ vg.
 Lemma 3.2.9 that $\$: F=0$, and so

$$
X_{i=1}^{X^{s}} m_{i} F: S_{i}=0 \Rightarrow m_{i}=0 \text { for all } i=1 ;::: ; s:
$$

Now, let $\mathrm{G}=\mathrm{g}^{\mathrm{l}}{ }^{1}(\mathrm{~b})$ be a regular ${ }^{\text { }}$ bre of g . It follows from Lemma 3.2.9 that $\mathrm{G}: \mathrm{F}_{\mathrm{j}}=\mathrm{G}: \mathrm{C}_{\mathrm{j} ; 0}>0$, and $\mathrm{G}: \mathrm{C}_{\mathrm{j} ; \mathrm{i}}=0$, for any $\mathrm{j}=1 ;::: ; r$ and $\mathrm{i}>0$, and that $\mathrm{G}: \mathrm{F}>0$ if F is, either a regular ${ }^{-}$bre of f , or a ${ }^{-}$bre of type $\mathrm{m}: \mathrm{I}_{0}$. Therefore (e) of Lemma 3.2.9, implies that

$$
0=G: \nmid=G: \Varangle\left(H ; F_{\circledR}\right)={ }_{j=1}^{X^{v}} k_{j} G: V_{j}, 0 \Rightarrow \quad k_{j}=0 \text { if } V_{j}=C_{t ; 0} \text { for some } t=1 ; \ldots: r:
$$

Hence $j \notin\left(H ; F_{\circledR}\right) j 1 / 2 j \nmid j$. Finally, if we take $C=C_{t ; i}$ for some $t=1 ;::: ; r$ and $i>0$, we obtain $\phi\left(H ; F_{\circledR}\right): C=\varnothing: C=C^{2} G 0$, which shows that $\downarrow\left(H ; F_{\circledR}\right)=\varnothing$. This fact implies that, if $p Z \phi$ is ${ }^{-}$xed, and H and F_{\circledR} have the same tangent line at p, then $H=F_{\circledR}$. On the other hand, given $p Z \emptyset$, there exists $®^{\circledR} 2 \bar{C}$ such that H and F_{\circledR} have the same direction, so that $H=F_{\circledR}$. This implies that $\mathrm{F}\left(\mathrm{M} ; \mathrm{T}_{\mathrm{F}}\right)=\mathrm{fF} \mathrm{B}_{\circledR} ;{ }^{\circledR 2} \overline{\mathrm{C}} \mathrm{g}$. The remaining conclusions are a consequence of this fact, as the reader can check.
3.2.11 Corollary. If F_{\circledR} is tangent to a ${ }^{-}$bration $f_{\circledR}: M$! S_{\circledR}, then :
(a). f_{\circledast} is an elliptic ${ }^{-}$bration and S_{\circledast} is either a rational, or an elliptic curve.
(b). A ny critical ${ }^{-}$bre of f_{\odot} is of one of the types $m I_{0}, I_{0}^{a}$, $I T, I M$ or $I \nabla$.

Proof. We have seen in (d) of Lemma 3.2.9 that f_{\circledR} is an elliptic ${ }^{-}$bration. Let F be a generic level of f. Since $h:=f_{\circledR} j_{F}: F!S_{\circledR}$ is holomorphic and non-constant and F is an elliptic curve, it follows that S_{\circledR} is, either a rational, or an elliptic curve (cf. [G-H]). According to Lemma 3.2.7, in order to prove assertion (b), it is su \pm cient to verify that F_{\circledR} has no contractible curve. Suppose by contradiction that F_{\circledR} has a contractible curve, say C. Since $C^{2}=i 1$, we must have $C 1 / 2 \mathrm{Mn}{ }_{[j}\left(\left[{ }_{i>0} C_{j ; i}\right)\right.$, because $C_{j ; i}^{2} \cdot i 2$, if $i>0$. This implies that F is transverse to C and it follows from 3.1.7 that $T_{F}: C=C^{2}=;$ 1. On the other hand, since C is contractible for F_{\circledR}, we must have that, either $Z\left(F_{\circledR} ; C\right)=1$, or $Z\left(F_{\circledR} ; C\right)=2$, so that $T_{F}: C=X(C)$; $Z\left(F_{\circledR} ; C\right), 0$, because $T_{F}=T_{F_{\odot}}$, which is a contradiction. $\&$

Let $A_{0}^{m}, A_{0}=\left[m A_{0}^{m}, A_{0}^{w}, A_{2}, A_{3}\right.$ and A_{4} be as (A), (B) and (C). We will use the following notations: $a_{0}=\# A_{0}, a_{0}^{\alpha}=\# A_{0}^{\alpha}, a_{j}=\# A_{j}$, for $j=2 ; 3 ; 4$, and $a=a_{0}+a_{0}^{\alpha}+a_{2}+a_{3}+a_{4}$.
(E). If $A_{0} G$; , we will use the notation $G_{1} ;:: ; G_{a_{0}}$ for the ${ }^{-}$bres in A_{0}. Note that each G_{i} is an elliptic ${ }^{-}$bre with multiplicity, say $m_{i}, 2$, so that we can write $G_{i}=m_{i}: C_{i}$, where C_{i} is an (irreducible) elliptic curve.

Recall that $\mathrm{f}: \mathrm{M}$! S is an elliptic ${ }^{-}$bration, where S is, either rational, or elliptic. We will consider both cases.
3.2.12 Lemma. Suppose that S is an elliptic curve. Then M is a complex algebraic torus and the foliations F and G can be de- ned by global non-vanishing holomorphic vector ${ }^{-}$elds on M. M oreover, the pencil generated by F and G is a weakly exceptional family of foliations.
Proof. Let us prove ${ }^{-}$rst that $f: M$! S has no critical ${ }^{-}$bres, so that it is a ${ }^{-}$bre bundle. Since S is an elliptic curve, we must have $A_{0}^{x}\left[A_{2}\left[A_{3}\left[A_{4}=\right.\right.\right.$; , by (d) of Lemma 3.2.9. This implies that F and G are everywhere transverse. Let G be a generic ${ }^{-}$bre of g and $h:=f j_{G}: G!S$. Then h is a holomorphic non-constant map, so that it has no critical point, by R iemann-Hurwitz formula. On the other hand, if f had some critical ${ }^{`}$ bre, say $G_{j} 2 A_{0}$, then the points in $G_{j} \backslash G$ would be critical points of h. Therefore $A_{0}=$; and f has no critical ${ }^{-}$bre. In particular, $f: M$! S is a ${ }^{-}$bre bundle. Since G is transverse to F , this bundle is a principal bundle with transiction maps locally constant. It follows from BIa) of page 146 of [BPV], that M is a complex 2-torus and the foliations F and G are de- ned by global vector ${ }^{-}$elds. This implies that the pencil is a weakly exceptional family of foliations. We leave the details for the reader. a

From now on, in this section, we will suppose that $f: M!\bar{C}$.
3.2.13 Lemma. In the above hypothesis, we have the following :
 and the $\mathrm{C}_{\mathrm{j} ; \mathrm{i}}$ are as in (D).
 particular,

$$
K_{M}^{2}=c_{1}^{2}(M)=X_{j=1}^{X} i_{j}^{2}=i 3 a_{2} i 2 a_{3} i \quad a_{4}:
$$

(c). $6 a_{0}^{\alpha}+10 a_{2}+9 a_{3}+8 a_{4}+12{ }^{P}{ }_{i=1}^{a_{0}}\left(1 i_{i} \frac{1}{m_{i}}\right)=24$.
(d). $C_{2}(M)=6 a_{0}^{x}+5 a_{2}+5 a_{3}+5 a_{4}$.

Proof. Let us prove (a). After composing f with a M oebius transformation, we can suppose that the ${ }^{-}$bre $C_{1}:=f^{i}{ }^{1}(1)$ is a regular level of f, so that we can consider f as a meromorphic function on M with pole divisor $(\mathrm{f})_{1}=\left[\mathrm{C}_{1}\right]$. In this case, the foliation F is tangent to the meromorphic 1 -form ${ }^{f}$, so that $\left.N_{F}^{a}=(f)_{0} i(f)\right)_{1}$ (see 3.1.3). Note that $(f)_{1}=2\left[C_{1}\right]$. Since C_{1} is a regular ${ }^{-}$bre of f , we have that $\left[\mathrm{C}_{1}\right]=[\mathrm{F}]$, where F is any ${ }^{-} \mathrm{xed}{ }^{-}$bre of f . On the other hand, $d(p)=0$ if, and only if, p belongs to a multiple component C of a critical - bre of f. M oreover, if the multiplicity of f at C is $m, 2$, then C will be a component of order $m_{i} 1$ of the divisor of zeroes of $f,(f)_{0}$. If $F_{j} 2 A_{0}^{x}\left[A_{2}\left[A_{3}\left[A_{4}\right.\right.\right.$, with the notation of (D), we have

$$
\left[F_{j}\right]={ }_{i=0}^{X_{i}} m_{j ; i}\left[C_{j ; i}\right]=[F] ;
$$

so that,

$$
\begin{aligned}
& \left.\left[(d f)_{0}\right]={ }_{j=1}^{X^{r}}{ }_{i=0}^{X_{j}}\left(m_{j ; i} i 1\right)\left[C_{j ; i}\right]\right)+{ }_{i=0}^{X_{0}}\left(m_{i} i 1\right)\left[C_{i}\right]= \\
& \left.={ }_{j=1}^{X^{r}}\left({ }_{i=0}^{X_{j}} m_{j ; i}\left[C_{j ; i}\right]\right)+{ }_{i=0}^{X_{0}} m_{i}\left[C_{i}\right] i{ }_{j=1}^{X^{r}}{ }_{i=0}^{X_{j}}\left[C_{j ; i}\right]\right) i{ }_{i=0}^{X_{0}}\left[C_{i}\right]=a[F] i{ }_{j=1}^{X^{r}} X_{j}{ }_{i=0}^{X_{0}}\left[C_{i}\right]:
\end{aligned}
$$

Hence :

$$
N_{F}^{k}=\left(a_{i} 2\right)[F] i{ }_{j=1}^{X_{j}} x_{i=0}^{X_{0}}\left[C_{i}\right] ;
$$

which proves (a). Since $[\phi]=[\phi(F ; G)]=T_{G}^{q}+N_{F}=T_{F}^{q}+N_{F}$ and $K_{M}=T_{F}^{q}+N_{F}^{q}$, we get $K_{M}=[\phi]+2 N_{F}^{a}$ (see 3.1.2). Therefore, (e) of Lemma 3.2.9 implies that

$$
K_{M}=2\left(a_{i} 2\right)[F] i{ }_{j=1}^{X^{r}}\left(2\left[C_{j ; 0}\right]+{ }_{i=1}^{X_{j}}\left[C_{j ; i}\right]\right) i 2_{i=0}^{X_{0}}\left[C_{i}\right]=2\left(a_{i} 2\right)[F]_{i} X_{j=1}^{X^{\prime}} i j i 2_{i=0}^{X_{0}}\left[C_{i}\right]:
$$

In particular, $K_{M}^{2}=P_{j=1} i_{j}^{2}$, as the reader can check. Hence, (b) follows from: $i_{j}^{2}=0$, if $F_{j} 2 A_{0}^{x}, i{ }_{j}^{2}=i 3$ if $F_{j} 2 A_{2}, i_{j}^{2}=i 2$ if $F_{j} 2 A_{3}$ and $i{ }_{j}^{2}=i 1$ if $F_{j} 2 A_{4}$. For instance, if $F_{j} 2 A_{2}$ we have ${ }_{i j}=2\left[C_{j ; 0}\right]+\left[C_{j ; 1}\right]+\left[C_{j ; 2}\right]+\left[C_{j ; 3}\right]$, where $C_{j ; 0}^{2} \overline{\bar{p}} i_{3} 1, C_{j ; 1}^{2}=i 6, C_{j ; 2}^{2}=i 3$ and $C_{j ; 3}^{2}=i 2$ (see - gure 1.b), so that $i_{j}^{2}=4 C_{j ; 0}^{2}+C_{j ; 1}^{2}+C_{j ; 2}^{2}+C_{j ; 3}^{2}+4 \underset{n=1}{3} C_{j ; n}: C_{j ; 0}={ }_{i} 4 i 6 i 3 i 2+4: 3=i 3$. The other identities can be checked in the same way.

In order to prove (c) we will use the other ${ }^{-}$bration $\mathrm{g}: \mathrm{M}!\overline{\mathrm{C}}$. Let G be a regular ${ }^{-}$bre of g and consider $\mathrm{h}:=\mathrm{f} \mathrm{j}_{\mathrm{G}}: \mathrm{G}!\overline{\mathrm{C}}$. It follows from R iemann-Hurwitz formula and the fact that g is an elliptic ${ }^{\text {- bration that }}$
where m_{p} is the rami ${ }^{-}$cation number of h at the point $p 2 G$ and d is the topological degree of h. We observe the following facts :
(i). If F is a regular ${ }^{-}$bre of f, then $d=F$: G.
(ii). The critical points of h are contained in the intersection of G with the critical ${ }^{-}$bres of f.
(iii). If $F_{j} 2 A_{0}^{\alpha}\left[A_{2}\left[A_{3}\left[A_{4}\right.\right.\right.$ then $G \backslash F_{j}=G \backslash C_{j ; 0}$ and G intersects $C_{j ; 0}$ transversely (Lemma 3.2.9). This implies that $\#\left(G \backslash F_{j}\right)=\frac{d}{m_{j} ; 0}$, where $m_{j ; 0}$ is the multiplicity of $C_{j ; 0}$. M oreover, if $\mathrm{p} 2 \mathrm{G} \backslash \mathrm{F}_{\mathrm{j}}$ then the rami ${ }^{-}$cation number of h at p is $m_{j ; 0}$.
(iv). If $G_{i} 2 A_{0}$ then G intersects G_{i} transversely at $\frac{d}{m_{i}}$ points (Lemma 3.2.9). Moreover, if $\mathrm{p} 2 \mathrm{G} \backslash \mathrm{G}_{\mathrm{i}}$ then the rami ${ }^{-}$cation number of h at p is m_{i}.

The above facts imply that (see ${ }^{-}$gure 1 for the multiplicities $\mathrm{m}_{\mathrm{j} ; 0}$)

$$
2 d=(2 ; 1) \frac{d}{2} a_{0}^{x}+(6 ; 1) \frac{d}{6} a_{2}+(4 ; 1) \frac{d}{4} a_{3}+(3 ; 1) \frac{d}{3} a_{4}+{ }_{i=1}^{\lambda_{0}}\left(m_{i} ; 1\right) \frac{d}{m_{i}} ;
$$

and the above equality implies (c), as the reader can check.
It remains to prove (d). We use here the following well known result (cf. [BPV]) :
"Let $f: M$! S be a ${ }^{-}$bration, where S is a compact Riemann surface and M is a compact complex surface. Then

$$
c_{2}(M)=X(S): X\left(F_{g}\right)+{ }_{c 2 S}^{X}\left(X\left(F_{c}\right) i X\left(F_{g}\right)\right) ;
$$

where in the above sum F_{g} denotes a generic ${ }^{-}$bre of f and $X\left(F_{c}\right)$ denotes the topological Euler characteristic of the curve $\left(f^{i}{ }^{1}(c)\right)_{\text {red }}$."
P In the above statement, $\left(\mathrm{f}_{\mathrm{i}}{ }^{1}(\mathrm{c})\right)_{\text {red }}$ denotes the curve $\mathrm{fi}^{1}(\mathrm{c})$ reduced, that is if $\mathrm{f}^{\mathrm{i}}(\mathrm{c})=$ ${ }_{j} m_{j} C_{j}$, then $\left(f^{i}{ }^{1}(c)\right)_{r e d}={ }_{j} C_{j}$. In our case, $f: M!\bar{C}, X(S)=2, X\left(F_{g}\right)=0$ and $X\left(F_{c}\right)=0$ if $F_{c} 2 A_{0}$, so that

$$
C_{2}(M)=\underbrace{X}_{F_{c} 2 A_{0}^{\pi}\left[A _ { 2 } \left[A _ { 3 } \left[A_{4}\right.\right.\right.} X\left(F_{c}\right):
$$

On the other hand, we have $X\left(F_{c}\right)=6$ if $F_{c} 2 A_{0}^{x}$ and $X\left(F_{c}\right)=5$ if $F_{c} 2 A_{2}\left[A_{3}\left[A_{4}\right.\right.$. Therefore,

$$
c_{2}(M)=6 a_{0}^{\alpha}+5 a_{2}+5 a_{3}+5 a_{4}:
$$

\propto
3.2.14 Remark. In the table below we give all the non-negative integer possible solutions of the
equation in (c) of Lemma 3.2.13:

Sol.	1	2	3	4	5	6	7	8	9	10	11	12	13
a_{0}	0	0	0	0	1	1	1	1	1	1	2	3	4
$\mathrm{a}_{0}^{\mathrm{K}}$	0	1	1	4	3	1	1	1	0	0	2	1	0
a_{2}	0	1	0	0	0	1	0	0	1	0	0	0	0
a_{3}	0	0	2	0	0	0	1	0	0	0	0	0	0
a_{4}	3	1	0	0	0	0	0	1	1	2	0	0	0
$\mathrm{~m}_{\mathrm{i}}$	i	i	i	i	2	3	4	6	2	3	$2 ; 2$	$2 ; 2 ; 2$	$2 ; 2 ; 2 ; 2$
a	3	3	3	4	4	3	3	3	3	3	4	4	4
$\mathrm{C}_{2}(\mathrm{M})$	15	16	16	24									
$\mathrm{~K}_{\mathrm{M}}^{2}$	i 3	i 4	i 4	0									

Table of solutions

In the botton of the table we give the possible values of $C_{2}(M)$ and K_{M}^{2} for the four ${ }^{-}$rst solutions. Note that the solutions 1,2 and 3 correspond to the families of types 1, 2 and 3, respectively, whereas the solution 4 coresponds to the second example in x2.1.
3.2.15 Lemma. The only solutions of the equation in (c) of Lemma 3.2.13, which come from foliations F and G as before, are the solutions $1,2,3$ and 4.
Proof. First of all, let us consider the monodromy of the ${ }^{-}$bration f . By using it, we will prove that there are no ${ }^{-}$brations corresponding to solutions $5 ; 6 ; 7 ; 8 ; 9 ; 10$ and 12 . Let $c_{1} ; \ldots ; c_{a} 2 \bar{C}$ be the critical values of f, c be a regular value and $F=f^{i}(c)$. Recall that the monodromy is a homomorphism $A A_{1}{ }_{1}\left(\bar{C} n f c_{1} ;::: ; c_{a} g ; c\right)!\operatorname{Aut}\left(Z^{2}\right)^{\prime} \quad \operatorname{Aut}\left(H_{1}(F ; Z)\right)$ (cf. [BPV]). Note that ${ }_{1}\left(\overline{\mathrm{C}} \mathrm{nf}_{1} ;::: ; \mathrm{c}_{\mathrm{a}} \mathrm{g} ; \mathrm{C}\right)$ is generated by a curves, ${ }^{\circ}{ }_{1} ;:::{ }^{\circ}{ }^{\circ}{ }_{a}$, as in ${ }^{-}$gure 8 , with the relation ${ }^{\circ}{ }_{1} \mathrm{~m}::: \mathrm{m}^{\circ}{ }_{a}=$ 1. Let $G=A ́\left(1{ }_{1}\left(\bar{C} n f c_{1} ;:: ; C_{a} g ; c\right)\right.$). If we use the notation $A\left({ }^{\circ}{ }_{j}\right):=T_{j}$, then $G=<T_{1} ;:: ; T_{a}>$, where $T_{1} \pm::: \pm T_{a}=$ id. The monodromy of the K odaira ${ }^{-}$bres, along curves as in ${ }^{-}$gure 8 , is well known (cf. [BPV]). We observe that the monodromy of the - bres IT, IM and IV, coincides with that of the ${ }^{-}$bres II, III and IV, respectively, of K odaira's classi ${ }^{-}$cation.

Fig 8
The monodromy $T_{j}, j=1 ;:: ; a$, can be of the one of the following types:
(i). $T_{j}=i d$, if $f^{i 1}\left(c_{j}\right)$ is of the type $m l_{0}, m, 2$.
(ii). $T_{j}={ }_{i}$ id, if $f^{1}{ }^{1}\left(\mathrm{c}_{\mathrm{j}}\right)$ is of the type $I_{0}^{\text {a }}$.
(iii). T_{j} is conjugated to the matrix $\begin{array}{cc}1 & 1^{\prime \prime} \\ i & 0\end{array}$, if $f^{i}\left(c_{j}\right)$ is of the type It. In particular, the order of T_{j} is 6 .
(iv). T_{j} is conjugated to the matrix $\begin{array}{cc}\mu & 1^{\text {I }} \\ i & 1 \\ 0\end{array}$, if $f^{i 1}\left(c_{j}\right)$ is of the type IM. In particular, the order of T_{j} is 4.
(v). T_{j} is conjugated to the matrix $\begin{array}{cc}0 & 1 \\ i & 1 \\ i & 1\end{array}$, if $f^{i}{ }^{1}\left(G_{j}\right)$ is of the type $I \forall$. In particular, the order of T_{j} is 3 .

Let us prove that the solutions 6,7,8,9 and 10, cannot occur. In these cases we have a=3 and one of the critical ${ }^{-}$bres, say $\mathrm{fi}^{1}\left(\mathrm{c}_{3}\right)$, is of the type m_{0}, so that $G=<\mathrm{T}_{1} ; \mathrm{T}_{2}>$, where $T_{1} \pm T_{2}=\mathrm{id}$. This implies that G is abelian, so that we can suppose that T_{1} and T_{2} are given by same matrixes as in (ii),...,(v). As the reader can check, in all these cases, we have $T_{1} \pm T_{2} 6$ id, which is a contradiction. Therefore, these cases cannot happen. On the other hand, for the solutions 5 and 12 , the ${ }^{-}$bres can be only of the types $2 I_{0}$ and I_{0}^{x}, so that $G=f i d ; i d g$. In these cases, as the reader can check, we have $T_{1} \pm T_{2} \pm T_{3} \pm T_{4}=\mathrm{i}$ id ϵ id and so these cases cannot occur also.

It remains to prove that the solutions 11 and 13 do not occur. Let us prove ${ }^{-}$rst that $\mathrm{K}_{\mathrm{M}}=0$ in the case of solutions 4, 11 and 13 . Note that, for a ${ }^{-}$bre F_{j} of type $I_{0}^{\text {a }}$, we have $\left[F_{j}\right]=i j$. For the solutions 11 and 13 , we have $a=4$ and $a_{0} 2 f 2 ; 4 \mathrm{~g}$, so that $A_{0} \sigma$;. Moreover, if $G_{i} 2 A_{0}$, then $m_{i}=2$ and $G_{i}=2: C_{i}$, so that (b) of Lemma 3.2.13 implies that:

$$
K_{M}=4[F] i{ }_{i=1}^{x_{0}^{\mathrm{K}}} i_{j}{ }_{i=0}^{X_{0}} 2:\left[C_{i}\right]=\left(4 i \quad a_{0}^{x} i \quad a_{0}\right)[F]=0:
$$

The above fact, implies that there exists a holomorphic non-vanishing 2-form on M, say $£$ (cf. [BPV]). We will prove that this leads to a contradiction. The idea is to prove that if $\mathrm{G}_{\mathrm{i}}=2: \mathrm{C}_{1}$ and W is a small neighborhood of C_{i}, then any holomorphic 2 -form on W must vanish along C_{i}, which contradicts the fact that $£$ does not vanishes. Let $G_{i}=f^{i}{ }^{1}\left(c_{i}\right),{ }^{-} x$ a small disk D around c_{i}, such that c_{i} is the unique critical value of f on D, and set $W=f^{i 1}(D)$. We know that f is isotrivial, so that we can suppose that its generic ${ }^{-}$bre is biholomorphic to $C=<1 ; b>$ for some b® R. We will use the following fact (see [BPV] pages 151 and 155) :
$\left(^{*}\right)$. We can choose the representation $C=<1 ; b>$ above and D small enough, in such a way that W is biholomorphic to $(C £ D)=^{\prime}$, where D is the unit disk on C and ' is the equivalence relation on $C £ D$ de- ned by the action generated by $T_{1} ; T_{2}: C \notin D!C \notin D$, where $T_{1}(z ; w)=(z+1=2 ; i w)$ and $T_{2}(z ; w)=(z+b w)$. In this representation of W, we have $C_{i}=f w=0 g$.

Let $1 / 4 C £ D!(C £ D)=^{\prime}$ be the projection of the equivalence relation and set $£_{1}=1 / 4 /(£)$. Note that $1 / 4$ is a covering map with two sheets, so that $£_{1}$ do not vanishes on $C £ D$. Let $£_{1}=A ́(z ; w): d z{ }^{\wedge} d w$, where Á is holomorphic. Note that $T_{j}{ }^{\mathfrak{M}}\left(£_{1}\right)=£_{1}$, for $j=1 ; 2$. This implies that

$$
A ́(z+1=2 ; ; w)=i A ́(z ; w) \text { and Á(z+b;w)=Á(z;w) } \Rightarrow \text { Á does not depend on } z \text {; }
$$

so that $\tilde{A}(z ; w)=\tilde{A}(w)$, where $\tilde{A}(; w)=; \tilde{A}(w)$. But, this implies that $\tilde{A}(0)=0$ and that $£ j_{c_{i}}{ }^{\prime} 0$, which is a contradiction.
3.2.16 Corollary. In the situation of Lemma 3.2.15, let $E=f ® F_{a}$ has a ${ }^{-}$rst integralg and for ${ }^{\circledR} 2 \mathrm{E}$ let $\mathrm{f}_{\circledR}: M$! S_{\circledR} be a ${ }^{-}$bration tangent to F_{\circledR}. Then $\mathrm{S}_{\circledR}=\overline{\mathrm{C}}$ and the critical ${ }^{-}$bres of f_{\circledR} are of the same type as the critical ${ }^{-}$bres of f.
Proof. Observe ${ }^{-}$rst that $A_{0}^{x}\left[A_{2}\left[A_{3}\left[A_{4} \sigma\right.\right.\right.$; , so that $S_{\circledR}=\bar{C}$. M oreover, it follows from the Corollary 3.2.11 that the critical ${ }^{-}$bres of f_{\circledast} can be only of the types $\mathrm{ml}_{0}, \mathrm{I}_{0}^{\mathrm{x}}, \mathrm{I}, \mathrm{I}, \mathrm{IM}$ or $\mathrm{I} \nabla$. Let $a_{0}(®), a_{0}^{x}(\circledR), a_{2}(®), a_{3}(\mathbb{\circledR})$ and $a_{4}(®)$ be the number of such ${ }^{-}$bres, respectively. It is enough to prove that these numbers are the same as a_{0}, \ldots, a_{4}. Note that Lemma 3.2.15 implies that they must be as in the solutions $1,2,3$ or 4 in the table of solutions. On the other hand, the Chern class $\mathrm{C}_{2}(\mathrm{M})$ in the same table, shows that the unique possibility that they are di ®erent is in the case of solutions 2 and 3 . At this point we can use the fact that the curves $C_{j ; i}, j=1 ; 2 ; 3, i>0$, are invariant for both foliations, so that they must be contained in the critical levels of f_{\circledR}. Since a^{-}bre of type IM contains one curve C with $C^{2}=\mathrm{i} 4$ and the critical ${ }^{-}$bres $I_{0}^{a}, ~ I t ~ a n d ~ I V ~ d o$
not contain any component like that, we conclude that the critical ${ }^{\text {º }}$ bres of the ${ }^{\text {- }}$ brations are of the same type. a
3.2.17 C orollary. If $K_{M}=0$, then M is an algebraic K_{3} surface. M oreover, if E is as before, then for any $\circledR 2 \mathrm{E}$, the ${ }^{-}$rst integral is a ${ }^{-}$bration with four $\mathrm{I}_{0}^{{ }^{-}}{ }^{-}$bres.
Proof. We have already proved that M is algebraic. Let us prove that M is minimal, that is, does not contain a smooth rational curve with self-intersection ; 1. Suppose by contradiction that M contains a smoth rational ; 1-curve, say C. Since the curves that are invariant for both foliations, F and G, are contained in $\left[j\left(\left[i>0 C_{j ; i}\right)\right.\right.$ and for all curves in this set we have $C_{j ; i}$. \quad 2, we get that C is not invariant for one of the foliations, say F. In this case, we get from $K_{M}=N_{F}^{\alpha}+T_{F}^{a}$ and from 3.1.7 that :

$$
\mathrm{T}_{\mathrm{F}}^{\mathrm{p}}: \mathrm{C}=1+\operatorname{tang}(\mathrm{F} ; \mathrm{C}) \text { and } N_{F}^{\mathrm{a}}: \mathrm{C}=\mathrm{i} 2 \mathrm{i} \operatorname{tang}(\mathrm{~F} ; \mathrm{C}) \Rightarrow 1+\operatorname{tang}(\mathrm{F} ; \mathrm{C})=2+\operatorname{tang}(\mathrm{F} ; \mathrm{C})
$$

which is a contradiction. Therefore, M is minimal. On the other hand, in the table of solutions we see that the unique possibility for $K_{M}=0$ is the $4^{\text {th }}$ solution, so that $C_{2}(M)=24$ and for any ${ }^{\circledR} 2 \mathrm{E}$ the ${ }^{-}$bration f_{\circledR} has four critical ${ }^{-}$bres, all of the type I_{0}°. The fact that $K_{M}=0$ implies that $\operatorname{kod}(M)=0$, so that M is biholomorphic to a $K 3$ surface, by Enriques-K odaira classi ${ }^{-}$cation of surfaces (see table 10, pg. 188 of [BPV]). 风

In order to ${ }^{-}$nish the proof of Theorem 3, it remains to prove that the pencil $\left(F_{\circledR}\right)^{\circledR 2} \bar{Z}^{\mathrm{C}}$ is weakly exceptional and assertions (c) and (d). Here, we will use the global holonomy groups of the foliations in the pencil with respect to the ${ }^{-}$bration g . Let $\mathrm{c}_{1} ;::: ; \mathrm{c}_{\mathrm{a}}$ be the critical levels of g , where $a=3$ in the case of solutions $1,2,3$, and $a=4$ in the case of solution 4. Set $F_{j}=g^{i}{ }^{1}\left(c_{j}\right)$. It follows from (e) of Lemma 3.2.9 that if $\mathbb{B} G 1$ then F_{\circledR} is transverse to $G=F_{1}$ outside $\left[{ }_{j}\left(\left[i>0 C_{j ; i}\right)\right.\right.$ and so, a fortiori, in the set $\mathrm{W}=\mathrm{Mn}\left[{ }_{\mathrm{j}} \mathrm{F}_{\mathrm{j}}\right.$. Note that $\mathrm{gj}_{\mathrm{W}}: \mathrm{W}$! V is a bre bundle, where $V=\bar{C} \mathrm{nfc}_{1} ;::: \mathrm{c}_{\mathrm{a}} \mathrm{g}$. Therefore, if $\mathrm{F}:=\mathrm{f}^{\mathrm{i}}{ }^{1}(\mathrm{c}), \mathrm{c} 2 \mathrm{~V}$, then we can de ne a global holonomy representation

$$
\mathrm{H}_{\circledR}: 1_{1}(\mathrm{~V} ; \mathrm{C})!\operatorname{Aut}(\mathrm{F}) ;
$$

where Aut(F) denotes the set of automorphisms of the - bre F (cf. [Eh] and [C-LN]). We denote by G_{\circledast} the holonomy group of F_{\circledast}, that is the image $H_{\odot}\left(1{ }_{1}(V ; C)\right)^{1 / 2} A u t(F)$. Note that ${ }_{1}(V ; c)$ is generated by a closed curves ${ }^{\circ} 1 ;:::{ }^{\circ}{ }^{\circ}$, sketched in ${ }^{-}$gure 8 , where ${ }^{\circ}{ }_{1} a::: x^{\circ}{ }_{a}=1$. We denote by $f_{k ; ®}$ the holonomy map $H_{\circledast}\left({ }^{\circ}{ }_{k}\right), k=1 ;:: ;$; Hence, we have $G_{\circledR}=<f_{1 ; ® ;} ;: ; f_{a_{i} 1 ; ®}>$. Fix a holomorphic universal covering $1 / 4 \mathrm{C}$! F of F , with automorphism group $\operatorname{Aut}\left(1 / 4=<h_{1} ; h_{b}>\right.$,
 $k 2 \mathrm{f} 1$;::; ag, we will consider a covering of $f_{k ; ®}$ in C by $1 / 4$ that is a map $A_{k ; ®} 2$ Aut(C) such that $1 / 4 \pm \dot{A}_{k ; ®}=f_{k ; ®} \pm 1 / 4$ Let us see how $\dot{A}_{k ; ®}$ looks like, according to the type of the ${ }^{-}$bre F_{k} :
(1) F_{k} is of the type I_{0}^{\square}. In this case $A_{k ; ®}(z)=i z+b_{k}(®)$, where $b_{k}(®) 2 C$. In particular, $f_{k ; ®}$ has order two.
(2) F_{k} is of the type $I \uparrow$. In this case $A_{k ; ®}(z)=!^{i} i^{1}: z+b_{k}(®)$, where! $=e^{2^{2 / 1 / 4}=6}$ and $b_{k}(®) 2 C$. In particular $f_{k ; ®}$ has order six.
(3) F_{k} is of the type $I M$. In this case $A_{k ; ®}(z)=i i: z+b_{k}(®)$, where $i={ }^{p} \overline{i 1}$ and $b_{k}(®) 2 C$. In particular $f_{k ; ®}$ has order four.
(4) F_{k} is of the type $I \forall$. In this case $A_{k ; ®}(z)=!^{i}: z+b_{k}(®)$, where $b_{k}(®) 2$ C. In particular $f_{k ; ®}$ has order three.

The proof of (4) is done in Proposition 4 of [LN]. The idea, in the general case, is that the ${ }^{-}$bre F_{k} contains at least one component, say $\mathrm{C}_{\mathrm{k} ; 1}$, with multiplicity one (see -gure 1). This component, contains a singularity $q_{k ; 1}(®):=q(®)$ with a separatrix, say $S(®)$, transverse to $C_{k ; 1}$ and with holonomy conjugated to $z \bar{\square}$ ei ${ }^{2 \frac{1}{4}=m}: z$, where $m={ }_{i} C_{k ; 1}^{2}$ (see (c.2) of Lemma 3.2.9).

It follows that $\mathrm{f}_{\mathrm{k} ; ® \text { ® }}$ must have a ${ }^{-}$xed point, say $\mathrm{z}_{\mathrm{k}}(\circledR)$, and it is conjugated in a neighborhood of it to the linear map $z 7$ ei ${ }^{2 / 1 / 4}=m$. This ${ }^{-}$xed point corresponds to some intersection of the leaf of F_{\circledR} which contains $\mathrm{S}\left(®_{\circledR}\right.$ with F (see the proof of Proposition 4 in [LN]). As the reader can check, this implies that $f_{k ; ®}$ has period m, so that $\dot{A}_{k ; ®}$ must be like in (1), (2), (3) or (4). Remark also that (2), (3) and (4) imply that in the cases (2) and (4) the lattice i must be $<1 ;!:=e^{\frac{212 / i d}{3}}>$, whereas in the case (3) it is <1; $i>$.

For each $k=1 ;:::$, a, consider the function $f_{k}: C \notin F!F$ de ned by $f_{k}(®, q)=f_{k ; ®}(q)$. It follows from the theorem of holomorphic dependence of the solutions with respect to parameters and initial conditions, that f_{k} is holomorphic, for all $k=1 ;:: \%$ a. In particular, this implies that in all the cases, the map ® $2 \mathrm{C} \nabla \mathrm{b}_{k}(\mathbb{\otimes}) \mathrm{md}(\mathrm{i}) 2 \mathrm{C} \Rightarrow$ is holomorphic. Therefore, we can choose $b_{k}(®)$ in such a way that $\mathbb{\square} \geqslant b_{k}(®) 2 C$ is holomorphic. In particular, if we write $\dot{A}_{k ; \Theta}(z)=, k: Z+b_{k}(®)$, the point $z_{k}(®)=\frac{b_{k}(®)}{1_{i}, k}$ is a ${ }^{-}$xed point of $\dot{A}_{k ; ®}$. Hence, by conjugating the group G_{\circledast} with the automorphism corresponding to the translation $3 / 巴(z)=z+z_{1}(\mathbb{®})$, we can
 so that $\circledR^{\circledR}{ }^{1}{ }_{k}(®)$ is holomorphic. Since G_{\circledR} is generated by $f_{1 ; ®} ;::: ; f_{a_{j} 1 ; ®,}$ we get that, if g has three critical ${ }^{-}$bres, then G_{\circledR} is conjugated to a group, whose universal covering is of the form

(I). In the case of solution 1 we have $\mathrm{a}=\mathrm{f} 1 ;!^{2} ;!^{4} \mathrm{~g}$ and $\mathrm{i}=\mathrm{Z}$ ©! :Z (cf. Proposition 5 of [LN]).
(II). In the case of solution 2 we have $x=f!j j j=0 ;:: \cdot ; 5 \mathrm{~g}$ and $\mathrm{i}=\mathrm{Z} @!: Z$
(III). In the case of solution 3 we have $=\mathrm{f} 1 ; \mathrm{i} ; \mathrm{i} 1 ; \mathrm{i}$ ig and $\mathrm{i}=\mathrm{Z}$ © $\mathrm{i}: \mathrm{Z}$.

On the other hand, in the case of solution 4, we have:

The proof of (I) can be found in Proposition 5 of [LN]. The proof of (II), (III) and (IV) is analogous and is left for reader. A nother result that we will use, whose proof is analogous to the proof of Proposition 5 and of its Corollary in [LN], is the following :
3.2.18 Lemma. For ${ }^{\circledR} \in 1$, the following assertions are equivalent :
(i). F_{\circledR} has a ${ }^{-}$rst integral.
(ii). G_{\circledR} is ${ }^{-}$nite.
(iii). G_{\circledast} has a - nite orbit.
(iv). F_{\circledR} has an algebraic leaf which is not contained in the critical levels of g .

M oreover, in the cases of solutions 1,2 and 3 , the above assertions are equivalent to :
(v). If ${ }^{\circledR} \in 0$, then there exists n 2 N such that $\mathrm{n}:^{1}{ }_{2}(\mathbb{®}) 2 \mathrm{i}$.

A nother important fact is the following :
3.2.19 Lemma. For any $k 2$ f2;::; ag we have ${ }^{1}{ }_{k}(®)=a_{k}:{ }^{\circledR}+d_{k}$, where $a_{k} ; d_{k} 2$ C. M oreover, if g has three critical ${ }^{-}$bres then $a_{2} \in 0$, whereas if g has four critical ${ }^{-}$bres then, either $a_{2} \in 0$, or $a_{3} \in 0$. In particular, we have the following:
(a). The pencil P is always weakly exceptional.
(b). If g has three critical ${ }^{-}$bres then $E(P)=,: Q: i \quad f 1 \mathrm{~g}$, where , $=a_{2}^{1}{ }^{1}$.
(c). If g has four critical ${ }^{-}$bres and $E(P)$ contains at least three distinct points, then the family is exceptional.
Proof. Recall that the ${ }^{-}$bration gj_{w} : W ! V is locally holomorphically trivial and that the leaves of $\mathrm{F}_{0}=\mathrm{F}$ are transverse to the ${ }^{-}$bres of g in W . In particular, for every c 2 V , there exists a neighborhood V_{c} of c in V with the following properties :
(i). V_{c} is biholomorphic to a disk and $W_{c}=g^{1}\left(V_{c}\right)$ is biholomorphic to $V_{c} £ C \neq$, by a biholomorphism $\tilde{A}_{c}: W_{c}!V_{C} £ C \leftrightharpoons$.
(ii). $g \pm \tilde{A}_{c}^{i}{ }^{1}: V_{c} £ C \Rightarrow!V_{c}$ is the ${ }^{-}$rst projection. In particular, the sets of the form $f \times g £ C=$, $\times 2 \mathrm{~V}_{\mathrm{c}}$, correspond to the leaves of G in W_{c}.
(iii). The leaves of $\tilde{A}_{c}^{\text {a }}(F)$ are of the form $V_{c} £ f y g$, y $2 C=$.

Consider an universal covering $1 / 4 i d £ 1 / 2: V_{C} £ C!V_{C} £ C=$, where $1 / 2: C!C=$ is an universal covering with automorphism group $\operatorname{Aut}(1 / 2)=<T_{1} ; T_{2}>, T_{1}(y)=y+1, T_{2}(y)=y+b ;=<1 ; b>$. Here, y is a ${ }^{-}$xed $a \pm n e$ coordinate system in C. For simplicity, we will denote by $\frac{\varrho}{@}$ and $\frac{\varrho}{@}$ the vector ${ }^{-}$elds on W_{c} de ned by $\tilde{A}_{c}^{a}(1 / \notin(@)$ @ $£ 0)$ and $\tilde{A}_{c}^{a}(1 / \notin(0 £ @))$, respectively, where x is some coordinate system in V_{c}. We assert that, if V_{c} is su \pm ciently small then there exists a coordinate system z on V_{C} such that F_{\circledR} is represented on W_{C} by the vector ${ }^{-}$eld

$$
X_{c ; ®}(z ; y)=\frac{@}{@}+\circledR \frac{@}{@} ;
$$

for every ${ }^{\circledR} 2 \mathrm{C}$.
In fact, ${ }^{-} x$ a coordinate system x in V_{c} and let us represent $F{ }_{w_{c}}$ and $\mathrm{Gj}_{w_{c}}$ by the vector ${ }^{-}$elds @ and $@$ @ , respectively, as in (ii) and (iii). Recall that two foliations of the pencil coincide if, and only if, they have the same tangent space at some point p $2 \mathrm{~W}_{\mathrm{c}}$ ((e) of Lemma 3.2.9). In particular, if $\circledR^{\circledR 2} C$, then the tangent space of F_{\circledR} in any point $p 2 \mathrm{~W}_{\mathrm{C}}$ is not "vertical", so that this tangent space is generated by a holomorphic vector ${ }^{-}$eld of the form $Z_{\circledR}(p)=\frac{@}{@}(p)+A(p ; ®) @(p)$. It follows from (e) of Lemma 3.2.9 that, for any ${ }^{-}$xed p $2 \mathrm{~W}_{\mathrm{c}}$ the function ®2C! $\mathrm{A}\left(\mathrm{p} ; \mathbb{R}^{(R)}\right.$ is injective. This implies that $A(p ; ®)$, as a function of $\mathbb{\circledR}$, is $a \pm$ ne. Since $A(p ; 0)=0$, we must have $A(p ; ®)=a(p): ®$ where $a: W_{c}!C^{x}$ is holomorphic. Now, the ${ }^{-}$bres $g^{1}(x), x 2 V_{c}$, are compact and contained in W_{c}, which implies that a is constant in these ${ }^{-}$bres. It follows that $\mathrm{a}(\mathrm{x} ; \mathrm{y})=\mathrm{b}(\mathrm{x})$ for some holomorphic function $b: V_{c}$! C^{a}. Hence F_{\odot} can be represented on W_{c} by the vector ${ }^{-}$eld $X_{\circledR}(x ; y)=\frac{1}{b(x)}: \frac{\varrho}{@ x}+\mathbb{R} \frac{\varrho}{\varrho}$. This implies that there exists a coodinate system z around $c 2 V_{c}$ such that $\frac{1}{b(x)}: \frac{\varrho}{@}=\frac{\varrho}{@}$, which proves the assertion.

It follows that there exist coverings $\left(V_{j}\right)_{j 2 j}$ of V and $\left(W_{j}:=g^{i}\left(V_{j}\right)\right)_{j 2 \jmath}$, of V and W, by open sets, and a collection $\left(\tilde{A}_{j}\right)_{j 2 j}$ of biholomorphisms $\dot{A}_{j}: W_{j}!V_{j} £ C \overline{7}$, such that for each $j 2 \mathrm{~J}$, $\mathrm{V}_{\mathrm{j}}, \mathrm{W}_{\mathrm{j}}$ and \tilde{A}_{j} satisfy (i), (ii), (iii) and:
(iv). For each j 2 J , there exist coordinate systems x_{j} on V_{j} and y_{j} on the universal covering
 In particular, if we ${ }^{-} x$ two points $z_{0} ; z_{1} 2 V_{j}$, then the holonomy map $h_{z_{0} ; z_{1}}: g^{1}\left(z_{0}\right)!g^{1}\left(z_{1}\right)$ can be written as
(a) $\mathrm{h}_{\mathrm{z}_{0} ; \mathrm{z}_{1}}\left(\mathrm{y}_{\mathrm{j}}\right)=\mathrm{y}_{\mathrm{j}}+\circledast\left(\mathrm{z}_{1} \mathrm{i} \mathrm{z}_{0}\right)$

The last assertion can be proved by integrating the di®erential equation $\frac{d y}{d x}=\circledR$ between z_{0} and z_{1}. On the other hand, (ii) and (iii) imply that:
(v). If $i \in j 2 J$ are such that $V_{i ; j}:=V_{i} \backslash V_{j} \epsilon_{;}$, then $V_{i ; j}$ is dißeomorphic to a disk and the change of chart $\tilde{A}_{i j}=\tilde{A}_{j} \pm \tilde{A}_{i}^{1}: V_{i ; j} £ C=!\quad V_{i ; j} £ C=$ is of the form $\tilde{A}_{i j}\left(x_{i} ; y_{i}\right)=\left(h_{i j}\left(x_{i}\right) ; g_{i j}\left(y_{i}\right)\right)$, where $\mathrm{g}_{\mathrm{i}} \mathrm{j} 2 \mathrm{Aut}\left(\mathrm{C}_{\mathrm{f}}\right)$. In particular, we have

$$
\text { (} x \text {) } \mathrm{g}_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{i}}\right)=, \mathrm{ij}: \mathrm{y}_{\mathrm{i}}+{ }^{1} \mathrm{ij} \text {, where , } \mathrm{ij} 2 \mathrm{C}^{x} \text { and }{ }^{1}{ }_{\mathrm{ij}} 2 \mathrm{C} \text { : }
$$

Note that the holonomy of F_{\circledR}, $\mathrm{h}^{\circ} ;$, , with respect to a path ${ }^{\circ}:[0 ; 1]!\mathrm{V}$, is a composition

 $\dot{A}_{k ; ®}$ de ${ }^{-}$ned in (1), ,., (4), are of the form $\dot{A}_{k ; ®}(Z)=, k: Z+b_{k}(®)$, where $b_{k}(®)=A_{k}: ®+B_{k}$, where $A_{k} 2 C^{\circledR}$ and $B_{k} 2 C$. On the other hand, we have ${ }^{1} k(®)=b_{k}(®) i \frac{1_{i}, k}{1_{i} b_{1}} b_{1}(®)$, so that ${ }^{1}{ }_{k}(®)=a_{k}: ®+d_{k}$, where $a_{k}=A_{k} i \frac{1_{i}, k}{1_{i}, 1} A_{1}$. Note that, although $A_{1} ; A_{k} G 0$, we could have $a_{k}=0$, for some $k>1$.

Suppose for a moment that we have proved that in the case of three critical - bres we have $a_{2} \in 0$. In this case, it follows from Lemma 3.2.18 that, if $a_{2}: ®+d_{2} \in 0$ then

$$
® 2 E(P) n f 1 g() \quad 9 n 2 N^{\bowtie} \text { such that } n\left(a_{2}: ®+d_{2}\right) 2 i \quad() \quad a_{2}: ®+d_{2} 2 Q: i:
$$

In particular, if $d_{2} \in 0$, then $d_{2} 2 Q: i$, because $02 E(P)$. This implies that $E(P)=a_{2}^{1}: Q: i$, as the reader can check, which proves (b) of Lemma 3.2.19. On the other hand, suppose that we have proved that in the case of four critical ${ }^{-}$bres then, either $a_{2} \in 0$, or $a_{3} \in 0$. In this case, we have $E(P) n f 1 g=f ® 2 C j G_{\circledR}$ has a ${ }^{-}$nite orbitg. It follows from (IV) that the orbit of 0 by G_{\circledR} is $f \mathrm{~m}^{1}{ }_{2}(\mathbb{B})+\mathrm{n}^{1}{ }_{3}(\mathbb{Q}) \mathrm{j} ; \mathrm{n} 2 \mathrm{Zg}$. Hence

$$
E(P) n f 1 g=f ® 2 C^{1} 2(®){ }^{1}{ }_{3}(®) 2 Q: i g \text {; }
$$

as the reader can check. Since, either $a_{2} \in 0$, or $a_{3} \in 0$, we conclude that $E(P)$ is countable, so that the pencil is weakly exceptional. Note that, ${ }^{1}{ }_{j}(0)=d_{j}, j=2 ; 3$, and $02 E(P)$, so that $\mathrm{d}_{2} ; \mathrm{d}_{3} 2$ Q:i. Therefore

$$
E(P) n f 1 g=f ® 2 C j a_{2}: ® a_{3}: ® 2 Q: i g:
$$

In particular, if there exists $\circledR_{8} 2 \mathrm{E}(\mathrm{P}) \mathrm{nf} 0 ; 1 \mathrm{~g}$, then $\mathrm{a}_{2}: \mathbb{R}_{0} ; \mathrm{a}_{3}: ®_{8} 2 \mathrm{Q}: \mathrm{i}$, so that for every $\times 2 \mathrm{Q}$ we have that $a_{2}:\left(x \mathbb{Q}_{0}\right) ; a_{3}:\left(x \mathbb{Q}_{0}\right) 2 Q: i$ and $x: \mathbb{B}_{0} 2 E(P)$. Hence the family is exceptional.

Let us ${ }^{-}$nish the proof of the Lemma. Note that if, either $\mathrm{a}_{2}=0$ in the case of three critical levels, or $a_{2}=a_{3}=0$ in the case of four critical levels, then the group G_{\circledR} does not depends on ${ }^{\circledR} 2 C$, so that it is ${ }^{-}$nite and F_{\circledR} has a ${ }^{-}$rst integral for all ${ }^{\circledR} 2 C$, say $f_{\circledR}: M!\bar{C}$. Let us prove that this is impossible in our case. Suppose by contradiction that $G_{\circledR}=G_{0}$ for all $® 2 \mathrm{C}$ and let $m=\#\left(G_{\circledR}\right)=\#\left(G_{0}\right)$. Note that the integer m is also the number of points of a generic orbit of G_{\circledR}, that is the number of points in which a generic ${ }^{-}$bre of f_{\circledast} cuts a generic ${ }^{-}$bre of $g=f_{1}$. It follows that $m=\left[f_{\oplus}^{-1}(c)\right]:\left[g^{1}(d)\right]$, the intersection number of these ${ }^{-}$bres. Fix a regular ${ }^{-}$bre $F_{0}=f_{0}^{i}{ }^{1}\left(c_{0}\right)$ of f_{0}. Since G is transverse to F_{0}, there exists a neighborhood V_{0} of c_{0}, biholomorphic to a disk, such that $W_{0}:=f_{o}^{i}{ }^{1}\left(V_{0}\right)$ is biholomorphic to $V_{0} £ C_{7}$, where ${ }_{i 1}$ is the lattice associated to the generic ${ }^{-}$bres of f_{0}. We can choose coordinates ($x ; y$) on W_{0} such that the sets $f x=c t g$ are leaves of F and the sets $f y=c t g \backslash W_{0}$ are leaves of G and biholomorphic to disks. This de ${ }^{-}$nes a tubular neighborhood $1 / 4 W_{0}$! F_{0}, where ${ }^{1 / 4}{ }^{1}(y)$ is a leaf of Gj_{w} for all y $2 \mathrm{~F}_{0}$. The idea is to prove that there exists ${ }^{2}>0$ such that, if $0<\mathrm{j}$ ® $<^{2}$, then W_{0} contains some generic ${ }^{-}$bre, say F_{\circledR}, of f_{\circledR}. This is not possible, because in this case $f_{0} j_{F_{\circledR}}$ must be constant, so that F_{\circledR} coincides with some ${ }^{-}$bre of f_{0}, which implies that $F_{\circledR}=F_{0}$ for $® \in 0$.

Fix a point $p_{0}=\left(x_{0} ; y_{0}\right) 2 F_{0}$ and let F_{\circledast} be the leaf of F_{\circledast} through p_{0}. Given $p 2 F_{0}$, denote by L_{p} the leaf of G through p. Note that ${ }^{1 / 4}{ }^{1}(p)^{1 / 2} L_{p}$, by the de- nition of $1 / 4 \mathrm{If} g(p)$ is a regular value of g, then $L_{p}=g^{i}(g(p))$ and $L_{p} \backslash F_{0}$ contains $m=\#\left(G_{0}\right)$ points, say $p=p_{1} ;:: ; p_{m}$, where $p_{i} \in p_{j}$ if $i \in j$. Fix m paths in F_{0}, say ${ }^{\circ}{ }_{1} ;:::{ }^{\circ}{ }_{m}:[0 ; 1]!F_{0}$, joining p_{0} to $p_{1} ;: \ldots ; p_{m}$, respectively. Since the pencil is a holomorphic family, there exists ${ }^{2}{ }_{p}>0$ such that if $j ®<{ }^{2}{ }_{p}$ then, for all $j=1 ;:: ; m$, the
 and $1 / \pm^{\circ}{ }_{j ; ®}={ }^{\circ}{ }_{j}$. This fact, whose proof we leave for the reader, follows from the general theory of
foliations. This de ${ }^{-}$nes m holomorphic functions, say $p_{1} ;:: \ldots ; p_{m}: D_{p}!L_{p}$, where $p_{j}(\mathbb{R})={ }_{j}{ }_{j} ; \mathbb{®}(1)$ and $D_{p}=f j ®<^{2}{ }_{p} g$. Note that for every $®^{\circledR} 2 D_{p}$ we have $p_{1}(®) ;:: ; p_{m}(®) 2 L_{p} \backslash F_{\circledR}$ and $p_{i}(®) \in p_{j}(\mathbb{B})$ if $i \in j$. Since $L_{p}: F_{\circledR}=m$, then $L_{p} \backslash F_{\circledR}=f p_{1}(®) ;:: ; p_{m}(®) g 1 / 2 W_{0}$, for every ${ }^{\circledR 2} D_{p}$. In particular, $F_{\circledR} \backslash 1 / 4^{1}(p)=f p_{1}(®) g$, because ${ }^{1 / 4}{ }^{1}(p)^{1 / 2} L_{p}$. The same type of argument can be done in the case where $g(p)$ is a critical value of g. In this case, the closure of L_{p}, is an irreducible component of the ${ }^{-}$bre $\mathrm{g}^{{ }^{1}}\left(\mathrm{~g}(\mathrm{p})\right.$), say C . If the multiplicity of g along C is ${ }^{\text {` }}$, then $F_{0} \backslash C$ contains $m=$ di ®erent points, and it can be proved that:
(vi). For every p $2 \mathrm{~F}_{0}$, there exist ${ }^{2}{ }_{p}>0$ and a holomorphic map P_{p} : $D_{p}!1^{1 / 4}{ }^{1}(p)$, such that ${ }^{1 / 4}{ }^{1}(p) \backslash F_{\circledR}=f P_{p}(\circledR) g$ for every ${ }^{\circledR} 2 D_{p}:=f ® j$ ® $<^{2}{ }_{p} g$.

A nother fact that follows from the general theory of foliations is the following :
(vii). Given p2 F_{0}, there exist $0<\frac{ \pm}{+} \cdot{ }_{2}{ }_{p}$ and neighborhoods U_{p} and \S_{p} of p in F_{0} and ${ }^{1 / 4}{ }^{1}(p)$, respectively, such that if $j \circledR \ll t$ and $q 2 \S_{p}$ then the leaf of $F_{\circledR j_{1 / 4}{ }^{1}\left(U_{p}\right)}$ through q, say $X_{q}(®)$, is such that $1 / 4 X^{q}(®): X_{q}(®)!\quad U_{p}$ is a biholomorphism. M oreover, if we choose t small enough, then we can suppose that $P_{p}(®) 2 \S_{p} ; 8 ® 2 D_{\not+p}$.

Note that (vi) and (vii) imply that if $j ®<+\frac{t}{p}$ then $F_{\circledR} \backslash 1 / 4{ }^{1}\left(U_{p}\right)=X_{P_{p}(®)}(\mathbb{B})$ and $X_{P_{p}(®)}(\mathbb{B})$ cuts every ${ }^{-}$bre ${ }^{1 / 4}{ }^{1}$ (s), s $2 U_{p}$, in exactly one point. Let $U_{p_{1}}=U_{1} ;:: ; U_{p_{r}}=U_{r}$ be be a ${ }^{-}$nite covering of F_{0} by open sets as above and set $\pm=\operatorname{minf} \pm_{\dagger_{1}} ; \cdots: ; \dagger_{\boldsymbol{p}_{r}}$ g. As the reader can check, if j ® $<$ then F_{\circledR} is entirely contained in W_{0}, which proves the Lemma. .

In order to ${ }^{-}$nish the proof of Theorem 3, it remains to prove that in the case of three critical - bres then the pencil is equivalent to one of the families of types 1 , 2 or 3 , of $\times 2.2, \times 2.3$ and $\times 2.4$, respectively. Note that this fact implies also that M is a rational surface.

We will consider the following situation : let M_{1} and M_{2} be two compact complex surfaces and $\left(F{ }_{\circledR}^{1}\right)_{\circledR 2} \bar{C}$ and $\left(F{ }_{\circledR}\right)_{\circledR 2} \overline{\mathrm{C}}$ be pencils of foliations on M_{1} and M_{2}, generated by foliations F^{1}, G^{1} and F^{2}, G^{2} on M_{1} and M_{2}, respectively. Suppose that :
(I). The foliations F^{j} and G^{j} are tangent to ${ }^{-}$brations $f_{j} ; \mathrm{g}: \mathrm{M}_{\mathrm{j}}$! $\overline{\mathrm{C}}$, respectively, $\mathrm{j}=1 ; 2$, where $f_{j} \in \mathrm{~g}$.
(II). f_{j} is an elliptic ${ }^{-}$bration with three critical ${ }^{-}$bres, as in one of the solutions 1,2 or 3 , in the table of solutions, $j=1 ; 2$. In particular, g has also three critical ${ }^{-}$bres, of the same type of the critical ${ }^{-}$bres of $f_{j}, j=1 ; 2$ (Corollary 3.2.16).
(III). The critical ${ }^{-}$bres of $f_{1} ; g_{1}$ and $f_{2} ; g_{2}$ are of the same type.

In this situation, let us call F_{i}^{j} the critical ${ }^{-}$bres of g, where i $2 f 1 ; 2 ; 3 \mathrm{~g}, \mathrm{j}=1 ; 2$ and the indexes are choosen in such a way that $F_{i}{ }^{1}$ is of the same type as $F_{i}{ }^{2}, i=1 ; 2 ; 3$. A fter composition of g with a M oebius transformation, we can suppose that $F_{1}^{j}=g_{j}^{i}(0), F_{2}^{j}=g_{j}{ }^{1}(1)$ and $F_{3}^{j}=g^{i}{ }^{1}(1)$, $j=1 ; 2$. Fix generators ${ }^{\circ}{ }_{1}$ and ${ }^{\circ}{ }_{2}$ of ${ }_{1}(\mathrm{~V} ; \mathrm{c})$ as in gure 8 , where $\mathrm{V}:=\overline{\mathrm{C}} \mathrm{nf0} ; 1 ; 1 \mathrm{~g}$. Set $W_{j}:=g_{j}^{j}{ }^{1}(V)$, so that $\mathrm{g}_{j} \mathrm{j}_{\mathrm{j}}: \mathrm{W}_{\mathrm{j}}!\mathrm{V}$ is a holomorphic ${ }^{-}$bre bundle, $\mathrm{j}=1 ; 2$. Denote by $\mathrm{G}_{\circledR}^{j}$ the global holonomy group of F_{\circledR}^{j} calculated in the ${ }^{-}$bre $F_{j}:=g_{j}^{i}(c), j=1 ; 2$. We have seen that, given ®2 C, we can choose an universal covering $1 / \neq \mathbb{f} ; \mathbb{®}$: C ! F_{j} such that the generators of the global holonomy group of $\mathrm{F}_{\circledR}^{j}$, corresponding to ${ }^{\circ}{ }_{1}$ and ${ }^{\circ}{ }_{2}$, say $\mathrm{h}_{1 ; ®}^{j}$ and $\mathrm{h}_{2 ; ®}^{j}{ }^{\prime}$, can be written (in the respective universal covering) as :

$$
h_{1 ; ®}^{j}(y)=, 1: y \text { and } h_{2 ; ®}^{j}(y)=, 2: y+a_{2}^{j}: ®+d_{2}^{j}:
$$

where $a_{2}^{j} \in 0, j=1 ; 2$. Recall that both ${ }^{-}$bres F_{1} and F_{2} are biholomorphic elliptic curves of the form $C \Rightarrow$, where $i_{i}=<1 ;!=e^{21 / 1 /=6}>$, in the case of solutions 1 and 2 , and $;=<1 ; i>$ in the case of solution 3. In all cases, the exponents, k are roots of unity and, $\mathfrak{k} \in 1, \mathrm{k}=1 ; 2$.
3.2.20 Lemma. In the above situation, let $®_{1}^{-}{ }^{-} 2 C$ be such that $a_{2}^{1}: ®+d_{2}^{1}=a_{2}^{2}:^{-}+d_{2}^{2}$. Then there exists a biholomorphism $\mathbb{O}^{\prime} \mathrm{M}_{1}$! M_{2} such that :
(a). $\bigodot^{a}\left(F^{2}\right)=F_{\circledR}^{1}$.
(b). $g_{2} \pm \mathbb{C}=g_{1}$. In particular, $\mathbb{C}^{\mathbb{a}}\left(F_{1}^{2}\right)=F_{1}^{1}$.

Proof. Since ${ }^{\circledR}$ and ${ }^{-}$are ${ }^{-}$xed we will use the notations $F_{\circledR}^{1}=F_{1}, F_{\underline{2}}^{2}=F_{2}, h_{k ; ®}^{1}=h_{1 ; k}$ and $h_{k ;-}^{2}=h_{2 ; k}, k=1 ; 2$. Recall that the universal coverings $1 / 4 ; ®$: $C!F_{1}$ and $1 / 2 ;-$: ! F_{2} where constructed by composing two ${ }^{-}$xed universal coverings $1 / 4: C!F_{j}$, with two translations in C, say $3 / 4, j=1 ; 2$, where $3 / 4(0)$ is the ${ }^{-}$xed point of $h_{1 ; 1}$ and $3 / 2(0)$ is the ${ }^{-}$xed point of $h_{1 ; 2}$. The coverings $1 / \not / 4$ where chosen in such a way that $\operatorname{Aut}(1 / 4)=f z 7 \quad z+, j, 2 ; g, j=1 ; 2$, so that the map Á: F_{1} ! F_{2} de ${ }^{-}$ned by $A ́(q)=1 / 2 \pm 3 / 2 \pm 3 / 4^{1} \pm 1 / 4^{1}(q)$ is a well de ${ }^{-}$ned biholomorphism. This map is a conjugation between G_{\circledR}^{1} and G^{2}. M ore precisely, A satis ${ }^{-}$es $h_{2 ; k} \pm A ́=A ́ \pm h_{1 ; k}, k=1 ; 2$. Following a standard construction (see [C-LN]) it is possible to extend Á to a biholomorphism a : W_{1} ! W_{2} such that:
(i). a sends leaves of $F_{1} j_{w_{1}}$ onto leaves of $F_{2}{ }^{j} w_{2}$.
(ii). $g_{2} \pm \underline{a}=g_{1}$ on W_{1}, so that $\left.\underline{a}^{\left(g_{1}^{1}\right.}(q)\right)=g_{2}^{1}(q)$ for every $q 2 \mathrm{~V}$.

The proof of the Lemma is then reduced to show that and a i ${ }^{1}$ can be extended holomorphically to the critical levels of g_{1} and g_{2}, respectively. We will only prove that a can be extended to the critical levels of g_{1}. Consider for instance the levels $F_{1}^{j}=g_{j}^{i}(0), j=1 ; 2$, and let us prove that a can be extended to a holomorphic map \mathbb{O}_{1} : $\left(\mathrm{W}_{1}\left[\mathrm{~F}_{1}^{1}\right)!\mathrm{M}_{2}\right.$. Note that, if \mathfrak{a} can be extended to \bigcirc_{1} as above, then $\bigcirc_{1}\left(F_{1}^{1}\right)^{1 / 2} F_{1}^{2}$, because in this case we must have $g_{2} \pm \bigcirc_{1}=g_{1}$, by (ii). To ${ }^{-} x$ the ideas, we will suppose that F_{1}^{1} and F_{1}^{2} are of the type It. In the other cases, the proof is similar and will be left for the reader. In this case, we have the decomposition

$$
\text { (x) } F_{1}^{j}=6 C_{0}^{j}+C_{1}^{j}+2 C_{2}^{j}+3 C_{3}^{j} \text {; }
$$

where $\left[C_{0}^{j}\right]^{2}=\mathrm{i} 1,\left[C_{1}^{j}\right]^{2}=\mathrm{i} 6,\left[C_{2}^{j}\right]^{2}=\mathrm{i} 3$ and $\left[C_{3}^{j}\right]^{2}=\mathrm{i} 2, j=1 ; 2$ (see ${ }^{-}$gure 1.b). N ote that the curve C_{0}^{j} is the one for which the foliation F_{j} is transverse, $j=1 ; 2$. Set $C_{k}^{j a x}=C_{k}^{j} n C_{0}^{j}, j=1 ; 2$, $k=1 ; 2 ; 3$. We assert that a can be extended to a holomorphic map ${ }^{\mathrm{a}}{ }_{k}:\left(W_{1}\left[C_{k}^{1 x}\right)!M_{2}\right.$ such that ${ }^{\mathrm{a}}{ }_{\mathrm{k}}\left(\mathrm{C}_{\mathrm{k}}^{1 \mathrm{x}}\right)=\mathrm{C}_{\mathrm{k}}^{2 \mathrm{x}}$.

Fix $k 2 f 1 ; 2 ; 3 \mathrm{~g}$. Recall that C_{k}^{j} contains a unique singularity of F_{j}, say $q, j=1 ; 2$, of the type $1: i m_{k}, m_{k}=i\left(C_{k}^{j}\right)^{2}$. Note that $q 2 C_{k}^{j \not x}$, by (c.1) of Lemma 3.2.9.
A ssertion. For $j=1 ; 2$, there exists a coordinate system $\left(U_{j} ; \dot{A}_{j}=\left(x_{j} ; y_{j}\right)\right)$ such that $x_{j}(q)=$ $y_{j}(q)=0, C_{k}^{j} \backslash U_{j}=f y_{j}=0 g$ and :
(iii). F_{j} is represented on U_{j} by the linear vector ${ }^{-}$eld $X_{j}\left(x_{j} ; y_{j}\right)=x_{j} \frac{@}{@} \mathrm{a}_{j} \quad m_{k}: y_{j} \frac{@}{@}{ }_{j}$.
(iv). The foliation $\mathrm{G}^{j} \mathrm{j}_{\mathrm{u}_{\mathrm{i}}}$ is represented by $d y_{j}=0$ and $\mathrm{g}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}} ; \mathrm{y}_{\mathrm{j}}\right)=\mathrm{y}_{\mathrm{j}}^{k}$.

Proof. We have seen in Lemma 3.2.9 that there exists a coordinate system ($\mathbf{U} ;(\mathrm{u} ; \mathrm{v})$) around q such that $u(q)=v(q)=0, C_{k}^{j} \backslash U=f v=0 g$ and $F_{j} j_{u}$ is represented by the vector ${ }^{-}$eld $u @$ @ $m: v @$, so that $\tilde{A}(u ; v)=u^{m}: v$ is a ${ }^{-} r s t$ integral of $F_{j} j_{u}$, where $m=m_{k}$. The proof will be based in the following remark : consider a change of coordinates around $u=v=0$ of the form $x=u: A(u ; v), y=v: B(u ; v)$, where $A(0 ; 0): B(0 ; 0) \in 0$ and $(A(u ; v))^{m}: B(u ; v)^{\prime}$ cte $\sigma 0$. Note that, after this change of variables, the ${ }^{-r}$ rst integral becomes $A(x ; y)=c t e: x^{m}: y$, so that $x^{m}: y$ is a ${ }^{-}$rst integral of F_{j} near q. In this case, the vector ${ }^{-}$eld $x @$ @ $\mathrm{m}: y \frac{@}{@}$ represents F_{j} in a neighborhood of q. Recall that C_{k}^{j} is invariant for G, this foliation has no singularities near q and it is tranverse to F_{j} outside C_{k}^{j}, in a neighborhood of q. It follows that G^{j} has a holomorphic - rst integral, near q, of the form $v: D(u ; v)$, where $D(0 ; 0) \in 0$. Consider the change of variables de ${ }^{-}$ned in a neighborhood of $(0 ; 0)$ by $z=u: C(u ; v), w=v: D(u ; v)$, where $C(u ; v)$ is a holomorphic $m^{\text {th }}$ root of $(D(u ; v))^{i 1}$ near $(0 ; 0)$. A fter this change of variables, $z^{m}: w$ and w are ${ }^{-} r$ rst integrals of F_{j} and G, respectively, in neighborhood U_{1} of q. Now, since g is also a ${ }^{-}$rst integral of G, the
funcion $\mathrm{g}_{\mathrm{j}} \mathrm{j}_{1}$ depends only on w , so that $\mathrm{g}(\mathrm{z} ; \mathrm{w})=\mathrm{w}: \mathrm{h}(\mathrm{w})$ on a neighborhood U_{2} of q , where $h(0) \in 0$ and ' is the multiplicity of g_{j} along $\mathrm{C}_{\mathrm{k}}^{j}$. As the reader can see in (k), this multiplicity was chosen in such a way that ${ }^{`}=k$, so that $g(z ; w)=w^{k}: h(w)$. Let $B(w)$ be a $k^{\text {th }}$ root of $h(w)$ and $A(w)$ be a $m^{\text {th }}$ root of $(B(w))^{i 1}$ and consider the change of variables $x=z: A(w), y=w: B(w)$, in a neighborhood U of ($0 ; 0$). A fter this change of variables, $x^{m}: y$ and y are ${ }^{-}$rst integrals of F_{j} and G in U. M oreover $g(x ; y)=y^{k} . \quad x$
 $\mathrm{C}_{\mathrm{k}}^{2 x}$. We prove ${ }^{-}$rst that a can be extended to a neighborhood of q_{L} in $\mathrm{C}_{\mathrm{k}}^{1 \times 2}$, in such a way that the extension sends q_{1} to q_{2}. For $j=1 ; 2$, consider coordinate system $\left(U_{j} ;\left(x_{j} ; y_{j}\right)\right)$ around $q_{\text {, }}$, and a vector ${ }^{-}$eld X_{j}, as in the A ssertion. We can suppose that $x_{j}\left(U_{j}\right)=y_{j}\left(U_{j}\right)=D$, where $D=f y 2 C j j y j<r g$, so that, $g\left(U_{j}\right)=f z 2 C j j z j<r^{k} g=D_{1}$. Let $S_{j}=f\left(0 ; y_{j}\right) j y_{j} 2 D g$ be the local separatrix of X_{j} transverse to C_{k}^{j} and set $S_{j}^{\alpha}=S_{j} n f(0 ; 0) g$. Note that $S_{j}^{\alpha} 1 / 2 W_{j}, j=1 ; 2$. We assert that ${ }^{\underline{a}}\left(S_{1}^{\mathfrak{a}}\right)=S_{2}^{\alpha}$.

In fact, suppose ${ }^{-}$rst that the curve ${ }^{\circ}{ }_{1}$, used to de ${ }^{-}$ne $h_{j ; 1}, j=1 ; 2$, is contained in D_{1} and that ${ }^{\circ}{ }_{1}(t)=y_{0}^{k}: e^{2^{1 / 4 t}}, t 2[0 ; 1], y_{0}^{k}=c$. We recall that $h_{j ; 1}(z)=!^{i}{ }^{1}: z$ in a certain universal covering $C!C=<1 ;!>$ of $F_{j}=g_{j}{ }^{1}(c)$, where ! $=e^{2^{21 / 4}=6}$. This implies that $h_{j ; 1}$ has one ${ }^{-}$xed point, one orbit of period two and one orbit of period three. The other orbits are generic and are of period six. On the other hand, $F_{j} \backslash S_{j}=f\left(0 ;,^{n}: y_{0}\right) j n=0 ; \ldots: k_{i} 1 g$, where, $=e^{21 / 4}=k$. M oreover, the lifting of ${ }^{\circ}{ }_{1}$ on S_{j} through g with initial point ($0 ;,^{n}: y_{0}$) is $\left(0 ;,^{n}: y_{0}: e^{2^{1 / 1 / 4} t=k}\right)$, $t 2[0 ; 1]$. It follows that $h_{j ; 1}\left(0 ;,^{n}: y_{0}\right)=\left(0 ;,^{n+1}: y_{0}\right)$. This implies that the orbit of period k of $h_{j ; 1}$ is $\mathrm{O}\left(\mathrm{y}_{0}\right):=$ $f\left(0 ;{ }^{n}: y_{0}\right) j n=0 ;::: ; k_{i}$ lg. Since ${ }^{a} j_{F_{1}}: F_{1}!F_{2}$ is a conjugation between $h_{1 ; 1}$ and $h_{2 ; 1}$, we must have ${ }^{a}\left(\mathrm{O}\left(\mathrm{y}_{0}\right)\right)=\mathrm{O}\left(\mathrm{y}_{0}\right)$. It follows from (i) that a must send the leaf of F_{1} which contains $\mathrm{S}_{1}^{\mathrm{a}}$ onto the leaf of F_{2} which contains S_{2}^{a}. By analytic continuation and the fact that $g_{2} \pm \underline{a}=g_{1}$ we get that ${ }^{\underline{a}\left(S_{1}^{\mathfrak{x}}\right)}=\mathrm{S}_{2}^{\mathfrak{x}}$, as the reader can check. In the general case, that is when ${ }^{\circ}[0 ; 1] \sigma_{2} \mathrm{D}_{1}$, we can suppose that ${ }^{\circ}{ }_{1}= \pm \infty^{\circ} \sum^{+1}$, where ${ }^{\circ}(\mathrm{t})=\mathrm{y}_{0}: \mathrm{e}^{2^{1 / 4 t}}$ and \pm is a curve in $\overline{\mathrm{C}}$ joining c to $\mathrm{C}_{1} 2 \mathrm{D}_{1}$, $c_{1}=y_{0}^{k}$ (${ }^{-}$gure 8). The lifting of the curve \pmon the leaves of $F_{j}, j=1 ; 2$, produces a holonomy map $h_{j ; \pm} g_{j}^{i}(c)!g^{i}{ }^{1}\left(c_{1}\right)$ which conjugates the holonomy map of the curve ${ }^{\circ}$ on $g_{j}^{i}{ }^{1}\left(c_{1}\right)$, say h_{j}, to $h_{j ; 1}$, that is $h_{j}=h_{j ; \pm} \pm h_{j ; 1} \pm h_{j ; \pm}^{1}$. It follows from (i), (ii) and analytic continuation that $\mathfrak{a}\left(g_{1}^{i}{ }^{1}\left(c_{1}\right)\right)=g_{2}^{1}\left(c_{1}\right)$ and that $\dot{A}_{1}:=\underline{a} j_{g_{1}}{ }^{1}\left(c_{1}\right)$ satis ${ }^{-}$es $h_{2} \pm \dot{A}_{1}=\dot{A}_{1} \pm h_{1}$. Hence, the general case can be reduced to the ${ }^{-}$rst one.

The facts that $g_{2} \pm \underline{a}=g_{1}$ and $\underline{a}\left(S_{1}^{x}\right)=S_{2}^{x}$, imply that $\underline{a}\left(0 ; y_{1}\right)=\left(0 ;{ }^{n}: y_{1}\right)$, for some $n 2 Z$, as the reader can check. After the change of variables $y=,{ }^{i n}: y_{1}$ we get $a^{(0 ; y)}=(0 ; y)$. Let $A^{1 / 2} U_{1}$ be a neighborhood of S_{1}^{x} such that $a(A) \underline{1} / 2 U_{2}$. Since $a(0 ; y)=(0 ; y)$ and $g_{2} \pm=g_{1}$, we get that a $\left(x_{1} ; y\right)=\left(\hat{A}_{y}\left(x_{1}\right) ; y\right)$ for all $\left(x_{1} ; y\right) 2$ A. In particular, if we denote by $L_{j}(y)$ the germ at $(0 ; y)$ of the set $f\left(x_{j} ; y\right) j x_{j} 2 C g$, then we get that ${ }^{\text {a }}\left(L_{1}(y)\right)=L_{2}(y)$. We will consider A_{y} as a map from $L_{1}(y)$ to $L_{2}(y)$. Let $X_{j ; T}$ be the ${ }^{\circ}$ ows of $X_{j}, j=1 ; 2$, so that $X_{j ; T}\left(x_{1} ; y\right)=\left(e^{\top}: x_{1}\right.$; $\left.e^{i m T}: y\right)$. Note that $X_{T}^{j}\left(L_{j}(y)\right)=L_{j}\left(e^{i m T}: y\right)$. This fact together with ${ }^{\text {a }}\left(L_{1}(y)\right)=L_{2}(y)$ and (i) imply that a $\pm \mathrm{X}_{1 ; \mathrm{T}}\left(\mathrm{x}_{1} ; \mathrm{y}\right)=\mathrm{X}_{2 ; \mathrm{T}} \pm\left(\mathrm{X}_{1} ; \mathrm{y}\right)$, for all $\left(\mathrm{T} ; \mathrm{x}_{1} ; \mathrm{y}\right) 2 \mathrm{C} £ \mathrm{U}_{1}$ such that both members of the equality are de ${ }^{-}$ned. In particular, if we set $T=i^{\frac{2^{1 / 4}}{m}}$ then we get $\left.\underline{a}^{\left(e^{21 / 4}=m\right.}: x_{1} ; y\right)=\left(e^{2^{2 / 1 / 4}=m}: A_{y}\left(x_{1}\right) ; y\right)$, so that $\dot{A}_{y}\left(\mathrm{e}^{2^{1 / 4}=m}: \mathrm{x}_{1}\right)=\mathrm{e}^{2^{1 / 4}=m}: \dot{A}_{y}\left(\mathrm{x}_{1}\right)$. Hence, \dot{A}_{y} conjugates the holonomies of the separatrices S_{1} and S_{2} for the vector ${ }^{-}$elds X_{1} and X_{2} in $L_{1}(y)$ and $L_{2}(y)$, respectively. Now, the fact that a extends as a biholomorphism from a neighborhood of q_{1} to a neighborhood of q_{2}, follows from a Lemma of M attei-M oussu in $[\mathrm{M}-\mathrm{M}$]. The main facts used in the proof of the Lemma of MatteiM oussu are that A_{y} conjugates the two holonomies, the ${ }^{\circ}$ ows preserve the "horizontal" - brations $L_{j}(y)$ and the quotient of the eigenvalues are equal and negative (in our case $; 1=m$).

The extension of a to $C_{k}^{1 x}$, can be done by using Hartogs' Theorem. Let $C 1 / 2 C_{k}^{1 x}$ be the
maximal connected open set of $C_{k}^{1 \times x}$ such that a can be extended to C. Note that, if there exists q in the boundary of C in $C_{k}^{1 \infty}$, then there exists an open neighborhood U of q where U ' $D £ D$,
 Hartogs' Theorem, the holomorphic closure of H is U . Observe that ${ }_{\mathrm{a}} \mathrm{j}_{H}$ must be $1_{\mathrm{i}} 1_{\text {, because }}$ it is $1_{i} 1$ on $D £ D^{x}$ and non-constant on C. Hence, $\underline{a}_{\boldsymbol{H}}: H!M_{2}$ is an embedding and this impies that it can be extended holomorphically to U. It follows that $C=C_{k}^{1 \infty}$ and this proves that ${ }^{\text {a }}$ extends to C_{k}^{p}.
 in such a way that $a_{0}\left(C_{k}^{1 x}\right)=C_{k}^{2 x}, k=1 ; 2 ; 3$. It remains to prove that a_{0} extends to the component C_{0}^{1} in such a way that ${ }^{\mathrm{a}}{ }_{0}\left(\mathrm{C}_{0}^{1}\right)=\mathrm{C}_{0}^{2}$. For this extension, we can use, for example, that the curves C_{0}^{j} are $i_{1} 1$ rational curves. These curves can be blow-down to points $p_{1} 2 M_{1}$ and $p_{2} 2 M_{2}$, so that we have blowing-downs maps $1 / 4: M_{j}!M_{j}$, where $1 / 4{ }^{1}\left(p_{j}\right)=C_{0}^{j}, j=1 ; 2$. The map ${\underset{\sim}{2}}_{0}=1 / 2 \pm{ }^{\mathrm{a}}{ }_{0} \pm 1 / 4{ }^{1}$ is a biholomorphism of a punctured neighborhood of p_{1} to a punctured neighborhood of p_{2}, so that it can be extended to p_{1} in such a way that $\cong_{0}\left(p_{1}\right)=p_{2}$. This implies that \underline{a}_{0} extends biholomorphically to C_{0}^{1} in such a way that ${ }^{\mathrm{a}}{ }_{0}\left(\mathrm{C}_{0}^{1}\right)=\mathrm{C}_{0}^{2}$.

There are small di Rerences in the proof when the ${ }^{-}$bres F_{1}^{j} are not of the type $1 t$. The ${ }^{-}$rst one is the following: in order to prove that a sends the separatrix S_{1} to the separatrix S_{2}, we have used that the maps $h_{j ; 1}$ have three special orbits: one ${ }^{-}$xed point, one of period two and one of period three. Each of these orbits correspond to one of the components $C_{k}^{j}, k=1 ; 2 ; 3$, of F_{1}^{j}, $j=1 ; 2$. For instance, if F_{1}^{j} is of the type $I M$, then $h_{j ; 1}(z)=i i: z$, so that it has also three special orbits, but this time two of them are ${ }^{-}$xed and the third has period two. According to ${ }^{-}$gure 1.c, we can write the decomposition of F_{1}^{j} as

$$
F_{1}^{j}=4 C_{0}^{j}+C_{1}^{j}+C_{2}^{j}+2 C_{3}^{j}:
$$

The component C_{0}^{j} is transverse to F_{j}, whereas the other three are invariant for $F_{j}, j=1 ; 2$. For each $k=1 ; 2 ; 3$, the component C_{k}^{j} contains a singularity, say q_{k}^{j}, and there is a local separatrix for F_{j}, say S_{k}^{j}, such that $q_{k}^{j} 2 S_{k}^{j}$. The separatrix S_{3}^{j} corresponds to the orbit of period two of $h_{j ; 1}$, whereas S_{1}^{j} and S_{2}^{j} correspond to the two ${ }^{-}$xed points. By using an argument similar to the proof that ${ }^{\underline{a}}\left(S_{1}^{\mathbb{a}}\right)=S_{2}^{\underline{a}}$, we can conclude that, in the case we are considering, we have ${ }^{\text {a }}\left(\mathrm{S}_{3}^{1 \times x}\right)=$ $S_{3}^{2 x}$. However, the same argument implies only that, either ${ }^{\text {a }}\left(S_{1}^{1 \times x}\right)=S_{1}^{2 x}$ and $\underline{a}\left(S_{2}^{1 x}\right)=S_{2}^{2 x}$, or ${ }^{a}\left(S_{1}^{1 \times x}\right)=S_{2}^{2 a}$ and ${ }^{a}\left(S_{2}^{1 a x}\right)=S_{1}^{2 a}$. The rest of the proof is similar and at the end we will get that in the ${ }^{-}$rst case we will have ${ }^{a}\left(C_{1}^{1}\right)=C_{1}^{2}$ and $a\left(C_{2}^{1}\right)=C_{2}^{2}$, whereas in the second case we will have $a\left(C_{1}^{1}\right)=C_{2}^{2}$ and $\mathfrak{a}\left(C_{2}^{1}\right)=C_{1}^{2}$. The proof of the extension of \mathbb{C} to $\left[k>0 C_{k}^{1}\right.$ is similar for the other types of ${ }^{-}$bres. The second di 『erence is in the proof of the extension of ${ }^{\text {a }}$ to the component C_{0}^{1} in the case where F_{1}^{j} is of the type I_{0}^{x}. In this case, the components C_{0}^{j} are ; 2 rational curves and not i 1 curves. However, we can contract them, thus obtaining two singular surfaces, each one with one singularity, say p_{j}. Since these singularities are normal, it can be proved that the map ${ }^{\text {a }}{ }_{0}$ can be extended to a biholomorphism, exactly as in the i 1 case. We leave the details for the reader. α
3.2.21 Corollary. Let $\left(F_{\circledR}^{1}\right)_{\circledR 2} \bar{C}$ and $\left(F{ }_{\circledR}^{2}\right)_{\circledR 2} \bar{C}$ be pencils of foliations on surfaces M_{1} and M_{2}, respectively, which satisfy (I), (II) and (III) before Lemma 3.2.20. Then there exist a biholomorphism ©: $M_{1}!M_{2}$ and $a ; d 2 C, a \in 0$, such that $\mathbb{O}^{a}\left(F_{1}^{2}\right)=F_{1}^{1}$ and $\mathbb{O}^{\mathfrak{a}}\left(F^{2}\right)=F_{(a:-d)}^{1}$ for every ${ }^{-} 2$ C.
Proof. Let $a_{2}^{j} \in 0, d_{2}^{j}, j=1 ; 2$, be as in Lemma 3.2.20. Choose $\mathbb{R}_{0} ;{ }^{-}{ }_{0} 2 C$ such that $a_{2}^{1}: \mathbb{R}_{0}+d_{2}^{1}=$ $a_{2}^{2}:{ }_{0}+d_{2}^{2}$. As we have seen in Lemma 3.2.20, we have $®^{a}\left(F_{1}^{2}\right)=F_{1}^{1}$ and $\mathbb{O}^{a}(F_{\underbrace{}_{0}}^{2})=F_{®_{0}}^{1}$. A fter
changing the variables as $®^{\varrho}=\circledR_{i} ®_{0}$ and ${ }^{-0}={ }^{-} i^{-}{ }_{0}$, we can suppose that $®^{a}\left(F_{0}^{2}\right)=F_{0}^{1}$. Let $\left(U_{j}^{2}\right)_{j 2 j}$ be a covering of M_{2} by open sets and $\left(X_{j}^{2}\right)_{j 2 j}$ and $\left(Y_{j}^{2}\right)_{j 2 j}$ be collections of holomorphic vector ${ }^{-}$elds, such that X_{j}^{2}, Y_{j}^{2} and $X_{j}^{2}+{ }^{-}: Y_{j}^{2}$ de ${ }^{-}$ne F_{0}^{2}, F_{1}^{2} and F^{2} on U_{j}^{2}, respectively, for every j 2 J and ${ }^{-} 2 \mathrm{C}$. Note that there exists a multiplicative cocycle $\left(\mathrm{f}_{\mathrm{ij}}^{2}\right)_{\mathrm{U}_{\mathrm{ij}}^{2} \in ;}$ such that $X_{i}^{2}+^{-}: Y_{i}^{2}=f_{i j}^{2}\left(X_{j}^{2}+^{-}: Y_{j}^{2}\right)$ on $U_{i j}^{2}:=U_{i}^{2} \backslash U_{j}^{2}$. Consider the covering $\left(U_{j}^{1}:=@^{i}{ }^{1}\left(U_{j}^{2}\right)\right)_{j 2 j}$ of M_{1} and the collections of vector ${ }^{-}$elds $\left(X_{j}^{1}:=\mathbb{O}^{a}\left(X_{j}^{2}\right)\right)_{j 2 j}$ and $\left(Y_{j}^{1}:=\bigotimes^{a}\left(Y_{j}^{2}\right)\right)_{j 2 j}$. Since $\bigcirc^{a}\left(F_{0}^{2}\right)=F_{0}^{1}$ and $\bigcirc^{a}\left(F_{1}^{2}\right)=F_{1}^{1}$, the vector ${ }^{-}$elds X_{j}^{1} and Y_{j}^{1} represent F_{0}^{1} and F_{1}^{1} on U_{j}^{1}, respectively, $j 2 \mathrm{~J}$. Set $f_{i j}^{1}=f_{i j}^{2} \pm @^{1}{ }^{1}$ for ($i ; j$) such that $U_{i}^{1} \backslash U_{j}^{1} G$; Since $X_{i}^{1}=f_{i j}^{1}: X_{j}^{1}$ and $Y_{i}^{1}=f_{i j}^{1}: Y_{j}^{1}$, it follows that there exists, $2 C^{a}$ such that F_{\circledR}^{1} is represented by $X_{j}^{1}+\circledR_{\circledR}, Y_{j}^{1}$ on U_{j}^{1}, for all $j 2 \mathrm{~J}$. On the other hand, the fact that $X_{j}^{1}+®_{,},: Y_{j}^{1}=\mathbb{O}^{a}\left(X_{j}^{2}+®_{,},: Y_{j}^{2}\right)$, for all j 2 J , implies that

The result below is a consequence Corollary 3.2.21 and of the description of the families of $\times 2.2$, 2.3 and 2.4.
 of Theorem 3, where $K_{M} \in 0$. Then it is holomorphically equivalent to one of the families of types 1,2 or 3 , described in $\times 2.2,2.3$ or 2.4 . In particular, M is a rational surface.

A nother interesting fact, is the following :
3.2.23 C orollary. Let $\left(F_{\circledR}\right)_{\circledR 2} \bar{C}$ be a pencil of foliations on a surface M, satisfying the hypothesis of Theorem 3, where $K_{M} \in 0$. Given $®^{\circledR}{ }^{-} 2 E(P)$ and ${ }^{-}$brations f_{\circledR} and f^{-}, tangent to F_{\circledR} and F^{-}, respectively, then there exist biholomorphisms ©: $M!M$ and $A ́: \bar{C}!\bar{C}$ such that $\mathrm{f}_{\odot} \pm \mathbb{C}=A A^{-}$.

We leave the proof for the reader.
x3.3. Proof of Theorem 1. Let $P=\left(F_{s}\right)_{s 2 x}$ be an equirreducible, elliptic and exceptional family of foliations on $\mathrm{CP}(2)$, where X is a Riemann surface. According to the de nition, the set $E(P)$ is countable, in ${ }^{-}$nite and has an accumulation point, say $s_{0} 2 X$. Since the family is equirreducible, there exists a rational surface M_{1} and a a bimeromorphism $1 / 4: M_{1}!\quad C P(2)$ such that the family $\left(G_{5}:=1 / \frac{10}{4}\left(F_{s}\right)\right)_{s 2 x}$ satis ${ }^{-}$es
(i). $\mathrm{T}_{\mathrm{G}_{1}}=\mathrm{T}_{\mathrm{G}_{5_{2}}}$ for all $\mathrm{S}_{1} ; \mathrm{S}_{2} 2 \mathrm{X}$.
(ii). For all s 2 X the singularities of G_{5} are reduced in the sense of Seidemberg.

It follows from Lemma 3.2.5 that there exist a neighborhood V of s_{0} and a bimeromorphism $1 / 4 M_{1}$! M, which consists of a sequence of blowing-downs, such that the family $Q:=\left(H_{s}:=\right.$ $\left.1 /\left(G_{5}\right)\right)_{s 2 x}$ satis $^{-}$es
(iii). For all s $2 \mathrm{~V}, \mathrm{H}_{\mathrm{s}}$ has no contractible ${ }^{-}$bres and the singularities of H_{s} are reduced.
(iv). $\mathrm{T}_{\mathrm{H}_{\mathrm{s}_{1}}}=\mathrm{T}_{\mathrm{H}_{\mathrm{s}_{2}}}$ for all $\mathrm{s}_{1} ; \mathrm{s}_{2} 2 \mathrm{~V}$.

Let $F(M)=f H j H$ is a foliation on M sush that $T_{H}=T_{H_{s_{0}}}$. Note that $E(Q)=E(P)$, so that the family Q is exceptional. We assert that there exists $s_{1} 2 \mathrm{E}\left(\mathrm{H}_{\mathrm{s}}\right) \backslash \mathrm{V}$ such that $\mathrm{H}_{\mathrm{s}_{1}} \in \mathrm{H}_{\mathrm{s}_{0}}$. In fact, let $\left(t_{n}\right)_{n, 1}$ be a sequence in $E\left(H_{s}\right) \backslash V$ such that $\lim _{n!1} t_{n}=s_{0}$ and $t_{n} \sigma s_{0}$ for all n, 1. Note that s $2 \mathrm{~V} 7 \mathrm{H}_{\mathrm{s}} 2 \mathrm{~F}(\mathrm{M})$ is a holomorphic map, so that, if $\mathrm{H}_{\mathrm{t}_{\mathrm{n}}}=\mathrm{H}_{\mathrm{s}_{0}}$ for all n , 1, then the map $\mathrm{s} \nabla \mathrm{H}_{\mathrm{s}}$ would be constant. On the other hand, since $\mathrm{E}\left(\mathrm{H}_{\mathrm{s}}\right)$ is countable, there exists $s 2 \mathrm{~V}$ such that H_{s} has no ${ }^{-}$rst integral, that is $\mathrm{H}_{\mathrm{s}} \in \mathrm{H}_{\mathrm{s}_{0}}$. This implies that the map s $7 \mathrm{H}_{\mathrm{s}}$ is not constant. Therefore, there exists $\mathrm{n}, 1$ such that $\mathrm{H}_{\mathrm{t}_{\mathrm{n}}} \in \mathrm{H}_{\mathrm{s}_{0}}$.

Let $\left(\mathrm{K}_{\circledR}\right)_{\circledR 2} \overline{\mathrm{C}}$ be the pencil generated by $\mathrm{K}_{0}=\mathrm{H}_{\mathrm{S}_{0}}$ and $\mathrm{K}_{1}=\mathrm{H}_{\mathrm{S}_{1}}$. It follows from Corollary 3.2.10 that $F(M ; T)=f K_{a}{ }^{\circledR} 2 \bar{C} g$, where $T=T_{H_{s_{0}}}$. This implies that $H_{s} 2 F(M ; T)$ for all $s 2 X$ and that there exists a holomorphic map Á: X! \bar{C} such that $H_{s}=K_{A(s)}$ for all s $2 X$. In particular, if \mathbb{O} : $M!C P(2)$ is the bimeromorphism de ned by $\mathbb{C}=1 / 4 \pm^{1 / 4}{ }^{1}$ then $\mathbb{C}^{a}\left(F_{s}\right)=K_{A}(s)$
for all s 2 X . Now, Corollary 3.2.22 implies that the pencil $\left(\mathrm{K}_{\circledR}\right)_{\circledR 2} \overline{\mathrm{c}}$ is equivalent to one of the families of types 1,2 or 3 . A ssertion (c) of Theorem 1 follows from the Corollary 3.2.23. This ends the proof of T heorem 1.
x3.4. Proof of Theorem 2. Let $\left(F_{\circledR}\right)_{\circledR 2 x}$ be an equirreducible, non-degenerate, elliptic and exceptional family of foliations on CP(2). A ccording to Theorem 1, the family immerges bimeromorphically in one of the pencils of types 1,2 or 3 , described in $\times 2$. In particular, we can suppose that $X=\bar{C}$ and the family is the pencil generated by two foliations on $C P(2)$, say F_{0} and F_{1}, of the same degree d. We can suppose also that F_{0} and F_{1} have rational ${ }^{-}$rst integrals and that their singularities are non-degenerate. Let ©: M_{j} ! $C P(2)$ be a bimeromorphism such that $\mathbb{O}^{\circledR}\left(\mathrm{F}_{\circledR}\right)=\mathrm{G}_{\circledR}{ }_{\circledR}$, where $\mathrm{P}^{\mathrm{j}}:=\left(\mathrm{G}_{\circledR}\right)_{\circledR 2} \overline{\mathrm{C}}$ is the family of type $\mathrm{j}, \mathrm{j} 2 \mathrm{f} 1 ; 2 ; 3 \mathrm{~g}$. The proof will be done in three steps:
$1^{\text {st }}$ step. We will prove that d $2 \mathrm{f} 2 ; 3 ; 4 \mathrm{~g}$.
$2^{\text {nd }}$ step. We will prove that we can suppose that the bimeromorphism © consists of a sequence of blowing-ups.
$3^{\text {rd }}$ step. We will prove that there exists an automorphism of $\mathrm{CP}(2)$ such that $\left({ }^{\mathrm{a}}\left(\mathrm{F}_{\circledR}\right)\right)_{\circledR 2} \overline{\mathrm{C}}$ is one of the four families in CP(2) described in x 2 .
Proof of the $1^{\text {st }}$ step. This part follows from a T heorem of M. B runella :
Theorem ([Br-3]). Let F be a foliation on $C P(2)$ of degree d, whose singularities are reduced in the sense of Seidemberg. Suppose that there exists a non-constant entire map f:C! CP(2) such that $f(C)$ is the union of non-algebraic leaf and some singularities of F. Then $d \cdot 4$.

Since the family is bimeromorphically equivalent to the family of type $k 2 f 1 ; 2 ; 3 \mathrm{~g},\left(\mathrm{G}_{\circledR}^{k}\right)_{\circledR 2 \overline{\mathrm{C}}}$, it is su \pm cient to prove that there exists ${ }^{-} 2 \overline{\mathrm{C}}$ such that G^{k} has a non-algebraic leaf bimeromorphic to C. This fact is proved for the families of types 1 and 2 in Proposition 6 of [LN]. In fact, in this proposition we prove the following : let L be a generic leaf of G, where $k 2 f 1 ; 2 \mathrm{~g}$. Then there exists a holomorphic covering $1 / 4 \mathrm{~L}!\mathrm{C}$, where ${ }_{i}=<1 ;!>$. When ${ }^{-} \mathrm{CE}\left(\mathrm{P}^{j}\right)$ then the generic leaves of G are not algebraic, so that they must be biholomorphic to C or C^{x}. In [LN] it is proved that they are biholomorphic to C , but for our purposes it is su \pm cient that they are not algebraic and covered by C. An analogous result can be proved for the family of type 3 : let L be a generic leaf of G^{3}. Then there exists a holomorphic covering $1 / 4 \mathrm{~L}!\mathrm{C} \overline{7}_{\text {, }}$, where $\mathrm{i}=<1$; $\mathrm{i}>$. In particular, if ${ }^{-} E\left(P^{3}\right)$ then the generic laves of G^{3} are covered by C and non-algebraic. Since the proof is analogous in this case, we leave it for the reader. From this fact, we get that 0 • d • 4. Since foliations of degrees 0 or 1 can not have elliptic ${ }^{-}$rst integrals, we conclude that $2 \cdot d \cdot 4$. In the proof of the $3^{\text {rd }}$ step we will need the following result :
3.4.1 Lemma. Let F be a foliation of degree d on $C P(2)$ and `be a straight line of \(C P(2)\). Then ' is invariant for F , if one of the conditions below is veri- ed : (a). \(d=2\) and` contains, either two singularities of F, where one of then is radial (of the type $1: 1$), or three singularities of F.
(b). $\mathrm{d}=3$ and `contains two radial singularities of F . (c). \(\mathrm{d}=4\) and` contains three singularities of F , where two of them are radial.

Proof. The proof is based in the following fact: Let m be a radial singularity of F and C be a curve such that m 2 C , the multiplicity of C at m is \bigcirc and all irreducible components of C are non-invariant for F . Then tang $(\mathrm{F} ; \mathrm{C} ; \mathrm{m}), \underline{o}(\underline{o}+1)$. In particular, if $\mathrm{o}=1$ then $\operatorname{tang}(\mathrm{F} ; \mathrm{C} ; \mathrm{m}), 2$.

In fact, we cap suppose that F is represented in a neighborhood of m by a vector ${ }^{-}$eld of the form $X=R+{ }_{j, 2} X_{j}$, where $R=X @+y \frac{\varrho}{\varrho}$ @ ${ }^{@}$ and X_{j} is homogeneous of degree j, in some coordinate system such that $x(m)=y(m)=0$. On the other hand, C has a local equation of the
form $f=0$, where $f=f_{o}+P{ }_{j>o} f_{j}$, where f_{j} is homogeneous of degree j and $f_{o} \in 0$. It follows that the Taylor series of $X(f)$ at m is of the form :

Since tang $(\mathrm{F} ; \mathrm{C} ; \mathrm{m})=[\mathrm{f} ; \mathrm{X}(\mathrm{f})]_{\mathrm{m}}$, we get the result.
Now, if `was non-invariant for \(F\), then we would get from \(3 p 1.7\) and 3.1.3 that \(d_{i} 1=T_{F}^{q}:`=\) $i^{`}{ }^{2}+\operatorname{tang}(F ; `)$, so that $\operatorname{tang}(F ; `)=d$. Since $\operatorname{tang}(F ; `)=p 2 \cdot \operatorname{tang}(F ; ` ; p)$, then any one of the conditions in (a), (b) or (c), implies that tang(F ;) > d, a contradiction. \&
Proof of the $2^{\text {nd }}$ step. Since the singularities of F_{0} are non-degenerate and F_{0} has a rational - rst integral, it follows that for any singularity p_{0} of F_{0}, there exists a local coordinate system $(U ;(x ; y))$ around p_{0} such that $x\left(p_{0}\right)=y\left(p_{0}\right)=0$ and $f(x ; y)=x^{p} y^{q}$ is a ${ }^{-} r s t$ integral of $F_{0} j_{u}$. In this case, $\mathrm{F}_{0} \mathrm{j}_{\mathrm{u}}$ is represented by the di Berential equation! $=0$, where

> (R) ! = pydx i qxdy;p2N;q2Zxand gcd(p;q)=1:

In particular, the singularity is of the type p : q . When $\mathrm{q}<0$, the ${ }^{-}$rst integral is holomorphic and the singularity is reduced in the sense of Seidemberg, whereas when $q>0$ the ${ }^{-}$rst integral is meromorphic and the singularity is not reduced. According to the Corollary 3.2.6, the resolution process for the family can be done as follows :

1. Reduce all singularities as in (R) with $q>0$. This is done by a sequence of blowing-ups, say $\bigcirc_{1}: M$! $C P(2)$. A fter this sequence of blowing-ups we consider the family of foliations on M, $\left(\mathrm{H}_{\circledR}:=\bigcirc_{1}^{\mathrm{a}}\left(\mathrm{F}_{\circledR}\right)\right)_{\circledR 2 \overline{\mathrm{C}}}$.
2. If H_{0} has no contractible curve, then all elements of the family $\left(\mathrm{H}_{\circledR}\right)_{\circledR 2} \overline{\mathrm{C}}$ have only reduced
 to a biholomorphism \mathbb{O}_{2}. If there is some contractible curve for H_{0}, then this curve is contractible for all elements of the family (Lemma 3.2.5). A fter a sequence of blowing-downs which at each step contracts a i 1-curve, contractible for all foliations in the pencil, we obtain a bimeromorphism $\mathbb{O}_{2}: M$! M^{0}, and we get a pencil $\left(\mathrm{H}_{\circledast}^{0}:=\left(\mathrm{O}_{2}\right)_{\mathfrak{®}}\left(\mathrm{H}_{\circledR}\right)\right)_{\circledR 2} \overline{\mathrm{C}}$. By Lemma 3.2.20, this family is biholomorphically equivalent to one of the families of types 1,2 or 3 . Therefore, we can suppose that $\mathrm{M}^{0}=\mathrm{M}_{\mathrm{j}}$ and that $\left(\mathrm{H}_{\circledR}^{0}=\mathrm{G}_{\circledR}\right)_{\circledR 2} \overline{\mathrm{C}}$, for some $\mathrm{j} 2 \mathrm{f} 1 ; 2 ; 3 \mathrm{~g}$.

We have concluded that $\mathbb{\odot}=\bigcirc_{1} \pm \bigcirc_{2}^{1}{ }^{1}$, where \bigcirc_{1} is a sequence of blowing-ups and \bigcirc_{2} is, either a biholomorphism, or a sequence of blowing-downs. Therefore, in order to conclude the $2^{\text {nd }}$ step, it is enough to prove that after the sequence of blowing-ups \bigcirc_{1}, the generic foliation H_{\circledR} has no contractible curve, so that Θ_{2} is an biholomorphism. To do this, we will describe the resolution process of a singularity like in (R) with $p ; q>0$.
3.4.2 Remark. Note that the singularities of the foliations of types 1,2 or 3 can be only of the following types: 1 : ; 2,1 ; 3,1 ; ; 4 or 1 ; ; 6 .
3.4.3 The resolution process of a singularity of the type $p: q, 1 \cdot q \cdot p, \operatorname{gcd}(p ; q)=1$. Let F_{0} be a foliation on a surface N_{0} and $m_{0} 2 N_{0}$ be a singularity of type p : q. Denote by $1 / 4 ;:: ; 1 / 4$ the minimal sequence of blowing-ups necessary for the resolution of m_{0}. The sequence is de- ned inductively in such a way that $1 / 4$: N_{1} ! N_{0} is the blowing-up at m_{0} and $1 / 4+1$: N_{n+1} ! N_{n} is the blowing-up at some point $m_{n} 2 N_{n}, n=1 ;:: \%$ r \quad. The composition $1 / 4 \pm::: \pm 1 / 4$ will be denoted by i_{n}. Note that $i_{n}{ }^{1}\left(m_{0}\right)$ is the union of n exceptional divisors, say $D_{1}^{n} ;::: ; D_{n}^{n}$. These divisors are ordered inductively in such a way that $D_{1}^{1}=1 / 4^{1}\left(m_{0}\right), D_{n}^{n}=1 / h^{1}\left(m_{n ; 1}\right)$ and $D_{1}^{n} ;:: ; D_{n_{i}}^{n}$ are the strict transforms by $1 / \not n$ of $D_{1}^{n_{i}}{ }^{1} ;: \ldots ; D_{n_{i}}^{n_{i}}{ }_{1}^{1}$ respectively. In all steps of the resolution, the point m_{n} belongs to D_{n}^{n} and $i n$ is a biholomorphism between $N_{n} n\left(\left[\sum_{i=1}^{n} D_{i}^{n}\right)\right.$ and $N_{0} n f m_{0} g$. The
foliation induced by the form ! = pydx ; qxdy in a neighborhood of m_{0} will be denoted by F_{0}^{0} and the strict transform of ${ }_{n}^{x}\left(F_{0}^{0}\right)$ by F_{0}^{n}. Note that $F_{0}^{n}=1 / \frac{a}{4}\left(F_{0}^{n_{i} 1}\right)$ for all $n=1 ;:: ; r$. Let $!n$ be a holomorphic 1 -form representing F_{0}^{n} in a neighborhood of m_{n}. The form $!_{n}$, in our case, can always be written as in (R) in some coordinate system around m_{n}, so that it is of type $p_{n}: q_{1}$, $p_{n} ; q_{n}>0, \operatorname{gcd}\left(p_{n} ; q_{n}\right)=1$. On the other hand, the divisor D_{n+1}^{n+1} is contained in the divisor of zeroes of $1 / \frac{1}{\mathrm{a}}\left(\mathrm{l}_{\mathrm{n}}\right)$ with some multiplicity, say ${ }^{1}{ }_{\mathrm{n}}$, 1 (see 3.1.11). Let us see how the foliation F_{0}^{n+1} looks like in a neighborhood of the divisor D_{n+1}^{n+1}. If we suppose that $1 \cdot q_{1} \cdot p_{n}$, then we have two possibilities :
(I). $p_{n}=q_{n}=1$. In this case m_{n} is a radial singularity of $!_{n},{ }_{n}=2$ and F_{0}^{n+1} is transverse to D_{n+1}^{n+1}. This is the last step of the resolution of m_{0}, so that $r=n+1$.
(II). 1. $q_{1}<p_{n}$. In this case, the divisor D_{n+1}^{n+1} is invariant for $F_{0}^{n+1},{ }_{n}=1$ and D_{n+1}^{n+1} contains two singularities, one of type $p_{n}: q_{i}$ i p_{n} and the other of type $q_{n}: p_{n} i q_{n}$. Since $q_{n}<p_{n}$, the singularity of type q_{n} : $p_{n} i q_{n}$ is non-reduced, so that we need more blowing-ups. The point m_{n+1} will be this singularity. The singularity of type $p_{n}: q_{i}$ i p_{n} is reduced and in any other step of the resolution $\left.\right|_{r}$, it will appear a singularity of the same type. From this process, we get the following conclusions :
3.4.4 Remark. (a). $m_{r_{i} 1}$ is of the type $1: 1$ and F_{0}^{r} is transverse to D_{r}^{r}, the last divisor which appears in the resolution.
(b). If m_{n} is of the type $p_{n}: q_{n}$, then $m_{n i 1}$ is, either of the type [$p_{n} ; p_{n}+q_{n}$], or of the type $q_{n}: p_{n}+q_{\text {. }}$. In particular, $m_{r_{i}}$ is of the type 2:1, the divisor $D_{r_{i} 1}^{r}$ has self-intersection $; 2$ and contains an unique singularity of F^{r}, say P, which is of the type ; $2: 1$. The Camacho-Sad index of this singularity with respect to $D_{r_{i} 1}^{r}$ is $I\left(F_{0}^{r} ; D_{r_{i} 1}^{r} ; P\right)=i 2$.
(c). If $r, 3$ then the singularity $m_{r i} 3$ is, either of the type $3: 2$, or of the type $3: 1$. M oreover: (c.1). If $m_{r_{i}}$ is of the type 3:1 then the divisor $D_{r_{i}}^{r}$ cuts $D_{r_{i} 1}^{r}$, but does not cut D_{r}^{r}.
(c.2). If $m_{r_{i}}$ is of the type 3:2, then $D_{r_{i}}^{r}$ has self-intersection $; 3$ and contains an unique singularity of F_{0}^{r}, say Q, such that $I\left(F_{0}^{r} ; D_{r i}^{r} ; Q\right)=i 3$. In this case, D_{r}^{r} cuts both divisors $D_{r i}^{r} 2$ and $D_{r_{i}{ }_{1}}^{r}$.

We leave the details of the proof of the above Remark for the reader. In ${ }^{-}$gures 9.a and 9.b we sketch the divisors which appear in the resolution of the types p:1, p>1, and p:q,1<q<p, respectively. Note that the last divisor which appears, D_{r}^{r}, is always transverse to F_{0}^{r}. M oreover, $\left[D_{r}^{r}\right]^{2}=i 1,\left[D_{r i 1}^{r}\right]^{2}=i 2$ and $\left[D_{k}^{r}\right]^{2}$. $; 2$ if $k<r$, in both cases. In the case $p: 1$ we have $r=p$, $\left[D_{p}^{p}\right]^{2}=i 1$ and $\left[D_{k}^{p}\right]^{2}=i 2$ for all $k<p\left({ }^{-}\right.$g. 9.a).

Fig. 9.a

Fig. 9b

Observe that there are separatrices cutting the invariant divisors of the extremities of the resoIution, denoted by S_{1} in ${ }^{-}$gure 9.a and $S_{1} ; S_{2}$ in ${ }^{-}$gure 9.b. The function $x^{p} \neq y^{q}$ is a ${ }^{-}$rst integral of the form ! = pydx ; qxdy, and these separatrices correspond to the non-generic levels of the pencil $y^{q} i^{c}: x^{p}=0$, which are the axis $f x=0 g$ in the case $p: 1$ and the two axis $f x=0 \mathrm{~g}$ and $\mathrm{fy}=0 \mathrm{~g}$ in the case $\mathrm{p}: \mathrm{q}, 1<\mathrm{q}<\mathrm{p}$.

Consider the pencil $\left(F_{\circledR}\right)_{\circledR 2} \overline{\mathrm{C}}$ in $\mathrm{CP}(2)$, as in the hypothesis of T heorem 2. Since it is nondegenerate and equirreducible, we can suppose that that each non-reduced singularity, say m_{0}, of F_{0} is of the type $p: q=p\left(m_{0}\right): q\left(m_{0}\right)$ and is also a non-reduced singularity of F_{1} of the same
type and with the same resolution process. From now on, we will assume that all non-reduced singularities of F_{0} and F_{1}, were reduced, but we will ${ }^{-} x$ the singularity m_{0} and we will keep the notations for the foliations and exceptional divisors obtained along the resolution of this singularity. In this way, Θ_{1} coincides with $\left.\right|_{r}$ in a neighborhood N_{r} of $D_{1}^{r}\left[:::\left[D_{r}^{r}\right.\right.$. We will denote by F_{\circledR}^{n} the strict transform of F_{\circledR} in a neighborhood W of m_{0} by ${ }_{n}: N_{n}$! W and by Φ_{n} the divisor of tangency between $\mathrm{F}_{0}^{\mathrm{n}}$ and $\mathrm{F}_{1}^{\mathrm{n}}$.
3.4.5 Lemma. The following properties are true:
(a). $D_{r}^{r} \backslash \phi_{r}$ is a discrete subset of D_{r}^{r}. In particular, F_{0}^{r} and F_{1}^{r} are transverse in almost all points of D_{r}^{r}.
(b). For all $n 2 \mathrm{f0}$;:: : rg the divisor ϕ_{n} is invariant for both foliations, F_{0}^{n} and F_{1}^{n}.
(c). The divisor of tangency $\Phi\left(F_{0} ; F_{1}\right) 1 / 2 C P(2)$ is invariant for all foliations in the pencil $\left(F_{B}\right)_{\circledR 2} \overline{\mathrm{C}}$.
(d). $\mathbb{O}_{2}\left(D_{r}^{r}\right)$ is a smooth rational i 1-curve in M_{j}. In particular, \mathbb{O}_{2} is a biholomorphism in a neighborhood of D_{r}^{r}.
Proof. Let us prove (a). Suppose by contradiction that $D_{r}^{r} \backslash \phi_{r}$ is not discrete. In this case, since $D_{r}^{r} \backslash \oint_{r}$ is an analytic set, we must have $D_{r}^{r} 1 / 2 \Phi_{r}$ and that F_{0}^{r} is tangent to F_{i}^{r} along D_{r}^{r}. Recall that, at each step, \mathbb{O}_{2} contracts only curves that are invariant for all foliations in the pencil at the correspondent step. Since D_{r}^{r} is not invariant for $\mathrm{F}_{0}{ }^{r}$, it can not be contracted to a point by \mathbb{O}_{2}. It follows that $C:=\mathbb{O}_{2}\left(D_{r}^{r}\right)^{1 / 2} M_{j}$ is a curve and that \mathbb{O}_{2} is a biholomorphism in a neighborhood of almost all points of D_{r}^{r}. Since F_{0}^{r} and F_{1}^{r} are tangent along D_{r}^{r}, it follows that $G_{0}=\left(\mathbb{O}_{2}\right)_{\infty}\left(F_{0}^{r}\right)$ and $\mathrm{G}_{1}=\left(\mathbb{O}_{2}\right)_{x}\left(\mathrm{~F}_{1}^{r}\right)$ are tangent along C , so that $\mathrm{C} 1 / 2 \phi\left(\mathrm{G}_{\mathrm{D}} ; \mathrm{G}_{1}^{j}\right):=\phi$. On the other hand, we have seen in Lemma 3.2.9 that ϕ is invariant for all foliations in the pencil $\left(\mathrm{G}_{\circledR}\right)_{\circledR 2} \overline{\mathrm{C}}$. This is a contradiction, because C can not be invariant for G_{0}^{j}.

Since ϕ is invariant for all foliations in the pencil $\left(\mathrm{G}_{\mathbb{B}}^{j}\right)_{\mathbb{B} 2}$ and Θ_{2}, at each step, contracts only curves that are invariant, we get that $\phi_{r}=\bigcirc_{2}^{1}{ }^{1}(\phi) \backslash \bigcirc_{1}^{i}(W)$ (as a set) and that ϕ_{r} is invariant for both foliations F_{0}^{r} and F_{1}^{r}. It follows by induction, from the process of resolution of m_{0}, that \oint_{n} is invariant for all foliations of the pencil $\left(\mathrm{F}_{{ }_{\circledR}}^{n}\right)_{\circledast 2} \overline{\mathrm{C}}$. A pplying this argument for all non-reduced singularities of F_{0}, we get that $\phi\left(F_{0} ; F_{1}\right)$ is invariant for all foliations in the pencil $\left(F_{\circledR}\right)_{\circledR 2} \bar{C}$. This proves (b) and (c).

Let us prove (d). Observe ${ }^{-}$rst that there exists ${ }^{-} 2 \mathrm{C}$ such that the curve D_{r}^{r} is invariant for F^{r}. In fact, ${ }^{-} \mathrm{x}$ a point $\mathrm{m} 2 \mathrm{D}_{\mathrm{r}}^{\mathrm{r}} \mathrm{n} \phi^{r}$. Since F_{0}^{r} and F_{1}^{r} are transverse at m , there exists - $2 C$ such that the leaf of $F r$ through m is tangent to D_{r}^{r} at m. Since F_{0}^{r} is transverse to D_{r}^{r}, we get from 3.1.7 that $T_{F_{0}}: D_{r}^{r}=\left(D_{r}^{r}\right)^{2}=i 1$. This is true for all ®2 \bar{C} such that $T_{F_{\dot{\oplus}}}=T_{F_{0}}$, so that if $T_{F_{\dot{\oplus}}}=T_{F_{0}^{r}}$ and D_{r}^{r} is not invariant for F_{\circledR}^{r}, then F_{\circledR}^{r} is transverse to D_{r}^{r}. Since $F{ }^{r}$ is tangent to D_{r}^{r} at m, we conclude that, either D_{r}^{r} is invariant for $F \underline{r}$, or $T_{F r} \in T_{F_{0}}$. Suppose that $\mathrm{T}_{\mathrm{F}!} \in \mathrm{T}_{\mathrm{F}_{0}}$. We hape seen in Remark 3.1.1 that $\mathrm{T}_{\mathrm{F}!} \mathrm{i}_{\mathrm{T}_{\mathrm{F}}}$ is an eßective divisor, in this case, so that $T_{F r}=T_{F_{0}}+{ }_{k=1}^{n} n_{k}:\left[C_{k}\right]$, where $n_{k}, 1$ and C_{k} is a divisor associated to some irreducible curve on $N_{r}, k=1 ; \ldots ; n$. Note that each curve C_{k} is contained in ϕr, so that $D_{r}^{r} \in C_{k}$, for all k. If D_{r}^{r} was not invariant for $F \underline{r}$ then we would get from 3.1.7 that

$$
\begin{gathered}
\left.i 1_{i} \operatorname{tang}\left(F-r D_{r}^{r}\right)=T_{F!}: D_{r}^{r}=T_{F_{0}^{r}}: D_{r}^{r}+X_{k=1}^{X n} n_{k}:\left(C_{k}: D_{r}^{r}\right), i 1=\right) \\
=) \quad \operatorname{tang}\left(F \underline{r} ; D_{r}^{r}\right) \cdot 0 \Rightarrow \quad \operatorname{tang}\left(F^{r} ; D_{r}^{r}\right)=0
\end{gathered}
$$

and this would imply that Fr would be transverse to D_{r}^{r}, a contradiction. Now, since D_{r}^{r} is invariant for Fr , but not for F_{0}^{r}, it follows that $\mathrm{C}:=\mathbb{O}_{2}\left(\mathrm{D}_{r}^{r}\right)$ must be invariant for G , but not for
 We have seen in Lemma 3.2.9 that $\downarrow=3_{k=1}^{3}\left({ }_{i>0} C_{k ; i}\right)$, where each $C_{k ; i}$ is a rational curve containing just one reduced singularity of G , say $\mathrm{q}_{\mathrm{k} ; \mathrm{i}}$. Since C is connected, the set $\mathrm{L}:=\mathrm{Cn}$ (is a leaf of G and CnL is an union of a certain number of singularities $\mathrm{q}_{\text {;i }}$ as above. These singularities are reduced, so that C is smooth. We leave the details for the reader. M oreover, the C amacho-Sad index of a singularity $q_{k ; i}$ with respect to $C_{k ; i}$ is $I\left(G ; C_{k ; i} ; q_{k ; i}\right)=C_{k ; i}^{2} 2 f i 2 ; i 3 ; i 4 ; i 6 g$. This implies that, if $q_{k ; i} 2 C$ then $I\left(G ; C ; q_{; i}\right) 2 \mathrm{f}_{\mathrm{i}} 1=2 ; i 1=3 ; i 1=4 ;$; $1=6 \mathrm{~g}$ (see 3.1.9). The fact that C is a rational curve implies that C can not be a leaf of G, so that it contains at least one singularity $\mathrm{q}_{\mathrm{k} ;}$. It follows from Camacho-Sad Theorem that $\mathrm{C}^{2}=\mathrm{I}(\mathrm{G} ; \mathrm{C})<0$. Since C^{2} must be integer, we get that C^{2}. $; 1$. On the other hand, \mathbb{O}_{2} is a sequence of blowing-downs and $C=\Theta_{2}\left(D_{r}^{r}\right)$ is smooth, so that $C^{2},\left(D_{r}^{r}\right)^{2}=i 1$. This implies that $C^{2}=i 1$. We conclude Θ_{2} can not contract any curve cutting D_{r}^{r}, for otherwise $C^{2}>i 1$. This implies that \mathbb{O}_{2} is a biholomorphism in a neighborhood of D_{r}^{r}. x
3.4.6 Lemma. If m_{0} is a non-reduced singularity of type $p: q$, then $p: q 2 f 1: 1 ; 2: 1 ; 3: 2 \mathrm{~g}$. M oreover, Θ_{2} is a biholomorphism in a neighborhood of $\bigcirc_{1}^{i}{ }^{1}\left(m_{0}\right)$.
Proof. Let us suppose that 1 - $q<p$. Consider the resolution of m_{0}, sketched in one of the - gures 9.a or 9.b. In any case, the divisor D_{r}^{r} cuts the divisor $D_{r_{i} 1}^{r}$ and if $2 \cdot q<p$ then D_{r}^{r} cuts another divisor, which we will call $D_{k_{1}}^{r}, k_{1}<r_{i} 1$. We have also that $\left(D_{r_{i} 1}^{r}\right)^{2}=i 2$. Let $D_{r_{i} 1}^{r}=D_{j_{1}}^{r} ; D_{j_{2}}^{r} ;::: ; D_{j_{s}}^{r}$ be the maximal chain of divisors contained in the resolution of m_{0}, such that $D_{j_{i}}^{r} \backslash D_{j_{i+1}}^{r} G ;$ for $1 \cdot i \cdot s i 1$, and $D_{j_{i}}^{r} \in D_{r}^{r}$ for all $i=1 ; \ldots ;$ s. If $2 \cdot q<p$, then consider also the analogous chain $D_{k_{1}}^{r} ;:: ; D_{k_{t}}^{r}$ such that $D_{k_{i}}^{r} \in D_{r}^{r}$ and $D_{k_{i}}^{r} \backslash D_{k_{i}+1}^{r} G ;$ for $1 \cdot i \cdot t_{i} 1$, where $\mathrm{s}+\mathrm{t}=\mathrm{r}_{\mathrm{i}}$ 1. By convention we will set $\mathrm{t}=0$ if $1=\mathrm{q}<\mathrm{p}$. Set also $]=\mathrm{D}_{\mathrm{j}_{1}}\left[:::\left[\mathrm{D}_{\mathrm{j}_{\mathrm{s}}}\right.\right.$ and $K=D_{k_{1}}\left[:::\left[D_{k_{t}}^{r}\right.\right.$ (if $t>0$). Since Θ_{2} is holomorphic, only contracts invariant curves and $\mathrm{J} 1 / 2 \phi \mathrm{r}$, we must have that $\mathbb{O}_{2}(\mathrm{~J})$ is connected and $\mathbb{O}_{2}(\mathrm{~J}) \underline{1} 2 \phi=\phi\left(\mathrm{G}_{0} ; \mathrm{G}_{1}\right)$. Hence $\mathbb{O}_{2}(\mathrm{~J})$ must be contained in some connected component of ϕ. Since the connected components of ϕ are the
 some ${ }^{`}=1 ; 2 ; 3$ and $i>0$. Since $D_{r}^{r} \backslash D_{r_{i} 1}^{r} \sigma ;$, the curve $D_{r_{i} 1}^{r}=D_{j_{1}}^{r}$ can not be contracted by
 and that \mathbb{O}_{2} is a biholomorphism in a neighborhood of $D_{r_{i}}^{r}$.

In fact, suppose by contradiction that $\mathrm{s}>1$. This implies that all divisors $\mathrm{D}_{\mathrm{j}_{2}} ;::: ; \mathrm{D}_{\mathrm{j}_{\mathrm{s}}}$ are contracted by \mathbb{O}_{2}. Let us follow the process of contractions of these curves in \mathbb{O}_{2}, step by step. In each step only i 1-curves can be contracted, so that the ${ }^{-}$rst curve to be contracted in the chain J must cut some curve that was contracted before, because $\left(D_{i j}^{r}\right)^{2}$. i 2 for all $i=1 ;: .: ; \mathrm{s}$. This curve can only be D_{s}^{r}, because this curve is the unique one in J which cuts the closure of some leaf outside the chain : the leaf containing the separatrix S_{1}. For simplicity we will use the same notation for the curves that was not contracted after some step. J ust after contracting the ; 1-curve that contains S_{1}, the divisor D_{s}^{r} becomes a i 1-curve containg one or two reduced singularities and the divisors $D_{j_{1}} ;:: ; D_{j_{s i}}^{r}$ remain with same self-intersection. A fter the contraction of $D_{j_{s}}^{r}$, the unique divisor that can be contracted is $\mathrm{D}_{\mathrm{j}_{\text {si }}}^{r}$, because the others don't change the self-intersection. Proceding in this argument, we see that the last divisor to be contracted in J is $D_{j_{2}}$ and before its contraction it cuts $D_{r_{i} 1}^{r}$ transversely in just one point, which is a reduced singularity of the transformed foliation. This implies that, after the contraction of $D_{j_{2}}^{r}$, the self-intersection of $D_{r_{i} 1}^{r}$ increases of +1 , so that $D_{r_{i} 1}^{r}$ becomes a i 1-curve. But this implies that after this step, $D_{r_{i} 1}^{r}$ can be contracted, which is a contradiction. Therefore, we conclude that $s=1$. This implies already that if $1=q<p$ then $p: q=2: 1$. M oreover, Θ_{2} does not contract any invariant curve that meets $D_{r_{i} 1}^{r}$. This implies that \mathbb{O}_{2} is a biholomorphism in a neighborhood of $D_{r}^{r}\left[D_{r_{i} 1}^{r}\right.$. Set $\mathbb{O}_{2}\left(D_{r_{i} 1}^{r}\right)=C_{; i}:=C_{1}$.

Suppose now that $t>0$ and $K \in$;. Observe that, in this case, $D_{k_{1}}^{r}=D_{r_{i} 2}^{r}$ and $D_{r_{i}}^{r}$ has self-intersection ; 3. This fact follows from (c) of Remark 3.4.4 and the fact that $s=1$. By an argument analogous to the above one, we get that $\mathbb{O}_{2}(\mathrm{~K})=\mathrm{C}_{\mathrm{k} ; \mathrm{i}}$, an irreducible component of ϕ. M oreover, $D_{k_{1}}^{r}$ is not contracted by \mathbb{O}_{2} and, if $t>1$ then, all divisors $D_{k_{2}}^{r} ;: ; ; D_{k_{t}}^{r}$ are contracted by \mathbb{O}_{2}. Following the contractions step by step, as before, we get that these divisors are contracted in the order $D_{k_{t}}^{r} ; D_{k_{t_{i}}}^{r} ; \ldots ; D_{k_{2}}^{r}$. W hen we contract $D_{k_{2}}^{r}$, then the self-intersection of $D_{k_{1}}^{r}$ increases by one, so that it becomes ; 2. We conclude that $\mathbb{O}_{2}(K)=\mathbb{O}_{2}\left(D_{k_{1}}^{r}\right)=C_{k ; i}, C_{k ; i}^{2}=i 2$ and $C_{k ; i}$ contains just one singularity of G_{0}^{j}, say Q, such that $I\left(G_{0} ; C_{k ; i} ; Q\right)=i 2$. Let us prove that this is impossible. Set $\Theta_{2}\left(D_{k_{1}}^{r}\right)=C_{2}$.

We have seen that there exists ${ }^{-} 2 \mathrm{C}$ such that $\mathrm{D}_{\mathrm{r}}^{r}$ is invariant for Fr . This implies that $C=\Theta_{2}\left(D_{r}^{r}\right)$ is invariant for G. Hence G has an invariant set which consists of a chain of three smooth rational curves $L=C_{1}\left[C\left[C_{2}\right.\right.$ and $\operatorname{sing}(G) \backslash L=f P ; Q g$, where $P=C \backslash C_{1}$ and $\mathrm{Q}=\mathrm{C} \backslash \mathrm{C}_{2}$ are reduced singularities, so that $\mathrm{Z}(\mathrm{G} ; \mathrm{C})=2$. Since G_{0}^{j} is transverse to C , we get that $T_{\mathrm{G}_{0}^{j}}: C=\mathrm{C}^{2} \mathrm{i} \operatorname{tang}\left(\mathrm{G}_{0}^{j} ; \mathrm{C}\right)=\mathrm{i} 1$. On the other hand, the fact that $\mathrm{T}_{\mathrm{G}_{0}^{j}}=\mathrm{T}_{\mathrm{G}^{\mathrm{j}}}$ and 3.1.8 imply that $; 1=T_{G}: C=X(C) ; Z(G ; C)=2 ; 2=0$, a contradiction. T his contradiction implies that $\mathrm{t}=1$ and that there is no ; 1-curve contracted by \mathbb{O}_{2} meeting C_{2}. Therefore, $\mathrm{p}: \mathrm{q}=3: 2$ and \mathbb{O}_{2} is a biholomorphism in a neighborhood of $\mathrm{C}_{1}\left[\mathrm{C}\left[\mathrm{C}_{2}\right.\right.$. .
3.4.7 Corollary. Let $m_{1} ;::: ; m_{k}$ be the non-reduced singularities of the pencil $\left(F_{\circledR}\right)_{\circledR 22} \bar{c}$. Then m_{i} is of the type $p_{i}: q$ for the generic foliation of the pencil, where $p_{i}: q: 2 f 1: 1 ; 2: 1 ; 3: 2 \mathrm{~g}$. M oreover, Θ_{2} is a biholomorphism.
Proof. The ${ }^{-}$rst part follows directly from Lemma 3.4.6. It follows also from Lemma 3.4.6 that, \bigotimes_{2} is a biholomorphism in a neighborhood of $\bigcirc_{1}^{i}{ }^{1} f m_{1} ;::: ; m_{k} g$. This implies that, if $@_{2}$ contracts some ; 1-curve, say D, then $D \backslash \bigcirc_{1}^{1}{ }^{1} f m_{1} ; \ldots: ; m_{k} g=;$. Since $@_{1}$ is a biholomorphism outside $\bigcirc_{1}^{1}{ }^{1} \mathrm{~m}_{1} ; \ldots: . ; \mathrm{m}_{k} \mathrm{~g}$, we obtain that $\mathbb{O}_{1}(\mathrm{D})$ is a smooth i 1-curve in CP(2), which is not possible. \propto

The next result will be used in the proof of the $3^{\text {rd }}$ step.
3.4.8 Lemma. Let m_{0} be a non-reduced singularity of F_{0} of type $p: q 2 f 1: 1 ; 2: 1 ; 3: 2 \mathrm{~g}$. Let $f f=0 \mathrm{~g}$ be an equation of the germ of $\phi 0$ at m_{0} and \underline{o}_{0} be the multiplicity of f at m_{0}. Then there exists a local coordinate system ($x ; y$) at m_{0} where F_{0} is represented by a linear vector ${ }^{-}$eld and (a). If $\mathrm{p}: \mathrm{q}=1: 1$ then $\varrho_{0}=3$ and $\mathrm{f}(\mathrm{x} ; \mathrm{y})=\mathrm{x}: \mathrm{y}(\mathrm{y} \mathrm{i} x): \mathrm{u}(\mathrm{x} ; \mathrm{y})$, where $\mathrm{u}(0 ; 0) \in 0$.
(b). If $p: q=2: 1$ then $\varrho_{0}=2$ and $f(x ; y)=y\left(y ; x^{2}\right): u(x ; y)$, where $u(0 ; 0) \in 0$.
(c). If $\mathrm{p}: \mathrm{q}=3: 2$ then $\bigcirc_{0}=2$ and $\mathrm{f}(\mathrm{x} ; \mathrm{y})=\left(\mathrm{y}^{2} ; \mathrm{x}^{3}\right): \mathrm{u}(\mathrm{x} ; \mathrm{y})$, where $\mathrm{u}(0 ; 0) \in 0$.

In particular, if sing(ϕ_{0}) denotes the singular set of ϕ_{0} then, $\operatorname{sing}(\$ 0)$ coincides with the set of non-reduced singularities of F_{\circledR}, for a generic $\circledR^{\circledR} \bar{C}$.
Proof. K eeping the notation of Lemma 3.4.5, denote by ϕ_{n}^{0} the strict transform of ϕ_{n} by $1 / 4$.
 hand, it follows from 3.1.11 that

$$
\begin{aligned}
& \text { (13) } \$_{n+1}=1 / \AA\left(\$_{n}\right) \text { i }\left(2^{1}{ }_{n} ; 1\right) D_{n+1}^{n+1}=\$_{n}^{0}+\left(\underline{o}_{n} ; 2^{1}{ }_{n}+1\right) D_{n+1}^{n+1}
\end{aligned}
$$

Recall that ${ }^{1}{ }_{r_{i} 1}=2$, whereas ${ }^{1}{ }_{n}=1$ if $1 \cdot n<r_{i}$. If $n=r_{i} 1$ then $1 / \begin{aligned} & \text { r }\end{aligned}\left(\phi_{r_{i} 1}\right)=\phi_{r_{i}}^{0}$, because F_{0}^{r} and F_{1}^{r} are not tangent along D_{r}^{r}. This implies that $\underline{o}_{r_{i} 1}=2: 2 ; 1=3$. On the other hand, after the resolution ©, all components of $\$$ are smooth rational curves with multiplicity one (Lemma 3.2.9). Since the resolution I_{r} coincides with © in a neighborhood W of © ${ }^{1}\left(\mathrm{~m}_{0}\right)$, we
get that $\mathrm{W} \backslash \Phi=\mathrm{W} \backslash \Phi \mathrm{r}$ and all the components of this curve must have multiplicity one. Let $(x ; y)$ be a local coordinate system where F_{0} is represented by the vector ${ }^{-}$eld $X=q x \frac{\varrho}{\varrho x}+p y @$. Note that $g(x ; y)=y^{q}=x^{p}$ is a local ${ }^{-}$rst integral of X and that the germ of the components of $\$ 0$ at m_{0} are level curves of g.

Consider the case $\mathrm{p}: \mathrm{q}=1: 1$. In this case, $\mathrm{r}=1$ and $1 /\left(\boldsymbol{x}^{(}\left(\phi_{0}\right)=\phi_{1}^{0}\right.$, so that $\underline{o}_{0}=3$. Since the components of ϕ o have multiplicity one, it follows that $\$ 0$ has three branches passing through m_{0}, which are level curves of $g=y=x$. Hence, after a linear change of variables we can suppose that f is like in (a). When $p: q=2: 1$ or $p: q=3: 2$, we have $r=2$ or $r=3$, respectively, and after the ${ }^{-}$rst blowing-up we get that $\phi_{1}=\phi_{0}^{0}+\left(\begin{array}{ll}0_{0} & i\end{array}\right): D_{1}^{1}$. Since D_{1}^{r} is the strict transform of D_{1}^{1} at the ${ }^{-}$nal step of the resolution and D_{1}^{r} has multiplicity one in ϕ, in both cases, we get that $\varrho_{0}=2$. In particular, $₫_{1}=\Phi_{0}^{0}+D_{1}^{1}$. If $p: q=2: 1$, then m_{1} is a singularity of type $1: 1$ for F_{0}^{1}, so that $\underline{o}_{1}=3$. Hence, the multiplicity of ϕ_{0}^{0} at m_{1} is two and its germ consists of two curves meeting transversely at m_{1}. This implies that the germ of $\$ 0$ at m_{0} consists of two tangent curves meeting at m_{0}, so that after a linear change of coordinates, we can suppose that f is like in (b). If $p: q=3: 2$ then, after the ${ }^{-}$rst blowing-up, the singularity m_{1} is of the type $2: 1$ and, by the previous argument, the germ of ϕ_{1} at m_{1} contains two tangent branches, where one of them is D_{1}^{1}. W hen we blow-down the other branch, we obtain a cuspidal curve like in (c).

Let us prove the last assertion. Let N be the set of non-reduced singularities of $\mathrm{F}_{\text {® }}$. It follows from (a), (b) and (c) that sing($\$ 0$) $3 / 4 \mathrm{~N}$. On the other hand, if m 2 sing $(\$ 0$) then must be a singularity of any F_{\circledR} in the pencil. This singularity must be non-reduced, for otherwise after the resolution process the set $\$$ would have singularities, which is not the case. a
Proof of the $3^{\text {rd }}$ step. Since Θ_{2} is a biholomorphism, we can suppose that the resolution of the pencil is a sequence of blowing-ups $\bigcirc_{\text {: }} M_{j}!C P(2)$ and $®^{a}\left(F_{\circledR}\right)=G_{\circledR}^{j}$, for all $\circledR^{\circledR 2} \bar{C}$. We have seen that the divisors of tangencies $\phi\left(F_{0} ; F_{1}\right):=\$ 0$ and $\phi\left(G_{0} ; G_{1}^{j}\right):=\phi$ are jnvariant for all foliations in thepencils $P=\left(F_{\circledR}\right)_{\circledR 2 \bar{C}}$ and $Q^{j}=\left(G_{\circledR}^{j}\right)_{\circledR 2 \bar{C}}$, respectively. Let $母_{0}={ }_{i=1} n_{i}: B_{i}, n_{i}>0$, and $\phi=3_{k=1}^{3}\left(\quad{ }_{i>0} C_{k ; i}\right)$ be the decompositions of these divisors in irreducible components (see Lemma 3.2.9). Note that, if we consider $\$$ and $\ddagger 0$ as sets, then $\mathbb{O}(\$)=\$ 0$. This implies the following facts:
(i). For any ($k ; i$), $k=1 ; 2 ; 3, i>0$, either $@\left(C_{k ; i}\right)=B_{r}$, for somer $2 \mathrm{f} 1 ;::: ;{ }^{\prime} g$, or © contracts $C_{k ; i}$ and $\mathbb{O}\left(C_{k ; i}\right)$ is a point. M oreover, if $\mathbb{O}\left(C_{k ; i}\right)=B_{r}$, then $r 2 f 1 ;:: \%$; ${ }^{\prime} g$ is unique and $n_{r}=1$. This is a consequence of the fact that © is a biholomorphism outside the set of curves that it contracts. It follows that $\$_{0}=\quad i=1 B_{i}$. Since r is unique, we will use the notation $C_{k ; i}:=C_{r}$.
(ii). If $©\left(C_{r}\right)=B_{r}$, then B_{r} contains an unique singularity $q(®)$ such that the map $® 2 \bar{C} \nabla q(®)$ is a regular parametrization of B_{r}. In fact, if $C_{r}=C_{k ; i}$, then we have seen that $C_{k ; i}$ contains an unique singularity $\mathrm{q}_{\mathrm{k} ; \mathrm{i}}$ (®) such that the map $® 2 \overline{\mathrm{C}} \overline{\mathrm{V}} \mathrm{q}_{\mathrm{k} ; \mathrm{i}}{ }^{\circledR}$ ® $2 \mathrm{C}_{\mathrm{k} ; \mathrm{i}}$ is a regular parametrization of $C_{k ; i}$. If we set $q(\mathbb{B})=\mathbb{O}\left(q_{; i}(\mathbb{B})\right.$, then $\mathbb{B} \bar{q}(\mathbb{B})$ is a regular parametrization of B_{r}. We will

(iii). © contracts only curves that are contained in Φ and sing Φ_{0}) coincides with the set of non-reduced singularities of F_{0}.
(iv). If $\circledR^{\circledR} 2 \bar{C}$ is generic then, for all $\mathrm{r} 2 \mathrm{f} 1 ;:::{ }^{\prime} \mathrm{g}, \mathrm{q}(\mathbb{})$ is a non-degenerate singularity of the type $1: C_{r}^{2} 2$ f1: ; $2 ; 1: ; 3 ; 1: ; 4 ; 1: ; 6 \mathrm{~g}$. This follows from (iii) and the fact that © is a biholomorphism in a neighborhood of $q_{k ; i}(®)$, if $\mathbb{O}\left(q_{k ; i}(®)=q(®)\right.$ and $®$ is generic.

If $® 2 \bar{C}$ is generic, then all the singularities of F_{\circledR} are non-degenerate. M oreover, it follows from Lemma 3.4.6 and (iv) that they are of one the types: $1: 1,2: 1,3: 2,1:$; $2,1: ; 3,1: ; 4$, $1:$; 6 . Will use the notations $r_{1}, r_{2}, r_{3}, s_{2}, s_{3}, s_{4}$ and s_{6} for the number of the singularities of the types $1: 1,2: 1,3: 1,1: ; 2,1: ; 3,1: ; 4$ and $1: ; 6$, respectively, of the generic foliations of the pencil $\left(F_{\circledR}\right)_{\circledR 2} \overline{\mathrm{C}}$. Similarly, we will use the notations $s_{2}^{1}, s_{3}^{1}, s_{4}^{1}$ and s_{6}^{1} for the number of
singularities of the types 1 : ; 2,1 : ; 3, 1 : ; 4 and 1 ; 6 , respectively, of the foliations in the pencil $\left(\mathrm{G}_{\circledR}^{j}\right)_{\circledR 2} \mathrm{C}$.
3.4.9 Lemmap The numbers $d,{ }^{\prime}, r_{1} ; \ldots: ; s_{6}$ and $s_{2}^{1} ; \ldots: ; s_{6}^{1}$ satisfy the following relations:
(a). $2 d+1=\quad i=1 d g\left(B_{i}\right)=d g(\phi 0)$.
(b). $\mathrm{s}_{2}+\mathrm{S}_{3}+\mathrm{S}_{4}+\mathrm{S}_{6}={ }^{\text {' }}$.
(c). $s_{2}+r_{2}+r_{3}=s_{2}^{\frac{1}{2}}, s_{3}+r_{3}=s_{3}^{1}, s_{4}=s_{4}^{1}$ and $s_{6}=s_{6}^{1}$.
(d). $r_{1}+r_{2}+r_{3}+s_{2}+s_{3}+s_{4}+s_{6}=d^{2}+d+1$.
(e). $4 r_{1}+\frac{9}{2} r_{2}+\frac{25}{6} r_{3}$ i $\frac{1}{2} s_{2}$ i $\frac{4}{3} s_{3} i \frac{9}{4} s_{4} i \frac{25}{6} s_{6}=(d+2)^{2}$.

Proof. Relation (a) follows from $\left[\phi_{0}\right]=T_{F_{\oplus}}^{\square}+N_{F_{\odot}}=(2 d+1) \mathrm{H}$, where H is the divisor associated to a hyperplane in CP(2) (see 3.1.10 and 3.1.5). Relation (b) follows from (ii) and (iv). We get (c) from the process of resolution of the singularities of the types $2: 1$ and $3: 2$. Each singularity of the type 3:2 gives origin, after the resolution, to two singularities, one of the type $1: \mathrm{i} 2$ and the other of the type $1:$; 3 . On the other hand, each singularity of the type $2: 1$ gives origin, after the resolution, to just one singularity of the type 1 : i 2 . This implies that $s_{2}+r_{2}+r_{3}=s_{2}^{1}$ and $s_{3}+r_{3}=s_{3}^{1}$. Since these resolutions do not create any singularity of one of the types 1 ; ; 4 or 1 : ; 6 , we get the other relations in (c). Relation (d) follows from 3.1.6. Finally, relation (e) is a consequence of Baum-Bott Theorem (cf. [B-B] and $[B r-2]$). We will state this result in the particular case in which all singularities of the foliation are non-degenerate. Given a foliation H on a compact surface M, with non-degenerate singularities, say $p_{1} ;:: ; p_{n}$, de ${ }^{-}$ne

$$
\mathrm{BB}\left(\mathrm{H} ; \mathrm{p}_{\mathrm{j}}\right)=\frac{\left(\operatorname{tr}\left(\mathrm{DX}\left(\mathrm{p}_{\mathrm{j}}\right)\right)^{2}\right.}{\operatorname{det}\left(\mathrm{DX}\left(\mathrm{p}_{\mathrm{j}}\right)\right.}
$$

where X is a holomorphic vector ${ }^{-}$eld which represents H in a neighborhood of $p_{p}, j=1 ; \ldots ; n$. Theorem (B aum-B ott). In the above situation we have that ${ }_{p}{ }_{j=1} B B\left(H ; p_{j}\right)=N_{H}^{2}$. In particular, if $M=C P(2)$ and H has degree d, then ${ }_{j=1}^{n} B B\left(H ; p_{j}\right)=(d+2)^{2}$.

In the case of a singularity p_{g} of the type p : q we have that $B B\left(H ; p_{j}\right)=\frac{(p+q)^{2}}{p: q}$. If we apply this result in the case of a generic foliation in the pencil $\left(F_{\circledR}\right)_{\circledR 2} \bar{C}$ then we get (e). \propto

Next, we will consider all possible cases for the pencil $\left(\mathrm{G}_{\circledR}\right)_{\circledR 2} \bar{C}$. The strategy in any case, will be to prove that the divisor of tangencies $\$ 0$ of the pencil P coincides with the divisor of tangencies of one of the pencils of $\times 2.2,2.3$ or 2.4 , modulo an automorphism CP(2). This implies the T heorem, because if the divisor of tangencies of two pencils coincide then the pencils are equivalent, as the reader can check.
3.4.10 The pencil is bimeromorphically equivalent to the family of type 1 ($\mathrm{j}=1$). Let us prove that the pencil $(F)_{\circledR 2} \bar{C}$ is equivalent to the pencil $\left(F^{4}\right)_{\circledR 2 \bar{C}}$ of $x 2.2$. In this case, all the members of the pencil $\left(\mathrm{G}_{\circledR}^{1}\right)_{\circledast 2} \overline{\mathrm{C}}$ have nine singularities, all of them of the type 1 : i 3 (see -g. 1.a). Hence, $s_{2}^{1}=s_{4}^{1}=s_{6}^{1}=0$ and $s_{3}^{\frac{1}{3}}=9$. It follows from (c) of Lemma 3.4.9 that $s_{2}=s_{4}={ }_{p} \sigma_{9}=r_{2}=r_{3}=0$ and $s_{3}=9$, so that ${ }^{`}=9$, by (b). On the other hand, (a) implies that $2 d+1={ }_{i=1}^{9} d g\left(B_{i}\right), 9$, and so d, 4. Therefore, $d=4$, by the $1^{\text {st }}$ step, and $d g\left(B_{i}\right)=1$ for all $\mathrm{i}=1$; :.:; 9 . In particular, q_{0} contains nine straight lines, all of them with multiplicity one. It follows from (d) that $r_{1}+s_{3}=d^{2}+d+1=21$, and so $r_{1}=12$. Let $P:=f m_{1} ;:: ; ; m_{12} g$ be the set of singularities of the type $1: 1$ and $L:=f B_{1} ;::: ; B_{9} g$. The idea is to consider the con ${ }^{-}$guration of lines and points ($\mathrm{L} ; \mathrm{P}$) and prove that it satis ${ }^{-}$es the following properties:
(I). Each line of L contains four points of P.
(II). Each point of P belongs to three lines of L.
(III). If three points of P are not in the same line of L, then the points are not aligned.

The rest of the proof is based in Proposition 1 of [LN]. Proposition 1 of [LN] says that, if a con ${ }^{-}$guration as above satis ${ }^{-}$es (I), (II) and (III), then there exists an automorphism T of $C P(2)$ such that the lines in $T(P)$ are the lines de ned by $\left(Y^{3} ; X^{3}\right)\left(Z^{3} ; Y^{3}\right)\left(X^{3} ; Z^{3}\right)=0$, in homogeneous coordinates. On the other hand, the divisor of tangencies of the pencil $\left(F_{\circledR}^{4}\right)_{\circledR 2} \bar{C}$ is also $\left(Y^{3} ; X^{3}\right)\left(Z^{3} ; Y^{3}\right)\left(X^{3} ; Z^{3}\right)=0$, so that this pencil is equivalent to $\left(F_{\circledR}\right)_{\circledR 2} \bar{C}$.

Let us prove (I), (II) and (III). A ssertion (I) follows from 3.1.8: if F_{\circledR} is a generic foliation in the pencil and $B_{i} 2 L$, then

$$
d_{i} 1=T_{F_{\oplus}}^{a}: B_{i}=X\left(B_{i}\right) i \quad Z\left(F_{\circledast} ; B_{i}\right) \quad \Rightarrow \quad Z\left(F_{\circledast} ; B_{i}\right)=5 ;
$$

so that B_{i} contains ${ }^{-}$ve singularities of $\mathrm{F}_{\text {® }}$. Since only one of these singularities is of the type 1 : ; 3, the other four must be of the type 1:1. Assertion (II) follows from Lemma 3.4.8: the multiplicity of $\phi_{0}={ }_{i=1}^{9} B_{i}$ at m_{j} is three, for all $j=1 ;::: ; 12$. Hence, each m_{j} belongs to the intersection of three lines of L. Finally, assertion (III) follows from Lemma 3.4.1: if $m_{i_{1}} ; m_{i_{2}} ; m_{i_{3}}$ belong to the same line, say B, then B must be invariant for any F_{\circledR} such that $m_{i_{1}}, m_{i_{2}}$ and $m_{i_{3}}$ are radial singularities. Hence B 2 L . This ends the proof of this case.
3.4.11 The pencil is bimeromorphically equivalent to the family of type $2(j=2)$. We will prove in this case that, either $d=2$ and P is equivalent to the pencil $\left(F_{\circledR}^{2}\right)_{\circledR 2} \bar{C}$ of $x 2.3$, or $d=3$ and P is equivalent to the pencil $\left(F_{\circledR}^{3}\right)_{\circledR 2} \bar{C}$ of $\times 2.3$. Note that for a foliation G_{\circledR}^{2} we have $s_{2}^{1}=5$, $s_{3}^{1}=4, s_{4}^{1}=0$ and $s_{6}^{1}=1$. From (c) of Lemma 3.4.9 we get the following relations : $s_{2}+r_{2}+r_{3}=5$, $s_{3}+r_{3}=4, s_{4}=0$ and $s_{6}=1$. In particular, $s_{3}=4 i r_{3}$ and $s_{2}=5 i r_{2} i r_{3}$. If we substitute these relations in (d) and (e), we obtain that $r_{1} i r_{3}=d^{2}+d_{i} 9$ and $4 r_{1}+5 r_{2}+6 r_{3}=d^{2}+4 d+16$, which implies that $5\left(r_{1}+r_{2}+r_{3}\right)=2 d^{2}+5 d+7$, and so 5 divides $2 d^{2}+5 d+7$. As the reader can check, if $d 2 f 2 ; 3 ; 4 \mathrm{~g}$, this is possible only for $\mathrm{d} 2 \mathrm{f} 2 ; 3 \mathrm{~g}$. M oreover, if $\mathrm{d}=2$ then we get that $r_{1}+r_{2}+r_{3}=5$ and $^{`}=s_{2}+s_{3}+s_{6}=2$, whereas if $d=3$ then we get $r_{1}+r_{2}+r_{3}=8$ and ${ }^{\prime}=s_{2}+s_{3}+s_{6}=5$.
3.4.12 The case $d=2$. In this case, $d g(\$ 0)=5$. We assert that $r_{1}=0$. In fact, suppose by contradiction that for a generic ${ }_{\circledR} 2 \overline{\mathrm{C}}$ the foliation F_{\circledR} has a radial singularity, say m . It follows from (a) of Lemma 3.4.1 that for any other singularity, say q, of F_{\circledR}, the straight line $L(m ; q)$, which joins m to q is invariant for $\mathrm{F}_{\text {® }}$. On the other hand, since ${ }^{`}=2, \mathrm{q}_{\mathrm{o}}$ contains exactly two irreducible components, say B_{1} and B_{2}. For each $j=1 ; 2$, the component B_{j} does not change with the parameter and contains an unique singularity $q(\mathbb{B})$ such that $\mathbb{B} \eta(\mathbb{B}) 2 B_{j}$ is a regular parametrization of B_{j}. Since $L\left(m ; q(®)\right.$ is invariant for F_{\circledR}, we have two possibilities : either the line $L(m ; q(®))$ does not change with parameter, or it changes. In the ${ }^{-}$rst case, we must have $B_{j} \quad L(m ; q(®))$, whereas in the second, the foliation F_{\circledR} has an algebraic invariant curve outside $\$ 0$. We assert that the second possibility can not happen. In fact, if $L(m ; q(\mathbb{R})$ is an algebraic invariant curve outside $\$ 0$, then $\bigotimes^{1}{ }^{1}\left(\mathrm{~L}(\mathrm{~m} ; \mathrm{q}(\mathbb{Q}))\right.$ is an algebraic invariant curve for $\mathrm{G}_{\circledR}^{1}$, outside \$. It follows from (iv) of Lemma 3.2.18 that $\mathrm{G}_{\circledR}^{1}$ has a ${ }^{-}$rst integral, so that $\circledR^{\circledR} 2 \mathrm{E}\left(\mathrm{Q}^{2}\right)$. But this implies that $E\left(Q^{2}\right)=\bar{C}$, a contradiction. From this, we get that B_{1} and B_{2} are straight lines, and so $\mathrm{dg}\left(\phi_{0}\right)=2$, which is a contradiction. T his proves that $r_{1}=0$.

It follows from $r_{1}=0$ and Lemma 3.4.9 that : $r_{2}=2, s_{2}=0, r_{3}=3$ and $s_{3}=s_{6}=1$. Since $\mathrm{dg}\left(\phi_{0}\right)=5$, we have two possibilities for the components B_{1} and B_{2} of ϕ_{0} : if $\operatorname{dg}\left(B_{1}\right) \cdot d g\left(B_{2}\right)$ then, either $\mathrm{dg}\left(\mathrm{B}_{1}\right)=1$ and $\mathrm{dg}\left(\mathrm{B}_{2}\right)=4$, or $\operatorname{dg}\left(\mathrm{B}_{1}\right)=2$ and $\mathrm{dg}\left(\mathrm{B}_{2}\right)=3$. Let us exclude the second possibility. Suppose by contradiction that $\operatorname{dg}\left(B_{1}\right)=2$. This implies that B_{1} is a smooth conic, so that it contains four singularities of F_{\circledR}, for a generic ${ }_{\circledR} 2 \overline{\mathrm{C}}$, by 3.1.8. One of these singularities is $q_{1}(®)$, which is of one the types $1: ; 3$ or $1: ; 6$. The other three, say $m_{1} ; m_{2} ; m_{3}$, are of one the types $2: 1$ or $3: 2$. Let us apply Camacho-Sad Theorem : we have $I\left(F_{\circledR} ; B_{1} ; q_{1}(®) 2 f_{i} 3 ; i 6 g\right.$ and $I\left(F_{\circledR} ; B_{1} ; m_{j}\right) 2 f 2 ; 1=2 ; 2=3 ; 3=2 \mathrm{~g}$, because the tangent
direction of B_{1} at each m_{j} corresponds to a local separatrix of this singularity. Since $4=B_{1}^{2}=$ ${ }_{q 2} \mathrm{~B}_{1} \mathrm{I}\left(\mathrm{F}_{\circledR} ; \mathrm{B}_{1} ; q\right)$, we get that ${ }_{j=1}^{3} \mathrm{I}\left(\mathrm{F}_{\circledR} ; \mathrm{B}_{1} ; \mathrm{m}_{\mathrm{j}}\right)=4 \mathrm{i} \mathrm{I}\left(\mathrm{F}_{\circledR} ; \mathrm{B}_{1} ; \mathrm{q}_{\mathrm{l}}(®) 2 \mathrm{f} ; \mathrm{i} 2 \mathrm{~g}\right.$. On the other hand, ${ }_{j=1}^{3} I\left(F_{\circledR} ; B_{1} ; m_{j}\right), 3=2$, which is a contradiction. T herefore, $d g\left(B_{1}\right)=1$ and $d g\left(B_{2}\right)=4$.

Let us analyse the singularities of F_{\circledR} in the straight line B_{1}, by using C amacho-Sad T heorem. Observe ${ }^{-}$rst that B_{1} contains three singularities, by 3.1.8. One of these singularities is $\alpha_{1}(\circledR)$. Call m_{1} and m_{2} the other two. We assert that, for a generic $®, q_{1}(®)$ is of the type $1: ; 3$ and m_{1}, m_{2} are of the type 2:1. In fact, consider the Camacho-Sad indexes $\mathrm{I}_{\circledR}:=\mathrm{I}\left(\mathrm{F}_{\circledR} ; \mathrm{B}_{1} ; \mathrm{q}_{1}(\mathbb{B})\right.$) and $I_{j}:=I\left(F_{\circledR} ; B_{1} ; m_{j}\right)$. We have that $I_{\circledR} 2 f ; 3 ; i g, I_{j} 2 f 2 ; 1=2 ; 2 \Rightarrow 3 ; 2 g$ and $I_{\circledR}+I_{1}+I_{2}=B_{1}^{2}=1$, so that $I_{1}+I_{2}=1_{i} I_{\circledR}$. Since $I_{1}+I_{2} .4$, we get that $I_{\circledR}, ~ i 3$, so that $I_{\circledR}=i 3$ and $I_{1}=I_{2}=2$, as the reader can check. This implies that $\alpha_{1}(\mathbb{B})$ is of the type 1 ; ; 3 and m_{1} and m_{2} are of the type $2: 1$. M oreover, F_{\odot} has four singularities outside B_{1}, one of the type $1: ; 6$ and three of the type 3:2. The curve B_{2} must contain these singularities and also the points in $B_{2} \backslash B_{1}$, which are also singularities of F_{\circledR}. Since $q_{1}(®)$ changes with the parameters, for a generic $®_{1} B_{2}$ does not contain $q_{1}(®)$. This implies that $B_{2} \backslash B_{1} 1 / 2 f m_{1} ; m_{2} g$. On the other hand, (b) Lemma 3.4.8 implies that the germ of ϕ_{0} at m_{j} contains two smooth tangent branches. Hence, B_{2} is a quartic tangent to B_{1} at m_{1} and m_{2}. Let m_{3}, m_{4} and m_{5} be the non-reduced singularities of F_{0}, outside B_{1}. These singularities are of the type $3: 2$ and must be contained in B_{2}. It follows from (c) of Lemma 3.4.8 that these points are cuspidal singularities of B_{2}. Therefore, B_{2} is a quartic with three cuspidal singularities and tangent to B_{1} at m_{1} and m_{2}. Note that three di ®erent points in the set $f m_{1} ;::: ; m_{5} g$, are not aligned, for otherwise the line containing them would be a component of $\$ 0$, which can not happen.

Choose a homogeneous coordinate system $[x: y: z]$ such that B_{1} is the line $z=0$ and m_{3}, m_{4} and m_{5} are the points, $[0: 0: 1]$, $[1=2: 1=2: 1]$ and $[1=2: ; 1=2: 1]$, respectively. As the reader can check, in the $a \pm$ ne coordinate system $z=1$, the quartic B_{2} is then given by $4 y^{2}(1 ; 3 x) ; 4 x^{3}+\left(3 x^{2}+y^{2}\right)^{2}=0$. This ${ }^{-}$nishes the proof in this case, because the divisor of tangencies of the pencil $\left(\mathrm{F}_{\circledR}^{2}\right)_{\circledR 2} \overline{\mathrm{C}}$ is also given by these curves (see $\times 2.3$). \propto
3.4.13 The case $d=3$. We will consider the following situation: let F be a foliation on $C P(2)$ of degree three with three non-aligned radial singularities, say $m_{1} ; m_{2} ; m_{3}$. Let ${ }_{i j}$ be the straight line joining m_{i} and $m_{j}, 1 \cdot i<j \cdot 3$. Consider the Cremona transformation a : CP(2)! CP(2) de ${ }^{-}$ned by blowing-up at the points $m_{1} ; m_{2} ; m_{3}$ and blowing-down the strict transforms of the lines ${ }_{i j}, 1 \cdot \mathrm{i}<\mathrm{j} \cdot 3$, as in ${ }^{-}$gure 4 . Set $G={ }_{\mathrm{a}}^{\mathrm{a}}(\mathrm{F})$. We have the following result :
3.4.14 Lemma. The foliation G has degree two. Moreover, the singularities of G are nondegenerate if, and only if, the singularities of F are non-degenerate.
 and m_{3} are not aligned, we can choose a homogeneous coordinate system [x:y:z] such that $m_{1}=[0: 0: 1], m_{2}=[0: 1: 0]$ and $m_{3}=[1: 0: 0]$, so that ${ }_{12}=\mathrm{fx}=0 \mathrm{~g},{ }_{13}=\mathrm{fy}=0 \mathrm{~g}$ and ${ }^{2} 23=f z=0 \mathrm{~g}$. In this coordinate system, we have ${ }^{2}[x: y: z]=[y: z: x: z: x: y]$. Since the lines $f x=0 \mathrm{~g}, \mathrm{fy}=0 \mathrm{~g}$ and $\mathrm{fz}=0 \mathrm{~g}$ are invariant and $[0: 0: 1]$ is a radial singularity of F , this foliation can be represented in the $a \pm$ ne coordinate system $f z=1 \mathrm{~g}$, by a polynomial vector ${ }^{-}$eld X of the form

$$
X(x ; y)=x\left(1+® x+{ }^{-} y+P_{2}(x ; y)\right) \frac{@}{@ x}+y\left(1+{ }^{\circ} x+ \pm y+Q_{2}(x ; y)\right) \frac{@}{@} ;
$$

where $\mathbb{R}^{-}{ }^{-} ;{ }^{\circ} ; \pm 2 \mathrm{C}$ and $\mathrm{P}_{2} ; \mathrm{Q}_{2}$ are homogeneous polynomials of degree two. T he fact that $[0$: 1 : 0] and $\left[1: 0: 0\right.$] are radial singularities of F, is equivalent to $P_{2}(0 ; 1)=Q_{2}(1 ; 0)=0$ and
$P_{2}(1 ; 0): Q_{2}(0 ; 1) \in 0$, as the reader can check. Hence, we can suppose that

$$
X(x ; y)=x\left(1+® x+{ }^{-} y+A x^{2}+B x y\right) \frac{@}{@ x}+y\left(1+{ }^{\circ} x+ \pm y+C x y+D y^{2}\right) \frac{@}{@ y} ;
$$

where A:D G 0 . Now, in this coordinate system, we have $\operatorname{a}(x ; y)=(1=x ; 1 \Rightarrow)=(u ; v)$, so that, if $Y(u ; v)=; u: v:{ }_{p}(X)$, then

$$
Y(u ; v)=\left(B u+A v+® u v+-u^{2}+u^{2} v\right) \frac{@}{@}+\left(D u+C v+{ }^{\circ} v^{2}+\sharp u v+u v^{2}\right) \frac{@}{@}
$$

and Y represents G in the $a \pm$ ne coordinate system $(u ; u)=[u: v: 1]$. This implies that G has degree two, because the homogeneous part of degree three of Y is $u: v\left(u @+v \frac{\varrho}{\varrho}\right)$ (see [LN 1]). Note that the point $n_{1}:=[0: 0: 1]$ is a singularity of G. Similarly, the points $n_{2}:=[0: 1: 0]$ and $n_{3}:=[1: 0: 0]$ are singularities of G. On the other hand, if the singularities of F are nondegenerate, then each line ${ }_{i j}$ contains four singularities, so that there are nine singularities in [$\mathrm{ij}{ }^{`}{ }_{\mathrm{ij}}$ and $4=13 \mathrm{i} 9$ singularities of F in CP(2) $\mathrm{n}\left[\mathrm{ij}{ }^{\text {}} \mathrm{ij}\right.$, because the total number of singularities is $13=3^{2}+3+1$ (see 3.1.6). Since a is a biholomorphism outside $\left[i j{ }^{`}{ }_{\mathrm{ij}}\right.$, G must have four nondegenerate singularities in $\mathfrak{a}\left(C P(2) n\left[i j{ }_{i j}\right) 1 / 2 C P(2) n f n_{1} ; n_{2} ; n_{3} g\right.$. Hence, G has seven singularities, so that they must be non-degenerate, because $7=2^{2}+2+1$. We leave the proof of the converse for the reader. x

The idea of the proof is the following: we will prove that, for a generic ${ }^{\circledR} 2 \bar{C}, F_{\circledR}$ has three radial singularities, say m_{1}, m_{2} and m_{3}, which are not aligned. If \underline{a} is as in Lemma 3.4.14, then the pencil $\left(H_{\circledR}:=\bigcirc_{\mathbb{x}}\left(F_{\circledR}\right)\right)_{\circledR 2} \bar{C}$ satis ${ }^{-}$es the hypothesis of the case of degree two. Therefore, we can suppose that $H_{\circledR}=F_{\circledR}^{2}$, for every $\circledR^{\circledR} 2 \bar{C}$. The result then follows from the fact that the pencil $\left(F^{\circledR}\right)_{\circledR 2} \bar{C}$ is obtained from the pencil $\left(F_{\circledR}^{2}\right)_{\circledR 2 \bar{C}}$ by a Cremona transformation, as was showed in $\times 2.3$ (see also x2.3 of [LN]). Let us prove the existence of the radial singularities m_{1}, m_{2}, m_{3}.

We have seen before that $d g(\$ 0)=7, r_{1}+r_{2}+r_{3}=8, s_{4}=0, s_{6}=1, s_{2}+s_{3}=4$ and $=s_{2}+s_{3}+s_{6}=5$. In particular, since $\phi 0$ has ve irreducible components, at least three of them, say B_{1}, B_{2} and B_{3}, are straight lines. Observe that $r_{1}, 3$. This follows from $s_{2}+r_{2}+r_{3}=s_{2}^{1}=5$ ((c) of Lemma 3.4.9) and $r_{1}+r_{2}+r_{3}=8$, so that $r_{1}=s_{2}+3$ and r_{1}, 3. We assert that $r_{1}=3$. In fact, suppose by contradiction that $r_{1}>3$ and let $m_{1} ;:: ; m_{4}$ be four radial singularities of F_{\circledR}. Let us prove that at least three of them are not aligned. Suppose by contradiction that they are aligned. Note that the line which contains these singularities is invariant for all foliations in the pencil, and so we can suppose that $m_{1} ;::: ; m_{4} 2 B_{1}$. Since $Z\left(F_{\circledR} ; B_{1}\right)=4$, by 3.1.8, we get that sing $\left(F_{\circledR}\right) \backslash B_{1}=f m_{1} ;:: ; m_{4} g$. But, this is impossible, by Camacho-Sad Theorem, because $I\left(F_{\circledR} ; B_{1} ; m_{j}\right)=1, j=1 ;:: ; 4$, and $B_{1}^{2}=1$. Hence, three of the singularities are not aligned. In this case, by the previous argument, the pencil $\left(F_{\circledR}\right)_{\circledR 2} \bar{C}$ is equivalent to the pencil $\left(F_{\circledR}^{3}\right){ }_{\circledR 2} \overline{\mathrm{C}}$. Since the generic foliations in this pencil have three radial singularities, we get $r_{1}=3$.

Now, $r_{1}=3$ and the system of equations in Lemma 3.4.9 gives, $r_{2}=5, r_{3}=0, s_{2}=s_{4}=0, s_{3}=$ 4 and $s_{6}=1$. We leave this computation for the reader. Let us prove that the radial singularities, m_{1}, m_{2} and m_{3}, are not aligned. Suppose by contradiction that they are aligned. Since the line that contains them is contained in $\dagger 0$ (Lemma 3.4.1), we can suppose that $m_{1} ; m_{2} ; m_{3} 2 B_{1}$. On the other hand, $\mathrm{I}_{\mathrm{j}}:=\mathrm{I}\left(\mathrm{F}_{\circledR} ; \mathrm{B}_{1} ; \mathrm{F}_{\mathrm{j}}\right)_{3}=1$, for a generic ${ }^{\circledR}$, so that by Camacho-Sad Theorem, we must have $I\left(F_{\circledR} ; B_{1} ; q_{1}(®)=1_{i} \quad{ }_{j=1}^{3} I_{j}={ }_{i} 2\right.$. This implies that $q_{1}(®)$ is of the type 1 ; 2 , and so $s_{2}>0$, a contradiction with $s_{2}=0$. Hence m_{1}, m_{2} and m_{3} are not aligned. This ${ }^{-}$nishes the proof of this case. $ぬ$
3.4.15 The pencil is bimeromorphically equivalent to the family of type $3(\mathrm{j}=3)$. We will prove that the pencil $\left(F_{\circledR}\right)_{\circledR 2} \bar{C}$ is equivalent to the pencil $\left(F_{\circledR}^{3: 1}\right)_{\circledR 2} \bar{C}$ of $\times 2.4$. First of all, let
us prove that $d=3, r_{1}=3, r_{2}=5, r_{3}=s_{3}=s_{6}=0, s_{2}=1$ and $s_{4}=4$, in this case. For the pencil of type 3, we have $s_{2}^{1}=6, s_{3}^{\frac{1}{3}}=s_{6}^{1}=0$ and $s_{4}^{1}=4$ (see ${ }^{-}$g. 1.c). It follows from (c) of Lemma 3.4.9 that $s_{2}+r_{2}=6, s_{3}=s_{6}=r_{3}=0$ and $s_{4}=4$. If we substitute these values in (d) and (e) of Lemma 3.4.9, we get $r_{1}=d^{2}+d_{i} 9$ and $4 r_{1}+\frac{9}{2} r_{2} i \frac{1}{2} s_{2}=d^{2}+4 d+13$, so that $9 r_{2} i s_{2}=; 6 d^{2}+98$. This last relation, together with $r_{2}+s_{2}=6$, gives $5 s_{2}=3 d^{2} ; 22>0$, and so $3 \cdot d \cdot 4$. Since 5 divides $3 d^{2} ; 22$, we get that $d=3$ and $s_{2}=1$. This implies that $r_{1}=3$, $r_{2}=5, r_{3}=s_{3}=s_{6}=0$ and $s_{4}=4$, as the reader can check. In particular, there is no pencil of degree two bimeromorphically equivalent to the pencil of type 3 . M oreover, since ` $=s_{2}+s_{4}=5$, $\${ }_{0}$ has ${ }^{-}$ve irreducible components. Let us denote by $m_{1} ; m_{2} ; m_{3}$ the three radial singularities, by $m_{4} ;:: ; m_{8}$ the ${ }^{-}$ve singularities of the type $2: 1$ and by $B_{1} ;:: ; B_{5}$ the ${ }^{-}$ve irreducible components of 40 . Set $P=f m_{1} ;: \ldots ; m_{8} g$ and $L=f B_{1} ;:: ; B_{5} g$. We choose the order $B_{1} ; \ldots ; B_{5}$ in such a way that $\operatorname{dg}\left(B_{j}\right) \cdot d g\left(B_{j+1}\right), 1 \cdot j \cdot 4$. Recall that for a generic ${ }^{\circledR} 2 \bar{C}$ and for each $j=1 ;::: ; 5, B_{j}$ contains a reduced singularity $q(\mathbb{B})$, such that $® \square q(\mathbb{B}) 2 B_{j}$ is a regular parametrization of B_{j}. We will see before, that we can suppose that $q_{1}(\mathbb{B})$ is of the type 1 ; ; 2 and that $q(®)$ is of the type 1 : ; 4 for j, 2. We assert that the con guration of points and curves $(P ; L)$ satis ${ }^{-}$es the following properties :
(I). $B_{1} ; B_{2} ; B_{3}$ are straight lines and $B_{4} ; B_{5}$ are conics. M oreover, each line contains four singularities and each conic contains six singularities of F_{\circledR}, for a generic ${ }_{\circledR}{ }^{\circ} \mathbf{C} \overline{\mathrm{C}}$.
(II). $m_{1} ; m_{2} ; m_{3} 2 B_{1}$ and ; $G B_{1} \backslash B_{2} \backslash B_{3} 1 / 2 f m_{1} ; m_{2} ; m_{3} g$, so that we can suppose that $B_{1} \backslash B_{2} \backslash B_{3}=f m_{1} g$. In particular, sing $\left(F_{\circledR}\right) \backslash B_{1}=f q_{1}(®) ; m_{1} ; m_{2} ; m_{3} g$.
(III). Besides m_{1}, B_{2} (resp. B_{3}) contains two singularities of the type $2: 1$, so that we can suppose that $\operatorname{sing}\left(F_{\circledR}\right) \backslash B_{2}=f q_{2}(®) ; m_{1} ; m_{4} ; m_{5} g\left(r e s p . \operatorname{sing}\left(F_{\circledR}\right) \backslash B_{3}=f q_{B}(®) ; m_{1} ; m_{6} ; m_{7} g\right)$.
(IV). The lines B_{2} and B_{3} are tangent to the conics B_{4} and B_{5}. M oreover, we can order the points $m_{4} ;::: ; m_{7}$ in such a way that $B_{2} \backslash B_{4}=f m_{4} g, B_{2} \backslash B_{5}=f m_{5} g, B_{3} \backslash B_{4}=f m_{6} g$ and $B_{3} \backslash B_{5}=f m_{7} g$.
$(V) . B_{4} \backslash B_{5}=f m_{2} ; m_{3} ; m_{8} g$, where m_{8} is a point of tangency and $B_{4} ; B_{5}$ are transverse at $m_{2} ; m_{3}$. In particular, $\operatorname{sing}\left(F_{\circledR}\right) \backslash B_{4}=f q_{4}(®) ; m_{2} ; m_{3} ; m_{4} ; m_{5} ; m_{8} g$ and $\operatorname{sing}\left(F_{\circledR}\right) \backslash B_{5}=$ $f q_{4}(®) ; m_{2} ; m_{3} ; m_{6} ; m_{7} ; m_{8} g$.

Observe ${ }^{-}$rst that $\operatorname{dg}\left(B_{1}\right)=\operatorname{dg}\left(B_{2}\right)=\operatorname{dg}\left(B_{3}\right)=1$ and that, peither $\operatorname{dg}\left(B_{4}\right)=d g\left(B_{5}\right)=2$, or $\operatorname{dg}\left(B_{4}\right)=1$ and $\operatorname{dg}\left(B_{5}\right)=3$. This follows from $\operatorname{dg}\left(\phi_{0}\right)=7, \phi_{0}=\sum_{j=1}^{5} B_{j}$ and $\operatorname{dg}\left(B_{j}\right) \cdot \operatorname{dg}\left(B_{j+1}\right)$, as the reader can check. Note also that m_{1}, m_{2} and m_{3}, are aligned, for otherwise the pencil would be bimeromorphically equivalent to an elliptic, non-degenerate, exceptional pencil of degree two (by Lemma 3.4.14), which is not possible. The straight line that contains $m_{1} ; m_{2} ; m_{3}$ is invariant for every foliation F_{\circledR}, so that it is contained in \dagger_{0}, by Lemma 3.4.1, and we can suppose that this line is B_{1}. By 3.1.8, each line contains four singularities of F_{\circledR}, for a generic \circledR^{\circledR} On the other hand, Camacho-Sad Theorem implies that $\mathrm{q}_{1}(\mathbb{B})$ is of the type 1 : ; 2 : since $I\left(\mathrm{~F}_{\circledR} ; \mathrm{B}_{1} ; \mathrm{m}_{\mathrm{j}}\right)=1$, $j=1 ; 2 ; 3$, we get that $1=I\left(F_{\circledR} ; B_{1} ; q_{1}(\mathbb{B})\right)+3$, so that $I\left(F_{\circledR} ; B_{1} ; q_{1}(\mathbb{B})\right)=\mathrm{i} 2$ and $q_{1}(\mathbb{B})$ is of the type $1:$; 2 . Since $S_{2}=1$ and $s_{4}=4$, we get that $q(®)$ is of the type $1: ; 4, j=2 ; 3 ; 4 ; 5$. Let us prove that $\operatorname{dg}\left(B_{4}\right)=d g\left(B_{5}\right)=2$.

Suppose by contradiction that $d g\left(B_{4}\right)=1$ and $d g\left(B_{5}\right)=3$. Consider a straight line B_{j}, $j, 2$, and set sing $\left(F_{\circledR}\right) \backslash B_{j}=f q(®) ; m_{k_{1}} ; m_{k_{2}} ; m_{k_{3}} g$. Observe that $I\left(F_{\circledR} ; B_{2} ; q(\mathbb{R})=i 4\right.$ and $I_{i}:=I\left(F_{\circledR} ; B_{2} ; m_{k_{i}}\right) 2$ f1; $2 ; 1=2 \mathrm{~g}, \mathrm{i}=1 ; 2 ; 3$. If we choose $\mathrm{k}_{1} ; \mathrm{k}_{2} ; \mathrm{k}_{3}$ in such a way that $\mathrm{I}_{1} \cdot \mathrm{I}_{2} \cdot \mathrm{I}_{3}$, then we get $I_{1}=1$ and $I_{2}=I_{3}=2$, as the reader can check by using Camacho-Sad Theorem. Hence, $m_{k_{2}}$ and $m_{k_{3}}$ are of the type $2: 1$. It follows from (b) of Lemma 3.4.8 that the curve B_{5}, which is the unique component of degree >1 of ϕ_{0}, must be tangent to B_{j} at the points $m_{k_{2}}$ and $m_{k_{3}}$. This implies that $B_{j}: B_{5}, 4$. But, $B_{j}: B_{5}=3$, because $\operatorname{dg}\left(B_{j}\right)=1$ and $\operatorname{dg}\left(B_{5}\right)=3$. This contradiction implies that $\operatorname{dg}\left(B_{4}\right)=d g\left(B_{5}\right)=2$. Note that we have proved also that $\mathrm{B}_{\mathrm{j}}, \mathrm{j}=2 ; 3$, contains one singularity of the type $1: 1$ and two of the type $2: 1$.

Now, we have two possibilities, either $B_{1} \backslash B_{2} \backslash B_{3} G$; or $B_{1} \backslash B_{2} \backslash B_{3}=$; Suppose by contradiction that $B_{1} \backslash B_{2} \backslash B_{3}=;$. In this case, $B_{2} \backslash B_{3}$ is one of the points $m_{j}, 4 \cdot j \cdot 8$, because $m_{1} ; m_{2} ; m_{3} 2 B_{1}$. This implies that B_{2} and B_{3} meet transversely at m_{j} and this contradicts the fact that the germ of $\phi 0$ consists of two tangent branches ((b) of Lemma 3.4.8). Hence, $B_{1} \backslash B_{2} \backslash B_{3}$ consists of one radial singularity, and so we can suppose that $B_{1} \backslash B_{2} \backslash B_{3}=f m_{1} g$. Note that $m_{1} B B_{4}\left[B_{5}\right.$, because the germ of $\$ 0$ at m_{1} contains exactly three di ®erent branches ((a) of Lemma 3.4.8), and these branches are contained in $\mathrm{B}_{1}\left[\mathrm{~B}_{2}\left[\mathrm{~B}_{3}\right.\right.$.

We can chose the order $m_{j}, 4 \cdot j \cdot 8$, in such a way that $\operatorname{sing}\left(F_{\circledR}\right) \backslash B_{2}=f q_{2}(®) ; m_{1} ; m_{4} ; m_{5} g$ and $\operatorname{sing}\left(F_{\circledR}\right) \backslash B_{3}=f q_{B}(\mathbb{B}) ; m_{1} ; m_{6} ; m_{7} g$. Since m_{1} ® $B_{4}\left[B_{5}\right.$ and sing $(\phi 0)=f m_{1} ;:: ; m_{8} g$, we get that $B_{4} \backslash B_{2} 1 / 2 f m_{4} ; m_{5} g$. Note that the germ of $\phi 0$ at m_{4} and m_{5} contains two tangent branches at each one of these points, because they are of the type $2: 1$. This implies that $B_{4} \backslash B_{2}$ contains just one of these points, because otherwise we would have $B_{2}: B_{4}, 4$, whereas $B_{2}: B_{4}=2$. Hence, we can suppose that $B_{2} \backslash B_{4}=f m_{4} g$ and B_{4} is tangent to B_{2} at m_{4}. A nalogously, we can suppose that $B_{3} \backslash B_{4}=f m_{6} g$ and B_{4} is tangent to B_{3} at m_{6}. This implies that B_{4} is a conic tangent to the two lines B_{2} and B_{3} at m_{4} and m_{6}, respectively. Similarly, B_{5} is a conic tangent to the lines B_{2} and B_{3} at the points m_{5} and m_{7}, respectively. Note that $m_{8} 2 B_{4} \backslash B_{5}$. Since m_{8} is of the type $2: 1, B_{4}$ and B_{5} are tangent at m_{8}, by (b) of Lemma 3.4.8. On the other hand, $B_{4}: B_{5}=4$ and $\left[B_{4} ; B_{5}\right]_{m_{8}}=2$, so that $B_{4} \backslash B_{5}$ must contain two other points, which are m_{2} and m_{3}, where B_{4} and B_{5} meet transversely, because m_{2} and m_{3} are of the type $1: 1$. From this, we get that $\operatorname{sing}\left(F_{\circledR}\right) \backslash B_{4}=f q_{4}(®) ; m_{2} ; m_{3} ; m_{4} ; m_{6} ; m_{8} g$ and $\operatorname{sing}\left(F_{\circledR}\right) \backslash B_{5}=f q_{5}(®) ; m_{2} ; m_{3} ; m_{5} ; m_{7} ; m_{8} g$. This ${ }^{-}$nishes the proof of (I),...,(V).

Now, consider a homogeneous coordinate system [x:y:z] in CP(2) such that $B_{1}=f z=0 \mathrm{~g}$, $m_{2}=[1: \mathrm{i}: 0]$ and $\mathrm{m}_{3}=[1: \mathrm{i} \mathrm{i}: 0]$. This implies that, in the a \pm ne coordinate system $f z=1 g, B_{1}$ is the line at in ${ }^{-}$nity and that for $j=4 ; 5, B_{j}$ has an equation of the form $f_{j}(x ; y)=$ $P_{j}(x ; y)+x^{2}+y^{2}$, where P_{j} is of degree one, $j=4 ; 5$. Note that in this coordinate system, the lines B_{2} and B_{3} are parallel, because they meet at $m_{1} 2 B_{1}$. After a translation in the plane $(x ; y)$, we can suppose that the tangency point between B_{4} and B_{5} is $(0 ; 0)$, so that $P_{1}(0 ; 0)=P_{2}(0 ; 0)=0$ and $\mathrm{dP}_{1}(0 ; 0) \wedge \mathrm{dP}_{2}(0 ; 0)=0$. Observe that $\mathrm{dP}_{\mathrm{j}}(0 ; 0) \in 0, \mathrm{j}=1 ; 2$. Hence, after a linear change of variables of the form ($x ; y$) 7 ($a: x+b: y ; i b: x+a: y$), with $a^{2}+b^{2}=1$, we can suppose that $f_{j}(x ; y)=; 2 a_{j}: x+x^{2}+y^{2}$, where $a_{j} G 0, j=1 ; 2$, and $a_{1} \in a_{2}$. Since the lines B_{2} and B_{3} are parallel, but not parallel to the direction $f x=0 \mathrm{~g}$, we can suppose that they have equations of the form $y=a: x+A_{j}$, where a $2 C$ and $0 \in A_{1} \in A_{2} \in 0, j=1 ; 2$. The fact that they are tangent to B_{4} and B_{5} implies the following relations:

$$
\left.\left(a: A_{j} i \quad a_{i}\right)^{2}=A_{j}^{2}\left(1+a^{2}\right) ; i ; j=1 ; 2 \Rightarrow \quad\left(a: A_{j} ; a_{1}\right)^{2}=\left(a: A_{j} ; \quad a_{2}\right)^{2} ; j=1 ; 2 \Rightarrow\right)
$$

$a_{1}+a_{2}=2 a: A_{1}=2 a: A_{2}$. Since $0 \in A_{1} \in A_{2} \in 0$, we get that $a=0, a_{1}=a_{2}$ and $A_{1}^{2}=A_{2}^{2}=a_{1}^{2}$. After a linear change of variables of the form ($x ; y$) ワ (,$: x ;: y$), , $\mathfrak{6} 0$, we can suppose that $a_{1}=; 1$ and $a_{2}=1$, so that $f_{1}(x ; y)=(x+1)^{2}+y^{2} ; 1$ and $f_{2}(x ; y)=(x ; 1)^{2}+y^{2} ; 1$. This implies that $A_{1}^{2}=A_{2}^{2}=1$ and we can suppose that $B_{2}=f y=1 g$ and $B_{3}=f y=i \lg$. In these coordinates ϕ_{0} coincides with the divisor of tangencies of the pencil $\left(F_{\circledR}^{3: 1}\right)_{\circledR 2} \bar{C}$, of $\times 2.4$. This - nishes the proof of Theorem 2.

R eferences

[Ar] V. A rnold: "Chapitres Suppl\&mentaires de la Thorie des \#quations Di®@rentielles Ordinaires" ; Aditions MIR, 1980.
[BPV] W. Barth, C. Peters, A. Van de Ven: "Complex Compact Surfaces"; Springer Verlag (1984).
[Br] M. Brunella : "Birational geometry of foliations" ; text book for a course in the First Latin A merican Congress of M athematics, IM PA (2000).
[Br-1] M. B runella : "Feuilletages Holomorphes sur les Surfaces Complexes Compactes" ; A nn. Scient. Ac. Norm. Sup., 4e sffie, t. 30, 1997, p. 569-594.
[Br-2] M. Brunella : "Birational geometry of foliations" ; text book for a course in the First Latin A merican Congress of M athematics, IM PA (2000).
[Br-3] M. Brunella: "Courbes entiares et feuilletages holomorphes" ; L'E nseignement M ath\&matique, tm. 45, fasc. 1-2, pg. 196-216 (1999).
[C-LN] C. Camacho e A. Lins Neto: "Geometric theory of foliations"; B irkhauser 1985.
[C-LN-S] C. Camacho, A. Lins Neto e P. Sad: "Topological invariants and equidesingularization for holomorphic vector ${ }^{-}$elds" ; J. of Di®. Geometry, vol. 20, nº 1 (1984), pg. $143\{174$.
[C-S] C. Camacho e P. Sad: "Invariant varieties through singularities of holomorphic vector ${ }^{-}$elds"; Ann. of M ath. 115 (1982), pg. 579-595.
 Coloque de topologie, Bruxelles, june 1950, p. 29-55.
[G-H] Gri ths-Harris: "Principles of Algebraic Geometry"; J ohn-W iley and Sons, 1994.
[G-M] X. Gomez-M ont : "The Transverse Dynamics of a Holomorphic Flow"; Annals of Mathematics 127 (1988) pg. 49-92.
[K] K. K odaira : "On Compact Analytic Surfaces: II" ; Annals of Mathematics, vol. 77, n. 3 (1963).
[LN] A Lins Neto: "Some examples for the Poincar and Painlev problems". Ann. Scient. © ${ }^{[1}$ c. Norm. Sup., 4 e s\&rie, t. 35, 2002, p. 231-266.
[LN 1] A. Lins Neto: "A Igebraic solutions of polynomial di ßerential equations efoliations in dimension two" ; Lect. Notes em Math. n° 1345, pg. 192-231.
[M CQ] M. McQuillan: "Noncommutative M ori theory", preprint IHES (2000).
[M-M] J.F. Mattei e R. M oussu: "Holonomie et intgrales premiares"; Ann. Sc. Ec. Norm. Sup. 13 (1980), pg. 469-523.
[Re] G. Reeb: "Sur certains propri\$s topologiques des vari\$t\$s feuillet\$s"; Actualitis Sci. Ind., 1183, Herman, Paris, 1952.
[P-1] H. Poincar@: "Sur l'int des sciences, t. 112, pp. 761-764.
[P-2] H. Poincar§: "Sur l'int\$gration alg\$bique des quations di®. du ler ordre et du ler degr§"; Rendiconti del circolo matem\&tico di Palermo, t. 5, pp. 161-191 (1891).
[P-3] H. Poincar§: "Sur l'int\$gration alg\$rique des quations di®. du ler ordre et du ler degr§"; Rendiconti del circolo matem\&tico di Palermo, t. 11, pp. 193-239 (1897).
[S] T. Suwa: "Indices of vector ${ }^{\text {ºld }}$ eld and residues of holomorphic singular foliations"; Hermann (1998).
[Se] A. Seidenberg: "Reduction of singularities of the di ®erential equation Ady = Bdx" ; A mer. J. de Math. 90 (1968), pg. 248-269.

[^0]: *This research was partially supported by Pronex.

