
EXCEPTIONAL FAMILIES OF FOLIATIONS

AND THE POINCAR¶E PROBLEM

A. Lins Neto*

Abstract. A 1-parameter family of foliations (F®)®2X on a compact complex surface M is called
exceptional and elliptic if it satis¯es the following properties : (a). The family has singularities of
¯xed analytic type; (b). The set E = f® 2 Xj F® has a ¯rst integral g is countable and non-discrete;
(c). There is ® 2 E such that the generic ¯bre of the ¯rst integral is elliptic. In this paper we show
that, if a surface M admits an exceptional and elliptic family of foliations, then M is algebraic and
biholomorphically equivalent to a torus, to a K3 surface, or to CP(2) (Theorem 3). In the case of
CP(2) we classify all possible equireducible and exceptional families such that the singularities of the
generic foliations in the family are non-degenerate (Theorem 2). This classi¯cation is connected to the
Poincar¶e problem of deciding if an algebraic foliation on CP(2) has a ¯rst integral (cf. [P-1]).

x1 Introduction

Around 1891, Poincar¶e asked the following question (cf. [P-1]): "Is it possible to decide if an
algebraic di®erential equation in two variables is algebraically integrable ?" (in the sense that it has
a rational ¯rst integral). In [P-2] he starts, by observing that it is su±cient to bound the degree of
a possible algebraic solution. In fact, in [P-2] and [P-3] he tries to bound this degree, in terms of the
degree of the equation and some local invariants associated to the singularities. He supposes that
all the singularities of the equation are non-degenerate and that the equation has a ¯rst integral
around each singularity of the type up=vq = cte, where p 2 N and q 2 Z n f0g are relatively primes
and depend only on the singularity. When q > 0 the ¯rst integral is meromorphic and he calls the
singularity "dicritical" or node" ("noed"). When q < 0, the ¯rst integral is holomorphic and he
calls the singularity a "saddle" ("col"). In [P-2] he solves the problem in the particular case where
in all the saddles we have p = 1 and q = ¡1.

In a previous paper (cf. [LN]) we have given some examples of one parameter families of foliations
in CP (2), of any degree d ¸ 2, which show that the Poincar¶e problem of bounding the degree of
an algebraic solution in terms of d and of local data involving the analytic type of its singularities,
does not have solution. These examples, in degree d ¸ 5, provide also a negative answer for the
analogous Painlev¶e problem of bounding the genus of the generic level of a pencil which gives origin
to a degree d foliation. The main purpose of this paper is to classify these families in special cases.
In order to state properly our results, we give some de¯nitions which synthetize some properties
of the families of [LN].

First of all, let us recall the de¯nition of the tangent line bundle associated to a foliation on
a complex compact surface. A holomorphic singular foliation F on a compact complex surface
M , with isolated singularities, can be de¯ned by local holomorphic vector ¯elds or 1-forms. More
precisely, let U = (Uj)j2J be an open covering of M . In each Uj , the foliation is de¯ned by a
holomorphic vector ¯eld Xj with isolated singularities. If Ui \ Uj 6= ;, we require that Xi and Xj

are multiple in Ui \ Uj , that is there exists fij 2 O¤(Ui \ Uj) such that Xi = fijXj . This means
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that the local integral curves of Xi in Ui and of Xj in Uj glue together, up to reparametrization,
in the intersection Ui \ Uj . The collection (fij)Ui\Uj 6=; is a multiplicative cocycle and therefore
de¯nes a line bundle on M , which is called the cotangent bundle of F . The class of this bundle in
H1(M; O¤) is denoted by T ¤

F . The tangent bundle of F is the dual, TF , of T ¤
F . When M = CP (2),

the tangent bundle of a foliation F is related with the degree d of F by TF = (1 ¡ d)H, where H
is the line bundle associated to a line in CP (2) (cf. [Br]). Given a line bundle L on M , we will use
the notation

F(M; L) = fH; ; H is a foliation on M such that TH = Lg :

It is well known that, if F(M; L) is not empty, then it has a natural structure of holomorphic
manifold (cf. [G-M]). A holomorphic family of foliations on M , is a holomorphic map t 2 X 7!
Ft 2 F(M; L), for some line bundle L and some complex manifold X. We will use the notation
(Ft)t2X for such a family. Given two foliations F and G on M such that TF = TG , de¯ned
by collections of holomorphic vector ¯elds (Xj)j2J and (Yj)j2J , respectively, associated to the
same covering (Uj)j2J of M and the same cocycle (fij)Ui\Uj 6=;, we de¯ne the pencil of foliations
generated by F and G as the family (F®)®2C, where F1 = G and F® is de¯ned by the collection
of vector ¯elds (Xj + ®:Yj)j2J , if ® 2 C.

We say that F has a ¯rst integral, if there exists a non-constant map f : M¡ ! S, where S is
a Riemann surface, such that any level of f , f¡1(c), c 2 S, is an union of leaves and singularities
of F . In this case, we will say also that f is tangent to F . We will suppose that the generic level
curve of f is irreducible. It is well known that, the genus of two di®erent generic levels of f are
the same. This genus will be denoted by g(f ). For the basic de¯nitions of the theory of foliations
such as leaf, holonomy, etc..., we recomend [C-LN]. Given a family of foliations P = (Ft)t2X , we
will use the notation

E(P) = ft 2 Xj Ft has a ¯rst integralg :

1.1 De¯nition . Let M be compact complex surface and X be a Riemann surface. We say that
a family of holomorphic foliations P = (Ft)t2X is exceptional if :
(a). There exists a discrete subset F ½ X, such that if t1; t2 2 X n F , then for any singularity p of
Ft1 , there is a singularity q of Ft2 , such that the germs of Ft1 at p and of Ft2 at q are analitically
equivalent. In this case, we will say also that the family has singularities of ¯xed analytic types.
In the case where all singulatities of Ft (t =2 F ) are non-degenerate we will say that the family is
non-degenerate. Recall that the singularity p of Ft is non-degenerate if det(DX(p)) 6= 0, for some
(and so for any) holomorphic vector ¯eld X which represents Ft in a neighborhood of p.
(b). The set E(P) is an in¯nite, countable and non-discrete subset of X.

We will say that the family is weakly exceptional, if E(P) is at most countable and contains at
least two di®erent points.

Given t 2 E(P), let us denote by ft: M¡ ! Xt a rational ¯rst integral of Ft, whose generic
level curve f¡1

t (c) is irreducible. We say that the exceptional family (Ft)t2X has unbounded genus,
if for any k > 0, the set ft 2 E(P); g(ft) · kg is ¯nite.

We can resume the results of [LN] in the following :

Theorem.[LN]. For any d ¸ 2 there exists a non-degenerate exceptional pencil Pd = (Fd
t )t2C

on CP (2) of degree d. Given t 2 E(Pd), let ft:CP (2)¡ ! C be a ¯rst integral, whose generic
levels are irreducible, and denote by d(t) the degree of a level of ft. Then, for any k > 0, the set
ft 2 E(Pd); d(t) · kg is ¯nite. In particular, we can ¯nd in the family foliations with rational ¯rst
integrals of arbitrarily large degrees. Moreover, if d ¸ 5 then the family has unbounded genus.

1.2 Remark. We would like to observe that the families contructed in [LN] have the following
additional properties :
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(I). For any ¯xed family (Fd
t )t2C, the blowing-up process used to reduce the singularities of Fd

t (in

the sense of Seidemberg [Se]) is the same for all t 2 C. A 1-parameter family of foliations which
satis¯es this property will be called equireducible.

(II). For d = 2; 3; 4 and t 2 E(Pd), if ft is as before, then g(ft) = 1. An exceptional family which
satis¯es this property will be called elliptic.

Moreover, in the families of degrees 2; 3 and 4 of [LN], the generic level (after normalization) of
a ¯rst integral is biholomorphic to the torus C= < 1; e2¼i=3 >. Here, < 1; b > denotes the lattice
of C generated by 1 and b 62 R. In x2.4 we will describe an exceptional pencil of degree three on
CP (2) such that the generic level (after normalization) of a ¯rst integral is biholomorphic to the
torus C= < 1; i >, i =

p¡1.

When the family (Ft)t2S is equireducible, then after the blowing-up process we obtain a rational
surface M and a bimeromorphism ¼: M ! CP(2) such that for all t 2 S, all singularities of the
strict transform ~Ft of Ft by ¼ are reduced in the sense of Seidemberg.

1.3 De¯nition. Let M be a compact connected complex surface, S a Riemann surface, and
f : M ! S be an elliptic ¯bration, that is a holomorphic map such that the generic level f ¡1(c)
is irreducible. We say that a foliation F in M is turbulent with respect to f , if F is transverse to
some level curve of f .

The main facts about turbulent foliations, that will be used here, are the following : let F be
a foliation on a surface M , turbulent with respect to some elliptic ¯bration f : M ! S. Then the
set A = fc 2 S; F is not transverse to f ¡1(c)g is ¯nite. Moreover, if V = f¡1(S n A), then
g := f jV : V ! S nA is a ¯bre bundle locally holomorphically trivial. In particular, if c1; c2 2 S nA,
then the ¯bres f ¡1(c1) and f¡1(c2) are biholomorphic. In this case, we will say that the ¯bration
f is isotrivial (cf. [Br-1] and [Br-2]). Note that the leaves of the restricted foliation FjV are
transverse to the ¯bres of f jV , so that we can use the theory of foliations transverse to the ¯bres
of a ¯bration (cf. [Eh] and [C-LN]).

1.4 Remark. Let (Fd
t )t2C be one of the families in [LN], of degree d 2 f2; 3; 4g. Since it is

equirreducible, there exists a rational surface Md and a bimeromorphism ¼d: Md ! CP(2) (a
composition of blowing-ups), which reduce the singularities of all foliations Fd

t simultaneously.
Denote by ~Fd

t the strict transform of the foliation Fd
t by ¼d. Then, in each case (d = 2; 3; 4),

for any to 2 E, if Fto is the rational ¯rst integral of Fd
to

as in (c) of De¯nition 1.1, then fto :=

Fto ± ¼d: Md ! C extends to an elliptic ¯bration. Moreover, if t 6= to, then the foliation ~Fd
t is

turbulent with respect to fto .

We need one more de¯nition.
1.5 De¯nition. Let V and W be compact complex surfaces and (Ft)t2T , (Gs)s2S be holomorphic
families of foliations on V and W respectively, where T and S are Riemann surfaces. We say
that (Ft)t2T immerges (resp. immerges bimeromorphicaly) in (Gs)s2S , if there exists a map © =
(Á1; Á2): T £ V ! S £ W such that :
(a). Á1 depends only on t 2 T and Á1: T ! S is holomorphic.
(b). For each t 2 T , if ft: V ! W is de¯ned by ft(p) = Á2(t; p), then ft is a biholomorphism (resp.
bimeromorphism).
(c). For each t 2 T , we have f ¤

t (GÁ1(t)) = Ft.

If Á1 is a biholomorphism, we will say that the families are equivalent (resp. bimeromorphicaly
equivalent).

We now state our ¯rst result :

Theorem 1. There are exactly three holomorphic pencils of foliations, say Pj = (Gj
®)®2C, on three

rational surfaces, say Mj , j = 1; 2; 3, such that any elliptic, equireducible, exceptional family of
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foliations on CP(2) immerges bimeromorphicaly in one of them. These pencils satisfy the following
properties :

(a). For any ® 2 E(Pj), the ¯rst integral is an isotrivial elliptic ¯bration fj
®: Mj ! C, with three

singular ¯bres. The generic ¯bre of of f j
® is biholomorphic to C=¡j , where ¡j =< 1; e2¼i=3 > for

j = 1; 2 and ¡3 =< 1; i > (i =
p¡1).

(b). For any so 2 E(Pj), if s 6= so, then the foliation Gj
s is turbulent with respect to fj

so
.

(c). If s1; s2 2 E(Pj), then there exist biholomorphisms ©: Mj ! Mj and Á: C ! C such that
Á ± f j

s1
= fj

s2
± ©.

(d). E(Pj) = Q:¡j [ f1g, j = 1; 2; 3, where Q:¡j = fx:yj x 2 Q and y 2 ¡jg. In particular,

E(Pj) is countable and dense in C.

We will call the family (Gj
s)s2C the family of type j, j = 1; 2; 3. In the sections 2.2, 2.3 and 2.4,

we will give examples of equirreducible exceptional families of foliations on CP (2), such that after
the resolution we get these families. In the ¯gures 1.a, 1.b and 1.c, we sketch the typical ¯brations
fj

s , j = 1; 2; 3, s 2 Ej . The singular ¯bres which appear in the ¯brations are the following :

Fibres of the type ~IV .. This ¯bre is composed of four rational irreducible components. Three
of these components have multiplicity one and self-intersection ¡3, as in ¯gure 1.a. The reason for
the notation is that it is obtained from the Kodayra ¯bre of type IV (cf. [K] and [BPV]) by doing
one blowing-up at the intersection of the three rational components, as it is sketched in the ¯gure
2.a.

Fibre of the type ~II. This ¯bre is composed of four rational irreducible components. The
multiplicities and self-intersections of the components are sketched in ¯gure 1.b. The reason for
the notation is that it is obtained from the Kodayra ¯bre of type II (cf. [K]) by doing the
blowing-up process sketched in the ¯gure 2.c.

Fibres of the type ~III. This ¯bre is composed of four rational irreducible components. The
multiplicities and self-intersections of the components are sketched in ¯gure 1.c. The reason for the
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notation is that it is obtained from the Kodayra ¯bre of type II (cf. [K]) by the doing blowing-up
process sketched in the ¯gure 2.b.
Fibres of the type I¤

0 . This ¯bre appears in the ¯brations of types 2 and 3.

As a consequence of Theorem 1, we will prove the following :

Theorem 2. There are exactly four elliptic non-degenerate exceptional pencils on CP (2) such that
any elliptic, exceptional, equireducible and non-degenerate family of foliations in CP (2) immerges
in one of them.

In x2 we will describe the families stated in Theorems 1 and 2. The prototypes of the families
of Theorem 2 are given below.

1.6 Example. Each pencil, say (F®)®2C, of Theorem 2 is de¯ned in an appropriate a±ne coordi-
nate system (x; y) 2 C2 by polynomial vector ¯elds X and Y , in such a way that X de¯nes F0, Y
de¯nes F1 and X + ®:Y de¯nes F®. There are two pencils of degree three, one of degree two and
one of degree four.
(1.6.1). The pencil of degree two. In this case, the vector ¯elds X and Y are the following
X(x; y) = (4x ¡ 9x2 + y2) @

@x + (6y ¡ 12xy) @
@y and Y (x; y) = (2y ¡ 4xy) @

@x + 3(x2 ¡ y2) @
@y .

(1.6.2). The pencil of degree four. In this case, the vector ¯elds X and Y are the following
X(x; y) = x(x3 ¡ 1) @

@x + y(y3 ¡ 1) @
@y and Y (x; y) = y2(x3 ¡ 1) @

@x + x2(y3 ¡ 1) @
@y .

(1.6.3). The ¯rst pencil of degree three. In this case, the vector ¯elds X and Y are the
following X(x; y) = (¡x + 2y2 ¡ 4x2y + x4) @

@x + y(¡2 ¡ 3xy + x3) @
@y and Y (x; y) = (2y ¡ x2 +

xy2) @
@x + (3xy ¡ x3 + 2y3) @

@y .

(1.6.4). The second pencil of degree three. In this case, the vector ¯elds X and Y are the
following X(x; y) = (¡4x+x3+3xy2) @

@x +2y(y2 ¡1) @
@y and Y (x; y) = (x2y ¡y3) @

@x +2x(y2 ¡1) @
@y .

The proofs of Theorems 1 and 2, will be based in the following :

Theorem 3. Let M be a complex compact surface and F , G, be two foliations on M such that
TF = TG and P = (F®)®2C be the pencil generated by F and G. Suppose that :
(i). F 6= G.
(ii). The singularities of F are reduced in the sense of Seidemberg.
(iii). F and G have holomorphic ¯rst integrals, say f : M ! S1 and g: M ! S2, respectively, where
f is an elliptic ¯bration.
Then :
(a). The pencil (F®)®2C is a non-degenerate and elliptic weakly exceptional family.

(b). For any foliation H on M , such that TH = TF , there exists ® 2 C such that H = F®. In
particular F(M; TF) = fF®j ® 2 Cg.
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(c). If KM 6= 0, then M is a rational surface. In this case, the pencil is exceptional and bimero-
morphically equivalent to one of the families of types 1,2 or 3. Moreover, we have E(P) =
¸:Q:¡j [ f1g), where ¸ 2 C¤ and j 2 f1; 2; 3g. In particular, E(P) is countable and dense
in C.
(d). If KM = 0 then, either M is a complex algebraic torus, or M is an algebraic K3 surface.
Moreover, the family is exceptional if, and only if, E(P) contains at least three elements.

As a consequence of (c) of Theorem 3, we have the following :

1.7 Corollary. Let P = (F®)®2C be a pencil of foliations bimeromorphically equivalent to the
pencil of type j, where j 2 f1; 2; 3g. Let ¡j be as before. If 1; ®1; ®2 2 E(P), where ®1; ®2 2 Q:¡j

and ®1 6= ®2, then E(P) = Q:¡j [ f1g.

In x2.1 we will describe two exceptional pencils of foliations, the ¯rst one in a complex 2-torus
and the second in a Kummer surface (which is a special type of K3 surface). In x2.2, 2.3 and 2.4,
we will describe, without details, the resolutions of the pencils in the examples 1.6.1,...,1.6.4. We
will see also that they satisfy the hypothesis of Theorem 3. Theorem 3 will be proved in x3.2,
Theorem 1 in x3.3 and Theorem 2 in x3.4. Before ¯nishing this section, we would like to make
some remarks and state some problems.

1.8 Remark. We would like to observe that the fact that E(P) = ¸:Q:¡j [ f1g in assertion
(c) of Theorem 3, can be proved by using a result of [McQ] (see also [Br-2] pg. 110), once we
know that the generic ¯bre of a ¯rst integral is biholomorphic to C=¡j . This result says that if
kod(F) = 0, which is the case, then it is possible to ¯nd a rami¯ed covering ¼: N ! M and a
birational morphism p: N ! K such that p¤(¼¤(F)) is de¯ned by a global holomorphic vector
¯eld on K, say X. Once we know some of the informations given in the proof of Theorem 3, it is
possible to prove that p¤(¼¤(G)) is also de¯ned by a global holomorhic vector ¯eld, say Y , in such
a way that p¤(¼¤(F®)) is de¯ned by X + ®:Y . These facts imply that K is a torus (see x2.1). In
this paper we give a di®erent proof, more adapted for our situation.

1.9 Remark. In the proof of our results we use strongly that the families are equireducibles. A
natural question is if Theorems 1 and 2 are true for exceptional families, not necessarily equire-
ducibles a priori. We would like to pose the following :

Problem 1. Let (Fn)n¸1 be a sequence of foliations on CP (2) with the following properties :

(i). All Fn have the same degree, say d.

(ii). For all n ¸ 1, the singularities of Fn are non-degenerate. Moreover, for any singularity p of
Fn, there is a singularity q of F1, such that the germs of Fn at p and of F1 at q are analitically
equivalent.

(iii). For all n ¸ 1, Fn has a meromorphic ¯rst integral fn: CP (2)¡ ! C, such that g(fn) = 1,
the general level curve f¡1

n (c) is irreducible and limn!1(deg(fn)) = +1.

Is it possible to immerge the sequence (Fn)n¸1 in one of the families of Theorem 2 ? In other
words, is there a sequence of automorphisms of CP (2), say ('n)n¸1, such that '¤

n(Fn) is in one of
these families, for all n ¸ 1 ?

1.10 Remark. In our results we deal only with elliptic families of foliations. A natural question
is the following:

Problem 2. Is it possible to classify all equireducible non-degenerate exceptional families of
foliations on CP (2) ?

We would like to observe that the exceptional families in CP (2) of [LN], with unbounded genus,
are obtained from the elliptic families by pulling back the elliptic families with ¯xed endomorphisms
of CP (2) of topological degree ¸ 2. Since the endomorphims used in this construction are more or
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less arbitrary (generic), we can not expect to obtain a ¯nite list of models, like in Theorem 2, for
the general case.

x2 Description of the models

In this section we will describe some examples of non-degenerate, exceptional, elliptic families
of foliations, including the four families in CP (2), one of degree two, two of degree three and one
of degree four, which give origin to the three exceptional families of the statement of Theorem 1.
Three of these families were already described in [LN], so that we will only give an idea of their
construction and properties.

x2.1 Examples in a complex 2-torus and in a Kummer surface.

Let M = T1 £T2, where Tj = C=¡j is an elliptic curve, such that ¡j is the lattice in C generated
by 1 and aj 62 R, j = 1; 2. We will take coordinates (x; y) 2 M , where x 2 C=¡1 and y 2 C=¡2.
Let F and G be the foliations generated by the non-vanishing vector ¯elds X = @

@x
and Y = @

@y
,

respectively. If P = (F®)®2C is the pencil generated by F and G, then F® is de¯ned by the vector
¯eld X® = X + ®:Y , for every ® 2 C. This pencil is weakly exceptional in all cases, but it is not
exceptional, in general. In fact, the set E(P) contains at least two points, ® = 0 and ® = 1. On
the other hand, as the reader can check, the following assertions are equivalent :
(a). ® 2 E(P) n f0; 1g.
(b). If ¡1(®) is the lattice < ®; ®:a1 >= f®(m + n:a1)j m; n 2 Zg and D is a fundamental domain
of ¡2, then ¡1(®) \ D is ¯nite.
(c). There exists k 2 N n f0g such that k:¡1(®) ½ ¡2.

Assertion (c) implies that :
(d). E(P) n f0; 1g 6= ; if, and only if, there exists h 2 P SL(2; Q) such that a1 = h(a2).

In this case, we can write a1 = k+`:a2

m+n:a2
, where k; `; m; n 2 Z and kn ¡ m` 6= 0. It is easy to see

that

E(P) ¾ f® 2 Cj there exists p 2 Z such that p:® = m + n:a2 and p:®:a1 = k + `:a2g :

Under assumption (d), this last set is in¯nite and countable, so that the pencil is exceptional. In
particular, if T1 = T2, the pencil is exceptional. On the other hand, if a1 62 fh(a2)j h 2 P SL(2; Q)g,
then E(P) = f0; 1g, and so the pencil is not exceptional.

Given the torus M as above, it can be de¯ned the Kummer surface Km(M ). This surface
is de¯ned as follows : let I: M ! M be the involution , which in representation C=¡1 £ C=¡2

is of the form I(x; y) = (¡x; ¡y). This involution has sixteen ¯xed points, say p1; :::; p16, so
that M1 = M= < I >, is a singular surface with sixteen singularities, say q1; :::; q16. When
we resolve these singularities, we obtain the Kummer surface Km(M), which contains sixteen
rational curves with self-intersection ¡2, say C1; :::; C16, where Cj corresponds to qj , j = 1; :::; 16
(for the details see [BPV] pg. 170). Note that Km(M) n ([jCj) is naturally biholomorphic to
M1 n fp1; :::; p16g and the quotient map by the involution, induces a covering map of degree two,
say P : M nfp1; :::; p16g ! Km(M)n ([jCj). On the other hand, I¤(X) = ¡X and I¤(Y ) = ¡Y , so
that I¤(X + ®:Y ) = ¡(X + ®:Y ) and the foliation F® is invariant by the involution. This implies
that there exists a foliation G® on Km(M) n ([jCj) such that P ¤(G®) = F®. Since the curves Cj

are -2-curves, this foliation extends to a foliation on Km(M), which we denote also by G®. This
de¯nes a pencil of foliations Q := (G®)® 2 C. Note that E(Q) = E(P), so that the pencil Q is
always weakly exceptional and it is exceptional if, and only if, P is exceptional. We observe that
if ® 2 E(Q), then the ¯rst integral of G® is a ¯bration fa: Km(M) ! C which has four critical
¯bres of type I¤

0 . This last fact will be proved in x3.2.
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x2.2 The type 1 exceptional family.

The exceptional family of type 1 can be obtained by the resolution of the singularities of an
equirreducible family of degree four in CP(2), which will be denoted by P4 = (F4

®)®2C. This
family is characterized by the fact that the lines in CP(2) de¯ned in homogeneous coordinates by
the equation

(1) (y3 ¡ x3)(z3 ¡ y3)(x3 ¡ z3) = 0 :

are invariant for the foliation F4
®, for all ® 2 C. If j = e2¼i=3, then these lines, in the a±ne

coordinate system fz = 1g, are given by `1; = fx = 1g, `2 := fx = jg, `3 := fx = j2g, `4 := fy =
1g, `5 := fy = jg, f`6 := y = j2g, `7 := fy = xg, `8 := fy = j:xg and `9 := fy = j2:xg. They
intersect in twelve points, that we will denoted by p1; :::; p12. These sets of lines and points de¯ne
a con¯guration of lines and points C := (L; P), where L := f`1; :::; `9g and P := fp1; :::; p12g. We
observe that each line `j 2 L, contains four points in the set P , and each point pi 2 P is contained
in three lines of L.

In the above a±ne coordinate system, the foliation F® is de¯ned by the vector ¯eld X + ®:Y ,
where X(x; y) = x(x3 ¡1) @

@x +y(y3 ¡1) @
@y and Y (x; y) = y2(x3 ¡1) @

@x +x2(y3 ¡1) @
@y . This pencil

is described in x2.2 of [LN], so that we will only resume its main properties. Before the description,
let us ¯x a notation.

2.2.1 Notation. Let F be a foliation on a surface M . We say that a singularity P of F is of
the type p : q, where p; q 2 Z¤ and gcd(p; q) = 1, if in suitable holomorphic coordinate system
(x; y) around P with x(P ) = y(P ) = 0, the foliation F is represented by the vector ¯eld X(x; y) =
p x @

@x + q y @
@y . Note that this vector ¯eld has the ¯rst integral xq=yp. For this reason, we will say

also that a singularity of type 1 : 1 is a radial singularity. In the notation p : q, we will identify
p : q ´ q : p ´ ¡p : ¡q ´ ¡q : ¡p.

If ® =2 F = f1; j; j2; 1g, then F4
® has twelve radial singularities at the points of P and nine

singularities of the type 1 : ¡3, say q1(®); :::; q9(®), where qk(®) 2 `k. We observe that, for
each k = 1; :::; 9, the map ® 2 C 7! qk(®) 2 `j , is a regular parametrization of `k. When
® 2 f1; j; j2; 1g, then the point qk(®) coincides with some point in P , and so the foliation F4

® has
a degenerate singularity at this point. In [LN] it is proved that the pencil is elliptic and exceptional.
Moreover, f0; 1; 1g ½ E(P4), so that E(P4) = Q: < 1; j > [f1g, by the Corollary of Theorem 3.
In fact, in x2.2 of [LN] it is proved that, for ® 2 f0; 1; 1g, F4

® has the following ¯rst integrals

f0(x; y) =
x3(y3 ¡ 1)

y3(x3 ¡ 1)
; f1(x; y) =

(x ¡ j2)(y ¡ j)(y ¡ j2x)

(x ¡ j)(y ¡ j2)(y ¡ jx)
; f1(x; y) =

y3 ¡ 1

x3 ¡ 1

The process of reduction of the singularities for F4
® involves twelve blowing-ups at the points of

P . Let us denote by M1 the surface obtained from CP(2) by doing one blowing-up at each point
of P , and by ¼: M1 ! CP(2) the composition of these blowing-ups. The family of type 1 is de¯ned
as Q1 = (G1

®)®2C, where G1
® = ¼¤(F4

®). We observe that E(Q1) = E(P4) and for any ® 2 E(P4)

the ¯bration f® tangent to G1
® is like in ¯g. 1.a. Moreover, the strict transforms ~̀

1; :::; ~̀
9 of the

lines `1; :::; `9, are the unique curves in M1 that are invariant for all foliations in the family Q1.
Each curve ~̀

k contains an unique singularity of G1
®, say ~qk(®), such that ¼(~qk(®)) = qk(®). This

singularity is of the type 1 : ¡3.

x2.3 The type 2 exceptional family.

In this section we will describe two non-degenerate families of foliations on CP(2) which give
origin two the type 2 exceptional family. The ¯rst one is a family of degree three, which is obtained
from the family of x2.2 by using that the di®erential equations which de¯ne it, are invariant with
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respect to the change of variables S(x; y) = (y; x). In x2.3 of [LN], it is proved that there exists
another family of foliations, say P3 = (F3

®)®2C, such that for every ® 2 C we have F4
® = T ¤(F3

®)
where T : CP(2) ! CP(2) is the rational map which in the coordinate system (x; y) of x2.2 is
expressed as T (x; y) = (u; v) = (x + y; x:y). The foliation F3

® is de¯ned in the a±ne coordinate
system (u; v) by the vector ¯eld X + ®:Y , where the expresssions of X and Y are given in the
example 1.6.3 (in terms of x and y). The main facts about the pencil P3 are the following :

2.3.1. E(P3) = E(P4).

2.3.2 Invariant curves. There are ¯ve curves in CP(2) which are invariant for all foliations in
the family. These curves are the images by T of the lines in the con¯guration L :
(I). The lines (x = jk) and (y = jk) are sent by T into the line (v ¡ jk u + j2k = 0), k = 0; 1; 2.
This implies that the foliation F3

® has three invariant lines; `k := (v ¡ jk u + j2k = 0), k = 0; 1; 2.

(II). The line (y = x) is sent by T into the conic C1 := (v = 1
4
u2).

(III). The lines (y = j x) and (y = j2 x) are sent by T into the conic C2 := (v = u2).

In ¯gure 3 we sketch this con¯guration of curves. Denote by ¢3 the union of these curves.

2.3.3 Singularities. Observe that the singular points of ¢3 are singularities of all foliations in
the pencil P3. The conics C1 and C2 are tangent at the points q1 = [0 : 0 : 1] and q2 = [0 : 1 : 0],
the lines `k, k = 0; 1; 2, intersect at the points p01 = [¡j2 : j : 1] 2 `0 \ `1, p02 = [¡j : j2 : 1] 2
`0 \ `2 and p12 = [¡1 : 1 : 1] 2 `1 \ `2 and the lines are tangent to the conic C1 at the points
p0 = [2 : 1 : 1] 2 `0 \ C1, p1 = [2j : j2 : 1] 2 `1 \ C1 and p2 = [2j2 : j : 1] 2 `2 \ C1. Observe also
that p01; p02; p12 2 C2. In Proposition 7 of [LN], it is proved that, if ® =2 f0; 1; j; j2; 1g := F , then
the singularities of F3

® are non-degenerate of the following types :
(IV). The points p01, p02 and p12 are radial singularities.
(V). The points p1, p2, p3, q1 and q2 are of the type 2 : 1.
(VI). Each one of the ¯ve curves contains another singularity, say P1(®) 2 C1, P2(®) 2 C2 and
Qk(®) 2 `k, k = 0; 1; 2. They are of the following types : P1(®) is of the type 1 : ¡6, the others
are of the type 1 : ¡3.

The reduction of the singularities of the elements of the family is done with a total of thirteen
blowing-ups, as follows : one blowing-up at each of the three radial singularities and two blowing-
ups at each of the ¯ve singularities of the type 2 : 1. Denote by M2 the rational surface obtained
from CP(2) by this blowing-up process, by ¼: M2 ! CP(2) the blowing-up map and let G2

® :=
¼¤(F3

®). The pencil Q2 := (G2
®)®2C will be called the type 2 family. In x2.3 of [LN] it is proved that

this pencil satis¯es properties (a) and (b) of Theorem 1. Property (c) will be proved in x3.2. The
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typical elliptic ¯bration which appears in this case is sketched in ¯g. 1.b. This ¯bration appears,
for instance, as a ¯rst integral of the foliation G2

1 = ¼¤(F3
1). The foliation F3

1 has the following
rational ¯rst integral :

R(u; v) =
(u2 ¡ 4v)(v ¡ u2)2

(u3 ¡ 3uv ¡ 2)2
:

The reader can check that g = R ± ¼: M2 ! C is an elliptic ¯bration with three critical levels,
namely fg = 0g, fg = 1g and fg = 1g, as sketched in ¯gure 1.b.

There is another non-degenerate family of foliations on CP(2) which gives origin to the type 2
family. This family is obtained from the family (F3

®)®2C by a Cremona transformation as ilustrated
in Fig. 4 (see also Lemma 3.4.14).

In this ¯gure, we denote by ¼1 the blowing-up at the three points p01, p02 and p12 (see ¯gure
3). After this blowing-up process, we obtain three divisors, not invariant for the strict transform
¼¤

1(F3
®), because p01, p02 and p12 are radial singularities (® =2 f0; 1; j; j2; 1g). Moreover, the strict

transforms of `0, `1 and `2, say ^̀
0

^̀
1 and ^̀

2, have self-intersection ¡1, so that, we can blow-
down these three curves. The map indicated by ¼2 in Fig. 4, is the blowing-up associated to this
blowing-down process. The curve indicated by Ĉ1 is the strict transform of the curve C1. This
curve is sent by ¼2 in the curve Q of Fig. 4.3, which is a quartic with three cuspidal points, which
we denote by J , K and L. We call ¼ the bimeromorphism ¼2 ± (¼1)¡1. This type of blowing-up-
blowing-down process is known in the literature as a "Cremona transformation". It is well known
that the manifold, obtained after a Cremona transformation in CP(2), is again CP(2). The curve
C2 is transformed by ¼ in a straight line, say R, which meets Q in two tangent points, which we
denote by M and N . The pencil P2 := (F2

®)®2C is de¯ned by F2
® = ¼¤(F3

®). The main facts about
the pencil P3 are the following (see x2.4 of [LN]):

2.3.4. Any foliation F2
® in the pencil has degree two. Moreover, E(P2) = E(P3).

2.3.5 Invariant curves. The algebraic invariant curves for all foliations in the pencil are the
quartic Q and line R.
2.3.6 Singularities. For ® =2 f0; 1; j; j2; 1g the singularities of F2

® are non-degenerate of the
following types :
(VII). The cuspidal points of Q are of the type 3 : 2.
(VIII). The tangency points M and N between Q and R are of the type 2 : 1.
(IX). The quartic Q contains a singularity P1(®) of the type 1 : ¡6.
(X). The line R contains a singularity P2(®) of the type 1 : ¡3.

Finally, we would like to observe that it is possible to ¯nd an a±ne coordinate system (C2; (x; y))
in CP(2) such that F2

® is de¯ned by X + ®:Y , where X(x; y) = (4x ¡ 9x2 + y2) @
@x + (6y ¡ 12xy) @

@y
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and Y (x; y) = (2y ¡ 4xy) @
@x + 3(x2 ¡ y2) @

@y . In this coordinate system, the line R is the line at

in¯nity, the quartic Q is given by F (x; y) = 0, where F (x; y) = 4y2(1 ¡ 3x) ¡ 4x3 + (3x2 + y2)2,

P1(®) = (4(1+®2)
(3+®2)2 ; ¡8®

(3+®2)2 ) and P2(®) = [1 : ® : 0]. Moreover, the foliations F2
1, F2

1 and F2
¡1 have

the following ¯rst integrals :

g1(x; y) =
F (x; y)

(2x ¡ 1)3
; g1(x; y) =

F (x; y)

(y ¡ x)3
and g¡1(x; y) =

F (x; y)

(y + x)3

respectively, as the reader can check. This implies that E(P2) = Q: < 1; j > [f1g.

x2.4 The type 3 family.

In this section we show an example of an exceptional non-degenerate family, for which, the
elliptic ¯bration which appear after the reduction of singularities has elliptic ¯bres biholomorphic
to C= < 1; i >, where i =

p¡1. This family is obtained as the set of foliations of degree three
which leave invariant all curves of the con¯guration sketched in ¯gure 5. The ¯ve curves in this
¯gure, in some a±ne coordinate system (C2; (x; y)), are :

(a). The circle C1 := f(x ¡ 1)2 + y2 = 1g.
(b). The circle C¡1 := f(x + 1)2 + y2 = 1g.
(c). The line L1 := fy = 1g.
(d). The circle L¡1 := fy = ¡1g.
(e). The line at in¯nity in this a±ne system, denoted by L1.

The two circles are tangent at origin, O = (0; 0). The line L1 is tangent to the circle C¡1 at
the point A = (¡1; 1) and to the circle C1 at the point B = (1; 1). The line L¡1 is tangent to the
circle C¡1 at the point D = (¡1; ¡1) and to the circle C1 at the point C = (1; ¡1). The two circles
intersect in two more points, E = [1 : i : 0] and F = [1 : ¡i : 0], which belong to L1. Finaly, the
three lines intersect at the point G = [1 : 0 : 0] 2 L1. We will denote by ¢3:1 the union of these
curves.

The reader can check that any foliation of degree three which leaves invariant the ¯ve curves
in (a), (b), (c), (d) and (e), is de¯ned the polynomial vector ¯eld X + ®:Y , where X(x; y) =
(¡4x + x3 + 3xy2) @

@x + 2y(y2 ¡ 1) @
@y and Y (x; y) = (x2y ¡ y3) @

@x + 2x(y2 ¡ 1) @
@y . The pencil

de¯ned in this way will be denoted by P3:1 = (F3:1
® )®2C. Next we will see that this family is

equirreducible and that after the desingularisation process we obtain a pencil of foliations which
satis¯es the hypothesis of Theorem 3.

2.4.1 Lemma. If ® =2 f1; ¡1; i; ¡i; 1g, then F3:1
® has 13 non degenerated singularities :
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(I). The points E, F and G are radial singularities.
(II). The points A, B, C, D and O are singularities of the type 2 : 1.

Each irreducible component of ¢3:1 contains a singularity outside sing(¢3:1). They are the
following :
(III). The points P¡1(®) := (®; ¡1) 2 L¡1, P1(®) := (¡®; 1) 2 L1, Q¡1(®) := ( ¡2

1+®2 ; 2®
1+®2 ) 2 C¡1

and Q1(®) := ( 2
1+®2 ; ¡2®

1+®2 ) 2 C1. These singularities are of the type 1 : ¡4.

(IV). The point P1(®) := [® : 1 : 0] 2 L1. This singularity is of the type 1 : ¡2.

Proof. The fact that sing(F3:1
® ) has thirteen points as described in (I),...,(IV), can be proved

as follows : by solving the system of algebraic equations given by X(x; y) + ®:Y (x; y) = 0 we
¯nd the ¯nite singularities, which are A, B, C, D, O, P¡1(®), P1(®), Q¡1(®) and Q1(®). The
four singularities at the line L1 can be found by solving the homogeneous equation of degree four
y[A3(x; y) + ®:C3(x; y)] ¡ x[B3(x; y) + ®:D3(x; y)] = 0, where A3

@
@x + B3

@
@y and C3

@
@x + D3

@
@y are

the homogeneous parts of degree three of X and Y , respectively (see [LN 1]). As the reader can
check, this equation gives y(x2 + y2)(x ¡ ®:y) = 0. The solution of this equation gives the points
E, F , G and P1(®). The fact that ® 62 f1; ¡1; i; ¡i; 1g implies that these thirteen points are
distinct.

Let us prove (I) and (II). Observe ¯rst that, since F3:1
® is of degree three and has 13 = 32+3+1

singularities, then these singularities are non-degenerate (see [LN] or 3.1.6). The following result
implies (I) and (II) ( see x2.3 of [LN] for the proof):

2.4.2 Lemma. Let Z be a holomorphic vector ¯eld de¯ned in a neighborhood of 0 2 C2. Suppose
that :
(a). 0 is a non-degenerate singularity of Z and the quotient of the eigenvalues of of DZ(0) are
rational and positive, say p=q, where p; q 2 N are relatively primes.
(b). Either p; q ¸ 2 or Z has at least two distinct local analytic separatrices through 0.

Then there exists a holomorphic coordinate system (W; (u; v)) with 0 2 W , u(0) = v(0) = 0, in
which Z can be written as

Z(u; v) = k(q:u
@

@u
+ p:v

@

@v
) ;

where k 2 C¤. In particular, up

vq is a meromorphic ¯rst integral of Z in a neighborhood of 0.

Let us consider a point P 2 fA; B; C; D; Og. The curve ¢3:1 has two smoth branches through
P with an ordinary tangency at P . It follows from Lemma 2.4.2 that there exists a holomorphic
coordinate system (u; v) in a neighborhood U of P , such that u(P ) = v(P ) = 0 and F3:1

® is
represented on U by the vector ¯eld Z(u; v) = q:u @

@u + p:v @
@v ), where 1 · p < q and gcd(p; q) = 1.

Since up

vq is a ¯rst integral of F3:1
® and the invariant branches of ¢3:1 have an ordinary tangency at

P , then p = 1 and q = 2, so that P is of the type 2 : 1. In the case P 2 fE; F; Gg, the argument is
similar and uses that the curve ¢3:1 has three smooth branches throgh P , two by two transverse.
We leave the details for the reader.

In the proof of (III) and (IV) we use the desingularization process for the foliation F3:1
® . This

process involves thirteen blowing-ups : one blowing-up at each radial singularity and two blowing-
ups at each singularity of the type 2 : 1 (see x3.4). In the ¯gure 6 we sketch the resolution process
for a singularity of the type 2 : 1.

Note that the divisor which appears after the ¯rst blowing-up is invariant for the new foliation,
whereas the second divisor is not. Let M3 be the rational surface obtained from CP(2) after this
blowing-up process, ¼: M3 ! CP(2) be the blowing-up map, G3

® be the strict transform of F3:1
a

by ¼ and ~L¡1, ~L1, ~L1, ~C¡1 and ~C1 be the strict transforms of the rational curves L¡1, L1,
L1, C¡1 and C1, respectively. Denote by DP the invariant divisor which appears after the two
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blowing-ups at P 2 fA; B; C; D; Og. Note that the ten curves ~L¡1, ~L1, ~L1, ~C¡1, ~C1 and DP ,
P 2 fA; B; C; D; Og, are disjoint, smooth, rational and invariant for G3

®.

Each one of these ten curves contain one singularity of G3
® : the ¯ve singularities ¼¡1(Pk(®)),

k = 1; ¡1; 1, ¼¡1(Qm(®)), m = 1; ¡1, and one in each of the divisors DP , P 2 fA; B; C; D; Og
(the singularity m in Fig. 6). Denote by MP (®) the singularity of G3

® in the divisor DP , P 2
fA; B; C; D; Og. For the singularities ¼¡1(Pk(®)), k = 1; ¡1; 1, and ¼¡1(Qm(®)), m = 1; ¡1, we
keep the same notation of before : Pk(®), k = 1; ¡1; 1, and Qm(®), m = 1; ¡1. Observe that
sing(G3

®) consists exactly of these ten singularities. The analytic type of these singularities can be
obtained by using Camacho-Sad index Theorem (see [C-S] and 3.1.9) and a Lemma of linearization
of Mattei-Moussu [M-M]. Let C be one of the ten rational invariant curves and q be the singularity
of G3

® on C. Let Z be a holomorphic vector ¯eld which represents G3
® in a neighborhood of q

and ¸n and ¸t be the eigenvalues of DZ(q), where ¸t is the eigenvalue in the tangent direction
to C and ¸n in the normal direction. According to Camacho-Sad Theorem, ¸n

¸t
= C2, that is the

self-intersection number of C. On the other hand, since C n fqg is a leaf of G3
® biholomorphic to

C, the holonomy of G3
® in a transverse section to C is the identity. It follows from [M-M], that

the vector ¯eld Z is linearizable at q. Moreover, if ¸n

¸t
= C2 = ¡n, then there exists a coordinate

system (U; (z; w)) in a neighborhood of q such that z(q) = w(q) = 0, U \ C = (w = 0) and
Z(z; w) = k(z @

@z ¡ nw @
@w ), where k 2 C¤. In particular, zn:w = cte, is a local ¯rst integral of G3

®.
In particular, q is a singularity of the type 1 : ¡n. It follows that :
(i). P1(®), MA(®), MB(®), MC(®), MD(®) and MO(®) are of the type 1 : ¡2, because the curves
~L1, DA, DB, DC , DD and DO, have self-intersection ¡2 in M3.
(ii). P¡1(®), P1(®), Q¡1(®) and Q1(®) are of the type 1 : ¡4, because the curves ~L¡1, ~L1, , ~C¡1

and ~C1 have self intersection ¡4.

In the proof of (i) and (ii), we can use the following fact : let S be a smooth curve on a surface
N and ¼: ~N ! N be a blowing-up at a point p 2 S. If, ~S is the strict transform of S by ¼,
then ~S2 = S2 ¡ 1. So, for instance, ~L1 has self-intersection ¡2 because L2

1 = 1 and the process
involves three blowing-ups at points of L1. Another way is to calculate explicitly the quotient of
the eigenvalues at the singularities Pj(®) and Qk(®), by using the expression of X +®:Y . We leave
the details for the reader. ¤

Let ¼: M3 ! CP(2) be as in the proof of Lemma 2.4.1. The pencil of foliations Q3 = (G3
® =

¼¤(F3:1
® ))®2C will be called the family of type 3.

2.4.3 Corollary. The family of type 3 satis¯es the hypothesis (ii) and (iii) of Theorem 3.
Moreover, F3:1

1 , F3:1
1 and F3:1

¡1 have the following ¯rst integrals :

f1(x; y) =
C1(x; y):C¡1(x; y)

4L1(y):L¡1(y)
; f1(x; y) =

L¡1(y):C1(x; y)

L1(y):C¡1(x; y)
; f¡1(x; y) =

L1(y):C1(x; y)

L¡1(y):C¡1(x; y)

respectively, where C1(x; y) = x2 + y2 ¡ 2x, C¡1(x; y) = x2 + y2 +2x, L1(y) = y ¡ 1 and L¡1(y) =
y+1. Moreover, f1±¼ is an elliptic ¯bration. In particular, E(P3:1) = E(Q3) = Q: < 1; i > [f1g.
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Proof. Lemma 2.4.1 implies that it satis¯es the hypothesis (iii). The fact that f® is a ¯rst integral
of F3:1

® , for ® 2 f1; ¡1; 1g, can be proved by checking that (X + ®:Y )(f®) = 0 in each case. We
leave the details for the reader. Note that, since all singularities of the foliation G3

® are reduced,
then for any ® 2 E(Q3), we can suppose that the ¯rst integral of G3

® is a ¯bration. Let us prove that
h := f1±¼ is an elliptic ¯bration. Consider the generic level curve ff1 = cg, which in homogeneous
coordinates, can be written as Fc(x; y; z) := (x2 +y2 +2xz)(x2 +y2 ¡2xz)¡4cz2(y2 ¡z2) = 0. An
easy calculation, shows that, if c =2 f0; 1; 1g, then the curve Fc is irreducible and that its singular
set consists of two nodal singularities at the points [1 : i : 0] and [1 : ¡i : 0], so that it is elliptic,

because g(Fc) = (4¡1)(4¡2)
2

¡ 2 = 1, by the genus formula. Since in the resolution process we have
done one blowing-up at the each one of the points [1 : i : 0] and [1 : ¡i : 0], the level curves of
h = f1 ± ¼ are all disjoint, so that h is a ¯bration. ¤

x3. Proofs

x3.1. Basic facts. In this section we state some facts that will be used in the proofs of Theorems
1, 2 and 3. Let F a foliation on the surface M de¯ned in a covering (Uj)j2J of M by a collection
of holomorphic vector ¯elds, say (Xj)j2J . Suppose that each Uj is a domain of a holomorphic
chart (xj ; yj): Uj ! C2 and consider the 2-form µj := dxj ^ dyj and the 1-form !j = iXj

µj . Note
that the di®erential equation !j = 0 also de¯nes F on Uj . If Ui \ Uj 6= ;, then !i = gij!j , where
gij 2 O¤(Ui \ Uj). The cocycle (gij)Ui\Uj 6=; de¯nes a line bundle on M , called the normal bundle

of F . The class of this bundle in H1(M; O¤) is denoted by NF . The conormal bundle of F is
the dual, N¤

F , of NF . Given another foliation G on M such that TG = TF , de¯ned by collections
of vector ¯elds (Yj)j2J , consider the pencil generated by F and G, that is, the family (F)®2C of
foliations, where F® is de¯ned by the collection (Xj + ®:Yj)j2J , if ® 2 C, or (Yj)j2J , if ® = 1.
Note that TF®

= TF for all ® 2 C.
3.1.1 Remark. Even if the singularities of F and G are isolated, for some values of ® 6= 0; 1, the
singularities of F® could not be isolated. Since we are considering always foliations with isolated
singularities, when ® 2 C is such that sing(F®) is not isolated, that is contains a curve with divisor
(fj)j2J , fj 2 O(Uj), then we rede¯ne F® as the foliation given by the collection of vector ¯elds
(f¡1

j [Xj + ®:Yj ])j2J . Note that, in this case, TF® ¡ TF is an e®ective divisor, that is

TF® ¡ TF =
X̀

k=1

nk:Ck ;

where nk 2 N and [k Ck is the curve de¯ned in Uj by ffj = 0g. We will consider the set

B(F ; G) = f® 2 Cj TF® = TF = TGg :

Observe that the set C n B(F ; G) is always ¯nite.

In the sequel, we will recall some known facts about foliations on surfaces that will be used in the
proof of the above result. The proofs and de¯nitions of some concepts involved can be found [Br],
[Br-1], [Br-2], [BPV] and [S]. Let M be a compact surface and F be a foliation on M with isolated
singularities. Suppose that F is de¯ned by a collection of holomorphic vector ¯elds (Xj)j2J , or
1-forms (!j)j2J , associated to a covering (Uj)j2J of M , as before.

3.1.2 Seidenberg's Theorem. (cf. [Se] or [M-M]) In order to state Seidenberg's Theorem, we
recall the concept of reduced singularity. Let p be an isolated singularity of a foliation F on a
surface M and X be a holomorphic vector ¯eld which represents F in a neighborhood of p. Let
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¸1 and ¸2 be the eigenvalues of DX(p). We say that p is a reduced singularity of F , if one of the
following condictions holds :
(I). p is a non-degenerate singularity, that is ¸1; ¸2 6= 0, and the charachteristic values, ¸2=¸1 and
¸1=¸2, are not rational positive.
(II). ¸1 = 0 and ¸2 6= 0, or vice-versa. In this case, we say that p is a saddle-node for F .

These condictions do not depend on the vector ¯eld X.

Theorem. ([Se] or [M-M]). For any foliation F , with isolated singularities, on a surface M , there
exists a surface N and bimeromorphism ¼: N ! M , which is a sequence of blowing-ups, such that
all singularities of the strict transform foliation, ¼¤(F), are reduced.

In the sequel, we resume other results that will be used, involving the bundles associated to the
foliation F .

3.1.3. If Y is a meromorphic non-vanishing vector ¯eld on M tangent to F (that is !j(Y ) = 0,
8j 2 J) then

TF = (Y )0 ¡ (Y )1 ;

where (Y )0 and (Y )1 denote the divisors of zeroes and poles of Y respectively. Analogously, if !
is a meromorphic non-vanishing 1-form on M such that !(Yj) ´ 0, 8j 2 J , then

N¤
F = (!)0 ¡ (!)1 ;

where (!)0 and (!)1 denote the divisors of zeroes and poles of Y respectively.

The relation between NF and TF is the following :

3.1.4. KM = N¤
F + T ¤

F , where KM denotes the canonical bundle of M .

In the case of a foliation F of degree d on CP(2) we have the following :

3.1.5. T ¤
F = (d¡1)H, NF = (d+2)H and KCP(2) = ¡3H, where H denotes the divisor associated

to a line.

Given two line bundles L1 and L2 on M , we will use the notation L1:L2 for the numberR
M c1(L1) ^ c1(L2), where c1(Lj) 2 H2

DR(M) is the ¯rst Chern class of Lj , j = 1; 2. When
L1 = L2 we will use the notation L1:L1 = L2

1.

If we denote by ¹(F) the number of singularities of F counted with multiplicities, then :

3.1.6. ¹(F) = c2(T
¤
F +T M) = c2(M )+T ¤

F :c1(M)+(T ¤
F )2 = c2(M)+TF :KM +T 2

F . In particular,
if M = CP(2) and F has degree d the ¹(F) = d2 + d + 1. Moreover, the singularities are non-
degenerate if, and only if, F has d2 + d + 1 singularities.

Now, let C be a curve on M . We say that C is not invariant for F , if C \Uj is not a solution of
!j = 0 for any j 2 J such that C \ Uj 6= ;, where !j de¯nes F on Uj . We say that C is invariant
for F , if C \ Uj is a solution of !j = 0 for any j 2 J such that C \ Uj 6= ;. Given a reduced curve
C, which is not invariant for F , and p 2 C, the order of tangency between F and C at p is

tang(F ; C; p) := dimC
Op

< f; X(f) >
= [f; X(f )]p ;

where f = 0 is a reduced equation of C, X is a holomorphic vector ¯eld which de¯nes F in a
neighborhood of p and [f; X(f)]p denotes the intersection number of f and X(f) at p. Observe
that, since f is reduced and not invariant for X, then f and X(f) have no common components
at p, so that 0 · tang(F ; C; p) < +1. Moreover, tang(F ; C; p) = 0 if, and only if, the leaf of F
through p is transverse to C at p. This implies that

0 · tang(F ; C) :=
X

p2C

tang(F ; C; p) < +1 :
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3.1.7. Let C be a reduced curve on M , not invariant for F . Then :

NF :C = X (C) + tang(F ; C) and TF :C = C2 ¡ tang(F ; C) ;

where X (C) = ¡KM :C ¡ C2 is the virtual Euler characteristic of C (cf. [Br-1]). We observe that,
if C is a smooth curve, then X (C) coincides with the topological Euler characteristic of C. On
the other hand, if C is not smooth, then X (C) is the Euler characteristic of a smoothing of C (cf.
[BPV]).

In order to compute NF :C and TF :C when C is invariant for F , we have to introduce another
local index involving F and a point p 2 C. This index is denoted by Z(F ; C; p) in [Br-1] and [Br-2].
When C is smooth at p, Z(F ; C; p) is the Poincar¶e-Hopf index of the "restricted" foliation at p,
which is de¯ned as follows. Let p 2 C be smooth point of C and X be a holomorphic vector ¯eld
which de¯nes F in a neighborhood of p. Since C is smooth at p and C is invariant for X, there
exists a holomorphic coordinate system (U; (x; y)) in a neighborhood of p such that C\U = (y = 0),
x(p) = y(p) = 0 and X jU\C = xk:u(x) @

@x , where u(0) 6= 0. In this case, Z(F ; C; p) = k ¸ 0. This
index can be de¯ned also when C is not smooth at p, but since we will use it only in the smooth
case, we refer the general de¯nition for [Br-1] or [Br-2]. Given a reduced curve C, de¯ne

Z(F ; C) =
X

p2C

Z(F ; C; p) :

We have the following :

3.1.8. Let C be a reduced curve on M , invariant for F . Then :

NF :C = C2 + Z(F ; C) and TF :C = X (C) ¡ Z(F ; C) :

When C is an invariant reduced curve for F and p 2 C \ sing(F), it is de¯ned the so called
Camacho-Sad index of p with respect to C. In the case where C is smooth at p and p is a non-
degenerate singularity of F , this index can be expressed in terms of the eigenvalues of DX(p), where
X is a holomorphic vector ¯eld which represents F in a neighborhood of p. If ¸t is the eigenvalues
of DX(p) relative to the eigendirection tangent to C at p and ¸n is the other eigenvalue, then the
Camacho-Sad index of F at p with respect to C is I(F ; C; p) = ¸n

¸t
. In the case where p is not a

singularity of F we have I(F ; C; p) = 0. In the general case, the de¯nition can be found in [Br-2]
or [S]. Set I(F ; C) =

P
p2C I(F ; C; p). The main fact about this index is that

3.1.9 Camacho-Sad Theorem. We have I(F ; C) = C2, the self-intersection number of C.

Another ingredient that will be used is the divisor of tangency between two foliations. Let F
and G be two foliations on the surface M . Let (U)j2J be a covering of M by open sets and let
FjUj be de¯ned by the vector ¯eld Xj and GUj by the 1-form ´j , where Xi = fijXj and ´i = gij´j

on Ui \ Uj 6= ;. Set fj = iXj (´j) 2 O(Uj). Then the foliations are tangent along the curve
¢j = (fj = 0) ½ Uj . Moreover, since fi = fij :gij :fj , on Ui \ Uj 6= ;, the curves ¢i and ¢j glue
togheter on Ui \Uj , and this gives origin to a divisor on M , which we denote by ¢(F ; G). We have

3.1.10. [¢(F ; G)] = T ¤
F + NG = T ¤

G + NF .

In the particular case of CP(2), we get from (3.1.5) that if F and G are foliations on CP(2) of
degrees k and ` respectively, then [¢(F ; G)] = (k + ` ¡ 1)H.

Finally, we will see how the line bundles above change when we do a blowing-up at a point p 2 M .
Let us denote by M̂ the surface obtained from M by performing this blowing-up, by ¼: M̂ ! M
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the blowing-up map, by D the excepcional divisor ¼¡1(p) and by F̂ the strict transform of the
foliation F by ¼. Let ! be a holomorphic 1-form which de¯nes F in a neighborhood of p. If p is a
singularity of !, then D is in the divisor of zeroes of the 1-form ¼¤(!) with some multiplicity, say
m(p). By using the de¯nitions, it is possible to prove that (cf. [Br-1]):

3.1.11. N¤
F̂ = ¼¤(N¤

F ) + m(p)[D] and TF̂ = ¼¤(TF ) + (m(p) ¡ 1)[D].

x3.2. Proof of Theorem 3. Let M be a complex surface and F and G be holomorphic foliations
on M such that TF = TG . We will denote by T the class of TF = TG in H1(M; O¤) and by F(M; T )
the set

fH; ; H is a foliation on M such that TH = Tg :

Suppose that F has a holomorphic ¯rst integral f : M ! S, where S is some compact Riemann
surface. Denote by g(f) the genus of the regular level curves, f¡1(c), of f .

3.2.1 Lemma. Let M , F , G, f and g(f) be as above. Then :
(a). If g(f) = 0 then F ´ G. In particular F(M; T ) = fFg.
(b). If g(f) = 1 and F 6= G, then G is turbulent with respect to f .
(c). If g(f ) ¸ 2, then for any regular ¯bre F = f ¡1(c) of f , which is not invariant for G, we have
tang(G; F ) > 0.

In particular, if F 6= G, then G is transverse to some regular ¯bre of f if, and only if, g(f ) = 1.
Moreover, in this case, G is turbulent with respect to f .

Proof. Let F = f ¡1(c) be a regular ¯bre of f . Since F is invariant for F and F has no singular
points on F , we get from 3.1.8 that

T:F = TF :F = X (F ) ¡ Z(F ; F ) = X (F ) :

On the other hand, if F is not invariant for G, we get from 3.1.7 that

T:F = TG :F = F2 ¡ tang(G; F ) = ¡tang(G; F ) ;

so that, X (F ) = ¡tang(G; F ) · 0. In particular, if the ¯bres of f are rational curves, then
X (F ) = 2 > 0 and F is invariant for G. In this case, all regular ¯bres of f are invariant for G, which
implies that, G ´ F . On the other hand, G is transverse to F if, and only if, tang(G; F ) = 0 = X (F ).
This implies (b) and (c). ¤

Now, let us suppose TF = TG , but F 6= G, that the singularities of F are reduced in the sense of
Seidemberg and that F is tangent to an elliptic ¯bration f : M ! S. Let C be a smooth irreducible
component of a critical ¯bre F = f ¡1(c) of f .

3.2.2 Lemma. In the above situation, we have :
(a). If F = m:C, for m ¸ 2, then g(C) = 1 and, either C is a leaf of G, or G is transverse to C.
(b). If C is rational then C2 < 0. Moreover, if C is not invariant for G, then Z(F ; C) ¸ 3.
(c). G is turbulent with respect to f and sing(G) ½ f¡1(A), where

A = fc 2 S; c is a critical value of f such that f ¡1(c) is not smoothg :

Proof. Lemma 3.2.1 implies that G is turbulent with respect to f . Suppose that the critical ¯bre
F = m:C, m ¸ 2, so that F , as a subset of M , is smooth. It follows from Kodaira's classi¯cation
of critical ¯bers in [K], that C is an elliptic curve and the ¯bre F is of the type mI0, m ¸ 2.
In particular, F is a multiple ¯bre. Since C is smooth, given p 2 C, there exist holomorphic
coordinate systems (U; (x; y)) in M and (V; z) in S, such that p 2 U , C \ U = (x = 0), f (p) 2 V ,
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z(f(p)) = 0 2 C and z ± f(x; y) = xm. This implies that FjU is de¯ned by dx = 0. In particular
Z(F ; C) = 0. Therefore, if F = m:C (m ¸ 1), we have

T:C = TF :C = X (C) ¡ Z(F ; C) = 0 :

If C is invariant for G, we have

0 = T:C = TG :C = X (C) ¡ Z(G; C) = ¡Z(G; C) =) Z(G; C) = 0 :

On the other hand, if C is not invariant for G, then

T:C = TG :C = C2 ¡ tang(G; C) = ¡tang(G; C) = 0 :

Therefore, if F = m:C, where C is smooth and m ¸ 1 then, either G is transverse to C, or C is
invariant for G and Z(G; C) = 0. This implies (a) and (c). Let us prove (b). First of all, observe
that sing(F) \ C 6= ;. In fact, if sing(F) \ C was empty, then Reeb's stability Theorem would
imply that there exists a neighborhood V of C, saturated for F , such that all leaves of F in V are
rational curves (cf. [C-LN]), which is not possible, because f is an elliptic ¯bration. Let p1; :::; pk

be the singularities of F on C. For each j = 1; :::; k let Ij be the Camacho-Sad index of F with

respect to C at pj . It follows from Camacho-Sad Theorem that C2 =
Pk

j=1 Ij . On the other hand,

for each j 2 f1; :::; kg, pj is a reduced singularity of F and f is tangent to F . This implies that
there exist holomorphic coordinate systems (U; (x; y)) in M and (V; z) in S, such that pj 2 U ,
x(pj) = y(pj) = 0, C \ U = (y = 0), f (pj) 2 V , z(f(pj)) = 0 2 C and z ± f jU (x; y) = xmj :ynj ,
mj ; nj > 0, so that F is represented in U by the vector ¯eld X(x; y) = njx @

@x ¡ mjy @
@y . Hence

Ij = ¡mj

nj
< 0. It follows that C2 < 0.

Now, let us suppose that C is not invariant for G. In this case, it follows from 3.1.7 that

T:C = C2 ¡ tang(G; C) < 0 :

On the other hand, since C is invariant for F , it follows from 3.1.8 that

T:C = X (C) ¡ Z(F ; C) = 2 ¡ Z(F ; C) =) 2 ¡ Z(F ; C) < 0 =) Z(F ; C) ¸ 3 :

¤
Before stating the next result we need a de¯nition.

3.2.3 De¯nition. Let F be a holomorphic foliation on a surface M . We say that a smooth
rational curve C ½ M is contractible for F if :
(a). C2 = ¡1 and C is invariant for F .
(b). When we blow down C, thus obtaining a surface N and a blowing-down map ¼: M ! N ,
where ¼(C) = p 2 N , then, either p is not a singularity for the transformed foliation ¼¤(F), or it
is a reduced singularity for ¼¤(F).

3.2.4 Remark. If C is contractible for F as in de¯nition 3.2.3, then we have three possibilities
(cf. [Br-2]):
1st) . p is a non-singular point for ¼¤(F). In this case, F has just one non-degenerate singularity,
say q, on C, such that I(F ; C; q) = ¡1. We have also that Z(F ; C; q) = Z(F ; C) = 1.
2nd) . p is a non-degenerate singularity of ¼¤(F). In this case, F has two non-degenerate sin-
gularities and Z(F ; C) = 2. If the characteristic numbers of ¼¤(F) at p are ¸ and ¸¡1, where
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¸; ¸¡1 =2 Q+ (because p is a reduced singularity), then the Camacho-Sad index of the singularities
with respect to C at the two singularities are ¸

1¡¸
and 1

¸¡1
.

3rd) . p is a saddle node of ¼¤(F). In this case F has two singularities on C, one saddle-
node, say q1, and the other non-degenerate, say q2. Moreover, I(F ; C; q1) = 0, I(F ; C; q2) = ¡1,
Z(F ; C; q1) = Z(F ; C; q2) = 1 and Z(F ; C) = 2. We observe that this case does not occur if F (or
¼¤(F)) is tangent to a ¯bration.

Let F , G and f : M ! S be as in Lemma 3.2.2 , and (F®)®2C be the pencil of foliations on M
generated by F and G, where F0 = F and F1 = G. Set TF = TG = T and let B = B(F ; G) be as
in Remark 3.1.1. Recall that C n B is ¯nite.

3.2.5 Lemma. Let F 6= G, f : M ! S, (F®)®2C and B be as before. Suppose that F®0 has a
contractible curve C, for some ®0 2 B n f0g. Let ¼: M ! N be the blowing-down map obtained
by contracting C, where ¼(C) = p 2 N . Then :
(a). C is invariant for F® and 1 · Z(Fa; C) = Z(F ; C) · 2, for all ® 2 B.

(b). Suppose that F®1 is tangent to some ¯bration f1: M ! S1, for some ®1 2 B. Then f1 ±
¼¡1: N ! S1 is a ¯bration.

(c). C is contractible for F0 = F . In particular, all singularities of ¼¤(F) are reduced and
f ± ¼¡1: N ! S is a ¯bration.
(d). There exists ² > 0 such that if j®j < ² then p is a reduced singularity for ¼¤(F®) and
T¼¤(F®) = T¼¤(F).

(e). If B0 = B(¼¤(F); ¼¤(G)), then C n B0 is ¯nite.

Proof. By de¯nition we have TF® = T for all ® 2 B. Since C is rational and invariant for F®o ,
it follows from (a) and (b) of Lemma 3.2.2 that 1 · Z(F ; C) · 2. Note that (b) of Lemma 3.2.2
also implies that C is invariant for F®, for all ® 2 B n f0g, because F® 6= F if ® 6= 0. This implies
that C is also invariant for F , so that it is contained in a critical ¯bre of f . Moreover, if ® 2 B
then

Z(F®; C) = X (C) ¡ T:C = 2 ¡ T:C ;

so that Z(F®; C) does not depends on ® 2 B. Hence 1 · Z(F ; C) = Z(F®; C) · 2, which proves
(a). Let us prove (b). Since C is invariant for F®1 , which is tangent to the ¯bration f1, we must
have that f1jC is constant, say f1(C) = a 2 S1. Now, ¼¡1 is a biholomorphism outside C, so
that f1 ± ¼¡1 is holomorphic outside p and hence in N , by Hartog's Theorem, so that it is also a
¯bration.

Let us prove (c). Since 1 · Z(F ; C) · 2, F has one or two singularities on C. Given q 2
sing(F) \ C, denote by I(F ; q) the Camacho-Sad index of F at q with respect to C. Since the
singularities of F are reduced, as we have seen in the proof of Lemma 3.2.2, they are non-degenerate
and if q 2 sing(F) \ C then I(F ; q) 2 Q¡ and Z(F ; C; q) = 1. We have two possibilities :
(i). Z(F ; C) = 1. In this case, if q is the singularity of F on C, then I(F ; q) = C2 = ¡1, and p is
not a singular point of ¼¤(F).
(ii). Z(F ; C) = 2. In this case, if q1 and q2 are the singular points of F on C, then I(F ; q1) +
I(F ; q2) = ¡1. Set I(F ; q1) = ¡¸ < 0, so that I(F ; q2) = ¸ ¡ 1 < 0. In this case, the point p will
be a non-degenerate singularity of ¼¤(F) with negative characteristic numbers ¸

¸¡1 and ¸¡1
¸ , so

that it is reduced for ¼¤(F). This implies (c).

Let us prove (d). We have seen above that F has one or two non-degenerate singularities on C.
For each one of these singularities the Camacho-Sad index of F with respect to C is negative. It
follows from the facts that non-degenerate singularities are stable by small perturbations and the
characteristic values vary continuously with parameters (cf. [Ar]), that:
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(iii). There exists ² > 0 such that, if j®j < ² then ® 2 B and F® has the same number of
singularities as F = F0 on C, all of them non-degenerate with Camacho-Sad indexes with respect
to C negative.

Let !® be a 1-form representing ¼¤(F®) in a neighborhood of p. If j®j < ², we have two
possibilities, according to (i) or (ii) :
Case (i). Since F® has just one singularity on C, say q, we must have I(F®; C; q) = ¡1. In this
case, p is a regular point of ¼¤(F®), so that !®(p) 6= 0 and the multiplicity of C in the divisor of
zeroes of ¼¤(!®) is zero. It follows from TF = TF® and from 3.1.11 that

TF = ¼¤(T¼¤(Fa)) ¡ [C] = ¼¤(T¼¤(F)) ¡ [C] =) T¼¤(Fa) = T¼¤(F)

Case (ii). In this case, if q1(®) and q2(®) are the singularities of F® on C and I(F®; C; q1(®)) =

¸(®) < 0, then the charachteristic numbers of ¼¤(F®) at p are ¹(®) := ¸(®)
1¡¸(®)

; ¹(®)¡1 < 0, so that

p is a reduced singularity of ¼¤(F®). Moreover, the multiplicity of C in the divisor of zeroes of
¼¤(!®) is one (see [Br-2]). It follows from TF = TF®

and from 3.1.11 that

TF = ¼¤(T¼¤(Fa)) = ¼¤(T¼¤(F)) =) T¼¤(Fa) = T¼¤(F)

Note that this implies (e), because the pencil generate by ¼¤(F) and ¼¤(G) coincides, up to
reparametrization, with the pencil generate by ¼¤(F) and ¼¤(F®), if ® 6= 0. ¤
3.2.6 Corollary. Let F 6= G be foliations on a surface M such that TF = TG . Suppose that all
singularities of F and G are reduced and that F and G are tangent to ¯brations, say f : M ! S
and g: M ! S1, where f is elliptic. Then there exist a complex surface N and a bimeromorphism
Á: N ! M such that :
(a). f ± Á: N ! S and g ± Á: N ! S1 are ¯brations.
(b). All the singularities of Á¤(F) are reduced and Á¤(F) has no contractible curves.
(c). TÁ¤(F) = TÁ¤(G).

Proof. Note that in the proof that T¼¤(F) = T¼¤(F®) in (d) of Lemma 3.2.5, we have used only
that the singularities of F® on C are reduced. Therefore, the proof of the Corollary can be done
by induction. We leave the details for the reader. ¤

Consider now two foliations F and G on a complex compact surface M , such that F 6= G,
TF = TG = T , all singularities of F and G are reduced, F and G are tangent to ¯brations f : M ! S
and g: M ! S1, respectively, where f is elliptic. It follows from Lemma 3.2.1 that G is turbulent
with respect to f , so that f is isotrivial. On the other hand, the Corollary 3.2.6 implies that there
exists a bimeromorphism Á: N ! M such that Á¤(F) is reduced, has no contractible curve, f ± Á
and g ± Á are ¯brations and TÁ¤(F) = TÁ¤(G). Hence, in this situation, after applying Corollary
3.2.6, we can suppose that :
(I). All singularities of F are reduced and F has no contractible curves.
(II). f is isotrivial.
(III). TF = TG = T .

3.2.7 Lemma. In the above situation, any critical ¯bre of f is of one of the following types : mI0

(m ¸ 2), I¤
0 , ~II, ~III or ~IV .

Proof. The idea is to use Kodaira's classi¯cation of the critical ¯bres of an elliptic ¯bration. In
[K], Kodaira classi¯es the possible ¯bres of an elliptic ¯bration h, which satis¯es the following
hypothesis : if C is a smooth rational curve contained in a critical ¯bre, then C2 6= ¡1. Although
F has no contractible curve, the ¯bration f could have some. More precisely, it could happen
that there are ¡1 rational smooth curves contained in some critical ¯bres of f , but when we blow-
down one of these curves the singularity of F which appears is not reduced. However, after a
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¯nite number of blowing-downs, we can obtain a new surface N , a bimeromorphism Á: M ! N
(a composition of blowing-downs) and a ¯bration f1 = f ± Á¡1: N ! S, such that f1 has no
contractible ¯bres. According to [K] or [BPV], the critical ¯bres of f1 could be of the following
types : mI0 (m ¸ 2), I¤

0 , II, III, IV , II¤, III¤, IV ¤, mIb or I¤
b ( cf. pages 564 and 604 of [K],

or page 159 of [BPV]). The ¯bres of the types mIb and I¤
b can not occur in isotrivial ¯brations,

so that the critical ¯bres of f1 could be of the types : mI0 (m ¸ 2), I¤
0 , II, III, IV , II¤, III¤

or IV ¤. The ¯bre of type I¤
0 is sketched in ¯gures 1.b and 1.c, and the ¯bres II, III and IV are

sketched in ¯gure 2.

In ¯gure 7 we sketch the ¯bres of types II¤, III¤ and IV ¤. In that ¯gure, the lines repre-
sent smooth rational components of the ¯bre and the numbers the multiplicity of the compo-
nent. The self intersection of each component is ¡2. Moreover, if two components C1 and C2, of
multiplicities m1 and m2, respectively, intersect in a point p, then there are coordinate systems
(U; (x; y)) in N and (V; z) in S such that x(p) = y(p) = 0, C1 \ U = (x = 0), C2 \ U = (y = 0),
f1(U) ½ V , and z ± f1(x; y) = xm1 :ym2 . This implies that Á¤(F) is represented in U by the vec-
tor ¯eld X(x; y) = m2x @

@x ¡ m1y @
@y , so that p is a non-degenerate, reduced singularity of F and

Z(F ; C1; p) = Z(F ; C2; p) = 1. On the other hand, the singularities which appear in the ¯bres
of types II, III or IV , are not reduced for F , but if we perform some blowing ups in such a
way that the ¯bres become of types ~II, ~III or ~IV , respectively, then the singularities of the new
foliation become reduced and non-degenerate for the transformed foliation. This last foliation has
no contractible curve, and so it coincides with F . Therefore, the critical levels of f are of one of
the following types : mI0 (m ¸ 2), I¤

0 , ~II, ~III, ~IV , II¤, III¤ or IV ¤.

Let us prove that f has no critical ¯bres of the types II¤, III¤ or IV ¤. Suppose by contradiction
that there is a critical ¯bre, say Fc = f¡1(c), of one of these types. Observe ¯rst that Fc has only
one component, say C0, such that Z(F ; C0) = 3 (see ¯gure 7). If C is another component of Fc,
then Z(F ; C) · 2. It follows from Lemma 3.2.2 that the unique component of Fc that could be
not invariant for G is C0. Here we use that TG = TF , F 6= G and g is a ¯bration tangent to G.
Let C0, C1; :::; Ck be the components of Fc, where C0 is as above. Since C1,...,Ck are invariant
for G, the function g must be constant in each Cj , j = 1; :::; k. Set bj = g(Cj), j = 1; :::; k. Since
G 6= F , almost all regular ¯bres of g are not invariant for F . Let Gb = g¡1(b) be a regular ¯bre
of g, not invariant for F , such that b 6= bj , j = 1; :::; k. Since the map h = f jGb

: Gb ! S is
holomorphic and non constant, it is surjective, so that h(p) = c for some p 2 Gb. This implies that
Fc \ Gb 6= ; and the leaf Gb of G cuts Fc at the point p. Since b 6= bj , j = 1; :::; k, we must have
that p 2 C0. We have found a leaf Gb of G, which is not invariant for F , such that p 2 C0 \Gb 6= ;
and p =2 C1 [ ::: [ Ck. Therefore C0 is not invariant for G. If we apply 3.1.7 and 3.1.8 to G, F
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and C0 we get
T:C0 = TG :C0 = C2

0 ¡ tang(G; C0) = ¡2 ¡ tang(G; C0)

and

¡2 ¡ tang(G; C0) = T:C0 = TF :C0 = X (C0) ¡ Z(F ; C0) = 2 ¡ 3 = ¡1 =) tang(G; C0) = ¡1 ;

which is an absurd. This proves that f has no ¯bres of types II¤, III¤ or IV ¤. ¤
Let F be a ¯xed foliation , tangent to an elliptic ¯bration f as in Lemma 3.2.7. We will use the

following notations :

(A). Am
0 for the set of mI0 ¯bres, A0 = [mAm

0 .
(B). A¤

0 for the set of I¤
0 ¯bres.

(C). A2 for the set of ¯bres of type ~II, A3 for the set of ¯bres of type ~III and A4 for the set of
¯bres of type ~IV .

Denote by F1; :::; Fr the ¯bres of f in A¤
0 [ A2 [ A3 [ A4.

(D). Given Fj 2 A¤
0 [ A2 [A3 [A4, let Cj;i, j = 0; 1; :::; kj , be the rational irreducible components

of Fj . By convention, Cj;0 will be ¯bre which contains more than two singularities of F . Denote
by mj;i the multiplicity of f in the component Cj;i (see ¯gure 1). The divisor of Fj can be written
as

Fj =
kcX

i=0

mj;iCj;i ;

Observe that F 2
j = 0 (see [K]). Moreover, if Fj 2 A¤

0 then Z(F ; Cj;0) = 4 and C2
j;0 = ¡2, whereas

in the other cases we have Z(F ; Cj;0) = 3 and C2
j;0 = ¡1.

From now on, we will consider the following situation : F , G will be two foliations on M such
that TF = TG and (F®)®2C will be the pencil of foliations generated by F and G, where F0 = F
and F1 = G. Denote by B := B(F ; G) the set f® 2 Cj TF® = TF g and by ¢ = ¢(F ; G), the
divisor of tangency between F and G (see Remark 6 and 3.1.10). Suppose that :
(I). F and G are tangent to ¯brations f : M ! S and g: M ! S1.
(II). f is an elliptic ¯bration such that any critical ¯bre is of one the types m:I0 (m ¸ 2), I¤

0 , ~II,
~III or ~IV .

(III). F 6= G.

3.2.8 Remark. In the above situation, the surface M is algebraic, because its algebraic dimension
is two (cf. [BPV] pg. 127). In fact, if f : M ! S and g: M ! S1 are as in (I) and Á: S !
C, Á1: S1 ! C are non-constant holomorphic functions, then we can de¯ne two meromorphic
functions f1; g1: M ! C by f1 = Á ± f and g1 = Á1 ± g. These functions are algebraically
independent, because F 6= G,

In the Lemma below, we keep the notations of (A), (B), (C) and (D).

3.2.9 Lemma. In the situation considered, we have B := B(F ; G) = C and :
(a). If Fc = f ¡1(c) is a regular level or a critical ¯bre of type mI0, then, for any ® 2 C, ® 6= 0, Fc

is not invariant for F® and tang(F®; Fc) = 0, so that F® is transverse to Fc.
(b). If Fj 2 A¤

0 [ A2 [ A3 [ A4 then the curves Cj;1; :::; Cj;kj are invariant for F®, for any ® 2 C.
On the other hand, if ® 6= 0, then Cj;0 is not invariant for F® and tang(F®; Cj;0) = 0, so that Fa

is transverse to Cj;0.
(c). For all ® 2 C, the singularities of F® are reduced and

sing(Fa) ½ [r
j=1

¡
[i>0 Cj;i

¢
:
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Moreover, for each j 2 f1; :::; rg and i > 0, F® contains exactly one singularity on the Cj;i, denoted
by qj;i(®), such that :

(c.1). The map ® 2 C 7! qj;i(®) 2 Cj;i is a regular parametrization of Cj;i.
(c.2). If C2

j;i = ¡m < 0, then the singularity qj;i(®) is of the type 1 : ¡m and I(F®; Cj;i; qj;i(®)) =
¡m (see 3.1.9).
(d). If ® 2 C is such that F® is tangent to a ¯bration f®: M ! S®, then f® is elliptic. Moreover,
if A¤

0 [ A2 [ A3 [ A4 6= ;, then S® = C.
(e). The divisor of tangencies is

¢ =
X

j

X

i 6=0

Cj;i :

Proof. Let us prove ¯rst that G is transverse to any ¯bre Fc = f ¡1(c) 62 A¤
0 [ A2 [ A3 [ A4. In

this case, we have Fc = m:C, where m ¸ 1 and C is smooth and elliptic. If m = 1, then Fc is a
regular ¯bre of f , whereas it is of the type mI0, if m ¸ 2. According to (a) of Lemma 3.2.2, either
C is a leaf of G, or G is transverse to C. Suppose by contradiction that C is a leaf of G. The idea
is to prove that this implies that G ´ F . Since g is tangent to G, gjC is constant, say g(C) = b. In
fact, we must have g¡1(b) = C, because the generic levels of g are irreducible. Let D and D0 be a
small neighborhoods of c 2 S and b 2 S1, respectively. Set V = f¡1(D) \ g¡1(D0). Note that, if
c1 is near c in S, then Fc1 = f ¡1(c1) ½ V . On the other hand, gjFc1

: Fc1 ! S1 is a holomorphic
map, and so it is, either surjective, or constant. Since g(Fc1) ½ D0, gjFc1

is constant. This implies
that f and g have the same ¯bres in a neighborhood of C, and so F = G.

Now, ¯x a ¯bre Fj 2 A¤
0 [ A2 [ A3 [ A4 and let Cj;i, i 2 f0; 1:::; kjg, the irreducible components

of Fj , as in (D). Note that Z(F ; Cj;i) = 1 if i > 0 (see ¯gure 1). It follows from (b) of Lemma
3.2.2 that Cj;i is invariant for G, if i > 0. Let us prove that G is transverse Cj;0. First of all,
observe that Cj;0 is not invariant for G. The proof of this fact is similar to the argument in the
proof of Lemma 3.2.7 that almost all levels of g must cut the singular ¯bre. These intersections
must be on Cj;0, because the other components are invariant for G. It follows from 3.1.7 that

T:Cj;0 = TG :Cj;0 = C2
j;0 ¡ tang(G; Cj;0) :

On the other hand, since Cj;0 is invariant for F , we get from 3.1.8

T:Cj;0 = 2 ¡ Z(F ; Cj;0) =) tang(G; Cj;0) = Z(F ; Cj;0) + C2
j;0 ¡ 2 :

Since Z(F ; Cj;0) = 4, C2
j;0 = ¡2 if Fj is of the type I¤

0 and Z(F ; Cj;0) = 3, C2
j;0 = ¡1 in the other

cases, we get that tang(G; Cj;0) = 0 in all the cases. This implies that G is transverse to Cj;0.

Let W := M n
¡

[j ([i>0Cj;i)
¢
. The above facts and the de¯nition of pencil of foliations, imply

that :
(i). If ® 6= ¯ and p 2 W , then F® and F¯ are transverse in a neighborhood of p.

The fact that Cj;i, i > 1, is invariant for both foliations, F and G, implies that :
(ii). The curve Cj;i, i > 0, is invariant for F®, if ® 2 B. Moreover, Z(F®; Cj;i) = 1 for all ® 2 B,
j = 1; :::; r and i > 0. In particular, F® has just one singularity on Cj;i, if i > 0 and ® 2 B.

Let us prove the last relation. Since Cj;i is invariant for both foliations and TF = TF® = T , we
get from 3.1.8, that

1 = 2 ¡ Z(F ; Cj;i) = T:Cj;i = 2 ¡ Z(F®; Cj;i) =) Z(F®; Cj;i) = 1 :

Let us denote the singularity of F® on Cj;i (i > 0) by qj;i(®), ® 2 B.
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(iii). Suppose that for a ¯xed pair (j; i), i > 0, and for some ® 2 B, the singularity q := qj;i(®)
is non-degenerate. Let C2

j;i = ¡m < 0. Then q is a singularity of the type 1 : ¡m for F®

and I(F®; Cj;i; q) = ¡m. In particular, there exists a coordinate system (U; (x; y)) around q,
such that x(q) = y(q) = 0, U \ Cj;i = (y = 0) and F® is represented on U by the vector ¯eld
X® = x @

@x
¡ m y @

@y
.

In fact, since q is the unique singularity of F® on Cj;i, the Camacho-Sad index of F® at q with
respect to Cj;i is ¡m = C2

j;i. Therefore, if Y is a vector ¯eld representing F® is a neighborhood
of q and ¸1, ¸2 are the eigenvalues of DY (q), where ¸1 corresponds to the direction tangent to
Cj;i, then ¸2=¸1 = ¡m. On the other hand, since the curve Cj;i is rational, we have that the leaf
Cj;i n fqg of F®, is homeomorphic to C, so that its holonomy is trivial. It follows from a Lemma of
Mattei and Moussu (cf. [M-M]), that the foliation is linearizible at q, that is represented by a linear
vector ¯eld in some coordinate system in neighborhood of q. Since ¸2=¸1 = ¡m, we can choose
the coordinate system (U; (x; y)) in such a way that the linear vector ¯eld is given by x @

@x
¡ m y @

@y

and that U \ Cj;i = (y = 0). This proves (iii).

Let us prove that B = C and that the singularity of F® on Cj;i, i > 0, is non-degenerate for every
® 2 C. First of all, observe that if ® 2 C nB, then there exist q 2 M and holomorphic vector ¯elds
X and Y representing F and G, respectively, in a neighborhood U of q, such that sing(X + ®:Y )
contains a holomorphic curve through q (see Remark 3.1.1). Denote by P the set of such points.
In order to prove that B = C, it is su±cient to verify that P = ;. Note that (i) implies that
P ½ [j([i>0Cj;i). Moreover, if P 6= ;, then P contains at least a curve. Since P is an analytic
subset of M , it follows that if Cj;i \ P 6= ; then Cj;i ½ P . Suppose by contradiction that Cj;i ½ P
for some j 2 f1; :::; rg and some i > 0. Let q0 := qj;i(0) and X and Y be vector ¯elds representing
F and G, respectively, in a neighborhood U of q0 such that F® is represented by X® := X +®:Y on
U . If we take U small, we can suppose that there exists a coordinate system (U; (x; y)) such that
U \ Cj;i = (y = 0), x(q0) = y(q0) = 0 and X = x @

@x ¡ m y @
@y , C2

j;i = ¡m. Since Cj;i is invariant

for G and q0 62 sing(G), the vector ¯eld Y jCj;i
can be written as Y (x; 0) = (b + xk:u(x)) @

@x , where
b 6= 0 and k ¸ 1. Hence, X®jCj ;i can be written as

(¤) X®(x; 0) =
¡
x + ®(b + xk:u(x))

¢ @

@x
:

Since Cj;i ½ P , it follows that x + ®(b + xk:u(x)) ´ 0 on U \ Cj;i, for some ¯xed ® 2 C. But
this is impossible, so that P = ;. It follows from (ii) that Z(F®; Cj;i) = 1 for all i > 0 and

all ® 2 C. In particular, F® has just one singularity on Cj;i, qj;i(®), and if X® is a vector ¯eld
representing F® in a neighborhood of qj;i(®), then the eigenvalue of DX®(qj;i(®)) relative to the
eigendirection tangent to Cj;i, say ¸1(®), is non-zero. Moreover, if ¸2(®) is the other eigenvalue,
then ¸2(®)=¸1(®) = I(F®; Cj;i; qj;i(®)) = C2

j;i 6= 0 (see 3.1.9). This implies that ¸2(®) 6= 0, so
that qj;i(®) is a non-degenerate singularity of F®.

We have already proved assertion (a), (b) and (c.2) of the statement of the Lemma. Let
us prove (c.1). Observe ¯rst that, for a ¯xed Cj;i, i > 0, the map ® 2 C 7! qj;i(®) 2 Cj;i is
holomorphic. This follows from the general theory of di®erential equations (see [Ar]). In order to
prove that it is a regular parametrization of Cj;i, it is su±cient to verify that it has no critical
point. We will prove that ® = 0 is not a critical point of the map qj;i(®) and leave the general
case for the reader. Represent F® in a neighborhood U of qj;i(0) by a vector ¯eld X® such that
X®jU\Cj;i

has an expression as in (*). In the coordinate system (x; y) considered, we have that
qj;i(0) = (0; 0) and that, for j®j small, qj;i(®) := (x(®); 0), where x(®) is the solution of the

equation Á(x; ®) := x + ®(b + xk:u(x)) = 0. Since @Á
@x (0; 0) = 1 and @Á

@®(0; 0) = b 6= 0, we get that
x0(0) = ¡b 6= 0, so that ® = 0 is not a critical point of qj;i(®).
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Let us prove assertion (d). Suppose that F® is tangent to a ¯bration f®: M ! S®, where ® 6= 0.
Let Gb = f¡1

® (b) be a generic ¯bre of f®. We have seen that Gb \ Fj ½ Cj;0, for any j = 1; :::r. It
follows from (a) and (b) that F is transverse to Gb, so that Gb is an elliptic curve, by Lemma 3.2.1.
Let us suppose that A¤

0 [ A2 [ A3 [ A4 6= ; and prove that S® ' C. Let Fj 2 A¤
0 [ A2 [ A3 [ A4.

Since F® is transverse to Cj;0 it follows that f®jCj;0 : Cj;0 ! S® is a non-constant holomorphic map.

This implies that S® ' C, because Cj;0 is a rational curve.

Finally, let us prove (e). It follows from (a) and (b) that, as a set, ¢ is contained in
[j([i>0Cj;i). This implies that, as a divisor we must have

¢ =
X

j

¡ X

i>0

nj;iCj;i

¢
;

where nj;i 2 N. Since Cj;i:Ck;` = 0 if, either j 6= k, or j = k and 0 6= i 6= ` 6= 0, we have

¢:Cj;i = nj;iC
2
j;i , for i 6= 0 :

By using 3.1.10 and 3.1.8, we have [¢] = T ¤
G + NF and T ¤

G :Cj;i = Z(G; Cj;i) ¡ X (Cj;i) = ¡1,
NF :Cj;i = C2

j;i + Z(F ; Cj;i) = C2
j;i + 1, so that

nj;iC
2
j;i = ¢:Cj;i = C2

j;i =) nj;i = 1 ;

because C2
j:i 6= 0. ¤

3.2.10 Corollary. In the situation considered, let

F(M; TF) = fH; H is a foliation on M such that TH = TF g :

Then F(M; TF ) = fF®; ® 2 Cg, where (F®)®2C is the pencil generated by F and G. In particular,
dim(F(M; TF )) = 1 and if (Hs)s2S is a holomorphic family of foliations on F(M; TF ), then there
exists a holomorphic map Á: S ! C such that Hs = FÁ(s) for all s 2 S.

Proof. Let H 2 F(M; TF) and ¯x ® 2 C such that H 6= F®. Since TH = TF® , we have T ¤
H = T ¤

F®

and NH = NF® , which implies that [¢(H; F®)] = [¢(G; F)] = [¢] (as an element of H1(M; O¤)).
Let us prove that, as a curve, we have also

¢(H; F®) = ¢ = [r
j=1

¡
[kj

i=1 Cj;i

¢
:

Write

¢(H; F®) =
sX

i=1

mi:Si +
vX

j=1

kj :Vj ;

where S1; :::; Ss are the components of ¢(H; F®) which are not contained in ¯bres of f , V1; :::; Vv

are the components contained in ¯bres of f and m1; :::; ms; k1; :::; kv are non negative integers.
Since [¢(H; F®)] = [¢], we must have ¢(H; F®):C = ¢:C for any curve C on M . Let F = f ¡1(c)
be a regular ¯bre of f . We have, F:Si > 0 for all i 2 f1; :::; sg and F:Vj = 0 for all j 2 f1; :::; vg.
This implies that F:¢(H; F®) =

Ps
i=1 miF:Si ¸ 0. On the other hand, it follows from (e) of

Lemma 3.2.9 that ¢:F = 0, and so

sX

i=1

miF:Si = 0 =) mi = 0 for all i = 1; :::; s :



26 A. LINS NETO*

Now, let G = g¡1(b) be a regular ¯bre of g. It follows from Lemma 3.2.9 that G:Fj = G:Cj;0 > 0,
and G:Cj;i = 0, for any j = 1; :::; r and i > 0, and that G:F > 0 if F is, either a regular ¯bre of f ,
or a ¯bre of type m:I0. Therefore (e) of Lemma 3.2.9, implies that

0 = G:¢ = G:¢(H; F®) =
vX

j=1

kjG:Vj ¸ 0 =) kj = 0 if Vj = Ct;0 for some t = 1; :::; r :

Hence j¢(H; F®)j ½ j¢j. Finally, if we take C = Ct;i for some t = 1; :::; r and i > 0, we obtain
¢(H; F®):C = ¢:C = C2 6= 0, which shows that ¢(H; F®) = ¢. This fact implies that, if p =2 ¢
is ¯xed, and H and F® have the same tangent line at p, then H = F®. On the other hand, given
p =2 ¢, there exists ® 2 C such that H and F® have the same direction, so that H = F®. This
implies that F(M; TF ) = fF®; ® 2 Cg. The remaining conclusions are a consequence of this fact,
as the reader can check. ¤
3.2.11 Corollary. If F® is tangent to a ¯bration f®: M ! S®, then :
(a). f® is an elliptic ¯bration and S® is either a rational, or an elliptic curve.
(b). Any critical ¯bre of f® is of one of the types mI0, I¤

0 , ~II, ~III or ~IV .

Proof. We have seen in (d) of Lemma 3.2.9 that f® is an elliptic ¯bration. Let F be a generic
level of f . Since h := f®jF : F ! S® is holomorphic and non-constant and F is an elliptic curve,
it follows that S® is, either a rational, or an elliptic curve (cf. [G-H]). According to Lemma
3.2.7, in order to prove assertion (b), it is su±cient to verify that F® has no contractible curve.
Suppose by contradiction that F® has a contractible curve, say C. Since C2 = ¡1, we must have
C ½ M n

¡
[j ([i>0 Cj;i)

¢
, because C2

j;i · ¡2, if i > 0. This implies that F is transverse to C and

it follows from 3.1.7 that TF :C = C2 = ¡1. On the other hand, since C is contractible for F®,
we must have that, either Z(F®; C) = 1, or Z(F®; C) = 2, so that TF :C = X (C) ¡ Z(F®; C) ¸ 0,
because TF = TF®

, which is a contradiction. ¤
Let Am

0 , A0 = [mAm
0 , A¤

0, A2, A3 and A4 be as (A), (B) and (C). We will use the following
notations : a0 = #A0, a¤

0 = #A¤
0, aj = #Aj , for j = 2; 3; 4, and a = a0 + a¤

0 + a2 + a3 + a4.
(E). If A0 6= ;, we will use the notation G1; :::; Ga0 for the ¯bres in A0. Note that each Gi is
an elliptic ¯bre with multiplicity, say mi ¸ 2, so that we can write Gi = mi:Ci, where Ci is an
(irreducible) elliptic curve.

Recall that f : M ! S is an elliptic ¯bration, where S is, either rational, or elliptic. We will
consider both cases.

3.2.12 Lemma. Suppose that S is an elliptic curve. Then M is a complex algebraic torus and
the foliations F and G can be de¯ned by global non-vanishing holomorphic vector ¯elds on M .
Moreover, the pencil generated by F and G is a weakly exceptional family of foliations.
Proof. Let us prove ¯rst that f : M ! S has no critical ¯bres, so that it is a ¯bre bundle. Since S
is an elliptic curve, we must have A¤

0 [A2 [A3 [A4 = ;, by (d) of Lemma 3.2.9. This implies that
F and G are everywhere transverse. Let G be a generic ¯bre of g and h := f jG: G ! S. Then h
is a holomorphic non-constant map, so that it has no critical point, by Riemann-Hurwitz formula.
On the other hand, if f had some critical ¯bre, say Gj 2 A0, then the points in Gj \ G would be
critical points of h. Therefore A0 = ; and f has no critical ¯bre. In particular, f : M ! S is a
¯bre bundle. Since G is transverse to F , this bundle is a principal bundle with transiction maps
locally constant. It follows from BIa) of page 146 of [BPV], that M is a complex 2-torus and the
foliations F and G are de¯ned by global vector ¯elds. This implies that the pencil is a weakly
exceptional family of foliations. We leave the details for the reader. ¤

From now on, in this section, we will suppose that f : M ! C.

3.2.13 Lemma. In the above hypothesis, we have the following :
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(a). N¤
F = (a¡2)[F ]¡Pr

j=1 ¤j ¡Pa0

i=1[Ci], where F denotes any ¯xed ¯bre of f , ¤j =
Pkj

i=0[Cj;i]

and the Cj;i are as in (D).

(b). KM = [¢] + 2N¤
F = 2(a ¡ 2)[F ] ¡ Pr

j=1 ¡j ¡ 2
Pa0

i=1[Ci], where ¡j = 2[Cj;0] +
Pkj

i=1[Cj;i]. In
particular,

K2
M = c2

1(M) =
rX

j=1

¡2
j = ¡3a2 ¡ 2a3 ¡ a4 :

(c). 6a¤
0 + 10a2 + 9a3 + 8a4 + 12

Pa0

i=1(1 ¡ 1
mi

) = 24.

(d). C2(M) = 6a¤
0 + 5a2 + 5a3 + 5a4.

Proof. Let us prove (a). After composing f with a Moebius transformation, we can suppose that
the ¯bre C1 := f¡1(1) is a regular level of f , so that we can consider f as a meromorphic function
on M with pole divisor (f)1 = [C1]. In this case, the foliation F is tangent to the meromorphic
1-form df , so that N¤

F = (df)0 ¡ (df )1 (see 3.1.3). Note that (df)1 = 2[C1]. Since C1 is a
regular ¯bre of f , we have that [C1] = [F ], where F is any ¯xed ¯bre of f . On the other hand,
df(p) = 0 if, and only if, p belongs to a multiple component C of a critical ¯bre of f . Moreover, if
the multiplicity of f at C is m ¸ 2, then C will be a component of order m ¡ 1 of the divisor of
zeroes of df , (df )0. If Fj 2 A¤

0 [ A2 [ A3 [ A4, with the notation of (D), we have

[Fj ] =

kjX

i=0

mj;i[Cj;i] = [F ] ;

so that,

[(df)0] =
rX

j=1

(

kjX

i=0

(mj;i ¡ 1)[Cj;i]) +
a0X

i=0

(mi ¡ 1)[Ci] =

=
rX

j=1

(

kjX

i=0

mj;i[Cj;i]) +
a0X

i=0

mi[Ci] ¡
rX

j=1

(

kjX

i=0

[Cj;i]) ¡
a0X

i=0

[Ci] = a[F ] ¡
rX

j=1

¤j ¡
a0X

i=0

[Ci] :

Hence :

N¤
F = (a ¡ 2)[F ] ¡

rX

j=1

¤j ¡
a0X

i=0

[Ci] ;

which proves (a). Since [¢] = [¢(F ; G)] = T ¤
G + NF = T ¤

F + NF and KM = T ¤
F + N¤

F , we get
KM = [¢] + 2N¤

F (see 3.1.2). Therefore, (e) of Lemma 3.2.9 implies that

KM = 2(a ¡ 2)[F ] ¡
rX

j=1

(2[Cj;0] +

kjX

i=1

[Cj;i]) ¡ 2
a0X

i=0

[Ci] = 2(a ¡ 2)[F ] ¡
rX

j=1

¡j ¡ 2
a0X

i=0

[Ci] :

In particular, K2
M =

Pr
j=1 ¡2

j , as the reader can check. Hence, (b) follows from : ¡2
j = 0, if

Fj 2 A¤
0, ¡2

j = ¡3 if Fj 2 A2, ¡2
j = ¡2 if Fj 2 A3 and ¡2

j = ¡1 if Fj 2 A4. For instance, if Fj 2 A2

we have ¡j = 2[Cj;0]+[Cj;1]+[Cj;2]+[Cj;3], where C2
j;0 = ¡1, C2

j;1 = ¡6, C2
j;2 = ¡3 and C2

j;3 = ¡2

(see ¯gure 1.b), so that ¡2
j = 4C2

j;0+C2
j;1+C2

j;2+C2
j;3+4

P3
n=1 Cj;n:Cj;0 = ¡4¡6¡3¡2+4:3 = ¡3.

The other identities can be checked in the same way.
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In order to prove (c) we will use the other ¯bration g: M ! C. Let G be a regular ¯bre of g
and consider h := f jG: G ! C. It follows from Riemann-Hurwitz formula and the fact that g is an
elliptic ¯bration that

0 = X (G) = d:X (C) ¡
X

p2G

(mp ¡ 1) = 2d ¡
X

p2G

(mp ¡ 1) =) 2d =
X

p2G

(mp ¡ 1)

where mp is the rami¯cation number of h at the point p 2 G and d is the topological degree of h.
We observe the following facts :

(i). If F is a regular ¯bre of f , then d = F:G.

(ii). The critical points of h are contained in the intersection of G with the critical ¯bres of f .

(iii). If Fj 2 A¤
0 [ A2 [A3 [ A4 then G \ Fj = G \Cj;0 and G intersects Cj;0 transversely (Lemma

3.2.9). This implies that #(G \ Fj) = d
mj;0

, where mj;0 is the multiplicity of Cj;0. Moreover, if

p 2 G \ Fj then the rami¯cation number of h at p is mj;0.

(iv). If Gi 2 A0 then G intersects Gi transversely at d
mi

points (Lemma 3.2.9). Moreover, if
p 2 G \ Gi then the rami¯cation number of h at p is mi.

The above facts imply that (see ¯gure 1 for the multiplicities mj;0)

2d = (2 ¡ 1)
d

2
a¤
0 + (6 ¡ 1)

d

6
a2 + (4 ¡ 1)

d

4
a3 + (3 ¡ 1)

d

3
a4 +

a0X

i=1

(mi ¡ 1)
d

mi
;

and the above equality implies (c), as the reader can check.

It remains to prove (d). We use here the following well known result (cf. [BPV]) :

"Let f : M ! S be a ¯bration, where S is a compact Riemann surface and M is a compact
complex surface. Then

c2(M) = X (S):X (Fg) +
X

c2S

(X (Fc) ¡ X (Fg)) ;

where in the above sum Fg denotes a generic ¯bre of f and X (Fc) denotes the topological Euler
characteristic of the curve (f¡1(c))red."

In the above statement, (f¡1(c))red denotes the curve f¡1(c) reduced, that is if f¡1(c) =P
j mjCj , then (f¡1(c))red =

P
j Cj . In our case, f : M ! C, X (S) = 2, X (Fg) = 0 and X (Fc) = 0

if Fc 2 A0, so that

c2(M ) =
X

Fc2A¤
0[A2[A3[A4

X (Fc) :

On the other hand, we have X (Fc) = 6 if Fc 2 A¤
0 and X (Fc) = 5 if Fc 2 A2 [ A3 [ A4. Therefore,

c2(M) = 6a¤
0 + 5a2 + 5a3 + 5a4 :

¤
3.2.14 Remark. In the table below we give all the non-negative integer possible solutions of the
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equation in (c) of Lemma 3.2.13 :

Sol. 1 2 3 4 5 6 7 8 9 10 11 12 13
a0 0 0 0 0 1 1 1 1 1 1 2 3 4
a¤
0 0 1 1 4 3 1 1 1 0 0 2 1 0

a2 0 1 0 0 0 1 0 0 1 0 0 0 0
a3 0 0 2 0 0 0 1 0 0 0 0 0 0
a4 3 1 0 0 0 0 0 1 1 2 0 0 0
mi ¡ ¡ ¡ ¡ 2 3 4 6 2 3 2; 2 2; 2; 2 2; 2; 2; 2
a 3 3 3 4 4 3 3 3 3 3 4 4 4

C2(M ) 15 16 16 24
K2

M ¡3 ¡4 ¡4 0

Table of solutions

In the botton of the table we give the possible values of C2(M) and K2
M for the four ¯rst

solutions. Note that the solutions 1, 2 and 3 correspond to the families of types 1, 2 and 3,
respectively, whereas the solution 4 coresponds to the second example in x2.1.

3.2.15 Lemma. The only solutions of the equation in (c) of Lemma 3.2.13, which come from
foliations F and G as before, are the solutions 1, 2, 3 and 4.

Proof. First of all, let us consider the monodromy of the ¯bration f . By using it, we will prove
that there are no ¯brations corresponding to solutions 5; 6; 7; 8; 9; 10 and 12. Let c1; :::; ca 2 C
be the critical values of f , c be a regular value and F = f ¡1(c). Recall that the monodromy
is a homomorphism Á: ¦1(C n fc1; :::; cag; c) ! Aut(Z2) ' Aut(H1(F; Z)) (cf. [BPV]). Note that
¦1(Cnfc1; :::; cag; c) is generated by a curves, °1; :::; °a, as in ¯gure 8, with the relation °1¤:::¤°a =
1. Let G = Á(¦1(C n fc1; :::; cag; c)). If we use the notation Á(°j) := Tj , then G =< T1; :::; Ta >,
where T1 ± ::: ± Ta = id. The monodromy of the Kodaira ¯bres, along curves as in ¯gure 8, is well
known (cf. [BPV]). We observe that the monodromy of the ¯bres ~II, ~III and ~IV , coincides with
that of the ¯bres II, III and IV , respectively, of Kodaira's classi¯cation.

The monodromy Tj , j = 1; :::; a, can be of the one of the following types :
(i). Tj = id, if f ¡1(cj) is of the type mI0, m ¸ 2.
(ii). Tj = ¡id, if f ¡1(cj) is of the type I¤

0 .

(iii). Tj is conjugated to the matrix

µ
1 1

¡1 0

¶
, if f¡1(cj) is of the type ~II. In particular, the

order of Tj is 6.

(iv). Tj is conjugated to the matrix

µ
0 1

¡1 0

¶
, if f¡1(cj) is of the type ~III. In particular, the

order of Tj is 4.

(v). Tj is conjugated to the matrix

µ
0 1

¡1 ¡1

¶
, if f¡1(cj) is of the type ~IV . In particular, the

order of Tj is 3.
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Let us prove that the solutions 6,7,8,9 and 10, cannot occur. In these cases we have a = 3 and
one of the critical ¯bres, say f¡1(c3), is of the type mI0, so that G =< T1; T2 >, where T1±T2 = id.
This implies that G is abelian, so that we can suppose that T1 and T2 are given by same matrixes
as in (ii),...,(v). As the reader can check, in all these cases, we have T1 ± T2 6= id, which is a
contradiction. Therefore, these cases cannot happen. On the other hand, for the solutions 5 and
12, the ¯bres can be only of the types 2I0 and I¤

0 , so that G = fid; ¡idg. In these cases, as the
reader can check, we have T1 ± T2 ± T3 ± T4 = ¡id 6= id and so these cases cannot occur also.

It remains to prove that the solutions 11 and 13 do not occur. Let us prove ¯rst that KM = 0
in the case of solutions 4, 11 and 13. Note that, for a ¯bre Fj of type I¤

0 , we have [Fj ] = ¡j . For
the solutions 11 and 13, we have a = 4 and a0 2 f2; 4g, so that A0 6= ;. Moreover, if Gi 2 A0,
then mi = 2 and Gi = 2:Ci, so that (b) of Lemma 3.2.13 implies that :

KM = 4[F ] ¡
a¤
0X

j=1

¡j ¡
a0X

i=0

2:[Ci] = (4 ¡ a¤
0 ¡ a0)[F ] = 0 :

The above fact, implies that there exists a holomorphic non-vanishing 2-form on M , say £ (cf.
[BPV]). We will prove that this leads to a contradiction. The idea is to prove that if Gi = 2:C1

and W is a small neighborhood of Ci, then any holomorphic 2-form on W must vanish along Ci,
which contradicts the fact that £ does not vanishes. Let Gi = f ¡1(ci), ¯x a small disk D around
ci, such that ci is the unique critical value of f on D, and set W = f¡1(D). We know that f is
isotrivial, so that we can suppose that its generic ¯bre is biholomorphic to C= < 1; b > for some
b 62 R. We will use the following fact (see [BPV] pages 151 and 155) :
(*). We can choose the representation C= < 1; b > above and D small enough, in such a way that
W is biholomorphic to (C£D)= ´ , where D is the unit disk on C and ´ is the equivalence relation
on C£D de¯ned by the action generated by T1; T2: C£D ! C£D, where T1(z; w) = (z+1=2; ¡w)
and T2(z; w) = (z + b; w). In this representation of W , we have Ci = fw = 0g.

Let ¼: C £ D ! (C £ D)= ´ be the projection of the equivalence relation and set £1 = ¼¤(£).
Note that ¼ is a covering map with two sheets, so that £1 do not vanishes on C £ D. Let
£1 = Á(z; w):dz ^ dw, where Á is holomorphic. Note that T ¤

j (£1) = £1, for j = 1; 2. This implies
that

Á(z + 1=2; ¡w) = ¡Á(z; w) and Á(z + b; w) = Á(z; w) =) Á does not depend on z ;

so that Á(z; w) = Ã(w), where Ã(¡w) = ¡Ã(w). But, this implies that Ã(0) = 0 and that £jCi ´ 0,
which is a contradiction. ¤
3.2.16 Corollary. In the situation of Lemma 3.2.15, let E = f®j Fa has a ¯rst integralg and for
® 2 E let f®: M ! S® be a ¯bration tangent to F®. Then S® = C and the critical ¯bres of f® are
of the same type as the critical ¯bres of f .

Proof. Observe ¯rst that A¤
0 [ A2 [ A3 [ A4 6= ;, so that S® = C. Moreover, it follows from the

Corollary 3.2.11 that the critical ¯bres of f® can be only of the types mI0, I¤
0 , ~II, ~III or ~IV .

Let a0(®), a¤
0(®), a2(®), a3(®) and a4(®) be the number of such ¯bres, respectively. It is enough

to prove that these numbers are the same as a0,...,a4. Note that Lemma 3.2.15 implies that they
must be as in the solutions 1, 2, 3 or 4 in the table of solutions. On the other hand, the Chern
class C2(M) in the same table, shows that the unique possibility that they are di®erent is in the
case of solutions 2 and 3. At this point we can use the fact that the curves Cj;i, j = 1; 2; 3, i > 0,
are invariant for both foliations, so that they must be contained in the critical levels of f®. Since
a ¯bre of type ~III contains one curve C with C2 = ¡4 and the critical ¯bres I¤

0 , ~II and ~IV do
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not contain any component like that, we conclude that the critical ¯bres of the ¯brations are of
the same type. ¤
3.2.17 Corollary. If KM = 0, then M is an algebraic K3 surface. Moreover, if E is as before,
then for any ® 2 E, the ¯rst integral is a ¯bration with four I¤

0 ¯bres.
Proof. We have already proved that M is algebraic. Let us prove that M is minimal, that is, does
not contain a smooth rational curve with self-intersection ¡1. Suppose by contradiction that M
contains a smoth rational ¡1-curve, say C. Since the curves that are invariant for both foliations,
F and G, are contained in [j([i>0 Cj;i) and for all curves in this set we have Cj;i · ¡2, we get
that C is not invariant for one of the foliations, say F . In this case, we get from KM = N¤

F + T ¤
F

and from 3.1.7 that :

T ¤
F :C = 1 + tang(F ; C) and N¤

F :C = ¡2 ¡ tang(F ; C) =) 1 + tang(F ; C) = 2 + tang(F ; C)

which is a contradiction. Therefore, M is minimal. On the other hand, in the table of solutions
we see that the unique possibility for KM = 0 is the 4th solution, so that C2(M) = 24 and for any
® 2 E the ¯bration f® has four critical ¯bres, all of the type I¤

0 . The fact that KM = 0 implies
that kod(M) = 0, so that M is biholomorphic to a K3 surface, by Enriques-Kodaira classi¯cation
of surfaces (see table 10, pg. 188 of [BPV]). ¤

In order to ¯nish the proof of Theorem 3, it remains to prove that the pencil (F®)®2C is weakly
exceptional and assertions (c) and (d). Here, we will use the global holonomy groups of the
foliations in the pencil with respect to the ¯bration g. Let c1; :::; ca be the critical levels of g, where
a = 3 in the case of solutions 1, 2, 3, and a = 4 in the case of solution 4. Set Fj = g¡1(cj). It follows
from (e) of Lemma 3.2.9 that if ® 6= 1 then F® is transverse to G = F1 outside [j([i>0 Cj;i)
and so, a fortiori, in the set W = M n [j Fj . Note that gjW : W ! V is a ¯bre bundle, where
V = C n fc1; :::; cag. Therefore, if F := f ¡1(c), c 2 V , then we can de¯ne a global holonomy
representation

H®: ¦1(V; c) ! Aut(F ) ;

where Aut(F ) denotes the set of automorphisms of the ¯bre F (cf. [Eh] and [C-LN]). We denote
by G® the holonomy group of F®, that is the image H®(¦1(V; c)) ½ Aut(F ). Note that ¦1(V; c)
is generated by a closed curves °1; :::; °a, sketched in ¯gure 8, where °1 ¤ ::: ¤ °a = 1. We denote
by fk;® the holonomy map H®(°k), k = 1; :::; a. Hence, we have G® =< f1;®; :::; fa¡1;® >. Fix a
holomorphic universal covering ¼: C ! F of F , with automorphism group Aut(¼) =< h1; hb >,
where H¸(z) = z + ¸, ¸ ½ f1; bg, b 62 R, so that F ' C=¡, where ¡ =< 1; b >. Given ® 2 C and
k 2 f1; :::; ag, we will consider a covering of fk;® in C by ¼, that is a map Ák;® 2 Aut(C) such that
¼ ± Ák;® = fk;® ± ¼. Let us see how Ák;® looks like, according to the type of the ¯bre Fk :
(1) Fk is of the type I¤

0 . In this case Ák;®(z) = ¡z + bk(®), where bk(®) 2 C. In particular, fk;®

has order two.
(2) Fk is of the type ~II. In this case Ák;®(z) = !¡1:z + bk(®), where ! = e2¼i=6 and bk(®) 2 C.
In particular fk;® has order six.

(3) Fk is of the type ~III. In this case Ák;®(z) = ¡i:z + bk(®), where i =
p¡1 and bk(®) 2 C.

In particular fk;® has order four.

(4) Fk is of the type ~IV . In this case Ák;®(z) = !¡2:z + bk(®), where bk(®) 2 C. In particular
fk;® has order three.

The proof of (4) is done in Proposition 4 of [LN]. The idea, in the general case, is that the
¯bre Fk contains at least one component, say Ck;1, with multiplicity one (see ¯gure 1). This
component, contains a singularity qk;1(®) := q(®) with a separatrix, say S(®), transverse to Ck;1

and with holonomy conjugated to z 7! e¡2¼i=m:z, where m = ¡C2
k;1 (see (c.2) of Lemma 3.2.9).



32 A. LINS NETO*

It follows that fk;® must have a ¯xed point, say zk(®), and it is conjugated in a neighborhood of it
to the linear map z 7! e¡2¼i=m:z. This ¯xed point corresponds to some intersection of the leaf of
F® which contains S(®) with F (see the proof of Proposition 4 in [LN]). As the reader can check,
this implies that fk;® has period m, so that Ák;® must be like in (1), (2), (3) or (4). Remark also

that (2), (3) and (4) imply that in the cases (2) and (4) the lattice ¡ must be < 1; ! := e
2¼i
3 >,

whereas in the case (3) it is < 1; i >.

For each k = 1; :::; a, consider the function fk: C £ F ! F de¯ned by fk(®; q) = fk;®(q). It
follows from the theorem of holomorphic dependence of the solutions with respect to parameters
and initial conditions, that fk is holomorphic, for all k = 1; :::; a. In particular, this implies
that in all the cases, the map ® 2 C 7! bk(®) md(¡) 2 C=¡ is holomorphic. Therefore, we
can choose bk(®) in such a way that ® 7! bk(®) 2 C is holomorphic. In particular, if we write

Ák;®(z) = ¸k:z + bk(®), the point zk(®) = bk(®)
1¡¸k

is a ¯xed point of Ák;®. Hence, by conjugating

the group G® with the automorphism corresponding to the translation ¾®(z) = z + z1(®), we can
suppose that Ák;®(z) = ¸k:z +¹k(®), where ¹1(®) = 0 and ¹k(®) = bk(®)¡ 1¡¸k

1¡¸1
b1(®), k = 2; :::; a,

so that ® 7! ¹k(®) is holomorphic. Since G® is generated by f1;®; :::; fa¡1;®, we get that, if g has
three critical ¯bres, then G® is conjugated to a group, whose universal covering is of the form
~G® = f¸:z + d:¹2(®)j ¸ 2 ¤ and d 2 ¡g, where :
(I). In the case of solution 1 we have ¤ = f1; !2; !4g and ¡ = Z © !:Z (cf. Proposition 5 of [LN]).
(II). In the case of solution 2 we have ¤ = f!j j j = 0; :::; 5g and ¡ = Z © !:Z
(III). In the case of solution 3 we have ¤ = f1; i; ¡1; ¡ig and ¡ = Z © i:Z.

On the other hand, in the case of solution 4, we have :
(IV). ~G® = f¸:z + m:¹2(®) + n:¹3(®)j ¸ 2 f1; ¡1g and m; n 2 Zg, where ¡ =< 1; b >, b 62 R.

The proof of (I) can be found in Proposition 5 of [LN]. The proof of (II), (III) and (IV) is
analogous and is left for reader. Another result that we will use, whose proof is analogous to the
proof of Proposition 5 and of its Corollary in [LN], is the following :

3.2.18 Lemma. For ® 6= 1, the following assertions are equivalent :
(i). F® has a ¯rst integral.
(ii). G® is ¯nite.
(iii). G® has a ¯nite orbit.
(iv). F® has an algebraic leaf which is not contained in the critical levels of g.

Moreover, in the cases of solutions 1, 2 and 3, the above assertions are equivalent to :
(v). If ® 6= 0, then there exists n 2 N such that n:¹2(®) 2 ¡.

Another important fact is the following :

3.2.19 Lemma. For any k 2 f2; :::; ag we have ¹k(®) = ak:® + dk, where ak; dk 2 C. Moreover,
if g has three critical ¯bres then a2 6= 0, whereas if g has four critical ¯bres then, either a2 6= 0, or
a3 6= 0. In particular, we have the following :
(a). The pencil P is always weakly exceptional.

(b). If g has three critical ¯bres then E(P) = ¸:Q:¡ [ f1g, where ¸ = a¡1
2 .

(c). If g has four critical ¯bres and E(P) contains at least three distinct points, then the family
is exceptional.

Proof. Recall that the ¯bration gjW : W ! V is locally holomorphically trivial and that the leaves
of F0 = F are transverse to the ¯bres of g in W . In particular, for every c 2 V , there exists a
neighborhood Vc of c in V with the following properties :
(i). Vc is biholomorphic to a disk and Wc = g¡1(Vc) is biholomorphic to Vc £ C=¡, by a biholo-
morphism Ãc: Wc ! Vc £ C=¡.
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(ii). g ± Ã¡1
c : Vc £ C=¡ ! Vc is the ¯rst projection. In particular, the sets of the form fxg £ C=¡,

x 2 Vc, correspond to the leaves of G in Wc.
(iii). The leaves of Ã¤

c (F) are of the form Vc £ fyg, y 2 C=¡.

Consider an universal covering ¼: id£¼2: Vc £C ! Vc £C=¡, where ¼2:C ! C=¡ is an universal
covering with automorphism group Aut(¼2) =< T1; T2 >, T1(y) = y+1, T2(y) = y+b, ¡ =< 1; b >.
Here, y is a ¯xed a±ne coordinate system in C. For simplicity, we will denote by @

@x and @
@y the

vector ¯elds on Wc de¯ned by Ã¤
c (¼¤(

@
@x

£ 0)) and Ã¤
c (¼¤(0 £ @

@y
)), respectively, where x is some

coordinate system in Vc. We assert that, if Vc is su±ciently small then there exists a coordinate
system z on Vc such that F® is represented on Wc by the vector ¯eld

Xc;®(z; y) =
@

@z
+ ®:

@

@y
;

for every ® 2 C.

In fact, ¯x a coordinate system x in Vc and let us represent FjWc
and GjWc

by the vector ¯elds
@

@x and @
@y , respectively, as in (ii) and (iii). Recall that two foliations of the pencil coincide if,

and only if, they have the same tangent space at some point p 2 Wc ((e) of Lemma 3.2.9). In
particular, if ® 2 C, then the tangent space of F® in any point p 2 Wc is not "vertical", so that this
tangent space is generated by a holomorphic vector ¯eld of the form Z®(p) = @

@x(p)+A(p; ®) @
@y (p).

It follows from (e) of Lemma 3.2.9 that, for any ¯xed p 2 Wc the function ® 2 C ! A(p; ®) is
injective. This implies that A(p; ®), as a function of ®, is a±ne. Since A(p; 0) = 0, we must have
A(p; ®) = a(p):®, where a: Wc ! C¤ is holomorphic. Now, the ¯bres g¡1(x), x 2 Vc, are compact
and contained in Wc, which implies that a is constant in these ¯bres. It follows that a(x; y) = b(x)
for some holomorphic function b: Vc ! C¤. Hence F® can be represented on Wc by the vector ¯eld
X®(x; y) = 1

b(x) : @
@x + ®: @

@y . This implies that there exists a coodinate system z around c 2 Vc such

that 1
b(x) : @

@x = @
@z , which proves the assertion.

It follows that there exist coverings (Vj)j2J of V and (Wj := g¡1(Vj))j2J , of V and W , by open
sets, and a collection (Ãj)j2J of biholomorphisms Áj : Wj ! Vj £ C=¡, such that for each j 2 J,
Vj , Wj and Ãj satisfy (i), (ii), (iii) and :
(iv). For each j 2 J, there exist coordinate systems xj on Vj and yj on the universal covering
C ! C=¡, such that F®jWj

is represented by the vector ¯eld Xj
® = @

@xj
+ ®: @

@yj
, for every ® 2 C.

In particular, if we ¯x two points z0; z1 2 Vj , then the holonomy map hz0;z1 : g¡1(z0) ! g¡1(z1)
can be written as

(¤) hz0;z1
(yj) = yj + ®(z1 ¡ z0)

The last assertion can be proved by integrating the di®erential equation dy
dx = ® between z0 and

z1. On the other hand, (ii) and (iii) imply that :
(v). If i 6= j 2 J are such that Vi;j := Vi \ Vj 6= ;, then Vi;j is di®eomorphic to a disk and the
change of chart Ãij = Ãj ±Ã¡1

i : Vi;j £C=¡ ! Vi;j £C=¡ is of the form Ãij(xi; yi) = (hij(xi); gi;j(yi)),
where gi;j 2 Aut(C=¡). In particular, we have

(¤¤) gi;j(yi) = ¸ij :yi + ¹ij ,where ¸ij 2 C¤ and ¹ij 2 C :

Note that the holonomy of F®, h°;®, with respect to a path °: [0; 1] ! V , is a composition
of ¯nite sequence of maps as in (¤) and (¤¤). This implies that for every y 2 g¡1(°(0)) the
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map ® 2 C 7! h°;®(y) 2 g¡1(°(1)) is a±ne (in the universal covering). In particular, the maps
Ák;® de¯ned in (1),...,(4), are of the form Ák;®(z) = ¸k:z + bk(®), where bk(®) = Ak:® + Bk,

where Ak 2 C¤ and Bk 2 C. On the other hand, we have ¹k(®) = bk(®) ¡ 1¡¸k

1¡¸1
b1(®), so that

¹k(®) = ak:® + dk, where ak = Ak ¡ 1¡¸k

1¡¸1
A1. Note that, although A1; Ak 6= 0, we could have

ak = 0, for some k > 1.

Suppose for a moment that we have proved that in the case of three critical ¯bres we have
a2 6= 0. In this case, it follows from Lemma 3.2.18 that, if a2:® + d2 6= 0 then

® 2 E(P) n f1g () 9 n 2 N¤ such that n(a2:® + d2) 2 ¡ () a2:® + d2 2 Q:¡ :

In particular, if d2 6= 0, then d2 2 Q:¡, because 0 2 E(P). This implies that E(P) = a¡1
2 :Q:¡,

as the reader can check, which proves (b) of Lemma 3.2.19. On the other hand, suppose that we
have proved that in the case of four critical ¯bres then, either a2 6= 0, or a3 6= 0. In this case, we
have E(P) n f1g = f® 2 Cj G® has a ¯nite orbitg. It follows from (IV) that the orbit of 0 by ~G®

is fm¹2(®) + n¹3(®)j m; n 2 Zg. Hence

E(P) n f1g = f® 2 Cj ¹2(®); ¹3(®) 2 Q:¡g ;

as the reader can check. Since, either a2 6= 0, or a3 6= 0, we conclude that E(P) is countable,
so that the pencil is weakly exceptional. Note that, ¹j(0) = dj , j = 2; 3, and 0 2 E(P), so that
d2; d3 2 Q:¡. Therefore

E(P) n f1g = f® 2 Cj a2:®; a3:® 2 Q:¡g :

In particular, if there exists ®0 2 E(P) n f0; 1g, then a2:®0; a3:®0 2 Q:¡, so that for every x 2 Q
we have that a2:(x®0); a3:(x®0) 2 Q:¡ and x:®0 2 E(P). Hence the family is exceptional.

Let us ¯nish the proof of the Lemma. Note that if, either a2 = 0 in the case of three critical
levels, or a2 = a3 = 0 in the case of four critical levels, then the group G® does not depends on
® 2 C, so that it is ¯nite and F® has a ¯rst integral for all ® 2 C, say f®: M ! C. Let us prove
that this is impossible in our case. Suppose by contradiction that G® = G0 for all ® 2 C and let
m = #(G®) = #(G0). Note that the integer m is also the number of points of a generic orbit
of G®, that is the number of points in which a generic ¯bre of f® cuts a generic ¯bre of g = f1.
It follows that m = [f ¡1

® (c)]:[g¡1(d)], the intersection number of these ¯bres. Fix a regular ¯bre
F0 = f¡1

0 (c0) of f0. Since G is transverse to F0, there exists a neighborhood V0 of c0, biholomorphic
to a disk, such that W0 := f ¡1

0 (V0) is biholomorphic to V0£C=¡1, where ¡1 is the lattice associated
to the generic ¯bres of f0. We can choose coordinates (x; y) on W0 such that the sets fx = ctg are
leaves of F and the sets fy = ctg \ W0 are leaves of G and biholomorphic to disks. This de¯nes a
tubular neighborhood ¼: W0 ! F0, where ¼¡1(y) is a leaf of GjW0 for all y 2 F0. The idea is to
prove that there exists ² > 0 such that, if 0 < j®j < ², then W0 contains some generic ¯bre, say
F®, of f®. This is not possible, because in this case f0jF®

must be constant, so that F® coincides
with some ¯bre of f0, which implies that F® = F0 for ® 6= 0.

Fix a point p0 = (x0; y0) 2 F0 and let F® be the leaf of F® through p0. Given p 2 F0, denote by
Lp the leaf of G through p. Note that ¼¡1(p) ½ Lp, by the de¯nition of ¼. If g(p) is a regular value
of g, then Lp = g¡1(g(p)) and Lp \F0 contains m = #(G0) points, say p = p1; :::; pm, where pi 6= pj

if i 6= j. Fix m paths in F0, say °1; :::; °m: [0; 1] ! F0, joining p0 to p1; :::; pm, respectively. Since the
pencil is a holomorphic family, there exists ²p > 0 such that if j®j < ²p then, for all j = 1; :::; m, the
path °j can be lifted in the leaf F® to a path °j;®: [0; 1] ! F® such that °j;®(0) = p0, °j;®[0; 1] ½ W0

and ¼ ±°j;® = °j . This fact, whose proof we leave for the reader, follows from the general theory of
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foliations. This de¯nes m holomorphic functions, say p1; :::; pm: Dp ! Lp, where pj(®) = °j;®(1)
and Dp = fj®j < ²pg. Note that for every ® 2 Dp we have p1(®); :::; pm(®) 2 Lp \ F® and
pi(®) 6= pj(®) if i 6= j. Since Lp:F® = m, then Lp \ F® = fp1(®); :::; pm(®)g ½ W0, for every
® 2 Dp. In particular, F® \ ¼¡1(p) = fp1(®)g, because ¼¡1(p) ½ Lp. The same type of argument
can be done in the case where g(p) is a critical value of g. In this case, the closure of Lp, is an
irreducible component of the ¯bre g¡1(g(p)), say C. If the multiplicity of g along C is `, then
F0 \ C contains m=` di®erent points, and it can be proved that :
(vi). For every p 2 F0, there exist ²p > 0 and a holomorphic map Pp: Dp ! ¼¡1(p), such that
¼¡1(p) \ F® = fPp(®)g for every ® 2 Dp := f®j j®j < ²pg.

Another fact that follows from the general theory of foliations is the following :
(vii). Given p 2 F0, there exist 0 < ±p · ²p and neighborhoods Up and §p of p in F0 and ¼¡1(p),
respectively, such that if j®j < ±p and q 2 §p then the leaf of F®j¼¡1(Up) through q, say Xq(®), is
such that ¼jXq(®): Xq(®) ! Up is a biholomorphism. Moreover, if we choose ±p small enough, then
we can suppose that Pp(®) 2 §p; 8® 2 D±p .

Note that (vi) and (vii) imply that if j®j < ±p then F® \ ¼¡1(Up) = XPp(®)(®) and XPp(®)(®)

cuts every ¯bre ¼¡1(s), s 2 Up, in exactly one point. Let Up1 = U1; :::; Upr = Ur be be a ¯nite
covering of F0 by open sets as above and set ± = minf±p1 ; :::; ±pr g. As the reader can check, if
j®j < ± then F® is entirely contained in W0, which proves the Lemma. ¤

In order to ¯nish the proof of Theorem 3, it remains to prove that in the case of three critical
¯bres then the pencil is equivalent to one of the families of types 1, 2 or 3, of x2.2, x2.3 and x2.4,
respectively. Note that this fact implies also that M is a rational surface.

We will consider the following situation : let M1 and M2 be two compact complex surfaces and
(F1

®)®2C and (F2
®)®2C be pencils of foliations on M1 and M2, generated by foliations F1, G1 and

F2, G2 on M1 and M2, respectively. Suppose that :
(I). The foliations Fj and Gj are tangent to ¯brations fj ; gj : Mj ! C, respectively, j = 1; 2, where
fj 6= gj .
(II). fj is an elliptic ¯bration with three critical ¯bres, as in one of the solutions 1, 2 or 3, in the
table of solutions, j = 1; 2. In particular, gj has also three critical ¯bres, of the same type of the
critical ¯bres of fj , j = 1; 2 (Corollary 3.2.16).
(III). The critical ¯bres of f1; g1 and f2; g2 are of the same type.

In this situation, let us call F j
i the critical ¯bres of gj , where i 2 f1; 2; 3g, j = 1; 2 and the indexes

are choosen in such a way that F 1
i is of the same type as F2

i , i = 1; 2; 3. After composition of gj with

a Moebius transformation, we can suppose that F j
1 = g¡1

j (0), F j
2 = g¡1

j (1) and F j
3 = g¡1

j (1),

j = 1; 2. Fix generators °1 and °2 of ¦1(V; c) as in ¯gure 8, where V := C n f0; 1; 1g. Set
Wj := g¡1

j (V ), so that gj jWj
: Wj ! V is a holomorphic ¯bre bundle, j = 1; 2. Denote by Gj

® the

global holonomy group of Fj
® calculated in the ¯bre Fj := g¡1

j (c), j = 1; 2. We have seen that,
given ® 2 C, we can choose an universal covering ¼j;®: C ! Fj such that the generators of the

global holonomy group of Fj
®, corresponding to °1 and °2, say hj

1;® and hj
2;®, can be written (in

the respective universal covering) as :

hj
1;®(y) = ¸1:y and hj

2;®(y) = ¸2:y + aj
2:® + dj

2 :

where aj
2 6= 0, j = 1; 2. Recall that both ¯bres F1 and F2 are biholomorphic elliptic curves of the

form C=¡, where ¡ =< 1; ! = e2¼i=6 >, in the case of solutions 1 and 2, and ¡ =< 1; i > in the
case of solution 3. In all cases, the exponents ¸k are roots of unity and ¸k 6= 1, k = 1; 2.

3.2.20 Lemma. In the above situation, let ®; ¯ 2 C be such that a1
2:® + d1

2 = a2
2:¯ + d2

2. Then
there exists a biholomorphism ©: M1 ! M2 such that :



36 A. LINS NETO*

(a). ©¤(F2
¯) = F1

®.

(b). g2 ± © = g1. In particular, ©¤(F2
1) = F1

1.

Proof. Since ® and ¯ are ¯xed we will use the notations F1
® = F1, F2

¯ = F2, h1
k;® = h1;k and

h2
k;¯ = h2;k, k = 1; 2. Recall that the universal coverings ¼1;®:C ! F1 and ¼2;¯ :C ! F2 where

constructed by composing two ¯xed universal coverings ¼j : C ! Fj , with two translations in C,
say ¾j , j = 1; 2, where ¾1(0) is the ¯xed point of h1;1 and ¾2(0) is the ¯xed point of h1;2. The
coverings ¼j where chosen in such a way that Aut(¼j) = fz 7! z + ¸j ¸ 2 ¡g, j = 1; 2, so that the
map Á: F1 ! F2 de¯ned by Á(q) = ¼2 ± ¾2 ± ¾¡1

1 ± ¼¡1
1 (q) is a well de¯ned biholomorphism. This

map is a conjugation between G1
® and G2

¯ . More precisely, Á satis¯es h2;k ± Á = Á ± h1;k, k = 1; 2.
Following a standard construction (see [C-LN]) it is possible to extend Á to a biholomorphism
ª: W1 ! W2 such that :
(i). ª sends leaves of F1jW1 onto leaves of F2jW2 .
(ii). g2 ± ª = g1 on W1, so that ª(g¡1

1 (q)) = g¡1
2 (q) for every q 2 V .

The proof of the Lemma is then reduced to show that ª and ª¡1 can be extended holomorphi-
cally to the critical levels of g1 and g2, respectively. We will only prove that ª can be extended to
the critical levels of g1. Consider for instance the levels F j

1 = g¡1
j (0), j = 1; 2, and let us prove that

ª can be extended to a holomorphic map ©1: (W1 [ F1
1 ) ! M2. Note that, if ª can be extended

to ©1 as above, then ©1(F
1
1 ) ½ F 2

1 , because in this case we must have g2 ± ©1 = g1, by (ii). To
¯x the ideas, we will suppose that F1

1 and F2
1 are of the type ~II. In the other cases, the proof is

similar and will be left for the reader. In this case, we have the decomposition

(¤) F j
1 = 6Cj

0 + Cj
1 + 2Cj

2 + 3Cj
3 ;

where [Cj
0]

2 = ¡1, [Cj
1]

2 = ¡6, [Cj
2 ]2 = ¡3 and [Cj

3]
2 = ¡2, j = 1; 2 (see ¯gure 1.b). Note that the

curve Cj
0 is the one for which the foliation Fj is transverse, j = 1; 2. Set Cj¤

k = Cj
k n Cj

0, j = 1; 2,
k = 1; 2; 3. We assert that ª can be extended to a holomorphic map ªk: (W1 [ C1¤

k ) ! M2 such
that ªk(C1¤

k ) = C2¤
k .

Fix k 2 f1; 2; 3g. Recall that Cj
k contains a unique singularity of Fj , say qj , j = 1; 2, of the type

1 : ¡mk, mk = ¡(Cj
k)2. Note that qj 2 Cj¤

k , by (c.1) of Lemma 3.2.9.

Assertion. For j = 1; 2, there exists a coordinate system (Uj ; Áj = (xj ; yj)) such that xj(qj) =

yj(qj) = 0, Cj
k \ Uj = fyj = 0g and :

(iii). Fj is represented on Uj by the linear vector ¯eld Xj(xj ; yj) = xj
@

@xj
¡ mk:yj

@
@yj

.

(iv). The foliation Gj jUj is represented by dyj = 0 and gj(xj ; yj) = yk
j .

Proof. We have seen in Lemma 3.2.9 that there exists a coordinate system (U; (u; v)) around

qj such that u(qj) = v(qj) = 0, Cj
k \ U = fv = 0g and Fj jU is represented by the vector ¯eld

u @
@u ¡ m:v @

@v , so that Ã(u; v) = um:v is a ¯rst integral of Fj jU , where m = mk. The proof will
be based in the following remark : consider a change of coordinates around u = v = 0 of the form
x = u:A(u; v), y = v:B(u; v), where A(0; 0):B(0; 0) 6= 0 and (A(u; v))m:B(u; v) ´ cte 6= 0. Note
that, after this change of variables, the ¯rst integral becomes Á(x; y) = cte:xm:y, so that xm:y
is a ¯rst integral of Fj near qj . In this case, the vector ¯eld x @

@x ¡ m:y @
@y represents Fj in a

neighborhood of qj . Recall that Cj
k is invariant for Gj , this foliation has no singularities near qj

and it is tranverse to Fj outside Cj
k, in a neighborhood of qj . It follows that Gj has a holomorphic

¯rst integral, near qj , of the form v:D(u; v), where D(0; 0) 6= 0. Consider the change of variables
de¯ned in a neighborhood of (0; 0) by z = u:C(u; v), w = v:D(u; v), where C(u; v) is a holomorphic
mth root of (D(u; v))¡1 near (0; 0). After this change of variables, zm:w and w are ¯rst integrals
of Fj and Gj , respectively, in neighborhood U1 of qj . Now, since gj is also a ¯rst integral of Gj , the
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funcion gj jU1 depends only on w, so that gj(z; w) = w`:h(w) on a neighborhood U2 of qj , where

h(0) 6= 0 and ` is the multiplicity of gj along Cj
k. As the reader can see in (¤), this multiplicity was

chosen in such a way that ` = k, so that gj(z; w) = wk:h(w). Let B(w) be a kth root of h(w) and
A(w) be a mth root of (B(w))¡1 and consider the change of variables x = z:A(w), y = w:B(w), in
a neighborhood U of (0; 0). After this change of variables, xm:y and y are ¯rst integrals of Fj and
Gj in U . Moreover gj(x; y) = yk. ¤

Let us prove that ª extends to a holomorphic map ªk: W1 [ C1¤
k ! M2 such that ªk(C1¤

k ) ½
C2¤

k . We prove ¯rst that ª can be extended to a neighborhood of q1 in C1¤
k , in such a way that

the extension sends q1 to q2. For j = 1; 2, consider coordinate system (Uj ; (xj ; yj)) around qj ,
and a vector ¯eld Xj , as in the Assertion. We can suppose that xj(Uj) = yj(Uj) = D, where
D = fy 2 Cj jyj < rg, so that, gj(Uj) = fz 2 Cj jzj < rkg = D1. Let Sj = f(0; yj)j yj 2 Dg be the

local separatrix of Xj transverse to Cj
k and set S¤

j = Sj n f(0; 0)g. Note that S¤
j ½ Wj , j = 1; 2.

We assert that ª(S¤
1) = S¤

2 .

In fact, suppose ¯rst that the curve °1, used to de¯ne hj;1, j = 1; 2, is contained in D1 and that
°1(t) = yk

0 :e2¼it, t 2 [0; 1], yk
0 = c. We recall that hj;1(z) = !¡1:z in a certain universal covering

C ! C= < 1; ! > of Fj = g¡1
j (c), where ! = e2¼i=6. This implies that hj;1 has one ¯xed point,

one orbit of period two and one orbit of period three. The other orbits are generic and are of
period six. On the other hand, Fj \Sj = f(0; ¸n:y0)j n = 0; :::; k ¡1g, where ¸ = e2¼i=k. Moreover,
the lifting of °1 on Sj through gj with initial point (0; ¸n:y0) is (0; ¸n:y0:e2¼it=k), t 2 [0; 1]. It
follows that hj;1(0; ¸n:y0) = (0; ¸n+1:y0). This implies that the orbit of period k of hj;1 is O(y0) :=
f(0; ¸n:y0)j n = 0; :::; k ¡ 1g. Since ªjF1 : F1 ! F2 is a conjugation between h1;1 and h2;1, we must
have ª(O(y0)) = O(y0). It follows from (i) that ª must send the leaf of F1 which contains S¤

1

onto the leaf of F2 which contains S¤
2 . By analytic continuation and the fact that g2 ± ª = g1 we

get that ª(S¤
1 ) = S¤

2 , as the reader can check. In the general case, that is when °1[0; 1] 6½ D1, we
can suppose that °1 = ± ¤ ° ¤ ±¡1, where °(t) = y0:e2¼it and ± is a curve in C joining c to c1 2 D1,
c1 = yk

0 (¯gure 8). The lifting of the curve ± on the leaves of Fj , j = 1; 2, produces a holonomy
map hj;±: g¡1

j (c) ! g¡1
j (c1) which conjugates the holonomy map of the curve ° on g¡1

j (c1), say

hj , to hj;1, that is hj = hj;± ± hj;1 ± h¡1
j;± . It follows from (i), (ii) and analytic continuation that

ª(g¡1
1 (c1)) = g¡1

2 (c1) and that Á1 := ªjg¡1
1 (c1)

satis¯es h2 ± Á1 = Á1 ± h1. Hence, the general case

can be reduced to the ¯rst one.

The facts that g2 ±ª = g1 and ª(S¤
1 ) = S¤

2 , imply that ª(0; y1) = (0; ¸n:y1), for some n 2 Z, as
the reader can check. After the change of variables y = ¸¡n:y1 we get ª(0; y) = (0; y). Let A ½ U1

be a neighborhood of S¤
1 such that ª(A) ½ U2. Since ª(0; y) = (0; y) and g2 ± ª = g1, we get that

ª(x1; y) = (Áy(x1); y) for all (x1; y) 2 A. In particular, if we denote by Lj(y) the germ at (0; y)
of the set f(xj ; y)j xj 2 Cg, then we get that ª(L1(y)) = L2(y). We will consider Áy as a map
from L1(y) to L2(y). Let Xj;T be the °ows of Xj , j = 1; 2, so that Xj;T (x1; y) = (eT :x1; e¡mT :y).

Note that Xj
T (Lj(y)) = Lj(e

¡mT :y). This fact together with ª(L1(y)) = L2(y) and (i) imply that
ª±X1;T (x1; y) = X2;T ±ª(x1; y), for all (T; x1; y) 2 C£U1 such that both members of the equality

are de¯ned. In particular, if we set T = ¡2¼i
m then we get ª(e¡2¼i=m:x1; y) = (e¡2¼i=m:Áy(x1); y),

so that Áy(e¡2¼i=m:x1) = e¡2¼i=m:Áy(x1). Hence, Áy conjugates the holonomies of the separatrices
S1 and S2 for the vector ¯elds X1 and X2 in L1(y) and L2(y), respectively. Now, the fact that
ª extends as a biholomorphism from a neighborhood of q1 to a neighborhood of q2, follows from
a Lemma of Mattei-Moussu in [M-M]. The main facts used in the proof of the Lemma of Mattei-
Moussu are that Áy conjugates the two holonomies, the °ows preserve the "horizontal" ¯brations
Lj(y) and the quotient of the eigenvalues are equal and negative (in our case ¡1=m).

The extension of ª to C1¤
k , can be done by using Hartogs' Theorem. Let C ½ C1¤

k be the
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maximal connected open set of C1¤
k such that ª can be extended to C. Note that, if there exists

q in the boundary of C in C1¤
k , then there exists an open neighborhood U of q, where U ' D £ D,

such that U \ C1¤
k ' D £ f0g and ª is holomorphic on H = (D £ D¤) [ (C \ U). According to

Hartogs' Theorem, the holomorphic closure of H is U . Observe that ªjH must be 1¡1, because it
is 1 ¡ 1 on D £ D¤ and non-constant on C. Hence, ªH : H ! M2 is an embedding and this impies
that it can be extended holomorphically to U . It follows that C = C1¤

k and this proves that ª
extends to C¤

k .

We have proved that ª extends to a biholomorphism ª0: W1 [ ([3
k=1C1¤

k ) ! W2 [ ([3
k=1C2¤

k )
in such a way that ª0(C

1¤
k ) = C2¤

k , k = 1; 2; 3. It remains to prove that ª0 extends to the
component C1

0 in such a way that ª0(C
1
0 ) = C2

0 . For this extension, we can use, for example,

that the curves Cj
0 are ¡1 rational curves. These curves can be blow-down to points p1 2 ~M1 and

p2 2 ~M2, so that we have blowing-downs maps ¼j : Mj ! ~Mj , where ¼¡1
j (pj) = Cj

0, j = 1; 2. The

map ~ª0 = ¼2 ± ª0 ± ¼¡1
1 is a biholomorphism of a punctured neighborhood of p1 to a punctured

neighborhood of p2, so that it can be extended to p1 in such a way that ~ª0(p1) = p2. This implies
that ª0 extends biholomorphically to C1

0 in such a way that ª0(C
1
0 ) = C2

0 .

There are small di®erences in the proof when the ¯bres F j
1 are not of the type ~II. The ¯rst

one is the following : in order to prove that ª sends the separatrix S1 to the separatrix S2, we
have used that the maps hj;1 have three special orbits : one ¯xed point, one of period two and one

of period three. Each of these orbits correspond to one of the components Cj
k, k = 1; 2; 3, of F j

1 ,

j = 1; 2. For instance, if F j
1 is of the type ~III, then hj;1(z) = ¡i:z, so that it has also three special

orbits, but this time two of them are ¯xed and the third has period two. According to ¯gure 1.c,
we can write the decomposition of F j

1 as

F j
1 = 4Cj

0 + Cj
1 + Cj

2 + 2Cj
3 :

The component Cj
0 is transverse to Fj , whereas the other three are invariant for Fj , j = 1; 2. For

each k = 1; 2; 3, the component Cj
k contains a singularity, say qj

k, and there is a local separatrix

for Fj , say Sj
k, such that qj

k 2 Sj
k. The separatrix Sj

3 corresponds to the orbit of period two of

hj;1, whereas Sj
1 and Sj

2 correspond to the two ¯xed points. By using an argument similar to the
proof that ª(S¤

1) = S¤
2 , we can conclude that, in the case we are considering, we have ª(S1¤

3 ) =
S2¤

3 . However, the same argument implies only that, either ª(S1¤
1 ) = S2¤

1 and ª(S1¤
2 ) = S2¤

2 , or
ª(S1¤

1 ) = S2¤
2 and ª(S1¤

2 ) = S2¤
1 . The rest of the proof is similar and at the end we will get that

in the ¯rst case we will have ª(C1
1 ) = C2

1 and ª(C1
2 ) = C2

2 , whereas in the second case we will
have ª(C1

1 ) = C2
2 and ª(C1

2 ) = C2
1 . The proof of the extension of © to [k>0C1

k is similar for the
other types of ¯bres. The second di®erence is in the proof of the extension of ª to the component
C1

0 in the case where F j
1 is of the type I¤

0 . In this case, the components Cj
0 are ¡2 rational curves

and not ¡1 curves. However, we can contract them, thus obtaining two singular surfaces, each one
with one singularity, say pj . Since these singularities are normal, it can be proved that the map
ª0 can be extended to a biholomorphism, exactly as in the ¡1 case. We leave the details for the
reader. ¤
3.2.21 Corollary. Let (F1

®)®2C and (F2
®)®2C be pencils of foliations on surfaces M1 and M2,

respectively, which satisfy (I), (II) and (III) before Lemma 3.2.20. Then there exist a biholo-
morphism ©: M1 ! M2 and a; d 2 C, a 6= 0, such that ©¤(F2

1) = F1
1 and ©¤(F2

¯) = F1
(a:¯+d) for

every ¯ 2 C.

Proof. Let aj
2 6= 0, dj

2, j = 1; 2, be as in Lemma 3.2.20. Choose ®0; ¯0 2 C such that a1
2:®0 + d1

2 =
a2
2:¯0 + d2

2. As we have seen in Lemma 3.2.20, we have ©¤(F2
1) = F1

1 and ©¤(F2
¯0

) = F1
®0

. After
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changing the variables as ®0 = ® ¡ ®0 and ¯0 = ¯ ¡ ¯0, we can suppose that ©¤(F2
0 ) = F1

0 . Let
(U2

j )j2J be a covering of M2 by open sets and (X2
j )j2J and (Y 2

j )j2J be collections of holomorphic

vector ¯elds, such that X2
j , Y 2

j and X2
j + ¯:Y 2

j de¯ne F2
0 , F2

1 and F2
¯ on U2

j , respectively, for

every j 2 J and ¯ 2 C. Note that there exists a multiplicative cocycle (f2
ij)U2

ij 6=; such that

X2
i +¯:Y 2

i = f2
ij(X

2
j +¯:Y 2

j ) on U 2
ij := U2

i \U2
j . Consider the covering (U1

j := ©¡1(U2
j ))j2J of M1

and the collections of vector ¯elds (X1
j := ©¤(X2

j ))j2J and (Y 1
j := ©¤(Y 2

j ))j2J . Since ©¤(F2
0 ) = F1

0

and ©¤(F2
1) = F1

1, the vector ¯elds X1
j and Y 1

j represent F1
0 and F1

1 on U1
j , respectively, j 2 J.

Set f1
ij = f 2

ij ± ©¡1 for (i; j) such that U1
i \ U 1

j 6= ;. Since X1
i = f1

ij :X1
j and Y 1

i = f1
ij :Y 1

j , it

follows that there exists ¸ 2 C¤ such that F1
® is represented by X1

j + ®:¸:Y 1
j on U1

j , for all j 2 J.

On the other hand, the fact that X1
j + ®:¸:Y 1

j = ©¤(X2
j + ®:¸:Y 2

j ), for all j 2 J , implies that

©¤(F2
¸:®) = F1

¸:® for all ® 2 C. ¤
The result below is a consequence Corollary 3.2.21 and of the description of the families of x2.2,

2.3 and 2.4.

3.2.22 Corollary. Let (F®)®2C be a pencil of foliations on a surface M , satisfying the hypothesis
of Theorem 3, where KM 6= 0. Then it is holomorphically equivalent to one of the families of types
1, 2 or 3, described in x2.2, 2.3 or 2.4. In particular, M is a rational surface.

Another interesting fact, is the following :

3.2.23 Corollary. Let (F®)®2C be a pencil of foliations on a surface M , satisfying the hypothesis
of Theorem 3, where KM 6= 0. Given ®; ¯ 2 E(P) and ¯brations f® and f¯ , tangent to F® and F¯,
respectively, then there exist biholomorphisms ©: M ! M and Á:C ! C such that f® ±© = Á±f¯.

We leave the proof for the reader.

x3.3. Proof of Theorem 1. Let P = (Fs)s2X be an equirreducible, elliptic and exceptional
family of foliations on CP(2), where X is a Riemann surface. According to the de¯nition, the
set E(P) is countable, in¯nite and has an accumulation point, say s0 2 X. Since the family is
equirreducible, there exists a rational surface M1 and a a bimeromorphism ¼1: M1 ! CP(2) such
that the family (Gs := ¼¤

1(Fs))s2X satis¯es
(i). TGs1

= TGs2
for all s1; s2 2 X .

(ii). For all s 2 X the singularities of Gs are reduced in the sense of Seidemberg.

It follows from Lemma 3.2.5 that there exist a neighborhood V of s0 and a bimeromorphism
¼: M1 ! M , which consists of a sequence of blowing-downs, such that the family Q := (Hs :=
¼¤(Gs))s2X satis¯es
(iii). For all s 2 V , Hs has no contractible ¯bres and the singularities of Hs are reduced.
(iv). THs1

= THs2
for all s1; s2 2 V .

Let F(M) = fHj H is a foliation on M sush that TH = THs0
g. Note that E(Q) = E(P), so

that the family Q is exceptional. We assert that there exists s1 2 E(Hs)\V such that Hs1
6= Hs0

.
In fact, let (tn)n¸1 be a sequence in E(Hs) \ V such that lim

n!1
tn = s0 and tn 6= s0 for all n ¸ 1.

Note that s 2 V 7! Hs 2 F(M) is a holomorphic map, so that, if Htn = Hs0 for all n ¸ 1, then
the map s 7! Hs would be constant. On the other hand, since E(Hs) is countable, there exists
s 2 V such that Hs has no ¯rst integral, that is Hs 6= Hs0

. This implies that the map s 7! Hs is
not constant. Therefore, there exists n ¸ 1 such that Htn 6= Hs0 .

Let (K®)®2C be the pencil generated by K0 = Hs0 and K1 = Hs1 . It follows from Corollary

3.2.10 that F(M; T ) = fKaj ® 2 Cg, where T = THs0
. This implies that Hs 2 F(M; T ) for all

s 2 X and that there exists a holomorphic map Á: X ! C such that Hs = KÁ(s) for all s 2 X. In
particular, if ©: M ! CP(2) is the bimeromorphism de¯ned by © = ¼1 ± ¼¡1 then ©¤(Fs) = KÁ(s)
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for all s 2 X. Now, Corollary 3.2.22 implies that the pencil (K®)®2C is equivalent to one of the
families of types 1, 2 or 3. Assertion (c) of Theorem 1 follows from the Corollary 3.2.23. This
ends the proof of Theorem 1.

x3.4. Proof of Theorem 2. Let (F®)®2X be an equirreducible, non-degenerate, elliptic and
exceptional family of foliations on CP(2). According to Theorem 1, the family immerges bimero-
morphically in one of the pencils of types 1, 2 or 3, described in x2. In particular, we can suppose
that X = C and the family is the pencil generated by two foliations on CP(2), say F0 and F1,
of the same degree d. We can suppose also that F0 and F1 have rational ¯rst integrals and
that their singularities are non-degenerate. Let ©: Mj ! CP(2) be a bimeromorphism such that
©¤(F®) = Gj

®, where Pj := (Gj
®)®2C is the family of type j, j 2 f1; 2; 3g. The proof will be done

in three steps :
1st step. We will prove that d 2 f2; 3; 4g.
2nd step. We will prove that we can suppose that the bimeromorphism © consists of a sequence
of blowing-ups.
3rd step. We will prove that there exists an automorphism ª of CP(2) such that (ª¤(F®))®2C is
one of the four families in CP(2) described in x2.

Proof of the 1st step. This part follows from a Theorem of M. Brunella :

Theorem ([Br-3]). Let F be a foliation on CP(2) of degree d, whose singularities are reduced in
the sense of Seidemberg. Suppose that there exists a non-constant entire map f : C ! CP(2) such
that f(C) is the union of non-algebraic leaf and some singularities of F . Then d · 4.

Since the family is bimeromorphically equivalent to the family of type k 2 f1; 2; 3g, (Gk
®)®2C, it

is su±cient to prove that there exists ¯ 2 C such that Gk
¯ has a non-algebraic leaf bimeromorphic

to C. This fact is proved for the families of types 1 and 2 in Proposition 6 of [LN]. In fact, in
this proposition we prove the following : let L be a generic leaf of Gk

¯ , where k 2 f1; 2g. Then

there exists a holomorphic covering ¼: L ! C=¡, where ¡ =< 1; ! >. When ¯ 62 E(Pj) then the

generic leaves of Gj
¯ are not algebraic, so that they must be biholomorphic to C or C¤. In [LN] it

is proved that they are biholomorphic to C, but for our purposes it is su±cient that they are not
algebraic and covered by C. An analogous result can be proved for the family of type 3 : let L be
a generic leaf of G3

¯ . Then there exists a holomorphic covering ¼: L ! C=¡, where ¡ =< 1; i >. In

particular, if ¯ 62 E(P3) then the generic laves of G3
¯ are covered by C and non-algebraic. Since the

proof is analogous in this case, we leave it for the reader. From this fact, we get that 0 · d · 4.
Since foliations of degrees 0 or 1 can not have elliptic ¯rst integrals, we conclude that 2 · d · 4.
In the proof of the 3rd step we will need the following result :

3.4.1 Lemma. Let F be a foliation of degree d on CP(2) and ` be a straight line of CP(2). Then
` is invariant for F , if one of the conditions below is veri¯ed :
(a). d = 2 and ` contains, either two singularities of F , where one of then is radial (of the type
1 : 1), or three singularities of F .
(b). d = 3 and ` contains two radial singularities of F .
(c). d = 4 and ` contains three singularities of F , where two of them are radial.

Proof. The proof is based in the following fact : Let m be a radial singularity of F and C be a
curve such that m 2 C, the multiplicity of C at m is º and all irreducible components of C are
non-invariant for F . Then tang(F ; C; m) ¸ º(º+1). In particular, if º = 1 then tang(F ; C; m) ¸ 2.

In fact, we can suppose that F is represented in a neighborhood of m by a vector ¯eld of the
form X = R +

P
j¸2 Xj , where R = x @

@x + y @
@y and Xj is homogeneous of degree j, in some

coordinate system such that x(m) = y(m) = 0. On the other hand, C has a local equation of the
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form f = 0, where f = fº +
P

j>º fj , where fj is homogeneous of degree j and fº 6= 0. It follows
that the Taylor series of X(f) at m is of the form :

X(f) = º:fº +
X

j>º

gj =) X(f) ¡ º:f =
X

j>º

(gj ¡ fj) =) [f; X(f)]m ¸ º(º + 1) :

Since tang(F ; C; m) = [f; X(f )]m, we get the result.

Now, if ` was non-invariant for F , then we would get from 3.1.7 and 3.1.3 that d ¡ 1 = T ¤
F :` =

¡`2 + tang(F ; `), so that tang(F ; `) = d. Since tang(F ; `) =
P

p2` tang(F ; `; p), then any one of

the conditions in (a), (b) or (c), implies that tang(F ; `) > d, a contradiction. ¤
Proof of the 2nd step. Since the singularities of F0 are non-degenerate and F0 has a rational
¯rst integral, it follows that for any singularity p0 of F0, there exists a local coordinate system
(U; (x; y)) around p0 such that x(p0) = y(p0) = 0 and f (x; y) = xp=yq is a ¯rst integral of F0jU .
In this case, F0jU is represented by the di®erential equation ! = 0, where

(R) ! = p y dx ¡ q x dy ; p 2 N ; q 2 Z¤ and gcd(p; q) = 1 :

In particular, the singularity is of the type p : q. When q < 0, the ¯rst integral is holomorphic
and the singularity is reduced in the sense of Seidemberg, whereas when q > 0 the ¯rst integral is
meromorphic and the singularity is not reduced. According to the Corollary 3.2.6, the resolution
process for the family can be done as follows :
1. Reduce all singularities as in (R) with q > 0. This is done by a sequence of blowing-ups, say
©1: M ! CP(2). After this sequence of blowing-ups we consider the family of foliations on M ,
(H® := ©¤

1(F®))®2C.
2. If H0 has no contractible curve, then all elements of the family (H®)®2C have only reduced
singularities, M = Mj and the family coincides with the family (Gj

®)®2C, for some j 2 f1; 2; 3g, up
to a biholomorphism ©2. If there is some contractible curve for H0, then this curve is contractible
for all elements of the family (Lemma 3.2.5). After a sequence of blowing-downs which at each
step contracts a ¡1-curve, contractible for all foliations in the pencil, we obtain a bimeromorphism
©2: M ! M 0, and we get a pencil (H0

® := (©2)¤(H®))®2C. By Lemma 3.2.20, this family is
biholomorphically equivalent to one of the families of types 1, 2 or 3. Therefore, we can suppose
that M 0 = Mj and that (H0

® = Gj
®)®2C, for some j 2 f1; 2; 3g.

We have concluded that © = ©1 ± ©¡1
2 , where ©1 is a sequence of blowing-ups and ©2 is, either

a biholomorphism, or a sequence of blowing-downs. Therefore, in order to conclude the 2nd step,
it is enough to prove that after the sequence of blowing-ups ©1, the generic foliation H® has no
contractible curve, so that ©2 is an biholomorphism. To do this, we will describe the resolution
process of a singularity like in (R) with p; q > 0.
3.4.2 Remark. Note that the singularities of the foliations of types 1, 2 or 3 can be only of the
following types : 1 : ¡2, 1 : ¡3, 1 : ¡4 or 1 : ¡6.

3.4.3 The resolution process of a singularity of the type p : q, 1 · q · p, gcd(p; q) = 1. Let
F0 be a foliation on a surface N0 and m0 2 N0 be a singularity of type p : q. Denote by ¼1; :::; ¼r

the minimal sequence of blowing-ups necessary for the resolution of m0. The sequence is de¯ned
inductively in such a way that ¼1: N1 ! N0 is the blowing-up at m0 and ¼n+1: Nn+1 ! Nn is the
blowing-up at some point mn 2 Nn, n = 1; :::; r ¡ 1. The composition ¼1 ± ::: ± ¼n will be denoted
by ¦n. Note that ¦¡1

n (m0) is the union of n exceptional divisors, say Dn
1 ; :::; Dn

n. These divisors
are ordered inductively in such a way that D1

1 = ¼¡1
1 (m0), Dn

n = ¼¡1
n (mn¡1) and Dn

1 ; :::; Dn
n¡1

are the strict transforms by ¼n of Dn¡1
1 ; :::; Dn¡1

n¡1 respectively. In all steps of the resolution, the
point mn belongs to Dn

n and ¦n is a biholomorphism between Nn n ([n
i=1Dn

i ) and N0 n fm0g. The
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foliation induced by the form ! = pydx ¡ qxdy in a neighborhood of m0 will be denoted by F0
0

and the strict transform of ¦¤
n(F0

0 ) by Fn
0 . Note that Fn

0 = ¼¤
n(Fn¡1

0 ) for all n = 1; :::; r. Let !n

be a holomorphic 1-form representing Fn
0 in a neighborhood of mn. The form !n, in our case, can

always be written as in (R) in some coordinate system around mn, so that it is of type pn : qn,
pn; qn > 0, gcd(pn; qn) = 1. On the other hand, the divisor Dn+1

n+1 is contained in the divisor of
zeroes of ¼¤

n(!n) with some multiplicity, say ¹n ¸ 1 (see 3.1.11). Let us see how the foliation
Fn+1

0 looks like in a neighborhood of the divisor Dn+1
n+1. If we suppose that 1 · qn · pn, then we

have two possibilities :
(I). pn = qn = 1. In this case mn is a radial singularity of !n, ¹n = 2 and Fn+1

0 is transverse to
Dn+1

n+1. This is the last step of the resolution of m0, so that r = n + 1.

(II). 1 · qn < pn. In this case, the divisor Dn+1
n+1 is invariant for Fn+1

0 , ¹n = 1 and Dn+1
n+1 contains

two singularities, one of type pn : qn ¡ pn and the other of type qn : pn ¡ qn. Since qn < pn, the
singularity of type qn : pn ¡ qn is non-reduced, so that we need more blowing-ups. The point mn+1

will be this singularity. The singularity of type pn : qn ¡ pn is reduced and in any other step of the
resolution ¦r, it will appear a singularity of the same type. From this process, we get the following
conclusions :
3.4.4 Remark. (a). mr¡1 is of the type 1 : 1 and Fr

0 is transverse to Dr
r , the last divisor which

appears in the resolution.
(b). If mn is of the type pn : qn, then mn¡1 is, either of the type [pn; pn + qn], or of the type
qn : pn + qn. In particular, mr¡2 is of the type 2 : 1, the divisor Dr

r¡1 has self-intersection ¡2 and
contains an unique singularity of Fr

0 , say P , which is of the type ¡2 : 1. The Camacho-Sad index
of this singularity with respect to Dr

r¡1 is I(Fr
0 ; Dr

r¡1; P ) = ¡2.
(c). If r ¸ 3 then the singularity mr¡3 is, either of the type 3 : 2, or of the type 3 : 1. Moreover :
(c.1). If mr¡3 is of the type 3 : 1 then the divisor Dr

r¡2 cuts Dr
r¡1, but does not cut Dr

r .
(c.2). If mr¡3 is of the type 3 : 2, then Dr

r¡2 has self-intersection ¡3 and contains an unique
singularity of Fr

0 , say Q, such that I(Fr
0 ; Dr

r¡2; Q) = ¡3. In this case, Dr
r cuts both divisors Dr

r¡2

and Dr
r¡1.

We leave the details of the proof of the above Remark for the reader. In ¯gures 9.a and 9.b we
sketch the divisors which appear in the resolution of the types p : 1, p > 1, and p : q, 1 < q < p,
respectively. Note that the last divisor which appears, Dr

r , is always transverse to Fr
0 . Moreover,

[Dr
r ]2 = ¡1, [Dr

r¡1]
2 = ¡2 and [Dr

k]2 · ¡2 if k < r, in both cases. In the case p : 1 we have r = p,
[Dp

p ]2 = ¡1 and [Dp
k]2 = ¡2 for all k < p (¯g. 9.a).

Observe that there are separatrices cutting the invariant divisors of the extremities of the reso-
lution, denoted by S1 in ¯gure 9.a and S1; S2 in ¯gure 9.b. The function xp=yq is a ¯rst integral
of the form ! = p y dx ¡ q x dy, and these separatrices correspond to the non-generic levels of the
pencil yq ¡ c:xp = 0, which are the axis fx = 0g in the case p : 1 and the two axis fx = 0g and
fy = 0g in the case p : q, 1 < q < p.

Consider the pencil (F®)®2C in CP(2), as in the hypothesis of Theorem 2. Since it is non-
degenerate and equirreducible, we can suppose that that each non-reduced singularity, say m0, of
F0 is of the type p : q = p(m0) : q(m0) and is also a non-reduced singularity of F1 of the same
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type and with the same resolution process. From now on, we will assume that all non-reduced
singularities of F0 and F1, were reduced, but we will ¯x the singularity m0 and we will keep the
notations for the foliations and exceptional divisors obtained along the resolution of this singularity.
In this way, ©1 coincides with ¦r in a neighborhood Nr of Dr

1 [ ::: [ Dr
r . We will denote by Fn

®

the strict transform of F® in a neighborhood W of m0 by ¦n: Nn ! W and by ¢n the divisor of
tangency between Fn

0 and Fn
1.

3.4.5 Lemma. The following properties are true :
(a). Dr

r \ ¢r is a discrete subset of Dr
r . In particular, Fr

0 and Fr
1 are transverse in almost all

points of Dr
r .

(b). For all n 2 f0; :::; rg the divisor ¢n is invariant for both foliations, Fn
0 and Fn

1.
(c). The divisor of tangency ¢(F0; F1) ½ CP(2) is invariant for all foliations in the pencil
(F®)®2C.
(d). ©2(Dr

r) is a smooth rational ¡1-curve in Mj . In particular, ©2 is a biholomorphism in a
neighborhood of Dr

r .

Proof. Let us prove (a). Suppose by contradiction that Dr
r \¢r is not discrete. In this case, since

Dr
r \ ¢r is an analytic set, we must have Dr

r ½ ¢r and that Fr
0 is tangent to Fr

1 along Dr
r . Recall

that, at each step, ©2 contracts only curves that are invariant for all foliations in the pencil at the
correspondent step. Since Dr

r is not invariant for Fr
0 , it can not be contracted to a point by ©2. It

follows that C := ©2(Dr
r) ½ Mj is a curve and that ©2 is a biholomorphism in a neighborhood of

almost all points of Dr
r . Since Fr

0 and Fr
1 are tangent along Dr

r , it follows that Gj
0 = (©2)¤(Fr

0 )

and Gj
1 = (©2)¤(Fr

1) are tangent along C, so that C ½ ¢(Gj
0; Gj

1) := ¢. On the other hand, we
have seen in Lemma 3.2.9 that ¢ is invariant for all foliations in the pencil (Gj

®)®2C. This is a

contradiction, because C can not be invariant for Gj
0.

Since ¢ is invariant for all foliations in the pencil (Gj
®)®2C and ©2, at each step, contracts only

curves that are invariant, we get that ¢r = ©¡1
2 (¢) \ ©¡1

1 (W ) (as a set) and that ¢r is invariant
for both foliations Fr

0 and Fr
1. It follows by induction, from the process of resolution of m0, that

¢n is invariant for all foliations of the pencil (Fn
®)®2C. Applying this argument for all non-reduced

singularities of F0, we get that ¢(F0; F1) is invariant for all foliations in the pencil (F®)®2C. This
proves (b) and (c).

Let us prove (d). Observe ¯rst that there exists ¯ 2 C such that the curve Dr
r is invariant

for Fr
¯ . In fact, ¯x a point m 2 Dr

r n ¢r. Since Fr
0 and Fr

1 are transverse at m, there exists
¯ 2 C such that the leaf of Fr

¯ through m is tangent to Dr
r at m. Since Fr

0 is transverse to Dr
r ,

we get from 3.1.7 that TFr
0
:Dr

r = (Dr
r)2 = ¡1. This is true for all ® 2 C such that TFr

®
= TF r

0
,

so that if TF r
®

= TF r
0

and Dr
r is not invariant for Fr

®, then Fr
® is transverse to Dr

r . Since Fr
¯ is

tangent to Dr
r at m, we conclude that, either Dr

r is invariant for Fr
¯ , or TF r

¯
6= TF r

0
. Suppose that

TFr
¯

6= TF r
0
. We have seen in Remark 3.1.1 that TF r

¯
¡ TFr

0
is an e®ective divisor, in this case, so

that TFr
¯

= TFr
0

+
Pn

k=1 nk:[Ck], where nk ¸ 1 and Ck is a divisor associated to some irreducible

curve on Nr , k = 1; :::; n. Note that each curve Ck is contained in ¢r, so that Dr
r 6= Ck, for all k.

If Dr
r was not invariant for Fr

¯ then we would get from 3.1.7 that

¡1 ¡ tang(Fr
¯ ; Dr

r) = TFr
¯
:Dr

r = TF r
0
:Dr

r +
nX

k=1

nk:(Ck:Dr
r) ¸ ¡1 =)

=) tang(Fr
¯ ; Dr

r) · 0 =) tang(Fr
¯ ; Dr

r) = 0

and this would imply that Fr
¯ would be transverse to Dr

r , a contradiction. Now, since Dr
r is

invariant for Fr
¯ , but not for Fr

0 , it follows that C := ©2(Dr
r) must be invariant for Gj

¯ , but not for
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Gj
0, so that C 6½ ¢. This implies that C is smooth. This last assertion, follows from Lemma 3.2.9.

We have seen in Lemma 3.2.9 that ¢ =
P3

k=1(
P

i>0 Ck;i), where each Ck;i is a rational curve

containing just one reduced singularity of Gj
¯ , say qk;i. Since C is connected, the set L := C n¢ is a

leaf of Gj
¯ and CnL is an union of a certain number of singularities qk;i as above. These singularities

are reduced, so that C is smooth. We leave the details for the reader. Moreover, the Camacho-Sad
index of a singularity qk;i with respect to Ck;i is I(Gj

¯ ; Ck;i; qk;i) = C2
k;i 2 f¡2; ¡3; ¡4; ¡6g. This

implies that, if qk;i 2 C then I(Gj
¯ ; C; qk;i) 2 f¡1=2; ¡1=3; ¡1=4; ¡1=6g (see 3.1.9). The fact

that C is a rational curve implies that C can not be a leaf of Gj
¯ , so that it contains at least one

singularity qk;i. It follows from Camacho-Sad Theorem that C2 = I(Gj
¯; C) < 0 . Since C2 must

be integer, we get that C2 · ¡1. On the other hand, ©2 is a sequence of blowing-downs and
C = ©2(D

r
r) is smooth, so that C2 ¸ (Dr

r)
2 = ¡1. This implies that C2 = ¡1. We conclude

©2 can not contract any curve cutting Dr
r , for otherwise C2 > ¡1. This implies that ©2 is a

biholomorphism in a neighborhood of Dr
r . ¤

3.4.6 Lemma. If m0 is a non-reduced singularity of type p : q, then p : q 2 f1 : 1 ; 2 : 1 ; 3 : 2g.
Moreover, ©2 is a biholomorphism in a neighborhood of ©¡1

1 (m0).

Proof. Let us suppose that 1 · q < p. Consider the resolution of m0, sketched in one of the
¯gures 9.a or 9.b. In any case, the divisor Dr

r cuts the divisor Dr
r¡1 and if 2 · q < p then Dr

r

cuts another divisor, which we will call Dr
k1

, k1 < r ¡ 1. We have also that (Dr
r¡1)

2 = ¡2. Let
Dr

r¡1 = Dr
j1 ; Dr

j2 ; :::; Dr
js

be the maximal chain of divisors contained in the resolution of m0, such
that Dr

ji
\Dr

ji+1
6= ;, for 1 · i · s ¡1, and Dr

ji
6= Dr

r for all i = 1; :::; s. If 2 · q < p, then consider

also the analogous chain Dr
k1

; :::; Dr
kt

such that Dr
ki

6= Dr
r and Dr

ki
\ Dr

ki+1
6= ; for 1 · i · t ¡ 1,

where s + t = r ¡ 1. By convention we will set t = 0 if 1 = q < p. Set also J = Dj1 [ ::: [ Dr
js

and K = Dk1
[ ::: [ Dr

kt
(if t > 0). Since ©2 is holomorphic, only contracts invariant curves and

J ½ ¢r , we must have that ©2(J) is connected and ©2(J) ½ ¢ = ¢(G0; G1). Hence ©2(J) must
be contained in some connected component of ¢. Since the connected components of ¢ are the
curves C`;i, 1 · ` · 3, i > 0, which are also irreducible components, we get that ©2(J) ½ C`;i for
some ` = 1; 2; 3 and i > 0. Since Dr

r \ Dr
r¡1 6= ;, the curve Dr

r¡1 = Dr
j1

can not be contracted by
©2, by (d) of Lemma 3.4.5. This implies that ©2(J) = C`;i. We assert that s = 1, ©2(D

r
r¡1) = C`;i

and that ©2 is a biholomorphism in a neighborhood of Dr
r¡1.

In fact, suppose by contradiction that s > 1. This implies that all divisors Dr
j2 ; :::; Dr

js
are

contracted by ©2. Let us follow the process of contractions of these curves in ©2, step by step. In
each step only ¡1-curves can be contracted, so that the ¯rst curve to be contracted in the chain J
must cut some curve that was contracted before, because (Dr

ji
)2 · ¡2 for all i = 1; :::; s. This curve

can only be Dr
s , because this curve is the unique one in J which cuts the closure of some leaf outside

the chain : the leaf containing the separatrix S1. For simplicity we will use the same notation for the
curves that was not contracted after some step. Just after contracting the ¡1-curve that contains
S1, the divisor Dr

s becomes a ¡1-curve containg one or two reduced singularities and the divisors
Dr

j1
; :::; Dr

js¡1
remain with same self-intersection. After the contraction of Dr

js
, the unique divisor

that can be contracted is Dr
js¡1

, because the others don't change the self-intersection. Proceding in
this argument, we see that the last divisor to be contracted in J is Dr

j2
and before its contraction it

cuts Dr
r¡1 transversely in just one point, which is a reduced singularity of the transformed foliation.

This implies that, after the contraction of Dr
j2 , the self-intersection of Dr

r¡1 increases of +1, so that
Dr

r¡1 becomes a ¡1-curve. But this implies that after this step, Dr
r¡1 can be contracted, which is

a contradiction. Therefore, we conclude that s = 1. This implies already that if 1 = q < p then
p : q = 2 : 1. Moreover, ©2 does not contract any invariant curve that meets Dr

r¡1. This implies
that ©2 is a biholomorphism in a neighborhood of Dr

r [ Dr
r¡1. Set ©2(D

r
r¡1) = C`;i := C1.
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Suppose now that t > 0 and K 6= ;. Observe that, in this case, Dr
k1

= Dr
r¡2 and Dr

r¡2 has
self-intersection ¡3. This fact follows from (c) of Remark 3.4.4 and the fact that s = 1. By an
argument analogous to the above one, we get that ©2(K) = Ck;i, an irreducible component of ¢.
Moreover, Dr

k1
is not contracted by ©2 and, if t > 1 then, all divisors Dr

k2
; :::; Dr

kt
are contracted

by ©2. Following the contractions step by step, as before, we get that these divisors are contracted
in the order Dr

kt
; Dr

kt¡1
; :::; Dr

k2
. When we contract Dr

k2
, then the self-intersection of Dr

k1
increases

by one, so that it becomes ¡2. We conclude that ©2(K) = ©2(Dr
k1

) = Ck;i, C2
k;i = ¡2 and Ck;i

contains just one singularity of Gj
0, say Q, such that I(G0; Ck;i; Q) = ¡2. Let us prove that this is

impossible. Set ©2(D
r
k1

) = C2.

We have seen that there exists ¯ 2 C such that Dr
r is invariant for Fr

¯ . This implies that

C = ©2(Dr
r) is invariant for Gj

¯. Hence Gj
¯ has an invariant set which consists of a chain of three

smooth rational curves L = C1 [ C [ C2 and sing(Gj
¯) \ L = fP; Qg, where P = C \ C1 and

Q = C \ C2 are reduced singularities, so that Z(Gj
¯ ; C) = 2. Since Gj

0 is transverse to C, we get

that TGj
0
:C = C2 ¡ tang(Gj

0; C) = ¡1. On the other hand, the fact that TGj
0

= TGj
¯

and 3.1.8 imply

that ¡1 = TGj
¯
:C = X (C) ¡Z(Gj

¯; C) = 2¡2 = 0, a contradiction. This contradiction implies that

t = 1 and that there is no ¡1-curve contracted by ©2 meeting C2. Therefore, p : q = 3 : 2 and ©2

is a biholomorphism in a neighborhood of C1 [ C [ C2. ¤
3.4.7 Corollary. Let m1; :::; mk be the non-reduced singularities of the pencil (F®)®2C. Then
mi is of the type pi : qi for the generic foliation of the pencil, where pi : qi :2 f1 : 1; 2 : 1; 3 : 2g.
Moreover, ©2 is a biholomorphism.

Proof. The ¯rst part follows directly from Lemma 3.4.6. It follows also from Lemma 3.4.6 that,
©2 is a biholomorphism in a neighborhood of ©¡1

1 fm1; :::; mkg. This implies that, if ©2 contracts
some ¡1-curve, say D, then D \ ©¡1

1 fm1; :::; mkg = ;. Since ©1 is a biholomorphism outside
©¡1

1 fm1; :::; mkg, we obtain that ©1(D) is a smooth ¡1-curve in CP(2), which is not possible. ¤
The next result will be used in the proof of the 3rd step.

3.4.8 Lemma. Let m0 be a non-reduced singularity of F0 of type p : q 2 f1 : 1; 2 : 1; 3 : 2g. Let
ff = 0g be an equation of the germ of ¢0 at m0 and º0 be the multiplicity of f at m0. Then there
exists a local coordinate system (x; y) at m0 where F0 is represented by a linear vector ¯eld and
(a). If p : q = 1 : 1 then º0 = 3 and f(x; y) = x:y(y ¡ x):u(x; y), where u(0; 0) 6= 0.
(b). If p : q = 2 : 1 then º0 = 2 and f(x; y) = y(y ¡ x2):u(x; y), where u(0; 0) 6= 0.
(c). If p : q = 3 : 2 then º0 = 2 and f (x; y) = (y2 ¡ x3):u(x; y), where u(0; 0) 6= 0.

In particular, if sing(¢0) denotes the singular set of ¢0 then, sing(¢0) coincides with the set
of non-reduced singularities of F®, for a generic ® 2 C.

Proof. Keeping the notation of Lemma 3.4.5, denote by ¢0
n the strict transform of ¢n by ¼n.

Note that ¼¤
n+1(¢n) = ¢0

n + ºn:Dn+1
n+1, where ºn is the multiplicity of ¢n at mn. On the other

hand, it follows from 3.1.11 that

T ¤
Fn+1

0
= ¼¤

n(T ¤
Fn

0
) ¡ (¹n ¡ 1):Dn+1

n+1 and NF n+1
1

= ¼¤
n(NFn1) ¡ ¹n:Dn+1

n+1 =)

(13) ¢n+1 = ¼¤
n(¢n) ¡ (2¹n ¡ 1)Dn+1

n+1 = ¢0
n + (ºn ¡ 2¹n + 1)Dn+1

n+1

Recall that ¹r¡1 = 2, whereas ¹n = 1 if 1 · n < r ¡ 1. If n = r ¡ 1 then ¼¤
r (¢r¡1) = ¢0

r¡1,
because Fr

0 and Fr
1 are not tangent along Dr

r . This implies that ºr¡1 = 2:2¡ 1 = 3. On the other
hand, after the resolution ©, all components of ¢ are smooth rational curves with multiplicity one
(Lemma 3.2.9). Since the resolution ¦r coincides with © in a neighborhood W of ©¡1(m0), we
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get that W \ ¢ = W \ ¢r and all the components of this curve must have multiplicity one. Let
(x; y) be a local coordinate system where F0 is represented by the vector ¯eld X = q x @

@x
+ p y @

@y
.

Note that g(x; y) = yq=xp is a local ¯rst integral of X and that the germ of the components of ¢0

at m0 are level curves of g.

Consider the case p : q = 1 : 1. In this case, r = 1 and ¼¤
1(¢0) = ¢0

1, so that º0 = 3. Since
the components of ¢0 have multiplicity one, it follows that ¢0 has three branches passing through
m0, which are level curves of g = y=x. Hence, after a linear change of variables we can suppose
that f is like in (a). When p : q = 2 : 1 or p : q = 3 : 2, we have r = 2 or r = 3, respectively, and
after the ¯rst blowing-up we get that ¢1 = ¢0

0 + (º0 ¡ 1):D1
1. Since Dr

1 is the strict transform of
D1

1 at the ¯nal step of the resolution and Dr
1 has multiplicity one in ¢, in both cases, we get that

º0 = 2. In particular, ¢1 = ¢0
0 + D1

1. If p : q = 2 : 1, then m1 is a singularity of type 1 : 1 for
F1

0 , so that º1 = 3. Hence, the multiplicity of ¢0
0 at m1 is two and its germ consists of two curves

meeting transversely at m1. This implies that the germ of ¢0 at m0 consists of two tangent curves
meeting at m0, so that after a linear change of coordinates, we can suppose that f is like in (b).
If p : q = 3 : 2 then, after the ¯rst blowing-up, the singularity m1 is of the type 2 : 1 and, by the
previous argument, the germ of ¢1 at m1 contains two tangent branches, where one of them is D1

1.
When we blow-down the other branch, we obtain a cuspidal curve like in (c).

Let us prove the last assertion. Let N be the set of non-reduced singularities of F®. It follows
from (a), (b) and (c) that sing(¢0) ¾ N . On the other hand, if m 2 sing(¢0) then m must be a
singularity of any F® in the pencil. This singularity must be non-reduced, for otherwise after the
resolution process the set ¢ would have singularities, which is not the case. ¤
Proof of the 3rd step. Since ©2 is a biholomorphism, we can suppose that the resolution of the
pencil is a sequence of blowing-ups ©: Mj ! CP(2) and ©¤(F®) = Gj

®, for all ® 2 C. We have seen

that the divisors of tangencies ¢(F0; F1) := ¢0 and ¢(Gj
0; Gj

1) := ¢ are invariant for all foliations

in the pencils P = (F®)®2C and Qj = (Gj
®)®2C, respectively. Let ¢0 =

P`
i=1 ni:Bi, ni > 0, and

¢ =
P3

k=1(
P

i>0 Ck;i) be the decompositions of these divisors in irreducible components (see
Lemma 3.2.9). Note that, if we consider ¢ and ¢0 as sets, then ©(¢) = ¢0. This implies the
following facts :
(i). For any (k; i), k = 1; 2; 3, i > 0, either ©(Ck;i) = Br , for some r 2 f1; :::; `g, or © contracts Ck;i

and ©(Ck;i) is a point. Moreover, if ©(Ck;i) = Br, then r 2 f1; :::; `g is unique and nr = 1. This
is a consequence of the fact that © is a biholomorphism outside the set of curves that it contracts.
It follows that ¢0 =

P`
i=1 Bi. Since r is unique, we will use the notation Ck;i := Cr.

(ii). If ©(Cr) = Br, then Br contains an unique singularity qr(®) such that the map ® 2 C 7! qr(®)
is a regular parametrization of Br. In fact, if Cr = Ck;i, then we have seen that Ck;i contains an
unique singularity qk;i(®) such that the map ® 2 C 7! qk;i(®) 2 Ck;i is a regular parametrization
of Ck;i. If we set qr(®) = ©(qk;i(®)), then ® 7! qr(®) is a regular parametrization of Br. We will
say that ® 2 C is generic, if for all r 2 f1; :::; `g the point qr(®) 2 Br n sing(¢0).
(iii). © contracts only curves that are contained in ¢ and sing(¢0) coincides with the set of
non-reduced singularities of F0.
(iv). If ® 2 C is generic then, for all r 2 f1; :::; `g, qr(®) is a non-degenerate singularity of the
type 1 : C2

r 2 f1 : ¡2; 1 : ¡3; 1 : ¡4; 1 : ¡6g. This follows from (iii) and the fact that © is a
biholomorphism in a neighborhood of qk;i(®), if ©(qk;i(®)) = qr(®) and ® is generic.

If ® 2 C is generic, then all the singularities of F® are non-degenerate. Moreover, it follows from
Lemma 3.4.6 and (iv) that they are of one of the types : 1 : 1, 2 : 1, 3 : 2, 1 : ¡2, 1 : ¡3, 1 : ¡4,
1 : ¡6. Will use the notations r1, r2, r3, s2, s3, s4 and s6 for the number of the singularities of
the types 1 : 1, 2 : 1, 3 : 1, 1 : ¡2, 1 : ¡3, 1 : ¡4 and 1 : ¡6, respectively, of the generic foliations
of the pencil (F®)®2C. Similarly, we will use the notations s1

2, s1
3, s1

4 and s1
6 for the number of
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singularities of the types 1 : ¡2, 1 : ¡3, 1 : ¡4 and 1 : ¡6, respectively, of the foliations in the
pencil (Gj

®)®2C.

3.4.9 Lemma. The numbers d, `, r1; :::; s6 and s1
2; :::; s1

6 satisfy the following relations :

(a). 2d + 1 =
P`

i=1 dg(Bi) = dg(¢0).
(b). s2 + s3 + s4 + s6 = `.
(c). s2 + r2 + r3 = s1

2, s3 + r3 = s1
3, s4 = s1

4 and s6 = s1
6.

(d). r1 + r2 + r3 + s2 + s3 + s4 + s6 = d2 + d + 1.
(e). 4 r1 + 9

2r2 + 25
6 r3 ¡ 1

2s2 ¡ 4
3s3 ¡ 9

4s4 ¡ 25
6 s6 = (d + 2)2.

Proof. Relation (a) follows from [¢0] = T ¤
F®

+NF® = (2d+1)H, where H is the divisor associated
to a hyperplane in CP(2) (see 3.1.10 and 3.1.5). Relation (b) follows from (ii) and (iv). We get
(c) from the process of resolution of the singularities of the types 2 : 1 and 3 : 2. Each singularity
of the type 3 : 2 gives origin, after the resolution, to two singularities, one of the type 1 : ¡2 and
the other of the type 1 : ¡3. On the other hand, each singularity of the type 2 : 1 gives origin,
after the resolution, to just one singularity of the type 1 : ¡2. This implies that s2 + r2 + r3 = s1

2

and s3 + r3 = s1
3. Since these resolutions do not create any singularity of one of the types 1 : ¡4

or 1 : ¡6, we get the other relations in (c). Relation (d) follows from 3.1.6. Finally, relation (e)
is a consequence of Baum-Bott Theorem (cf. [B-B] and [Br-2]). We will state this result in the
particular case in which all singularities of the foliation are non-degenerate. Given a foliation H
on a compact surface M , with non-degenerate singularities, say p1; :::; pn, de¯ne

BB(H; pj) =
(tr(DX(pj))2

det(DX(pj)

where X is a holomorphic vector ¯eld which represents H in a neighborhood of pj , j = 1; :::; n.

Theorem (Baum-Bott). In the above situation, we have that
Pn

j=1 BB(H; pj) = N2
H. In

particular, if M = CP(2) and H has degree d, then
Pn

j=1 BB(H; pj) = (d + 2)2.

In the case of a singularity pj of the type p : q we have that BB(H; pj) = (p+q)2

p:q . If we apply

this result in the case of a generic foliation in the pencil (F®)®2C then we get (e). ¤
Next, we will consider all possible cases for the pencil (Gj

®)®2C. The strategy in any case, will be
to prove that the divisor of tangencies ¢0 of the pencil P coincides with the divisor of tangencies of
one of the pencils of x2.2, 2.3 or 2.4, modulo an automorphism CP(2). This implies the Theorem,
because if the divisor of tangencies of two pencils coincide then the pencils are equivalent, as the
reader can check.

3.4.10 The pencil is bimeromorphically equivalent to the family of type 1 (j=1). Let
us prove that the pencil (F)®2C is equivalent to the pencil (F4)®2C of x2.2. In this case, all

the members of the pencil (G1
®)®2C have nine singularities, all of them of the type 1 : ¡3 (see

¯g. 1.a). Hence, s1
2 = s1

4 = s1
6 = 0 and s1

3 = 9. It follows from (c) of Lemma 3.4.9 that
s2 = s4 = s6 = r2 = r3 = 0 and s3 = 9, so that ` = 9, by (b). On the other hand, (a) implies that

2d + 1 =
P9

i=1 dg(Bi) ¸ 9, and so d ¸ 4. Therefore, d = 4, by the 1st step, and dg(Bi) = 1 for
all i = 1; :::; 9. In particular, ¢0 contains nine straight lines, all of them with multiplicity one. It
follows from (d) that r1 + s3 = d2 + d + 1 = 21, and so r1 = 12. Let P := fm1; :::; m12g be the set
of singularities of the type 1 : 1 and L := fB1; :::; B9g. The idea is to consider the con¯guration of
lines and points (L; P) and prove that it satis¯es the following properties :
(I). Each line of L contains four points of P.
(II). Each point of P belongs to three lines of L.
(III). If three points of P are not in the same line of L, then the points are not aligned.



48 A. LINS NETO*

The rest of the proof is based in Proposition 1 of [LN]. Proposition 1 of [LN] says that, if
a con¯guration as above satis¯es (I), (II) and (III), then there exists an automorphism T of
CP(2) such that the lines in T (P) are the lines de¯ned by (Y 3 ¡ X3)(Z3 ¡ Y 3)(X3 ¡ Z3) = 0, in
homogeneous coordinates. On the other hand, the divisor of tangencies of the pencil (F4

®)®2C is
also (Y 3 ¡ X3)(Z3 ¡ Y 3)(X3 ¡ Z3) = 0, so that this pencil is equivalent to (F®)®2C.

Let us prove (I), (II) and (III). Assertion (I) follows from 3.1.8 : if F® is a generic foliation
in the pencil and Bi 2 L, then

d ¡ 1 = T ¤
F®

:Bi = X (Bi) ¡ Z(F®; Bi) =) Z(F®; Bi) = 5 ;

so that Bi contains ¯ve singularities of F®. Since only one of these singularities is of the type
1 : ¡3, the other four must be of the type 1 : 1. Assertion (II) follows from Lemma 3.4.8 : the

multiplicity of ¢0 =
P9

i=1 Bi at mj is three, for all j = 1; :::; 12. Hence, each mj belongs to the
intersection of three lines of L. Finally, assertion (III) follows from Lemma 3.4.1 : if mi1 ; mi2 ; mi3

belong to the same line, say B, then B must be invariant for any F® such that mi1 , mi2 and mi3

are radial singularities. Hence B 2 L. This ends the proof of this case. ¤
3.4.11 The pencil is bimeromorphically equivalent to the family of type 2 (j=2). We
will prove in this case that, either d = 2 and P is equivalent to the pencil (F2

®)®2C of x2.3, or d = 3
and P is equivalent to the pencil (F3

®)®2C of x2.3. Note that for a foliation G2
® we have s1

2 = 5,
s1
3 = 4, s1

4 = 0 and s1
6 = 1. From (c) of Lemma 3.4.9 we get the following relations : s2+r2+r3 = 5,

s3 + r3 = 4, s4 = 0 and s6 = 1. In particular, s3 = 4 ¡ r3 and s2 = 5 ¡ r2 ¡ r3. If we substitute
these relations in (d) and (e), we obtain that r1 ¡r3 = d2+d¡9 and 4r1+5r2+6r3 = d2+4d+16,
which implies that 5(r1 + r2 + r3) = 2d2 + 5d + 7, and so 5 divides 2d2 + 5d + 7. As the reader
can check, if d 2 f2; 3; 4g, this is possible only for d 2 f2; 3g. Moreover, if d = 2 then we get that
r1 + r2 + r3 = 5 and ` = s2 + s3 + s6 = 2, whereas if d = 3 then we get r1 + r2 + r3 = 8 and
` = s2 + s3 + s6 = 5.

3.4.12 The case d = 2. In this case, dg(¢0) = 5. We assert that r1 = 0. In fact, suppose by
contradiction that for a generic ® 2 C the foliation F® has a radial singularity, say m. It follows
from (a) of Lemma 3.4.1 that for any other singularity, say q, of F®, the straight line L(m; q),
which joins m to q is invariant for F®. On the other hand, since ` = 2, ¢0 contains exactly two
irreducible components, say B1 and B2. For each j = 1; 2, the component Bj does not change with
the parameter and contains an unique singularity qj(®) such that ® 7! qj(®) 2 Bj is a regular
parametrization of Bj . Since L(m; qj(®)) is invariant for F®, we have two possibilities : either the
line L(m; qj(®)) does not change with parameter, or it changes. In the ¯rst case, we must have
Bj ´ L(m; qj(®)), whereas in the second, the foliation F® has an algebraic invariant curve outside
¢0. We assert that the second possibility can not happen. In fact, if L(m; qj(®)) is an algebraic
invariant curve outside ¢0, then ©¡1(L(m; qj(®))) is an algebraic invariant curve for G1

®, outside
¢. It follows from (iv) of Lemma 3.2.18 that G1

® has a ¯rst integral, so that ® 2 E(Q2). But this
implies that E(Q2) = C, a contradiction. From this, we get that B1 and B2 are straight lines, and
so dg(¢0) = 2, which is a contradiction. This proves that r1 = 0.

It follows from r1 = 0 and Lemma 3.4.9 that : r2 = 2, s2 = 0, r3 = 3 and s3 = s6 = 1. Since
dg(¢0) = 5, we have two possibilities for the components B1 and B2 of ¢0 : if dg(B1) · dg(B2)
then, either dg(B1) = 1 and dg(B2) = 4, or dg(B1) = 2 and dg(B2) = 3. Let us exclude
the second possibility. Suppose by contradiction that dg(B1) = 2. This implies that B1 is a
smooth conic, so that it contains four singularities of F®, for a generic ® 2 C, by 3.1.8. One
of these singularities is q1(®), which is of one the types 1 : ¡3 or 1 : ¡6. The other three,
say m1; m2; m3, are of one the types 2 : 1 or 3 : 2. Let us apply Camacho-Sad Theorem : we
have I(F®; B1; q1(®)) 2 f¡3; ¡6g and I(F®; B1; mj) 2 f2; 1=2; 2=3; 3=2g, because the tangent
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direction of B1 at each mj corresponds to a local separatrix of this singularity. Since 4 = B2
1 =P

q2B1
I(F®; B1; q), we get that

P3
j=1 I(F®; B1; mj) = 4 ¡ I(F®; B1; q1(®)) 2 f1; ¡2g. On the

other hand,
P3

j=1 I(F®; B1; mj) ¸ 3=2, which is a contradiction. Therefore, dg(B1) = 1 and

dg(B2) = 4.

Let us analyse the singularities of F® in the straight line B1, by using Camacho-Sad Theorem.
Observe ¯rst that B1 contains three singularities, by 3.1.8. One of these singularities is q1(®).
Call m1 and m2 the other two. We assert that, for a generic ®, q1(®) is of the type 1 : ¡3 and m1,
m2 are of the type 2 : 1. In fact, consider the Camacho-Sad indexes I® := I(F®; B1; q1(®)) and
Ij := I(F®; B1; mj). We have that I® 2 f¡3; ¡6g, Ij 2 f2; 1=2; 2=3; 3=2g and I®+I1+I2 = B2

1 = 1,
so that I1 + I2 = 1 ¡ I®. Since I1 + I2 · 4, we get that I® ¸ ¡3, so that I® = ¡3 and I1 = I2 = 2,
as the reader can check. This implies that q1(®) is of the type 1 : ¡3 and m1 and m2 are of the
type 2 : 1. Moreover, F® has four singularities outside B1, one of the type 1 : ¡6 and three of the
type 3 : 2. The curve B2 must contain these singularities and also the points in B2 \ B1, which
are also singularities of F®. Since q1(®) changes with the parameters, for a generic ®, B2 does
not contain q1(®). This implies that B2 \ B1 ½ fm1; m2g. On the other hand, (b) Lemma 3.4.8
implies that the germ of ¢0 at mj contains two smooth tangent branches. Hence, B2 is a quartic
tangent to B1 at m1 and m2. Let m3, m4 and m5 be the non-reduced singularities of F0, outside
B1. These singularities are of the type 3 : 2 and must be contained in B2. It follows from (c) of
Lemma 3.4.8 that these points are cuspidal singularities of B2. Therefore, B2 is a quartic with
three cuspidal singularities and tangent to B1 at m1 and m2. Note that three di®erent points in
the set fm1; :::; m5g, are not aligned, for otherwise the line containing them would be a component
of ¢0, which can not happen.

Choose a homogeneous coordinate system [x : y : z] such that B1 is the line z = 0 and m3,
m4 and m5 are the points, [0 : 0 : 1], [1=2 : 1=2 : 1] and [1=2 : ¡1=2 : 1], respectively. As
the reader can check, in the a±ne coordinate system z = 1, the quartic B2 is then given by
4y2(1 ¡ 3x) ¡ 4x3 + (3x2 + y2)2 = 0. This ¯nishes the proof in this case, because the divisor of
tangencies of the pencil (F2

®)®2C is also given by these curves (see x2.3). ¤
3.4.13 The case d = 3. We will consider the following situation : let F be a foliation on CP(2)
of degree three with three non-aligned radial singularities, say m1; m2; m3. Let `ij be the straight
line joining mi and mj , 1 · i < j · 3. Consider the Cremona transformation ª:CP(2) ! CP(2)
de¯ned by blowing-up at the points m1; m2; m3 and blowing-down the strict transforms of the lines
`ij , 1 · i < j · 3, as in ¯gure 4. Set G = ª¤(F). We have the following result :

3.4.14 Lemma. The foliation G has degree two. Moreover, the singularities of G are non-
degenerate if, and only if, the singularities of F are non-degenerate.

Proof. Note ¯rst that the lines `ij are invariant for F ( (b) of Lemma 3.4.1). Since m1, m2

and m3 are not aligned, we can choose a homogeneous coordinate system [x : y : z] such that
m1 = [0 : 0 : 1], m2 = [0 : 1 : 0] and m3 = [1 : 0 : 0], so that `12 = fx = 0g, `13 = fy = 0g and
`23 = fz = 0g. In this coordinate system, we have ª[x : y : z] = [y:z : x:z : x:y]. Since the lines
fx = 0g, fy = 0g and fz = 0g are invariant and [0 : 0 : 1] is a radial singularity of F , this foliation
can be represented in the a±ne coordinate system fz = 1g, by a polynomial vector ¯eld X of the
form

X(x; y) = x(1 + ®x + ¯y + P2(x; y))
@

@x
+ y(1 + °x + ±y + Q2(x; y))

@

@y
;

where ®; ¯; °; ± 2 C and P2; Q2 are homogeneous polynomials of degree two. The fact that [0 :
1 : 0] and [1 : 0 : 0] are radial singularities of F , is equivalent to P2(0; 1) = Q2(1; 0) = 0 and
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P2(1; 0):Q2(0; 1) 6= 0, as the reader can check. Hence, we can suppose that

X(x; y) = x(1 + ®x + ¯y + Ax2 + Bxy)
@

@x
+ y(1 + °x + ±y + Cxy + Dy2)

@

@y
;

where A:D 6= 0. Now, in this coordinate system, we have ª(x; y) = (1=x; 1=y) = (u; v), so that, if
Y (u; v) = ¡u:v:ª¤(X), then

Y (u; v) = (Bu + Av + ®uv + ¯u2 + u2v)
@

@u
+ (Du + Cv + °v2 + ±uv + uv2)

@

@v

and Y represents G in the a±ne coordinate system (u; u) = [u : v : 1]. This implies that G has
degree two, because the homogeneous part of degree three of Y is u:v(u @

@u
+ v @

@v
) (see [LN 1]).

Note that the point n1 := [0 : 0 : 1] is a singularity of G. Similarly, the points n2 := [0 : 1 : 0]
and n3 := [1 : 0 : 0] are singularities of G. On the other hand, if the singularities of F are non-
degenerate, then each line `ij contains four singularities, so that there are nine singularities in
[ij`ij and 4 = 13 ¡ 9 singularities of F in CP(2) n [ij`ij , because the total number of singularities
is 13 = 32 + 3 + 1 (see 3.1.6). Since ª is a biholomorphism outside [ij`ij , G must have four non-
degenerate singularities in ª(CP(2)n[ij`ij) ½ CP(2)nfn1; n2; n3g. Hence, G has seven singularities,
so that they must be non-degenerate, because 7 = 22 + 2 + 1. We leave the proof of the converse
for the reader. ¤

The idea of the proof is the following : we will prove that, for a generic ® 2 C, F® has three
radial singularities, say m1, m2 and m3, which are not aligned. If ª is as in Lemma 3.4.14, then
the pencil (H® := ©¤(F®))®2C satis¯es the hypothesis of the case of degree two. Therefore, we

can suppose that H® = F2
®, for every ® 2 C. The result then follows from the fact that the pencil

(F3
®)®2C is obtained from the pencil (F2

®)®2C by a Cremona transformation, as was showed in x2.3
(see also x2.3 of [LN]). Let us prove the existence of the radial singularities m1, m2, m3.

We have seen before that dg(¢0) = 7, r1 + r2 + r3 = 8, s4 = 0, s6 = 1, s2 + s3 = 4 and
` = s2 +s3+s6 = 5. In particular, since ¢0 has ¯ve irreducible components, at least three of them,
say B1, B2 and B3, are straight lines. Observe that r1 ¸ 3. This follows from s2 + r2 + r3 = s1

2 = 5
((c) of Lemma 3.4.9) and r1 + r2 + r3 = 8, so that r1 = s2 + 3 and r1 ¸ 3. We assert that
r1 = 3. In fact, suppose by contradiction that r1 > 3 and let m1; :::; m4 be four radial singularities
of F®. Let us prove that at least three of them are not aligned. Suppose by contradiction that
they are aligned. Note that the line which contains these singularities is invariant for all foliations
in the pencil, and so we can suppose that m1; :::; m4 2 B1. Since Z(F®; B1) = 4, by 3.1.8, we get
that sing(F®) \ B1 = fm1; :::; m4g. But, this is impossible, by Camacho-Sad Theorem, because
I(F®; B1; mj) = 1, j = 1; :::; 4, and B2

1 = 1. Hence, three of the singularities are not aligned. In
this case, by the previous argument, the pencil (F®)®2C is equivalent to the pencil (F3

®)®2C. Since
the generic foliations in this pencil have three radial singularities, we get r1 = 3.

Now, r1 = 3 and the system of equations in Lemma 3.4.9 gives, r2 = 5, r3 = 0, s2 = s4 = 0, s3 =
4 and s6 = 1. We leave this computation for the reader. Let us prove that the radial singularities,
m1, m2 and m3, are not aligned. Suppose by contradiction that they are aligned. Since the line
that contains them is contained in ¢0 (Lemma 3.4.1), we can suppose that m1; m2; m3 2 B1. On
the other hand, Ij := I(F®; B1; mj) = 1, for a generic ®, so that by Camacho-Sad Theorem, we

must have I(F®; B1; q1(®)) = 1 ¡ P3
j=1 Ij = ¡2. This implies that q1(®) is of the type 1 : ¡2, and

so s2 > 0, a contradiction with s2 = 0. Hence m1, m2 and m3 are not aligned. This ¯nishes the
proof of this case. ¤
3.4.15 The pencil is bimeromorphically equivalent to the family of type 3 (j=3). We
will prove that the pencil (F®)®2C is equivalent to the pencil (F3:1

® )®2C of x2.4. First of all, let
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us prove that d = 3, r1 = 3, r2 = 5, r3 = s3 = s6 = 0, s2 = 1 and s4 = 4, in this case. For
the pencil of type 3, we have s1

2 = 6, s1
3 = s1

6 = 0 and s1
4 = 4 (see ¯g. 1.c). It follows from (c)

of Lemma 3.4.9 that s2 + r2 = 6, s3 = s6 = r3 = 0 and s4 = 4. If we substitute these values in
(d) and (e) of Lemma 3.4.9, we get r1 = d2 + d ¡ 9 and 4r1 + 9

2
r2 ¡ 1

2
s2 = d2 + 4d + 13, so that

9r2 ¡ s2 = ¡6d2 + 98. This last relation, together with r2 + s2 = 6, gives 5s2 = 3d2 ¡ 22 > 0, and
so 3 · d · 4. Since 5 divides 3d2 ¡ 22, we get that d = 3 and s2 = 1. This implies that r1 = 3,
r2 = 5, r3 = s3 = s6 = 0 and s4 = 4, as the reader can check. In particular, there is no pencil of
degree two bimeromorphically equivalent to the pencil of type 3. Moreover, since ` = s2 + s4 = 5,
¢0 has ¯ve irreducible components. Let us denote by m1; m2; m3 the three radial singularities, by
m4; :::; m8 the ¯ve singularities of the type 2 : 1 and by B1; :::; B5 the ¯ve irreducible components
of ¢0. Set P = fm1; :::; m8g and L = fB1; :::; B5g. We choose the order B1; :::; B5 in such a way
that dg(Bj) · dg(Bj+1), 1 · j · 4. Recall that for a generic ® 2 C and for each j = 1; :::; 5, Bj

contains a reduced singularity qj(®), such that ® 7! qj(®) 2 Bj is a regular parametrization of Bj .
We will see before, that we can suppose that q1(®) is of the type 1 : ¡2 and that qj(®) is of the
type 1 : ¡4 for j ¸ 2. We assert that the con¯guration of points and curves (P; L) satis¯es the
following properties :
(I). B1; B2; B3 are straight lines and B4; B5 are conics. Moreover, each line contains four singu-
larities and each conic contains six singularities of F®, for a generic ® 2 C.
(II). m1; m2; m3 2 B1 and ; 6= B1 \ B2 \ B3 ½ fm1; m2; m3g, so that we can suppose that
B1 \ B2 \ B3 = fm1g. In particular, sing(F®) \ B1 = fq1(®); m1; m2; m3g.
(III). Besides m1, B2 (resp. B3) contains two singularities of the type 2 : 1, so that we can suppose
that sing(F®) \ B2 = fq2(®); m1; m4; m5g (resp. sing(F®) \ B3 = fq3(®); m1; m6; m7g).
(IV). The lines B2 and B3 are tangent to the conics B4 and B5. Moreover, we can order the
points m4; :::; m7 in such a way that B2 \ B4 = fm4g, B2 \ B5 = fm5g, B3 \ B4 = fm6g and
B3 \ B5 = fm7g.
(V). B4 \ B5 = fm2; m3; m8g, where m8 is a point of tangency and B4; B5 are transverse
at m2; m3. In particular, sing(F®) \ B4 = fq4(®); m2; m3; m4; m5; m8g and sing(F®) \ B5 =
fq4(®); m2; m3; m6; m7; m8g.

Observe ¯rst that dg(B1) = dg(B2) = dg(B3) = 1 and that, either dg(B4) = dg(B5) = 2, or

dg(B4) = 1 and dg(B5) = 3. This follows from dg(¢0) = 7, ¢0 =
P5

j=1 Bj and dg(Bj) · dg(Bj+1),
as the reader can check. Note also that m1, m2 and m3, are aligned, for otherwise the pencil would
be bimeromorphically equivalent to an elliptic, non-degenerate, exceptional pencil of degree two
(by Lemma 3.4.14), which is not possible. The straight line that contains m1; m2; m3 is invariant
for every foliation F®, so that it is contained in ¢0, by Lemma 3.4.1, and we can suppose that
this line is B1. By 3.1.8, each line contains four singularities of F®, for a generic ®. On the other
hand, Camacho-Sad Theorem implies that q1(®) is of the type 1 : ¡2 : since I(F®; B1; mj) = 1,
j = 1; 2; 3, we get that 1 = I(F®; B1; q1(®)) + 3, so that I(F®; B1; q1(®)) = ¡2 and q1(®) is of the
type 1 : ¡2. Since s2 = 1 and s4 = 4, we get that qj(®) is of the type 1 : ¡4, j = 2; 3; 4; 5. Let us
prove that dg(B4) = dg(B5) = 2.

Suppose by contradiction that dg(B4) = 1 and dg(B5) = 3. Consider a straight line Bj ,
j ¸ 2, and set sing(F®) \ Bj = fqj(®); mk1

; mk2
; mk3

g. Observe that I(F®; B2; qj(®)) = ¡4 and
Ii := I(F®; B2; mki

) 2 f1; 2; 1=2g, i = 1; 2; 3. If we choose k1; k2; k3 in such a way that I1 · I2 · I3,
then we get I1 = 1 and I2 = I3 = 2, as the reader can check by using Camacho-Sad Theorem.
Hence, mk2 and mk3 are of the type 2 : 1. It follows from (b) of Lemma 3.4.8 that the curve B5,
which is the unique component of degree > 1 of ¢0, must be tangent to Bj at the points mk2 and
mk3

. This implies that Bj :B5 ¸ 4. But, Bj :B5 = 3, because dg(Bj) = 1 and dg(B5) = 3. This
contradiction implies that dg(B4) = dg(B5) = 2. Note that we have proved also that Bj , j = 2; 3,
contains one singularity of the type 1 : 1 and two of the type 2 : 1.
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Now, we have two possibilities, either B1 \ B2 \ B3 6= ;, or B1 \ B2 \ B3 = ;. Suppose by
contradiction that B1\B2\B3 = ;. In this case, B2\B3 is one of the points mj , 4 · j · 8, because
m1; m2; m3 2 B1. This implies that B2 and B3 meet transversely at mj and this contradicts the
fact that the germ of ¢0 consists of two tangent branches ((b) of Lemma 3.4.8). Hence, B1\B2\B3

consists of one radial singularity, and so we can suppose that B1 \ B2 \ B3 = fm1g. Note that
m1 62 B4 [ B5, because the germ of ¢0 at m1 contains exactly three di®erent branches ((a) of
Lemma 3.4.8), and these branches are contained in B1 [ B2 [ B3.

We can chose the order mj , 4 · j · 8, in such a way that sing(F®) \ B2 = fq2(®); m1; m4; m5g
and sing(F®) \ B3 = fq3(®); m1; m6; m7g. Since m1 62 B4 [ B5 and sing(¢0) = fm1; :::; m8g,
we get that B4 \ B2 ½ fm4; m5g. Note that the germ of ¢0 at m4 and m5 contains two tangent
branches at each one of these points, because they are of the type 2 : 1. This implies that B4 \ B2

contains just one of these points, because otherwise we would have B2:B4 ¸ 4, whereas B2:B4 = 2.
Hence, we can suppose that B2 \ B4 = fm4g and B4 is tangent to B2 at m4. Analogously, we can
suppose that B3 \ B4 = fm6g and B4 is tangent to B3 at m6. This implies that B4 is a conic
tangent to the two lines B2 and B3 at m4 and m6, respectively. Similarly, B5 is a conic tangent to
the lines B2 and B3 at the points m5 and m7, respectively. Note that m8 2 B4 \B5. Since m8 is of
the type 2 : 1, B4 and B5 are tangent at m8, by (b) of Lemma 3.4.8. On the other hand, B4:B5 = 4
and [B4; B5]m8

= 2, so that B4 \ B5 must contain two other points, which are m2 and m3, where
B4 and B5 meet transversely, because m2 and m3 are of the type 1 : 1. From this, we get that
sing(F®) \ B4 = fq4(®); m2; m3; m4; m6; m8g and sing(F®) \ B5 = fq5(®); m2; m3; m5; m7; m8g.
This ¯nishes the proof of (I),...,(V).

Now, consider a homogeneous coordinate system [x : y : z] in CP(2) such that B1 = fz = 0g,
m2 = [1 : i : 0] and m3 = [1 : ¡i : 0]. This implies that, in the a±ne coordinate system
fz = 1g, B1 is the line at in¯nity and that for j = 4; 5, Bj has an equation of the form fj(x; y) =
Pj(x; y)+x2+y2, where Pj is of degree one, j = 4; 5. Note that in this coordinate system, the lines
B2 and B3 are parallel, because they meet at m1 2 B1. After a translation in the plane (x; y), we
can suppose that the tangency point between B4 and B5 is (0; 0), so that P1(0; 0) = P2(0; 0) = 0
and dP1(0; 0) ^ dP2(0; 0) = 0. Observe that dPj(0; 0) 6= 0, j = 1; 2. Hence, after a linear change
of variables of the form (x; y) 7! (a:x + b:y; ¡b:x + a:y), with a2 + b2 = 1, we can suppose that
fj(x; y) = ¡2aj :x + x2 + y2, where aj 6= 0, j = 1; 2, and a1 6= a2. Since the lines B2 and B3 are
parallel, but not parallel to the direction fx = 0g, we can suppose that they have equations of the
form y = a:x + Aj , where a 2 C and 0 6= A1 6= A2 6= 0, j = 1; 2. The fact that they are tangent to
B4 and B5 implies the following relations :

(a:Aj ¡ ai)
2 = A2

j(1 + a2) ; i; j = 1; 2 =) (a:Aj ¡ a1)
2 = (a:Aj ¡ a2)

2 ; j = 1; 2 =)

a1 + a2 = 2a:A1 = 2a:A2. Since 0 6= A1 6= A2 6= 0, we get that a = 0, a1 = ¡a2 and A2
1 = A2

2 = a2
1.

After a linear change of variables of the form (x; y) 7! (¸:x; ¸:y), ¸ 6= 0, we can suppose that
a1 = ¡1 and a2 = 1, so that f1(x; y) = (x + 1)2 + y2 ¡ 1 and f2(x; y) = (x ¡ 1)2 + y2 ¡ 1. This
implies that A2

1 = A2
2 = 1 and we can suppose that B2 = fy = 1g and B3 = fy = ¡1g. In

these coordinates ¢0 coincides with the divisor of tangencies of the pencil (F3:1
® )®2C, of x2.4. This

¯nishes the proof of Theorem 2. ¤
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