
On Optimality Conditions for Cone-Constrained

Optimization1

A. F. Izmailov2

Moscow State University, Dept. of Computational Mathematics and Cybernetics
Vorob’yovi Gori, 119899 Moscow, Russia

izmaf@ccas.ru

and
M. V. Solodov3
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Abstract

We consider feasible sets given by conic constraints,
where the cone defining the constraints is convex with
nonempty interior. We study the case where the fea-
sible set is not assumed to be regular in the classical
sense of Robinson and obtain a constructive description
of the tangent cone under a certain new second-order
regularity condition. This condition contains classical
regularity as a special case, while being weaker when
constraints are twice differentiable. Assuming that the
cone defining the constraints is finitely generated, we
also derive a special form of primal-dual optimality con-
ditions for the corresponding constrained optimization
problem. Our results subsume optimality conditions
for both the classical regular and second-order regular
cases, while still being meaningful in the more general
setting in the sense that the multiplier associated with
the objective function is nonzero.

1 Introduction

Let X and Y be normed linear spaces. We consider the
sets given by

D = {x ∈ X | F (x) ∈ K}, (1)

where the constraint mapping F : X → Y is smooth
enough and K is a closed convex cone in Y with
nonempty interior. The problem of an accurate and
constructive description of the tangent cone to a set at
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a given point is fundamental for many reasons, one of
which is deriving optimality conditions. Recall that a
vector h ∈ X is called tangent to a set D ⊂ X at a
point x̄ ∈ D if there exists a mapping r : <+ → X such
that x̄+ th+ r(t) ∈ D ∀ t ∈ <+, ‖r(t)‖ = o(t). The set
of all such vectors h in X is the tangent cone to the set
D at the point x̄, which we shall denote by TD(x̄). As
is well known,

TD(x̄) ⊂ {h ∈ X | F ′(x̄)h ∈ TK(F (x̄))}, (2)

which is the first-order necessary condition for tan-
gency. To obtain a precise description of TD(x̄), i.e., a
sufficient condition for tangency, some regularity (also
called constraint qualification) condition is needed.
One classical condition in this setting is Robinson’s
condition:

0 ∈ int(F (x̄) + ImF ′(x̄)−K). (3)

Note that in (3) cone K is not required to have a
nonempty interior. If (3) is satisfied, then (2) holds
as an equality, e.g., [4, Corollary 2.91]. Deriving an
accurate constructive description of the tangent cone
without assuming (3) and, more generally, when (2)
does not necessarily hold as an equality, is one of the
principal goals of this paper. Our approach is based on
a certain new notion of second-order regularity, which
in the setting of K with nonempty interior is weaker
than (3); see Definition 2.1 and Remark 2.1. An imme-
diate application of this description is the primal form
of necessary optimality conditions for the problem

min {f(x) | x ∈ D}, (4)

where the objective function f : X → < is smooth
enough.

Our second goal is to obtain primal-dual optimality
conditions for the irregular case, with a nonzero mul-
tiplier associated to the objective function. If x̄ is a



local solution of (4), (1), then the classical F. John–
type first-order necessary optimality conditions state
that there exists a generalized Lagrange multiplier
(y0, y

∗) ∈ (<× Y ∗) \ {0} such that

y0f
′(x̄)− (F ′(x̄))∗y∗ = 0,

F (x̄) ∈ K, y∗ ∈ K∗, 〈y∗, F (x̄)〉 = 0, (5)

where Y ∗ is the dual space of Y , (F ′(x̄))∗ is the ad-
joint operator of F ′(x̄), and K∗ is the dual cone of
K. If Robinson’s condition (3) is violated, then the
F. John conditions hold trivially with y0 = 0, inde-
pendently of the objective function, and therefore their
utility for describing optimality in that case is very lim-
ited (at least without some further developments). As-
sumptions that guarantee the existence of a multiplier
(y0, y

∗) with y0 6= 0 are again constraint qualification
conditions, such as (3). For problems with a finitely
generated cone K, without assuming (3) or equality in
(2), we obtain a special form of primal-dual optimality
conditions under our assumption of second-order reg-
ularity. Our optimality conditions resemble the struc-
ture of (5), where y0 6= 0 and a certain term involving
the second derivative of F is added to the standard La-
grangian; see Theorem 3.2. Our optimality conditions
subsume those for the classical regular case of (3), as
well as those for the more general second-order regular
case of [3]; see section 4.

In section 4, we compare our results with other ap-
proaches relevant for irregular inequality-constrained
problems. We also provide an example showing that
our results can be used to verify optimality in cases
where other known approaches appear not to be appli-
cable.

Finally, we note that in the case of the nonlinear pro-
gramming problem, i.e., when Y = <m × <s and
K = <m− × {0}, Robinson’s regularity condition (3)
reduces to the classical Mangasarian–Fromovitz con-
straint qualification, and with y0 6= 0 optimality con-
ditions (5) become the classical Karush–Kuhn–Tucker
conditions.

Our notation is fairly standard. If Σ is a topological
linear space, then Σ∗ denotes its (topologically) dual
space and 〈·, ·〉 is the pairing of elements in Σ∗ and Σ,
i.e., 〈σ∗, σ〉 is the value of the linear functional σ∗ ∈ Σ∗

on σ ∈ Σ. For a cone C in Σ, the positive dual cone
(sometimes also referred to as the polar cone) of C
is C∗ := {σ∗ ∈ Σ∗ | 〈σ∗, σ〉 ≥ 0 ∀σ ∈ C}. For
an arbitrary set Ω in Σ, the set orthogonal to Ω is
Ω⊥ := {σ∗ ∈ Σ∗ | 〈σ∗, σ〉 = 0 ∀σ ∈ Ω}. If Υ and
Σ are topological linear spaces and Λ : Υ → Σ is a
continuous linear operator, then Λ∗ : Σ∗ → Υ∗ denotes
the adjoint operator of Λ. The interior and the closure
of a set Ω (in appropriate topology) are denoted by
int Ω and cl Ω, respectively, and linear and conic hulls
of this set (in appropriate linear space) by lin Ω and

cone Ω, respectively. A cone C in a linear space Σ is
referred to as finitely generated if either it is empty or
there exists a positive integer s and some elements σi ∈
Σ, i = 1, . . . , s, such that clC = cone{σ1, . . . , σs} ∪
{0}.

2 Tangent cone description

As is well known [4, Lemma 2.99], in our setting where
intK 6= ∅, Robinson’s regularity condition (3) is equiv-
alent to

∃ ξ̄ ∈ X such that F (x̄) + F ′(x̄)ξ̄ ∈ intK. (6)

This condition implies that for h ∈ TD(x̄) the inclusion

F ′(x̄)h ∈ TK(F (x̄)) = cl(K + lin{F (x̄)}) (7)

is both necessary and sufficient, e.g., [4, Corollary 2.91].
In the irregular case, TD(x̄) can be smaller than the
set of h ∈ X satisfying (7), and a more refined de-
scription is needed. To this end, it is natural to take
into account the second-order information about F at
x̄. We proceed with a second-order characterization of
the tangent cone, starting with the following definition.

Definition 2.1 We say that conic constraints in (1)
are second-order regular at a feasible point x̄ with re-
spect to a direction h ∈ X if there exist (ξ̄, h̄) ∈ X×X
such that

F (x̄) + F ′(x̄)h̄ ∈ K,
F (x̄) + F ′(x̄)ξ̄ + F ′′(x̄)[h, h̄] ∈ intK.

Remark 2.1 If Robinson’s condition (6) is satisfied,
then second-order regularity holds with respect to every
h ∈ X, including h = 0. (To verify this, just choose ξ̄
satisfying (6) and h̄ = 0.)

Observe further that Definition 2.1 is equivalent to say-
ing that there exists h̄ ∈ X such that

F ′(x̄)h̄ ∈ K + lin{F (x̄)},
F ′′(x̄)[h, h̄] ∈ intK + lin{F (x̄)}+ ImF ′(x̄). (8)

This form of second-order regularity will be used in
the subsequent analysis. We are now ready to state
the main result of this section.

Theorem 2.1 Let X and Y be normed linear spaces
and let K be a closed convex cone in Y with a nonempty
interior. Let set D be given by (1), where F : X → Y
is twice Fréchet-differentiable at a point x̄ ∈ D. Then
the following statements hold.



1. Every h ∈ TD(x̄) satisfies (7) as well as the fol-
lowing condition:

F ′′(x̄)[h]2 ∈ cl(K + lin{F (x̄)}+ ImF ′(x̄)). (9)

2. If h ∈ X satisfies

F ′(x̄)h ∈ K + lin{F (x̄)} (10)

and (9), and if constraints in (1) are second-
order regular at x̄ with respect to this h, then
h ∈ TD(x̄).

In section 4, we compare this theorem (as well as the
other results of this paper) with related facts and ap-
proaches to irregular inequality constraints and provide
an illustrative example. Here, we note that in the reg-
ular case (3) implies that

K + lin{F (x̄)}+ ImF ′(x̄) = Y,

and thus (9) holds trivially for every h ∈ X. This
observation together with Remark 2.1 show that Theo-
rem 2.1 subsumes (when K has nonempty interior) the
classical result on the tangent cone in the regular case.

Remark 2.2 If K is a finitely generated cone, then
(10) is equivalent to (7), as the right-hand sides of these
relations coincide. But in the general case, one cannot
substitute the weaker condition (7) into the sufficiency
part of the theorem, as illustrated by the following ex-
ample.

Example 2.1 Let X = <, Y = <3, and

K = cone{y ∈ <3 | y1 = 1, y3 = |y2|3/2},
F : < → <3, F (x) = (1, x, x2).

For the point x̄ = 0 ∈ <, for element h = 1 condition
(8) holds with h̄ = h. At the same time, 0 is obviously
an isolated point of the set D given by (1), and hence
TD(x̄) = {0}.

3 Optimality conditions

We now turn our attention to the optimization prob-
lem (4), where the feasible set is given by (1). We as-
sume that K is a closed convex cone with nonempty
interior (for primal-dual optimality conditions, also
finitely generated), the objective function f is Fréchet-
differentiable at the point x̄ ∈ D under consideration,
and the mapping F is twice Fréchet-differentiable at x̄.

Following the developments of section 2, we first intro-
duce some relevant cones. Let H2(x̄) be the set of all

elements satisfying the second-order necessary condi-
tions of tangency stated in Theorem 2.1, i.e.,

H2(x̄) := {h ∈ X | (7), (9) hold},

and H̃2(x̄) be the set of elements satisfying the two
relations (10) and (9), which appear in the sufficiency
part:

H̃2(x̄) := {h ∈ X | (9), (10) hold}.

Finally, let H̄2(x̄) consist of all elements satisfying the
sufficient conditions of tangency stated in Theorem 2.1,
i.e.,

H̄2(x̄) := {h ∈ H̃2(x̄) | (8) holds for some h̄ ∈ X}.

By these definitions,

H̄2(x̄) ∪ {0} ⊂ H̃2(x̄) ⊂ H2(x̄). (11)

Note that if the second-order regularity condition holds
with respect to all h ∈ H̃2(x̄)\{0}, then the first inclu-
sion in (11) holds as an equality. If cone K is finitely
generated, then the second inclusion is also an equal-
ity (recall Remark 2.2). By Theorem 2.1, we also have
that

H̄2(x̄) ∪ {0} ⊂ TD(x̄) ⊂ H2(x̄). (12)

If K is finitely generated and the second-order regular-
ity condition holds with respect to all h ∈ H̃2(x̄) \ {0},
then we have equalities throughout (12).

The left-hand inclusion in (12) immediately implies the
following primal necessary optimality condition for our
problem.

Theorem 3.1 Let X and Y be normed linear spaces,
and let K be a closed convex cone in Y with a nonempty
interior. Assume that f : X → < is Fréchet-
differentiable, and F : X → Y is twice Fréchet-
differentiable at a point x̄ ∈ D, where D is given by
(1). If x̄ is a local solution of (4), (1), then

〈f ′(x̄), h〉 ≥ 0 ∀h ∈ H̄2(x̄). (13)

If X is finite-dimensional, the right-hand inclusion in
(12) implies that the following condition is sufficient for
x̄ to be a strict local solution of our problem:

〈f ′(x̄), h〉 > 0 ∀h ∈ H2(x̄) \ {0}. (14)

Dualizing (13), we can write that

f ′(x̄) ∈ (H̄2(x̄))∗,

which is the primal-dual form of necessary optimality
conditions. Explicit evaluation of the dual cone in the
right-hand side of the above relation in full generality is
an extremely difficult problem. However, we are able to



give some meaningful results under additional assump-
tions. Specifically, if cone K is finitely generated and
for some h ∈ H̄2(x̄) the inequality in (13) holds as an
equality, we derive an explicit primal-dual form of nec-
essary optimality conditions. Note that further study
of such “critical direction” h is of particular importance
in view of the violation of the sufficient optimality con-
dition (14).

Theorem 3.2 Suppose that the assumptions of Theo-
rem 3.1 are satisfied. Let K be a finitely generated cone,
and let the point x̄ be a local minimizer for problem (4),
(1). Assume that

∃ h ∈ H̄2(x̄) : 〈f ′(x̄), h〉 = 0. (15)

Then there exist two linear functionals y∗1 =
y∗1(h), y∗2 = y∗2(h) such that

y∗1 ∈ K∗ ∩ {F (x̄)}⊥ ∩ {F ′(x̄)h}⊥, (16)

y∗2 ∈ K∗∩{F (x̄)}⊥∩(ImF ′(x̄))⊥∩{F ′′(x̄)[h]2}⊥, (17)

and
f ′(x̄) = (F ′(x̄))∗y∗1 + (F ′′(x̄)[h])∗y∗2 . (18)

Theorem 3.2 subsumes classical first-order necessary
optimality conditions for the regular case, as in that
case necessarily

K∗ ∩ {F (x̄)}⊥ ∩ (ImF ′(x̄))⊥ ∩ {F ′′(x̄)[h]2}⊥ = {0}.
(19)

Therefore y∗2 = 0, and representation (16)–(18) reduces
to

f ′(x̄) = (F ′(x̄))∗y∗1 , (20)

with y∗1 satisfying (16). Furthermore, by Remark 2.1, in
the regular case Theorem 3.2 can be applied by choos-
ing h = 0. With this choice, (16) takes the form

y∗1 ∈ K∗ ∩ {F (x̄)}⊥. (21)

Combined with feasibility condition F (x̄) ∈ K, rela-
tions (20), (21) coincide with the classical optimality
conditions (5), where the nonsingular multiplier y0 = 1
is chosen. In terms of the nonlinear programming prob-
lem, the inclusion y∗1 ∈ K∗ is the nonnegativity con-
dition for the Lagrange multipliers, and the inclusion
y∗1 ∈ {F (x̄)}⊥ is the condition of complementary slack-
ness.

As will be shown in section 4, Theorem 3.2 also contains
optimality conditions under the second-order regularity
of [3] but can be applicable when the latter is not.

4 Comparisons and an example

In this section, we provide a comparison of the re-
sults obtained above with known approaches to irreg-
ular problems, and illustrate our development by an
example.

First, we mention Abadie’s and Kuhn–Tucker’s con-
straint qualifications (CQs) for nonlinear programming
[10] (there are also some other CQs of similar type).
These are weaker than the Mangasarian–Fromovitz
constraint qualification (MFCQ) but still guarantee
that the tangent cone is given by the linearized model
of the constraints. Such CQs of nonalgebraic nature are
usually rather difficult to verify directly. Moreover, we
deal here with a more general case in which the tangent
cone does not necessarily coincide with the linearized
cone.

The next issue that deserves to be discussed is refor-
mulating inequality constraints as equalities, with the
aim of subsequently using results available for the lat-
ter. One might try to apply known optimality condi-
tions for (irregular) equality-constrained problems (the
so-called 2-regularity theory, see [7, 1] and references
therein) to the corresponding reformulations of irreg-
ular inequality constraints. We next show that in our
context, applicability of this approach is very limited.

For simplicity, let us take Y = <m, K = <m− , and
F (x̄) = 0, and reformulate the inequality-constrained
set D by introducing slacks:

∆ = {(x, u) ∈ X ×<m | F (x) + u = 0, u ≥ 0}.

Clearly, the equality constraint in ∆ is regular at every
point, but MFCQ is still violated at (x̄, 0). Hence,
the classical results for the regular case and irregular
equality-constrained case are both not applicable.

Another possibility is a purely equality-constrained re-
formulation:

∆ = {(x, u) ∈ X ×<m | F (x) + u2 = 0},

where the square is componentwise. Application of 2-
regularity theory leads to something meaningful only
when kerF ′(x̄) 6= {0}, which is an unnatural require-
ment for inequality constraints. It seems that develop-
ing a special approach specifically designed for inequal-
ity constraints is really necessary. An initial step in the
direction pursued in the present paper was made in [5].

Another known approach to irregular problems con-
sists of second-order necessary and sufficient optimality
conditions of Levitin–Milyutin–Osmolovskii type, e.g.,
[9, 3, 1], which employ F. John first-order necessary
conditions. This approach is effective when applied to
inequality-constrained problems, but it leads to results
of a completely different nature than ours. In particu-
lar, this approach is not based on describing the tan-
gent directions.

Next, we discuss the well-known second-order CQ [3],
which was introduced using second-order parabolic tan-
gent sets, and which is especially relevant for irregular
inequality-constrained problems. In our setting, this



CQ can be stated as follows: there exists h ∈ X such
that

〈f ′(x̄), h〉 = 0, (22)
F ′(x̄)h ∈ K + lin{F (x̄)}, (23)

F ′′(x̄)[h]2 ∈ intK + lin{F (x̄)}+ ImF ′(x̄). (24)

This condition is also weaker than Robinson’s regular-
ity (in the regular case, (22)–(24) hold with h = 0),
yet it guarantees that if x̄ is a local solution of (4), (1),
then F. John-necessary conditions are satisfied with a
nonzero multiplier corresponding to the objective func-
tion. But observe that in Theorem 2.1 we consider a
larger set of directions than those satisfying (23), (24).
Namely, for an element h satisfying second-order nec-
essary conditions of tangency, this theorem gives con-
structive sufficient conditions for h to be a limit point
of elements satisfying (23), (24). This is important,
because it is certainly possible that (22) does not hold
for any h satisfying (23), (24), but that it does hold
for some limit point of such elements. Moreover, Ex-
ample 4.1 below illustrates that this situation (i.e., the
second-order CQ (22)–(24) is violated, but our Theo-
rem 3.2 is applicable) is in fact quite likely to occur.

Finally, note that if h is an element satisfying (22)–
(24), then (15) also holds, and the assumptions of The-
orem 3.2 are satisfied. Moreover, in this case, (19)
holds. Hence, relation (17) in Theorem 3.2 implies that
y∗2 = 0.

To complete this section, we present an example illus-
trating all the results derived above.

Example 4.1 Let X = Y = <2, K = <2
−, and con-

sider a family of functions

f : <2 → <, f(x) = ax1 + bx2 + ω1(x)

and the mapping

F : <2 → <2, F (x) =
(
−x1, −

1
2

(x2
1 − x2

2)
)

+ ω2(x),

where ω1 : <2 → <, |ω1(x)| = o(‖x‖), and ω2 : <2 →
<2, ‖ω2(x)‖ = o(‖x‖2).

Consider the point x̄ = 0 in <2. It can be easily seen
that MFCQ does not hold here, and so classical theory
does not apply. By direct computations, using Theo-
rem 2.1 we obtain that

TD(0) = H2(0) = {h ∈ R2 | h1 ≥ |h2|},

which is actually geometrically obvious. Observe fur-
ther that the linearized cone is different from TD(0).
Hence, the Kuhn–Tucker, Abadie, and any other CQs
of such a kind are violated in this example.

It is easy to see that for all values of parameters a and
b, the F. John conditions (5) for problem (4), (1) hold
at 0 with y0 = 0. Furthermore, y0 can be nonzero only
if b = 0 and a ≤ 0.

As is easy to see, the set of elements satisfying (23),
(24) is {h ∈ R2 | h1 > |h2|}. Clearly, if 0 is a local
minimizer, conditions (22)–(24) can hold for some h
simultaneously only if a = b = 0.

We next illustrate our approach, considering several
characteristic values of the parameters.

If a = 1, b = −1, then 0 is a (nonisolated) local mini-
mizer for problem (4), (1). As is easy to see,

〈f ′(0), h〉 ≥ 0 ∀h ∈ H2(0), (25)

which illustrates Theorem 3.1. Note that for h =
(1, 1) ∈ H2(0), the latter inequality holds as equal-
ity, and our primal-dual optimality conditions (16)–
(18) are satisfied with the multipliers

y∗1 = (0, α) ∈ <2, α ∈ <−, y∗2 = (0, −1) ∈ <2 .

This gives an illustration for Theorem 3.2. Note that
for h ∈ H2(0)\lin{(1, 1)}, a similar representation does
not hold. The reason is that for such h, strict inequality
holds in (25).

If a = 1, b = 0, then (25) holds as a strict inequality for
every h ∈ H2(0) \ {0}, and 0 is an isolated local min-
imizer. This illustrates sufficient optimality condition
(14).

Finally, if a = 0, b = 1, then it is easy to see that
(25) does not hold for those elements h ∈ H2(0) for
which h2 < 0. Theorem 3.1 implies that 0 is not a
local minimizer in this case. We could similarly use
Theorem 3.2 to verify this conclusion. Indeed, for the
element h = (1, 0) ∈ H2(0), (25) holds as an equality,
but there exist no multipliers y∗1 , y

∗
2 ∈ <2 for which

(18) holds.

5 Some further developments

5.1 Second-order optimality conditions
To derive second-order optimality conditions, we need
the following notion. Let X and Σ be normed lin-
ear spaces, and let a mapping Φ : X → Σ be twice
Fréchet-differentiable at a point x̄ ∈ X. Suppose that
Σ1 = Im Φ′(x̄) is closed and has a closed complemen-
tary subspace Σ2 in Σ. Let P be a projector onto Σ2

parallel to Σ1 in Σ. (By assumptions above, this pro-
jector is continuous.) In this setting, the mapping Φ
is referred to as 2-regular at the point x̄ with respect to
an element h ∈ X (see [7, 1]) if

Im(Φ′(x̄) + PΦ′′(x̄)[h]) = Σ.



Theorem 5.1 Let X and Y be Banach spaces, let K
be a closed finitely generated cone in Y with a nonempty
interior, and let f : X → < be twice and F : X → Y
be three times Fréchet-differentiable at the point x̄,
which is a local minimizer for problem (4), (1). As-
sume that (15) holds, and let Π̃ be a (continuous) pro-
jector onto some closed complementary subspace Ỹ of
lin{F (x̄), F ′(x̄)h} in Y. Assume finally that

Π̃F ′′(x̄)[h]2 ∈ Π̃ ImF ′(x̄)

and that the mapping Φ : X → Ỹ , Φ(x) = Π̃F (x), is 2-
regular at the point x̄ with respect to h. Then for every
y∗1 , y

∗
2 ∈ Y ∗ satisfying (16)–(18), it holds that

f ′′(x̄)[h]2 − 〈y∗1 , F ′′(x̄)[h]2〉 − 1
3
〈y∗2 , F ′′′(x̄)[h]3〉 ≥ 0.

The next example illustrates that Theorem 5.1 provides
additional information that can be used to eliminate
candidates for optimality.

Example 5.1 Consider the setting of Example 4.1,
where a = 1, b = −1, ω2(·) ≡ 0 on <2, and ω1 : <2 → <
is a quadratic form negative on h = (1, 1). Then the
first-order necessary conditions given by Theorems 3.1
and 3.2 are satisfied at 0 (see Example 4.1), but by
direct inspection it can be seen that the second-order
necessary optimality conditions given by Theorem 5.1
are violated. We conclude that 0 is not a local mini-
mizer for problem (4), (1).

5.2 Mixed equality and inequality constraints
In contrast to the regular case, it appears very difficult
(if not impossible) to extend the results for irregular
equality- or inequality-constrained problems to the case
with mixed inequality and equality constraints (i.e., to
avoid the condition intK 6= ∅), except for some special
cases. One special case, specifically where the singular-
ity/irregularity is due to equality-type constraints only,
is studied thoroughly in [2, 8]. Let us consider briefly
the opposite case. Let set D now be given by

D = {x ∈ X | F (x) ∈ K, G(x) = 0}. (26)

Assume G : X → Z is three times continuously differ-
entiable, where X and Z are Banach spaces. Suppose
G is regular at a point x̄ ∈ D, i.e., ImG′(x̄) = Z, and
there exists a continuous projector Π on KerG′(x̄) in
Z. According to the classical facts of nonlinear anal-
ysis, under those assumptions there exist a neighbor-
hood U of 0 in X and a mapping ρ : U → X such
that ρ(0) = x̄, ρ(U) is a neighborhood of x̄ in X, ρ is
a C3-diffeomorphism from U onto ρ(U), and

G(ρ(x)) = G′(x̄)x ∀x ∈ U,

and the explicit formulas for the first three derivatives
of ρ are available. Now instead of a feasible point x̄ of

problem (4), (26), we can consider for local analysis the
feasible point 0 of the inequality-constrained problem

min {ϕ(x) | x ∈ ∆}, ∆ = {x ∈ X̃ ∩ U | Φ(x) ∈ K},

where X̃ = KerG′(x̄),

ϕ(x) = f(ρ(x)), Φ(x) = F (ρ(x)), x ∈ U.

Applying the analysis developed in this paper to the
latter problem, optimality conditions for problem (4),
(26) can be derived.
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