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We propose a new approach to globalizing the Josephy-Newton algorithm for solving the monotone

variational inequality problem. Known globalization strategies rely either on minimization of

a suitable merit function, or on a projection-type approach. The technique proposed here is
based on a linesearch in the regularized Josephy-Newton direction which finds a trial point and a
proximal point subproblem (i.e., subproblem with suitable parameters), for which this trial point
is an acceptable approximate solution. We emphasize that this requires only checking a certain

approximation criterion, and in particular, does not entail actually solving any nonlinear proximal

point subproblems. The method converges globally under very mild assumptions. Furthermore, an
easy modification of the method secures the local superlinear rate of convergence under standard

conditions.
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1 INTRODUCTION

Given a function F : <n → <n and a set C ⊂ <n, the classical variational inequality
problem [8, 15], VIP(F,C), is to find a point x such that

x ∈ C, 〈F (x), u− x〉 ≥ 0 for all u ∈ C ,

where 〈·, ·〉 denotes the usual inner product in <n. When C is the nonnegative
orthant <n+, VIP(F,C) reduces to the nonlinear complementarity problem NCP(F ),
which is to find a point x ∈ <n such that x ≥ 0, F (x) ≥ 0, 〈F (x), x〉 = 0. When C
is the whole space <n, VIP(F,C) becomes a system of nonlinear equations F (x) =
0. Throughout this paper we assume that C is closed convex, F is continuously
differentiable and monotone (i.e., 〈F (x) − F (y), x − y〉 ≥ 0 for all x, y ∈ <n), and
the solution set of VIP(F,C) is nonempty.
∗ Research of the first author is supported by CNPq Grant 300734/95-6, by PRONEX–

Optimization, and by FAPERJ, research of the second author is supported by CNPq Grant
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One of the successful and widely used approaches to solving VIP(F,C) is the
Josephy-Newton method [17, 20, 3], which consists of solving successive lineariza-
tions of the problem. Given a point xk, this method generates the next iterate as
follows:

xk+1 is a solution of VIP(Fk, C) ,

where Fk(·) is the first-order approximation of F (·) at xk :

Fk(x) = F (xk) + F ′(xk)(x− xk) .

If the starting point is sufficiently close to some regular solution x̄ of VIP(F,C) the
sequence generated by the Josephy-Newton method is well-defined and converges
to x̄ superlinearly. Regularity in this context is meant in the sense of Robinson [24]
(see also [3]).

There are two key difficulties with using the Josephy-Newton method for solving
VIP(F,C). First of all, in the absence of regularity even local convergence cannot
be ensured. Second, even if regularity holds at a solution, ensuring global conver-
gence is often difficult. In particular, far from a solution of the problem (even if it
is regular), there is no guarantee that subproblems are solvable and the method is
well-defined. Even if the subproblem solution exists, there is no guarantee that it is
“useful”, i.e., that it constitutes some progress towards solving VIP(F,C). To en-
large the domain of convergence of the Josephy-Newton method, some globalization
strategy has to be used.

One possibility is adopting a linesearch procedure in the obtained Newton direc-
tion (if it exists) aimed at decreasing the value of a suitable merit function (see
[14, 28, 12] for surveys of merit functions for variational inequality and comple-
mentarity problems). Globalizations based on this approach have been proposed
in [19, 37, 22, 23, 10]. The method of [19] is based on the use of the gap function
[2]. For global convergence, F has to be monotone, C compact, and the linesearch
has to be the exact minimization along the direction. Globalization developed in
[37] employs the regularized gap function [1, 13]. For convergence, F has to be
strongly monotone. In both [19] and [37], a strict complementarity condition is
needed for the superlinear convergence rate. Algorithms proposed in [22, 23, 10]
are based on unconstrained merit functions. Specifically, the first two use the D-
gap function [21, 39, 36], and the last uses the Fischer-Burmeister function [11, 9].
These globalizations are similar in spirit. Due to the “safeguard” possibility of
performing a standard gradient descent step for the merit function whenever the
Newton direction does not exist or is not satisfactory, the methods of [22, 23, 10]
are well-defined for any F . It typically holds that every accumulation point of the
generated sequence of iterates is a stationary point of the merit function employed
in the algorithm. However, the existence of such accumulation points, and the
equivalence of stationary points of merit functions to solutions of VIP(F,C), can-
not be guaranteed without further assumptions. For example, in [22] F is assumed
to be strongly monotone, and in [23] F is a uniform P -function and C is a box.
Either of those assumptions implies that solution of VIP(F,C) is in fact globally
unique. If F ′ is further Lipschitz continuous around the solution, local superlinear
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rate of convergence is obtained.
An alternative globalization strategy for monotone problems had been proposed

in [29, 34] for the two special cases of VIP(F,C): the nonlinear equation F (x) = 0
and the NCP(F ), respectively (see also some remarks in [27] concerning the general
case). A distinctive feature of this approach is that it is not based on minimizing
any merit function. Global convergence is ensured by a certain separation and
projection procedure similar to the projection methods for variational inequalities
[16, 32]. Local superlinear rate of convergence, on the other hand, is based on the
inexact proximal point scheme of [31]. The key fact here is that under natural as-
sumptions, close to a solution the Newton step satisfies the approximation criterion
of [31], and so the method converges superlinearly due to its relation to the proxi-
mal point algorithm with an appropriate control of parameters. We note that the
methods of [29, 34] generate a sequence of iterates which converges globally (from
any starting point) to a solution of the problem even if it is not locally unique. This
compares favorably with globalizations using merit functions.

In this paper, we propose a new way of globalizing the Josephy-Newton method,
which is based on the following interesting fact. Performing a linesearch in the
Newton direction, we can find a point and an associated proximal subproblem for
which this point is an acceptable (in some sense) approximate solution. We point
out that this is done by checking a certain approximation criterion, without actually
solving any nonlinear proximal point subproblems. Thus the computational cost
of this procedure is comparable to any typical linesearch. Once this point and
the corresponding values of the proximal subproblem parameters are obtained, the
next iterate is computed in the spirit of the hybrid inexact proximal point methods
[31, 30, 33, 35]. This will be made precise in the following section. Note that this
strategy is different from the methods in [29, 34, 27], where hybrid proximal steps
are taken only locally (essentially, when conditions for superlinear convergence are
satisfied), while globalization is based on a projection procedure.

Our notation is quite standard. For a differentiable function F : <n → <n,
its Jacobian at a point x ∈ <n is denoted by F ′(x). By PC(x) we denote the
orthogonal projection of the point x ∈ <n onto the closed convex set C ⊂ <n.
The normal operator of C is denoted by NC , that is NC(x) = ∅ if x 6∈ C, and
NC(x) = {w ∈ <n | 〈w, u − x〉 ≤ 0 ∀u ∈ C} if x ∈ C. Finally, I stands for the
identity matrix (of appropriate dimension).

2 PROXIMAL-BASED GLOBALIZATION

In the context of this paper, VIP(F,C) is equivalent to solving the inclusion

0 ∈ T (x) , (1)

where the operator T = F + NC is maximal monotone. Recall that the (exact)
proximal point scheme [25, 18] for (1) can be stated as follows: given the current
iterate x, choose the regularization parameter c > 0, and find (y, v) ∈ <n×<n such
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that
v ∈ T (y) , cv + y − x = 0 , (2)

then set y to be the next iterate, and repeat. Of course, the exact proximal point
scheme is not a practical computational method. The utility of any proximal-based
framework depends critically on the ability to handle approximate solutions of
proximal subproblems. In this respect, one may try to relax the inclusion in (2), or
the equation in (2), or both. As discussed in [33], in the context of VIP(F,C) it is
natural and important to relax both. To this end, recall that given some ε ≥ 0, the
ε-enlargement of a maximal monotone operator T , introduced in [4] and denoted
T ε, is given by

T ε(x) = {v ∈ <n | 〈w − v, z − x〉 ≥ −ε for all z ∈ <n, w ∈ T (z)} . (3)

We refer the reader to [4, 6, 5, 7, 33] for properties and applications of ε-enlargements
of maximal monotone operators. The following is a unification [35] of the approxi-
mation criteria considered in [31, 30]: we say that (y, v) is an acceptable approximate
solution of the proximal point subproblem (2) if it holds that

v ∈ T ε(y) ,
‖cv + y − x‖2 + 2cε ≤ σ2(‖cv‖2 + ‖y − x‖2) ,
c > 0 , ε ≥ 0 , σ ∈ [0, 1) .

(4)

Calling such a pair acceptable is justified, because convergence of the resulting
approximate proximal point iterations can be ensured by adding simple explicit
“correction” steps of projection [31] or extragradient [30] type. The advantage of
approximation criteria of this kind is that they are constructive and suitable for a
number of applications (for example, Newton methods [29, 34], forward-backward
splitting [38, 30], and bundle techniques [5, 26], to name some). In what follows,
we show how (4) can be used for globalization of the Josephy-Newton method for
VIP(F,C).

Let x be the current iterate and consider the regularized (with regularization
parameter λ > 0) variational inequality: find w such that

w ∈ C , 〈λF (w) + w − x, u− w〉 ≥ 0 ∀u ∈ C . (5)

Let z be its Josephy-Newton point, i.e., the solution of the linearization of (5):

z ∈ C , 〈λF (x) + (λF ′(x) + I)(z − x), u− z〉 ≥ 0 ∀u ∈ C . (6)

Note that one advantage of considering the regularized subproblems is that the New-
ton direction always exists, due to the strong monotonicity of the (affine) variational
inequality (6) [15]. In what follows, we show that for all t > 0 sufficiently small,
the point y(t) = x+ t(z − x), the modified regularization parameter c(t) = tλ > 0,
and certain associated v(t) ∈ <n, ε(t) ≥ 0, σ(t) ∈ [0, 1) satisfy the approximation
criterion (4). In other words, performing an Armijo-type linesearch in the Josephy-
Newton direction we can find a proximal point subproblem for which an acceptable
approximate solution is readily available. This solution can then be used in the
hybrid proximal point framework to obtain a globally convergent algorithm.



GLOBALIZATION OF NEWTON METHOD FOR VARIATIONAL INEQUALITIES 5

It is convenient to start with the following auxiliary result.
Lemma 2.1. Let F be monotone and continuously differentiable, and let z be

the point given by (6), where x ∈ C is not a solution of VIP(F,C). Then for all
t ∈ (0, 1] sufficiently small and all σ ∈ [0, 1) close enough to one, y(t) = x+ t(z−x)
satisfies

‖tλF (y(t)) + y(t)− x‖2 ≤ σ2(‖tλF (y(t))‖2 + ‖y(t)− x‖2) . (7)

Proof. Using (6) with u = x ∈ C, we have that

λ〈F (x), z − x〉 ≤ 〈(λF ′(x) + I)(z − x), x− z〉
≤ −‖z − x‖2 ,

where the second inequality follows from positive semidefiniteness of F ′(x) (since
F is monotone). By the Cauchy-Schwarz inequality, we further obtain

λ〈F (y(t)), y(t)− x〉 = tλ〈F (x), z − x〉+ tλ〈F (y(t))− F (x), z − x〉
≤ −t‖z − x‖2 + tλ‖F (y(t))− F (x)‖‖z − x‖
= −t(1− tλ)‖z − x‖(‖z − x‖+ ‖F (y(t))− F (x)‖) . (8)

Hence,

‖tλF (y(t)) + y(t)− x‖2 − σ2(‖tλF (y(t))‖2 + ‖y(t)− x‖2)
= t2(1− σ2)(‖λF (y(t))‖2 + ‖z − x‖2) + 2tλ〈F (y(t)), y(t)− x〉
≤ t2((1− σ2)‖λF (y(t))‖2 − ‖z − x‖((1 + σ2)‖z − x‖ − 2λ‖F (y(t))− F (x)‖)) ,

where the inequality follows from (8). Hence, (7) will be satisfied whenever the
right-hand side in the relation above is non-positive, i.e.,

(1− σ2)‖λF (y(t))‖2 ≤ ‖z − x‖((1 + σ2)‖z − x‖ − 2λ‖F (y(t))− F (x)‖) .

As t→ 0 and σ → 1, the left-hand side in the above inequality tends to zero, while
the right-hand side tends to (1 + σ2)‖z − x‖2 > 0, provided z 6= x (observe that if
z = x, then (6) implies that x solves VIP(F,C)). This proves the assertion.

It can be seen that if F is further Lipschitz-continuous (with modulus L > 0),
then the preceeding analysis shows that condition (7) is certainly satisfied whenever

1 > σ ≥
(

max
{

0 , 1− ‖z − x‖2

‖λF (y(t))‖2

})1/2

, 0 < t ≤ σ2

2λL
. (9)

We are now in position to exhibit the pair (y, v) which satisfies the conditions
specified in (4).

Proposition 2.2. Suppose F is monotone and condition (7) holds. Then for
c = tλ and

v(t) =
1

c(1− σ2)
(
x− PC(x− c(1− σ2)F (y(t)))

)
,
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the pair (y(t), v(t)) satisfies the proximal point approximation criterion (4).
Proof. In what follows, in our notation we shall omit the explicit dependence of
y and v on t, as it clear from the context.

We first verify the inclusion in (4), i.e., we show that v ∈ T ε(y) for a certain
ε ≥ 0, where T = F + NC . Denote q = PC(x − c(1 − σ2)F (y)). By properties of
the normal operator,

q = x− c(1− σ2)F (y)− ν , ν ∈ NC(q) . (10)

With this notation,

v =
1

c(1− σ2)
(x− q) = F (y) + a , a =

1
c(1− σ2)

ν ∈ NC(q) . (11)

We have to verify that for some ε ≥ 0,

〈v − w, y − u〉 ≥ −ε ∀u ∈ <n, w ∈ T (u) .

Since NC(u) = ∅ for u 6∈ C, w ∈ T (u) implies that u ∈ C, and w = F (u) + b, b ∈
NC(u). Using also (11), we have that

〈v − w, y − u〉 = 〈F (y)− F (u), y − u〉+ 〈a− b, y − u〉
≥ 〈a, y − u〉+ 〈b, u− y〉
≥ 〈a, y − u〉
= 〈a, y − q〉+ 〈a, q − u〉
≥ 〈a, y − q〉 ,

where the first inequality follows from the monotonicity of F , the second follows
from y ∈ C, b ∈ NC(u), and the last from u ∈ C, a ∈ NC(q). We conclude that
v ∈ T ε(y) with

ε = −〈a, y − q〉 ≥ 0 , (12)
where the nonnegativity of ε is due to y ∈ C, a ∈ NC(q).

Next, we prove the inequality in (4).

‖cv + y − x‖2 + 2cε− σ2‖cv‖2 − σ2‖y − x‖2

= ‖cF (y) + y − x‖2 + ‖ca‖2 + 2c〈a, cF (y) + y − x〉 − 2c〈a, y − q〉
−σ2‖cF (y)‖2 − σ2‖ca‖2 − 2σ2〈cF (y), ca〉 − σ2‖y − x‖2

≤ (1− σ2)‖ca‖2 + 2c〈a, c(1− σ2)F (y) + q − x〉
= (1− σ2)‖ca‖2 − 2c〈a, ν〉
= −c2(1− σ2)‖a‖2 ≤ 0 ,

where the first inequality follows from the hypothesis (7), the next to last equality
follows from (10), and the last from (11). This completes the proof.

We have therefore demonstrated how by performing an Armijo-type linesearch
in the Josephy-Newton direction we can obtain all the necessary objects to satisfy
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(4). Those objects can then be used in the framework of hybrid proximal point
algorithms. However, convergence of such a method would not follow directly from
the properties of hybrid proximal algorithms. Note that in the setting of Proposition
2.2, c and σ are not user-chosen parameters. Their values are obtained by linesearch.
Thus standard assumptions on those parameters, such as 0 < lim infk→∞ ck and
1 > lim supk→∞ σk, are not automatic in the context of this paper. For this reason,
an independent convergence analysis will be required. But first, we formally state
the algorithm that we propose.

Let
r(x) := x− PC(x− F (x))

be the natural residual of VIP(F,C). As is well known, some x solves VIP(F,C) if,
and only if, r(x) = 0.

Algorithm 1. Choose parameters λ̂, λ̃, s > 0; γ, θ ∈ (0, 1), and any x0 ∈ C. Set
k := 0.

1. Stopping test. Compute r(xk), and stop if it is zero.
2. Josephy-Newton subproblem.

Find zk, the solution of VIP(Fk, C), where

Fk(z) = λkF (xk) + (λkF ′(xk) + I)(z − xk) ,

min{λ̂, λ̃‖r(xk)‖−s} ≤ λk ≤ λ̃‖r(xk)‖−s .
3. Linesearch.

Find
yk = xk + tk(zk − xk) , ck = tkλk , σk = 1− tkθ ,

where tk = γmk with mk being the smallest nonnegative integer m such that the
above objects, together with

vk =
1

ck(1− σ2
k)
(
xk − PC(xk − ck(1− σ2

k)F (yk))
)
,

εk = 〈F (yk)− vk, yk − PC(xk − ck(1− σ2
k)F (yk))〉 ,

satisfy

vk ∈ T εk(yk)
‖ckvk + yk − xk‖2 + 2ckεk ≤ σ2

k(‖ckvk‖2 + ‖yk − xk‖2) . (13)

4. Variable update.

xk+1 := PC(xk − αkvk) , where αk = ‖vk‖−2 (〈vk, xk − yk〉 − εk) .

Set k := k + 1, and go to Step 1.

Note that there are two possibilities in how the linesearch step can be executed.
One is to compute yk, ck and σk such that the condition (7) of Lemma 2.1 is satisfied
(although, in that case the part that “mk is the smallest nonnegative integer” may
not apply). By Proposition 2.2, it then immediately follows that with the given
definition of vk and εk, the approximation criterion (13) is satisfied. The advantage
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of this approach is that no projections onto the feasible set C are performed during
the linesearch (see (7)). Indeed, the projection is needed only once, to compute
the point PC(xk − ck(1 − σ2

k)F (yk)) when linesearch terminates. This is a useful
feature when projection onto C is computationally expensive. On the other hand,
what we really need is to satisfy (13) rather than (7). In that sense, the latter
condition might be too conservative in some situations and it can result in smaller
stepsize values than really necessary. Note that if C has a simple structure, say is
a box, then performing projections to compute each trial vector v does not entail
any nontrivial computational burden. In that case, it might be preferable to check
(13) directly. In the general case, a combination of conditions (7) and (13) can be
used, in order to balance cheaper computation of possibly smaller stepsizes with
more costly computation of larger ones.

Theorem 2.3. Let F be monotone and continuously differentiable. Then any
sequence {xk} generated by Algorithm 1 converges to a solution of VIP(F,C), pro-
vided one exists.
Proof. Consider any iteration index k. We can assume that r(xk) 6= 0, as other-

wise the method terminates at a solution. By the monotonicity of F , Fk is strongly
monotone and so zk exists (and is unique) for each k. Note also that xk ∈ C.
By Lemma 2.1 and Proposition 2.2, the linesearch procedure is well-defined and
terminates finitely with some tk = γmk > 0. Next, the variable update rule is well-
defined if vk 6= 0. Now, if vk = 0 then (13) reduces to (1−σ2

k)‖yk−xk‖2+2ckεk ≤ 0,
which implies that yk = xk and εk = 0, so that 0 = vk ∈ T (xk). But then xk is a
solution of VIP(F,C) and the algorithm would have terminated at the stage of the
stopping test. We have therefore established that the method is well-defined, and
either terminates at a solution or generates an infinite sequence. We next consider
the latter case.

By (13), we obtain

2ck〈vk, yk − xk〉+ 2ckεk ≤ (σ2
k − 1)(‖ckvk‖2 + ‖yk − xk‖2) ,

and hence,

〈vk, xk − yk〉 − εk ≥
1− σ2

k

2ck
(‖ckvk‖2 + ‖yk − xk‖2) . (14)

On the other hand, for any solution x̄ of VIP(F,C), 0 ∈ T (x̄) and vk ∈ T εk(yk)
imply that

〈vk, x̄− yk〉 − εk ≤ 0 .
It follows from the above relation and (14) that the hyperplane Hk := {u ∈ <n |
〈vk, u−yk〉−εk = 0} separates xk from x̄, and in fact, xk−αkvk = PHk(xk). By the
well-known (and geometrically obvious) properties of the orthogonal projections, it
holds that

‖xk+1 − x̄‖2 ≤ ‖PHk(xk)− x̄‖2

≤ ‖xk − x̄‖2 − ‖PHk(xk)− xk‖2

= ‖xk − x̄‖2 − ‖αkvk‖2 . (15)
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We conclude that {‖xk − x̄‖} converges, {xk} is bounded, and

0 = lim
k→∞

αk‖vk‖ = lim
k→∞

‖vk‖−1 (〈vk, xk − yk〉 − εk) .

Combining the latter relation with (14), we conclude that

0 = lim
k→∞

(1− σ2
k)ck‖vk‖ . (16)

We next consider the two possible cases:

0 < lim inf
k→∞

tk and 0 = lim inf
k→∞

tk . (17)

In the first case we have that 0 < lim infk(1− σ2
k)ck, and (16) implies that

0 = lim
k→∞

vk . (18)

Passing further onto the limit in (13), we have that 0 ≥ lim supk(1 − σ2
k)‖yk −

xk‖2 + 2ckεk, and hence,

0 = lim
k→∞

‖yk − xk‖ , 0 = lim
k→∞

εk . (19)

Now, let x∗ be any accumulation point of {xk}, and {xki} be some subsequence
converging to x∗. By (19), {yki} also converges to x∗. Since vk ∈ T εk(yk) for all k,
for any u ∈ <n and w ∈ T (u) we have that

〈w − vki , u− yki〉 ≥ −εki .

Now passing onto the limit in the above relation, and taking into account (18) and
(19), we conclude that

〈w − 0, u− x∗〉 ≥ 0 .
By the maximal monotonicity of T , it now follows that 0 ∈ T (x∗), i.e., x∗ solves
VIP(F,C). Choosing x̄ = x∗ in (15), we conclude that {‖xk − x∗‖} converges to
some number, and since x∗ is an accumulation point of {xk}, this number must be
zero. In other words, {xk} converges to x∗, which is a solution of VIP(F,C).

Consider now the second case in (17). Let {ki} be a subsequence of iteration
indices such that

0 = lim
i→∞

tki .

Since F is continuously differentiable and {xk} is bounded, F is Lipschitz-continuous
on some set containing {xk}. By (9), since the stepsize t = γmki−1 = γ−1tki was
rejected, it must have been the case that

1− γ−1tkiθ <

(
max

{
0 , 1− ‖z

ki − xki‖2

‖λkiF (yki)‖2

})1/2

(20)

or/and

γ−1tki >
(1− γ−1tkiθ)

2

2λkiL
. (21)
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At least one of the inequalities above must hold an infinite number of times. If the
second one holds an infinite number of times, then passing onto the limit along the
corresponding indices, (21) yields

0 = lim inf
i→∞

λ−1
ki
. (22)

By the choice of λk, (22) implies that

0 = lim inf
i→∞

‖r(xki)‖s ,

which means that {xki} has an accumulation point x∗ such that r(x∗) = 0. Hence,
this x∗ solves VIP(F,C). The proof that the whole sequence {xk} converges to a
solution can now follow the same pattern as above.

If (21) holds a finite number of times, then (20) must hold for all indices i
sufficiently large. Passing onto the limit in (20) as i→∞, we obtain that

0 = lim
i→∞

‖zki − xki‖2

‖λkiF (yki)‖2
,

which means that

0 = lim
i→∞

‖zki − xki‖ or/and +∞ = lim
i→∞

λki‖F (yki)‖ . (23)

If +∞ = lim supi λki then we are again in the setting of (22), and the argument
above shows the existence of an accumulation point x∗ which solves VIP(F,C), and
ultimately the convergence of {xk} to this x∗. Hence, suppose that λki ≤ M for
some M > 0 and all i. By the definition of zki , for each u ∈ C

λki〈F (xki), u− zki〉 ≥ 〈(λkiF ′(xki) + I)(xki − zki), u− zki〉 . (24)

Choosing u = xki , using the Cauchy-Schwarz inequality in the left-hand side of
(24) and positive semidefiniteness of F ′(xki) in the right-hand side, we obtain

λki‖F (xki)‖ ≥ ‖zki − xki‖ .

Since {xk} is bounded, so is {F (xk)}. Using further boundedness of {λki}, we
conclude that {zki} is bounded. It then also follows that {yki} and {F (yki)} are
bounded. Hence, in (23) the first equality must hold. Let x∗ be a limit of some
subsequence of {xki}. By (23), the corresponding subsequence of {zki} converges
to the same limit x∗. Passing onto the limit in (24) along the subsequences of {xki}
and {zki} converging to x∗, and taking into account boundedness of {λki}, for each
u ∈ C we obtain

〈F (x∗), u− x∗〉 ≥ 0 ,

which means that x∗ solves VIP(F,C). Convergence of the whole sequence {xk} to
x∗ follows as before.
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3 SUPERLINEAR CONVERGENCE

Given the nice global convergence properties of Algorithm 1 (for monotone prob-
lems, the only requirement is existence of solutions), ideally one would have liked
to show that in a neighbourhood of a solution satisfying some conditions, the unit
stepsize tk = 1 is admissible, thus implying the local superlinear rate. At this time,
we do not have a proof establishing this fact. However, there exists a simple way to
ensure superlinear convergence under reasonable assumptions. Essentially, it con-
sists of checking, before performing the linesearch, whether the Josephy-Newton
point zk solves the proximal subproblem

z ∈ C , 〈λkF (z) + z − xk, u− z〉 ≥ 0 , ∀u ∈ C (25)

within the tolerance required by the hybrid proximal point method. If this is so (as
we show below, this would be always the case in a neighbourhood of a solution with
certain properties), a readily computable hybrid proximal step is performed. This
step ensures local superlinear rate of convergence. It can be checked that Algorithm
1 modified in this way also retains its global convergence properties, because hybrid
proximal steps always decrease the distance to the solution set. This strategy had
been used in [34] in the setting of NCP(F ). We next provide some details.

Since zk solves VIP(Fk, C), we have that 0 ∈ (Fk +NC)(zk). Hence, −Fk(zk) ∈
NC(zk), so that

F (zk)− λ−1
k Fk(zk) ∈ T (zk) = (F +NC)(zk) .

In this situation, the approximation criterion of [35] for subproblem (25) (recall
also (13)) reduces to the following: zk is acceptable if

‖λkF (zk)−Fk(zk)+zk−xk‖ ≤ (1−θ)(‖λkF (zk)−Fk(zk)‖2 +‖zk−xk‖2)1/2 . (26)

If this condition is satisfied, xk+1 is obtained by the same update formula as in
Step 4 of Algorithm 1, but with vk = F (zk) − λ−1

k Fk(zk), yk = zk (and εk = 0).
We point out that if (F + NC)−1 is Lipschitz-continuous at zero, then this is a
superlinear step [35], provided λk → +∞ (e.g., if λk = λ̃‖r(xk)‖−s, as allowed in
Algorithm 1).

We next show that (26) is satisfied when close to a solution x̄ with F ′(x̄) positive
definite. Let F ′(·) be locally Lipschitz-continuous around x̄ with modulus L > 0.
As is easy to see,

‖λkF (zk)− Fk(zk) + zk − xk‖ = λk‖F (zk)− F (xk)− F ′(xk)(zk − xk)‖
≤ Lλk‖zk − xk‖2

≤ Lλ̃‖r(xk)‖−s‖zk − xk‖2 ,

where the last inequality is by the choice of λk in Algorithm 1. It is now evident
that (26) is guaranteed to hold for all k sufficiently large if

0 = lim
k→∞

‖r(xk)‖−s‖zk − xk‖ . (27)
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Positive definiteness of F ′(x̄) implies that x̄ is regular [22], and thus the Josephy-
Newton step is superlinear:

‖zk − x̄‖ = o(‖xk − x̄‖) .

The above relation easily leads to

‖zk − xk‖ ≤ 2‖xk − x̄‖ .

Also, from positive definiteness of F ′(x̄) it follows [15] that for all k sufficiently
large,

‖xk − x̄‖ ≤M‖r(xk)‖ , M > 0 .
Combining the last two relations, we have that

‖r(xk)‖−s‖zk − xk‖ ≤ 2M‖r(xk)‖1−s ,

implying (27) if s ∈ (0, 1) is chosen in Algorithm 1.

4 CONCLUDING REMARKS

We have proposed a new globalization strategy for the Josephy-Newton method for
solving monotone variational inequalities. Our approach is based on checking an
approximation criterion for a proximal point subproblem, without making a direct
attempt to solve this (nonlinear) subproblem. The novel idea consists of performing
a linesearch not only in the problem variables, but also for the regularization and
relaxation parameters involved in the inexact proximal point framework.

Global convergence properties of the resulting algorithm are very satisfactory. In
particular, the whole sequence of iterates converges to a solution of the variational
inequality, provided a solution exists and the underlying mapping is monotone and
continuously differentiable.

One area where some improvements would be desirable, are local convergence
properties. First, in its current form, the method requires checking an additional
criterion in order to ensure local superlinear rate of convergence. In some sense,
this is more of an aesthetical drawback, since no significant extra computational
work is involved. In fact, globalization strategies based on merit functions also
require an extra criterion to ensure that the full Newton step is asymptotically
accepted. Nevertheless, it would be nice to come up with a “one-piece” linesearch
rule which guarantees both the global convergence and the local superlinear rate.
A more important issue, however, is obtaining fast local convergence in the case of
nonisolated solutions, i.e., under more general regularity-type assumptions. This
issue certainly deserves further investigation.
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