
ON THE DENSITY OF ALGEBRAIC FOLIATIONS
WITHOUT ALGEBRAIC INVARIANT SETS

S. C. COUTINHO AND J. V. PEREIRA

Abstract. Let X be a complex projective variety of dimension greater than or

equal to 2, and let k � 0 be an integer. We prove that a generic global section
of the twisted tangent sheaf ΘX(k) gives rise to a foliation of X without any

proper algebraic invariant subvarieties of non-zero dimension. We also extend

this result to fields of m-vectors over X.

1. Introduction

The study of holomorphic foliations over projective varieties can be traced back
to the work of G. Darboux and H. Poincaré in the 19th century. In the papers
[6] and [24] they studied differential equations over the complex projective plane
and posed several questions concerning projective algebraic curves invariant under
holomorphic foliations, many of which are still actively pursued.

In the late 1970s, J. P. Jouanolou reworked and extended the work of Darboux
[6] in the algebraic geometric framework provided by Grothendieck. One of the key
results of Jouanolou’s celebrated monograph [13, théorème 1.1, p. 158] states that
a very generic holomorphic foliation of the projective plane, of degree at least 2,
does not have any invariant algebraic curves. Recall that a property P holds for a
very generic point of a variety V if the set of points on which it fails is contained
in a countable union of hypersurfaces of V . Jouanolou’s result has been extended
in various ways; see [16], [25], [17], [18] and [20].

In this paper we prove a generalization of Jouanolou’s result for one dimensional
foliations over any smooth projective variety. Our result is related to a problem
posed by V. I. Arnold in [2, §10, pp. 6-7], and it also leads to a simpler proof of [18,
theorem 2, p. 533]. Throughout the paper X denotes a smooth complex projective
variety of dimension d ≥ 2

Theorem 1.1. Let k � 0 be an integer, and let f be a very generic global section
of the twisted tangent sheaf ΘX(k). The foliation of X determined by f has no
proper invariant algebraic subvarieties of non-zero dimension.

It should be noted that a similar result does not hold for foliations of codimension
1 when the underlying variety has dimension greater than 2. This follows from the
fact that, for n ≥ 3, the space of foliations of any degree over Pn has a logarithmic

Date: September 12, 2002.

1991 Mathematics Subject Classification. Primary: 37F75, 34M45; Secondary: 32S65.
Key words and phrases. algebraic foliation, invariant subvarieties.
We are greatly indebted to Israel Vainsencher whose help led to crucial improvements in the re-

sults and presentation of this paper. We also thank Alcides Lins Neto and Marcio Soares for many
helpful conversations. During the preparation of this paper the authors received financial support
from CNPq and PRONEX(commutative algebra and algebraic geometry), and from Profix-CNPq.

1



2 S. C. COUTINHO AND J. V. PEREIRA

component, in the sense of [5, Theorem 2, p. 580]. The result also fails for more
general compact holomorphic manifolds, even in dimension 2 [14, théorème 2.3.1,
p. 171], and for varieties over fields of positive characteristic [23].

On the other hand, it is possible to generalize theorem 1.1 to fields of m-vectors,
or Pfaff systems as they are sometimes called, and in section 6 we prove the following
theorem.

Theorem 1.2. Let k � 0 be an integer, and let f be a very generic section of∧m ΘX(k).
(1) If 1 ≤ m ≤ d − 1, then f has no proper invariant algebraic subvarieties of

non-zero dimension.
(2) If 2 ≤ m ≤ d− 2, then f has no singular points.

As an application of theorem 1.1 we prove in section 7 the following dynamical
characterization of ampleness when X is a surface.

Theorem 1.3. A line bundle L on a smooth projective surface X is ample if, and
only if L2 > 0, and there exists a positive integer k such that a section of ΘX⊗L⊗k

induces a foliation of X without invariant algebraic curves.

2. Fields of m-vectors

In this section we collect some facts about fields of m-vectors and foliations that
are used to prove the main theorems.

Throughout the paper X denotes a smooth complex projective variety of dimen-
sion d ≥ 2, and i : X → Pn its embedding in projective space. Let ΘX be the
tangent sheaf of X and let L be a line bundle over X. A field of m-vectors of X is
an OX -homomorphism f : Ωm

X → L.
A field of 1-vectors f determines a singular foliation of dimension one F of X.

The same foliation is also completely defined by the kernel of f . Throughout the
paper, such an F is simply called a foliation of X. The bundle L is sometimes
called the cotangent bundle of the foliation F .

Lemma 2.1. The field of m-vectors f : Ωm
X → L can also be defined by

(1) a global section of
∧m ΘX ⊗ L;

(2) the OX-homomorphism f∨ : L∨ →
∧m ΘX ;

where L∨ = Hom(L,OX).

We swap between these definitions, whenever needed, without further comment.
Moreover, we do not always distinguish between a foliation F and the map or
section f that is used to define it.

A singularity of the field of m-vectors f is a point x ∈ X such that f is not
surjective at x. The set of all singularities of f is denoted by Sing(f).

A projective algebraic subvariety Y of X is invariant under f if there exists a
map Ωm

Y → L|Y such that the diagram

Ωm
X |Y

��

f |Y // L|Y

Ωm
Y

<<
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is commutative. In particular, if dim(Y ) < m then Ωm
Y = 0, and consequently

Y ⊆ Sing(f).
If Y is a smooth subvariety, we also say that f is extended from the field of

m-vectors g of Y defined by the map Ωm
Y → L|Y .

Theorem 2.2 (Extension theorem). Let k � 0 be an integer. Then every field of
m-vectors f : Ωm

X → OX(k) extends to a field Ωm
Pn → O(k).

Proof. We must show that the horizontal dotted line in the diagram

i∗Ωm
Pn

��

// OX(k)

Ωm
X

::uuuuuuuuu

is the pullback of a map Ωm
Pn → O(k) under i. But, by adjointness,

Hom(i∗(Ωm
Pn),OX(k)) ∼= Hom(Ωm

Pn , i∗(OX(k)).

Hence, it is enough to show that the map

(2.1) Hom(Ωm
Pn ,O(k)) → Hom(Ωm

Pn , i∗(OX(k))

is onto.
Let I be the kernel of the canonical mapOPn → i∗(OX). The long exact sequence

of homomorphisms of

0 → I(k) → O(k) → i∗(O(k)) → 0,

gives
Hom(Ωm

Pn ,O(k)) → Hom(Ωm
Pn , i∗(OX(k)) → Ext1(Ωm

Pn , I(k)).

By [12, proposition III.6.7, p. 234] and [12, proposition III.6.3, p. 234]

Ext1(Ωm
Pn , I(k)) ∼= Ext1(OPn ,

∧
mΘPn ⊗ I(k)) ∼= H1(Pn,

∧
mΘPn ⊗ I(k))

which is zero by Serre’s theorem, [12, proposition III.5.2, p. 228]. Therefore the
map of equation (2.1) is surjective, as we wanted to prove. �

We finish the section with a theorem that will play a key rôle in the proofs of the
main theorems. Throughout the remainder of the section, k � 0 will be a positive
integer and Σ = P(H0(X,

∧m ΘX(k))). The class of f ∈ H0(X,
∧m ΘX(k)) in Σ

will be denoted by [f ]. Define the subset of Σ×X by

Y = {([f ], x) : [f ] ∈ Σ and x ∈ Sing(f)}.

Theorem 2.3. Y is an irreducible subvariety of Σ×X of dimension

d + dim(Σ)−
(

d

m

)
.

Proof. It is clear that Y is a closed set, we must show that it is irreducible.
Since k � 0 it follows from Serre’s theorem that

∧m ΘX(k) is generated by its
global sections. Denote by T the trivial bundle with fiber H0(X,

∧m ΘX(k)) and
by π : PT → X the standard projection. There exists a surjective map of vector
bundles u : T →

∧m TX(k) which takes (x, θ) ∈ T to the vector θ(x) ∈
∧m TxX(k).
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Moreover, since u is surjective, ker(u) is also a vector bundle, and we have an exact
sequence

π∗(ker u) // π∗(T)
π∗(u) // π∗(

∧m TX(k))

OT(−1).

j

OO

Now ([f ], x) ∈ Y if and only if π∗(u)j(f, x) = 0. By [9, B.5.6, p.434], the zero scheme
of π∗(u)j, which is Y, is isomorphic to P(ker(u)). But P(ker(u)) is irreducible of
dimension

dim(X)+(dim(H0(X,
∧

mΘX(k))))− rank(
∧

mΘX(k)))−1 = d+dim(Σ)−
(

d

m

)
so the same holds for Y. �

Corollary 2.4. Let 2 ≤ m ≤ d− 2 be an integer and let f be a generic section of∧m ΘX(k). Then:
(1) Sing(f) = ∅;
(2) any subscheme of Y invariant under f must have dimension at least m.

Proof. Let p : Σ×X → Σ be the projection on the first component of the product.
Since 2 ≤ m ≤ d − 2, it follows from theorem 2.3 that dim(Y) < dim(Σ). Hence,
p(Y) ( Σ. But, by the definition of Y we have that every f ∈ Σ \ p(Y) 6= ∅ has
an empty singular set. Now (2) follows from (1) and the fact that every closed
subscheme of X, invariant under a field of m-vectors and of dimension smaller than
m must be contained in Sing(f). �

3. Foliations

In this section we collect some results on foliations, that is fields of 1-vectors,
that will be used in the proof of theorem 1.1.

Let E be a coherent OX -submodule of Ω1
X . We denote by Ea the sheaf whose

stalk at x ∈ X is (Ea)x = {θ ∈ ΘX,x : α(θ) = 0 for all α ∈ E}. There is a dual
notion for coherent submodules of the tangent sheaf.

Let F be a foliation of X defined by a homomorphism f : Ω1
X → L and let

φ : Y → X be a finite map of smooth irreducible projective varieties. Denote by G
the image of the composition

φ∗(ker(f)) → φ∗(Ω1
X) → Ω1

Y .

The pullback φ†(F) of F under φ is φ†(F) = (G)aa. Note that we pass to Gaa in
order to remove what one might call the ‘apparent singularities’ of G. For more
details see [26, p. 183ff].

Lemma 3.1. Let k � 0 be an integer and let π : X → Pd be a finite projection.
If F is the foliation of Pd defined by the map f : Ω1

Pd → O(k), then the pullback
π†(F) is defined by a map Ω1

X → OX(k)

Proof. Since π is finite, there exists an exact sequence

0 → π∗(Ω1
Pd) → Ω1

X → Ω1
X/Pd ,

whose rightmost term is a torsion OX -module.
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Denote by K the kernel of f . Then, we have a commutative diagram

0

��
π∗K //

��

π∗Ω1
Pd

//

��

π∗O(k)

G // Ω1
X

��
Ω1

X/Pd

where G is the image of the composition

π∗K → π∗Ω1
Pd → Ω1

X .

In particular the vertical map π∗K → G is surjective. Moreover, since π is finite, it
follows that π∗O(k) = OX(k).

Dualizing this diagram, and taking into account the remarks above, we obtain

0

π∗K∨ π∗(ΩPd)∨oo

OO

OX(−k)oo

G∨

β

OO

ΘX
uoo

α

OO

0

OO

0

OO

Since α is an isomorphism, every map OX(−k) → (π∗(Ω1
Pd))∨ gives rise to a map

v : OX(−k) → ΘX . Moreover, since α and β are injective, it follows that

0 → O(−k) v−→ ΘX
u−→ G∨

is exact. Thus ker(u) = Ga = im(v), so that π†(F) = Gaa is the kernel of a map
Ω1

X → OX(k) which is the dual of v. �

Next, we need some results about the singularities of a foliation. Let F be a
foliation of X defined by the OX -homomorphism f : Ω1

X → L. If p is a singularity
of F then, taking a local system of coordinates α : (Cd, 0) → X, which maps 0 to
p, we have the following commutative diagram.

Ω1
X,p

f //

α∗

��

Lp

α∗

��
Ω1

Cd,0

α∗fα−1∗
// OCd,0
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In this way we can identify the foliation F on a neighbourhood of p with a germ
of section of Hom(Ω1

Cd ,OCd); that is, with a germ of holomorphic vector field Z
defined on a neighbourhood of 0 in Cn.

The algebraic multiplicity of Z at 0, or equivalently of F at p, denoted by m =
m(Z, 0) = m(F , p), is the total degree of the first non-zero jet of Z. In other words,

Z =
+∞∑
i=m

Zi ,

where Zi is a homogeneous vector field of degree i, and Zm 6= 0. We say that
0 ∈ Cn is a dicritical singularity of Z if m ≥ 0 and Zm is a multiple of the radial
vector field.

When Z is non-dicritical, the jet Zm satisfies

[Zm, R] = (1−m)Zm,

hence Zm and R form an involutive system of vector fields. This system defines
a two-dimensional foliation of Cd, whose leaves are two-dimensional cones with
vertex at the origin. In other words, the leaves of this foliation are invariant under
the action of C∗ on Cd \ {0}. Therefore, passing to the quotient variety, we have
that Zm induces a foliation on Pd−1. This foliation coincides with the restriction
of the saturated foliation induced by π∗Z on the exceptional divisor. In general
this foliation is not saturated even when Z is saturated, because the singular set of
π∗Z may have codimension 2 on the underlying variety, while its restriction to the
exceptional divisor has codimension one.

Lemma 3.2. Let F be foliation of X and let p ∈ X be a non-dicritical singularity
of F . If (W,p) is an irreducible germ of subvariety invariant under F , then the
restriction of W̃ , the strict transform of W , to the exceptional divisor is invariant
under F̃ .

Proof. By hypothesis p is a non-dicritical singularity and therefore the exceptional
divisor E is invariant under F̃ . Since W̃ is invariant under F̃ then its intersection
with E is also invariant under F̃ and the lemma follows. �

We end the section with some results that will play a major rôle in the proof of
the main theorem.

Lemma 3.3. Let F be a foliation of X. If W is an irreducible closed subvariety
of X invariant under F then the singular locus of W is invariant under F . In
particular, if the singularities of W are isolated then

Sing(W ) ⊂ Sing(F).

Proof. We may assume, without loss of generality, that W is a subvariety of X
whose singular locus is not contained in Sing(F). Thus, in order to prove the
global statement it is enough to show that Sing(W ) is invariant under F in the
neighbourhood of every point which is not a singularity of F .

Let p ∈ Sing(W ) \ Sing(F), and let U be a neighbourhood of p over which F|U
is described by a nowhere vanishing holomorphic vector field Z. Let V ⊂ U be a
neighborhood of p where the local flow of Z is defined. In other words, there exists a
holomorphic map Φ : (C, 0)×V → U such that for every t, Φ(t, ·) is biholomorphic
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onto its image and

(3.1)
d

dt
Φ(t, z) = Z(Φ(t, z)) and Φ(0, z) = z.

Since W is invariant under Z it follows that Φ(t, W ∩ V ) ⊂ W ∩ U , for every
t ∈ (C, 0). Moreover, Φ(t, ·) is a biholomorphism, so it must preserve the singular
set of W . In other words,

Φ(t, Sing(W ) ∩ V ) ⊂ Sing(W ) ∩ U,

for every t ∈ (C, 0). This proves that Sing(W ) is invariant under F .
When p is an isolated singularity of W we have that Φ(t, p) = p, for every

t ∈ (C, 0). Together with (3.1) this implies that Z(p) = 0, which shows that every
isolated singularity of W must be a singularity of F . �

Proposition 3.4. Let G be a foliation Pn. If an irreducible smooth closed algebraic
subvariety V of Pn is invariant under G then Sing(G) ∩ V 6= ∅.

Proof. Suppose, by contradiction, that G does not have singularities on V . Then,
by [15, théorème 2, p. 223 ], any polynomial on the Chern classes of the normal
bundle NV must vanish in dimension greater than r− 1, where r = dim(V ). Thus,
to prove that G has a singularity on V it is enough to show that the rth power of
the first Chern class of NV is nonzero.

However, det(NV ) is an ample line bundle by [11, Proposition 2.1, p. 87], so
it induces an embedding j of V into Pn. Let ω be the 2-form of V which is the
pull-back of the Fubini-Study 2-form of Pn under j, see [10, p. 31]. The first Chern
class of NV is the image of ω in H2(V, Q). Since the isomorphism

H0(V, Q) ∼= H2d(V, Q)

of the Hard Lefschetz Theorem is induced by ω, we conclude that c1(NV )r 6= 0,
which completes the proof. �

Theorem 3.5. Let θ ∈ ΘX(k) for some integer k � 0. If W is a closed subscheme
of X invariant under θ then W ∩ Sing(θ) 6= ∅.

Proof. Since k � 0, it follows that θ extends to Pn. Thus we may assume that X =
Pn. If W is contained in the singular set of θ, there is nothing to do. Otherwise, W
is invariant under the saturation F of θ in Pn. But this implies that each irreducible
component of the reduced scheme Wred is also invariant under F . Therefore, we
may assume that W is an irreducible closed subvariety of Pn.

We proceed by induction on dim(W ). If dim(W ) = 0 then W is an invariant
point, hence a singularity of F . Suppose that the result holds for all invariant closed
subvarieties of dimension less than r. If W is an invariant subvariety of dimension
r, then either W is smooth, or it has a singularity set V of dimension smaller than
r. In the first case, the result follows from proposition 3.4. If W is singular, then
its singularity set V is invariant under F by lemma 3.3. Thus,

∅ 6= V ∩ Sing(F) ⊆ W ∩ Sing(F),

by the induction hypothesis; and the theorem is proved. �
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4. Some geometry

Throughout this section k � 0 and m will be positive integers and Σ will denote
the projective space P(

∧m H0(X, ΘX(k))). The class of f ∈
∧m H0(X, ΘX(k)) in Σ

will be denoted by [f ] . It follows from Serre’s theorem that
∧m ΘX(k) is generated

by its global sections. Denote by T the trivial bundle with fibre
∧m H0(X, ΘX(k)).

There exists a surjective map of vector bundles u : T →
∧m TX(k) which takes

(x, θ) ∈ T to the m-vector θ(x) ∈
∧m TxX.

If π : PT → X is the standard projection, there exists a diagram

(4.1) π∗(T)
π∗(u) // π∗(

∧m TX(k))

OT(−1).

j

OO
v

77ooooooooooo

Now v gives rise to a map

(4.2) Ωm
Σ×X/Σ → OT(k + 1),

which plays the rôle of a universal field of m-vectors over X. Note that P(T) =
X × Σ. Let S be a scheme and consider the diagram

X = Σ×X × S
q1 //

q3

��

Σ× S

��
Σ×X // Σ

where q1 and q3 are the canonical projections. Then it follows from (4.2) by base
change that

g : Ωm
X/Σ×S → q∗3(OT(k + 1)).

Now, let V ⊂ X × S be a flat family over S. The pull-back Ṽ ⊂ X of V under the
cnonical projection q2 : X → X × S is a flat family over T = Σ× S. Moreover, for
a given t = ([f ], s) ∈ Σ× S the scheme Vs is invariant under the field of m-vectors
f : Ω1

X → OX(k) if and only if the map θ defined by

(4.3) 0

��
K

��
θ

((PPPPPPPPPPPPP

(Ωm
X/T )|Ṽ

g|Ṽ //

��

q∗3(OT(k + 1))|Ṽ

Ωm
Ṽ /T

��
0
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is zero at t. We want to show that the set

Z = {([f ], s) ∈ T : Vs is invariant under f} = {t ∈ T : θt = 0}

is closed in Σ× S. But first we need a technical lemma.

Proposition 4.1. Let p : X → T be a proper morphism. Assume that F is a p-flat
coherent OX-module such that Rip∗F = 0, for all i > 0. If G is a quasi-coherent
OT -module and σ : p∗G → F is a homomorphism of OX-modules, then the zero
scheme of σ is closed in T .

Proof. The result follows immediately from [1, proposition 2.3, p. 16] if we prove
that p∗F is locally free, and that its formation commutes with base change.

However, p is proper and F is OX-coherent, so that p∗(F) is OT -coherent by [7,
théorème 3.2.1, p. 460]. Since F is p-flat it follows that p∗(F) is also flat over OT .
Thus it is locally free, as required. The fact that taking the direct image commutes
with base change follows from [22, p. 19]. �

Proposition 4.2. The set Z is closed in T = Σ× S.

Proof. Let L be a very ample sheaf over Ṽ , the pullback of V under q2 : X → T .
Given an integer r � 0 it follows by Serre’s theorem that, for some positive integer
N , there exists a surjective map α : ON

Ṽ
→ K⊗Lr. Denote by σ the composition

ON
Ṽ

α−→ K⊗Lr → (Ωm
X/T )|Ṽ ⊗ Lr.

Since α is surjective, θt = 0, for some t ∈ T if and only if σt = 0. But this implies
that Z is the scheme of zeroes of σ. We must show that this scheme is closed in T .

In order to do this we apply proposition 4.1 with F = q∗3(OT(k + 1))|Ṽ ⊗ Lr

and G = O⊕N
T . Denoting by p the composition of the embedding of Ṽ in X with

the projection q1, we have that p∗G = O⊕N

Ṽ
, and σ is a map p∗G → F . Moreover,

Rip∗F = 0 for i > 0 by [12, theorem III.8.8, p. 252]. Since Z is the scheme of
zeroes of σ, the result follows from proposition 4.1. �

5. Proof of theorem 1.1

Throughout this section k � 0 is a positive integer and Σ = P(H0(X, ΘX(k))).
The class of f ∈ H0(X, ΘX(k)) in Σ will be denoted by [f ]. Let χ ∈ Q[t]. Define
two subsets of Σ×X by

Y = {([f ], x) : [f ] ∈ Σ and x ∈ Sing(f)},

as in section 2, and

X = {([f ], x) : x is in a subscheme, invariant under f , with Hilbert polynomial χ}.

We will write Xχ if we need to call attention to the corresponding Hilbert poly-
nomial. Let p1 and p2 denote the projections of Σ × X on the first and second
coordinates, respectively.

Let Hilbχ(X) be the Hilbert scheme of X with respect to the Hilbert polynomial
χ. Denote by Vs the closed subscheme of X that corresponds to s ∈ Hilbχ(X).

Lemma 5.1. X is a closed subset of Σ×X.
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Proof. Let

Σ×X ×Hilbχ(X)
q1 //

q2

��

q3

))SSSSSSSSSSSSSSS
Σ×Hilbχ(X)

X ×Hilbχ(X) Σ×X

be the canonical projections. Since k � 0, it follows from theorem 4.2 that

Zχ = {([f ], s) : Vs is invariant under f}
is a closed subset of Σ×Hilbχ(X). Let C be the universal family in X×Hilbχ(X).
It follows that

X = q3(q−1
1 (Zχ) ∩ q−1

2 (C))
is closed in Σ×X, as we wished to prove. �

Lemma 5.2. Let π : X → Pd be a finite projection and let x ∈ X. Suppose that
G is a foliation of Pd and that π(x) is an isolated singular point of G that does
not belong to the branch locus of π. Then x is a singular point of π†(G) and if no
invariant proper subvariety of dimension r > 0 of G passes through π(x), then no
subvariety of dimension r > 0, invariant under π†(G), passes through x.

Proof. Suppose, by contradiction, that Y ⊆ X is an irreducible algebraic closed
subvariety of dimension r > 0 that passes through x and is invariant under π†G.
Since π is a proper map, π(Y ) is an algebraic subvariety of dimension r of Pd.
Moreover, π(Y ) is not invariant under G by hypothesis.

Since π(x) does not belong to the branch locus of π, there exist neighbourhoods
U of x and V of π(x) such that π|U : U → V is a biholomorphism. But, π(Y ) ∩ V
is not invariant under G|V . Since π|U is a biholomorphism, this contradicts the fact
that Y ∩ U is invariant under π†(G)|U . �

Corollary 5.3. Let π : X → Pd be a finite projection and let x ∈ X. Then, for all
k ≥ 3 there exists f ∈ ΘX(k) such that the corresponding foliation F of X has a
singularity at x which is not contained in any algebraic curve invariant under f .

Proof. The result follows from lemma 5.2 and [17, Theorem 2, p. 653]. �

From now on we denote by p the restriction to X of the projection p1 : Σ×X → Σ.

Lemma 5.4. Suppose that
(1) p−1([f ]) ∩ Sing(f) 6= ∅ for every [f ] ∈ Σ, and that
(2) there exists a foliation F of Pd, of degree k − 1, and a singularity x of F

which is not contained in any closed subscheme of Pd invariant under F .
Then p(X) is a proper closed subset of Σ.

Proof. Since p is a proper map, it is enough to show that p(X) ( Σ. We will
assume, by contradiction, that p(X) = Σ. Thus, for every [f ] ∈ Σ the subvariety
p−1([f ]) is invariant under f . Moreover, hypothesis (1) implies that

p(X ∩ Y) = Σ.

Since dim(Y) = dim(Σ), it follows that dim(X ∩ Y) = dim(Y). However, Y is
irreducible by lemma 2.3, therefore X ∩ Y = Y. This means that given f ∈ Σ and
x ∈ Sing(f), there exists a closed subscheme Vx of X, invariant under f , with
Hilbert polynomial χ, and such that x ∈ Vx.
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Now, let π : X → Pd be a finite projection. After a linear change of coordinates,
we may assume that the singularity x of F does not belong to the branch locus of
π. Thus, it follows from lemma 5.2 that the pullback of F under π has a singular
point which is not contained in any invariant closed subscheme of X with Hilbert
polynomial χ. This contradicts the statement at the end of the previous paragraph,
and completes the proof of the lemma. �

We are ready to prove theorem 1.1

Proof of theorem 1.1 For every (d, r) ∈ N2 with d ≥ 2 and 1 ≤ r ≤ d− 1, consider
the following statement:

A(d, r): if X is a d-dimensional smooth projective variety and k � 0 is an in-
teger, then a very generic section of ΘX(k) does not have any invariant closed
r-dimensional subschemes.

Note, first of all, that since Σ is irreducible, and since there are only countably
many Hilbert polynomials, then A(d, r) follows if we prove that

p(Xχ) 6⊂ Σ = P(H0(X, ΘX(k))),

for all χ ∈ Q[t] of degree r. Thus we may assume, from now on, that χ ∈ Q[t] is
such a polynomial.

We begin by proving that A(d, 1) holds for all d ≥ 2. Suppose that χ has degree
one. It follows from theorem 3.5 that

p−1([f ]) ∩ Sing([f ]) 6= ∅
for every [f ] ∈ Σ. Thus, by corollary 5.3 and lemma 5.4, p(Xχ) is a proper closed
subset of Σ. As we noted above this is enough to prove A(d, 1).

In order to prove the theorem by induction it is enough to show that A(d, r)
follows from A(d − 1, r − 1), for every r ≥ 2. But, just as in the case r = 1
dealt with above, A(d, r) follows from corollary 3.5 and lemma 5.4 if we prove the
following statement

there exists a foliation F of Pd, of degree k− 1, and a singularity x
of F which is not contained in any closed r-dimensional subscheme
of Pd invariant under F .

The case d = 2 is covered by A(d, 1). We show that for d ≥ 3, the statement
follows from A(d − 1, r − 1) applied to X = Pd−1. If f is a very generic section
of ΘPd−1(k) then A(d − 1, r − 1) implies that the only proper closed subschemes
invariant under f are its singularities. Let Z be an homogeneous vector field on Cd

such that ω(f) = iZω. Note that any two such Z must differ by a multiple of the
radial vector field. The vector field Z induces a one dimensional foliation on Cd. Its
singular set is contained in union of the lines through the origin whose directions
correspond to the singular points of f on Pd−1. Moreover, since f is very generic
the origin is a non-dicritical singular point of Z.

If there exists a germ of r-dimensional subvariety at the origin that is invariant
under Z then, by lemma 3.2, f admits a proper invariant algebraic set of dimension
r−1. But this is impossible by the choice of f . Therefore the origin is a singularity
of Z which is not contained in any invariant r-dimensional germ of subvariety.
Extending this foliation to Pd we have proved the statement above, and the proof
of the theorem is complete.
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Remark. In the above proof, the integer k depends on the variety X. However,
when X is a projective space (of any dimension) we may take k to be any integer
greater than or equal to 2. Hence, the choice of k does not interfere with the
induction step, since we use A(d− 1, r − 1) only to prove A(d, r) for Pd.

6. Proof of theorem 1.2

Let k � 0 and m be positive integers. As in section 2, denote by Σ the projective
space P(H0(X,

∧p ΘX(k))). For i = 1, . . . ,m, let ki � 0, be positive integers which
add up to k, and write

Ψ :
m⊕

i=1

H0(X, ΘX(ki)) → H0(X,
∧

mΘX(k))

for the natural map.

Lemma 6.1. For i = 1, . . . ,m, let ki � 0, be positive integers which add up to k.
If f is a generic element of

⊕m
i=1 H0(X, ΘX(ki)) then

dim Sing(Ψ(f)) = m− 1.

Proof. For m = 1 the result follows from Theorem 2.3. Suppose that the result
holds for m− 1 and let g = (g1, . . . , gm−1) be an element of

⊕m−1
i=1 H0(X, ΘX(ki))

such that
dim Sing(Ψ(g)) = m− 2.

Denote by U the complement of Sing(g) in X. Consider the trivial bundle TU

over U with fibre H0(U,ΘU (km)). Since the codimension of Sing(g) is at least 2, it
follows that H0(X, ΘX(km)) ∼= H0(U,ΘU (km)). Thus TU is the restriction to U of
the bundle T defined at the beginning of section 4. Once again we have a map of
vector bundles u : TU →

∧m
TU(k), of constant rank, which takes (x, θ) ∈ TU to

the m-vector (g ∧ θ)(x) ∈
∧m

TxU . Thus ker(u) has dimension

dim X + (h0(U,ΘU (k))− rank(Im(u))).

But rank(Im(u)) = dim X − (m− 1), so that dim ker(u) = h0(U,ΘU (k)) + (m− 1).
However, as in the proof of theorem 2.3, we have that P(ker(u)) is isomorphic to
the set of ([θ], x) such that x is a singularity of g ∧ θ. Hence, for a generic θ,

dim Sing(g ∧ θ) = m− 1 .

�

We may now prove theorem 1.2.

Proof of theorem 1.2. If m = 1 then the theorem has already been proved, so we
may assume that m > 1.

Since Q[t] is a countable set, it is enough to prove that, for a given χ ∈ Q[t], the
generic field of m-vectors does not have have any invariant subvariety with Hilbert
polynomial χ.

But the set of m-vectors which do not admit an invariant closed subvariety with
Hilbert polynomial χ is open in Σ by proposition 4.2. Thus, the result follows if
we prove that this open set is non-empty. If m > deg(χ) this is a consequence of
of corollary 2.4. So we may assume that m < deg(χ).

For 1 ≤ i ≤ m choose integers ki � 0 which add up to k. It follows from theorem
1.1 that there exist sections gi of ΘX(ki) which do not have any proper invariant
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closed algebraic subvarieties apart from their singularities. Write g = (g1, . . . , gm).
By lemma 6.1 the singularity set of Ψ(g) has dimension m − 1 < d. But, if a
closed subvariety Y of X, invariant under Ψ(g), goes through a non-singular point
of Ψ(g) then it must be invariant under each gi. This contradicts the fact that
dim(Y ) = deg(χ) > m, and the proof of (1) is complete. (2) follows from corollary
2.4.

7. Foliations on Surfaces

The birational theory of foliations on surfaces will play a decisive rôle in this sec-
tion. For details see [19, 21], and specially the last three chapters of [4]. Through-
out this section S denotes a smooth complex projective surface and F a foliation
f : Ω1

S → L over S.
Let C be a curve on S and p a point of C. Denote by Op the local algebra of S

at p. If the the curve has local equation f = 0 and the foliation is described by a
vector-field v in a neighbourhood of p, let

tang(F , C, p) = dimC
Op

(f, v(f))
.

Note that this number is 0 except at the finite number of points where f is not
transverse to C. Define the tangency number between F and C by

tang(F , C) =
∑
p∈C

tang(F , C, p).

Lemma 7.1. If F is a foliation without algebraic invariant curves, then L ·C ≥ 0
for every irreducible curve C.

Proof. By Miyaoka’s theorem [4, theorem 7.1, p. 89] L is pseudo-effective. Thus,
by [8, Theorem 1.12, p. 108], L can be decomposed in the form P + N , where P
is a semi-positive Q-divisor and P · C = 0 for each irreducible component of the
support of N . The result follows if we show that the support of N is empty.

Assume, by contradiction, that the support of N is nonempty. Then, by [8,
Theorem 1.12(c), p. 108] it contains an irreducible component E such that L·E < 0
and E2 < 0. Since F does not have any invariant algebraic curves, E cannot be
invariant under F . Then, by [4, proposition 2.2, p.23],

L · E = tang(F , E)− E2,

so that L · E > 0, contradicting the choice of E. �

Proof of Theorem 1.3 Let F be a foliation of S with no algebraic invariant curves
and suppose that L · C = 0 for some irreducible curve C on S. Since L2 > 0, by
hypothesis, it follows from the Hodge index theorem [3, corollary 2.4, p.18] that
C2 < 0. However, [4, proposition 2.2, p.23] implies that C2 = tang(F , C) ≥ 0, and
we conclude that there exists no such C. Hence, it follows from lemma 7.1 that
L · C > 0 for every irreducible curve C. Thus L is ample by the Nakai-Moishezon
criterion [12, theorem 1.10,p. 365].

In order to prove the converse, assume that L is an ample line-bundle. Hence,
L⊗n is very ample for some positive integer n. In other words, there exists an
embedding of S in a projective space so that L⊗n ∼= OS(1). Hence, by the main
theorem, L⊗kn is the cotangent bundle of a foliation without invariant algebraic
curves whenever k � 0, and the proof is complete.
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Math. d’IHES, 11 (1961).
[8] T. Fujita, On Zariski problem, Proc. Japan Acad. 55, Ser. A (1979), 106–110.

[9] W. Fulton, Intersection theory, second edition, Springer (1998).
[10] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience (1978).
[11] R. Hartshorne, Ample subvarities of algebraic varieties, Lect. Notes in Math. 156, Springer

(1970).
[12] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer (1977).
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