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Abstract. We consider low-dimensional systems with the shadowing prop-

erty and we study the problem of existence of periodic orbits. In dimension
two, we show that the shadowing property for a homeomorphism implies the

existence of periodic orbits in every ε-transitive class, and in contrast we pro-

vide an example of a C∞ Kupka-Smale diffeomorphism with the shadowing
property exhibiting an aperiodic transitive class. Finally we consider the case

of transitive endomorphisms of the circle, and we prove that the α-Hölder

shadowing property with α > 1/2 implies that the system is conjugate to an
expanding map.

1. Introduction

The main goal of this article is to obtain dynamical consequences of the shad-
owing property for surface maps and one-dimensional dynamics.

Let (X, d) be a metric space and f : X → X a homeomorphism. A (complete) δ-
pseudo-orbit for f is a sequence {xn}n∈Z such that d(f(xn), xn+1) < δ for all n ∈ Z.
We say that the orbit of x ε-shadows the given pseudo-orbit if d(fn(x), xn) < ε for
all n ∈ Z. Finally, we say that f has the shadowing property (or pseudo-orbit
tracing property) if for each ε > 0 there is δ > 0 such that every δ-pseudo-orbit
is ε-shadowed by an orbit of f . Note that we do not assume uniqueness of the
shadowing orbit.

One motivation to study systems with this property is that numeric simula-
tions of dynamical systems always produce pseudo-orbits. Thus, systems with the
shadowing property are precisely the ones in which numerical simulation does not
introduce unexpected behavior, in the sense that simulated orbits actually “follow”
real orbits.

When one considers pseudo-orbits, the natural set that concentrates the nontriv-
ial dynamics is the chain recurrent set. If the system has the shadowing property,
the closure of the recurrent set coincides with the chain recurrent set. As usual, it
is then natural to ask about the existence of periodic orbits in the recurrent set. If
one also assumes that the system is expansive in the recurrent set (as it happens
for hyperbolic systems), then it is easy to see that periodic orbits are dense in the
recurrent set. However, it is unknown whether a similar result holds without the
expansivity assumption. It is not even clear that the shadowing property implies
the existence of one periodic orbit.

Our first result addresses this problem in dimension two (for precise definitions
see §2.3).
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Theorem 1.1. Let S be a compact orientable surface, and let f : S → S be a
homeomorphism with the shadowing property. Then for any given ε > 0, each
ε-transitive component has a periodic point.

As an immediate consequence, we have

Corollary 1.2. If a homeomorphism of a compact surface has the shadowing prop-
erty, then it has a periodic point.

Note that Theorem 1.1 does not rule out the existence of aperiodic chain tran-
sitive components (in fact Theorem 1.5 below provides an example with the shad-
owing property exhibiting an aperiodic chain transitive class). However, if there is
such a component, some of its points must be accumulated by periodic points.

Corollary 1.3. Let S be a compact orientable surface, and let f : S → S a home-
omorphism with the shadowing property. Then Per(f) intersects every chain tran-
sitive class.

Thus, the presence of an aperiodic chain transitive class implies that there are
infinitely many periodic points. In particular, we obtain the following:

Theorem 1.4. Let S be a compact orientable surface, and let f : S → S be a
Kupka-Smale diffeomorphism with the shadowing property. If there are only finitely
many periodic points, then f is Morse-Smale.

Another problem of interest is to find “new” examples of systems having the
shadowing property. It is known that in dimension at least 2, topologically stable
systems have the shadowing property [Wal78, Nit71]. Systems which are hyper-
bolic (meaning Axiom A with the strong transversality condition) also exhibit the
shadowing property. In fact, for such systems, a stronger property called Lips-
chitz shadowing holds. This means that there is some constant C such that in
the definition of shadowing one can always choose δ = Cε [Pil99, §2.2]. In [PT10]
it is shown that Lipschitz shadowing for diffeomorphisms is actually equivalent to
hyperbolicity.

However, not all systems with the shadowing property have Lipschitz shadow-
ing. In fact, in view of [PT10], a simple example is any non-hyperbolic system
which is topologically conjugated to a hyperbolic one. Nevertheless, this type of
example still has many of the properties of hyperbolicity; in particular, there are
finitely many chain transitive classes, with dense periodic orbits. Another non-
hyperbolic example which has the shadowing property is a circle homeomorphism
with infinitely many fixed points, which are alternatively attracting and repelling
and accumulating on a unique non-hyperbolic fixed point. However, in this type
of example, altough there are infinitely many chain transitive classes, they all have
dense periodic points (in fact they are periodic points).

The next theorem gives a new type of example of smooth diffeomorphism with the
shadowing property, which is essentially different from the other known examples
in that it has an aperiodic chain transitive class, and moreover, all periodic points
are hyperbolic. In particular, our example shows that one cannot hope to improve
Theorem 1.1 by “going to the limit”, even for Kupka-Smale diffeomorphisms:

Theorem 1.5. In any compact surface S, there exists a Kupka-Smale C∞ dif-
feomorphism f : S → S with the shadowing property which has an aperiodic chain
transitive component. More precisely, it has a component which is an invariant
circle supporting an irrational rotation.
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A this point, we want to emphasize that none of the theorems stated so far
assume either Lipschitz or Hölder shadowing.

Finally, we consider the case of transitive endomorphisms of the circle with the
α-Hölder shadowing property, i.e. such that there is a constant C such that every
δ-pseudo-orbit is Cδα-shadowed by an orbit, and we show that α-Hölder shadowing
with α > 1/2 implies conjugacy to linear expanding maps (see definitions 4.1-4.3
for details).

Theorem 1.6. Let f be a C2 endomorphism of the circle with finitely many turning
points. Suppose that f is transitive and satisfies the α-Hölder shadowing property
with α > 1

2 . Then f is conjugate to a linear expanding endomorphism.

If the transitivity of f persists after perturbations, we can improve the result.
We say that f is Cr robustly transitive if all maps in a Cr-neighborhood of f are
transitive.

Theorem 1.7. Let f be a C2 orientation preserving endomorphism of the circle
with finitely many turning points. Suppose that f satisfies the α-Hölder shadowing
property with α > 1

2 . If f is Cr-robustly transitive, r ≥ 1, then f is an expanding
endomorphism.

Observe that in this theorem we do not assume that the shadowing property holds
for perturbations of the initial system. Theorem 1.7 can be concluded directly from
[KSvS07], where it is proved that hyperbolic endomorphisms are open and dense
for one dimensional dynamics. Nevertheless, we provide the present proof because
it involves very elementary ideas that may have a chance to be generalized for
surface maps. A result similar to Theorem 1.6 for the case of diffeomorphisms in
any dimension was recently given in [Tik11].

Let us say a few words about the techniques used in this article. To obtain
Theorem 1.1, we use Conley’s theory combined with a Lefschetz index argument to
reduce the problem to one in the annulus or the torus. To do this, we prove a result
about aperiodic ε-transitive components that is unrelated to the shadowing property
and may be interesting by itself (see Theorem 2.12). In that setting, then we apply
Brouwer’s theory for plane homeomorphisms (which is strictly two-dimensional) to
obtain the required periodic points.

To prove Theorem 1.5, we use a construction in the annulus with a special kind
of hyperbolic sets, called crooked horseshoes, accumulating on an irrational rotation
on the circle (with Liouville rotation number). The shadowing property is obtained
for points far from the rotation due to the hyperbolicity of the system outside a
neighborhood of the rotation, and near the rotation the shadowing comes from
the crooked horseshoes. The main technical difficulty for this construction is to
obtain arbitrarily close to the identity a hyperbolic system with a power exhibiting
a crooked horseshoe. This is addressed in the Appendix (see Proposition 3.2)

To prove Theorem 1.6 we use that the shadowing property to obtain a small
interval containing a turning point such that some forward iterate intersects a
turning point, and assuming that the shadowing is Hölder with α > 1

2 it is concluded
that the forward iterate of the interval has to be contained inside the initial interval,
contradicting the transitivity. Once turning points are discarded, Theorem 1.7 is
concluded using that the dynamics preserves orientation and that recurrent points
can be closed to a periodic orbit by composing with a translation.
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2. Shadowing implies periodic orbits: proof of Theorem 1.1

2.1. Lifting pseudo-orbits. Let S be a orientable surface of finite type, and
f : S → S a homeomorphism. If f is not the sphere, we may assume that S is
endowed with a complete Riemannian metric of constant non positive curvature,
which induces a metric d(·, ·) on S. Denote by Ŝ the universal covering of S with

covering projection π : Ŝ → S, equipped with the lifted metric which we still denote
by d(·, ·) (note that Ŝ ' R2 or H2).

The covering projection π is a local isometry, so that we may fix ε0 such that
for each x̂ ∈ Ŝ there is ε0 > 0 such that π maps the ε0-neighborhood of x̂ to the
ε0-neighborhood of π(x̂) isometrically for any x̂ ∈ Ŝ.

The next proposition ensures that one can always lift ε-pseudo orbits of f to the
universal covering in a unique way (given a base point) if ε is small enough.

Proposition 2.1. Given a lift f̂ : Ŝ → Ŝ of f , an ε0-pseudo orbit {xi}, and ŷ ∈
π−1(x0), there is a unique ε0-pseudo orbit {x̂i} for f̂ such that x̂0 = ŷ and xi =
π(x̂i) for all i.

Proof. Note that from the definition of ε0, we have

ε0 < min{d(ŷ, x̂) : x ∈ S, x̂, ŷ ∈ π−1(x), ŷ 6= x̂}.
Set x̂0 = ŷ. Then there is a unique choice of x̂1 ∈ π−1(x1) such that d(f̂(x̂0), x̂1) <

ε0, and similarly there is a unique x̂−1 ∈ π−1(x−1) such that d(f̂(x̂−1), x̂0) < ε0.
Proceeding inductively, one completes the proof. �

The following proposition follows from a standard compactness argument which
we omit.

Proposition 2.2. If K ⊂ S is compact and f̂ : Ŝ → Ŝ is a lift of f , then f̂ is
uniformly continuous on the ε-neighborhood of π−1(K), for some ε > 0.

We say that f has the shadowing property in some invariant set K if for every
ε > 0 there is δ > 0 such that every δ-pseudo orbit in K is ε-shadowed by some
orbit (not necessarily in K).

Proposition 2.3. Suppose that f has the shadowing property in a compact set

K ⊂ S. If f̂ : Ŝ → Ŝ is a lift of f , then f̂ has the shadowing property in π−1(K).

Proof. From the previous proposition, given ε > 0 we may choose ε′ < min{ε, ε0/3}
such that d̂(f̂(x), f̂(y)) < ε0/3 whenever d(x, y) < ε′, and a similar condition for

f̂−1.

Let δ < ε0/3 and let {x̂n} be a δ-pseudo orbit of f̂ in π−1(K). Then {π(x̂n)} is
a δ-pseudo orbit of f in K. If δ is small enough, then {π(x̂n)} is ε′-shadowed by
the orbit of some point x ∈M . Since d(x, π(x̂0)) < ε′, if x̂ is the element of π−1(x)

closest to x̂0 we have d(x̂, x̂0) < ε′. We know that d(f̂(x̂0), x̂1) < δ, and from our

choice of ε′ also d(f̂(x̂), f̂(x̂0)) < ε0/3, so d(f̂(x̂), x̂1) < δ + ε0/3. On the other

hand, since d(π(f̂(x̂)), π(x̂1)) < ε′, we must have that d(f̂(x̂), T x̂1) < ε′ < ε0/3
for some covering transformation T . But then d(T x̂1, x̂1) < δ + 2ε0/3 < ε0. This

implies that T = Id so that d(f̂(x̂), x̂1) < ε′. In particular f̂(x̂) is the element of
π−1(f(x)) closest to x̂1, so we may repeat the previous argument inductively to

conclude that d(f̂n(x̂), x̂n) < ε′ for all n ≥ 0.
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If ŷ is the element of π−1(f−1(x)) closest to x̂−1, then d(ŷ, x̂−1) < ε′. By the

previous argument starting from x̂−1 instead of x̂0, we have that d(f̂(ŷ), x̂0) < ε′ <

ε0/3, and this means that f̂(ŷ) is the element of π−1(x) closest to x̂0 (which we

named x̂ before). Thus ŷ = f̂−1(x̂), and we conclude that d(f̂−1(x̂), x̂−1) < ε′. By

an induction argument again, we conclude that d(f̂n(x̂), x̂n) < ε′ for n < 0 as well.
This completes the proof. �

2.2. Shadowing and periodic points for surfaces. First we state the following
well-known consequence of Brouwer’s plane translation theorem (see, for instance,
[Fra92]).

Theorem 2.4 (Brouwer). Let f : R2 → R2 be an orientation preserving homeo-
morphism. If f has a nonwandering point, then f has a fixed point.

Suppose f is homotopic to the identity, and let f̂ : Ŝ → Ŝ be the lift of f obtained

by lifting the homotopy from the identity. Then it is easy to see that f̂ commutes
with covering transformations.

Theorem 2.5. Let f : S → S be a homeomorphism homotopic to the identity.
Suppose that there is a compact invariant set Λ where f has the shadowing property.
Then f has a periodic point.

Proof. We will also assume that the metric in S is as in the previous section, which
we may since the shadowing property in a compact set is independent of the choice
of Riemannian metric on S.

We may assume that S is not the sphere, since in that case f would have a

periodic point by the Lefschetz-Hopf theorem. Consider the lift f̂ : Ŝ → Ŝ of f
which commutes with the covering transformations.

By Proposition 2.3, f̂ has the shadowing property in π−1(Λ). Fix ε > 0, and
let δ > 0 be such that every δ-pseudo orbit in π−1(K) is ε-shadowed by an orbit

of f̂ . Since Λ is compact and invariant, there is a recurrent point x ∈ Λ, and
so if x̂ ∈ π−1(x) we can find n > 0 and a covering transformation T such that

d(f̂n(x̂), T x̂) < δ. Since T is an isometry and commutes with f̂ , the sequence

. . . , T−1f̂n−1(x̂), x̂, f̂(x̂), . . . , f̂n−1(x̂), T x̂, T f̂(x̂), . . . , T f̂n−1(x̂), T 2x̂, . . .

is a δ-pseudo orbit, and so it is ε-shadowed by the orbit of some ŷ ∈ Ŝ. This implies

in particular that d(f̂kn(ŷ), T kx̂) < ε for all k ∈ Z, so that d((T−1f̂n)k(ŷ), ŷ) < ε

for all k ∈ Z. Note that T−1f̂n is a homeomorphism of Ŝ ' R2, and we may assume
that it preserves orientation without loss of generality. Moreover, we have from the

previous facts that the closure of the orbit of ŷ for T−1f̂n is a compact invariant

set; thus T−1f̂n has a recurrent point, and by Brouwer’s Theorem, it has a fixed

point. Since T−1f̂n is a lift of fn, we conclude that f has a periodic point. This
completes the proof. �

Corollary 2.6. If f : A→ A is a homeomorphism of the open annulus, and f has
the shadowing property on some compact set Λ, then f has a periodic point.

Proof. It follows from the previous theorem noting that f2 is homotopic to the
identity and still has the shadowing property in Λ. �

Corollary 2.7. Let f : T2 → T2 be a homeomorphism with the shadowing property.
Then f has a periodic point.
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Proof. Suppose that f has no periodic points. Using f2 instead of f we may
assume that f preserves orientation. By the Lefschetz-Hopf theorem, we only have
to consider the cases where f is homotopic to the identity or to a map conjugated
to a power of the Dehn twist D : (x, y) 7→ (x + y, y) (otherwise, f has a periodic
point even without assuming the shadowing property).

If f is isotopic to the identity, f has a periodic point by Theorem 2.5. Now
suppose that f is homotopic to a map conjugated to Dm for some M ∈ Z. Using
a homeomorphism conjugated to f instead of f , we may assume that f is in fact
is homotopic to Dm : (x, y) 7→ (x + my, y). Let τ : A → T2 be the covering map
(x, y) 7→ (x+ Z, y), where A = S1 × R. Since f is isotopic to Dm, we can lift f by

τ to a homeomorphism f̃ : A→ A, which is homotopic to the identity.
Note that in the proof of Propositions 2.1 and 2.3 we did not use the fact that

π was the universal covering map. Thus by the same argument applied to the
covering τ one sees that f̃ has the shadowing property in A = τ−1(T2). Moreover,
following the proof of Theorem 2.5, we see that there is a point z̃ ∈ A and a covering
transformation T : A → A such that d(f̃kn(z̃), T z̃) < ε for all k ∈ Z. But then,

noting that T commutes with f̃ , we see that T−1f̃n is a lift of fn which has a
compact invariant set Λ where the shadowing property holds (namely, the closure

of the orbit of z̃). The previous corollary applied to f̃ implies that f̃ (and thus f)
has a periodic point.

�

2.3. Lyapunov functions and ε-transitive components. Let f : X → X be a
homeomorphism of a compact metric spaceX. Denote by CR(f) the chain recurrent
set of f , i.e. x ∈ CR(f) if for every ε > 0 there is an ε-pseudo-orbit for f connecting
x to itself.

The chain recurrent set is partitioned into chain transitive classes, defined by
the equivalence relation x ∼ y if for every ε > 0 there is an ε-pseudo-orbit from x
to y and another from y to x. The chain transitive classes are compact invariant
sets.

Recall that a complete Lyapunov function for f is a continuous function g : X →
R such that

(1) g(f(x)) < g(x) if x /∈ CR(f);
(2) If x, y ∈ CR(f), then g(x) = g(y) if and only if x and y are in the same

chain transitive component;
(3) g(CR(f)) is a compact nowhere dense subset of R.

Given a Lyapunov function as above, we say that t ∈ R is a regular value if
g−1(t) ∩ CR(f) = ∅. Note that the set of regular values is open and dense in R.

We recall the following result from Conley’s theory (see [FM02]).

Theorem 2.8. If f : X → X is a homeomorphism of a compact metric space, then
there is a complete Lyapunov function g : X → R for f .

Now suppose f : S → S is a homeomorphism of the compact surface S. Given
a fixed ε > 0, we say that x, y ∈ CR(f) are ε-related if there are ε-pseudo orbits
from x to y and from y to x. This is an equivalence relation in CR(f); we call the
equivalence classes ε-transitive components. It is easy to see that there are finitely
many ε-transitive components [Fra89, Lemma 1.5]. Moreover, in [Fra89, Theorem
1.6] it is proved that every ε-transitive component is of the form g−1([a, b])∩CR(f)
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for some complete Lyapunov function g for f and a, b ∈ R are regular values. Note
that ε-transitive components are compact and invariant.

Proposition 2.9. Let Λ be an ε-transitive component for some ε > 0. Then there
are compact surfaces with boundary M1 ⊂ M2 ⊂ S such that f(Mi) ⊂ intMi for
i = 1, 2, and

Λ = (M2 \M1) ∩ CR(f).

Proof. Let g be a complete Lyapunov function for f such that the ε-transitive Λ
verifies that Λ = g−1([a, b]) ∩ CR(f) for some regular values a < b. Consider
a function g̃ which coincides with g in a neighborhood of CR(f) and is C1 in a
neighborhood of {a, b}. If g̃ is C0-close enough to g, it will be a complete Lyapunov
function for f . Choose regular values a′ < b′ (in the differentiable sense) for g̃ such
that there are no points of g(CR(f)) between a and a′ or between b and b′, and
define Mb = g̃−1(b′), Ma = g̃−1(a′). It is easy to verify that Ma and Mb satisfy the
required properties. �

2.4. Reducing neighborhoods for ε-transitive components. First we recall
some definitions. If T is a non-compact surface, a boundary representative of T is a
sequence P1 ⊃ P2 ⊃ · · · of connected unbounded (i.e. not relatively compact) open
sets in T such that ∂TPn is compact for each n and for any compact set K ⊂ T ,
there is n0 > 0 such that Pn ∩ K = ∅ if n > n0 (here we denote by ∂TPn the
boundary of Pn in T ). Two boundary representatives {Pi} and {P ′i} are said to be
equivalent if for any n > 0 there is m > 0 such that Pm ⊂ P ′n, and vice-versa. The
ideal boundary bIT of T is defined as the set of all equivalence classes of boundary
representatives. We denote by T̂ the space T ∪bIT with the topology generated by
sets of the form V ∪V ′, where V is an open set in T such that ∂TV is compact, and
V ′ denotes the set of elements of bIT which have some boundary representative
{Pi} such that Pi ⊂ V for all i. We call T̂ the ends compactification or ideal
completion of T .

Any homeomorphism f : T → T extends to a homeomorphism f̂ : T̂ → T̂ such

that f̂ |T = f . If T̂ is orientable and bIT is finite, then T̂ is a compact orientable
boundaryless surface. See [Ric63] and [AS60] for more details.

The following lemma states that we can see an ε-transitive component Λ as a
subset of an f -invariant open subset of S such that the chain recurrent set of the
extension of f to its ends compactification consists of finitely many attracting or
repelling periodic points together with the set Λ.

Lemma 2.10. Let S be a compact orientable surface, and let f : S → S be a
homeomorphism. If Λ is an ε-transitive component, then there is an open invariant
set T ⊂ S with finitely many ends such that each end is either attracting or repelling
and CR(f |T ) = Λ.

Proof. Let M1 ⊂M2 be the compact surfaces with boundary given by Proposition
2.9. Removing some components of M1 and M2 if necessary, we may assume that
every connected component of Mi intersects CR(f) for i = 1, 2. Similarly, we may
assume that every connected component of S \ intMi intersects CR(f) for i = 1, 2
(removing some components of S \ Mi if necessary). This does not modify the
properties of Mi given by Proposition 2.9.

Note that f(Mi) and Li = Mi \ int f(Mi) are compact surfaces with boundary
whose union is Mi and they intersect only at some boundary circles (at least one for
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each Mi, since neither M1 nor S \M2 are empty), so that their Euler characteristics
satisfy

χ(Mi) = χ(Li) + χ(f(Mi)).

But since χ(Mi) = χ(f(Mi)), it follows that χ(Li) = 0. Thus, to show that Li is
a union of annuli, it suffices to show that no connected component of Li is a disk
(since that implies that the Euler characteristic of each connected component of Li
is at most 0).

Suppose that some (closed) disk D is a connected component of Li. Then the
boundary ∂D is a component of ∂Mi ∪ ∂f(Mi).

Suppose first that ∂D is a boundary circle of Mi. Since D ⊂ Li = Mi\ int f(Mi),
it follows that D ⊂ Mi. Thus, D is a connected component of Mi. On the other
hand, since D ∩ int f(Mi) = ∅ and f(Mi) ⊂ intMi is disjoint from ∂Mi ⊃ ∂D, it
follows that D ∩ f(Mi) = ∅. Since fn(D) ⊂ fn(Mi) ⊂ f(Mi) for n ≥ 1, we can
conclude that D ∩ CR(f) = ∅, because the distance from f(Mi) to D is positive,
so that no ε-pseudo orbit starting in D can return to D if ε is small enough. This
contradicts the fact that every component of Mi intersects CR(f) as we assumed
in the beginning of the proof.

Now suppose that ∂D is a component of ∂f(Mi). Since D ∩ int f(Mi) = ∅, it
follows that D is a connected component of S \ int f(Mi), so that D′ = f−1(D) is
a component of S \ intMi. But f(D′) ⊂ Mi, which implies that fn(D′) ⊂ Mi for
all n > 0. As before, this implies that D′ is disjoint from CR(f), contradicting the
fact that every component of S \ intMi intersects CR(f). This completes the proof
that Li is a disjoint union of annuli.

Note that that the number of (annular) components of Li coincides with the
number of boundary components of Mi, since Li is a neighborhood of ∂Mi in Mi.
The previous argument also shows that Mi \ int fn(Mi) is a union of the same
number of annuli if n > 0. In fact, Mi \ int fn(Mi) = ∪n−1

k=1f
k(Li), and the union

is disjoint (modulo boundary). Thus the sets

L̃1 =
⋃
n≥0

fn(L1) and L̃2 =
⋃
n<0

fn(L2)

are increasing unions of annuli sharing one of their boundary components, hence
they are both homeomorphic to a disjoint union of sets of the form S1 × [0, 1).

Moreover,
⋂
i>0 f

n(L̃1) = ∅ =
⋂
n<0 f

n(L̃2). Let ki be the number of components

of L̃i (or, which is the same, the number of boundary components of Mi).
Let N = M2 \ intM1 and write

T = L̃1 ∪N ∪ L̃2.

It is easy to check that f(T ) = T . Moreover, ∂N = ∂L̃1 ∪ ∂L2, so T is an open

surface with k1 + k2 ends. If we denote by T̂ the ends compactification of T , and

by f̂ the extension of f to T̂ (which is a homeomorphism), we have that f̂ has

exactly k1 + k2 periodic points, which are the ends of T . The ends in L̃1 give rise
to periodic attractors, and the ones in L̃2 to periodic repellers. Since CR(f |L̃i) = ∅
for i = 1, 2 and CR(f |N ) = Λ, the surface T has the required properties. �

2.5. Aperiodic ε-transitive components. We now show that if an ε-transitive
component Λ has no periodic points, then the “reducing neighborhood” of Λ from
the previous lemma is a disjoint union of annuli.



SOME CONSEQUENCES OF THE SHADOWING PROPERTY 9

Lemma 2.11. Let A be a matrix in SL(m,Z). Then there is n > 0 such that
trAn ≥ m.

Proof. Let r1e
2πiθ1 , . . . , rme

2πiθm be the eigenvalues of A. Given ε > 0, we can
find an arbitrarily large integer n such that (2nθ1, . . . , 2nθm) is arbitrarily close
to a vector of integer coordinates, so that cos(4nπiθk) > 1 − ε. Thus trA2n =∑
k r

n
k cos(4nπiθk) > (1 − ε)∑k r

2n
k . If r1 = · · · = rm = 1, then trA2n ≥ m(1 −

ε), and since trA2n is an integer, if ε was chosen small enough this implies that
trA2n = m. Now, if some rk 6= 1, choosing a different k we may assume rk > 1,
so that trA2n > (1 − ε)r2n

k , and if n is large enough and ε < 1 this implies that
trA2n > m. �

Theorem 2.12. Let S be a compact orientable surface, and let f : S → S be a
homeomorphism. If Λ is an ε-transitive component without periodic points, then
either S = T2 and f has no periodic points, or there is a disjoint union of periodic
annuli T ⊂ S such that the ends of each annulus are either attracting or repelling
and CR(f |T ) = Λ.

Proof. Let T be the surface given by Lemma 2.10. If some component T ′ of T has
no ends at all, then T ′ is compact, and since it has no boundary, T = T ′ = S.
Since f has no periodic points in Λ = CR(f |T ) = CR(f), it follows that there are
no periodic points at all. The only compact surface admitting homeomorphisms
without periodic points is T2, so S = T2 as required.

Now suppose T has at least one end in each connected component, and let T̂ be

its ends compactification. Replacing f̂ by some power of f̂ , we may assume that f̂
preserves orientation, the periodic points arising from the ends of T̂ are fixed points,
and there are no other periodic points. Moreover, each connected component of T̂
is invariant, all fixed points in T̂ are attracting or repelling and there is at least one
in each connected component. Thus we may (and will) assume from now on that

T̂ is connected and we will show that it is a sphere with exactly two fixed points,
so that the corresponding connected component of T is an annulus as desired.

Since the fixed points of f̂ are attracting or repelling, the index of each fixed

point is 1. Since there are no other periodic points, the same is true for f̂n, for any
n 6= 0. Thus we get, from the Lefschetz-Hopf theorem,

L(f̂n) = # Fix(f̂n) = # Fix(f̂)

where L(f) denotes the Lefschetz number of f (see [FM02]), defined by

L(f̂n) = tr(f̂∗0)− tr(f̂∗1) + tr(f̂∗2),

where f̂∗i is the isomorphism induced by f̂ in the i-th homology Hi(T̂ ,Q).

It is clear that tr(f̂∗0) = 1 because we are assuming that T̂ is connected. Since

T̂ is orientable and we are assuming that f̂ preserves orientation, and from the fact

that T̂ is a closed surface, we also have that tr(f̂∗2) = 1. Thus

1 ≤ # Fix(f̂) = L(f̂n) = 2− tr(An),

where A is a matrix that represents f̂∗1. Since f̂ is a homeomorphism, A ∈
SL(β1,Z), where β1 is the first Betti number of T̂ . By Lemma 2.11 we can find n

such that tr(An) ≥ β1. It follows that β1 ≤ 1. But since T̂ is a closed orientable

surface, β1 is even, so that β1 = 0. That is, the first homology of T̂ is trivial.
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We conclude that T̂ is the sphere. Since f̂ preserves orientation, this means that

L(f̂) = 2, so that there are exactly two fixed points as we wanted to show. �

2.6. Proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose there exists ε > 0 and some ε-transitive component
which has no periodic points. By Theorem 2.12, we have two possibilities: First,
S = T2 and there are no periodic points in S. But this is not possible due to
Corollary 2.7. The second and only possibility is that Λ = CR(f)∩ (A1 ∪ · · · ∪Am)
where the union is disjoint, each Ai is a periodic open annulus, and each end of Ai
is either attracting or repelling. Using fn instead of f , we may assume that each
Ai is invariant. Let Λi = Λ ∩ Ai. Then Ai is an open invariant annulus such that
CR(f |Ai) = Λi and f has no periodic points in Ai. But it is easy to see that f has
the shadowing property in CR(f |Ai), and this contradicts Theorem 2.5. �

2.7. Kupka-Smale diffeomorphisms. The proof of theorem 1.4 starts with the
next theorem that holds in any dimension for any Kupka-Samle diffeomorphism
having the shadowing property.

Theorem 2.13. Let f : M → M be a Kupka-Smale diffeomorphism of a compact
manifold having the shadowing property. Suppose there is a chain transitive com-
ponent Λ which contains a periodic orbit p. Then Λ is the homoclinic class of
p.

Proof. Suppose that fk(p) = p and there is some point x ∈ Λ which is not in
the orbit of p. Let ε > 0, and choose δ > 0 such that every δ-pseudo orbit is
ε-shadowed by an orbit. Since x and p are in the same chain transitive component,
we can find a δ-pseudo orbit x−a, . . . , xb such that x0 = x, x−a = p and xb = p.
Define x−n = f−n+a(p) for n > a and xn = fn−b(p) for n > b. Then {xn} is a
δ-pseudo orbit, which is ε-shadowed by the orbit of some y ∈ M , which is not in
the orbit of p if ε is small enough.

Note that d(f−kn(y), fa(p)) < ε if n > a and d(fkn(y), f−b(p)) < ε if n > b. If ε
is small enough, this implies that y ∈ Wu(fa(p)) ∩W s(f−b(p)). Since y is ε-close
to x and ε was arbitrary, it follows that y is in the homoclinic class of p.

It is clear that any point in the homoclinic class of p is in the same chain transitive
component of p. This completes the proof. �

Corollary 2.14. If f : M →M is Kupka-Smale, then chain transitive components
contain at most one or infinitely many periodic orbits.

Corollary 2.15. If f : M →M is Kupka-Smale, then either f has positive entropy
or every chain transitive component consists of a single periodic orbit.

Now we can prove Theorem 1.4.

Proof of Theorem 1.4. Since f has finitely many periodic orbits, by Theorem 2.13
each chain transitive component of f contains at most one periodic orbit, and if it
does it contains nothing else. We need to show that there are no chain transitive
components without periodic orbits, as this would imply that CR(f) = Per(f), and
the Kupka-Smale condition then implies then that f is Morse-Smale.

Suppose by contradiction that there is some chain transitive component Λ with-
out periodic points. Since there are finitely many periodic orbits, for ε > 0 small
enough it holds that the ε-transitive components of periodic points are disjoint from
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Λ. Thus the ε-transitive component Λ0 containing Λ contains no periodic points.
By Theorem 1.1, this is a contradiction. �

3. An example with an aperiodic class: proof of Theorem 1.5

Let us briefly explain the idea of the construction of the example from Theorem
1.5. We will define a map f on the annulus A, such that the boundary is either
attracting or repelling. This example can then easily be embedded on any surface.
Our map will be such that the circle C = S1 × {0} is invariant and f |C is an
irrational rotation. This circle is going to be an aperiodic class. To guarantee that
the system has the shadowing property we combine two ideas: first, we will make
sure that f is hyperbolic outside any neighborhood of C. This will guarantee the
shadowing of pseudo-orbits that are “far” from C. On the other hand, to obtain
shadowing “near” C, we require that there is a sequence of hyperbolic sets of a
special kind (“crooked horseshoes”) accumulating on the circle C. These sets have
the property that they contain orbits that approximate increasingly well the first
coordinate of any ε-pseudo-orbit that remains close enough to C. We also require
that between these sets there are essential attractors and repellers (alternating), in
order to guarantee that any pseudo-orbit that starts close enough to C remains close
to C forever. This allows us to ignore the second coordinate to obtain shadowing
for these pseudo-orbits.

3.1. Crooked horseshoes. We begin describing a diffeomorphism H : A → A of
the closed annulus A = S1×[0, 1] which has a “crooked horseshoe” wrapping around
the annulus. Such a map is obtained by mapping a closed annulus to its interior
as in figure 1. The regions A and B are rectangles in the coordinates of A. The
region A is mapped to the interior of A, and B is mapped to the gray region, which
intersects B in five rectangles. The map H is contracting in A, while in B∩H−1(B)
it contracts in the radial direction and expands in the “horizontal” direction in a
neighborhood of B (affinely).

This defines a diffeomorphism H from A to the interior of A. It is easy to see
that the nonwandering set of H consists of two parts: the set K0, which is the
maximal invariant subset of H in B and an attracting fixed point p in A.

Since H is affine in a neighborhood of K0, the set K0 is hyperbolic. We can
regard H as a diffeomorphism from A to itself by doing the above construction
inside a smaller annulus, and then extending H to the boundary in a way that the
two boundary components are repelling and the restriction of H to the boundary
is Morse-Smale. In this way we obtain an Axiom A diffeomorphism H : A→ A.

As in the classical horseshoe, we have a natural Markov partition consisting of
the five rectangles of intersection of B with H(B), which induces a conjugation of
H|K0

to a full shift on five symbols. However we will restrict our attention to the
set K ⊂ K0 which is the maximal invariant subset of H in B−1∪B0∪B1 (i.e. three
particular rectangles of the Markov partition). For these, we have a conjugation
of H|K to the full shift on three symbols σ : {−1, 0, 1}Z → {−1, 0, 1}Z, where the
conjugation φ : {−1, 0, 1}Z → K is such that φ(x)n = i ⇐⇒ Hn(x) ∈ Ei. Note
that if x ∈ Ei then f(x) turns once around the annulus clockwise if i = 1 and
counter-clockwise if i = −1, and f(x) does not turn if i = 0. This is clearly seen

considering the lift B̂ of B to the universal covering of A (i.e. a connected component

of the preimage of B by the covering projection), and a lift Ĥ : R× [0, 1]→ R× [0, 1]
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B

A

K

p

H(B)

H(A)

B1

B0

B−1

H−1(B−1)

H−1(B0) H−1(B1)

Figure 1. A crooked horseshoe

B−1

B0

B1Ĥ(Â)

Ĥ(B̂)

B̂

Figure 2. The lift of H

of H such that Ĥ has a fixed point in B̂ (see figure 2). If B̂i are the lifts of the sets

Bi inside B̂ and K̂ is the part of B̂ that projects to K, we have that Ĥ(ẑ) ∈ B̂+(i, 0)

if ẑ ∈ Êi ∩ K̂.

Definition 3.1. We say that a diffeomorphism f : A→ A has a crooked horseshoe
if there is a hyperbolic invariant set K ⊂ A with the properties described above;

that is, there is a lift f̂ of f to the universal covering and three sets K̂−1, K̂0 and

K̂1, which project to a Markov partition of K such that f̂(ẑ) ∈ i + K̂ if ẑ ∈ K̂i

(where K̂ = K̂−1 ∪ K̂0 ∪ K̂1)). Furthermore, we will assume that the width of K̂
(that is, the diameter of its projection to the first coordinate) is at most 1.

3.2. Approximations of a Liouville rotation with crooked horseshoes. One
of the key steps for our construction of aperiodic classes requires a hyperbolic
diffeomorphism f of the annulus which is C∞-close to the identity such that some
power of f has a crooked horseshoe. This is guaranteed by the next proposition,
the proof of which is given in Appendix 4.

Proposition 3.2. For any m > 0, there is a C∞-diffeomorphism H : A→ A such
that

(1) H is Axiom A with the strong transversality condition;
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(2) Hm has a crooked horseshoe;
(3) dCr (H, id) < Cr/m, where Cr is some constant depending only on r.

Write Rα : A→ A for the rotation x 7→ x+α, and Rα : S1 → S1 for the analogous
rotation of the circle.

Proposition 3.3. For any ε > 0 and any Liouville number α, there is an Axiom
A diffeomorphism h : A→ A arbitrarily C∞-close to Rα and δ > 0 such that every
δ-pseudo orbit of Rα is ε-shadowed by the first coordinate of some orbit of h.

Proof. We need to construct, for any r > 0, a map h with the desired properties
which is Cr-close to the rotation by α. Thus we fix r > 0 from now on. We first
describe a general construction. Assume m > 0 and p/q ∈ Q are given (we will
choose them later).

Let H : A→ A be a diffeomorphism as in Proposition 3.2. Fix q ∈ Z, q > 0, and
let us write K + t to represent the set {(x+ t, y) : (x, y) ∈ K} for K ⊂ A. Using an
appropriate lift of H by the finite covering A ' (R/qZ)×[0, 1] 7→ (R/Z)×[0, 1] = A,
we obtain a diffeomorphism f : A→ A which has a hyperbolic setK = K0∪K1∪· · ·∪
Kq−1 such that Kj+1 = Kj +1/q (adopting the convention that Kj+q = Kj), and a

Markov paritition Kj
−1,K

j
0 ,K

j
1 , j = 0, . . . , q−1 such that Kj

i ⊂ Kj for j = −1, 0, 1

and fm(x) ∈ Kj + i/q if x ∈ Kj
i . Moreover, fm(x+ 1/q) = fm(x) + 1/q.

If we write h(x) = f(x) + p/q, we have that hm(x) ∈ Kj +mp/q+ i/q if x ∈ Kj
i .

Also, since h is a lift to a finite covering of an Axiom A diffeomorphism with strong
transversality, it follows easily that h itself is Axiom A with strong transversality.

Note that the width of each Kj is at most 1/q. Because of the finite covering we

used, the bound we have on the Cr-distance from h to the rotation Rp/q is

dCr (h,Rp/q) ≤ qrdr(H, id) ≤ Crqr/m.
Note also that

(1) sup{|h(z)1 −Rp/q(z)1| : z ∈ A} < C0

mq

where (·)1 denotes the first coordinate. This is again because of the q-folded covering
we used.

Note that any δ-pseudo orbit of Rα is a (δ+ |α−p/q|)-pseudo orbit of Rp/q. Let

p/q be such that 1/q < ε/(4C0 +4) and |p/q−α| < 1/qr+2. Now let m = qr+1, and
choose h as we described above. Since dr(h,Rp/q) ≤ Cr/q, by choosing a larger q

we may assume that h is arbitrarily Cr-close to Rα.
To see that h has the required properties, let δ = 1/(mq)− 1/qr+2 > 0. If {xn}

is a δ-pseudo orbit of Rα, it is a 1/(mq)-pseudo orbit for Rp/q, and {xmn} is a 1/q-
pseudo orbit for Rmp/q = id. We define a unique z ∈ K by specifying its itinerary
for hm as follows: let j0 be such that d(π1(Kj0), x0) < 1/q < ε/2, set i0 = 0, and

in+1 =



−1 if x0 +

n∑
k=0

ikm/q − xmn > ε/2

1 if x0 +

n∑
k=0

ikm/q − xmn < −ε/2

0 otherwise.

Define jn = j0 + i0 + · · ·+ in.
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Note that if d(π1(Kjn), xnm) < ε/2 then by construction

π1(Kjn+1
)− xm(n+1) = π1(Kjn) +

in+1

q
− (xnm + δn+1)

where |δn+1| < 1/q. Since

|π1(Kjn)− xnm − δn+1| < ε/2 + 1/q,

our choice of in+1 implies that

|π1(Kjn)− xnm − δn+1 + in+1/q| < ε/2.

Thus, we see by induction that

(2) |π1(Kjn)− xnm| < ε/2

for all n ≥ 0. A similar choice can be made for negative n, obtaining a sequence
{jn} which determines via the symbolic dynamics a unique z ∈ Kj0 such that
hnm(z) ∈ Kjn . Since (2) holds for all n and the width of each Kj is at most
1/q < ε/4, it follows that |hnm(z)1 − xnm| < ε/2 + ε/4 < ε for all n ∈ Z. But using
(1) we also have that, if 0 ≤ k ≤ m− 1,

|hnm+k(z)1 − xnm+k| ≤ |hk(hnm(z))1 −Rkp/q(xnm)|+ |xnm+k −Rkp/q(xnm)|

≤ k C0

mq
+ kδ ≤ C0 + 1

q
≤ ε

Thus {hn(z)1} ε-shadows {xn}. This completes the proof. �

3.2.1. Proof of theorem 1.5. To prove the theorem, we construct a map f : A→ A
which is a contraction outside some annulus, and which has the required properties.
The theorem follows easily since, by standard arguments, we can embed this kind
of dynamics in any surface preserving the Kupka-Smale condition and in a way
that the dynamics outside this annulus is simple (the chain recurrent set consists
of finitely many hyperbolic periodic points).

To define f , fix a Liouville number α and denote by Rα : A → A the map
Rα(x, y) = (x+ α, y). We first choose a sequence of pairwise disjoint closed annuli
{Ai : i > 0} of the form Ai = S1 × [ai, bi] with the following properties:

(1) bn − an → 0 as n→∞;
(2) An converges to the circle C = S1 × {0} as n→∞;
(3) The distance between An and An+1 is at most 1 and at least 1/n2;

We will choose a sequence hn : An → An of diffeomorphisms such that hn has the
properties of the map h of Proposition 3.3 with the annulus An instead of A, using
ε = 1/n. Moreover, we choose hn such that

(3) dCn(hn, Rα) < (2n)−2n/Kn

where Kn is a constant that we will specify later. Using H−1 instead of H in
Proposition 3.2, we may obtain a map with the same properties as hn in Proposition
3.3 such that its inverse is attracting instead of repelling on the boundary of the
annulus. Thus we may assume that for hn, the boundary of An is repelling if n is
odd and attracting if n is even.

Moreover, from the proof of Proposition 3.2, it is possible to assume that the
restriction of H (and thus of hn) to a neighborhood of the boundary components of
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An has a simple dynamics, namely the product of a Morse-Smale diffeomorphism
of the circle and a linear contraction or expansion; that is,

hn(x, y) = (gn(x), L±n (y))

for (x, y) in a neighborhood of ∂±An, where L±n (x, y) = λn(y − y±n ) + y±n .
Since the boundary of An is attracting if n is odd and repelling if n is even,

λn > 1 and λn+1 < 1 or vice versa (we will assume the first case).
We define f |An = hn. To define f in the regions between the Ai’s, let let Bn be

the annulus between An and An+1. Note that from (3), we have d∞(gn, gn+1) <
2−n.

For (x, y) ∈ Bn, we define f(x, y) using convex combinations:

f(x, y)1 = gn(x) + φ

(
y − y−n

y+
n+1 − y−n

)
(gn+1(x)− gn(x))

f(x, y)2 = L−n (y) + φ

(
y − y−n

y+
n+1 − y−n

)
(L+

n+1(y)− L−n (y))

where φ : R→ R is a fixed C∞ bump function such that φ(x) = 0 if x < 0, φ(x) = 1
if x > 1 and 0 ≤ φ(x) ≤ 1. We further asusme that φ is strictly increasing. Since
φ is fixed, the constant Kn that we used in the choice of hn can be chosen so that
‖φ‖Cn < Kn and Kn ≥ 2.

For convenience, let t(y) =
y−y−n

y+n+1−y
−
n

and ∆n = y+
n+1 − y−n . Note that |∆n| is the

distance from An to An+1, so from condition 3 at the beginning of the proof we
have

1 ≥ |∆n| ≥ 1/n2

Also note that from (3),

dCn(gn, gn+1) ≤ 2(2n)−2n/Kn,

so that if 0 ≤ i+ j ≤ n and i, j ≥ 0,∣∣∣∣ ∂i+j

∂xi∂yj
(φ(t(y))(gn+1(x)− gn(x)))

∣∣∣∣ =

∣∣∣∣φ(j)(t(y))

∆j
n

(
g

(i)
n+1(x)− g(i)

n (x)
)∣∣∣∣

≤ 2/((2n)2n |∆n
n| ≤ 2/4n

and if 1 ≤ i ≤ n, using Leibniz’s formula and the fact that L+
n+1 and L−n are affine

maps, we find (again using (3))∣∣∣∣ ∂i∂yi (φ(t(y))(L+
n+1(y)− L−n (y))

)∣∣∣∣
=

∣∣∣∣φ(i)(t(y))

∆i
n

(
L+
n+1(y)− L−n (y)

)
+ n

φ(i−1)(t(y))

∆i−1
n

(λn+1 − λn)

∣∣∣∣
≤ Kn

∆n
n

(2(2n)−2n/Kn) + n
Kn

∆n
n

(2(2n)−2n/Kn)

≤ 2(n+ 1)/((2n)2n |∆n
n|) ≤ 2(n+ 1)/4n.

Putting these facts together, we see that

dCn(f |Bn , Rα|Bn) ≤ 2(n+ 1)/4n
n→∞−−−−→ 0.
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C

A1

A2

A3

B1

B2

α

Figure 3. The map f

Note that the dynamics of f in Bn is trivial: the boundary components of B are
one attracting and the other repelling and there is no recurrence in the interior of
B. In fact it is easy to see that f2(x, y) − y is always positive or always negative
for (x, y) ∈ Bn (depending on the parity of n)

To see that f |Bn is Axiom A, note that the nonwandering set of f |Bn is contained
in the boundary of Bn (which is in An+1 or An) so it consists of periodic points
which are hyperbolic and finitely many. Moreover, since the boundary compo-
nents of Bn are one attracting and one repelling, a homoclinic intersection between
saddles can only happen if the saddles are in different boundary components. A
small perturbation supported in the interior of Bn which does not affect our es-
timates ensures that all such intersections are transverse, guaranteeing the strong
transversality condition.

To define f in the region above A1, we extend arbitrarily f as a contraction
using a similar argument. This defines f in {(x, y) ∈ A : y > 0}. Note that f is
Axiom A with strong transversality in each An. Finally, we repeat this procedure
for the lower half of A, and we define f |C = Rα|C . This defines f : A → A. By
construction, f is C∞ in A\C. To see that f is also C∞ in C, it suffices to observe
that from our previous observations, if Un is an annular region of width 1/n around
C, dCr (f |Un , Rα|Un)→ 0 as n→∞. This easily implies that f is C∞ in A.

We note that f is Kupka-Smale because it is Axiom A with strong transversaility
in each of the invariant annuli composing it (and there are no periodic points in
C). Now it remains to see that f has the shadowing property.

Fix ε > 0. By our choice of f in the annuli An, if we choose n such that An is
contained in an ε-neighborhood of C and 1/n < ε, there is δ0 > 0 such that that
every δ0-pseudo orbit of the rotation by α in S1 is ε-shadowed by the first coordinate
of an orbit of f in An. This means that every δ0-pseudo orbit of f contained in C
is ε-shadowed by an orbit of f .

Since C is the limit of a sequence of alternatively attracting-repelling circles,
for any µ > 0 we can find δ1 > 0 such that any δ1-pseudo orbit starting in the
δ1-neighborhood Uδ1 of C is contained in the µ-neighborhood Uµ of C, and we can
choose µ and δ1 small enough so that the first coordinate of every δ1-pseudo orbit
of f starting in Uδ1 is a δ0-pseudo orbit for the rotation by α of S1. From our
previous remark, this δ0-pseudo orbit must be ε-shadowed by the first coordinate
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of some orbit of f in An. Since the width of An is smaller than 1/n < ε, we have
that every δ1 pseudo orbit of f starting in Uδ1 is ε-shadowed by an orbit of f .

By construction, f is Axiom A outside any invariant neighborhood of C. If
we choose an invariant annulus V ⊂ Uδ1 such that its boundary components are
repelling, this implies that there is δ2 such that any δ2-pseudo orbit of f starting
in A \ V is ε-shadowed by an orbit of f .

Finally, let δ = min{δ1, δ2}, and we have that any δ-pseudo orbit of f is ε-
shadowed by an orbit of f , as we wanted to prove.

It is easy to see that C is a chain transitive component, so the theorem is proved.

4. Shadowing for one dimensional endomorphisms

We now consider smooth one dimensional endomorphisms on the circle (at least
C2) assuming that the Holder shadowing property holds with Holder constant larger
than 1

2 . We recall first some definitions. Let f be a Cr endomorphism of the circle.

Definition 4.1. Given α ≤ 1, it is said that f has the α-Holder shadowing property
if there exists C > 0 such that any ε-pseudo-orbit with ε > 0 is Cεα-shadowed by
an orbit.

Definition 4.2. It is said that f is expansive if there exists C > 0 such that for
any pair of points x, y that there is n ≥ 0 such that dist(fn(x), fn(y)) > C.

Definition 4.3. It is said that f is expanding if there exist C > 0 and λ > 1 such
that |(fn)′(x)| > Cλn for any x in the circle and for any positive integer n.

Definition 4.4. Given a critical point c (i.e., f ′(c) = 0), it is said that c is a
turning point if c is either a local minimum or a local maximum of f .

To prove Theorem 1.6 we will need the following result.

Theorem 4.5. If f is a transitive non-invertible local homeomorphism of the circle,
then f is topologically conjugate to a linear expanding map.

Proof. Since f is a local homeomorphism, if the degree of f is 1 or −1 it follows that
f is a homeomorphism, contradicting the assumption that f is non-invertible. Thus
the degreee d of f satisfies |d| 6= 1. This implies (for example, see [KH95, Prop.
2.4.9] that f is semiconjugated to the linear expanding map Ed : x 7→ dx (mod 1) via
a monotone map h of degree 1; i.e. hf = Edh and h is a continuous surjection such
that h−1(x) is a point or an interval for each x. Suppose I = h−1(x) is a nontrivial
interval for some x. Then from the transitivity it follows that there is k > 0 such
that fk(I) ∩ I 6= ∅. Since h(fk(I)) = Ekdh(I) and h(I) = x, we conclude that

Ekd (x) = x, and so fk(I) = I. The transitivity of f implies then that
⋃k−1
i=0 f

i(I) is
dense in the circle, which in turn implies that h has a finite image, a contradiction.
This shows that h−1(x) is a single point for every x, so that h is a homeomorphism
and f is conjugate to Ed. �

Before proceeding to the proof of Theorems 1.6 and 1.7, let us introduce some
notation.

Notation 4.6. If x, y are points in the circle, the interval notation (x, y) denotes
the smallest of the two intervals in the complement of the two points (when there
is a smallest one). Similarly one can define [x, y), (x, y[ and [x, y].
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Notation 4.7. If ε > 0 is given, and ε 7→ δ(ε) > 0, ε 7→ g(ε) > 0 are real functions,
we use the following notations:

• δ = O(g(ε)) if there is a constant C and ε0 > 0 such that δ(ε) < Cg(ε)
whenever 0 < ε < ε0.
• δ ≈ g(ε) if g(ε)/δ(ε)→ 1 as ε→ 0+.

Proof of Theorem 1.6. We will prove that f has no turning point. This is
enough to complete the proof, because it implies that f is a local homeomorphism,
and from Theorem 4.5 one concludes that f is topologically conjugate to a linear
expanding map as required.

Let c1, . . . , ck be the turning points, and fix γ > 0 such that for each i, the
interval Ji = (ci − γ, ci + γ) is such that f(Ji) = (ai, f(ci)] for some ai, and f
is injective in (ci − γ, ci] and [ci, ci + γ). We may also assume that the intervals
J1, . . . , Jk are pairwise disjoint

Fix ε > 0 and 1 ≤ i ≤ k, and let zi ∈ Ji be such that dist(zi, ci) = ε. Then
dist(f(z), f(ci)) = O(ε2), because f is C2 and ci is a turning point. The pseudo
orbit

{zi, f(zi), f(ci), f
2(ci), . . . , f

j(ci) . . . },
has a single “jump” of length O(ε2), and therefore it is δ-shadowed by the orbit of
a point xi for some δ = O(ε2α). Thus dist(xi, zi) ≤ δ and dist(f j(xi), f

j(ci)) ≤ δ
for all j ≥ 1. If ε is small enough then xi ∈ Ji and there is a point x′i ∈ Ji
such that f(x′i) = f(xi) and c ∈ (xi, x

′
i). It is easy to see that dist(x′i, ci) ≈

dist(xi, ci)) ≥ ε − δ. In particular, if ε is small enough Ii = (xi, x
′
i), we have that

(ci − ε/2, ci + ε/2) ⊂ Ii (note that 2α > 1, so that δ < ε/2 if ε is small). Also
observe that f(Ii) = (f(xi), f(ci)].

Claim 1. There is ni ∈ {1, . . . , k} and ji ≥ 0 such that cni ∈ f ji(Ii) and
diam(f ji(Ii)) ≤ δ.

Proof. Let us first show that f j(Ii) contains a turning point for some j ≥ 1: By
transitivity, there is m > 0 such that fm(Ii) ∩ Ii 6= ∅. The set L =

⋃∞
n=1 f

nm(Ii)
is connected, so it is either an interval or the whole circle. Moreover, fm(L) ⊂ L.
Suppose for contradiction that f j(Ii) does not contain a turning point, for any
j ≥ 1. Then neither does L, and since there is at least one turning point, it follows
that L is not the whole circle. Thus L is an interval such that fm(L) ⊂ L, and
since f has no turning point in L it follows that fm|L is injective. This implies that
the ω-limit of any point in L by fm is a semi-attracting fixed point for fk, which
contradicts the transitivity of f .

Now let ji be the first positive integer such that f ji(Ii) contains a turning point,
and let cni be such turning point. Since for 1 ≤ j < ji there is no turning point in
f j(Ii), it follows that f |fj(Ii) is injective, and so f ji−1|f(Ii) is injective. This implies

that f ji(Ii) = (f ji(xi), f
ji(ci)), and so diam(f ji(Ii)) = dist(f ji(xi), f

ji(ci)) ≤ δ,
as claimed. �

To complete the proof of the theorem, let us use the notation A b B to mean that
A ⊂ B. Note that if ε is chosen small so that δ < ε/2, we have that f ji(Ii) b Ini
because Ini contains (cni − ε/2, cni + ε/2) and diam(f ji(Ii)) < ε/2. The map
τ : {1, . . . , k} → {1, . . . , k} defined by τ(i) = ni has a periodic orbit because the
space is finite, so that there is a sequence i1, i2, . . . , im = i1 such that f jir (Iir ) b
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Inir+1
for 1 ≤ r < m. Letting N = ji1 + ji2 + · · · + jim−1

, we conclude that

fN (Ii1) b Ii1 . This contradicts the transitivity of f , completing the proof.
�

Proof of Theorem 1.7. From Theorem 1.6 follows that f has is a local home-
omorphism conjugate to a linear expanding map. Let π : R → S1 = R/Z be the
universal covering, and F : R → R a lift of f . Write Ft(x) = F (x) + t, and let
ft : S1 → S1 be the map lifted by Ft. Since f has no turning points and preserves
orientation, F is increasing, and the same is true for Ft. Since f is Cr-robustly
transitive, there is γ > 0 such that ft is transitive for all t ∈ (−γ, γ)

Claim 1. For every open interval I ⊂ S1 and x ∈ S1 there is n > 0 and y ∈ I such
that fn(y) = x.

Proof. We need to show that
⋃
n≥0 f

n(I) = S1. Suppose not. Since f is transitive,

there is k ∈ N such that fk(I)∩I 6= ∅. Let L =
⋃
n≥0 f

nk(I). Then L is a connected

set, so it is either an interval or the whole circle, and fk(L) ⊂ L. Suppose L is an
interval. Then fk|L is injective, because it has no turning points. This implies that
there is a semi-attracting fixed point for fk in L, contradicting the transitivity of
f . Thus L = S1, and this proves the claim. �

Claim 2. For each z ∈ R2 and t > 0, Fnt (z) ≥ Fn(z) + t.

Proof. By induction: the case n = 1 is trivial, and assuming Fnt (z) ≥ Fn(z) + t,
we have Fn+1

t (z) = F (Fnt (z)) + t ≥ F (Fn(z) + t) + t ≥ Fn+1(z) + t due to the
monotonicity of f . �

Claim 3. For each ε > 0 and x ∈ S1 there is n ∈ N and 0 < t < ε such that
fnt (x) = x.

Proof. Let x̃ ∈ R be such that π(x̃) = x, and define Ĩ = (F (x̃), F (x̃) + ε). Claim

1 implies that there is y ∈ I = π(Ĩ) and n ∈ N such that fn(y) = x. This means

that if ỹ is the point in Ĩ such that π(ỹ) = y, then there is m ∈ Z such that
Fn(ỹ) = x̃+m. Observe that we can write ỹ = F (x̃) + s = Fs(x̃) for some s with
0 < s < ε. By the previous claim, Fn+1

s (x̃) = Fns (ỹ) ≥ Fn(ỹ) + s > x̃+m. On the
other hand, since F (x̃) < ỹ and Fn is increasing, we have Fn+1

0 (x̃) = Fn(F (x̃)) <
Fn(ỹ) = x̃+m. Thus, by continuity, there is 0 < t < s such that Fn+1

t (x̃) = x̃+m,
so that fn+1

t (x) = x as required �

Claim 4. f has no critical points.

Proof. Suppose c is a critical point. Claim 3 implies that there exist arbitrarily
small choices of t > 0 such that fnt (c) = c for some n. But c is also a critical point
for fnt , and so it is an attracting fixed point for fnt , contradicting the transitivity
of ft. �

Theorem A in [Mañ85] implies that if f is a transitive C2 endomorphism without
critical points, then one of the following hold:

(1) f is topologically conjugate to a rotation;
(2) f has a non-hyperbolic periodic point;
(3) f is an expanding map.
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We can rule out case (1), since f is not a homeomorphism. In fact, if f is a
homeomorphism, Claim 3 implies that there exist arbitrarily small values of t such
that ft has periodic points, and being ft a homeomorphism, it follows that ft is
non-transitive, a contradiction.

To finish the proof of the theorem, we have to rule out case (2) above, i.e. we
need to show that all periodic points of f are hyperbolic. Suppose p is a non-
hyperbolic fixed point of f , and let k ∈ N be the least period, so that fk(p) = p
and (fk)′(p) = 1 (because fk is increasing). Let I = (p − ε, p + ε) with ε so small
that f i(p) /∈ I for 1 < i < k, and choose a C∞ map h : S1 → S1 which is Cr-close
to the identity, such that h(x) = x if x /∈ I, h(p) = p and 0 < h′(p) < 1. Then hf
is Cr-close to f , and in particular it is transitive. But 0 < ((hf)k)′(p) < 1, so p is
a periodic sink for hf , contradicting the transitivity. This proves that all periodic
points of f are hyperbolic, completing the proof. �

Appendix: Creation of crooked horseshoes near the identity

W u

W s

W u
W s

Figure 4. Creating a crooked horseshoe close to the identity from
a flow

Given m > 0, we will construct a Cr diffeomorphism satisfying the properties
required in Proposition 3.2. For that, we get a vector field X exhibiting a double
loop between the stable and unstable manifold of a hyperbolic singularity, as in
figure 4. Moreover, the loop is an attracting set. Then, for each m, we take
the time- 1

m map Φ 1
m

of the flow associated to X. The fact that this map is Cr
m -

close in the Cr−topology to the identity map where Cr is a positive constant
independent of m follows from Lemma 4.8 below. Then, the map is perturbed into
a Cr diffeomorphism f unfolding a tangency associated to each loop (see figure 4).
It is proved that this diffeomorphism is Axiom A with strong transversality. To
prove that, we adapt to the present context the strategy developed in [NP76]. Note
that the estimate on the distance to the identity is preserved if the perturbation is
Cr-small. The resulting map has the properties mentioned in Proposition 3.2 (one
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can verify the presence of a crooked horseshoe for fm using standard arguments).
We devote the rest of this section to obtaining the required perturbations.

We state an elementary fact that was used in the previous description.

Lemma 4.8. Let X be a Cr+1 vector field on the compact manifold M , and φ : M×
[0, 1]→M the associated flow. Then φt = φ(·, t) is such that dCr (φt, id) < Crt for
some constant Cr independent of t.

Sketch of the proof. We prove it locally; the global version is obtained by standard
arguments. Assume the flow is defined on a neighborhood of U for some bounded
open set U ⊂ Rn. Let

Cr = max
0≤k≤r

∥∥Dk
xX
∥∥

were Dk
xX(x) : (Rn)k → Rn is the k-th derivative of X and

∥∥Dk
xX
∥∥ is the supreme

of
∥∥Dk

xX(x)
∥∥ for x in a neighborhood of U .

By the mean value inequality, if t is small enough,∥∥Dk
xφt −Dk

x id
∥∥ =

∥∥Dk
xφt −Dk

xφ0

∥∥ ≤ sup
0≤s≤t

∥∥∥∥ ddsDk
xφs

∥∥∥∥
= sup

0≤s≤t

∥∥∥∥Dk
x

d

ds
φs

∥∥∥∥ ≤ ∥∥Dk
xX
∥∥ t ≤ Crt.

�

This section is organized as follows: first we introduce the vector fieldX; later, we
consider perturbations of the map Φ 1

m
, by embedding the map in a one-parameter

family; finally, we prove that for certain parameters the map is Axiom A.
To simplify the proof, we will assume that the double connection of our flow is as

in figure 5 on the sphere, which does not make a difference since after compactifying
by collapsing boundary components of the annulus in figure 4, we are in the same
setting (in figure 5, the points R1 and R2 correspond to the collapsed boundary
components, whileR3 is the source inside the loop of figure 4), and the perturbations
that we are going to use are supported outside a neighborhood of R1 and R2.

4.1. The vector field X. Let us consider a vector field X defined on the two
dimensional sphere such that in the disk D = [−2, 2]× [−2, 2] the following holds:

(1) It is symmetric respect to (0, 0), i.e. X(−p) = −X(p).
(2) S = (0, 0) is a hyperbolic saddle singularity such that:

(a) inside [− 1
2 ,

1
2 ] × [− 1

2 ,
1
2 ] the vector field is the linear one given by

X(x, y) = (log(λ)x, log(σ)y) with 0 < λ < 1 < σ and λσ < 1, λ = σ−γ ,
with γ > max{3r, 6} where r is the smoothness required; in particu-
lar, [− 1

2 ,
1
2 ] × {0} is contained in the local stable manifold of S and

{0} × [− 1
2 ,

1
2 ] is contained in the local unstable manifold of S.

(b) the stable and the unstable manifold of (0, 0) are contained in D;
(c) the stable manifold and the unstable one form a loop γ contained in

[0, 2]×[0, 2]∪[−2, 0]×[−2, 0]; let us denote by γ+ the one in [0, 2]×[0, 2]
and γ− the one in [−2, 0]× [−2, 0].

(3) R1 = (1, 1) is a hyperbolic repelling singularity and is contained in the
region D+ bounded by the loop γ+ (by symmetry R2 = (−1,−1) is a
hyperbolic repelling singularity and is contained in the region D− bounded
by the loop γ−).
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Figure 5. Vector field X

(4) R3 = (2,−2) is a hyperbolic repelling singularity.
(5) Let Σu+ be the transversal section [− 1

3 ,
1
3 ]× { 1

2} and Σs+ be the transversal

section { 1
3} × [− 1

3 ,
1
2 ], and P+ : Σu+ → Σs+ be the induced map by the

flow, it is assumed that P+(x) = x. By symmetry there is also an induced
map P− defined from Σu− = [− 1

3 ,
1
3 ] × {− 1

2} to Σs− = {− 1
2} × [− 1

3 ,
1
2 ] and

P−(x) = x.
(6) There are no additional singularities.

Remark 4.9. From the choice of the eigenvalues of the singularity, observe that
the induced map L+ from Σs+ \ {y = 0} to Σu+ ∪ Σu− is a contraction. In the same

way it follows that the induced map L− from Σ−+ \ {y = 0} to Σu+ ∪ Σu− is also
a contraction. Therefore, the return map from Σs+ ∪ Σs− \ {y = 0} to itself is a
contraction. From that, it follows that the loop γ+ ∪ γ− is an attracting loop.

Lemma 4.10. With the assumptions above the vector field X can be built in such
a way that,

(1) the repelling basin of R1 is given by D+ and the repelling basin of R2 is
D−;

(2) the repelling basin of R3 in D is the complement of D+ ∪D− ∪ γ+ ∪ γ−;
(3) the non-wandering set is S,R1, R2, γ

+, γ−, R3.

Proof. Let β+ be a simple closed curve inside D+ and close to γ+ and let T+

be the annulus bounded by γ+ and β+. By the property on the return map R
inside D+ and that the saddle S is a contraction (see Remark 4.9), it follows that
ΦXt (T+) ⊂ T+ for any t > 0. This allows to build X in such a way that the first
item holds.

With a similar argument, observe that if it is taken any closed curve α outside
D+∪D− and close to γ+∪γ−, and T is an annulus bounded by γ+∪γ− and α, by
the property on the return map and that the saddle S is also a volume contraction,
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it follows that T ⊂ ΦXt (T ) for any t > 0. This allows to build X in such a way that
the second item holds.

The last item is immediate from the two previous one.
�

4.2. The flow Φ 1
m

. Now, given m, we take f = Φ 1
m

, the 1
m−time map of the

flow associated to X. Without loss of generality we can assume that there exist
b > 0 with (0, b) ∈ Wu

loc(S), a > 0 with (a, 0) ∈ W s
loc(S), and km > 0 such that

fkm(0, b) = (a, 0). The iterate km depends on m but from now on, for simplicity,
we assume that km is equal to 2. Moreover, provided a small neighborhood Bu+ =
[−ε, ε]× Lu+ containing a fundamental domain Lu+ = [(0, b), f(0, b)] inside the local
unstable manifold of S and a small neighborhood Bs+ = Ls+ × [−ε, ε] containing a
fundamental domain Ls+ = [f(a, 0), (a, 0)] inside the local stable manifold of S, and
reparameterizing the time flow, we can assume that

f2(x, y) = (fu(y), x),

where fu : Lu+ → Ls+ is a one-dimensional diffeomorphism such that fu(b) = a, and

fu′ < c < 0. By symmetry, the same holds in the neighborhood Bu− = Lu−×[−ε, ε] =
−Lu+×[−ε, ε], Bs− = −Ls+×[−ε, ε] and in particular, f2(0,−b) = (−a, 0). Of course,
the fundamental domains chosen depend on m, more precisely, as m is larger, the
fundamental domains gets smaller (recall that Φ 1

m
converge to the identity map).

4.3. Perturbations of Φ 1
m

. First we embed the map f = Φ 1
m

in a one parameter

family {ft}t≥0 where f0 = f . Now for each t > 0 small, we get a diffeomorphism ft
Cr close to f . Moreover, we can get ft satisfying the following properties (details
about the construction of ft are in subsection 4.5):

(1) The map ft is symmetric respect to (0, 0), i.e. ft(−p) = −ft(p).
(2) If t is small, S,R1, R2, and R3 are hyperbolic fixed points.
(3) For any t, the dynamics in [− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ] is given by ft(x, y) = (λx, σy),

where λ := λ(m) = λ
1
m , σ := σ(m) = σ

1
m . Observe that it is verified that

λ = σ−γ , the saddle fixed point S = (0, 0) is dissipative, and the local
unstable manifold is contained in the y-axis and the local stable in the
x-axis.

(4) Provided the neighborhoods Bu+ = [−ε, ε]× Lu+ and Bs+ = Ls+ × [−ε, ε], we
assume that

f2
t (x, y) = (fu(y), x+ fst (y))

where fst : Lu+ → R is a Cr function verifying that
(a) fs0 = 0,
(b) there exists a unique point b′′ with b < b′′ < b′ such that fst (b′) =

fst (b′′) = fst (b) = 0 (where b′ is a point such that (0, b′) = f(0, b)),

(c) for any y ∈ (b, b′′) follows that fst (y) > 0, fs
′′

t (y) < 0 and for any

y ∈ (b′′, b′) follows that fst (y) < 0, fs
′′

t (y) > 0,
(d) for any t the map fst has only two critical points c1 ∈ (b, b′′) and

c2 ∈ (b′′, b′) such that fst (c1) = t, fst (c2) = −t(1 + δ) where δ + 1 = c2
c1

and moreover the critical points are not degenerated. In particular,
f2(0, c1) = (c′1, t), f

2(0, c2) = (c′2,−t(1 + δ)).
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Figure 7. ft.

(5) The function ft coincide with f0 outside a neighborhood of size t
1
r of Lu ∪

−Lu for r large. Therefore, the map ft can be built in such a way that is
Cr close to f0.

Observe that by symmetry, provided the neighborhood Bu− = [−ε, ε]×−Lu and
Bs− = −Ls × [−ε, ε], it follows that

f2
t (x, y) = (fu(y), x− fst (−y))

where fst is the map defined before and so −fst ◦ −Id : −Lu → R is a Cr family of
functions verifying symmetric similar properties to the one listed above.

Remark 4.11. Without loss of generality, we can assume that,

(1) f2
t (x, y) = (y,−(y − c1)2 + t+ x) nearby the point (0, c1),

(2) f2
t (x, y) = (y, (y − c2)2 − t(1 + δ) + x) nearby the point (0, c2),

(3) f2
t it is defined by symmetry nearby the points (0,−c1) and (0,−c2).

Remark 4.12. There exists an arbitrary small neighborhood W of the region
bounded by γ+ ∪ γ− such that provided s, t small then any point x ∈ W c belong
to the basin of repelling of the fixed points R1 R2 or R3.
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4.4. Axiom A for certain parameters. In [NP76] has been proved that given
a C2−parameter family displaying a Ω−explosion, and assuming that before the
explosion the nonwandering set is given by single hyperbolic periodic orbits and
a single tangent homoclinic orbit, then there exist parameters arbitrarily close to
0, the non-wandering is a non trivial Axiom A. These results can no be applied
straightforward in the present context, however the proof can be adapted to con-
clude the following proposition that allows to prove Proposition 3.2.

Proposition 4.13. For any n, if t = σ−nc1 then ft is Axiom A with strong
transversality condition. Moreover Ω(ft) is formed by

(1) three hyperbolic attracting periodic orbits p+, p−, q; p+ contained in D+, p−
in D− and q in the complement of D− ∪D+;

(2) the repelling fixed points R1, R2, R3;
(3) a finite number of hyperbolic compact invariant set contained in the com-

plement of the basin of attraction and repelling of R1, R2, R3, p+, p−, q and
containing the homoclinic class of S.

The strategy to prove Proposition 4.13 consists in the following steps:

(1) It is chosen parameters t (arbitrary small) such that all the critical points
of fst belong to the basin of attraction of some finite attracting periodic
points (see Lemmas 4.14, 4.15 and 4.16).

(2) The maximal invariant set of ft inside the boxes Bs+ ∪Bs−, is contained in
a small strip along the curves f2

t (Lu+ ∪ Lu−) (see Lemma 4.19).
(3) Using previous item, it is proved that the maximal invariant set of ft inside

the boxes Bs+ ∪Bs− (and in particular the nonwandering set of ft that does
not contain the attracting periodic points) has a dominated splitting (see
Lemma 4.22).

(4) Using Theorem B in [PS09] is concluded that ft is Axiom A.
(5) The transversality condition follows from the fact the non attracting classes

are contained in the maximal invariant set inside the boxes Bs+ ∪Bs− (and
by item 3, it has dominated splitting).

First, in the next lemma, we prove that for t = σ−nc1, the critical points of fst
belong to the basin of attraction of an attracting periodic point. For that value of t
it also follows that (c′2,−t) and (−c′2, t) belong the basin of attraction of a periodic
point in [D+ ∪D−]c (see Lemma 4.16).

Lemma 4.14. For any n, if t = σ−nc1 then there exists a hyperbolic attracting
periodic point p+ contained in D+ such that, for 2 < α < 3, the following hold:

(1) the regions B+
α (c1) = {(x, y) : 0 ≤ x ≤ tα, |y − c1| < 2

1
2 t

α
2 } is contained in

the local basin of attraction of p+,

(2) B−α (c′1) = {(x, y) : |x − c′1| < 2
1
2 t

α
2 , |y − t| < tα} is contained in the local

basin of attraction of f2
t (p+) and in particular, (c′1, t) is in the basin of p+.

Proof. First it is proven that for t = σ−nc1 small

fn+2
t (B−α (c′1)) ⊂ B−α (c′1).(4)

Observe that for that value of t, the y−coordinates of fn(c′1, t) is equal to c1. This
implies that there is an attracting periodic point in the disk B−α (c′1) with period
n+ 2 and latter it is proved that the disk is contained in the basin of attraction.
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Observe that f2
t (B+

α (c1)) ⊂ B−α (c′1), so to conclude (4) it is proved that

fnt (B−α (c′1)) ⊂ B+
α (c1).(5)

In fact, to conclude (5), we prove that

fnt (B−α (c′1)) ⊂ B̂+
α (c1),(6)

i.e., for any (x, y) ∈ B−α (c′1) we prove (i) c1− tα < σny ≤ c1 + tα and (ii) λnx < tα,
where λnx and σny are the x and y coordinates of fnt (x, y). In fact, on one hand if
(x, y) ∈ B−α (c′1) then t− tα < y < t+ tα and so c1 − σntα < σny < c1 + σntα and
since tσn = c1 then c1 − c1tα−1 < σny < c1 + c1t

α−1 but from the fact that α > 2
and so α

2 < α − 1 then c1t
α−1 < tα, concluding the first inequality. On the other

hand, if (x, y) ∈ B−α (c′1) then c′1− t
α
2 < x < c′1 + t

α
2 and so 0 < λny < c′1λ

n+λnt
α
2 ;

since tσn = c1 and λ = 1
σγ then 0 < λnx < tγ and recalling α < γ (in fact, γ > 6)

it follows that tγ < tα concluding the second inequality and proving (6).
To conclude that B−α (c′1) is inside the basin of attraction, it is shown that for

any z ∈ B−α (c′1),

||Dzf
2n+4
t || < 1.

Observe that for z ∈ B+
α (c1)

Dzf
2
t =

(
0 fu′

1 ∂yf
s

)
with |∂yfst | < 4t

α
2 . So, using that Dfn is the diagonal matrix with diagonal λn, σn

then for any z ∈ B−α (c′1)

Dzf
2n+4
t =

(
(λσ)n fu′t(z)σ

n∂yf
s
t (z)

0 (λσ)n + σ2n∂yf
s
t (z)∂yf

s
t (f2n+2

t (z))

)
and since σn = c1

t and f2n+2
t (z) ∈ B+

α (c1) then

σn∂yf
s
t (z) < t

α
2−1 << 1, |σ2n∂yf

s
t (z)∂yf

s
t (f2n+2

t (z))| < 4t2(α2−1) << 1.

Since λσ < 1 it follows that the norm of Dzf
2n+4
t is smaller than 1. �

The proof of the next lemma follows from the symmetric property assumed on
ft. It basically states that there is also a sink created on D−.

Lemma 4.15. For t = σ−nc1, there exists a periodic point p− contained in D−

such that for 2 < α < 3 it is verified:

(1) the regions B+
α (−c1) = {(x, y) : −tα < x < 0, |y+ c1| < 2

1
2 t

α
2 } is contained

in the local basin of attraction of p−,
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(2) B−α (−c′1) = {(x, y) : |x+ c′1| < 2
1
2 t

α
2 , |y − t| < tα} is contained in the local

basin of attraction of f2
t (p−) and in particular, (c′1, t) is in the basin of p+.

The next is about a sink that is created in D.

Lemma 4.16. For t = σ−nc1, there exists a hyperbolic attracting periodic point q
contained in D = [D+ ∪D−]c such that for 2 < α < 3 it is verified:

(1) the regions B+
α (c2) = {(x, y) : −sα < x < 0, |y + c2| < 2

1
2 s

α
2 } is contained

in the local basin of attraction of p+,

(2) B−α (c′2) = {(x, y) : |x + c′2| < 2
1
2 s

α
2 , |y − s| < sα} is contained in the local

basin of attraction of f2
t (q) and in particular, (c′2,−s) is in the basin of q.

(3) the regions B+
α (−c2) = {(x, y) : 0 < x < sα, |y − c2| < 2

1
2 s

α
2 } is contained

in the local basin of attraction of q,
(4) B−α (−c′2) = {(x, y) : |x+ c′2| < 2

1
2 s

α
2 , |y − s| < sα} is contained in the local

basin of attraction of f2
t (q) and in particular, (−c′2, s) is in the basin of q.

Proof. Observe that for the construction of ft it follows that f2
t (B+

α (c2)) ⊂ B−α (c′2)
and f2

t (B+
α (−c2)) ⊂ B−α (−c′2). On the other hand, since σnt = c1, then σnt(1+δ) =

c2 (δ = c2
c1
−1). Repeating the calculation in Lemma 4.14 and recalling the property

of ft (more precisely, item (4.d) in subsection 4.3) follows fnt (B−α (c′2)) ⊂ B+
α (−c2)

and fnt (B−α (−c′2)) ⊂ B+
α (c2). Therefore,

f2n+2
t (B+

α (c2)) ⊂ B+
α (c2)

and so there is a semiattracting periodic point there. In the same way as in the
proof of Lemma 4.14, also holds that

||Dzf
2n+2|| < 1

for any z ∈ B+
α (c2) so the the semiattracting periodic point is a hyperbolic sink

such that B+
α (c2) is contained in its basin of attraction. Similar argument follows

for B−α (c′2), B−α (−c′2) and B+
α (−c2).

�

Corollary 4.17. There exists t arbitrarily small such that the thesis of lemmas
4.14, 4.15 and 4.16 hold.

Lemma 4.18. For any small t, if x ∈ Ω(ft) then either x ∈ {R1, R2, R3} or

belongs to B
t
1
r

(γ+ ∪γ−) (a neighborhood of radius t
1
r of γ+ ∪γ−). In particular, if

x /∈ {S,R1, R2, R3} then there exists an iterate of x that belongs to Bs
t
1
r

(Ls+ ∪Ls−).

Proof. It follows immediately from the fact that ft restricted to the complement of
Bu
t
1
r

coincide with f0,0.

�

Now, using that ft is dissipative in a neighborhood of S and Lemma 4.18 we
conclude that the non-wandering set inside Bs+ is contained in a small strip around
f2
t (Lu+); in the same way, the non-wandering set inside Bs− is contained in a small

strip around f2
t (Lu−). We fix first α larger than 2 and smaller than 3.

Lemma 4.19. For small t, there exists ξ verifying α < ξ < 3 such that if Λt =
∩n∈Zfnt (W ) then

(1) Λt ∩Bs+ ⊂ Btξ(f2
t (Lu+)), and so Ω(ft) ∩Bs+ ⊂ Btξ(f2

t (Lu+));
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Figure 9. Attracting periodic points of ft.

(2) Λ(ft) ∩Bs− ⊂ Btξ(f2
t (Lu−)), and so Ω(ft) ∩Bs− ⊂ Btξ(f2

t (Lu−));

where Btξ(f
2
t (Lu±)) denotes the neighborhood of size ξ of f2

t (Lu±). In particular, it
follows that for any x ∈ Ω(ft) then either x ∈ {S,R1, R2, R3} or there exists an
iterate of x that belongs to Btξ(f

2
t (Lu−)) ∪Btξ(f2

t (Lu+)).

Proof. Recall that ft coincides with f0 outside a neighborhood of size of t
1
r of

Lu+∪Lu− and so from Lemma 4.18 we have to consider the non-wandering set inside

Bs
t
1
r

(Lu+ ∪ Lu−). Let m be the first positive integer such that σmt
1
r ∈ Lu+ ∪ Lu− and

this implies that for any z ∈ Bs
t
1
r

such that L(z) ∈ Bu+ then dist(L(z), Lu) < λnz

with nz ≥ m. Since λ = σ−γ then λnz ≤ λm < σ−γm ≤ t
γ
r and from the election

of γ (see second item in subsection 4.1), which verifies that γ
r > 3 it follows that

there exists ξ larger than α (and without loss of generality smaller than 3) such
that γ

r > ξ and so dist(L(z), Lu) < λnz < tξ and from the definition of f2
t the

thesis follows.
�

Remark 4.20. Observe that the thesis of lemmas 4.14, 4.15, 4.16, and 4.19 hold
for small C2 perturbations of ft.

Remark 4.21. In a similar way as in the proof of Lemma 4.19 it can be concluded
that

(1) if x ∈ Bs± then either x ∈ W s
loc(S) or there exists a forward iterate that

return to Bs+ ∪Bs−;
(2) if x ∈ Bu± then either x ∈ Wu

loc(S) or there exists a backward iterate that
return to Bu+ ∪Bu−.

In what follows we prove the existence of a dominated splitting on the non
wandering set excluding the attracting and repelling points p+, p−, q, R1, R2, R3.
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A compact invariant set Λ has a dominated splitting if there exist two comple-
mentary invariant subbundle E ⊕ F by the action of the derivative such that
||DfnE(z)||||Df−nF (fn(z)|| < 1

2 for any z ∈ Λ and any positive integer n sufficiently

large. The existence of dominated splitting is equivalent to the existences of invari-
ant cone fields, i.e., a cone field {C(z)}z∈Λ such that

Dfn(C(z)) ⊂ interior(C(fnt (z))

for any z ∈ Λ and any positive integer n sufficiently large.

Lemma 4.22. For any t verifying the thesis of Lemmas 4.14, 4.15 and 4.16
it follows that Λt is a set having a dominated splitting. In particular, Ω(ft) \
{p+, p−, q, R1, R2, R3} is a set having a dominated splitting.

Proof. It is enough to show that for the set of points that is not contained in the
local basin of attraction of the periodic points given by Lemmas 4.14, 4.15 and 4.16
it is possible to build an invariant unstable cone field. More precisely, this cone
field is defined in

Btξ(L
u
+) ∪Btξ(Lu−)

⋃
Btξ(f

2
t (Lu+)) ∪Btξ(f2

t (Lu−))
⋃
W s
loc(S)(7)

which is the region that contains the non-wandering inside Bu+ ∪ Bu− ∪ Bs+ ∪ Bs−.
Latter, by standard procedure, the cone field is extended everywhere by iteration
and taking the closure. Therefore, to show that the cone field is invariant, is enough
to check it in the region (7). For points (x, y) ∈ Btξ(Lu+) ∪ Btξ(Lu−) the cone field

has the vertical vector (0, 1) as direction and slope tξ, i.e.,

C(x, y) = {v : slope(v, (0, 1)) ≤ tξ}.
For points (x′, y′) = f2

t (x, y) ∈ Btξ(f2
t (Lu+)) ∪ Btξ(f2

t (Lu−)) it is taken a cone field

with direction tangents to f2
t ({x} × Lu+) with |x| < ξ fixed and slope tξ. More

precisely, given a point (x′, y′) = (fu(y), x + fst (y)) ∈ Btξ(f
2
t (Lu+)) and defining

w(x′,y′) = (fu′(y), fst
′(y)) then

C(x′, y′) = {v : slope(v, w(x′,y′)) ≤ tξ}.
For points in the local stable manifold of the saddle S it is taken the forward iterate
of the cone in [Btξ(f

2
t (Lu+)) ∪ Btξ(f2

t (Lu−))] ∩W s
loc(S) and in S it is taken a cone

along the unstable direction.
Now we proceed to prove that the cone field are invariant. From Lemma 4.14,

Lemma 4.19 and item (4) in the definition of fst follows that for any point (x′, y′) ∈
Bs+ ∩ Ω(ft) then

slope(w(x′,y′), (1, 0)) > t
α
2 ,

in particular, if v ∈ C(x′, y′) then

slope(w(x′,y′), (1, 0)) > t
α
2 − tξ > 1

2
t
α
2 .

Observe that by definition,

f2
t (C(x, y)) = C(f2

t (x, y)).(8)

Let (x, y) be a point in Bs+ that does not belong to the local stable manifold of S,

i.e y > 0. Let m = m(x, y) be the first integer such that fmt (x, y) ∈ B+
+ , i.e. m is

the first integer such that σmy ∈ Bu+. It remains to show that for (x, y) ∈ Bs+ holds

D(x,y)f
m+2
t (C(x, y)) ⊂ C(fm+2(x, y)).
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From (8) it remains to show that for (x, y) ∈ Bs+ holds that

D(x,y)f
m
t (C(x, y)) ⊂ C(fmt (x, y)).(9)

Observe that m is larger than m0 such that σm0t > b. So, giving v = (1, v2) ∈ C(x,y)

then Dfmt (v) = (λm, v2σ
m) = v2σ

m( λm

v2σm
, 1) with v2 > t

α
2 −tξ > 1

2 t
α
2 and therefore

slope(Dfmt (v), (0, 1)) ≤ λm

v2σm
≤ tγ−α2−1

and recalling that γ > 6, α < ξ < 3 follows that γ − α
2 − 1 > ξ and therefore

proving that the slope of Dfmt (v) with (0, 1) is strictly smaller that tξ and so (9)
is proved. �

To conclude Proposition 4.13 it is used a result proved in [PS09] (see Theorem
B) that states that a generic Kupka-Smale C2 diffeomorphism with a dominated
splitting in its non-wandering set is Axiom A.

Remark 4.23. From remark 4.20, we can assume without loss of generality that
ft is Kupka-Smale and moreover it does not contain normally hyperbolic invariant
curves. Therefore, from Theorem B in [PS09] it follows that Λt is a hyperbolic
set. Since there are transversal homoclinic points associated to S, it follows that
Λt contains a non trivial hyperbolic set.

Proof of Proposition 4.13. To conclude, we have to show the strong transversality
condition: the stable and unstable manifold of any basic piece given by the spectral
decomposition intersect transversally. This follows immediately using that in Λt \
{p+, p−, q, R1, R2, R3} there is a dominated splitting. In fact, if z ∈W s(x)∩Wu(x′)
for some x, x′ ∈ Ωt \ {p+, p−, q, R1, R2, R3}, z ∈ Λt and W s

[x,z](x)∪Wu
[x,z′](x

′) ⊂ Λt
where W s

[x,z](x) is the connected arc of W s(x) that contains x and is bounded by

x and z (and Wu
[x,z′](x

′) is the connected arc of Wu(x′) that contains x′ and is

bounded by x′ and z). So, TzW
s(x) is tangent to the subbundle Ez and TzW

u(x)
is tangent to the subbundle Fz provided by the dominated splitting, and therefore
the intersection is transversal. �

4.5. About the construction of ft. We consider a tubular neighborhood T
around γ+ that contains Bu+ and Bs− for the flow Φ 1

m
. Moreover, using appropriate

coordinates we can assume that T = [−1,m + 2] × [−1, 1], Bu+ = [0, 1] × [−1, 1],
Bs+ = [m,m+ 1]× [−1, 1] and

Φ 1
m

(x, y) = (x+ 1, y).

Now we consider a map g : R→ R with support in [−ε, 1 + ε] such that

(1) g0 := g/[0,1] verifies that g0(0) = g0(1/2) = g0(1) = 0, only has two critical
points at 1/4, and 3/4, g0(1/4) = 1, g0(3/4) = 1 + δ , g0 is positive in
(0, 1/2) and negative in (1/2, 1);

(2) g′0 is increasing in [0, 1/2] and decreasing in [1/2, 1];
(3) g1 := g/[1,1+ε] has only one critical point and g1(x) << g0(x− 1).

Moreover, taking ε small, the maps can be chosen in such a way that ĝ = g0(x) +
g1(x + 1) verifies in [0, 1] the same properties that g0 verifies. Moreover, taking
gt = tg and ĝt = tĝ = g0t(x) + g1t(x+ 1), for t small then the Cr norm of ĝt is also
small. Now observe that if

ft(x, y) = (x+ 1, y + b(y)gt(x)),
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where b is bump function that is zero outside [−1, 1] and is equal to 1 in [−1/2, 1/2]
then ft is a diffeomorphism and for (x, y) ∈ Bu+ with y ∈ [−1/2, 1/2] follows that

fmt (x, y) = (x+m, y + ĝt(x))

and observe that after the coordinates changes in T follows that the map has the
properties required for ft in Bu+.
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